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Abstract 

 
We study general equilibrium asset prices in a multi-period endowment economy when agents' 

risk aversion is allowed to depend on the horizon of the risk. In our pseudo-recursive preference 

framework, agents are time inconsistent for intratemporal tradeoffs but time consistent for 

intertemporal tradeoffs. Under standard log-normal consumption growth, we find that horizon-

dependent risk aversion affects the pricing of risk if and only if volatility is stochastic. When risk 

aversion decreases with the horizon—as indicated by lab experiments—and the elasticity of 

intertemporal substitution is greater than 1, our model results in a downward-sloping term 

structure of risk prices. The model can therefore explain the recent empirical results on the term 

structure of risky asset returns. 
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1 Introduction

Most of the literature on general equilibrium asset pricing theory is premised on the

assumption that risk aversion is constant across maturities. We investigate whether the

standard tool box of asset pricing can be generalized to accommodate risk preferences

that differ across temporal horizons, and whether such a generalization has the potential

to address observed patterns in asset prices.

Inspired by ample experimental evidence that subjects are more risk averse to imme-

diate than to delayed risks,1 Eisenbach and Schmalz (2014) introduce a two-period model

with horizon-dependent risk aversion and show it is conceptually orthogonal to other

non-standard preferences such as non-exponential time discounting (Phelps and Pollak,

1968; Laibson, 1997), time-varying risk aversion (Constantinides, 1990; Campbell and

Cochrane, 1999), and a preference for the timing of resolution of uncertainty (Kreps and

Porteus, 1978; Epstein and Zin, 1989). In the present paper, we investigate the impact

of horizon-dependent risk aversion preferences on asset prices in a dynamic framework.

The conceptual difficulties of solving a multi-period model with dynamically inconsistent

preferences are numerous. To start, the commonly used recursive techniques in finance

and macroeconomics only apply to dynamically consistent preferences. At the same time,

the only dynamically consistent time-separable expected utility preference is the special

case of risk aversion constant across horizons.2 In an effort to overcome these difficulties,

we use techniques in the spirit of Strotz (1955) to solve the problem of a rational agent

with horizon-dependent risk aversion preferences in a setting without time separability.

Such an agent is dynamically consistent for deterministic payoffs, so that only uncertain

payoffs induce time inconsistency. Unable to commit to future behavior but being aware

of her preferences and perfectly rational, the agent optimizes today, taking into account

reoptimization in future periods. Solving our model this way yields a stochastic discount

factor that nests the standard Epstein and Zin (1989) case, with an new multiplicative

term representing the discrepancy between the continuation value used for optimization

at any period t versus the actual valuation at t+ 1.

We investigate the implications of horizon-dependent risk aversion on both the level

1See, e.g., Jones and Johnson (1973); Onculer (2000); Sagristano et al. (2002); Noussair and Wu
(2006); Coble and Lusk (2010); Baucells and Heukamp (2010); Abdellaoui et al. (2011). See Eisenbach
and Schmalz (2014) for a more thorough review.

2As a result, combining time-separability with horizon-dependent risk aversion in a dynamic model
necessarily introduces inconsistent time preferences, which precludes isolating the effect on asset prices
of horizon-dependent risk preferences.
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and on the term structure of risk premia. We find the model can match risk prices in

levels, very much in line with the long-run risk literature based on standard Epstein and

Zin (1989) preferences (Bansal and Yaron, 2004; Bansal et al., 2014). Further, we find

that the term structure of equity risk premia is non-trivial if and only if the economy

features stochastic volatility. In such a setting, the horizon dependent risk aversion model

can explain a downward-sloping term structure of equity risk premia, as documented

empirically (see the literature review below). Interestingly, this effect is solely driven

by a downward-sloping term structure of the price of volatility risk, which is a testable

prediction.

Recent papers provide empirical support for our model’s predictions, specifically for

the term structure of volatility risk pricing. Dew-Becker et al. (2014) use data on variance

swaps to show that investors only price volatility risk at the 1-month horizon and are

essentially indifferent to news about future volatility at horizons ranging from 1 month

to 14 years. Using different methodologies and standard index option data, Andries et al.

(2015) find a negative price of volatility risk for maturities up to 4 months, but also a

strongly nonlinear down-ward sloping term structure (in absolute value).

The paper proceeds as follows. Section 2 reviews the related literature. Section 3

presents a two-period model that illustrates the intuition of some of our result. Section

4 presents the dynamic model. Section 5 derives our formal results for the pricing of risk

and its term-structure. Section 6 concludes.

2 Related Literature

This paper is the first to solve for equilibrium asset prices in an economy populated

by agents with dynamically inconsistent risk preferences. It complements Luttmer and

Mariotti (2003), who show that dynamically inconsistent time preferences of the kind

also examined by Harris and Laibson (2001) have little power to explain cross-sectional

variation in asset returns. Given that cross-sectional asset pricing involves intra-period

risk-return tradeoffs, it is indeed quite intuitive that horizon-dependent time preferences

are not suitable to address puzzles related to cross-sectional variation in returns.

Our formal results on the term structure of risk pricing are consistent with patterns

uncovered by a recent empirical literature. Van Binsbergen et al. (2012) show the Sharpe

ratios for short-term dividend strips are higher than for long-term dividend strips (see
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also van den Steen, 2004; van Binsbergen and Koijen, 2011; Boguth et al., 2012).3 These

empirical findings have led to a vigorous debate, because they appear to be inconsistent

with traditional asset pricing models.

Our micro-founded model of preferences implies a downward sloping pricing of risk,

in a simple endowment economy. By contrast, other approaches typically generate the

desired implications by making structural assumptions about the economy or about the

priced shocks driving the stochastic discount factor directly. For example, in a model

with financial intermediaries, Muir (2013) uses time-variation in institutional frictions

to explain why the term structure of risky asset returns changes over time. Ai et al.

(2013) derive similar results in a production-based RBC model in which capital vintages

face heterogeneous shocks to aggregate productivity; Zhang (2005) explains the value

premium with costly reversibility and a countercyclical price of risk. Other production-

based models with implications for the term structure of equity risk are, e.g. Kogan and

Papanikolaou (2010, 2014), Gârleanu et al. (2012) and Favilukis and Lin (2013). Similarly,

Belo et al. (2013) offer an explanation why risk levels and thus risk premia could be higher

at short horizons; by contrast, our contribution is about risk prices. Croce et al. (2007)

use informational frictions to generate a downward-sloping equity term structure.

