
 

 

  

Horizon-Dependent Risk 
Aversion and the Timing 
and Pricing of Uncertainty 

Marianne Andries | Thomas M. Eisenbach | Martin C. Schmalz 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NO.  703  

DECE MB ER 2014  

 

REVISE D  

J ANUAR Y  2024  



Horizon-Dependent Risk Aversion and the Timing and Pricing of Uncertainty 

Marianne Andries, Thomas M. Eisenbach, and Martin C. Schmalz 

Federal Reserve Bank of New York Staff Reports, no. 703 

December 2014; revised January 2024 

JEL classification: D03, D90, G02, G12 

 

 

 

 

 

 

 
Abstract 

Inspired by experimental evidence, we amend the recursive utility model to let risk aversion decrease with 

the temporal horizon. Our pseudo-recursive preferences remain tractable and retain appealing features of 

the long-run risk framework, notably its success at explaining asset pricing moments. In addition, our 

model addresses two challenges to the standard model. Calibrating the agents’ preferences to explain the 

equity premium no longer implies an extreme preference for early resolutions of uncertainty. Horizon-

dependent risk aversion helps resolve key puzzles in finance on the valuation of assets across maturities 

and captures the term structure of equity risk premia and its dynamics. 
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1 Introduction

We propose a model that relaxes the assumption, standard in the economics and finance
literature, that an agent’s risk aversion is the same for all payoffhorizons.Wedefinepseudo-
recursive preferences similar to Epstein-Zin (Epstein and Zin, 1989) but generalized to
allow for horizon-dependent risk aversion. We assume that agents are more risk averse
at short horizons than at long horizons, as the experimental evidence indicates. Within a
standard long-run risk economy in the tradition of Bansal and Yaron (2004), we find that
our model retains the Epstein-Zin model’s ability to match standard asset pricing mo-
ments. In addition, we show that allowing for horizon-dependent risk aversion resolves
two important puzzles in finance. First, our model can be calibrated to match the equity
premium without implying an extreme timing premium (the share of wealth an agent
would be willing to pay for resolving all future consumption uncertainty early), a funda-
mental challenge in the long-run risk framework (Epstein et al., 2014). Second, our model
can explain several important stylized facts in finance on the valuation of long-term risks,
in particular that risk premia have upward or downward sloping term-structures depend-
ing onmarket conditions, consistentwith the evidence in the data and contrary to standard
asset pricing models.

Our first contribution is methodological: we introduce horizon-dependent risk aver-
sion within the standard recursive utility model of Epstein and Zin (1989), which allows
us to build on its success at explaining asset pricing moments when combined with the
long-run risk in consumption growth of Bansal and Yaron (2004). The usual recursive
techniques, adapted to our setting of pseudo-recursive preferences, enable us to derive
closed-form solutions. Our baseline model can accommodate numerous extensions, be it
on the valuation of risk (habit formation, disappointment aversion, loss aversion, etc.), or
on the quantity of risk (rare disasters, production-based models, etc.). Further, under our
preference model, inter-temporal decisions for deterministic payoffs are unchanged from
the standard model and remain time consistent; but intra-temporal allocations across risky
assets are dynamically time inconsistent. We can therefore study the effects of horizon-
dependent risk aversion on optimal decisions and equilibrium pricing in isolation of any
effects of time inconsistent inter-temporal preferences, such as quasi-hyperbolic discount-
ing.

The second contribution of our paper is to address the two key challenges to the long-
run risk asset pricingmodelmentioned above, the timing premium and the term-structure
of risk premia, and formally show that our preference model can reconcile the usual asset
pricing moments with attitudes towards information and risk valuations at different ma-
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turities. The standard long-run riskmodel (e.g. Bansal and Yaron, 2004; Bansal et al., 2012)
has had great success at matching asset pricing moments and at explaining their appar-
ent “puzzles” by combining recursive Epstein-Zin preferences with risk to the expected
growth andvolatility of consumption (see Cochrane, 2017, for a reviewof the literature). It
explains the high equity premium, results in time-varying risk premia that rationalize the
volatility puzzle and return predictability, and matches various cross-sectional evidence.

However, to match these moments, the standard model also implies that the repre-
sentative agent has a high to extreme timing premium, a measure of her preferences for
early versus late resolution of uncertainty (Epstein et al., 2014). In the calibration of Bansal
et al. (2012), in a set-up where she cannot act on information she receives, the representa-
tive agent would nonetheless be willing to pay 85% of her wealth to resolve all her future
consumption shocks early. Such a strong preference for an early resolution of uncertainty
appears inconsistent with evidence, e.g. on investors’ inattention to their wealth, and with
commonsense considerations, thus raising doubts as to the validity of the standardmodel.

