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1 Introduction

Macroeconomists engage in considerable debate over the time series properties of macroeconomics
variables as represented in impulse response functions. The debate until recently has been ex-
clusively based on the foundation that the economy’s dynamic behavior is well approximated by
(Gaussian) random impulses being propagated over time by an invariant linear structure. As
discussed by Gallant, Rossi and Tauchen (1993) (GRT hereafter) there is no reason to restrict the
analysis of dynamics to linear time series. They extend the notion of impulse response functions
to the nonlinear time series case. This paper further develops the theory of impulse response
functions for nonlinear time series.!

GRT considered the extension of one common definition of impulse response functions for
linear time series to the nonlinear case. I extend the definitions of the four types of impulse
response functions in the macroeconomic literature. For linear time series the four definitions all
contain the same information. In the nonlinear case they all contain different information. Call
this the first reporting problem.? Instead of developing techniques for all four definitions I resolve
the first reporting problem by arguing that one of the definitions has a number of advantages over
the other three in the nonlinear context and call it a Generalized Impulse Response Function (GI
hereafter).

If a time series is linear one can normalize the GI to produce a nonrandom function. It
is not possible to construct such a nonrandom function for the GI of a nonlinear time series.
Thus, there is a second reporting problem for nonlinear time series: Is the reported response
a very general feature of the dynamics of the nonlinear time series?” GRT took an informal
approach to the second reporting problem for their definition of impulse response functions by
considering visually the behavior of bundles of impulse response functions. I am able to formalize
this approach by treating the GI as a random variable on the underlying probability space of
the time series. This property of the GI is used to develop a number of solutions to the second
reporting problem based on stochastic dominance measures of the size of random variables.

The outline of the rest of the paper is as follows. Section 2 develops some notation and

some conventions. Section 3 extends the four standard definitions of linear impulse response

T concentrate exclusively on the univariate case. Koop, Pesaran and Potter (1996) extend the use of the impulse response functions
as defined in this paper to the case of multiple time series.

2The reporting problems I examine in this paper are in addition to that usually encountered in linear impulse response function
analysis. When presenting impulse response functions from estimated models there is sampling uncertainty associated with parameters
defining the impulse response function. One set of possible classical solutions are described by GRT. Another set of possible Bayesian
solutions are described by Koop (1995).



functions to the nonlinear case. Section 4 defines a special nonlinear time series model and
illustrates the restrictions imposed by the use of Wold Representation of a time series. Section 5
develops the random variable interpretation of the GI. Section 6 provides a number of definitions
of persistence. Section 7 considers various conditional versions of the GI. Section 8 contains an
empirical application to persistence in U.S. GNP. Section 9 gives some brief conclusions. A short

appendix contains proofs of results in the main text.

2 Notation and Conventions

All random variables are assumed to be defined on the probability space (Q,F,P). Throughout
the paper the convention will be maintained that lower case letters refer to a realization of a
random variable (unless the argument w of the random variable is made explicit) and upper case
letters to the random variable. In order to clarify the notation with respect to the expectations
operator, the double bar convention of Billingsley (1986) will be used. Thus, E[Y;;,||¢] will mean
the random variable called the conditional expected value of the integrable random variable v;,,
given that G is a o—field in F such that

1. E[Y:4+,]/G] 1s measurable G and integrable.

2. E[Y;4,]|G] satisfies the functional equation:
G G

For example, if G = {0,Q} then clearly measurability and integrability are satisfied and E[Y;,,||G] =
E[Y;,,] since this o-field contains no information on individual realizations. Below it will be
important to distinguish between realizations of the conditional expectation operator and the
random variable itself. The value of E[Y;,,||G]. at w € Q is interpreted as the expected value of
Yi+n given that one knows for each G € G whether or not it contains the point w.

The focus will be on the sequence of increasing Borel (B) o—fields,
ft - O'(...,Y_l,Y(),Yl,...,n).

Hence E[Y;;,||F]. is the value of the conditional expectation of Vi, given information up to time
t. For n < 0 the value will be the observed realization of the time series, for n > 0 we will denote

its value by E[Yii.|y!(w)]. Here y'(w) identifies the individual realization of the time series up to



time t at w, i.e., y'(w) = (Y¢-.-,¥1,¥0,¥_1,...). ¥ (w) Will represent a complete realization of the time
series.