The predictions of our model do not rely on the possibility of rare disasters, which is an

assumption that some have argued may be more difficult to verify empirically. Further, our

results are distinguishable from several alternative explanations for a downward-sloping

term structure of equity risk premia: in our model, volatility risk is the only driver for

a downward-sloping term structure of equity risk. Our predictions for the risk-pricing

levels are also consistent with Campbell et al. (2012), who show that volatility risk is

an important driver of asset returns in a CAPM framework and work who examining

the relation between volatility risk and returns (Ang et al., 2006; Adrian and Rosenberg,

2008; Bollerslev and Todorov, 2011; Menkhoff et al., 2012; Boguth and Kuehn, 2013).

3 Static Model

Introducing horizon-dependent risk aversion into a time separable expected utility model

with more than two periods necessarily introduces horizon-dependent inter-temporal trade-

offs similar to quasi-hyperbolic discounting (for a detailed discussion, see Eisenbach and

3Giglio et al. (2013) show a similar pattern exists for discount rates over much longer horizons using
real estate markets. Lustig et al. (2013) document a downward-sloping term structure of currency carry
trade risk premia.
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Schmalz, 2014). This is undesirable since we want to study the effects of horizon-dependent

risk aversion in isolation. Our general model in Section 4 solves this problem by drop-

ping time separability, though this comes at the cost of more analytical complexity and

less intuitive clarity. Here we present a simple two-period model with time separability

and uncertainty both in the immediate and proximate future to illustrate the effect of

horizon-dependent risk aversion on risk pricing.

Consider a two-period model with uncertainty in both periods. The agent has time

separable expected utility Ut in periods t = 0, 1 given by

U0 = E
[
v(c0) + δu(c1)

]
and U1 = E

[
v(c1)

]
,

where v and u are von Neumann-Morgenstern utility indexes and v is more risk averse

than u. At the beginning of period 0 the agent forms a portfolio of two risky assets and a

risk free bond. Asset 0 is a claim on consumption in period 0 while asset 1 is a claim on

consumption in period 1. Consumption in the two periods is i.i.d. Denoting the prices of

the two assets by p0 and p1, respectively, the first-order conditions for the agent’s portfolio

choice yield:

E
[
v′(c0)

(
c0 − p0

)]
= 0

and E
[
δu′(c1)

(
c1 − (1 + r) p1

)]
= 0.

Eisenbach and Schmalz (2014) show that the equilibrium prices p0, p1 and r satisfy:

p0 < (1 + r) p1.

In this two-period setting, horizon-dependent risk aversion therefore leads to an equilib-

rium term-structure of risk premia that is downward sloping.

This simple example illustrates how horizon-dependent risk aversion can affect the

pricing of risk at different horizons as intuition would suggest. There are, however, im-

portant limitations to this example. The setting is subtly different from standard asset

pricing models, even with only two periods t = 0, 1: there is uncertainty in both periods

and a period’s decision is made before the period’s uncertainty resolves. This allows for

horizon-dependent risk aversion to have a term-structure effect without worrying about

inconsistent inter-temporal tradeoffs, since only one such tradeoff arises. However, the

period-0 portfolio choice problem above implicitly assumes that the agent has no oppor-
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tunity to re-trade the claim to period-1 consumption at the beginning of period 1.

To generalize this setting, the next section presents our fully dynamic model, which

allows for retrading every period.

4 Dynamic Model

Our approach is to generalize the model of Epstein and Zin (1989) (hereafter EZ) to allow

for horizon-dependent risk aversion without affecting intertemporal substitution.

4.1 Preferences

Let {γh}h≥0 be a decreasing sequence representing risk aversion at horizon h. In period t,

the agent evaluates a consumption stream starting in period t+ h by:

Vt,t+h =

(
(1− β)C1−ρ

t+h + βEt+h
[
V 1−γh
t,t+h+1

] 1−ρ
1−γh

) 1
1−ρ

for all h ≥ 0. (1)

The agent’s utility in period t is given by setting h = 0 in (1) which we denote by Vt ≡ Vt,t

for all t:

Vt =

(
(1− β)C1−ρ

t + βEt
[
V 1−γ0
t,t+1

] 1−ρ
1−γ0

) 1
1−ρ

.

As in the EZ model, utility Vt depends on (deterministic) current consumption Ct and

a certainty equivalent Et
[
V 1−γ0
t,t+1

] 1
1−γ0 of (uncertain) continuation values Vt,t+1, where the

aggregation of the two periods occurs with constant elasticity of intertemporal substitution

given by 1/ρ. However, in contrast to the EZ model, the continuation value Vt,t+1 is not

the same as the agent’s utility Vt+1 in period t+ 1:

Vt,t+1 =

(
(1− β)C1−ρ

t+1 + βEt+1

[
V 1−γ1
t,t+2

] 1−ρ
1−γ1

) 1
1−ρ

6=
(

(1− β)C1−ρ
t+1 + βEt+1

[
V 1−γ0
t+1,t+2

] 1−ρ
1−γ0

) 1
1−ρ

= Vt+1

The key feature of the definition (1) is that certainty equivalents at different horizons h

are formed with different levels of risk aversion γh. Imminent uncertainty is treated with

risk aversion γ0, uncertainty one period ahead is treated with γ1 and so on.

In contrast to EZ, the preference of our model captured by Vt ≡ Vt,t is not recursive
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since Vt+1 ≡ Vt+1,t+1 does not recur in the definition of Vt.
4 This non-recursiveness is a

direct implication of the horizon-dependent risk aversion, in which uncertain consumption

streams starting in t + 1 are evaluated differently by the agent’s selves at t and t + 1.

Crucially, this disagreement arises only for uncertain consumption streams as for any de-

terministic consumption stream the horizon-dependence in (1) becomes irrelevant and we

have Vt,t+1 = Vt+1. Our model therefore implies dynamically inconsistent risk preferences

while maintaining dynamically consistent time preferences.