In addition, the long-run risk at the heart of the standard model implies that agents
face greater aggregate shocks at longer horizons and therefore require a greater compen-
sation, or risk premia, to invest in long-term assets. The data, however, provides a range of
counter-examples where investors appear to demand low expected excess returns at long
horizons: e.g. the low risk premia of buy-and-hold assets such as private equity and hous-
ing (Moskowitz and Vissing-Jørgensen, 2002; Giglio et al., 2015; Chambers et al., 2021);
the low demand for long-term insurance and for options with medium and long matu-
rities (Garleanu et al., 2008; Akaichi et al., 2020); and the evidence of downward sloping
term-structures of excess equity returns first documented in van Binsbergen et al. (2012)
(see the literature review below).

To address these challenges to the long-run risk model, we first analyze how horizon-
dependent risk aversion affects the timing premium — the willingness to pay for early
resolutions of uncertainty. We formally derive how two consumption streams with iden-
tical risk but different timing for information arrivals are valued: one where shocks are
revealed gradually as they are realized over time, the other where all future shocks are re-
vealed next period. Even though the ex-ante distributions of risk are rigorously identical,
agents value these consumption streams differently under Epstein-Zin preferences. They
have a strong preference to receive information early when the ratio of their risk aversion
to their inverse of the elasticity of intertemporal substitution is high; a high value for this
ratio is also a necessary condition for themodel to capture the equity premium in the data,
hence the critique of Epstein et al. (2014). Under horizon-dependent risk aversion, how-
ever, a consumption streamwith early resolution of uncertainty shifts the risk of all future
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shocks into a short-horizon risk, moving from a risk assessment using the low long-term
risk aversion to a risk assessment using the high short-term risk aversion; this lowers the
attractiveness of early resolution of uncertainty compared to the standard framework. We
formalize this intuition and show that the timing premium is unambiguously lower when
the risk aversion decreases with the horizon. We quantify this result and show that our
calibration of the model can simultaneously match the equity premium and generate a
low timing premium.

We then apply our model to equilibrium asset pricing. We first consider a representa-
tive agent who trades and clears the market every period. Unable to commit to future be-
havior but aware of her dynamic inconsistency, the agent optimizes in the current period,
fully anticipating reoptimization in future periods (in the spirit of Strotz, 1955). Solving
ourmodel thisway yields a canonical one-period pricing problem inwhich the Euler equa-
tion is satisfied, and the law of one price and no-arbitrage conditions hold. We consider
a Lucas-tree endowment economy with long-run risk, using the same consumption and
dividend risk processes as in the standard model (Bansal and Yaron, 2004; Bansal et al.,
2012), where shocks to consumption levels (immediate consumption shocks and shocks
to consumption growth) and shocks to consumption risk (volatility shocks) are priced.
Our formal results show that the pricing of shocks to consumption levels does not change
under horizon-dependent risk aversion — reflecting that the dynamic inconsistency in
our model does not concern inter-temporal decisions. In contrast, shocks to consumption
risk (volatility) directly concern intra-temporal decisions, and their pricing changes un-
der horizon-dependent risk aversion: the lower risk aversion at long horizons reduces the
pricing of volatility shocks and this effect accumulates over time.

Our model can still be calibrated to capture the usual asset pricing moments, in partic-
ular the equity premium and the return predictability puzzles. However, the lower pricing
of consumption volatility shocks relative to consumption growth shocks has two impor-
tant implications. First, it means that a greater share of the equity premium is compen-
sation for consumption growth risk. This provides an explanation of the high average
expected returns on macroeconomic announcement days (Lucca and Moench, 2015; Ai
and Bansal, 2018) as periods when news about future economic growth is revealed. In
contrast, the standard model, where a greater share of the equity premium is compensa-
tion for consumption volatility risk, requires that macroeconomic announcements mostly
provide news about future economic volatility to justify the evidence in the data; this is a
more constraining interpretation of the information provided on those days.

Second, because the horizon-dependent risk aversion model requires lower compen-
sation for consumption volatility risk, the greater exposure of longer-horizon assets to
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volatility risk does not increase their expected returns as much as in the standard model.
We therefore derive a flatter, though still upward sloping, average term-structure of eq-
uity risk premia, that can lead to a downward sloping average term-structure of equity
Sharpe ratios at long-horizons, both consistent with the evidence (see the literature re-
view). The slope of equity premia becomes more upward sloping in periods of increased
consumption volatility, as the uncertainty of longer-horizon assets increases relative to
shorter-horizon assets. Since these periods also correspond to lower market price levels,
we obtain a negative correlation between the slope of the term-structure of dividend strip
returns and themarket price-dividend ratio, a dynamic result consistentwith the evidence
in Gormsen (2021).

