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Abstract 

 
Common affine term structure models (ATSMs) suggest that bond yields include both expected 

short rates and term premiums, in violation of the strictest forms of the expectations hypothesis 

(EH). Similarly, forward foreign exchange contracts likely include not only expected depreciation 

but also a sizeable premium, which similarly contradicts pure interest rate parity (IRP) and 

complicates inferences about anticipated returns on foreign currency exposure. Closely following 

the underlying logic of ubiquitous term structure models in parallel, and rather than the usual 

econometric approach, this study derives arbitrage-free affine forward currency models (AFCMs) 

with closed-form expressions for both unobservable variables. Model calibration to eleven 

forward U.S. dollar currency pair term structures, and notably without any information from 

corresponding term structures, from the mid-to-late 1990s through early 2015 fits the data closely 

and suggests that the premium is indeed nonzero and variable, but not to the degree implied by 

previous econometric studies. 
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1.  Introduction 

In addition to projected variance and covariance among exchange rates, information 

about expected returns on currency positions is essential for global financial asset allocation.  

Forward contracts embed investors’ expectations for depreciation and therefore anticipated 

returns on currency positions.  But the problem is that, as a gargantuan literature documents (e.g., 

Froot and Thaler, 1990; Froot, 1990; Engel, 1996), forward quotes also include a sizeable and 

perhaps anomalous premium.  Using observed quotes and subsequent interest rates as well as 

forward exchange rates, several studies find that in violation of uncovered and sometimes 

covered interest rate parity (UIRP and CIRP), currencies with higher interest rates tend to 

appreciate rather than to depreciate, as carry trades are persistently profitable on average.  The 

standard approach is to consider regressions that broadly resemble  

  $
0,t 0,t

0

ln tE
y y

E
  

 
    

 
€   (1) 

where E is the local price of foreign exchange, $
0, 0,t ty y € represents the relevant yield differential 

over horizon 0 through t, and 1  as well as 0  are the null hypotheses that the literature 

resoundingly rejects— is nearly always less than one and is frequently negative.  This so-called 

“forward discount anomaly” might reflect a fair ex ante premium for such trades or chronically 

incorrect market forecasts.  Either way, any attempt to read expectations from forwards should 

make some allowances for possible premiums.  

Rather than start from this ubiquitous econometric approach, what follows takes a 

different tact, draws from continuous time-finance in general as well as interest rate models in 

particular, and outlines arbitrage-free affine forward currency models (AFCMs) to estimate both 

unobservable quantities, notably ex ante.  As discussed below, despite the assumption that IRP 

holds in the short run, the models produce an explicit expression for the (risk-neutral) forward 
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discount premium, defined as the difference between the model-implied forward rate and the 

expected depreciation rate.  A key analogy with affine term structure models (ATSMs) is that 

model-based yields comprise expected short rates and (risk-neutral) term premiums, even in the 

absence of instantaneous arbitrage opportunities along the yield curve (e.g., Vasicek, 1977; 

Langetieg, 1980).   

Few if any existing studies exploit the parallels.  For example, Backus et al. (2001) 

examine whether ATSMs produce forward rates that are consistent with the two key findings in 

Fama (1984) that expected depreciation and the premium are negatively correlated and that the 

variance of the premium is greater than the variance of expected depreciation.  They find that 

ATSMs are inconsistent with the forward premium anomaly unless either nominal interest rates 

are negative or the underlying state variables have asymmetric effects on state prices.  In 

contrast, this study uses no information from term structures and models forward exchange rate 

quotes directly to extract the premium from expected depreciation, with no restrictions on the 

parameters to conform to Fama (1984). 

Besides isolation of the discount premium in closed-form solutions, calibration to 

forward term structures of 11 $U.S. currency pairs from the mid- to late-1990s through early 

2015 suggests that the premium is indeed not only non-zero but also both spatially and 

temporally variable.  However, the degree of variance over time differs across pairs and in 

general is lower than some econometric studies suggest (e.g., Fama, 1984; Hodrick and 

Srivastava, 1986).  In short, these results in no way reconcile the forward premium anomaly per 

se, but AFCM-implied depreciation rates might include useful information about expected 

returns to foreign currency positions.   
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The next section outlines some rudimentary concepts.  Then, to isolate the discount 

premium, the following section derives a single-factor model with perhaps the narrowest 

possible assumptions regarding the stochastic dynamics of instantaneous depreciation.  Next, the 

discussion describes an extension for calibration and application to latent factors, time-varying 

premiums, and an underlying multi-factor Gaussian random process.  The remaining sections 

describe the parameter estimation of the Gaussian model and the general empirical results. 