An interesting question is the possibility to axiomatize the horizon-dependent risk

aversion preferences we propose. The static model in Section 3 could be axiomatized as a

special version of the temptation preferences of Gul and Pesendorfer (2001). Their prefer-

ences deal with general disagreements in preferences at a period 0 and a period 1. In our

case, the disagreement is about the risk aversion so an axiomatization would require adding

a corresponding axiom to the set of axioms in Gul and Pesendorfer (2001). Our dynamic

model builds on the functional form of Epstein and Zin (1989) which capture non-time-

separable preferences of the form axiomatized by Kreps and Porteus (1978). However, our

generalization of Epstein and Zin (1989) explicitly violates Axiom 3.1 (temporal consis-

tency) of Kreps and Porteus (1978) which is necessary for the recursive structure.

To solve our model, we follow the tradition of Strotz (1955), assuming that the agent

is fully rational when making choices in period t to maximize Vt. This means self t realizes

that its evaluation of future consumption given by Vt,t+1 differs from the objective function

Vt+1 which self t+1 will maximize. The solution then corresponds to the subgame-perfect

equilibrium in the sequential game played among the agent’s different selves (Luttmer

and Mariotti, 2003).5

4.2 Stochastic Discount Factor

For asset pricing purposes, the object of interest is the stochastic discount factor (SDF)

resulting from the preferences in equation (1). We can arrive at the SDF intuitively using

a derivation based on the intertemporal marginal rate of substitution:6

Πt+1

Πt

=
dVt/dWt+1

dVt/dCt
.

4Only the definition of Vt,t+h for different h in (1) is recursive since the object for h+ 1 recurs in the
definition of the object for h.

5See Appendix A for more details.
6See Appendix A for a more rigorous derivation.
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The derivative of current utility Vt with respect to current consumption Ct is standard

and given by:
dVt
dCt

= V ρ
t (1− β)C−ρt . (2)

The derivative of current utility Vt with respect to next-period wealth Wt+1 is almost

standard:

dVt
dWt+1

=
dVt

dVt,t+1

× dVt,t+1

dWt+1

= V ρ
t βEt

[
V 1−γ0
t,t+1

] γ0−ρ
1−γ0 V −γ0t,t+1 ×

dVt,t+1

dWt+1

. (3)

At this point, however, we cannot appeal to the envelope condition at t+ 1 to replace the

term dVt,t+1/dWt+1 by dVt,t+1/dCt+1. This is because Vt,t+1 is the value self t attaches to

all future consumption while the envelope condition at t + 1 is in terms of the objective

function of self t+ 1 which is given by Vt+1:

dVt+1

dWt+1

=
dVt+1

dCt+1

= V ρ
t+1 (1− β)C−ρt+1. (4)

The disagreement between selves t and t+ 1 requires us to take an extra step. Due to the

homotheticity of our preferences, we can rely on the fact that both Vt,t+1 and Vt+1 are

homogeneous of degree one which implies that

dVt,t+1/dWt+1

dVt+1/dWt+1

=
Vt,t+1

Vt+1

. (5)

This relationship captures a key element of our model: The marginal benefit of an extra

unit of wealth in period t + 1 differs whether evaluated by self t (the numerator on the

left hand side) or by self t+ 1 (the denominator on the right hand side).

To arrive at the stochastic discount factor, we first combine the relationship (5) with

the envelope condition (4) to eliminate the term dVt,t+1/dWt+1 in the derivative of current

utility with respect to next-period wealth (3). Then we can combine (3) with (2) to form

the marginal rate of substitution and arrive at:

Πt+1

Πt

= β

(
Ct+1

Ct

)−ρ
︸ ︷︷ ︸

(I)

×

 Vt,t+1

Et
[
V 1−γ0
t,t+1

] 1
1−γ0

ρ−γ0

︸ ︷︷ ︸
(II)

×
(
Vt,t+1

Vt+1

)1−ρ

︸ ︷︷ ︸
(III)

.

The SDF consists of three multiplicative parts:
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(I) The first term is that of the standard time-separable CRRA model with discount

factor β and constant relative risk aversion ρ.

(II) The second part originates from the wedge between the risk aversion and the in-

verse of the elasticity of intertemporal substitution, i.e. from the non time separable

framework. It is similar to the standard EZ model, taking risk aversion as the im-

mediate one, γ0.

(III) The third part is unique to our model and originates from the fact that, with horizon-

dependent risk aversion, different selves disagree about the evaluation of a given

consumption stream, depending on their relative horizon. Since the SDF Πt+1/Πt

captures trade-offs between periods t and t+ 1, the key disagreement is how selves

t and t+ 1 evaluate consumption starting in period t+ 1.

If we set γh = γ for all horizons h, our SDF for horizon-dependent risk aversion preferences

simplifies to the standard SDF for recursive preferences: it nests the model of EZ which,

in turn, nests the standard time-separable model for γ = ρ.

5 Pricing of Risk and the Term Structure

To derive the pricing of risk under horizon-dependent risk aversion preferences, we consider

a simplified version of the model where risk aversion for immediate risk is given by γ, and

by γ̃ for all future risks. This framework, and our derivations for risk pricing, easily extends

to a case where risk aversion is decreasing up to a given horizon, after which, for risks

beyond, it remains constant (γ̃).

Our general model (1) thus becomes:

Vt =

(
(1− β)C1−ρ

t + βEt

[
Ṽ 1−γ
t+1

] 1−ρ
1−γ
) 1

1−ρ

Ṽt =

(
(1− β)C1−ρ

t + βEt

[
Ṽ 1−γ̃
t+1

] 1−ρ
1−γ̃
) 1

1−ρ

.

The second equation is simply the standard EZ framework with risk aversion γ̃. If solu-

tions for the recursion on the continuation value Ṽ are derived, the value function V is
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automatically obtained from the first equation. The simplified version of the SDF is:

Πt+1

Πt

= β

(
Ct+1

Ct

)−ρ
×

 Ṽt+1

Et

[
Ṽ 1−γ
t+1

] 1
1−γ


ρ−γ

×

(
Ṽt+1

Vt+1

)1−ρ

(6)

As in the standard EZ framework, closed-form solutions for Ṽ (and thus for V ) obtain

only for the knife-edge case of a unit elasticity of intertemporal substitution (EIS), ρ = 1.

To aid in the comparison of the standard EZ framework with horizon-independent risk

aversion and our generalization to horizon dependence, we therefore start by analyzing

the case of unit-EIS in Section 5.1. We then go beyond the special case of ρ = 1 in Section

5.2 by studying solutions for V and Ṽ under the approximation of a discount factor close

to unity, β ≈ 1.

