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Abstract 

 
This paper provides a model of systemic panic among financial institutions with heterogeneous 

fragilities. Concerns about potential spillovers from each other generate strategic interaction 

among institutions, triggering a preemption game in which one tries to exit the market before the 

others to avoid spillovers. Although financial contagion originates in weaker institutions, 

systemic risk depends critically on the financial health of stronger institutions in the contagion 

chain. This analysis suggests that when concerns about spillovers prevail, then 1) increasing 

heterogeneity of institutions promotes systemic stability and 2) bolstering the strong institutions 

in the contagion chain, rather than the weak, more effectively enhances systemic stability. 
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1 Introduction

Panics in financial markets are contagious by nature. Financial spillovers, which spread

distress among institutions, can arise through a variety of channels.1 When market partici-

pants worry about this domino effect, the fear itself sometimes leads to self-fulfilling panics:

If some become concerned and try to exit the market before the mess falls on, others follow

and run for the exit in a panic to avoid being left behind (Pedersen (2009)). In such cir-

cumstances, coordination problems among market participants, which stem from concerns

about spillovers, become critical.

This paper seeks to tackle a new question: How does systemic panic occur when financial

institutions are heterogeneous (some are financially stronger than others)? Understanding

this mechanism is important since it enables us to address the following policy question:

What should we do to contain systemic crises in the future? Our model, by incorporating

systemic concerns among heterogeneous institutions, presents answers to these questions

with novel implications.

First thoughts suggest that financial distress simply spreads from financially weaker in-

stitutions to stronger ones through financial spillovers (as in Diamond and Rajan (2005)).

However, the underlying causal relationship is the opposite when strategic interactions from

concerns about spillovers are taken into account. Indeed, measures taken by the stronger in-

stitutions to protect themselves from spillovers can exacerbate uneasiness among the weaker

ones and ultimately destabilize the whole financial system. Here, systemic stability critically

depends on the health of the stronger, rather than the weaker institutions.

In our model, strategic considerations about coordination concerns are present not only

among the ex-ante identical institutions but also across those with differing financial health

1For example, fire-sale externalities (Caballero and Krishnamurthy (2001), Diamond and Rajan (2005),
and Brunnermeier and Pedersen (2009)), informational spillovers (Lee (1998), Aghion, Bolton, and Dewa-
tripont (2000), and Kurlat (2010)) and direct/indirect exposures (Rochet and Tirole (1996), Allen and Gale
(2000), Freixas, Parigi, and Rochet (2000), and Dasgupta (2004)). See Brunnermeier (2009) for a description
of the 2007-09 crisis.
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levels.2 This implies that the stronger institutions are not passive. They do not simply sit

and wait, worrying if the financial distress at weaker institutions will spill over to them.

Rather, they try to run preemptively for the exit so as to avoid being dragged down. This,

however, prompts the weaker ones to act the same, and run even faster. Even though

not running is collectively better, such “pre-emption game”, in which one tries to exit the

market before others, may induce a coordination failure among heterogeneous institutions

and undermine systemic stability.

What is remarkable here is that as economic fundamentals deteriorate, a systemic crisis

materializes when the stronger institutions in the contagion chain lose their confidence and

consider dropping out of the chain (exiting the market) to avoid the spillovers. This concern

of the stronger eventually prompts the weaker to run preemptively, which self-fulfills the

stronger’s initial concern and leads them to run as well. Thus, what is critical in the systemic

context is not the contagion trigger event itself (distress at the weaker institutions), but

the level of the stronger’s confidence facing the spillovers following that event. Therefore,

systemic risk, or ex-ante likelihood of a systemic crisis, is related to the financial health of

the stronger institutions which directly affects their levels of confidence.

This argument highlights a striking contrast between our systemic (strategic) approach

and the benchmark non-systemic (non-strategic) approach in which coordination problems

among institutions are absent. In the benchmark case, the best way to contain contagious

distress is to focus on the weakest link in the contagion chain: bolstering the weakest. The

following quotation from Lombard Street (Bagehot (1873)) represents this view, which is

consistent with conventional wisdom:

...In wild periods of alarm, one failure makes many, and the best way to prevent

2Panic models in the literature have mainly focused on coordination concerns among homogeneous par-
ticipants (e.g., Diamond and Dybvig (1983), Rochet and Vives (2004), and Goldstein and Pauzner (2005)).
Goldstein (2004) studies a coordination problem among investors in different markets, and Corsetti, Das-
gupta, Morris, and Shin (2004) consider the problem among small and large traders. Sákovics and Steiner
(2012) study policy effectiveness facing a coordination problem among heterogeneous agents with heteroge-
neous payoffs but homogeneous strength.
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the derivative failures is to arrest the primary failure which causes them.

Our analysis suggests that incorporating strategic considerations can reverse this conven-

tional wisdom. Unlike financial distress, which propagates from the weaker to the stronger

institutions, the loss of confidence propagates from the stronger to the weaker eventually

resulting in a self-fulfilling crisis. Thus, we suggest an alternative recommendation: Bolster

the strongest in the contagion chain, not the weakest, to contain systemic panic (destabiliz-

ing loss of confidence) and enhance systemic stability effectively.3 Our approach also yields

novel implications for heterogeneity and financial system stability, suggesting that systemic

risk is lower in more heterogeneous financial systems when concerns about spillover prevail.

This is because coordination problems are less severe in more heterogeneous systems and

thus externalities from the coordination failure are weaker. Since systemic soundness crit-

ically depends on the health of stronger institutions, it can be enhanced by separating the

strong from the weak.

While our mechanism can be applied more generally when coordination concerns exist

among heterogeneous agents with differing degrees of exposure to strategic risk (i.e. coor-

dination concerns), this paper specifically considers heterogeneously leveraged institutions

holding an illiquid asset subject to a collateral constraint. Our explicit focus is on their

optimal market-exit timing facing the following tradeoff:4

• Institutions prefer to keep this high-yield but illiquid asset (“stay” in the market)

rather than to liquidate immediately (“exit” the market) at a discounted price.

• At the same time, they wish to avoid financial distress (forced liquidation of their

assets) that occurs when their collateral constraint is violated.

This implies that the first best strategy is to delay immediate liquidation and exit the market

right before the collateral constraint is binding, or funding liquidity evaporation.

3Acharya and Yorulmazer (2008) also suggest to bolster the stronger, but in a different context.
4The trader’s tradeoff in Morris and Shin (2004b) is the closest to that of our model. Investors of

Bernardo and Welch (2004, 2012) also face similar tradeoff but fundamental uncertainty exists in their case.
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What complicates the choice of this exit timing is coordination problems (strategic risk)

among the institutions holding the illiquid assets, whose liquidation value (i.e. collateral

value) becomes lower as more of them are liquidated.5 Thus, collateral value becomes de-

pressed as other institutions exit, which may result in a collateral constraint violation that

could have been avoided if the institutions had coordinated. In other words, funding liq-

uidity is provided unless market liquidity is depleted, but the amount of remaining market

liquidity depends on collective action of other institutions.

This dependence becomes the source of multiple self-fulfilling equilibria in the manner of

Diamond and Dybvig (1983). We adopt the global game technique (Morris and Shin (2003)

for the overview, and Toxvaerd (2008) for the exit game setup) to derive a unique equilibrium

of our model. In equilibrium, systemic crises are triggered when deteriorating fundamentals

cause institutions to run for limited market liquidity. The runs are self-fulfilling because they

depress the market value of the assets to the point that collateral constraints are violated

and funding liquidity evaporates.

A new source of externality arises in our model that results from the coordination fail-

ure among heterogeneously leveraged institutions. This externality precipitates the trigger of

systemic panics and increases the systemic risk ex ante, and it becomes stronger if the institu-

tions are more homogeneous. With a continuous time approximation for our dynamic model,

we then apply a structural debt pricing framework (see Merton (1974), and Leland (1994))

to calculate credit spreads and systemic risks in a closed form. We explicitly examine the

relationship between heterogeneity and credit spread dynamics, and how a microprudential

analysis underestimates both credit spreads and true systemic risks by ignoring the exter-

nality from concerns about the spillovers in the system. The errors are negligible during

normal times, but surge rapidly in a market downturn.

5Theoretical models of this price impact are provided by Grossman and Stiglitz (1980), Kyle (1985),
Grossman and Miller (1988), Shleifer and Vishny (1992), Allen and Gale (1994), and Brunnermeier and
Pedersen (2009).
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This paper is related to several strands of literature. We study liquidity crises in finan-

cial markets as in Holmström and Tirole (1998), and Allen and Gale (2004) where financial

spillovers arise as in Allen and Gale (2000), Diamond and Rajan (2005), and Brunnermeier

and Pedersen (2009). Our approach is also related to the literature on coordination prob-

lems among market participants. Diamond and Dybvig (1983) provide a classic model of

coordination problems that generate self-fulfilling multiple equilibria. Financial panic mod-

els with a unique equilibrium are developed using the global game technique by Rochet and

Vives (2004), Goldstein and Pauzner (2005), and Morris and Shin (2004b). Goldstein (2004),

Corsetti, Dasgupta, Morris, and Shin (2004), and Sákovics and Steiner (2012) extend them to

the asymmetric global game setup. Dynamic extensions of a global game with an exit option

are considered by Toxvaerd (2008), and Chassang (2010). Without adopting the global game

setup, He and Xiong (2011a) study a coordination problem among creditors across differ-

ent maturity dates. Coordination concerns about the asset liquidation timing in this paper

are also studied by Brunnermeier and Pedersen (2005), Carlin, Lobo, and Vishwanathan

(2007), and Oehmke (2010) in different contexts. This paper also employs the structural

debt pricing approach originally proposed by Merton (1974). Leland (1994), and Leland and

Toft (1996) provide solutions for debt valuation with endogenous default thresholds chosen

by the equity holder whereas in our case debt contracts can also be terminated when the

collateral constraint is violated. Our focus on the effect of coordination failure (thus higher

rollover risk, whose effect is also considered in He and Xiong (2011b)) on credit costs is in a

similar spirit to Morris and Shin (2001, 2004a). Bruche (2011) also studies this problem by

employing a global game with a continuous time approximation, as in this paper.

The paper is organized as follows. Section 2 describes the model setup. Section 3 charac-

terizes the equilibrium of the model and Section 4 discusses the main result in more detail.

Section 5 analyzes how coordination failure and heterogeneity affect asset pricing dynamics.