 

2. Some Rudiments on Interest Rate Parity and Parallels with Term Structure Models 

Define Q as the depreciation (or appreciation) over a non-instantaneous period from time 

0 to t for the domestic price of a foreign currency, E, as in 

  0 exptE E Qt  (2) 

For reference, the corresponding expression for the price of a zero-coupon bond is  

  0 exptP P yt  (3) 

where y is the continuously-compounded yield on the bond P that matures at t, and the left-hand-

side is equal to par at expiry.  Returning to foreign exchange, broadly analogous to the pure 

expectations hypothesis (EH) of interest rates, which suggests that longer-dated yields represent 

the average of expected short rates, r, consider Q as the mean of instantaneous depreciation rates, 

q, over the initial time 0 to t, as in   

    
0 0

1 1t t

s sy r ds Q q ds
t t
      (4) 

where    is the expectations operator, and both expression ignore Jensen’s inequality.   

 To review the motivation behind (1), interest rate parity (IRP) dictates that expected 

depreciation is equal to the interest rate differential between the two countries, which in turn can 
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be decomposed under a relaxation of the EH into rate expectations and (time-varying) term 

premiums.  There is substantial debate and a huge literature on whether UIRP or even CIRP 

holds, with very discouraging results from dozens of earlier studies (Froot and Thaler, 1990).  

However, some studies find that some data in the very short run are consistent with the theory 

(e.g., Chaboud and Wright, 2005), and other studies also report that UIRP holds to some degree 

in the long run (e.g., Chinn and Meredith, 2005).  But regardless of whether ex post returns 

follow IRP, under the expectation of no arbitrage, investors cannot take a short position in a 

futures contract, borrow one unit of a foreign currency (say the dollar price of a euro, $/€), at the 

domestic risk-free interest rate at the current rate of exchange, deposit that amount in a foreign-

risk-free-rate-bearing account, and deliver the foreign-dominated funds at the forward exchange 

rate agreed upon at time 0 for expiry at t, 0,tF , for a profit.  Rather, interest rate parity from 

borrowing a single unit of domestic currency implies 

 $
0,t 0,t

1
0 0,texp exp 0y t E y t F        €  (5) 

 

or 

 $
0,t 0,t

0

0,tln y y t
E

F
  €  

Of course, substituting (2) for the right hand side suggests that IRP demands $
0,t 0,ty y Q € , and 

the continuous-time equivalent along with (4) suggest that $r r q € .  Beyond the relation 

between the spot observed at 0 and the forward quote, consider the term structure of currency 



 5

forwards priced at time 0 for the future period between t   and t, say.1  By extension, forwards 

must follow parity with respect to differentials in corresponding forward interest rates, f, as in 

   $
0;t ,t 0;t

0,t

0,t

ln tf f t
F

F  


  €  (6) 

Correspondingly, besides these static relations, the expected instantaneous change in a single 

forward currency contract with a fixed maturity t over time 0 to dt, scaled by its initial value 

under interest rate parity follows 

 

    $
dt,t dt,

, 0,

0,

dt,tln t

dt t t

t

f f dt

dF

F

F F

F

d F





 

   
 
    
  

€

 (7) 

One might argue that these arbitrage conditions comprise risk neutral relations that 

preclude any premia, given that by definition arbitrage is a riskless trade.  However, within the 

IRP framework, the right hand side of, say, (6) can also be decomposed to relax the pure EH of 

interest rates.  Accordingly, the log difference in forward exchange rates between t   and t is 

the sum of the difference in (instantaneous) anticipated short rates and the difference in the term 

premiums, , investors require in the two countries during that interval, following 

         $ $
0; , 0; , 0; , 0; ,

0,t

0,t

ln t t t t t t t tr r t
F

F
      



      
€ €  (8) 

 
An ATSM-based decomposition of forward rates across the two markets, which rules out 

arbitrage along the two curves, implies anticipated depreciation and a currency premium between 

the pair (equivalent to the spread in term premiums), with the further assumption of IRP. 

                                                 
1 Even if one argues (under the assumption of constant longer-run expectations) that the forward for time t contains 
no information about the change in the spot from 0 to t, the same cannot be said along the term structure of forward 
quotes beyond 0, between  t and t, say.  The argument in the context of the following equation must imply that 

0,tF  includes all relevant information, but indeed 0,tF  is of course a forward quote. 
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Is there is a way to glean these quantities exclusively from forward currency contracts, 

rather than estimate separate ATSMs across the term structure pairs?  Such a method would 

isolate spreads in both expected short rates and term premiums from currency forwards, 

abstracting from the level of both quantities and using no information from underlying yield 

curves.  The desired decomposition can be recast, in terms of currency forwards, as 

    $/ $/
0; , 0; ,

0,t

0,t

ln t t t tq t
F

F
  



  € €   (9) 

Besides more direct estimation for foreign exchange, the motivation for using currency forwards 

instead of yield curves includes the fact that measurement of the latter is non-trivial.  

Government bond term structures, for example, might not be fully applicable to foreign 

exchange market participants.  Currency unions such as EMU compound this issue because 

arguably no single sovereign issuer of risk-free securities is truly representative.  Also, germane 

to the environment at the time of writing, estimation with currencies may circumvent problems 

associated with the lower nominal bound for interest rates, given the implied depreciation rates 

have no such limits. 