5.1 Closed-Form Solutions under Unit EIS

To determine the pricing implications of our model, we analyze the wedge between the

continuation value Ṽt+1 and the valuation Vt+1, which is the key difference between the

SDF in our framework (6) and in the standard EZ framework. Denoting logs by lowercase

letters, we consider a Lucas-tree economy with an exogenous endowment process given by

ct+1 − ct = µ+ φcxt + αcσtWt+1,

where the time varying drift, xt, and the time varying volatility, σt, have evolutions

xt+1 = νxxt + αxσtWt+1

σ2
t+1 − σ2 = νσ

(
σ2
t − σ2

)
+ ασσtWt+1.

Both state variables are stationary (νx and νσ are contracting), and for simplicity, we

assume the three shocks are orthogonal.

Lemma 1. Under these specifications for the endowment economy, and ρ = 1, we find:

vt − ṽt = −1

2
β (γ − γ̃)

(
α2
c + φ2

vα
2
x + ψ2

vα
2
σ

)
σ2
t , (7)
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where φv and ψv are constant functions of the model parameters such that:

φv = βφc (I − νx)−1

and

ψv =
1

2

β (1− γ̃)

1− βνσ
(
α2
c + φ2

vα
2
x + ψ2

vα
2
σ

)
.

Observe from equation (7) that vt < ṽt at all times, as should be expected. Indeed, ṽt

is derived from the standard EZ model with risk-aversion γ̃, whereas vt is derived from our

horizon-dependent risk aversion model with a higher risk-aversion γ > γ̃ for immediate

risk. More striking, however, is that the difference in the valuations under the two models

is constant when volatility σt is constant.

Corollary 1. Under constant volatility in the consumption process, the ratio Ṽ /V is

constant and therefore does not affect excess returns, both in levels and in the term-

structure.

This is one of the central results of our paper and, as shown below, is not limited to

the special case of ρ = 1. The intuition is that when our time-inconsistent representative

agent is aware that prices will be set, the following period, by her next-period self, then

the term-structure of prices is affected by risk-horizon dependent risk-aversion only if

unexpected shocks to volatility can occur.

This result makes clear that the intuition from the simple two-period horizon-dependent

risk aversion model of Section 3 does not trivially extend to the dynamic model and that

there is no tautological relationship between horizon-dependent preferences and horizon-

dependent risk pricing. It makes also clear, however, why the generalized EZ preferences

we employ in this paper are necessary to derive interesting predictions. Before we make

use of that feature, we derive one more result under the ρ = 1 case.

Proposition 1. In the knife-edge case ρ = 1, the stochastic discount factor satisfies:

Πt+1Ct+1

ΠtCt
= β

 Ṽ 1−γ
t+1

Et

[
Ṽ 1−γ
t+1

]


︸ ︷︷ ︸
multiplicative martingale

Borovicka et al. (2011) show the pricing of consumption risk, at time t, and for horizon

h is determined by Et[Πt+hCt+h]. Under the ρ = 1 case, the evolution of the risk adjusted
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payoffs as multiplicative martingales, yields Et[Πt+hCt+h] independent of the horizon h

and thus a flat term-structure of risk prices, even under stochastic consumption volatility.

In the following section, we relax the assumption ρ = 1, and analyze the term-structure

impact of our horizon-dependent risk-aversion model, under stochastic volatility.

5.2 General Case and Role of Volatility Risk

We consider the general case ρ > 0, ρ 6= 1, and we approximate the two relations

Vt =

(
(1− β)C1−ρ

t + βEt

[
Ṽ 1−γ
t+1

] 1−ρ
1−γ
) 1

1−ρ

,

Ṽt =

(
(1− β)C1−ρ

t + βEt

[
Ṽ 1−γ̃
t+1

] 1−ρ
1−γ̃
) 1

1−ρ

,

under β ≈ 1.

When the coefficient of time discounting β approaches 1, the recursion in Ṽ can be

re-written as

Et

( Ṽt+1

Ct+1

)1−γ̃ (
Ct+1

Ct

)1−γ̃
 ≈ β−

1−ρ
1−γ̃

(
Ṽt
Ct

)1−γ̃

,

an eigenfunction problem, in which β−
1−ρ
1−γ̃ is an eigenvalue.

Lemma 2. Under the Lucas-tree endowment process considered in the previous section,

this eigenfunction problem admits a unique eigenvalue, and eigenfunction (up to a scalar

multiplier):

ṽt − ct = µv + φvxt + ψvσ
2
t ,

where

φv = φc (I − νx)−1 ,

ψv =
1

2

1− γ̃
1− νσ

(
α2
c + φ2

vα
2
x + ψ2

vα
2
σ

)
< 0,

and

log β = − (1− ρ)
(
µ+ ψvσ

2 (1− νσ)
)
.
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Note the eigenvalue solution for β yields β < 1, as desired, for ρ < 1.7 It also makes

valid the approximation around 1: Using the calibration of Bansal and Yaron (2004) for

the consumption process, we obtain solutions for β above 0.998, for any values of ρ between

0.1 and 1, and γ̃ between 1 and 10.

To derive the pricing equations, we use the approximation, valid for β close to 1:

Vt

Ṽt
≈
Et

[
Ṽ 1−γ
t+1

] 1
1−γ

Et

[
Ṽ 1−γ̃
t+1

] 1
1−γ̃

.

Theorem 1. Under the Lucas-tree endowment process and the β ≈ 1 approximation we

have

vt − ṽt = − (γ − γ̃)
1− νσ
1− γ̃

ψvσ
2
t < 0,

and the stochastic discount factor satisfies

πt+1 − πt = π̄t − γαcσtWt+1 + (ρ− γ)φvαxσtWt+1

+

(
(ρ− γ) + (1− ρ) (γ − γ̃)

1− νσ
1− γ̃

)
ψvασσtWt+1,

where

π̄t = −µ− ρφcxt − (1− ρ)ψvσ
2 (1− νσ)

(
1− (γ − γ̃)

1− νσ
1− γ̃

)
−
(

(ρ− γ) (1− γ)− (1− ρ) (γ − γ̃) νσ
) 1− νσ

1− γ̃
ψvσ

2
t .