Section 6 concludes.
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2 Model Setup

We focus on how strategic interactions among heterogeneous institutions affect the sys-

temic risk of a panic run for limited market liquidity (panic run for the exit), while tak-

ing their balance sheet structures and financial constraints as given. Consider an infinite

horizon economy where time is discrete and advances by increments of △, indexed by

0,△, · · · , t − △, t, t + △, · · · . There are two groups of differently leveraged financial in-

stitutions (referred to as “institutions” hereafter). In each group, there is a continuum [0, 1]

of ex-ante identical institutions.

Each institution is endowed with one unit of an asset simultaneously used as collateral

for the exogenous initial debt position (financed and purchased at the ex-ante period t = 0),

with the debt principal value P .6 Since P reflects the scale of the initial debt on the liability

side for one unit of asset holding on the asset side, we interpret P as a measure of the initial

leverage where higher P implies a higher leverage level. Initial leverage levels are different

between the two (H and L) groups.7 H-group institutions are more highly leveraged with

P = PH , than L-group (low-leverage) institutions with P = PL, where PH > PL.
8

We focus on the interim market-exit decision of the institutions. At the beginning of

each period, the institutions choose either to “stay” in the market (keep the asset to the

next period) or to “exit” the market immediately9 (close their position and pay back the

6We can consider that the asset position is financed ex ante partly by some debt using this particular
asset as collateral and partly by its own capital, as with repo or ABCP.

7Although adopting a dynamic setup, we focus on the short-term (near-crisis) question of what drives
systemic panic given heterogeneity in the system, without answering the question of ex-ante endogenous
optimal leverage studied in Leland (1994), or real-time balance sheet adjustments along the fundamental
fluctuations studied in Bernanke and Gertler (1989), Kiyotaki and Moore (1997), and Brunnermeier and
Pedersen (2009). In the near-crisis situation, it is very costly to issue new equity and institutions mainly
consider a deleveraging problem given their balance sheet, which is what our model is analyzing. Note that
this heterogeneous leverage setup is for expositional simplicity, and we can still get the same results with
other forms of heterogenous fragilities (exposures) to financial spillovers. See Appendix C for the generalized
setup.

8Technically, there exists ǫ > 0 such that PH − PL > ǫ.
9Partial liquidation can be incorporated within our setup but will not be observed in equilibrium since

coordination concerns among the institutions (desire for preemptive run) drive the equilibrium outcome.
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Figure 1: Timeline of the model
The institutions repeatedly choose either to stay in the market or exit the market after observing the
private signal each period. When choosing to stay, the debt needs to satisfy a collateral constraint to be
rolled over into the next period. The game ends if the institution chooses to exit or its debt rollover is
refused.

debt principal). When choosing to keep its leveraged position, that institution has to roll

over its debt to move on to the next period, but the debt rollover is allowed only if certain

collateral constraint is satisfied as will be discussed in Section 2.2.

2.1 Asset

The unlevered value of one unit of the asset V , which is non-verifiable, follows the stochas-

tic process

Vt+△ = Vt + (r − δ)Vt△+ σVtzt+△

where the innovations {zt+△} are i.i.d. N(0,△). Here, r is the risk-free rate and δ is the

cash payout ratio.10 Vt is referred to as the “fundamental” value of the asset at period t.

The assets are illiquid in a sense that their interim liquidation price deviates from the

10As △ → 0, {Vt} converges to a geometric Brownian motion dV = (r− δ)V dt+ σV dW , commonly used
in the structural debt pricing literature. We assume that probabilities are measured under the risk-neutral
measure.
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fundamental value as more of them are liquidated in the market. Denote the liquidation

price of one unit of the asset at the end of period t as Lt, and let ft be the amount of the

assets that have been liquidated previously. Thus, ft(∈ [0, 2]) is simply the mass of the

institutions that have chosen to exit the asset market up to the beginning of period t. Given

the fundamental Vt, the liquidation price Lt at the end of period t follows

Lt = Vt − λft (1)

where λ is the measure of (il)liquidity for this asset.11 Since the asset is also used as collateral

for the debt, we will use the terms “liquidation price” and “collateral value” interchange-

ably, both indicating Lt. Equation (1) implies that the collateral value becomes lower as

more institutions liquidate their asset holdings to exit the market, thereby reducing market

liquidity. The decrease is larger when the asset is more illiquid.

2.2 Debt contract and collateral constraints

The institution uses its one unit of the asset holding as collateral for its debt position.

Since the fundamental V is non-verifiable, the debt (with the principal P = PH , PL) is subject

to a collateral constraint (Hart and Moore (1998), Kiyotaki and Moore (1997)) that requires

the perceived value of the collateral asset (marked to market asset value) Lt to exceed certain

threshold proportional to the debt size P . For simplicity, we assume that the debt needs to

be fully collateralized. At the end of each period t, a j-group institution (j = H,L) can roll

11λ reflects market depth in Kyle (1985), market liquidity in Brunnermeier and Pedersen (2009), liquidity
premium in Allen and Gale (1994), risk premium in Grossman and Stiglitz (1980), and dislocation cost in
Shleifer and Vishny (1992). We use a linear asset pricing curve for simplicity while the price impact term
can take more general forms. What’s critical for our mechanism is strategic complementarity among the
institutions, and strategic complementarity arises as long as the price decrease from asset liquidation is
increasing in the number of institutions exiting the market.
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over its debt if and only if the collateral value Lt exceeds its debt principal Pj :

Lt > Pj (2)

If the collateral value is below this threshold, the institution is under “financial distress”

facing rollover refusal, which leads to forced liquidation of its asset holding.12

The debt pays a constant coupon payment Cj△ each period until its termination, which

is triggered by either the rollover refusal (puttable option) or the institution’s voluntary exit

(callable option), paying the principal Pj at that point.
13

2.3 Market-exit game

We solve for the optimal timing of the institutions’ market-exit as the fundamentals

deteriorate. At the beginning of each period, each institution (indexed by i ∈ [0, 2]) decides

either to stay in the market (ait = 0) or to exit immediately (ait = 1). We consider the

following economic tradeoff microfounded in Appendix B: (i) the institutions prefer to stay

in the market rather than to liquidate the asset immediately for a discounted price, but (ii)

the institutions at the same time wish to avoid financial distress (following rollover refusal)

since voluntary liquidation with early exiting is preferred over forced liquidation. Facing the

risk of potential rollover refusal, each institution chooses an optimal action of the two given

the state variables. No re-entry is allowed once exiting the market.

Since the collateral value (thus, the debt rollover) depends on collective action of the other

institutions (characterized by ft), the optimal exit decision also depends on what others do.

We adopt a dynamic global game setup (as in Toxvaerd (2008)) by introducing a noisy

private signal about the fundamental, such that a unique equilibrium can be pinned down.

12We assume that the institutions can’t raise new capital once in financial distress. We also rule out debt
renegotiation. Diamond and Rajan (2001) provides a theoretical model in which a coordination problem
among lenders prevents debt renegotiation.

13The full-collateral requirement (2) guarantees the full payment of principal Pj . This setup is not critical.
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At the beginning of the typical period t, the fundamental Vt is realized but is not common

knowledge to the institutions. Instead, a typical institution i receives an idiosyncratic signal

sit that follows sit = Vt+ǫit, where ǫit is independently uniform over [−ǫ, ǫ] with ǫ = o(△
1

2 ).14

Let ht = {Vs, fs|s < t} be the past history up to period t, which is common knowledge.

In each period, the institutions make an optimal decision (stay/exit) repeatedly based

on these state variables. We suppose a reduced-form setup (as in Rochet and Vives (2004))

in which the optimal decision is delegated to a manager with a simple payoff structure while

preserving the tradeoff described previously. This simplifies our analysis to focus explicitly

on the strategic interactions without affecting the model’s implications.15

Managers are risk neutral and discount with the risk-free rate r. At the beginning of

period t, a typical manager (indexed by i ∈ [0, 2], irrespective of the groups they belong

to) chooses either to stay in the illiquid market or to exit after observing the private signal

sit and the past history ht. At any interim period, a manager basically prefers keeping the

illiquid asset to immediate liquidation; he obtains a high wage of wS△ at the end of each

period as long as he keeps the asset and the debt gets rolled over, but only obtains a low

wage of wE△ each period (with 0 < wE < wS) once liquidating his position and exiting the

market.16 Therefore, “staying” is strictly better than “exiting” at any given period, as long

as it is certain that the debt will be rolled over in that period (funding liquidity is secured).

The downside of staying in the market is that the institution may fall into financial

distress at the end of that period if the collateral constraint (2) is violated. The managers of

14Using uniform distribution is for simplicity and without loss of generality with ǫ → 0 as △ → 0. If
the order of convergence is larger, multiple equilibria exist with too informative public signals (here, past
fundamentals). See Angeletos and Werning (2006).

15This delegation assumption is for simplicity. We can get essentially the same results by directly analyzing
the equity holder’s payoff who collects a dividend payment (δVt −Cj)△ every period, with an extra penalty
for going under forced liquidation which could result from (i) reputational reasons (stigma effect), (ii) lower
liquidation price with others’ preemptive liquidation (as in Morris and Shin (2004b) and Bernardo and Welch
(2005)), or (iii) predatory trading (Brunnermeier and Pedersen (2005)). See Appendix B.

16Although we arbitrarily pick wS and wE further assuming that these values are identical across the
managers belonging to different groups, the specific parametrization of the salary schedule are irrelevant
in the limit. Our results require only the minimum assumptions that voluntary preemptive liquidation is
preferred over forced liquidation for any institution.
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distressed institutions will then be penalized for making the “wrong” decision of remaining in

the market, receiving 0 afterwards in that case. This tradeoff between (i) the higher wage for

staying over exiting and (ii) the heavy penalty for staying mistakenly when funding liquidity

dries up, is the driving force behind the interim exit decision. The managers (institutions)

wish to stay in the illiquid market to enjoy high salaries (high yields) while funding liquidity

is provided, but do not wish to stay too long so as to avoid the financial mess following

funding liquidity evaporation.

When ignoring other institutions, the institutions thus try to delay their market exit

until the collateral constraint is surely violated. However, they fail to achieve this outcome

since coordination concerns arise among them; one’s collateral value (thereby one’s debt

rollover) depends on collective action of other institutions, thus one may also have to exit

when sufficiently many other institutions are exiting. The global game technique enables us

to solve for the unique equilibrium exit strategy that takes this strategic uncertainty into

account.

We focus on the Markov threshold strategies characterized by respective “(panic) exit

thresholds” s∗H(ht) and s∗L(ht) for the two groups; given the history ht, the manager i of

group j(= H,L) chooses to stay in that period if his signal about the fundamentals is high

enough exceeding j-group’s exit threshold (ait(sit, ht) = 0 if sit > s∗j (ht)), but exit otherwise

(ait(sit, ht) = 1 if sit ≤ s∗j (ht)). In the next section, we define and derive a unique Markovian

Perfect Bayesian equilibrium in threshold strategies.