 To grasp some intuition behind $/
0,t € , consider the expression for the ex post return on a 

€-funded carry trade from 0 to t, trx , as in 

 $
0, 0,

0

ln t
t t t

E
rx y y

E
  €  (10) 

Invoking UIRP with respect to the interest rate differential, taking expectations, and considering 

the decomposition in (9) follows 

  $/
0; ,

0 0

ln lnt t
t t t

E E
rx

E E
   

   
     

   
€  
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which of course shows, given the cancelation of the first and third terms, that the premium is the 

expected excess return on the position. In addition, the expected carry trade return can be 

expressed under similar assumptions as the term premium spread,  

   $ $
0, 0,

00 0

1 1
ln

t t
t

t s s t t

S
rx r ds r ds

t t S
     

     
         

    
  € €  

where the first, second, and fifth terms sum to zero. 

 

3.  A Partial Differential Equation for Forward Currency Contracts 

Now suppose that the instantaneous currency depreciation rate, q, is not deterministic as 

in the previous section but follows some stochastic process, say, for simplicity 

 dq dt dW    (11) 

where  is a drift term,  is the volatility parameter, and dW is a Brownian motion increment 

with   0 dW .  By analogy, the risk-free interest rate process in the domestic and foreign 

currency would follow, respectively. 

$ $ $ $ 

 

 

 

dr dt dW

dr dt dW€ € € €
 

The objective is to derive a formula for a forward contract, F, a financial claim on the 

future exchange rate.  To be sure, multiple factors influence F, as indeed simple IRP suggests 

forward contracts are a function of domestic and foreign interest rates as well as the spot 

exchange rate, all of which are random variables.  However, just to start, suppose that F is a 

function of time and the stochastic depreciation rate,  ,F q t .  Again, by analogy, remedial 

single-factor short-rate models express the price of a bond as a function of time and the 

stochastic interest rate,  $ $ ,P r t  (e.g., Brennan and Schwartz, 1977).  Given Ito’s lemma, (11), 
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and some rearranging, the instantaneous “return,” or more precisely the instantaneous change in 

the forward exchange value of the local currency scaled by its initial price, follows 

 
2

2
2

1 1

2

 
    

        

dF F F F F
dt dW

F F t q q F q
 (12) 

Similar arguments produce the following expression for the instantaneous return on a risk-free 

bond, as in 

 
 

$ $ $ 2 $ $
2$ $ $

2$ $ $ $ $$

1 1

2

 
        
    

dP P P P P
dt dW

P P t r P rr
 

Now assume that the expected value of 
dF

F
, which may conform to IRP, follows (7).  

That is, the drift term in (12) obeys the following partial differential equation (PDE), as in with 

simple rearranging 

  

2
2

2

$

1 1

2

dF F F F
dt

F F t q q

r r dt

qdt

  
               

 



€  (13) 

Multiplying through by F and 1
dt  and given that the interest rate parity assumption 

implies $r r q € , the expression becomes  

2
2

2

1

2

F F F
qF

t q q
   

  
  

 

To further specify the PDE, consider the market price per unit of risk with respect to 

instantaneous depreciation, , which follows 



 9

 
 $dF
r r

qF

dF
VAR

F


 


       
 
 
 

€

 (14) 

Given (12), the risk-neutral PDE for the current forward the must follows 

  
2

2
2

1
0

2

F F F
qF

t q q
    

    
  

 (15) 

There are further general similarities between the derivation of this PDE and the bond 

pricing equation that underpins ATSMs.  Very briefly, the general argument in Vasicek (1977), 

Brennan and Schwartz (1977), and Langetieg (1980) is that a portfolio of bonds that has a 

deterministic return—given a unique hedge ratio—must earn the risk-free rate in the absence of 

arbitrage.  For example, the expected return on a risk-free bond, 
$

$

 
 
 

dP

P
, (analogous to the 

scaled change in the forward exchange rate) under the EH must follow 

 
 

$ $ $ 2 $
2$ $ $

2$ $ $ $

1 1

2
  

                

dP P P P
dt r dt

P P t r r
 

And, the specification of the market price of risk, which maps risk-neutral pricing to the physical 

measure that in turn affords expressions for term premiums, produces the familiar equation (e.g., 

Vasicek, 1977) 

   
 

$ $ 2 $
2$ $ $ $ $ $

2$ $

1
0

2
     

    
  

P P P
r P

t r r
 

In this parallel application to foreign exchange, the underlying factor is not the short rate but the 

instantaneous depreciation rate.   
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4.  A Solution for Forward Currency Contracts 

Similar to single-factor, short-rate ATSMs, a proposed solution implies that the 

continuously-compounded return on the forward, Q, is a linear function of the instantaneous 

depreciation rate, q, as in   

 
 

   
0

0

exp ( , )

exp , ,



   

tF E Q t T t

E A t T B t T q
 (16) 

with the obvious affine analog for bond pricing, following 

   

$ $ $
0

$ $ $ $
0

exp ( , )

exp , ,

   
   

tP P y t T t

P A t T B t T r
 

Instead of the terminal condition, say, for a bond that pays par at maturity (i.e., Vasicek, 1977, 