In order to simplify the exposition I will concentrate on the case of strictly stationary time
series, although some of the basic definitions below will also apply to the nonstationary case with
minor modification. Nonstationarity due to deterministic components or integration of stationary
time series will be directly allowed for. V; will represent independent and identically distributed
random sequences, W; will represent martingale difference sequences, U; will represent sequences
of uncorrelated random variables (white noise).

We will use the notation X =ggp YV for the statement that the random variable X second
order stochastically dominates the random variable Y and X ~ssp Y for the statement that X
does not second order stochastically dominate Y.? Similarly we use the notation X =rsp Y for the
statement that the random variable X first order stochastically dominates the random variable YV
and X ~pgp Y for the statement that X does not first order stochastically dominate v.*

The Wold Decomposition of any covariance stationary time series is given by:
Yi=n(t)+ Y il
=0
where Y2 ¥? < 00,10 = 1 and n(t) is a purely deterministic covariance stationary sequence.
The Wold Representation is the time series minus the purely deterministic component.
3 Four Definitions of Impulse Response Functions

3.1 Linear Impulse Response Functions

Define the operator L,(y*(w)) as the linear predictor of Y;,, given the realization of (y;,y; 1,...).

Using the Wold Decomposition the linear predictor is given by:

La(y' (@) = n(t + 1) + 3 it
=0

3If X and Y are two random variables with the same mean and distribution functions Fx, Fy respectively then X second order
stochastically dominates Y if and only if f)\>a Fx () — Fy(A\)dX > 0, Ya € R. Second Order Stochastic Dominance is an example of

a partial ordering on the a set of distribution functions. A partial ordering on a given set D of distribution functions,Fy, F», F3,... is a
binary relation satisfying three axioms:

1. Fy < Fy (reflexivity).
2. If F1 < F> and F» < F3 then Fy < F3 (transitivity).
3. If F1 < F> and F» < F; then F| = F» (anti-symmetry)

When applied directly to random variables as done here the last statement defines an equivalence class rather than equality.
4If X and Y are two random variables with distribution functions Fx, Fy respectively then X first order stochastically dominates Y
if and only if Fx(a) — Fy(a) <0, Ya € R.



Consider the following three operations on the linear predictor:
1. The linear impulse response function (lirf,), it answers the question how does my linear forecast

of Y;,,, change if today’s realization of y;, changes by &:

lirfn(6) = Ln(ye + 0,y¢—1,...) = LUt Yt—1,- - .) = ¥nd.

2. Instead of considering the perturbation, §, one can examine the derivative of the linear predictor
(dlirf,). This gives the slope of the linear forecast of V;,, with respect to y,. In the discussion
of persistence of univariate time series the limiting behavior of this derivative has been of great

interest.

OLn(yt,Yt—1,---) _
8yt - 17[177,'

3. The linear updating function (ludf,) is a crucial part of linear rational expectations models

dlirf, =

where the change in today’s behavior is determined by the change in linear forecasts of the future

given the arrival of information at time t:

ludf(Ur(w)) = Lo(y' (@) = Ln1(y' ' (W) = ¥nli(w).

It is trivial to defined scaled versions of lirf,, ludf, that are equal to lirf, and remove
any randomness from the linear impulse response functions. All of the three functions share a
symmetry property with respect to the value of the shock and an independence from the realization
of the process before time t.
4. All three are also equivalent to what one might call the sample path operator. Consider two

sample paths of {U;}, u®(w),u>(w'), that are same except at time ¢ when they differ by 6.

Yi(w) =n(t) + Z%Utﬂ'(w) + Ut(w),

V(') =n(t) + 3 ililw') + U (),
Yirn(W) = Yern (W) = Yu(Ur(w) — Ur(W')) = nd.

This is a definition of an impulse response function that is used by economists examining linear
models under perfect foresight where the difference in the sample path reflects an ‘unanticipated
shock’.

3.2 Nonlinear Impulse Response Functions

The most difficult operation to extend to the nonlinear case in a rigorous manner is the sample

path one. Assume that there exists a sequence of IID random variables {V;} defined on the same



probability space as the time series such that o(V;,V;_1,...,) = F. Define two infinite sequences of
the realized values of the IID random variable, v (w),v>(w'), that differ only in their ¢-th element

by 6. Then a formal definition of the sample path operator would be:
EYign|v> ()] = EYi4n [v>° (W)]-

Suppose Y; = f(Y;_1) + V;, where f(-) is a non-affine function. Consider the value of the

sample path operator at n = 2:

Vi(w) = f(Yim1(w)) + Viw), Yi(w') = f(Vemr (@) + Ve(w'),

Yirz(w) = Yiga(w') = f(f (Vi1 (W) + Ve(w)) + Vi1 () = F(f Vi1 (W) + Vi(w)) + Viga (W),