The timeline of the model is summarized in Figure 1. At the beginning of a typical period

t, the fundamental Vt is realized and the managers who remain in the market receive their

private signals {sit}i∈[0,2]. Each manager then chooses either to stay or to exit according to

their strategy profiles. At the end of period t, the debt rollover is allowed for the institution

staying in the market if and only if its collateral constraint (2) is satisfied, which from (1)

depends on the aggregate size of the past asset liquidation ft and the current fundamental
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Vt. The wages are then paid according to the salary schedule. If the manager chooses to stay

and the debt rollover is allowed, it moves on to the next period t+△ and the same game is

repeated. The game ends otherwise, either by exiting voluntarily or by a rollover refusal.

3 Bayesian Equilibrium

A single-group global game with a unique equilibrium (Morris and Shin (2003) for the

overview) can be easily extended to a multiple-group setup as shown in Frankel, Morris,

and Pauzner (2003). For now, we assume that the difference in initial leverages (i.e., debt

principal values Pj) between the two groups is not very large while the assets they hold are

illiquid, satisfying PH − PL < λ. As will subsequently be discussed, this condition implies a

domino effect between the two groups when one of them becomes distressed.

Given the past history ht, two exit thresholds characterize an equilibrium of the model,

s∗H(ht) for H-group institutions and s∗L(ht) for L-group, with a signal below which a manager

loses confidence and chooses to exit the market. A Bayesian equilibrium is defined such that

one’s strategy in the profile maximizes his conditional expected payoff when all others are

following the equilibrium strategy profiles. We take a continuous time approximation of our

discrete time model with △ → 0 so that (i) closed-form solutions can be derived, and (ii)

we can employ the structural debt pricing framework to define and calculate the dynamics

of credit spreads. However, this is not a critical condition as discussed in Section 4.6.

3.1 Benchmark case with perfect coordination

Prior to the equilibrium analysis with strategic interactions, consider the first-best bench-

mark case in which the institutions can perfectly coordinate. As depicted in Figure 2, we

verify that all (both H and L group) institutions delay their market exit until the funda-

mental V eventually hits PH .

12



Figure 2: Crisis threshold V BM in the benchmark case
When the institutions can perfectly coordinate, all (both H and L group) institutions exit the market
when the fundamental V hits V BM = PH from above. Here, the crisis is simply triggered when H-group
institutions are distressed.

In the benchmark case with perfect coordination, the institutions delay their liquidation

until their collateral constraints (2) are surely violated. H-group institutions thus exit the

market when the fundamental V hits PH , at which point depressing the collateral value by

λ×1 to PH −λ, through mass 1 of H-group’s liquidation. This generates financial spillovers

(fire-sale externality) to L-group, since L-group’s collateral constraint will then be violated

with reduced market liquidity; the collateral value Lt is now lower than L-group’s debt

principal value PL under our assumption of PH − PL < λ. In anticipation of this domino

effect (H-group’s liquidation drags down L-group into financial distress contagiously), L-

group institutions also choose to exit immediately at this point, setting their exit thresholds

at PH . Therefore, all institutions in both groups choose to exit simultaneously when the

fundamentals V eventually deteriorate to V BM = PH , where V BM is referred to as the

crisis threshold of the fundamental under the benchmark setup. Here, a “crisis” refers to a

systemic event in which all institutions in the system (contagion chain) choose to liquidate

their asset simultaneously to exit the market, and systemic risk refers to the risk of this

systemic event. Note that the crisis simply happens when weaker H-group get distressed at

V = PH in this case, and the crisis threshold (thus the systemic risk) depends on H-group’s

financial health (leverage level) PH .
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3.2 Equilibrium with coordination concerns

When strategic considerations about coordination concerns (concerns about the spillover)

are incorporated, the institutions don’t wait passively until others exit, but instead, worry

about what others will do. The fear itself can generate a self-fulfilling panic in this case, which

increases the systemic risk ex ante. Our contribution is to demonstrate novel implications

on systemic stability arising from strategic interactions among heterogeneous institutions. A

“pre-emption game” starts between the two groups, and on the margin, it is in effect stronger

L-group that is critical in initiating the systemic crisis as opposed to the benchmark case.

We begin the equilibrium analysis by defining the critical level of liquidation pressure for

each group given Vt, denoted as f ∗
H(Vt) and f ∗

L(Vt). Let the critical pressure f
∗
j (Vt) for group

j be such that Vt − λf ∗
j (Vt) = Pj, then we get

f ∗
j (Vt) =

Vt − Pj

λ
. (3)

This condition along with (1) and (2) implies that given the fundamental Vt, the debt rollover

for the remaining j-group institutions is allowed at that period if the total mass of exited

institutions (liquidation pressure) turns out to be lower than this threshold (ft < f ∗
j (Vt)) but

is refused otherwise (ft ≥ f ∗
j (Vt)). This characterizes the source of coordination concerns

among the institutions; the rollover of one’s debt depends on collective action of others which

may deplete limited market liquidity for the asset. Note that f ∗
H(Vt) < f ∗

L(Vt) with PH > PL,

implying highly leveraged institutions are more vulnerable to liquidation pressure than less

leveraged institutions. Thus, strategic risk (concerns about the spillovers) is more critical

for H-group institutions. H-group institutions can become distressed even when L-group

institutions are not, yet the opposite cannot happen. H-group is thus financially “weaker”

and L-group is “stronger”.

We derive a unique equilibrium using the global game technique. As shown in Tox-
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vaerd (2008), this dynamic global game with an exit option can be solved as a sequence of

one-shot games, with appropriately defined value functions. We take the continuous time

approximation (△ → 0) and derive the closed-form solution of our exit game.

We now define the value functions for the respective actions (stay or exit) as of the

beginning of period t given the signal sit and the history ht. When choosing to exit, the

manager receives wE△ constantly afterwards and under the continuous time approximation,

the value function ΠE is simply defined by

ΠE =

∫ ∞

0

e−rtwEdt =
wE

r
(4)

for both groups, independent of the private signal. This represents the option value of an

immediate exit, or the outside option value for the manager.

When choosing to stay, the value function ΠS
j of j-group given information about the

state variables can be defined as

ΠS
j (sit, ht) = E

[(

wS△+ e−r△max{ΠS
j (sit+△, ht+△),Π

E}
)

× 1[ft<f∗

j
(Vt)]

+ 0× 1[ft≥f∗

j (Vt)]

∣

∣

∣
sit, ht

]

. (5)

The righthand side of (5) consists of two parts. If the debt contract is rolled over in that

period (with ft < f ∗
j (Vt)), the manager receives an instant high wage of wS△ and in the next

period (at t+△) again gets to choose either to stay or to exit, captured by the continuation

value e−r△ max{ΠS
j (sit+△, ht+△),Π

E}. If the debt is not rolled over (with ft ≥ f ∗
j (Vt)), he

gets fired (getting 0) and the game ends immediately.

Decomposing the total mass of the exited institutions up to period t as ft = fH,t + fL,t,

where fj,t ∈ [0, 1] is the mass of the exited institutions in group j, it is straightforward that

strategic complementarities exist not only within one group but also across the different

groups (ΠS
j is decreasing both in fj,t and in f−j,t); one has to care not only about its own
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group institutions’ run for limited market liquidity but also about the other group’s run.

Note that ΠS
j (sit, ht) is increasing in sit—“staying” is more attractive with higher signals

about the fundamentals since rollover becomes more likely—which enables us to pin down

the indifference thresholds s∗j(ht) on which switching of the actions occurs (ΠS
j (sit, ht) is

greater (less) than ΠE with sit right (left) to that threshold).

As shown in the appendix (Lemma A1), we can interpret our dynamic exit game as

a sequence of the identical history-independent one-shot games with △ → 0. s∗j(ht) and

ΠS
j (sit, ht) can thus be denoted as s∗j and ΠS

j (sit) which are history independent, where

ΠS
j (sit) = E

[(

wS△+ e−r△ max{ΠS
j (sit+△),Π

E}
)

× 1[ft<f∗

j (Vt)]

+ 0× 1[ft≥f∗

j (Vt)]

∣

∣

∣
sit

]

. (6)

We take three steps in solving for the equilibrium threshold (s∗H , s
∗
L). We first derive

the optimal exit threshold of each group ignoring the other group, which becomes the lower

bound of the equilibrium threshold. We next derive a best response of one group given the

other group’s exit threshold. We then derive the equilibrium thresholds incorporating full

strategic interactions, which are best responses of one another.

3.2.1 Optimal exit threshold ignoring the other group

As a first step, we focus on the coordination problem within one group ignoring the

existence of the other group. Let s∗j be the optimal exit threshold of j-group when −j-group

does not exit. Thus f−j,t = 0 in this case, and given the signal sit, the option value of staying

can be defined by

ΠS
j (sit) = E

[(

wS△+ e−r△ max{ΠS
j (sit+△),Π

E}
)

× 1[fj,t<f∗

j (Vt)]

+ 0× 1[fj,t≥f∗

j (Vt)]

∣

∣

∣
sit

]

. (7)
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in which only within j-group strategic uncertainty is taken into consideration. The switching

threshold s∗j can then be derived from the indifference condition ΠS
j (s

∗
j) = ΠE .

Lemma 1. (Exit threshold ignoring the other group)

When −j-group is ignored, a j-group institution chooses to exit if and only if its signal

about the fundamentals is below

s∗j = Pj + λ+ ǫ. (8)

Before adding the between-group strategic interaction, we also derive the upper bound

of s∗j . Let s
∗
j be the optimal exit threshold of j-group when they take f−j,t = 1 as given (all

the other group institutions are exiting). Following the derivation of Lemma 1, it is easy

to verify that s∗j = Pj + 2λ + ǫ. It is obvious that the equilibrium exit threshold (with full

strategic interactions) s∗j should be bounded by these two extreme thresholds, such that

s∗j ≤ s∗j ≤ s∗j (9)

holds for both j = H,L.

3.2.2 Equilibrium exit thresholds with full strategic interactions

We now derive the equilibrium thresholds (s∗H , s
∗
L) when institutions of different groups

are acting strategically, anticipating the effect of one’s action on the others and vice versa.