Brennan and Schwartz, 1977), the initial conditions stem from the simple requirement that the 

current instantaneous forward rate equals the current spot rate.2  Furthermore, given that the 

equation must hold for all values of q, the conditions for the affine solution follow 

 
   

   
0 0 0 0, 0,

0 0, 0,

F E F e A T B T q

A T B T

    
 

 (17) 

Now take the relevant partial derivatives from (16) with respect to the instantaneous depreciation 

rate as well as time and substitute the derivatives into the PDE, (15), as in 

   2 21
0

2

A B
F q FB FB qF

t t
            

 (18) 

With some further rearranging, the PDE reduces to a system of two tractable ordinary differential 

equations (ODEs), following 

                                                 
2 Note that the proposed affine solution conforms strictly to IRP under the conditions that A = 0, B = t, and 

$ q r r€ .  Similarly, the assumed solution for bonds that is consistent with the pure EH implies that A$ = 0 and B$ 

= t.  However, the fact that common calibrations of the former from ATSMs do not produce these conditions (but 
instead produce non-zero term premiums in the data) does not violate the no arbitrage condition underlying the 
model.  Instead, those assumptions lead to the derivation of the partial differential equations. 
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 1 0
B

t


  


 (19) 

and 

   2 21
0

2

A
B B

t
  

   


 (20) 

The solution for (19) given the initial condition defined in (17) follows 

  ,B t T t  (21) 

And, given substitution of (21) into (20), simple integration with respect to t, and again the 

relevant initial condition in (17), the solution to the second ODE is 

     2 2 31 1
,

2 6
A t T t t       (22) 

With (21) and (22), the solution to the PDE for the forward contract is 

   2 2 3
0

1 1
exp

2 6tF F t t qt         
 (23) 

And, following (16), the corresponding expression for the depreciation rate over t follows 

   2 21 1

2 6tQ q t t       (24) 

which traces out a term structure of depreciation rates, with an initial value of q.   

 

5.  The Arbitrage-free-implied Currency Premium 

To extract any implied premium from the model, FX , and therefore expected returns, the 

relevant question is whether the instantaneous forward depreciation rate from the solution, ,f tq , 

at some future date t is an unbiased predictor of the expected future instantaneous depreciation 

rate,  tE q .  To start, the premium defined formally is 
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  ,FX f t tq E q    (25) 

and forward depreciation rate for the discrete interval from t to t +  follows 

   1
, ln t

t

F
q t t

F
  


 (26) 

The instantaneous forward depreciation rate at t then follows 

 
0

ln ln ln
lim t t

f

F F F
q

t




 
 

 
 (27) 

Therefore, using the solution of the model, (23), 

   2 2
,

1

2f tq q t t       (28) 

Now, to determine  tE q , given the stochastic process of the depreciation rate from (11), the 

expected value of the forward instantaneous depreciation follows 

  
0 0 0

t t t

tE dq E d dW E q q t   
   

       
   
    (29) 

Given that the premium is the difference between the model-implied forward depreciation, (28), 

and the expected value, (29), (25) becomes 

 2 21
2

2FX t t t        (30) 

which is indeed non-zero unless the following condition holds  

 21 1

2 4
t      (31) 

In addition, again the model assumes that the instantaneous deterministic drift must follow IRP, 

but unless (31) holds, then the model also is flexible enough to allow for non-zero forward 

premium.  Therefore, consistent with the preponderance of econometric evidence (Engle, 1996), 
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the broad implication is that forward quotes are not unbiased expectations of depreciation, 

perhaps just as forward interest rates are not unbiased expectations of short rates.   

 

6.  A Multi-Factor Gaussian AFCM: Derivation and Estimation 

Indeed, calibration should disentangle the premium from market expectations for returns, 

but however illustrative, the model outlined previously is too restrictive for application.  

Consider instead a latent factor approach with time-varying forward premiums as well as an 

mean-reverting alternative to the stochastic process in (11), following 

  
1 11

t t tn n n nn nn

dX X dt dW 
  

     (32) 

where tX  is an 1n  vector of underlying factors,  is 1n ,  is an n n  lower-triangular 

matrix,   is a diagonal n n matrix,3 and dW is an 1n  vector of Gaussian disturbances.  The 

instantaneous depreciate rate, q, is a linear function of the factors, as in 

 0 1
T

t tq X    (33) 

where 0 is a scalar, and 1 is 1n .  Also, the vector of market prices of risk is a linear function 

of the factors, following 

 0 1
T

t tX     (34) 

where o  is 1n , and 1  is n n .  Similar to the single-factor case, arbitrage implies a matrix 

PDE for the futures contract that follows 

      0 1 0 1

1
0

2

TT
T T

t t t

F F F
X X X F

t X X
                      

 (35) 

The affine form of the proposed solution to the PDE follows 

                                                 
3 Different normalizations are of course possible, such as a diagonal  and a lower-triangular .  See Dai and 
Singleton (2000).  Not also that in the estimation the n elements of 1 ( ) are equal to 1 (0). 
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        0 0, exp , exp , ,
T

tF X t E Q t T t E A t T B t T X         (36) 