Our model yields a negative price for volatility shocks, consistent with the existing

long-run risk literature, and the observed data for one-period returns. Observe further

that the SDF loading on the drift shocks αxσtWt+1 is unaffected by the specificities of

our horizon-dependent risk-aversion model – it is exactly the same as in the standard EZ

model. Any novel pricing effects we obtain – both in level and in the term-structure –

derive from the volatility shocks. For this reason, we shut down the drift shocks in the

part that follows, and assume xt = 0 and αx = 0 in the remainder of the paper.

We now analyze the pricing of volatility risk in the term-structure. Denote by Pt,h the

price at time t for a claim to the endowment consumption at horizon h, and let Pt,0 = Ct

7Even though ψv < 0, the term
(
µ+ ψvσ

2 (1− νσ)
)

remains positive for all reasonable parameter
values.
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for all t. The one-period holding returns for such assets are determined by

Rt→t+1,h =
Pt+1,h−1 − Pt,h

Pt,h
,

and we denote by SRt,h the conditional sharpe ratio for the one-period holding return at

time t for a claim to consumption in period t+ h.

Theorem 2. Pricing in the term-structure is given by:

Pt,h
Ct

= exp
(
ah + Ahσ

2
t

)
,

and the conditional Sharpe ratios are given by:

SRt,h =
1− exp

[
−
(
r̄ + Aσ2

t −
(
ρ− γ + (1− ρ) (γ − γ̃) 1−νσ

1−γ̃

)
ψvAh−1α

2
σσ

2
t

)]
√

exp
((
α2
c + A2

h−1α
2
σ

)
σ2
t

)
− 1

,

where r̄ and A are constant (independent of t and h) and Ah is determined by the initial

condition A0 = 0 and the recursion:

Ah−1νσ − Ah +
1

2

(
α2
c + A2

h−1α
2
σ

)
= A−

(
ρ− γ + (1− ρ) (γ − γ̃)

1− νσ
1− γ̃

)
ψvAh−1α

2
σ.

From Theorem 1 and Theorem 2, observe that both the pricing of volatility risk and

the term-structure of Sharpe ratios for one-period returns on the consumption claims at

various horizons depend mostly on a term of the model parameters:(
ρ− γ + (1− ρ) (γ − γ̃)

1− νσ
1− γ̃

)
ψv (8)

The first term in this expression, ρ − γ, is a standard EZ term while the second term,

(1− ρ) (γ − γ̃) 1−νσ
1−γ̃ , is new and originates in the horizon-dependent risk aversion. If the

novel term is dominated by the standard EZ term then our model of preferences has no

significant impact on the pricing of volatility risk in either its level or its term-structure.

Corollary 2. Horizon-dependent risk aversion with γ, γ̃ affects risk prices and their term-

structure if and only if γ̃ is close to 1. The effect is stronger, the more persistent the

volatility risk.

In Figure 1, we plot the term-structure of the Sharpe ratios of one-period holding

13
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Figure 1: Calibrated term-structure. We use the parameters from Bansal and

Yaron (2004) for µ, νσ, αc and ασ and ρ = 1/1.5. HDRA stands for

“horizon-dependent risk aversion.”

returns on horizon-dependent consumption claims, for various values of the ratio 1−νσ
1−γ̃ ,

which determines how much impact the variations in risk-aversion across horizons have.

For each value of 1−νσ
1−γ̃ , the immediate risk aversion γ is chosen such that the pricing

of volatility risk, given by the whole term in (8), always remains the same as in the

standard EZ model with risk aversion γ = 10. Figure 1 shows clearly that our horizon-

dependent risk-aversion model can generate a downward sloping term-structure for the

Sharpe ratios of one-period holding returns of consumption claims. This is in contrast to

the standard EZ model which generates a flat term-structure – a result that has been

highlighted in the literature starting with van Binsbergen et al. (2012), most recently

by Dew-Becker et al. (2014). Observe, however, that for such a term-structure effect to

be notable quantitatively, the long-horizon risk aversion γ̃ must be very close to one,

i.e. approximate log utility. To match the pricing of volatility risk of the standard EZ

model, the difference in risk aversion between the short horizon and the long horizon

must become very large, unrealistically so under the very persistent volatility calibration

of Bansal and Yaron (2004). However, this calibration problem can be largely avoided

by making the time-varying volatility less persistent (without changing the volatility’s

stationary distribution).
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To summarize, in a simple endowment economy, our model with horizon-dependent

risk aversion has very specific implications for the level and the term-structure of the

pricing of risk. If volatility is constant over time, our model does not affect the pricing

of risk relative to the standard EZ model. Even with time-varying volatility, our model

affects solely the loading of the stochastic discount factor on the shocks to volatility. The

pricing of shocks to immediate consumption and of shocks to the consumption drift are

unchanged from the standard EZ model. On the other hand, the pricing of the shocks to

volatility presents a clear downward sloping term-structure (in absolute value), in contrast

to the standard EZ model.

Recent papers provide empirical support for the central model prediction that volatility

risk prices are higher for shorter-horizons. Dew-Becker et al. (2014) use variance swap

prices with horizons up to 14 years and find that investors are essentially indifferent to

news about future variance at horizons beyond 30 days ranging from 1 month to 14 years.

Andries et al. (2015) use standard index option data with maturities between 30 and 360

days to calibrate a Heston (1993) model at different horizons. They find a significantly

negative price of volatility risk for maturities up to 120 days, but also a strongly nonlinear

down-ward sloping term structure (in absolute value). These results supplement earlier

studies of volatility risk premia, such as those by Amengual (2008) and Ait-Sahalia et al.

(2012).8

6 Conclusion

We solve for general equilibrium asset prices in an endowment economy in which assets

are priced by an agent who can have different levels of risk aversion for risks at differ-

ent maturities. Such preferences are dynamically inconsistent with respect to risk-return

tradeoffs. We find horizon-dependent risk aversion preferences have a meaningful impact

on asset prices, and have the ability to address recent puzzles in general equilibrium asset

pricing unaccounted for by the standard models. In particular, we show that the price

of risk depends on the horizon, but only if volatility is stochastic. This insight leads to

several testable predictions.