Since strategic complementarities exist both within one group and between different groups,

one’s incentive to exit increases not only in the number of exiting institutions in its own

group, but also in the number of those in the other group. These additional coordination

concerns generate a novel externality through a spiral of growing concerns between the two

groups; the concern about the other group’s panic makes my group more concerned, which
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in turn makes the other group’s concern grow, generating a feedback loop. The spiral is

described as a “pre-emption game” between the two groups in which one group raises its

exit threshold in response to the other’s raise in a vicious cycle, so as to run for the exit

faster than the other. In the end, the spiral only stops when stronger L-group drops out,

and the equilibrium exit thresholds get pushed up to L-group’s upper bound s∗L via this new

source of the externality (Figure 3).

The mechanism of this pre-emption game can be best described using the following best

response functions, the optimal exit threshold of one group given the other group’s exit

threshold. Let sBR
H (s∗L) refer to H-group institution’s best response given s∗L, and define

sBR
L (s∗H) analogously. Note that in equilibrium these two optimal thresholds have to be the

best responses of one another, that the system of equations s∗H = sBR
H (s∗L) and s∗L = sBR

L (s∗H)

have to hold. We first derive the following lemma shown in the appendix.

Lemma 2. (Pre-emption game between the two groups)

• For L-group, if s∗H < s∗L, then sBR
L (s∗H) > s∗H .

• For H-group, if s∗L < s∗H , then sBR
H (s∗L) > s∗L.

Lemma 2 characterize the process of pre-emption game between the two groups (iterative

elimination of dominated strategies). It would be mutually beneficial for all institutions to

delay their exit and keep their exit thresholds as low as possible, but coordination failure

prevents them from achieving this. The institutions in one group have an incentive to

avoid the spillovers from the other group by acting preemptively, and try to raise their exit

threshold slightly higher than that of the other group so that they can run for the exit faster

before market liquidity evaporates.

Combining Lemma 2 and (9), we get s∗L = s∗L (Figure 3); the pre-emption game continues

until L-group institutions drop out of the spiral at their upper bound s∗L, beyond which they

are confident enough to stay in the market with strong enough fundamentals irrespective
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Figure 3: Pre-emption game between the two groups
One group raises its exit threshold in response to the other group’s raise to run faster (iterative elimination
of dominated strategies). The spiral only stops when L-group drops out at s∗L beyond which the
fundamental is high enough such that the stronger institutions don’t get panicked even if all of the weaker
institutions are exiting. The difference between the two groups’ equilibrium exit thresholds becomes
negligible in the limit case and both exit at the same threshold s∗L.

of what H-group institutions do. We can subsequently derive s∗H = sBR
H (s∗L) from their

indifference condition given s∗L = s∗L, which can be shown to be converging to s∗L as the noise

becomes small. Intuitively, H-group have no reason to exit “too early” when they know

the timing of L-group’s exit. They try to exit “right before” L-group do, and the difference

becomes negligible in the limit.

In equilibrium, panic runs of H-group simultaneously lead to contagious runs of L-group.

Consequently, the institutions all exit together when the fundamental V eventually hits a

“crisis threshold” V ∗ = PL + 2λ, while all stay in when V is higher than V ∗, as summarized

in the following Proposition.

Proposition 1. (Systemic panic run)

Systemic panic run for market liquidity is triggered when the fundamental V hits the
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Figure 4: Crisis threshold V ∗ with concerns about spillovers
H-group exits at s∗H and L-group at s∗L if between-group coordination failure is absent. The crisis
threshold gets pushed up through the pre-emption game to s∗L and systemic panic is triggered (both H and
L group institutions exit all together) when the fundamental hits V ∗ = PL + 2λ.

crisis threshold V ∗ = PL + 2λ from above, at which point all institutions exit the asset

market simultaneously.

Two points should be remarked on. First, ex-ante systemic risk increases with the coor-

dination failure. The crisis threshold of the fundamental V ∗ is higher than that under the

benchmark case V BM = PH—concerns about the spillovers lead to a self-fulfilling crisis that

would not take place if coordination failure were absent. This implies a discrepancy between

systemic risk (from macroprudential perspective) and individual institution-wise risk (from

microprudential perspective) that will further be analyzed in Section 5.

Second, more importantly, a novel implication on systemic stability arises; the crisis

materialization (thus the systemic risk) depends critically on stronger L-group on the margin.

Notice that the pre-emption game stops eventually (equivalently, systemic panic materializes)

at L-group’s upper bound s∗L that is independent of PH as highlighted in Figure 3. Contrast

this with the crisis threshold under the benchmark approach V BM = PH . When coordination

concerns are absent (passive domino effect), what is critical in initiating the crisis is the

materialization of the triggering event—H-group’s distress—itself which directly depends on

the financial health (debt level) of the weaker group PH . As the fundamental deteriorates,

H-group eventually liquidates when V hits PH , which consequently prompts the contagious
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liquidation of L-group through the spillovers as described in Section 3.1.

When strategic interactions are involved (systemic panic), the crisis initiates in a self-

fulfilling way from the strategic concerns about the spillovers at V ∗ = PL + 2λ. What

essentially causes the crisis on the margin is not the triggering event itself, but the loss of

confidence among the institutions about staying in the market. Here, an asymmetry between

weaker H-group and stronger L-group exists in terms of whose loss of confidence matters

more (Figure 4).

Weaker H-group institutions act as a second mover when choosing their optimal exit

timing. What is critical for them is to conjecture when stronger L-group lose confidence and

consider exiting, such that they can exit right before that happens. H-group’s confidence

level is thus subject to L-group’s confidence level. Their own financial health (characterized

by the debt level PH) is of secondary importance on the margin, since H-group have to exit

any way if L-group exit, to avoid spillovers.

Stronger L-group institutions, on the other hand, anticipate that weaker H-group will

always try to exit preemptively, generating financial spillovers to them in equilibrium. Thus,

when choosing their own exit threshold (i.e., when to exit the market), L-group take the

spillovers from H-group as given following the conservative presumption.17 Hence, on the

margin, they only care about whether other L-group institutions will endure the anticipated

spillovers from H-group without panicking, which depends critically on L-group’s financial

health PL. This L-group’s optimal choice is independent of the H-group’s health PH on

the margin, since spillovers from H-group will arise to L-group in any case and the scale of

the spillovers is irrelevant with the H-group’s health. It is when this stronger L-group lose

confidence at s∗L that eventually prompts the preemptive run of H-group, which self-fulfills

the concern of L-group and leads them to join the run contagiously. Note that in this region,

17Strictly speaking, an L-group institution anticipates that all H-group institutions will exit faster than
herself if she turns out to be the one with the smallest signal within L-group. See Appendix C for detailed
discussion.
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H-group institutions have no reason to panic unless L-group do since the fundamental is

higher than s∗H as in Figure 4.

In sum, the crisis materialization on the margin depends critically not on the weaker but

on the stronger institutions in the contagion chain, and the crisis threshold V ∗ = PL + 2λ

depends on PL but not on PH .

4 Discussions

4.1 Heterogeneity and systemic stability

We first discuss the relationship between financial institution heterogeneity and financial

system stability. Concretely, we consider whether the system in which institutions are dif-

ferent (in terms of degrees of their individual financial health) is more sound, by comparing

different systems based on their crisis thresholds of the fundamental V ∗ where lower V ∗ im-

plies higher systemic stability (or lower systemic risks). The answers are quite the contrary

depending on whether the strategic interactions are taken into account. Financial systems

with more homogeneous institutions are more sound when concerns about spillovers are ab-

sent, but the opposite is true when concern about the panic prevails—systemic stability can

be enhanced by making the system more heterogeneous.

To illustrate the mechanism, we follow the setup of Section 2 with two groups (H and

L) and let the respective endowed debt levels be PL = P − u and PH = P + u. The “het-

erogeneity parameter” u is positive and not too large (u < λ
2
) such that a domino effect is

anticipated as before. Here, higher u implies a more heterogeneous system, while fixing the

average degrees of financial strength for the entire system (total debt outstanding in our

case, PH+PL

2
= P for all u).18 We now compare the crisis thresholds of different systems

18It can also be interpreted as controlling the aggregate bank capital in the system since the aggregate
asset size is also fixed (each institution holds one unit of the asset). We can also consider it as separation of
good banks and bad banks.
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V ∗(u) as the dispersion u is varied.

Corollary 1. (Financial institution heterogeneity and systemic stability)

When the average degrees of financial strength are fixed across the systems,

• Heterogeneous system is more robust when concerns about spillover prevail.

• Homogeneous system is more robust when concerns about spillover are absent.

Recall that in the benchmark case without coordination concerns (Section 3.1), the crisis

threshold of the fundamentals is V ∗(u) = V BM = PH ≡ P + u which is increasing in

u. Here, the systemic risk can be reduced by making the system more homogeneous with

smaller u since it directly suppresses the liquidation triggering event (distress at the weaker

institutions) by making the weaker less fragile. This observation is reversed in our approach

with the strategic interaction. From Proposition 1, the crisis threshold is now V ∗(u) =

PL + 2λ ≡ P − u + 2λ which is decreasing in u. Here, increasing heterogeneity reduces the

systemic risk since it further bolsters stronger L-group institutions to induce them to stay

in when exposed to the spillovers, such that a self-fulfilling panic can be contained.

4.2 Recapitalization

We now consider recapitalization and analyze the best way of allocating a fixed amount

of capital to enhance systemic stability. Our result suggests that incorporating the strategic

considerations, recapitalizing the weaker institutions in the contagion chain may not be as

effective in reducing systemic risks as bolstering the stronger.

We consider a capital injection lowering the debt level of an institution (debt/equity

swap). Note that a higher level of capital is equivalent to a lower level of leverage, which is

captured by lower P in our setup. Denote kj (j = H,L) as the amount of capital injection

into j-group, and let k = kH + kL be the aggregate capital injection into the system. Now,
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P ′
j = Pj − kj is the new level of j-group’s debt after recapitalization and we consider very

small k so that we can focus on the marginal effect.19 Denote V ∗(k) as the crisis threshold

of this system after capital injection totaling k, and we consider a policy maker who wishes

to contain systemic crises by minimizing V ∗(k) subject to P ′
H = PH − kH , P

′
L = PL − kL,

and kH + kL = k.20 For simplicity, we assume that the policy maker only focuses on the

short-term objective of lowering the crisis threshold (ex-ante systemic risk) subject to the

resource constraint, ignoring other aspects such as moral hazard problems.