Since f(-) is non-affine the response depends on the value of V;, ;. This effect is present for
all n > 1 and implies that the response to the perturbation § depends on the future sequence of
shocks. One possible choice would be to look at all w € Q such that the innovation sequence is
zero after time ¢ (see Beaudry and Koop (1993) for an example). This would be equivalent to
analyzing the behavior of a nonlinear difference equation over a set of initial conditions defined
by the distribution of the time series at time t. This approach is not followed for two important

and related reasons.

a. The behavior of a nonlinear difference equation can be very sensitive on the exact value of
the parameters. For example, small changes in the parameters can alter the limiting dynamic
behavior of the difference equation from a unique value to chaos. This is a very undesirable

property when the models under investigation are subject to estimation error.

b. We will need a probability measure to discuss the general dynamic properties of nonlinear
stochastic models. The measure to associate with the behavior of the sample path operator
using the zero innovation sequence is not as obvious since a nonstationarity is introduced by

the special sample path restriction.

The natural thing to do to avoid these problems, is to average out the effect of future shocks,
thus reducing the sample path operator to the nonlinear impulse response function.

We continue by replacing the operator L, in the other three categories of impulse response
functions with the conditional expectation at time ¢ of Y, given the sigma field F, generated by

{¥;,Y:—1,...} evaluated at a particular point y!(w).



1. A Nonlinear Impulse Response Function is defined by the difference between an expectation
conditioned on the sample path y!(w') and an expectation conditioned on the sample path yf(w).

Where yi(v') is equal to yt(w) except for the y;, element which is perturbed by § :

nlir fn(0,y"(w)) = E[Yi4nly" ()] = E[Yinly’ (@)].

This is the definition used by GRT.
2. The ‘derivative’ of the nlirf, (conditional expectation) of Y;,, with respect to y;, assuming that

it is well-defined at the point (yi,y: 1,...):

) t
dnlir faly'(w)) = lim M

If the derivative is not well-defined at this point then the dnlirf, will be set to infinity.
3. The Nonlinear Updating Function is defined as

nludfy(y'(w)) = ElYeraly' ()] = E[Yeanly' ™ (@)].

4 Dynamics Hidden by the Wold Representation
4.1 A Canonical Nonlinear Time Series Model

Unlike the linear case there is no general causal representation of a nonlinear time series in terms
of functions of IID random variables. The closest one can get is a Volterra Series Expansion. A

special case of which is:

oo oo oo

Z/(/}z‘/t z+zzwzg‘/t z‘/t J+ZZZ¢Z]LW z‘/t J‘/t k-

i=0 j=0 i=0 j=0 k=0

with V; IID and symmetrically distributed.

Recall that nonlinear time series do have Wold Representations. I examine the information
lost by considering only dynamics present in the Wold Representation (i.e., assuming linearity)
when a time series has a cubic Volterra Series Expansion.® In order to highlight the loss of
information I restrict the Cubic Volterra Series model so that up to scale the first term in the

expansion is the Wold Representation. Under conditions given in the appendix, one can define a

5A cubic expansion is used because quadratic expansions are special in the sense that they share some of the properties of linear time
series.



new stochastic process by:

Ur = Z Z YijVieiVij + Z Z Z YijeViiViiViw + Vi,

i=1 j=1 i=1 j=1 k=1

such that the Wold Representation of V; defined by a cubic Volterra series model is given by:

o0

> hilii,

=0
where h; = 9; /10, ho =1 and U, is white noise.

4.2 Examples of Nonlinear Impulse Response Functions

In this section I give example of realizations of the impulse response functions produced by
the cubic Volterra model. The calculations for the Volterra series expansion are based on the
conditioning sequence v, v; 1, ....5

1. The Nonlinear Impulse Response Function

nlir fr (6, vt (w)) = 0y,

+82nn + 83 nnn + 20 Z VnjVi—jin

j=n+1
oo
2
+3(5 Z Q/Jnnj’l)t,jJrn
Jj=n+1
00 00 n—1
2
+34 Z Z YnjkVi—j4nVi—kin + 300 Zi/lnjj-
j=n+1k=n+1 j=1

Remember that if linear methods were used on this time series the linear impulse response
function would just consist of a scaling of the {v,,} sequence under the restrictions stated above
on the cubic Volterra series expansion. The effect of the realized history of the process and
asymmetries produced by varying the size and sign of the postulated shock § would be hidden.
Also there is no sense in which the coefficients in the Wold Representation determine the average

behavior of the time series to the shock. The nlirf, illustrates three possible asymmetries:

e The magnitude of the shock for the same history will produce asymmetries because of the

presence of §2,4°.