The data, however, also shows periods of downward sloping term-structures of equity
premia (see van Binsbergen et al. (2012) and the literature review below), inconsistent
with the formal asset pricing results we derive for a representative agent with horizon-
dependent risk aversion who trades every period. This may appear counter-intuitive: if
risk aversion decreases with the horizon, should risk compensations not also decrease
with the horizon, with a one-for-one relation between the term-structure of risk aversions
and the term-structure of risk premia? This intuition turns out to be incorrect: because the
representative agent trades every period, she prices all financial assets at the next period
horizon no matter when payoffs occur. Given this simple observation on the mechanism
of our model, we extend our analysis to consider the implications of horizon-dependent
risk aversion when agents no longer assume they will trade every period, in line with the
evidence in the data on the low frequency of investors’ trading (e.g. Alvarez et al., 2012;
Sicherman et al., 2016). Despitemaintaining the long-run risk assumption, i.e. longer hori-
zon assets are exposed to greater consumption risks, we find that our model can generate
downward sloping term-structures of risk premia for buy-and-hold strategies. We believe
the differential pricing implications of our model for liquid one-period risks versus long-
term locked-in investments identifies a key channel to explain why the term-structure of
risk premia has a negative slope for some assets or for some periods, and not for others;
an important puzzle in finance.

Finally, we take our analytical results to the data to confirm their quantitative rele-
vance. We find that the horizon-dependent risk aversion model can be calibrated to match
the evidence in Giglio et al. (2023) on the slowly upward sloping unconditional average
term structure of equity premia and Sharpe ratios; the slowly upward sloping average
term structure of forward equity yields in “normal times,” i.e. when NBER recessions are
excluded from the data sample, where we assume the standard one-period pricing frame-
work applies; as well as the downward sloping term structures in Giglio et al. (2023)
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during NBER recessions, interpreted as periods of illiquid buy-and-hold pricing. These
quantitative results, which improve markedly on the standard long-run risk model, can
be achieved while also matching the equity premium and the macroeconomic announce-
ment premium, and while implying a reasonable timing premium close to zero.

In sum, the model of preferences we propose, where risk aversion differs for short-
horizon and long-horizon uncertainty, can address the early versus late resolution of un-
certainty critique and explain several important stylized facts in finance on the valuation
of long-term risks. We can solve these challenges concerning the timing and pricing of
uncertainty without compromising on the model’s ability to match the usual asset pricing
moments, and without departing from the methodology of the widely-used Epstein-Zin
preferences and long-run risk framework.

After a review of the literature, we present our utility model in Section 2. We analyze
the preference for early or late resolution of uncertainty in Section 3. In Section 4, we de-
rive the risk pricing implications of horizon-dependent risk aversion. Section 5 relates our
results to the evidence in the data and proposes a calibration of our model. Section 6 con-
cludes. All mathematical proofs are in the appendix.

Related literature

This paper is the first to solve for equilibrium asset prices in an economy populated by
agents with dynamically inconsistent risk aversions. Our methodology, which guaran-
tees the no-arbitrage condition despite time inconsistency, follows Luttmer and Mariotti
(2003), and our work complements theirs. They show that dynamically inconsistent pref-
erences for inter-temporal trade-offs of the kind examined by Harris and Laibson (2001)
have only limited implications for asset pricing, and little power to explain cross-sectional
variations in asset returns. Given that cross-sectional asset pricing involves intra-period
risk-return tradeoffs, it is indeed quite intuitive that intra-temporal dynamic inconsistency,
such as horizon-dependent risk aversion, rather than inter-temporal dynamic inconsis-
tency can address puzzles related to risk premia.1

Our model generalizes Epstein-Zin preferences by relaxing the dynamic consistency
axiom of Kreps and Porteus (1978) to analyze the relationship between the timing and
pricing of uncertainty. We choose the CRRA model for risk adjustments, standard to the
macro-finance literature. In contrast, Routledge and Zin (2010), Bonomo et al. (2011) and