Proposition 1 suggests that systemic risks cannot be reduced on the margin if capital is

injected into weaker H-group institutions (lowering PH)—the panic run still arises at the

same crisis threshold when coordination concerns exist ( ∂V
∗

∂PH
= 0). The system becomes

more sound if capital is injected to stronger L-group institutions instead (lower PL implies

lower V ∗), since it makes them more confident and induces them to stay in (preventing from

dropping out of the chain) such that self-fulfilling panics can be contained. Note that the

opposite is true if the coordination problem is absent since V BM depends only on PH at the

margin.

Corollary 2. (Capital injections and systemic stability)

• When concerns about the spillover prevail, stronger L-group institutions should be re-

capitalized first in order to enhance systemic stability effectively.

• If there’s no coordination concern, recapitalizing weaker H-group institutions first en-

hances stability more effectively.

19As an alternative measure, the government can prevent systemic panic through asset-purchasing pro-
gram or lending facility instead of recapitalization. However, unless the government has enough liquidity
to implement these interventions swiftly, there exists a credibility/commitment problem and systemic panic
cannot be contained. We consider a case in which the government only has small amounts of liquidity, thus
consider the case with small k.

20Although not explicitly modeled, we implicitly assume that there’s a welfare loss when the assets are
liquidated in the secondary market (i.e., dislocation cost), thus lower V ∗(= V ∗(k)) is more desirable.
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4.3 More groups

So far, we have focused on a simple setup (“main model”) in order to focus on the

mechanism of the pre-emption game. We now explore the predictions of our model under

more general setups. We will argue that our main result of the crisis threshold’s “(stronger)

L-group dependency” prevails with more groups, and is not an artifact of the extreme form

of preemption coming from the very short time intervals. However, sizes of institutions do

make differences—our L-group dependency result changes if the mass of L-group is very

small, or if there’s a very large institution in H-group.21

In the previous sections, we analyzed strategic interactions between two groups for sim-

plicity. Our result, however, is without loss of generality and can be extended to setups

with more groups, keeping the same pre-emption mechanism—the pre-emption game (iter-

ative elimination of dominated strategies as in Lemma 2) lasts until the strongest group in

the contagion chain drops out, and the crisis threshold depends on financial health of the

strongest group but not others.

Suppose that there exist another group of (a continuum [0, 1]) institutions, M-group,

with P = PM which satisfies PL < PM < PH while all the other setups are the same as in

Section 2. We now have more number of institutions, thus 0 ≤ ft ≤ 3 and s∗j = Pj + 3λ+ ǫ.

We can show the following result by following exactly the same steps as in Section 3.

Proposition 2. (Crisis threshold with three groups)

When PL < PM < PH , systemic panic run is triggered when V hits the crisis threshold

V ∗ = PL + 3λ from above. This threshold depends on the strongest L-group’s financial

health, but is independent of the other weaker groups’ financial health.

Following the same argument, an extension to n-group setup with P1 < P2 < . . . < Pn

21In other words, “too big to fail” problem can still arise even when concerns about the spillovers are
incorporated.
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and each group with a unit measure is straightforward when Pj −Pj−1 < 1 for j = 2, 3, . . . n.

We next relax this assumption and consider cases in which different groups have different

sizes.

4.4 Generalized group sizes

We convert to our main model with two groups. Instead of assuming a unit measure of

institutions for each group, we now consider a case in which the two groups have different

sizes such that there is a continuum [0, ωH ] of institutions in H-group and [0, ωL] in L-group.

All the other setups are the same as those of Section 2. Depending on the value of ωL, we

now have the following result.

Proposition 3. (Crisis thresholds with generalized group sizes)

• If ωLλ > PH −PL, we get essentially the same result as Proposition 1. Systemic panic

run is triggered when V hits V ∗ = PL + (ωH + ωL)λ which depends on financial health

of L-group but not H-group.

• If ωLλ < PH − PL, the exit thresholds for the two groups do not converge to the same

limit. H-group institutions exit when V hits PH + ωHλ and L-group institutions exit

later when V eventually hits PL + (ωH + ωL)λ.

When L-group is large enough compared to the difference in financial strengths, the pre-

emption mechanism is the same as in Section 3—there arise strategic interactions between

the two groups, and the pre-emption game stops only when the stronger group drops out

at its upper bound s∗L. When L-group is small, however, this between-group interaction

disappears. Notice that s∗L = PL + (ωH + ωL)λ+ ǫ is now smaller than s∗H = PH + ωHλ+ ǫ.

Thus H-group institutions care only about their own group institutions, and spillovers from

H-group’s panic exit (and asset liquidations) are not strong enough to drag down L-group
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simultaneously. The stronger L-group should not be too small in order to have our previous

result of L-group dependency.

4.5 Effect of a large institution

We again convert to our main model of two groups with a unit measure each, and

PH − PL < λ. We now consider a case in which a large institution with positive mass co-

exists with a continuum of atomistic institutions.22 An interesting case is when the weaker

H-group consists of a single large institution with mass 1 while L-group consists of a contin-

uum [0,1] of institutions. Although this is the only change from the setup of Section 2, we

get a completely different result from Proposition 1; with a large weaker institution, systemic

stability depends on financial health of the weaker, not the stronger.

Proposition 4. (Crisis thresholds with a large weaker institution)

When H-group consists of one large institution with a unit mass while L-group insti-

tutions are atomistic, systemic panic run is triggered when V hits V ∗ = PH + λ. The

crisis threshold depends on financial health of H-group, but not on L-group.

Considering the same pre-emption mechanism, now it’s H-group that drops out first;

there is no within-group spillovers for H-group, but L-group institutions take both within

and between-group spillovers into consideration. With less concern about spillovers for H-

group and our assumption of PH −PL < λ, we have s∗H < s∗L. Again, the sizes of institutions

have implications on systemic stability even with concerns about spillovers.

22Corsetti, Dasgupta, Morris, and Shin (2004) study a global game model where a single large agent and
a continuum of small agents coexist, but within a single group.
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4.6 Role of strategic risk aversion

In our dynamic setup with continuous time approximation, aversion to strategic risk

(concern about coordination failure from spillovers) becomes very high inducing the extreme

form of preemption—an institution tries to exit the market immediately with a slight chance

of coordination failure. However, our result is not an artifact of this extreme preemption. In

Appendix C, we define strategic risk aversion within a simplified but generalized setup, and

show that our main result (stronger L-group dependency) still holds as long as this strategic

risk aversion is high enough compared to the difference in fragilities between the two groups.

As discussed there, strategic risk aversion (denoted by α) can be defined as the ratio of

the payoff of exiting (ΠE in our case) to the payoff of successful roll over when choosing

staying (wS△ + e−r△E[max{ΠS
j (sit+△),Π

E}|sit]) evaluated at the switching threshold s∗j ,

where α ∈ [0, 1].23 Note that this ratio becomes larger and converges to 1 as △ becomes

smaller. Thus, our limit case is that of α → 1 within the setup of Appendix C, which implies

extremely high strategic risk aversion and corresponding extreme form of preemption.

As shown in Proposition 5 of Appendix C, there are 3 types of equilibria depending on the

value of α, and our result (Case (i) of Proposition 5) still holds as long as α is large enough.

It is reasonable to assume large α when we consider an exit game during financial crises, in

which the penalty for coordination failure outcomes are usually high. However, α could be

small for some other coordination games. For instance, we could think of a participation

game with low participation cost, but high payoffs for the successfully coordinated outcome.

Note that the dynamic setup provides an additional rationale for our exclusive focus on

Case (i) with large α among the three cases of Proposition 5. Even if agents have somehow

coordinated successfully with others and survived in the current period, their high payoff

from the successful survival lasts only for a short period and they could be in trouble again

in the next period. As a result, α here becomes larger endogenously with shorter time

23To be general, α is the ratio of (payoff of exiting – payoff of roll over failure) to (payoff of successful roll
over – payoff of roll over failure).
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interval △, compared to a one shot game in which the high payoff lasts forever once agents

successfully coordinate with others.

5 Credit Spreads, Rollover Risks, and Coordination

Failure

In this section, we explicitly analyze how heterogeneity and coordination failure within

the system affect the asset pricing dynamics using the structural debt pricing approach. We

specifically focus on a single institution (belonging toH-group) and examine its funding costs

(credit spreads) and funding risks (rollover risks) as the heterogeneity in the system varies.

We start from a very heterogeneous system with no between-group coordination problem,

then make the system less heterogeneous such that between-group interactions arise.

Very heterogeneous system We follow the setup of Section 2, but first assume high

enough between-group heterogeneity, PH−PL > λ. As shown in Proposition 3, this condition

rules out strategic interactions between the groups, such that only within-group coordination

problems exist. Financial health of L-group has no effect on H-group’s risk in this case.

Note that panics are self-fulfilling; concerns about potential rollover refusal trigger panic

run for limited market liquidity when V hits the crisis threshold, followed by the actual vio-

lation of the collateral constraint (2) at that point. Denote V ∗∗ as H-group’s crisis threshold

of the fundamental in this heterogeneous system, V ∗∗ can thus alternatively be interpreted

as H-group’s rollover threshold of the debt on which the debt rollover is anticipated to be

refused. Proposition 3 implies that the debt rollover is allowed for H-group as long as V is

beyond the rollover threshold V ∗∗ = PH + λ, but is refused as soon as V hits V ∗∗.

When all institutions can perfectly coordinate (or an individual institution is analyzed

in isolation from microprudential perspective), they delay their market-exit until the funda-

mental hits V BM = PH , right before the collateral constraint (2) binds. Externality from
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Figure 5: Credit spreads and rollover risks of an H-group institution with dif-
ferent degrees of coordination failure
Both credit spreads and rollover risks increase as the heterogeneity decreases and the coordination
problems become more severe. The difference between credit spreads is “coordination failure premium”
and that between rollover risks is “additional systemic risk”. The parameters in this example are r = 0.04,
σ = 0.1, δ = 0.02, PH = 100, PL = 60, CH = 10, λ = 30. In the two-group coordination failure case of
Section 5.4, the difference in two group’s initial leverage levels is smaller with PL = 80.

coordination concerns thus precipitates the market exit and funding liquidity evaporation,

implying a discrepancy between macroprudential systemic risk and microprudential risk.

Different asset pricing dynamics thus result from different levels of the rollover thresh-

olds with or without coordination concerns (V R = V ∗∗ or V BM). In Appendix D, we define

and calculate credit spreads and rollover risks. Since higher V R implies lower debt value,

thereby higher credit spreads and rollover risks, coordination failure results in additional

spreads along with additional risks in the systemic context compared to microprudential

perspective. Figure 5 compares how credit spreads and rollover risks under our systemic

(one-group coordination failure) approach vary differently from those under the benchmark

microprudential approach. The difference in credit spreads can be interpreted as the “co-

ordination failure premium”, and that in rollover risks as “additional systemic risk”. Both

credit spreads and funding risks are underestimated in the microprudential analysis, and the

discrepancies widen as the fundamentals deteriorate.