61t should be emphasized that in an actual forecasting exercise this sequence is unlikely to be recoverable from the observed realizations
of the process {Y;} (see Granger and Newbold (1977)).



e The response to § will not be the same as —§ because of the § terms.

e The same shock will have differing effects depending on the sequence of

Vs Vt—1y0 e

2. The Derivative of the Nonlinear Impulse Response Function

dnlir fr(v' (W) = ¢y

00
+2'Ut1/}nn + 3v?¢nnn +2 Z ¢njvt7j+n
j=n+1

oo
+6’Ut Z 1/Jnnjvt7j+n
Jj=n+1

00 00 n—1
+3 Z Z VnjkVt—j4nVt—ktn + 307 Z Unjj-
Jj=n+1k=n+1 Jj=1

Beaudry and Koop (1993) and Potter (1995) find evidence of asymmetric response to large
negative shocks in U.S. GNP in the post-war period. Some intuition for this type of behavior can
be gained from considering the dnlirf,. If v; << 0 it is possible for certain histories that the direct
negative effect is out-weighed by the squared term and the terms not involving v;.

One feature of the dnlirf, that is not clear from the Volterra series expansion, is that
ergodicity of the underlying stochastic process does not necessarily imply that the dnlir f, sequence
converges. Intuitively, both nlirf, and niudf, should be equal to zero with probability 1 as n —
if the underlying process is ergodic. Since, the individual conditional expectations are converging
to the same unconditional expectation. However, for the dnlirf, measure, an interchange of limits
is required for the ergodicity of the underlying process to have an effect. Apart from the high
level assumption of uniform convergence of dnlirf, there does not seem to be a direct method of
guaranteeing that such an interchange of limits is valid and counter-examples to convergence can

be constructed.

3. The Nonlinear Updating Function

nludfy (v* (W) =

)
Ut¢n + ('U? - U2)¢nn + 'Uts'ﬁbnnn + 2v; Z ¢njvt—j+n
j=n+1



o) [e%s} o) n—1
3(vi — o?) Z YnnjVi—j+n + 30 Z Z VnjkVt—jinVt—kin + 3007 Z Ynjj

j=n+1 j=n+1k=n+1 j=1

The main difference from nlirf, is that the terms involving »? are now centered by the
variance of the error term (i.e. the unconditional expectation of nludf, must equal zero). If § is
small then nlirf, will be close to zero but niudf, will not necessarily be close to zero if |v;| is small.
In order to illustrate the possible economic importance of this observation consider the following
example.

Assume that the ex-dividend price of a stock depends on the expectation of present discount
value of future dividends and that the interest rate is constant. The unanticipated change in the

value of a stock is given by:

E[Q|d" ()] = E[Qe|ld ™ ()] = Y 5" { E[Dernld' ()] = E[Desnld ™ ()]},

n=1
where @Q; is the ex-dividend price of the stock, D; is the dividend and 0 < g < 1 is the discount
factor.
Suppose that dividends follow an integrated process and AD; is given by the Volterra

model. Then, using the linear predictor:
LIQ¢|u' (@)] = LIQ:lu' " (@)] = Us(w) Y~ "> Pn-
n=1 i=0

Hence in the case that U;(w) is small the linear prediction of change in stock price is small and
zero if U;(w) is zero. Alternatively, using the conditional expectation and restricting v;,v; 4,5 > 0
to be zero, implying that U;(w) is zero, the unanticipated movement in the nonlinear prediction

of the stock price is given by:

E[Qifv" (@)] = E[Q:lo" M (w)] =0 ) B" Z¢

5 Generalized Impulse Response Functions

The expressions, nlirf,, dnlirf,, nludf, all represent individual realizations of sequences of random
variables produced by various operations defined on conditional expectations of a time series.
Realization differ because of initial conditions and in the case of the nlirf, choice of perturbation.
Instead of analyzing individual realizations of the various impulse response functions, it is possible

to treat them directly as random variables defined on the probability space of the time series itself.



nlirf, is the measure suggested by GRT but for our purposes it has the major problem of requiring
a distribution for the perturbation 4.7 For example, suppose one chose the distribution of the
innovation sequence for the time series, E[Y;||F:] — E[Y;||F;—1]- This has the advantage of being
a random variable defined on the underlying probability space of the time series itself but the
disadvantage that the average of the nlirf,,n > 0 across the innovation sequence is not necessarily
zero.® Two advantages of the nludf, are that by construction the ‘perturbation’ is the innovation
to the time series and its average value over the innovation is zero.