1Eisenbach and Schmalz (2016) show that dynamic inconsistency for intra-temporal risk trade-offs is
orthogonal to dynamic inconsistency for inter-temporal consumption trade-offs due to non-geometric dis-
counting as in Strotz (1955), Phelps and Pollak (1968), and Laibson (1997). Heimer et al. (2023) document
dynamic inconsistency in path-dependent risk taking where agents’ observed behavior displays the classic
disposition effect although their planned behavior calls for the opposite.
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Schreindorfer (2014, 2020) followGul (1991) and relax the independence axiom to analyze
the asset pricing impact of disappointment aversion within a recursive framework. They
find that their models generate endogenous predictability (Routledge and Zin, 2010);
match various asset pricing moments (Bonomo et al., 2011); and price the cross-section
of options better than the standard model (Schreindorfer, 2014, 2020). Andries (2021) in-
troduces loss aversion in recursive preferences à la Epstein and Zin (1989) and shows it
helpsmatch the securitymarket line, while Dew-Becker (2014) uses amodel of habit to ob-
tain time varying risk premia. Our framework can also accommodate these non-standard
utility functions for the valuation of risk. Within the classical model of Epstein and Zin
(1989), none of the above-mentioned preference models address the excessive preference
for early resolution of uncertainty puzzle pointed out by Epstein et al. (2014) or explain
the term structure of equity risk premia — the two questions of interest in our analysis.

Starting with van Binsbergen et al. (2012), several papers provide empirical evidence
of downward sloping term structures of expected excess returns for various types of risk
(e.g. Lustig et al., 2019; van Binsbergen, 2016; Giglio et al., 2015; Dew-Becker et al., 2017;
Andries et al., 2023; Golez and Jackwerth, 2023). These empirical findings,which cannot be
explained by the standard asset pricing models (Zviadadze, 2021), gave rise to numerous
new works explicitly focused on systematically deriving downward sloping term struc-
tures of risk prices (e.g. Kogan and Papanikolaou, 2010; Gârleanu et al., 2012; Belo et al.,
2015; Croce et al., 2015; Marfè, 2015; Favilukis and Lin, 2016; Marfè, 2017; Ai et al., 2018;
Backus et al., 2018; Tinang, 2019). However, recent empirical work on the dynamics of
the term-structure of equity risk premia show its slope varies over time. Gormsen (2021)
documents that the index price-dividend ratio correlates negatively with the slope of the
term structure of dividend strip futures expected returns, corresponding to, on average, a
more upward sloping term-strucure in “bad” times, i.e. when the index price is low rel-
ative to dividends (see also Golez and Jackwerth, 2023). On the other hand, Bansal et al.
(2021), using data from 2004 to 2017, document that expected excess returns of dividend
risk are upward sloping on average, but became sharply downward sloping during the
financial crisis of 2007–2009. Similarly, Chabi-Yo and Loudis (2020) show that the short-
end term structure is upward-sloping in expansions and downward-sloping in recessions.
Finally, Giglio et al. (2023), using a principal components method to extend the sample
period to 1973–2020, find a slightly positive slope outside of NBER crises and a negative
one during NBER crises. Other asset classes on the other hand display downward sloping
term-structures in and out of crisis, e.g. Giglio et al. (2015) for housing and Andries et al.
(2023) for the price of variance risk.

The horizon-dependent risk aversionmodel captures the average, slowly upward slop-
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ing term-structure of equity premia, as well as their Sharpe ratios, and reconciles the dy-
namics results in Gormsen (2021) with seemingly contradictory evidence (e.g. Chabi-Yo
and Loudis, 2020; Bansal et al., 2021; Giglio et al., 2023): during crisis periods, if liquidity
breaks down (e.g. Pedersen, 2009; Brunnermeier, 2009; Nagel, 2012) and investors resort
to buy-and-hold strategies, we obtain smaller or even negative slopes in the term struc-
tures of expected returns, as well as downward sloping term-structures of forward equity
yields. Additional supporting evidence that liquid versus illiquid assets are priced dif-
ferently in the term-structure, as implied by our horizon-dependent risk aversion model,
can be found inWeber (2018), who shows that higher cashflow durations of equity shares
have a downward influence on expected returns onlywithin short-sale constrained stocks.

Other explanations for the dynamics of the term structure of equity returns have been
proposed. Ai et al. (2018) introduce a production-based general equilibrium framework
to model the dynamics of the discount factor and cash flows. Gonçalves (2021) show that
short-duration dividend strips have a higher reinvestment risk and a lower market risk,
which generates variations in the term structure depending on market conditions. In con-
trast to our approach, these papers rely on more complex macroeconomic shocks than the
standard model to explain the term-structure results. Finally, Cassella et al. (2023) doc-
ument that investors have biased expectations, with greater optimism for long-horizon
assets; and that time variations in the horizon bias correlate with the term-structure dy-
namics. Their empirical findings, on investors’ expectations, complement our approach,
on investors’ preferences.