Flight to quality Note that the rollover threshold V ∗∗ = PH + λ is increasing in asset
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Figure 6: Flight to quality
Flight to quality emerges as the fundamentals deteriorate from more severe coordination concerns for
illiquid collateral assets. Other parameters in this example are the same as in Figure 5.

illiquidity λ. Coordination concerns about limited market liquidity are more severe with

more illiquid assets, thus funding evaporation is triggered at a higher threshold. Reflecting

this additional risk, credit spreads are higher for more illiquid collateral assets. As described

in Figure 6, credit spreads rise faster in a downturn for a more illiquid collateral asset, while

the differences are very small when the fundamentals are robust.24

More homogeneous system with between-group interactions Strategic interac-

tions between heterogeneous groups arise with reduced heterogeneity. Given fixed PH , sup-

pose that L-group become less robust (higher PL) such that PH − PL < λ. As discussed

in Proposition 3, H-group’s risk is now affected by stronger L-group’s degree of financial

health, and the debt rollover is allowed for H-group as long as V is beyond their rollover

threshold V ∗ = PL + 2λ, but is refused as soon as V hits V ∗, which is higher than V ∗∗.

This indicates the emergence of additional systemic risks with reduced heterogeneity.

We observe in Figure 5 that although its own financial health is unchanged, credit spreads

and rollover risks for an H-group institution become higher with reduced heterogeneity

24Gorton and Metrick (2012), and Krishnamurthy, Nagel, and Orlov (2011) provide empirical evidences
for this prediction.
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compared to the previous case, and they become even higher simply when the stronger L-

group institutions’ financial health deteriorates. This additional premium and additional

risks result from the strategic concern among heterogeneous institutions.

6 Conclusion

This paper provides a framework for studying systemic panic in financial markets among

heterogeneous participants. When we anticipate a contagious chain reaction, conventional

wisdom dictates that we ought to focus on the weakest link: Bolster the weakest since

it all starts from the distress of the weakest. Our analysis, incorporating concerns about

spillovers and corresponding strategic interactions, suggests an alternative approach: Bol-

ster the strongest in the contagion chain since it actually starts when the strongest loses

confidence in the market. When the strongest begins evaluating the possibility of an exit,

this prompts the weaker to run before the mess materializes and, in turn, a systemic crisis

occurs in a self-fulfilling manner.

Although we analyzed a special case with heterogeneity given by different leverage levels

and spillovers by fire-sale externalities, our result is not an artifact of these assumptions.

The framework of this paper can be applied more generally to cases in which coordination

problems arise among agents with differing degrees of fragility to strategic risk, as discussed

in Appendix C.

Appendix A: Proofs

Given the history hs, let V ∗
j (hs) be the threshold of the fundamental on which j-group insti-

tutions’ collateral constraint binds and the exit game is terminated for that group. We first

claim that V ∗
H(hs) ≥ V ∗

L (hs). Suppose V ∗
H(hs) < V ∗

L (hs). Note that at V ∗
L (hs), L-group’s col-

lateral constraint just binds such that fs satisfies V ∗
L (hs) − λfs = PL, so fs =

V ∗

L
(hs)−PL

λ
. Given
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this fs and the fundamental V ∗
L (hs), however, H-group’s collateral constraint is violated since

Ls = V ∗
L (hs) − λfs = PL < PH . This implies that V ∗

H(hs) > V ∗
L (hs) which is contradiction. Thus,

V ∗
H(hs) ≥ V ∗

L (hs), which implies that H-group institutions will always get distressed when L-group

are distressed, but not vice versa. We first prove the following lemma.

Lemma A1. (History independence in the limit case △ → 0)

(i) If the exit game has not terminated at period t (i.e., Vs > V ∗
j (hs) for all s < t), then

fs = 0 a.s. for all s < t.

(ii) sit is a sufficient statistic for Vt

Proof of Lemma A1

(i) Suppose Vs > V ∗
H(hs) ≥ V ∗

L (hs). Note that Vt−Vt−1 = Op(△) ∀t, thus Vs−V ∗
H(hs) = Op(△)

and Vs−V ∗
L (hs) = Op(△). Note that we assumed sis−Vs = op(△) ∀i, thus s∗H(hs)−V ∗

H(hs) =

op(△) and s∗L(hs)−V ∗
L (hs) = op(△). These imply that sis > s∗j(hs) a.s. ∀i for both j = H,L,

as △ → 0. Thus fj,s = 0 a.s. for both j = H,L. We get fs = 0 a.s. for all s < t.

(ii) This is straightforward from sit − Vt = op(△
1

2 ) and Vt − E[Vt|Vs] = Op(△
1

2 ) ∀s < t. �

This Lemma implies that equilibrium strategy profile s∗j(ht) (thus the exit game) is history-

independent and Vt is the only state variable of the exit game (there is no partial-exit in our limit

case, thus we can ignore history of past fs and the fundamentals). Since sit is a sufficient statistic

for Vt in our limit case, it contains all the relevant information for the optimal decision making and

V ∗
j (ht), s

∗
j(ht), Π

S
j (sit, ht) can hence be denoted as V ∗

j , s
∗
j , and ΠS

j (sit). Value function of staying

is thus simplified as

ΠS
j (sit) = E

[(

wS△+ e−r△max{ΠS
j (sit+△),ΠE}

)

× 1[ft<f∗

j (Vt)] + 0× 1[ft≥f∗

j (Vt)]

∣

∣

∣
sit

]

(10)

which is history independent. Thus we can interpret our dynamic exit game as a sequence of the

identical one-shot games.
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Proof of Lemma 1

When f−j,t = 0 is given, the option value of staying for a j-group institution given the private

signal sit can be defined as

ΠS
j (sit) = E

[(

wS△+ e−r△max{ΠS
j (sit+△),ΠE}

)

× 1[fj,t<f∗

j (Vt)] + 0× 1[fj,t≥f∗

j (Vt)]

∣

∣

∣
sit

]

. (11)

We can solve for the optimal switching threshold s∗j from the indifference condition ΠS
j (s

∗
j ) =

ΠE . Let V ∗
j be the crisis threshold of the fundamental V on which the collateral constraint of j-

group is breached in this case. We now solve for V ∗
j and s∗j from the following two equations. First,

the actual mass of exit fj has to be equal to the critical liquidation pressure given the fundamental

V ∗
j , defined as f∗

j (V
∗
j). Following the definition, f∗

j (V
∗
j) =

V ∗

j−Pj

λ
. Since j-group institutions with

signals below s∗j exit, from uniform distribution, fj,t = Pr[sit ≤ s∗j |V
∗
j ] =

s∗j−(V ∗

j−ǫ)

2ǫ . Equating the

two, we get

s∗j =
2ǫ

λ
(V ∗

j − Pj) + V ∗
j − ǫ. (12)

Next, the two actions have to be indifferent at the switching threshold s∗j , so ΠS
j (s

∗
j) = ΠE. Rewrit-

ing this condition using (11), we get

Pr(Vt ≥ V ∗
j |sit = s∗j)×

[

wS△+ e−r△E
(

max{ΠS
j (sit+△),ΠE}

∣

∣

∣
sit = s∗j

)]

= ΠE (13)

Note that optimal switching occurs at s∗j with ΠS
j (s

∗
j) = ΠE. From this, we get

E[max{ΠS
j (sit+△),ΠE}|sit = s∗j ] → ΠE

as △ → 0.

Plug this in (13), we get Pr(Vt ≥ V ∗
j |sit = s∗j ) = 1 as △ → 0, which can be rewritten as

s∗j + ǫ− V ∗
j

2ǫ
= 1 (14)
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since Vt|(sit = s∗j) is uniformly distributed over [s∗j − ǫ, s∗j + ǫ]. From (12) and (14), we get

s∗j = Pj + λ+ ǫ and V ∗
j = Pj + λ �

Proof of Lemma 2

As in the proof of Lemma 1, we define two crisis thresholds of the fundamental V ∗
j with j = H,L,

on which j-group’s collateral constraint is breached.

We first solve for H-group’s optimal threshold s∗H given s∗L (best response sBR
H (s∗L)). On the

fundamental threshold of V ∗
H , note that

fH,t = Pr[sit ≤ s∗H |V ∗
H ] =

s∗H − (V ∗
H − ǫ)

2ǫ

and

fL,t = Pr[sit ≤ s∗L|V
∗
H ] =

s∗L − (V ∗
H − ǫ)

2ǫ

thus

ft = fH,t + fL,t =
s∗H + s∗L − 2(V ∗

H − ǫ)

2ǫ
.

Since this actually coincides with f∗
H(V ∗

H) =
V ∗

H
−PH

λ
, we get

s∗H =
2ǫ

λ
(V ∗

H − PH) + 2(V ∗
H − ǫ)− s∗L. (15)

The indifference condition at s∗H implies ΠS
H(s∗H) = ΠE , and with (6) we get

Pr(Vt ≥ V ∗
H |sit = s∗H)×

[

wS△+ e−r△E
(

max{ΠS
H(sit+△),ΠE}

∣

∣

∣
sit = s∗H

)]

= ΠE . (16)

Note that optimal switching occurs at s∗H with ΠS
H(s∗H) = ΠE, we get

E[max{ΠS
H(sit+△),ΠE}|sit = s∗H ] → ΠE

as △ → 0.
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Plug this in (16), we get Pr(Vt ≥ V ∗
H |sit = s∗H) = 1 as △ → 0, which can be rewritten as

s∗H + ǫ− V ∗
H

2ǫ
= 1 (17)

since Vt|(sit = s∗H) is uniformly distributed over [s∗H − ǫ, s∗H + ǫ].

From (15) and (17), solving for s∗H , we get

s∗H =
[ 1
2ǫ
λ
+ 1

]

× [s∗L +
2ǫ

λ
PH + 3ǫ] + ǫ. (18)

We now show that s∗H > s∗L (i.e., sBR
H (s∗L) > s∗L) if s

∗
L < s∗H(= PH + 2λ+ ǫ). From the above,

s∗H − s∗L =
[ 1
2ǫ
λ
+ 1

]

× [s∗L +
2ǫ

λ
PH + 3ǫ] + ǫ− s∗L

=
[ 1
2ǫ
λ
+ 1

]

× [3ǫ+
2ǫ

λ
(PH − s∗L)] + ǫ

>
[ 1
2ǫ
λ
+ 1

]

× [3ǫ−
2ǫ

λ
(2λ+ ǫ)] + ǫ

=
[ 1
2ǫ
λ
+ 1

]

× [−ǫ−
2

λ
ǫ2] + ǫ = −ǫ+ ǫ = 0

where the inequality comes from s∗L < PH + 2λ+ ǫ. We thus get sBR
H (s∗L) > s∗L if s∗L < s∗H .