And, following the steps and notation outlined in the Appendix A, the relevant solutions follow  

      1* *
1, expT TB t T I t  


      (37) 

and  

       * * * 1 * 1 * 1
0 1, 1 1 1, 1, 2, 1,

1
2

T T T T T T T T
t t t tA t T t M It M M Mt                   (38) 

Note that returning to (36), the expression for the depreciation rate over t follows 

      1
, , ,

T

tQ t T A t T B t T X
t
     (39) 

Turning to estimation in brief, a common recursive Kalman-filter-based maximum likelihood 

method produces the parameters (e.g., Kim and Wright, 2005).  Very briefly, in state-space form, 

the measurement equation follows 

 
11 1 1

T
t t tq q nq n q

Y X 
   

    (40) 

where Y is a 1q vector of observed data, namely log differences between forward quotes and 

spot foreign exchange rates (at q selected forward horizons);   is a 1q  vector;   is a 

n q matrix; again the vector tX  represents the unobservable state variables; and   is a vector 

of Gaussian measurement errors.  Given the assumed stochastic Ornstein-Uhlenbeck process in 

(32), the transition equation (from one discrete observation to the next) is 

  1t t tX e X I e    
     (41) 

where   is a zero-mean Gaussian error vector.   

 

7.  Empirical Results: Selected Time-Series and Cross-Sections 
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The sample includes 11 $U.S. currency pairs, and as Exhibit 1 indicates, coverage ranges 

from the mid- to late-1990s through early 2015.  True, the sample period is somewhat short, yet 

the length is comparable to, if not longer than, common applications to ATSMs (e.g., Dai and 

Singleton, 2000; Kim and Wright 2005; Kim and Orphanides, 2005), and the tradeoff between 

parameter stability and robustness of course arises with longer time series.  Also, the frequency 

of Y for the Kalman filter is weekly (Wednesday), with 1-, 3-, 6-, 9-, 12-, 24-, and in cases where 

available 36-month forward horizons (i.e., the length of q).  Even the longest horizon is perhaps 

short compared to ATSM calibrations, which commonly use maturities to 10 years, but besides 

data unavailability, the limited span is perhaps not disadvantageous given the presumed 

stochastic process.  That is, as long as tX  is stationary following (32), anticipated depreciation 

must converge to 0  as the horizon lengthens, and calibrated distant-horizon forward quotes owe 

largely to the premium by construction.  However, the precise juncture when expected 

depreciation asymptotes to 0 is likely beyond the 3-year horizon, and besides, the implied 

depreciation paths should speak to this issue.   

Turning to the results, again the closed-form solution to the model(s) imply non-zero 

premiums under all but the most restrictive parameters, and the estimate of the discount anomaly 

at a given horizon is simply the difference between the AFCM implied forward (i.e., log-

difference in the forward and spot exchange rates) less the corresponding AFCM-implied 

depreciation rate.  In Exhibit 2, the dashed black lines, the solid black lines, the blue lines, and 

the red lines for each pair represent the observe forward quotes (in terms of log differences with 

the spot rate), the AFCM-implied forward, the AFCM-implied expected depreciation rate, and 

the AFCM-implied discount premium, respectively.  Also, for reference and without regard to 

any test of IRP, the green lines show the corresponding spread between U.S. Treasury (UST) and 
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the foreign government bond yield, German Bunds in the case of the euro.  The results 

alternatively refer to 3- and 4-factor models (i.e., alternative assumptions about n), depending on 

data fit. 

Three simple empirical questions for application are, first, whether the model fits the 

data, second, whether it indeed produces a non-zero discount premium, and third, whether the 

estimated premium varies over time.  To address the first question, judging from the largely 

minuscule visual distinction between the dashed and solid black lines as well as the simple ratio 

of the residual to explained sum of squares (reported in Column 6 in Exhibit 1), the models seem 

to fit very closely.  Even those pairs for which 4-factor models fit the data better, corresponding 

3-factor models also produce modest errors.  Regarding the second question, the red lines in 

Exhibit 2 indeed diverge from zero to varying degrees across pairs.  Therefore, the AFCMs 

produce a (risk-neutral) estimate of the discount anomaly.   

With respect to the third question, the AFCM-implied discount premiums indeed change 

over time.  The degree of variability—at least for the 2- and 3-year forward horizons differs 

somewhat across pairs, and there is some cross-sectional variation along the forward term 

structure.  For example, the red lines in Exhibit 3—which show the schedule of depreciation by 

horizon for the most recent sample date—indicate meaningful and in some cases non-linear 

slopes.  In other words, the AFCMs produce cross-sectional as well as time-series variation in 

the discount premiums, which might help inform more precise assessments of forward-implied 

deprecation rates over a given investment horizon.  