In the fixed-income literature, recent work has successfully shown how heterogeneity
across investors can resolve puzzles regarding the average term structure of real and nom-
inal rates and its time variation. Buraschi and Whelan (2022) assume that investors differ
in their beliefs about the long-run mean of the real growth rate while Schneider (2022)
assumes that investors differ in their preferences regarding risk and inter-temporal sub-
stitution.2 In both papers, endogenous variations in the marginal investor type generate
cyclical variations in rates and term premia that are due to “discount rate” effects as op-
posed to “cash flow” effects. Our model shows that “discount rate” effects from horizon-
dependent risk aversion can generate empirically relevant term structure patterns even
with richer, risky cash flow dynamics.3 Combining the approaches is a promising area for
future research.

2Earlier literature includesWang (1996) and Bhamra and Uppal (2014) in addition to the seminal papers
by Harrison and Kreps (1978) and Dumas (1989).

3We thank an anonymous referee for pointing out the link to our paper.
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2 Horizon-dependent risk aversion

Experiments document that risk attitudes are affected by how far in the future a risk oc-
curs (resolution and payoff) and that subjects tend to bemore risk averse at short horizons
than at long horizons. We focus on three papers in particular, that use modern techniques
of experimental economics such as real monetary payoffs and that explicitly study or al-
low us to infer how risk attitudes are affected by the horizon at which a lottery is resolved
and paid out: Noussair and Wu (2006), Baucells and Heukamp (2010), and Abdellaoui,
Diecidue, and Öncüler (2011).4 Across the three papers, a consistent picture of the quanti-
tative importance of decreasing horizon-dependent risk aversion emerges. While all three
possibilities of horizon-dependent risk aversion are present among subjects (decreasing,
constant and increasing), the share of subjects with decreasing risk aversion is between
40% and 60%, which significantly outweighs the share with increasing risk aversion and
is at least comparable to the share with constant risk aversion. When averaging across
subjects, risk aversion is decreasing in horizon in the vast majority of comparisons and
the decrease tends to be statistically significant. We discuss the three papers in detail in
Appendix A.1.

Based on this evidence, Eisenbach and Schmalz (2016) propose the theoretical concept
of horizon-dependent risk aversion and explore implications across several domains using
a two-period setup with time-separable expected utility: in period 2, the agent evaluates
uncertain consumption as E[v(c2)]while in period 1, she evaluates uncertain consumption
as E[v(c1)+ δu(c2)], where δ is a timediscount and v has higher risk aversion than u. In this
framework, horizon-dependent risk aversion can explain evidence on consumer demand
for short-horizon insurance and for commitment devices to take risk.

To explore the dynamic asset pricing implications of horizon-dependent risk aversion,
we depart from the essentially static, time separable preferences of Eisenbach and Schmalz
(2016) andmodel instead a generalization of the Epstein-Zin recursive preferences that re-
laxes the dynamic consistency axiom of Kreps and Porteus (1978). This approach yields
a tractable “pseudo-recursive” model that captures horizon-dependent risk aversion and
enables us to study its effects in a standard asset pricing framework following the tradition
of Epstein andZin (1989), Bansal andYaron (2004), andHansen et al. (2008). Our pseudo-
recursive preferences also allow us to introduce a dynamic inconsistency on intra-temporal
risk decisionswhilemaintaining the dynamic consistency on inter-temporal allocation deci-
sions. In particular, the well documented hyperbolic discounting (e.g. Phelps and Pollak,

4For related evidence, see Jones and Johnson (1973); Rachlin and Siegel (1994); Shelley (1994); Keren
and Roelofsma (1995); Ahlbrecht and Weber (1997); Öncüler (2000); Sagristano et al. (2002); Coble and
Lusk (2010).
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1968; Laibson, 1997) or other time inconsistencies concerning inter-temporal decisions do
not influence, or cause, the results we derive.5

2.1 Dynamic preference model

To simplify the exposition, we present a model with only two levels for the coefficient of
relative risk aversion, γ and γ̃. We assume that the agent treats immediate uncertainty
with risk aversion γ, and all delayed uncertainty with risk aversion γ̃, with γ̃ lower than γ

in line with the experimental evidence. In Appendix A.2, we extend our model to general
sequences {γh}h≥1 of risk aversion at horizon h. As long as risk aversion reaches a constant
level beyond a given horizon, closed form solutions similar to those derived in the main
text obtain.6

At any time t, we denote by Et[ · ] = E[ · | It] the expectation conditional on It, the
information set at time t.