We are not aware of competing mainstream endowment-economy models that can pre-

dict a downward-sloping term structure and that make similarly detailed and empirically

8There is a large literature on variance risk premia more generally, including the seminal works by
Coval and Shumway (2001); Carr and Wu (2009), and the link to political uncertainty (Amengual and
Xiu, 2013; Kelly et al., 2014).
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valid predictions for its driver. Relaxing the common assumption that risk preferences

are constant across maturities – and specifically, replacing it with the no more flexible

assumption that short-horizon risk aversion is higher than long-horizon risk aversion –

may thus be a useful tool in different subfields of asset pricing research.
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Appendix

A Derivation of the Stochastic Discount Factor

This appendix derives the stochastic discount factor of our dynamic model using an ap-

proach similar to the one used by Luttmer and Mariotti (2003) for dynamic inconsistency

due to non-geometric discounting. In every period t the agent chooses consumption Ct

for the current period and state-contingent levels of wealth {Wt+1,s} for the next period

to maximize current utility Vt subject to a budget constraint and anticipating optimal

choice C∗t+h in all following periods (h ≥ 1):

max
Ct,{Wt+1}

(
(1− β)C1−ρ

t + βEt

[(
V ∗t,t+1

)1−γ0
] 1−ρ

1−γ0

) 1
1−ρ

s.t. ΠtCt + Et[Πt+1Wt+1] ≤ ΠtWt

V ∗t,t+h =

(
(1− β)

(
C∗t+h

)1−ρ
+ βEt+h

[(
V ∗t,t+h+1

)1−γh
] 1−ρ

1−γh

) 1
1−ρ

for all h ≥ 1.

Denoting by λt the Lagrange multiplier on the budget constraint for the period-t problem,

the first order conditions are:9

• For Ct: (
(1− β)C1−ρ

t + βEt
[
V 1−γ0
t,t+1

] 1−ρ
1−γ0

) 1
1−ρ−1

(1− β)C−ρt = λt.

• For each Wt+1,s:

1

1− ρ

(
(1− β)C1−ρ

t + βEt
[
V 1−γ0
t,t+1

] 1−ρ
1−γ0

) 1
1−ρ−1

β
d

dWt+1,s

βEt
[
V 1−γ0
t,t+1

] 1−ρ
1−γ0

= Pr[t+ 1, s]
Πt+1,s

Πt

λt.

Combining the two, we get an initial equation for the SDF:

Πt+1,s

Πt

= β

1
1−ρ

1
Pr[t+1,s]

d
dWt+1,s

Et
[
V 1−γ0
t,t+1

] 1−ρ
1−γ0

1

1

(1− β)C−ρt
. (9)

9For notational ease we drop the star from all Cs and V s in the following optimality conditions but it
should be kept in mind that all consumption values are the ones optimally chosen by the corresponding
self.
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The agent in state s at t+ 1 maximizes

(
(1− β)C1−ρ

t+1,s + βEt+1,s

[(
V ∗t+1,s,t+2

)1−γ0
] 1−ρ

1−γ0

) 1
1−ρ

and has the analogous first order condition for Ct+1,s:(
(1− β)C1−ρ

t+1,s + βEt+1,s

[
V 1−γ0
t+1,s,t+2

] 1−ρ
1−γ0

) 1
1−ρ−1

(1− β)C−ρt+1,s = λt+1,s.

The Lagrange multiplier λt+1,s is equal to the marginal utility of an extra unit of wealth

in state t+ 1, s:

λt+1,s =
1

1− ρ

(
(1− β)C1−ρ

t+1,s + βEt+1,s

[
V 1−γ0
t+1,s,t+2

] 1−ρ
1−γ0

) 1
1−ρ−1

× d

dWt+1,s

(
(1− β)C1−ρ

t+1,s + βEt+1,s

[
V 1−γ0
t+1,s,t+2

] 1−ρ
1−γ0

)
.

Eliminating the Lagrange multiplier λt+1,s and combining with the initial equation (9) for

the SDF, we get:

Πt+1,s

Πt

= β

1
Pr[t+1,s]

d
dWt+1,s

Et
[
V 1−γ0
t,t+1

] 1−ρ
1−γ0

d
dWt+1,s

(
(1− β)C1−ρ

t+1,s + βEt+1,s

[
V 1−γ0
t+1,s,t+2

] 1−ρ
1−γ0

) (Ct+1,s

Ct

)−ρ

Expanding the V expressions, we can proceed with the differentiation in the numerator:

Πt+1,s

Πt

= Et

[(
(1− β)C1−ρ

t+1 + βEt+1[. . . ]
1−ρ
1−γ1

) 1−γ0
1−ρ
] 1−ρ

1−γ0
−1

×
(

(1− β)C1−ρ
t+1,s + βEt+1,s[. . . ]

1−ρ
1−γ1

) 1−γ0
1−ρ −1

× β
d

dWt+1,s

(
(1− β)C1−ρ

t+1,s + βEt+1,s[. . . ]
1−ρ
1−γ1

)
d

dWt+1,s

(
(1− β)C1−ρ

t+1,s + βEt+1,s[. . . ]
1−ρ
1−γ0

) (Ct+1,s

Ct

)−ρ
. (10)

For Markov consumption C = φW , we can divide by Ct+1,s and solve both differentiations:
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• For the numerator:

d

dWt+1,s

(1− β)C1−ρ
t+1,s + βEt+1,s

[(
(1− β)C1−ρ

t+2 + βEt+2[. . . ]
1−ρ
1−γ2

) 1−γ1
1−ρ
] 1−ρ

1−γ1


=

(1− β) 1 + βEt+1,s

((1− β)

(
Ct+2

Ct+1,s

)1−ρ

+ βEt+2[. . . ]
1−ρ
1−γ2

) 1−γ1
1−ρ


1−ρ
1−γ1


× φ1−ρ

t+1,sW
−ρ
t+1,s.

• For the denominator:

d

dWt+1,s

(1− β)C1−ρ
t+1,s + βEt+1,s

[(
(1− β)C1−ρ

t+2 + βEt+2[. . . ]
1−ρ
1−γ1

) 1−γ0
1−ρ
] 1−ρ

1−γ0


=

(1− β) 1 + βEt+1,s

((1− β)

(
Ct+2

Ct+1,s

)1−ρ

+ βEt+2[. . . ]
1−ρ
1−γ1

) 1−γ0
1−ρ


1−ρ
1−γ0


× φ1−ρ

t+1,sW
−ρ
t+1,s.