 

8.  Empirical Results: Previous Literature on the Premium Anomaly 
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These results may also be noteworthy for the broader (academic) literature on the forward 

premium anomaly.  Using regressions that include contemporaneous and realized quotes of spot 

and forward rates, Fama (1984) as well as Hodrick and Srivastava (1986) (FHS) and others find 

that the premium is more volatile than expected depreciation and that the two quantities are 

negatively correlated.  On the other hand, although the derived premium is non-zero and 

variable, survey-based measures in general suggest that it is less volatile than expected 

depreciation, and that the correlation is generally non-negative (e.g., Froot and Frankel, 1989; 

Chinn and Frankel, 1994; Chinn and Frankel, 2002). 

In short, Exhibit 4 suggests that the AFCM-implied premium and expected depreciation 

rate series are, on balance, more consistent with the survey-based results, albeit of course based 

in distinct underlying methods and samples.  The top panel shows the simple correlation 

coefficients between the two series for the full daily samples at the 1-, 3-, 6-, 12-, and 24-month 

horizons.  Although for seven of 11 cases the correlation is less than zero at the longest horizon, 

the figures are only consistently negative across these horizons for the NOK and SEK.  Also, the 

lower panel shows the ratio of the variance of the premium and expected depreciation rates, 

which is less than one for every pair and horizon, in most cases markedly so.  Therefore, the 

results are broadly inconsistent with FHS, as well as Bilson (1981), who argues that expected 

depreciation is always zero and that changes in forward rates owe exclusively to the premium.  

This is a very strong inference in the context of IRP.  Indeed, if expected depreciation is always 

zero, then the anticipated spread in expected short rates, perhaps independently derived from 

ATSMs, must also always be zero.  Forward rates would exclusively embed, in absolute contrast 

to the EH, term premiums and no information whatsoever about investors’ expectations for the 
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path of monetary policy.  Instead, the AFCM results broadly reflect common applications of 

ATSMs, insofar as indeed forwards embed some useful information about expectations. 

 

9.  Caveats, Uses, and Extensions of AFCMs 

No more than ATSMs validate the pure expectations theory of interest rates, the 

preceding closed-form and empirical analyses do not endeavor to reconcile fully the discount 

premium anomaly with any version of the efficient markets or rational expectations hypotheses.4  

Rather, the more limited aim is to derive models that isolate the (risk-neutral) premium and 

therefore anticipated depreciation rates.  Returning to Exhibit 3, the estimated expected 

depreciation term structures—the gaps between the black and blue lines—suggest that forward 

quotes are indeed not unbiased estimates of expected returns.  True, at least for the most recent 

sample date, there are many pairs for which AFCM-implied expected depreciation closely tracks 

log differences between either quoted or fitted forward and spot rates.  But, expected deprecation 

meaningfully diverges from raw forward quotes in some notably cases—for example, around 70 

basis points over a 2-year horizon for the EUR. 

Turning to extensions, AFCMs might indeed inform market-based returns in an amended 

Black-Litterman (1992) framework that relaxes the “reverse-optimization” assumption, which in 

effect assumes index efficiency (e.g., Sharpe, 1976).  But even so, obviously active management 

requires views that diverge from consensus, and of course the preceding only addresses 

investors’ expectations.  Differences between fitted and actual forward rates implied by AFCMs 

could be interpreted as valuation gaps, but the key objective of these analyses is to disentangle 

premiums from expected depreciation.  Also, there are alternatives to a pure Gaussian process for 

                                                 
4 For example, under the condition of pro-cyclical risk-free rates, Verdelhan (2010) outlines a two-country model 
with external habit preferences that replicates the forward premium puzzle. 
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the underlying factors, including, say, jump-diffusion, which might better capture exchange rate 

movements.  Nevertheless, the Ornstein-Uhlenbeck process in (32), which in the context of 

models such as Vasicek (1977) problematically allows negative nominal interest rates, is 

arguably better suited for currencies, which can of course depreciation or appreciate. 
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Exhibit 1: Expected $U.S. Depreciation Rates  
 
 
Expected $U.S. Depreciation           
4/7/2015           

  -1-  -2-  -3-  -4-  -5-  -6-  -7-  -8-  -9-
          

 Horizon:  1-Month  3-Month  6-Month  12-Month  24-Month
 1-

ESS/RSS  Factors
 Sample 

Start
 Sample 

End
Japanese Yen  JPY 0.46% 0.52% 0.61% 0.77% 1.04% 0.99683 3  11/04/96  04/07/15
European Union Euro  EUR 0.49% 0.50% 0.43% 0.32% 0.28% 0.99779 4  10/07/99  04/07/15
U.K. Pound Sterling  GBP -0.28% -0.38% -0.45% -0.55% -0.69% 0.99591 4  11/28/96  04/07/15
Canadian Dollar  CAD -0.52% -0.52% -0.45% -0.34% -0.29% 0.98889 3  04/30/98  04/07/15
Australian Dollar  AUD -2.00% -1.76% -1.53% -1.19% -0.70% 0.98988 3  01/06/98  04/07/15
Swiss Franc  CHF 1.51% 1.63% 1.73% 1.81% 1.86% 0.99436 3  10/07/99  04/07/15
Swedish Krona  SEK 0.49% 0.52% 0.52% 0.48% 0.43% 0.99771 4  02/28/96  04/07/15
Norwegian Krone  NOK -1.10% -0.74% -0.27% 0.64% 2.50% 0.99851 4  12/08/97  04/07/15
New Zealand Dollar  NZD -3.52% -3.54% -3.49% -3.36% -3.14% 0.99378 3  11/15/96  04/07/15
Danish Krone  DKK 1.60% 1.52% 1.33% 1.07% 0.85% 0.99685 4  07/15/99  04/07/15
Singapore Dollar  SGD -0.91% -1.05% -1.05% -0.94% -0.73% 0.9979 4  08/11/99  04/07/15  