The dnlirf, has the advantage of not requiring the choice of a perturbation but it has two
major disadvantages. As noted above it has limiting behavior that is hard to classify. In particular
ergodicity of the underlying time series does not necessarily imply that the dnlirf, converges to
zero as n increases. Also it measures the dynamic response to an infinitesimal perturbation. In
discrete time such perturbations are atypical and we are often interested in the response to large
shocks.

Priestley (1988) develops a concept of ‘generalized transfer function’ for nonlinear time
series and we follow his lead by calling the impulse response function obtained from the updating
operation a Generalized Impulse Response Function and denoting it by GI. We start by considering
sequences of pairs of conditional distributions generated by the o-fields of the time series {V;}.
Proposition 1

If Yy is a random variable on (Q, F,P) and F; is a sequence of o—fields in F. Then there exists a sequence

of functions p,(t, H,w) defined for H in B(R), and w in Q with these two properties:

1. For each w in Q p,(t,H,w) is, as a function of H, a probability measure on R.
2. For each H in B(R), pn(t,H,w) is, as a function of w, a version of P[Yir, € H||Ft]w-

Using this result one can define the GI as a sequence of random variables on the probability

space of the time series itself:
GLu(t) = [ ypaltdy,) = [yt~ 1.dy,)
For example, in the case that Y; = ¢Y; | + V; we would have:

Gln(t,w) = ElYitnllo(Ve) | Jo(Vie)lo = Eigallo(Yie)lw = ¢"Vi(w).

7GRT mainly concentrate on the behavior of nlirf, for a fixed perturbation while varying the initial condition.
8Refer back to the distinctions between the nlir f, and nludf, for the cubic Volterra series expansion above.

10



A time series {v;} will have a well-defined {GI,} if Z; is in L'(Q,F,P), where
Zi = Yi - EVil|F_).

That is, the purely deterministic (in the nonlinear sense) component of Y; is removed.” For

example, consider the case where Y; = a + bt + V;, E[|V;|] < oo, then E[V;||F-«] =a+ bt and Z; = V;.

6 Persistence

How can one extract information on dynamics from the GI? As in the case of all dynamic systems,
dynamics are extracted by evaluating the effect of different combinations of initial conditions.
The difference here is that the effects will be random except in the deterministic case of perfectly
forecastable dynamics, that is GI, =0, n =1,2,... for all initial conditions. Consider the canonical
examples of an IID sequence (no persistent dynamics) and partial sums of IID random variables
(persistent dynamics). If v; = V; is an IID sequence of mean zero random variables, GI, = V; and
the rest of the sequence would be zero. In this case there are clearly no interesting dynamics.
Now suppose that Y¥; was a time series of sequence of partial sums of V;, ¥; =Y; , +V;. GI,, would
be equal to V; for all n. However, V; is centered at zero so the average (across initial conditions)
dynamics from the random walk are not distinguishable from those of an IID sequence. In order
to avoid this conclusion we need to measure the size of the GI, more directly.

Recall a degenerate random variable at zero is second order stochastically dominated by
all random variables with mean zero. For the IID case the response at n = 0 second order stochas-
tically dominates the response at all other horizons and the reverse is not true. However, for the
random walk the response at any horizon second order stochastically dominates the response at
any other horizon and wice versa. That is, the shock at time ¢ persists indefinitely. Finally, the
response generated by the random walk second order stochastically dominates the response in the
IID case. That is, the response to the shock in the random walk case is much larger.'°

Define the random variable:

N
Py =Y GI,.
n=0

9Rosenblatt (1971) discusses the notion of purely deterministic in the nonlinear sense. F_ is the o-field produced by the intersection
of all the o-fields from ¢ > 0 backwards.

10An alternative approach to the one followed here is to calculate the largest Lyapunov exponent of the time series (see for example
Nychka et al., 1992). This can be used to categorize the time series as stable or unstable and give a measure of the speed of convergence
or divergence. However, in the case of linear time series the Lyapunov exponent does not produce the traditional measures of persistence
found in the time series literature, whereas persistence measures based on the GI will. Further, since the Lyapunov exponent is based on
an infinitesmal perturbation it does not contain information on the reaction to large versus small shocks.