Repeating the same steps for the L-group, we get

s∗L =
[ 1
2ǫ
λ
+ 1

]

× [s∗H +
2ǫ

λ
PL + 3ǫ] + ǫ

given s∗H , and sBR
L (s∗H) > s∗H if s∗H < s∗L. �

Proof of Proposition 1

By definition, s∗L < s∗H . This then implies that s∗L < s∗H as s∗L ≤ s∗L. This implies that s∗H > s∗L

always has to hold from Lemma 2. Also, notice that s∗H ≥ s∗L since s∗H < s∗L implies s∗L > s∗H from

Lemma 2, which contradicts with the above.

Now, suppose s∗L < s∗L and s∗L − s∗L = O(△) as △ → 0 (thus ǫ → 0). Note that from (18)

s∗H → s∗L in this case, implying s∗H < s∗L. But then this implies s∗L > s∗H from Lemma 2, contradict-
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ing with s∗H > s∗L. Combining with s∗L ≤ s∗L, we thus get s∗L → s∗L in the limit. s∗H → s∗L implies

that s∗H → s∗L. Note that, in the limit, s∗L → PL + 2λ, and thus both H and L group institutions

exit the market altogether when the fundamental V hits PL + 2λ. �

Proof of Proposition 2

Note that s∗j is the same as in Lemma 1 and s∗j = Pj + 3λ + ǫ. For each s∗H , s∗M , s∗L, we

consider a best response sBR
j (s∗−j), and following the same steps as in the proof of Lemma 2, we

have sBR
j (s∗−j) > max({s∗−j}) if max({s∗−j}) < s∗j . Then following the same steps of the proof for

Proposition 1, we can show that Proposition 2 holds. �

Proof of Proposition 3

Following the proof for Lemma 1, s∗j = Pj + (ωj + ω−j)λ + ǫ and s∗j = Pj + ωjλ + ǫ. If

ωLλ > PH −PL, then s∗L > s∗H . We can then show that V ∗ = PL+(ωH +ωL)λ following the proofs

of Lemma 2 and Proposition 1. If ωLλ < PH − PL, then s∗L < s∗H . Note that s∗j ≤ s∗j ≤ s∗j , thus

s∗L ≤ s∗L < s∗H ≤ s∗H . We then get s∗L < s∗H and s∗H − s∗L = O(ǫ). Thus, no L-group institution

should exist when Vt hits s∗H for the first time, but all H-group institutions should have exited

when Vt hits s
∗
L. Thus s

∗
H = s∗H and s∗L = s∗L by definition. �

Proof of Proposition 4

Note that we now have s∗H = PH + λ + ǫ, s∗H = PH + ǫ, s∗L = PL + 2λ + ǫ, s∗L = PL + λ + ǫ,

thus s∗H < s∗L. With the same pre-emption mechanism as in Lemma 2, we can show that s∗H and

s∗L both converge to s∗H following the proof of Proposition 1. �

Appendix B: Non reduced-form setup

We examine the non reduced-form setup without the delegation assumption by analyzing the

equity holder’s payoff directly. Following the same setup, we first focus only on one-group in

isolation as in Section 3.2.1. We claim that this non reduced-form result is the same as Lemma 1

37



based on the reduced-form setup. Given this, deriving the same Proposition 1 is straightforward

following the same steps of Section 3.2.2. We take the following two steps: (i) Show that the

equity holder prefers keeping his position rather than liquidating immediately when the collateral

constraint is satisfied, and (ii) incorporating coordination concerns, show that the solutions are the

same as in Lemma 1. We focus on an H-group institution without loss of generality.

We impose a restriction on the coupon rate such that CH

PH
< r

1− 1

1−X

where X is the negative

root of X(X − 1)σ
2

2 + X(r − σ) = r. This condition holds for most of the realistic parametric

assumptions. We here rule out the extreme cases in which the coupon rate CH

PH
is so high that the

collateral constraint never binds in equilibrium because of the early default.

First, suppose that there exists a fundamental threshold V D on which the institution (equity

holder) wishes to close its position paying back its debt principal PH , even though the debt can

be surely rolled over (i.e., fH,t < f∗
H(V D) a.s.). Given this threshold, calculation of the debt value

D(Vt;V
D) is straightforward as in Appendix D, and then we can calculate the equity value at Vt,

denoted by ΠS
H(Vt) = Vt −D(Vt;V

D), as follows

ΠS
H(Vt) = Vt −

CH

r
+

[CH

r
− PH

]

×
[ Vt

V D

]X

.

However, given our condition on the coupon rate, we can show that
∂ΠS

H
(Vt)

∂Vt

∣

∣

∣

Vt=V D
> 0 in

this case which violates the smooth pasting condition. This implies that when rollover is certainly

allowed, the exit decision at V D will be “too early” since the option value of staying is higher than

that of immediate liquidation V D − PH . Therefore, no such V D exists and the institutions prefer

to stay if funding liquidity is surely provided. This implies that the equity value should be higher

than the payoff from immediate liquidation in that region, so ΠS
H(Vt) > Vt − PH if Vt > PH + λ

(where fH,t < f∗
H(Vt) with probability 1).

Now we incorporate (coordination) concerns about the rollover refusal. We impose a non-zero

“penalty” c to the equity holder in the case of forced liquidation. It can be any positive number,

and we can interpret this as a loss in the franchise value or reputational costs. We use the history-

independent property of Lemma A1.
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When choosing to exit given the signal sit, the equity holder simply expects to get

ΠE
H(sit) = max{sit − PH , 0}.

When choosing to stay, the equity value incorporating the potential rollover refusal is

ΠS
H(sit) = E

[(

(δVt−CH)△+e−r△max{ΠS
H(sit+△),ΠE

H(sit+△)}
)

×1[fH,t<f∗

H
(Vt)]−c×1[fH,t≥f∗

H
(Vt)]

∣

∣

∣
sit

]

similar to (7) in Section 3.2. As discussed above, note that the equity value is higher than the

outside option when Pr(fH,t < f∗
H(Vt)|sit) = 1, so ΠS

H(sit) > ΠE
H(sit) if sit > PH + λ + ǫ. It is

straightforward that upper/lower dominance regions exist, strategic complementarities and state

monotonicity hold. Thus by Toxvaerd (2008), there exists a unique s∗ such that ΠE
H(s∗) = ΠS

H(s∗).

Given sit = s∗, as △ → 0, ΠS
H(sit+△) → ΠS

H(s∗) a.s. and ΠE
H(sit+△) → ΠE

H(s∗) a.s., thus we get

Pr(fH,t < f∗
H(Vt)|s

∗) = 1. The rest of the proof is the same as that of Lemma 1, and we can get

s∗ = PH + λ+ ǫ which is the same as in Lemma 1.

Appendix C: Static setup with generalized parameters

In the setup of Section 2, we studied a dynamic model with continuous time approximation

(“main model”) which can be represented as a sequence of one-shot static games with appropriately

defined value functions as their payoffs. In this section, we present a simplified static version of our

main model, with generalized payoff and heterogeneity parameters, in order to discuss what drives

our result in more detail.

Setup We again consider two groups of agents, S and W (“Strong” and “Weak”) with a

continuum [0, 1] of identical agents in each group. An agent i(∈ [0, 2]) chooses either to “stay”

(ai = 0) or “exit” (ai = 1) after observing a private signal si = V +ǫi. Here, V is the “fundamental”

with an improper prior, and i.i.d. noise follows ǫi ∼ U [−ǫ, ǫ].25 We focus on the limit case with

ǫ → 0 as in the main model.

25We can also use other noise distributions with finite support to obtain similar results.
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When choosing to stay, an agent will either “survive” or “fail” depending on the fundamental

and the aggregate action of other agents, denoted by f . Here, f(= fs + fw =
∫ 2
0 aidi) is the total

number of agents (both in S and W -group) who have chosen to exit. “Failure” can occur even with

the higher fundamental when f is larger.

The two groups are different in terms of their “fragilities”. Given V , stronger S-group is less

prone to fail than weaker W -group. To be specific, a staying S-group agent fails if f > V − δs

and survives otherwise, while a staying W -group agent fails if f > V − δw and survives otherwise,

where δw − δs > 0 and δj is the “fragility” parameter for j-group (j = S,W ). We now define a

“heterogeneity” parameter δ ≡ δw − δs, then larger δ implies more heterogeneity (in fragilities)

between the two groups. As in the main model, we focus on the case with δ < 1 such that strategic

interactions arise between the groups.

The payoff values are identical across all agents. When choosing to stay and survives, an agent

receives 1 but 0 if fails. He instead receives α(∈ [0, 1]) when choosing to exit. The payoff structure

of j-group is summarized in the table below.26

f ≤ V − δj f > V − δj
Stay 1 0
Exit α α

Table 1: Payoff Structure for j-group agents

Equilibrium As in the main model, a Bayesian equilibrium can be characterized by the two

exit (switching) thresholds of the private signal s∗s and s∗w, with corresponding fundamental (failure)

thresholds V ∗
s and V ∗

w below which a failure occurs, and under our assumption of δ < 1, all these

four thresholds converge to some V ∗ as ǫ → 0. Our main focus is on whether this fundamental

failure threshold V ∗ depends on δs (stronger’s fragility), δw (weaker’s fragility), or both. As will

be discussed below, this critically depends on the value of α (which embodies aversion to strategic

risk) and δ (heterogeneity in fragility). See Figure 7.

26Sákovics and Steiner (2012) also study a global game model with heterogeneous groups, but their focus
is on different payoffs (different α in our context) across groups. Our focus is on the case with different
fragilities (δ > 0) in which one group can be more fragile to coordination failure than the others (fail with
lower f).
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Figure 7: 3 Cases depending on (α, δ).
In Case (i), V ∗ depends on δs; In Case (ii), V ∗ depends on δw; In Case (iii), V ∗ depends on both δs and δw.

Proposition 5. When ǫ → 0, all agents (S and W ) choose to exit if and only if the fundamental

V is below V ∗, where V ∗ is equal to:

(i) 1 + δs + α when 2α+ δ > 2 (depending only on the stronger’s fragility).

(ii) δw + α when δ > 2α (depending only on the weaker’s fragility).