 21

Exhibit 2: Time Series Results  
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Sources: Author's calculations, Bloomberg. *Expressed as the $US price of a single foreign currency unit.
**US Treasury (UST) zero-coupon par spread over foreign government bond yield

Sample Correlation between (3-yr) AFCM Fwd. and AFCM Exp. Dep (AFCM Premium) =0.91742 (0.19431).
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Sources: Author's calculations, Bloomberg. *Expressed as the $US price of a single foreign currency unit.
**US Treasury (UST) zero-coupon par spread over foreign government bond yield

Sample Correlation between (3-yr) AFCM Fwd. and AFCM Exp. Dep (AFCM Premium) =0.86532 (0.2198).
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Sources: Author's calculations, Bloomberg. *Expressed as the $US price of a single foreign currency unit.
**US Treasury (UST) zero-coupon par spread over foreign government bond yield

Sample Correlation between (2-yr) AFCM Fwd. and AFCM Exp. Dep (AFCM Premium) =0.95418 (0.9236).
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Sources: Author's calculations, Bloomberg. *Expressed as the $US price of a single foreign currency unit.
**US Treasury (UST) zero-coupon par spread over foreign government bond yield

Sample Correlation between (2-yr) AFCM Fwd. and AFCM Exp. Dep (AFCM Premium) =0.99883 (0.98744).
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Sources: Author's calculations, Bloomberg. *Expressed as the $US price of a single foreign currency unit.
**US Treasury (UST) zero-coupon par spread over foreign government bond yield

Sample Correlation between (3-yr) AFCM Fwd. and AFCM Exp. Dep (AFCM Premium) =0.99935 (-0.95145).
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Sources: Author's calculations, Bloomberg. *Expressed as the $US price of a single foreign currency unit.
**US Treasury (UST) zero-coupon par spread over foreign government bond yield

Sample Correlation between (3-yr) AFCM Fwd. and AFCM Exp. Dep (AFCM Premium) =0.94541 (-0.22096).
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Sources: Author's calculations, Bloomberg. *Expressed as the $US price of a single foreign currency unit.
**US Treasury (UST) zero-coupon par spread over foreign government bond yield

Sample Correlation between (2-yr) AFCM Fwd. and AFCM Exp. Dep (AFCM Premium) =0.95693 (-0.12076).
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Sources: Author's calculations, Bloomberg. *Expressed as the $US price of a single foreign currency unit.
**US Treasury (UST) zero-coupon par spread over foreign government bond yield

Sample Correlation between (2-yr) AFCM Fwd. and AFCM Exp. Dep (AFCM Premium) =0.98015 (-0.8325).
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24-Jun-2001 31-Jan-2006 03-Sep-2010 07-Apr-2015
-6

-5

-4

-3

-2

-1

0

1

Sources: Author's calculations, Bloomberg. *Expressed as the $US price of a single foreign currency unit.
**US Treasury (UST) zero-coupon par spread over foreign government bond yield

Sample Correlation between (2-yr) AFCM Fwd. and AFCM Exp. Dep (AFCM Premium) =0.93983 (0.22713).
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Sources: Author's calculations, Bloomberg. *Expressed as the $US price of a single foreign currency unit.
**US Treasury (UST) zero-coupon par spread over foreign government bond yield

Sample Correlation between (2-yr) AFCM Fwd. and AFCM Exp. Dep (AFCM Premium) =0.97378 (0.92583).
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Sources: Author's calculations, Bloomberg. *Expressed as the $US price of a single foreign currency unit.
**US Treasury (UST) zero-coupon par spread over foreign government bond yield

Sample Correlation between (2-yr) AFCM Fwd. and AFCM Exp. Dep (AFCM Premium) =0.99077 (0.17576).
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Exhibit 3: Term Structures of Expected Depreciation  
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Sources: Author's calculations, Bloomberg.  *Expressed as the $US price of a single foreign currency unit.

**US Treasury (UST) zero-coupon par spread over foreign government bond yield
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**US Treasury (UST) zero-coupon par spread over foreign government bond yield
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Sources: Author's calculations, Bloomberg.  *Expressed as the $US price of a single foreign currency unit.
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Sources: Author's calculations, Bloomberg.  *Expressed as the $US price of a single foreign currency unit.