Definition 1 (Dynamic horizon-dependent risk aversion). In period t, the agent evaluates
the uncertain consumption stream {Cτ}τ≥t as

Vt =

(
(1 − β)C1−ρ

t + βEt
[
Ṽ1−γ

t+1

] 1−ρ
1−γ

) 1
1−ρ

, (1)

where the continuation value Ṽt+1 satisfies the recursion

Ṽt+1 =

(
(1 − β)C1−ρ

t+1 + βEt+1
[
Ṽ1−γ̃

t+2
] 1−ρ

1−γ̃

) 1
1−ρ

, (2)

and the preference parameters satisfy β ∈ (0, 1) and ρ, γ, γ̃ > 0.7

The lifetime utility Vt depends on the deterministic current consumption Ct and on the
certainty equivalent Et

[
Ṽ1−γ

t+1

] 1
1−γ of the uncertain continuation value Ṽt+1, where the ag-

gregation of the two periods occurs with constant elasticity of intertemporal substitution
given by 1/ρ under the subjective time discount β. However, the certainty equivalent of
consumption starting at t + 1 is calculated with relative risk aversion γ, whereas the cer-
tainty equivalents of consumption starting at t+ 2 and beyond are calculated with relative

5Eisenbach and Schmalz (2016) show that horizon-dependent risk aversion is also conceptually orthog-
onal to time-varying risk aversion and the habit models of Constantinides (1990); Campbell and Cochrane
(1999).

6Our approachwith only two levels of risk aversion is analogous to the β-δ framework (Phelps andPollak,
1968; Laibson, 1997) as a special case of the general non-exponential discounting model of Strotz (1955).

7The cases ρ = 1, γ = 1 or γ̃ = 1 correspond to log-utility equivalents.
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risk aversion γ̃. Our model nests the Epstein-Zin model when γ = γ̃, and, in turn, nests
the standard time-separable model when γ = γ̃ = ρ. Any difference in the results we
derive below under the preferences of Definition 1 to those obtained under the standard
Epstein-Zin model thus hinges on γ̃ ̸= γ.

The horizon-dependent risk aversion implies a dynamic inconsistency, as the uncertain
consumption stream starting at t+ 1 is evaluated as Ṽt+1 by the agent’s self at t and as Vt+1

by the agent’s self at t + 1:

Ṽt+1 =

(
(1 − β)C1−ρ

t+1 + βEt+1
[
Ṽ1−γ̃

t+2
] 1−ρ

1−γ̃

) 1
1−ρ

̸= Vt+1 =

(
(1 − β)C1−ρ

t+1 + βEt+1
[
Ṽ1−γ

t+2
] 1−ρ

1−γ

) 1
1−ρ

.

However, the disagreement between the agent’s continuation value Ṽt+1 at t and the agent’s
utility Vt+1 at t + 1 arises only for uncertain consumption streams. For any deterministic
consumption stream the horizon dependence in Equation (1) becomes irrelevant and we
have

Ṽt+1 = Vt+1 =
(
(1 − β)∑h≥0βhC1−ρ

t+1+h

) 1
1−ρ .

Our model therefore implies dynamically inconsistent risk preferences while maintain-
ing dynamically consistent time preferences, and is orthogonal to existing models of time
inconsistency, such as hyperbolic discounting.

2.2 Generalized preference model

In the preferences of Definition 1, we opt for risk adjustments with constant relative risk
aversion (CRRA). However, similarly to the Epstein-Zin model, our model of horizon-
dependent risk aversion accommodates any preferences in the Chew-Dekel class of be-
tweenness-respecting models (Dekel, 1986; Chew, 1989). The general model is defined
as:

Definition 2 (Generalized dynamic horizon-dependent risk aversion). In period t, the
agent evaluates the uncertain consumption stream {Cτ}τ≥t as

Vt =
(
(1 − β)C1−ρ

t + β
(
Rt
[
Ṽt+1

]) 1−ρ
) 1

1−ρ , (3)
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where the continuation value Ṽt+1 satisfies the recursion

Ṽt+1 =
(
(1 − β)C1−ρ

t+1 + β
(
R̃t+1

[
Ṽt+2

]) 1−ρ
) 1

1−ρ , (4)

andRt[ · ] and R̃t[ · ] are certainty-equivalent operators for utility functions U and Ũ in the Chew-
Dekel class of betweenness-respecting models.

Examples of certainty equivalent operators other thanCRRA could be those of a Camp-
bell and Cochrane (1999) habit model with risk aversions γ > γ̃ or those of a Gul (1991)
disappointment aversion model with first-order risk aversion coefficients θ > θ̃. As men-
tioned in our review of the literature, introducing these “exotic” risk adjustments helps
explain cross-sectional evidence (Routledge and Zin, 2010; Bonomo et al., 2011; Schrein-
dorfer, 2014, 2020; Andries, 2021), orthogonal to the timing and pricing of risk we analyze
in this paper and to our notion of horizon-dependent risk aversion. The cross-sectional
results derived under the standard Epstein-Zinmodel would remain valid under the pref-
erences of Definition 2.