11



and VL to be the space of time series satisfying

N
Jim B[ |GI,[] < oo.

n=0
Unlike the linear impulse response function case, where there is a one to one mapping between
covariance stationarity and square summability of the impulse response function, there is no
obvious properties, other than integrability and ergodicity, that the non-deterministic components

of time series in /'L must share. One general class of time series can be shown to be in VL.

Proposition 2 If the non-deterministic component of {Y;} is a geometrically ergodic time series and in L'(Q, F, P)
then {Y;} is in N'L.

We need a definition of an integrated time series applicable to time series in NZ. The
standard approach for linear time series is to check the behavior of the spectral density of the
level and first difference of time series at the zero frequency. For example, if the spectral density
at zero of the level of the time series is infinite but it is bounded between zero and infinity for
the first difference of the time series it is integrated of order 1 (I(1)). Here a similar approach is
used by considering the variability in the sum of the GI for the level and first difference of the
time series.

Under absolute summability of the GI define: Px =limy_, Py. for the time series {X;}.
Definition: Integrated Time Series

Let {Xt} € Nﬁ If
1. Px »ssp 0 and 0 ~ssp Px.
2. 0 >=ssp Pax where AXt =X; — X1

Then X, is integrated of order zero (1(0)).

Within the class of integrated time series it is interesting to measure the persistence of
shocks as the horizon goes to infinity. This will done by using second order stochastic dominance
as a measure of the size of the response at the infinite horizon. Hence, unlike the case of persistence
measures based on the Wold Representation only a partial ordering of the class of integrated time

series is possible using the GI.

Definition: Persistence
If {AX:} and {AY;} € NL and {X;,Y:} are I(1). X; is more persistent than Yy if Pax »=ssp Pay and

Pay ~ssp Pax-

12



It is possible to obtain complete orderings for certain linear time series.

Proposition 3

Let L be the set of all (purely non-deterministic) linear time series with representation AX; = ZZO:O anWi_n
where 3, <o lan| < 00, E[|[W|] < cc.

There is a complete ordering of persistence by >ssp
1. For all Gaussian time series in L.

2. For all linear time series generated by the equivalence class of martingale difference sequence {W4} in L with
Y om0 0n > 0 or the equivalence class of a martingale difference sequence {W;} with symmetric distributions in

L

One can achieve some relative measurements of the dynamics in nonlinear time series to
linear models by comparing the ‘size’ of the random variable P with the ‘size’ the random variable

GI,. For example, one is often interested in comparing an integrated series with a martingale.

Definition: Persistence Relative to a Martingale
For {Y;} e NL, X;= X¢_1+Y; is at least as persistent as a random walk/martingale if Py =ssp Gly and

less or as persistent if Gl =ssp Py .

It might not be possible to rank P and GI, by the second order stochastic dominance
criterion. In such cases and also to acquire more precise information about the size of the ‘unit

root’ the following scaling procedure can be used. Define:

a = inf{a >0:aGly =ssp Py}

a=sup{a>0:Py =gs5paGIly}.

Then one would say that {X;} is less persistent than a martingale with innovation aGI,
and more persistent than a martingale with innovation aGIy. Clearly, for linear models, a = a.

Alternatively one can compare {X;} to a linear integrated processes:
AZ; = Z anWi_n,
n=0

with martingale difference innovation sequence {W;} distributed as GIp, 3,5 las| < 00 and 33, 5 an

> 0.

13



Definition: Persistence relative to linear models
X is less persistent than an integrated linear process, Z;, with innovation Wy and Y, o,an = aax. X¢ is

more persistent than an integrated linear process, Z;, with innovation Wy if 3 o a;, = aax-

7 Conditional Versions of the Generalized Impulse Response Function

In this section a less abstract approach is taken in order to discern more information on conditional
aspects of the behavior of the GI. We restrict attention to time series where F; = o(V;) J F;—: and

V; is an IID sequence. Allowing for a slight abuse of notation, define:

E[Yt-i-nHVt,ft—l] = E[Yt+n||7:t]:

and adopt the convention that V; is the ‘shock’ and F;_; is the ‘history’. We will also use the same
notation for the GI:
GI,(Vi, Fi—1) = EYinl||Vi, Fio1] = E[Yiqn|| Fi-1]-

We signify a realization of the GI by:
GIo(vr,y" (W) = BlYignlve,y' ()] = BlYiraly' ™ (W),
and conditional random variables by:

G1I,(vs, Fi—1), Conditional on the Shock
GI,(V;,y"™ ' (w)), Conditional on the History

GI,(A, B), Conditional on v; € 4,y'~'(w) € B

In the recent nonlinear time series literature in economics there has been much attention placed
on the ‘lack of persistence of negative shocks compared to positive shocks’ (for example, Beaudry
and Koop, 1993). The previous work has tended to concentrate on particular realizations of the
impulse response functions to show this asymmetry, presenting the problem of selective reporting
of results. Here a general method of avoiding this ‘moral hazard’ issue is given.