Substituting these into equation (10) and canceling we get:

Πt+1,s

Πt

=

(1− β)C1−ρ
t+1,s + βEt+1,s

[(
(1− β)C1−ρ

t+2 + βEt+2[. . . ]
1−ρ
1−γ2

) 1−γ1
1−ρ
] 1−ρ

1−γ1

(1− β)C1−ρ
t+1,s + βEt+1,s

[(
(1− β)C1−ρ

t+2 + βEt+2[. . . ]
1−ρ
1−γ1

) 1−γ0
1−ρ
] 1−ρ

1−γ0

× β
(
Ct+1,s

Ct

)−ρ (1− β)C1−ρ
t+1,s + βEt+1,s[. . . ]

1−ρ
1−γ1

Et

[(
(1− β)C1−ρ

t+1,s + βEt+1[. . . ]
1−ρ
1−γ1

) 1−γ0
1−ρ
]

ρ−γ0

.

Simplifying and cleaning up notation, we arrive at the same SDF as in the main text:

Πt+1

Πt

= β

(
Ct+1

Ct

)−ρ Vt,t+1

Et
[
V 1−γ0
t,t+1

] 1
1−γ0

ρ−γ0 (
Vt,t+1

Vt+1

)1−ρ

.
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B Exact solutions for ρ = 1

Suppose the risk aversion parameter differs only for immediate risk shocks: between t and

t+1, risk aversion is γ, for all shocks further down, risk aversion is γ̃. The model simplifies

to:

Vt =

[
(1− β)C1−ρ

t + β
(
Rt,γ

(
Ṽt+1

))1−ρ
] 1

1−ρ

,

Ṽt =

[
(1− β)C1−ρ

t + β
(
Rt,γ̃

(
Ṽt+1

))1−ρ
] 1

1−ρ

,

where

Rt,λ (X) =
(
Et
(
X1−λ)) 1

1−λ .

Take the evolutions

ct+1 − ct = µ+ φcxt + αcσtWt+1,

xt+1 = νxxt + αxσtWt+1,

σ2
t+1 − σ2 = νσ

(
σ2
t − σ2

)
+ ασσtWt+1,

and suppose the three shocks are independent. (We can relax this assumption.)

Proof of Lemma 1. If ρ = 1, then the recursion for Ṽ becomes

Ṽt
Ct

=

(
Rt,γ̃

(
Ṽt+1

Ct+1

Ct+1

Ct

))β

.

Assume that

ṽt − ct = µv + φvxt + ψvσ
2
t .

Then the solution to the recursion yields

φv = βφc (I − νx)−1 ,

and

ψv =
1

2

β (1− γ̃)

1− βνσ
(
α2
c + φ2

vα
2
x + ψ2

vα
2
σ

)
< 0.
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Because

Vt
Ct

=

(
Rt,γ

(
Ṽt+1

Ct+1

Ct+1

Ct

))β

,

we have

Vt

Ṽt
=

Rt,γ

(
Ṽt+1

)
Rt,γ̃

(
Ṽt+1

)
β ,

which yields

vt − ṽt = −1

2
β (γ − γ̃)

(
α2
c + φ2

vα
2
x + ψ2

vα
2
σ

)
σ2
t ,

⇒ vt − ṽt = − (γ − γ̃)
1− βνσ
1− γ̃

ψvσ
2
t < 0.

�

C Approximation for β ≈ 1

As in Appendix B, consider the simplified model with only two levels of risk aversion:

Vt =

[
(1− β)C1−ρ

t + β
(
Rt,γ

(
Ṽt+1

))1−ρ
] 1

1−ρ

,

Ṽt =

[
(1− β)C1−ρ

t + β
(
Rt,γ̃

(
Ṽt+1

))1−ρ
] 1

1−ρ

,

where

Rt,λ (X) =
(
Et
(
X1−λ)) 1

1−λ .

Also, as in Appendix B, take the evolutions:

ct+1 − ct = µ+ φcxt + αcσtWt+1,

xt+1 = νxxt + αxσtWt+1,

σ2
t+1 − σ2 = νσ

(
σ2
t − σ2

)
+ ασσtWt+1,

and suppose the three shocks are independent. (We can relax this assumption.)
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Proof of Lemma 2. For β close to 1, we have:(
Ṽt
Ct

)1−γ̃

≈ β
1−γ̃
1−ρEt

( Ṽt+1

Ct+1

Ct+1

Ct

)1−γ̃
 .

This is an eigenfunction problem with eigenvalue β−
1−γ̃
1−ρ and eigenfunction

(
Ṽ /C

)1−γ̃

known up to a multiplier. Let’s assume:

ṽt − ct = µv + φvxt + ψvσ
2
t .

Then we have:

• Terms in xt (standard formula with β = 1):

φv = φc (I − νx)−1

• Terms in σ2
t :

ψv =
1

2

1− γ̃
1− νσ

(
α2
c + φ2

vα
2
x + ψ2

vα
2
σ

)
< 0

• Constant terms:

log β = − (1− ρ)
(
µ+ ψvσ

2 (1− νσ)
)

�

Proof of Theorem 1. For β close to 1, we have:

Vt

Ṽt
≈
Rt,γ

(
Ṽt+1

)
Rt,γ̃

(
Ṽt+1

) =

(
Et

[(
Ṽt+1

Ct+1

Ct+1

Ct

)1−γ
]) 1

1−γ

(
Et

[(
Ṽt+1

Ct+1

Ct+1

Ct

)1−γ̃
]) 1

1−γ̃
,

and therefore:

vt − ṽt = −1

2
(γ − γ̃)

(
α2
c + φ2

vα
2
x + ψ2

vα
2
σ

)
σ2
t ,

⇒ vt − ṽt = − (γ − γ̃)
1− νσ
1− γ̃

ψvσ
2
t < 0.
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The stochastic discount factor becomes:

πt+1 − πt = π̄t − γαcσtWt+1 + (ρ− γ)φvαxσtWt+1

+

(
(ρ− γ) + (1− ρ) (γ − γ̃)

1− νσ
1− γ̃

)
ψvασσtWt+1,

where

π̄t = −µ− ρφcxt − (1− ρ)ψvσ
2 (1− νσ)

(
1− (γ − γ̃)

1− νσ
1− γ̃

)
− ((ρ− γ) (1− γ)− (1− ρ) (γ − γ̃) νσ)

1− νσ
1− γ̃

ψvσ
2
t .