At a deeper level, the preferences ofDefinition 2 allow for great flexibility: Agents could
have first-order risk aversion (disappointment aversion or loss aversion) for immediate
risk but standard concave utility for longer horizons; they could have time-varying risk
aversion for immediate risks only; the gap between their immediate and long-term risk
aversions could vary with market conditions; etc. Definition 2 proposes a model of pref-
erences that allows for the analysis of new and complex forms of dynamic inconsistencies
within a simple framework.

2.3 Timing of risk and dynamic inconsistency

Anagentwith the time-inconsistent preferences ofDefinition 1 orDefinition 2 can be either
naive or sophisticated about the disagreement between her temporal selves; in addition,
she may be able to commit to multi-period strategies or be compelled to re-optimize every
period. The valuation of early versus late resolution of uncertainty, derived in Section 3, is
by nature a static problem. Its solutions are the same for naive and sophisticated investors,
with or without commitment. However, these modeling choices matter for dynamic out-
comes, and the asset prices we derive in Section 4.

We follow the tradition of Strotz (1955), and assume that the agent is fully rational
and sophisticated when making choices in period t to maximize Vt. Self t realizes that her
valuation of future consumption, given by Ṽt+1, differs from the objective function Vt+1

which self t + 1 will maximize. The solution then corresponds to the subgame-perfect
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equilibrium in the sequential game played among the agent’s different selves.
We assume no commitment in the one-period framework in Section 4.1 and 4.2, as

appropriate for a representative agent who trades and clears the market at all times, and
as such cannot precommit to a given strategy— analogous to the approach of Luttmer and
Mariotti (2003) for non-geometric discounting. However, we also analyze the implications
of letting sophisticated agents commit to buy-and-hold strategies in Section 4.3, e.g. for
illiquid assets or periods of liquidity crises in which one-period pricing may break down.8

3 Preference for early or late resolution of uncertainty

To what extent do the horizon-dependent risk aversion preferences of Definition 1 affect
agents’ decisions regarding the timing of information arrivals? To analyze this issue, and
determine whether agents have a preference for early or late resolutions of uncertainty, we
strictly follow the set up of Epstein et al. (2014). Two consumption streams, subject to the
exact same shocks over time, are evaluated at a given time t. In the first case, consumption
shocks are revealed gradually when they are realized: the shock affecting consumption
at time t + h is revealed at t + h, for all horizons h ≥ 1. In the second case, all future
consumption shocks are revealed in the next period, at time t + 1, even when they affect
consumption at a later period: the shock affecting consumption at t + h is revealed at time
t + 1, for all h ≥ 1.

Crucially, even when she receives early information about her future consumption
shocks, the agent cannot act on this information to change her future consumption stream.
From the point of view of time t, the distributions of future risks are therefore the same
with or without early resolution of uncertainty. In the expected utility framework, the
agent would assign the same value to the two consumption streams at time t. However, in
the non time-separable models of Epstein and Zin (1989) and our Definition 1, two con-
sumption streams with ex ante identical risks, but different timing for the resolution of
uncertainty, can have different values, as we derive below.

Assigning values to the two consumption streams above is a static problem: the agent
evaluates the two streams of consumption exactly once. How her preferences change over
time, whether she is naive or sophisticated about it or whether she can commit to specific
future choices are irrelevant to the relative values she assigns to the two consumption
streams, i.e. to her preference for early or late resolution of uncertainty.

8Extending our results to an agent naive about her own dynamic inconsistencies is straightforward and
does not present any conceptual challenge. We briefly discuss and derive formal results for this alternative
approach in Appendix A.3.
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3.1 Timing premium

As in Epstein et al. (2014), we present and discuss our formal results for the timing pre-
mium under the corner case of a unit elasticity of inter-temporal substitution (ρ = 1), and
given the long-run risk consumption dynamics

ct+1 − ct = µc + ϕcxt + αcσwc,t+1,

xt+1 = νxxt + αxσwx,t+1, (5)

where the time-varying consumption growth xt is one dimensional, |νx| < 1, and the
shocks wc,t and wx,t are i.i.d.N (0, 1) and orthogonal to each other. Throughout lower-case
letters c, x and w denote logs, e.g. ct = log Ct.9

Denote by V∗
t the agent’s utility at t if the sequence of shocks {wc,t+h, wx,t+h}h≥1 in

consumption process (5) is revealed at t + 1, and by Vt the agent’s utility if uncertainty is
resolved over time. The timing premium is defined as

TPt = 1 − Vt

V∗
t

.