Consider two conditioning events for the GI. Define:

GI:{ = GIn(‘/t > O,ftfl),
GI, = GI,(V; <0, Fr_1).
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Definition: Asymmetric Response to Shocks
A time series {Y:} in N'L has larger response to positive shocks relative to negative shocks at horizon n if:
1. GI} =psp GIf, GIf ~psp GI} and GI,; =psp GI; .
Or a larger response to negative shocks relative to positive shocks if:
2. GIy =rsp GI}, GIy =psp GI; and GI; ~psp GI; .
It is obvious how to extend the spirit of this method to other conditional dynamic features

of interest.

8 Empirical Examples of Nonlinear Measures of Persistence

Much of the recent emphasis on deriving measures of persistence from linear impulse response
functions has been on providing estimates with little sampling variability. Given the computa-
tional requirements of producing point estimates in the nonlinear case it is not currently feasible
to assess the sampling variability. Thus, I proceed as if the distribution function of the GI gener-
ated by the estimated model’s is the distribution function of the GI generated by the true model.
Furthermore, I also ignore the simulation error and truncation error in constructing realizations
of the persistence random variable.!* The construction of the persistence random variable is
truncated at 8 quarters since the response of GNP growth is approximately zero at this horizon.
Despite these caveats the nonlinear measures are of independent interest as they lead one to be
very wary of conclusions drawn from linear models.

The infimum and supremum above are not simple to calculate for second order stochastic
dominance but they are relatively easy to calculate for the cut criterion of Karlin (see Stoyan
(1983)): define sign(f) to be the function returning the sign changes in the function f: if sign(F-G) =
(+,—) then F =s5p G.12

The two examples I consider are Hamilton’s (1989) Markov Trend model of U.S. GNP and
the SETAR model for U.S. GNP of Potter (1995). Previous linear estimates of persistence have
ranged from a low of zero when a unit root is rejected to the high estimates of 1.6 (see Hamilton
(1989) for a representative listing). Hamilton calculated the standard deviation of the updating

function for his model using the Wold Representation and obtained an estimate of 1.62. Figures

1 Koop, Pesaran and Potter (1996) give a detailed description of simulation methods to construct the GI.

2Unfortunately this is only a sufficient condition and its failure does not imply that F,G cannot be ranked by the second order
stochastic dominance criterion. At the failure of the cut criterion it is possible to integrate the empirical distribution functions to check
for second order stochastic dominance. Experiments indicated that this rarely affected the first decimal place. Hence given the degree of
approximation involved in the exercise I suggest using the cut criterion alone.
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1 and 2 contain the densities of the persistence measure for GNP derived from the SETAR model
and from the Markov Trend model respectively. Each figure also contains a Gaussian density with
the same variance as the persistence random variable. The estimate of Pagyp from the SETAR
model has a density that appears to be almost Gaussian except for the hump around the value
of -2. The estimate of Pagnyp from the Markov Trend model produces a highly non-Gaussian
distribution with the appearance of tri-modality in the density.

One interesting issue is whether the nonlinear models are more or less persistent than a
martingale. This issue is examined in Figures 3 and 4 which show the distribution function of
the persistence random variable. Clearly the SETAR model is more persistent than a martingale
but the distinction is less clear in the case of the Markov trend model.

More precise information on persistence can be found by using the scaling procedure. For
the SETAR model, this procedure produced an upper bound of a = 2.0 and a lower bound of
a = 1.6 for persistence compared to a martingale with innovation GI, from the SETAR. For the
Markov Trend model, the bands are much wider with upper bound of a = 2.8 and lower bounds
of a = 1.1 compared to a martingale with innovation GI, from the Markov Trend. Because of the
tri-modality produced by the Markov Trend model, it is not possible to order the two values of
Pagnp by second order stochastic dominance. That is, one cannot tell if the responses are more

persistent in one model rather than the other.