**US Treasury (UST) zero-coupon par spread over foreign government bond yield
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$US/AUD:3-factor Affine Forward Currency Model (AFCM) Term Structure
Realized Depreciation (04/21/2014-04/07/2015) = (-20.054%)
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Exhibit 4: 
 
 

Fama (1984) Conditions         
Correlation Coefficients:         
AFCM Expected Depreciation & Premium   -1-  -2-  -3-  -4-  -5-  -6-  -7-

        
 Horizon:  1-Month  3-Month  6-Month  12-Month  24-Month  Sample Start  Sample End

Japanese Yen  JPY 0.11298 0.089003 0.073681 0.017982 -0.11146  11/04/96  04/07/15
European Union Euro  EUR 0.10469 0.16471 0.14635 -0.10129 -0.25589  10/07/99  04/07/15
U.K. Pound Sterling  GBP 0.31619 0.65911 0.80366 0.80002 0.76656  11/28/96  04/07/15
Canadian Dollar  CAD 0.49749 0.58101 0.81928 0.97684 0.97865  04/30/98  04/07/15
Australian Dollar  AUD 0.69401 0.72148 0.75517 0.6642 -0.54425  01/06/98  04/07/15
Swiss Franc  CHF 0.18719 0.053616 -0.18475 -0.52695 -0.48411  10/07/99  04/07/15
Swedish Krona  SEK -0.40889 -0.49251 -0.39112 -0.34647 -0.40374  02/28/96  04/07/15
Norwegian Krone  NOK -0.15988 -0.1164 -0.25052 -0.58887 -0.89968  12/08/97  04/07/15
New Zealand Dollar  NZD 0.0078596 -0.20822 -0.29344 -0.081222 -0.11924  11/15/96  04/07/15
Danish Krone  DKK 0.32183 0.44221 0.65271 0.84477 0.81558  07/15/99  04/07/15
Singapore Dollar  SGD 0.13905 -0.12847 -0.29487 -0.32549 0.040668  08/11/99  04/07/15

        
Variance Ratios:         
AFCM Expected Depreciation & Premium         

        
Japanese Yen  JPY 0.00030535 0.0015288 0.0034415 0.013315 0.07543  11/04/96  04/07/15
European Union Euro  EUR 0.0012922 0.0012662 0.0019321 0.023545 0.12414  10/07/99  04/07/15
U.K. Pound Sterling  GBP 0.0081798 0.012592 0.034413 0.1497 0.60928  11/28/96  04/07/15
Canadian Dollar  CAD 0.035985 0.051763 0.045194 0.056843 0.093581  04/30/98  04/07/15
Australian Dollar  AUD 0.019986 0.037612 0.03332 0.019015 0.0011993  01/06/98  04/07/15
Swiss Franc  CHF 0.00071097 0.0023065 0.0019476 0.004107 0.043492  10/07/99  04/07/15
Swedish Krona  SEK 0.00027129 0.0008516 0.0031008 0.015903 0.085525  02/28/96  04/07/15
Norwegian Krone  NOK 0.00091571 0.012162 0.064539 0.2684 0.70219  12/08/97  04/07/15
New Zealand Dollar  NZD 0.011108 0.006187 0.0030936 0.028358 0.12307  11/15/96  04/07/15
Danish Krone  DKK 0.0056491 0.024353 0.050885 0.11787 0.36232  07/15/99  04/07/15
Singapore Dollar  SGD 0.0011069 0.0053779 0.011237 0.01441 0.018966  08/11/99  04/07/15
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Appendix A: Solution to a multi-factor Gaussian AFCM  

To solve the PDE, (35), for the multi-factor model, note that the relevant partial 

derivatives of the proposed affine solution, (36), follow  

 

   

2

, ,

T
T

T

F
FB

X

F
FBB

X X

A t T B t TF
F X

t t t








 

  
  

    

 (A.42) 

With substitution and the fact that F is a scalar, the PDE reduces to the following two ODEs, 
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(A.43) 

Analogous to the single-factor model, the right-hand-side, with *
1    , must follow (after 

taking the transpose) 
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 (A.44) 

To solve (A.44), use the integrating factor, take the definite integral, and use the initial condition 

following 
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Given (A.45); with  * 1 *
0t      , which implies * *

0     ; and the fact that since 
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               * * *1 1 1* * * * *

0 1 1 1

, 1

2

T T T
TT T t T t T T tA t T

I e I e I e
t

          
                          

(A.46) 

Taking one of the transposes in the third term on the right-hand-side and subsequent matrix 

multiplication follows 
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 (A.47) 

Definite integrals produce the solution to (A.47).  Given the initial condition, the left-hand-side 

becomes 
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For the second term on the right-hand-side of (A.47), let    *1*
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integration follows 
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For the third term on the right-hand-side, we need to calculate three (matrix) integrals, including 
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Similarly, the second follows 
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For the third integral, first use the product rule and take the integrals, as in  
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with * *T
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t s s ds           .  Vectorize both sides of the equation5 and solve 
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   

     

    

              

             

 

 

    1*

* *T
2,

0

exp exp
t

T
t

I

s t ds M



 

   

        
 (A.53) 

Therefore, the solution to the second ODE follows (38). 

                                                 
5 Note that      Tvec ABC C A vec B  . 