(iii) δs+δw
2 + 2α when δ < 2α and 2α + δ < 2 (depending on both).

Note that the 4 equilibrium thresholds s∗s, V ∗
s , s∗w, V ∗

w can be solved from the following 4

equations as in the main model:

α = 1× Pr[V > V ∗
s |si = s∗s] + 0× Pr[V < V ∗

s |si = s∗s] (19)

Pr[si < s∗s|V = V ∗
s ] + Pr[si < s∗w|V = V ∗

s ] = V ∗
s − δs (20)

α = 1× Pr[V > V ∗
w |si = s∗w] + 0× Pr[V < V ∗

w |si = s∗w] (21)

Pr[si < s∗s|V = V ∗
w ] + Pr[si < s∗w|V = V ∗

w ] = V ∗
w − δw (22)

We first analyze Case (i) with 2α + δ > 2 (both α and δ are large), and discuss why V ∗ depends
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only on δs, but not δw. Focusing on an S-group agent, we can write (19) as:

1− α = Pr[V < V ∗
s |si = s∗s] (23)

We now define p ≡ 1− α, then (23) becomes Pr[V < V ∗
s |si = s∗s] = p. This implies that V ∗

s is the

bottom 100p percentile outcome for the posterior distribution of V given si = s∗s. Thus, we can

now describe an S-group agent’s problem (equation (19) and (20)) in the following way:

Let’s consider the most conservative/pessimistic 100p percentile scenario given my signal

(i.e. V = V ∗
s such that Pr[V < V ∗

s |si = s∗s] = p). How many of others will be exiting in that

scenario (what would be the conjecture about f = fs + fw)? Will I be able to just survive

facing that many exits (i.e. Pr[si < s∗s|V = V ∗
s ] + Pr[si < s∗w|V = V ∗

s ] ≤ V ∗
s − δs holds with

equality)?

Notice that with larger α (smaller p), an agent considers a more pessimistic scenario and becomes

conservative trying to survive even in that scenario facing strategic risks (avoid coordination failure).

Thus, we can interpret α is as a “strategic risk aversion” parameter.27 28 Now suppose that α is

large (p is small). An S-group agent considers a bottom 100p percentile event V ∗
s in which case his

conjecture regarding the number of exiting agents follows equation (20). As just discussed, with

larger α he becomes more risk averse and consider a more conservative case (lower V ∗
s given the

signal)29 in which more of his own S-group agents are exiting—large α here implies that conjectured

fs(= Pr[si < s∗s|V = V ∗
s ]) is also large.30

We now for expository purpose define △∗ > 0 such that △∗ ≡ s∗w − s∗s. It is easy to verify that

these equilibrium thresholds satisfy s∗w > s∗s and the difference △∗ is increasing in δ,31 which is

intuitively plausible since δ measures heterogeneity in fragilities between the groups. Given these

27Alternatively, notice that s∗j satisfies α = Pr[f < V − δj |si = s∗j ]. With larger α, an agent tries to
expose himself to lower risk of coordination failure in equilibrium.

28To be general, what matters is the ratio of (payoff of exit – payoff of failure) to (payoff of success –
payoff of failure). This ratio is equal to α in our example since we normalized other payoffs. Goldstein and
Pauzner (2004) study a global game model in which different strategic risk aversion comes from wealth effect
through a DARA utility function, while our definition of strategic risk aversion is different from theirs.

29To be specific, V ∗

s = s∗s − ǫ+ 2pǫ = s∗s − ǫ+ 2(1− α)ǫ.
30To be specific, Pr[si < s∗j |V = V ∗

j ] = α.
31△∗ also depends on ǫ and △∗ → 0 as ǫ goes to 0.
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Figure 8: Case (i), S-group’s conjecture given s∗s
For S-group, V ∗

s = (s∗s − ǫ+ 2pǫ) is small when α(= 1− p) is large, which is independent of δw. If △
∗ (that

is, δ) is large enough such that V ∗

s + ǫ < s∗w(= s∗s +△∗), then S-group’s conjecture about fw is equal to 1
(Pr[si < s∗w|V = V ∗

s ]) = 1), independent of δw.

characteristics, notice that when fs is large (that is, α is large as just discussed) and △∗ is large

(that is, δ is large), we will have fw(= Pr[si < s∗w|V = V ∗
s ]) = 1 which is the upper bound of fw,

as described in Figure 8. In this case, we can solve for s∗s from (19) and (20) independently of

δw. Intuitively, S-group agents are considering a conservative scenario in which even many of the

stronger agents are exiting. The number of exiting agents in W -group should be larger than that

of S-group since the weaker W -group should care more about the coordination problem thus trying

to act more preemptively, and the difference should become larger when the difference in fragilities

between the groups is larger. Thus, as agents become more conservative (or heterogeneity becomes

larger), eventually all of the weaker agents should be exiting in this stronger agent’s pessimistic

scenario, and the stronger can ignore the exact fragility of the weaker when solving for his exit

threshold. In other words, S-group agents now think that all of the weaker will be exiting any way,

and their equilibrium exit threshold becomes s∗s as in the main model where s∗s is the optimal exit

threshold of S-group when they take fw = 1 as given, as defined in Section 3.2. Therefore, the

stronger’s decision making now depends on how fragile his own group agents are, independent of

the weaker group’s fragility. The weaker’s exit threshold, on the other hand, depends critically on

the stronger’s threshold (and thus stronger’s fragility) as in the main model.

Following the similar argument, the opposite holds when strategic risk aversion is low (low α)

and δ is not too small (Case (ii). See Figure 9). With high p, agents consider an optimistic scenario.

Now it’s the weaker that becomes critical—W -group agents consider an optimistic case in which
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Figure 9: Case (ii), W -group’s conjecture given s∗w
For W -group, V ∗

w is large when α(= 1− p) is small, independent of δs. If △
∗ (that is, δ) is large enough

such that V ∗

w − ǫ > s∗s(= s∗w −△∗), then W -group’s conjecture about fs is equal to 0
(Pr[si < s∗s|V = V ∗

w ]) = 0), independent of δs.

even most of the weaker agents themselves are staying, and the number of staying S-group agents

should be larger. Indeed, when α is small enough given δ, W -group conjectures that all of S-group

agents should be staying in that optimistic scenario. Thus, W -group simply ignores S-group when

solving for his optimal exit threshold (equation (21) and (22)) in this case. Therefore, W -group’s

exit threshold will be s∗w (an optimal exit threshold ignoring S-group) following the definition of

Section 3.2, which only depends on δw and is independent of δs. The stronger’s exit threshold, on

the other hand, depends critically on this weaker’s threshold and thus in the limit V ∗ depends only

on δw.

For intermediate α and low δ (Case (iii)), now this one-group dependency disappears; when

a j-group agent considers a 100p percentile event, his conjecture regarding the number of exiting

agents in the other group is also intermediate (f−j ∈ (0, 1) for both j = S,W ). He thus needs

to take the other group’s fragility into account which affects the exact value of f−j. Now the exit

thresholds depend both on δs and δw.

Appendix D: Credit spreads and rollover risk

In Section 5, we can apply the structural debt pricing framework to our setup to examine how

the externality from coordination concerns affects credit spreads and rollover risks in times of crises,

where the rollover risk refers to the risk of the debt rollover refusal.
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In terms of asset pricing, the debt contract under consideration can be interpreted as a perpetual

coupon debt with both callable and puttable options. Notice that there exists an endogenous thresh-

old of the fundamental (rollover threshold) V R determined in the model, and the pre-determined

coupon CH△ is paid each period until the fundamentals V hits that threshold, at which point

the contract is terminated paying the principal. One distinction from the standard debt contract

is that the creditor can also terminate this contract (puttable, by refusing to roll over) upon the

violation of the collateral constraint (2), not passively waiting for the borrower’s default decision

(as in Leland (1994), and Leland and Toft (1996)).

Note that coordination failure leads the debt to be terminated at a higher fundamental thresh-

old, at V ∗ or V ∗∗ with coordination concerns rather than V BM = PH without coordination concerns.

We now calculate the debt value with these endogenous thresholds and the payoffs on those thresh-

olds. Under continuous time approximation, the debt contract pays the coupon CH continuously

until the fundamentals V hit the rollover threshold V R(= V ∗, V ∗∗ or V BM ) where the rollover is

refused and the principal PH is paid.32 33

The fundamentals follow dV = (r − δ)V dt + σV dW in the limit and the debt termination

paying the principal PH is triggered at Vτ(V R) = V R, where the stopping time is defined by

τ(V R) = inf{t|Vt ≤ V R}. The debt value given the current state Vt, denoted as D(Vt;V
R),

can be derived from the Bellman equation

D(Vt;V
R) = E[

∫ τ(V R)−t

t

e−r(s−t)CHds+ e−r(τ(V R)−t)PH |Vt]. (24)

Using Ito’s formula, we get an ODE

CH +
1

2
σ2V 2DV V + (r − δ)V DV − rD = 0,

32To be precise, the institutions exit from the contract voluntarily (exercise the callable option) in antic-
ipation of this rollover refusal, but still paying PH at Vτ(V R) = V R.

33With this reduced-form setup, we try to capture the qualitative effect of the coordination failure on credit
spreads, rather than the quantitative effect which is the focus of the credit spread puzzle literature (Huang
and Huang (2003) for the overview). Our simplifying assumptions rule out partial recovery, guaranteeing
the full payment of the principal. We can consider cases with partial recovery upon termination but the
qualitative implications remain the same since what drives our results is the changes in the endogenous
termination (rollover) threshold through coordination concerns among the institutions.
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with the boundary conditions

lim
V→∞

D(V ) =
CH

r
,

D(V R;V R) = PH .

Solving this, the debt value can be calculated as

D(Vt;V
R) =

CH

r
+ [PH −

CH

r
]× [

Vt

V R
]X (25)

where X is the negative root of X(X − 1)σ
2

2 +X(r − δ) = r.

We define the credit spread as the difference between the yield and riskfree rate following the

standard definition:

CS(Vt;V
R) =

CH

D(Vt;V R)
− r. (26)

In addition, consider the following measure of the rollover risk RR(Vt;V
R) ranging from 0 to 1:

RR(Vt;V
R) ≡ E[e−r(τ(V R)−t)|Vt], (27)

which is a normalized distance to the rollover threshold V R given the current fundamental Vt,

reflecting how likely the rollover refusal will occur in the near future. It is decreasing in the

fundamentals Vt, converging to 1 as Vt approaches to the rollover (crisis) threshold V R. We can

calculate this rollover risk in a closed form, such that RR(Vt;V
R) = [ Vt

V R ]
X .
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