9 Conclusion

This paper has developed a number of tools to report the dynamics of nonlinear time series models
and compare these dynamics to linear time series models. An interesting issue for future research
is how to provide measures of sampling uncertainty for the GI as a random variable rather than
for particular realizations. In particular it would be useful to have measures of the size of the

nonlinearity that take into account parameter and modeling uncertainty.

Appendix

Restrictions on Cubic Volterra Series Model
The following conditions imply that the stochastic process Uy constructed from the Cubic Volterra Series
model is white noise.

toi = Yoi; =0 Vi, j, Y thii =0,

i=1
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oo oo o0

ZZ‘/’?J‘E[Vt%in{j]'FZZZ kaEVt Vi JV; k=

i=1 j=1

_2Z¢zzz¢zg _GZZ¢lJ]¢l Oy

i=1 j=1

00 00 00 00 00
Z VijVits,j+s b Vt th ]] + Z Z Z ¢ijk¢i+s,j+s,k+sE[Vtz—ivt2—th2—k]+
i=1 j=1 i=1 ]:1 k=1
oo 00
3 Z Z 1[1i+571’(/1ijj0'3 + 3 Z Z Q/Jifl/(/}iJrs,jjUf; = 0, VS ;é 0,
i=1 j=1 i=1 j=1

Proof of Proposition 1. Billingsley (1986) Theorem 33.3 applies directly for each n.
Proof of Proposition 2
I adapt a definition of geometric ergodicity from Tong (1990 Appendiz 1). Without loss of generality I
examine the case of a scalar first order Markov process.
Definition
{Y:} is geometrically ergodic if there exists a probability measure u, a positive constant r < 1 and a p-

integrable non-negative measurable function h such that
IP(Visnl) = (isa)lly < rh(x), for an arbitrary ,

where || - ||, is the total variation norm. By Tweedie (1983) this exponential convergence relative to a p-integrable

non-negative measurable function h also applies to conditional moments when the unconditional moments ezist.

E[Y_ |GI,[] < E[Y_ |EYisallYe] = E[Yisn Y]]

N
B[S |EYesnlVi] = EYoin]l + [EWYiin] = EVeinlVioi]
N
E[Y" r"2max{h(Y), h(Yi-1)}] < 7 Elmax{h(¥s), h(Yi-1)}
n=0

Thus, by the p integrability of h and the dominated convergence theorem the generalized impulse response function
of a geometrically ergodic Markov process is absolutely summable.
Proof of Proposition 3. For the Gaussian case P =W,y . an which is a Gaussian random variable with mean
zero and variance o2,(Y, < an)?. For Gaussian random variagles the ranking by second order stochastic dominance
is the same as by varianc; Therefore, there is a complete ranking.

For the general linear model case P = W; Y <, an, which is a scaling of the random variable Wy by >~ < an.

Consider the case where 0 < a =) Soan < Y. ,50bn = b. Then, we have the desired result by the cut criterion
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sign{F (w < 3) = Fu(w < 2] = (+, ).

Under the symmetry of Wy, the same argument applies to the absolute value of Y, <, an and —W;.

Q| >
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Figure 1: Probability Density Function of Pagnyp For SETAR Model*
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* The Persistence Random Variable (Pagnp) for the SETAR is generated from 10,000 realizations of ZZ:O GI,
using the SETAR model of Potter (1995). The density was estimated by a normal kernel. The Gaussian density
shown is for a normal random variable with the same standard deviation as the persistence random variable.
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Figure 2: Probability Density Function of Pagnyp For Markov Trend Model*
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* The Persistence Random Variable (Pagn p) for the Markov Trend is generated from 10,000 realizations of ZZ:O GI,
using the SETAR model of Hamilton (1989). The density was estimated by a normal kernel. The Gaussian density
shown is for a normal random variable with the same standard deviation as the persistence random variable.
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Figure 3: Distribution Function of Prgnyp for SETAR model and Martingale*
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* The Persistence Random Variable (Pagnp) for the SETAR is generated from 10,000 EZ:O GI,, from the SETAR
model of Potter (1995). The martingale it is generated from 10,000 realizations of GIy using the SETAR model. The
SETAR »gssp the martingale since its distribution function cuts from above.

22



Figure 4: Distribution Function of Pagnyp for Markov Trend model and Martingale*
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* The Persistence Random Variable (Pagnp) for the Markov Trend model is generated from 10,000 realizations of
Zi:o G1I,, using the Markov Trend model of Hamilton (1989). The martingale is generated from 10,000 realizations
of G 1y for the Markov Trend model. The Markov Trend »=gsp the martingale since its distribution function cuts
from above.
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