�

Observe that in all the analysis the impact and the pricing of the state variable xt

is unaffected by the horizon dependent model. We can therefore simplify the analysis by

setting xt = 0 for all t. Going forward, take the evolutions:

ct+1 − ct = µ+ αcσtWt+1,

σ2
t+1 − σ2 = νσ

(
σ2
t − σ2

)
+ ασσtWt+1,

and suppose the two shocks are independent.

We have

ṽt − ct = µv + ψvσ
2
t ,

where

ψv =
1

2

(1− γ̃)

1− νσ
(
α2
c + ψ2

vα
2
σ

)
< 0,

and

log β = − (1− ρ)
(
µ+ ψvσ

2 (1− νσ)
)

As before, we have

vt − ṽt = − (γ − γ̃)
1− νσ
1− γ̃

ψvσ
2
t < 0,

as well as

vt − ct = µv + ψvσ
2
t

(
1− (γ − γ̃)

1− νσ
1− γ̃

)
.
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The stochastic discount factor becomes:

πt+1 − πt = π̄t − γαcσtWt+1 +

(
(ρ− γ) + (1− ρ) (γ − γ̃)

1− νσ
1− γ̃

)
ψvασσtWt+1

where

π̄t = −µ− (1− γ)2 1− νσ
1− γ̃

ψvσ
2

−
(
(1− γ)2 − (1− ρ) (1− γ + (γ − γ̃) νσ)

) 1− νσ
1− γ̃

ψv
(
σ2
t − σ2

)
.

Proof of Theorem 2. Let the period-t price for the endowment consumption in h

periods be Pt,h. For h = 0, we have Pt,0 = Ct. For h ≥ 1 we have:

Pt,h
Ct

= Et

(
Πt+1

Πt

Ct+1

Ct

Pt+1,h−1

Ct+1

)
.

We can guess that
Pt,h
Ct

= exp
(
ah + Ahσ

2
t

)
,

with a0 = 0 and A0 = 0. Suppose h ≥ 1, then:

log
Πt+1

Πt

Ct+1

Ct

Pt+1,h−1

Ct+1

= − (1− ρ) (1− γ + (γ − γ̃) νσ)
1− νσ
1− γ̃

ψvσ
2

−
(
(1− γ)2 − (1− ρ) (1− γ + (γ − γ̃) νσ)

) 1− νσ
1− γ̃

ψvσ
2
t

+ ah−1 + Ah−1σ
2 (1− νσ) + Ah−1νσσ

2
t

+ (1− γ)αcσtWt+1

+

((
(ρ− γ) + (1− ρ) (γ − γ̃)

1− νσ
1− γ̃

)
ψv + Ah−1

)
ασσtWt+1.

We find the recursion

Ah = −
(
(1− γ)2 − (1− ρ) (1− γ + (γ − γ̃) νσ)

) 1− νσ
1− γ̃

ψv + Ah−1νσ

+
1

2

((
ρ− γ + (1− ρ) (γ − γ̃)

1− νσ
1− γ̃

)
ψv + Ah−1

)2

α2
σ +

1

2
(1− γ)2 α2

c ,
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and

ah = − (1− ρ) (1− γ + (γ − γ̃) νσ)
1− νσ
1− γ̃

ψvσ
2 + ah−1 + Ah−1σ

2 (1− νσ) .

The one-period excess returns on the dividend strips are given by:

Rh
t+1 =

Pt+1,h−1 − Pt,h
Pt,h

=

Pt+1,h−1

Ct+1

Ct+1

Ct
Pt,h
Ct

− 1.

We have:

log
(
Rh
t+1 + 1

)
=

≡r̄︷ ︸︸ ︷
µ+ (1− ρ) (1− γ + (γ − γ̃) νσ)

1− νσ
1− γ̃

ψvσ
2

+ (Ah−1νσ − Ah)σ2
t + (αc + Ah−1ασ)σt.

So the conditional Sharpe ratio term structure is given by:

SRt

(
Rh
t+1

)
=

exp
(
r̄ +

(
Ah−1νσ − Ah + 1

2

(
α2
c + A2

h−1α
2
σ

))
σ2
t

)
− 1√√√√√

exp
(
2r̄ + 2

(
Ah−1νσ − Ah +

(
α2
c + A2

h−1α
2
σ

))
σ2
t

)
−
[
exp

(
r̄ +

(
Ah−1νσ − Ah + 1

2

(
α2
c + A2

h−1α
2
σ

))
σ2
t

)]2
=

1− exp
[
−
(
r̄ +

(
Ah−1νσ − Ah + 1

2

(
α2
c + A2

h−1α
2
σ

))
σ2
t

)]√
exp

((
α2
c + A2

h−1α
2
σ

)
σ2
t

)
− 1

Observe that:

Ah−1νσ − Ah +
1

2

(
α2
c + Ah−1α

2
σ

)
=

(1− ρ)

1− γ̃
(1− γ + (γ − γ̃) νσ)

(
ρ− γ + (γ − γ̃)

(
(1− ρ)

1− νσ
1− γ̃

− 1

))
1

2
ψ2
vα

2
σ

+ (1− (1− ρ) (1− γ + (γ − γ̃) νσ))
1

2
α2
c

−
(
ρ− γ + (1− ρ) (γ − γ̃)

1− νσ
1− γ̃

)
ψvAh−1α

2
σ,
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which we can re-write as:

Ah−1νσ − Ah +
1

2

(
α2
c + A2

h−1α
2
σ

)
= A−

(
ρ− γ + (1− ρ) (γ − γ̃)

1− νσ
1− γ̃

)
ψvAh−1α

2
σ,

where

A =
(1− ρ)

1− γ̃
(1− γ + (γ − γ̃) νσ)

(
ρ− γ + (γ − γ̃)

(
(1− ρ)

1− νσ
1− γ̃

− 1

))
1

2
ψ2
vα

2
σ

+ (1− (1− ρ) (1− γ + (γ − γ̃) νσ))
1

2
α2
c .

We therefore have:

SRt

(
Rh
t+1

)
=

1− exp
[
−
(
r̄ + Aσ2

t −
(
ρ− γ + (1− ρ) (γ − γ̃) 1−νσ

1−γ̃

)
ψvAh−1α

2
σσ

2
t

)]
√

exp
((
α2
c + A2

h−1α
2
σ

)
σ2
t

)
− 1

.

�
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