This represents the fraction of utility, or equivalently the fraction of lifetime consumption,
the agent is willing to forgo for an early rather than late resolution of uncertainty.10

Proposition 1 (Timing premium). An agent with the horizon-dependent risk aversion prefer-
ences of Definition 1 with ρ = 1, facing the consumption process (5) has timing premium

TP = 1 − exp

(
1
2

(
1 −

(
γ − (1 + β) (γ − γ̃)

)) β2

1 − β2

(
α2

c +

(
βϕc

1 − βνx

)2

α2
x

)
σ2

)
. (6)

Proof. See Appendix B.1.

9In Sections 4 and 5, we let the consumption volatility σ vary over time and consider ρ ̸= 1. Formal
derivations of the timing premium for the case with time varying volatility and ρ = 1 are in Appendix B.1;
the methodology under which we derive numerical estimates of the timing premium when ρ ̸= 1 is in
Appendix D.2.

10In following the analysis of Epstein et al. (2014) and assuming only two levels of risk aversionγ and γ̃, we
are implicitly mixing two comparisons: gradual resolution versus one-shot resolution and early resolution
versus late resolution. In addition, we are placing the early resolution at time t + 1, exactly in the period
where the risk aversion changes from γ to γ̃. We show in Appendix B.5 that the results of Proposition 1 and
Corollaries 1 and 2 are robust to (i) allowing for a general decreasing sequence of risk aversions {γh}∞

h=1
to show that the result is based on horizon-dependent risk aversion and not on a particular period and (ii)
comparing resolution of all uncertainty at t + 1 to resolution of all uncertainty at t + 2 to show that the
relevant comparison is between early and late resolution, not between gradual and one-shot resolution.
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Corollary 1. For an agent with horizon-dependent risk aversion, γ > γ̃ unambiguously lowers
the timing premium.

Proof. See Appendix B.2.

Choosing a consumption stream with an early resolution at date t + 1 rather than the
same consumption streamwith late resolutions at dates {t+ h}h≥1 corresponds to shifting
all future risk, short-term and long-term, to a single next-period risk. It thus matters for
the relative values of the two theoretical consumption streams, i.e. for the preference for
early or late resolution of uncertainty, that our model of horizon-dependent risk aversion
evaluates long-term riskswith a different risk aversion than short-term risks. Shifting risks
to an earlier horizon is subject to greater risk discounts and thus “costly” when γ > γ̃,
which lowers the value of early resolution of uncertainty relative to the standard model.11

3.2 Preference for early or late resolution of uncertainty?

An agentwith the standard Epstein-Zin preferences prefers early resolution of uncertainty
if and only if γ > ρ.12 This well known result is re-obtained in Proposition 1: when setting
γ = γ̃, the timing premium of Equation (6) is positive if and only if γ > 1 = ρ. However,
in the horizon-dependent risk aversion model, we obtain a higher threshold: the timing
premium is positive if and only if γ > 1 + (1 + β) (γ − γ̃) > 1 = ρ. The agent may
therefore have a preference for late resolution, even when both risk aversions γ and γ̃ are
greater than ρ = 1, as long as the decline in risk aversions across horizons is sufficiently
large. For example, suppose we set immediate risk aversion γ = 10 and β close to 1. Then
the inequality above shows that the agent will prefer early resolution of uncertainty only
if γ̃ > 5.5, which is substantially larger than 1 = ρ.

Corollary 2. An agent with horizon-dependent risk aversion can prefer late resolution of un-
certainty even when all coefficients of relative risk aversion exceed the inverse elasticity of inter-
temporal substitution, i.e. even when γ > γ̃ > ρ.

11In principle, the same argument could be made for other dynamically inconsistent models such as hy-
perbolic discounting. In Appendix B.4, we derive the timing premium under hyperbolic discounting where
γ̃ = γ but the value Vt uses time discount parameter β while the continuation value Ṽt+1 uses β̃ > β. We
show that the preference for early resolution of uncertainty still holds if and only if γ > ρ (as in the standard
model), and that the hyperbolic discounting has only a small quantitative effect. Under the calibration of
Bansal and Yaron (2004) with constant volatility, γ = 10 and ρ = 1, the timing premium only goes from
27% under β = β̃ = 0.998 to 22.5% under β = 0.8, β̃ = 0.998.

12To see why, note that in the case where all future shocks are revealed at t + 1, the shocks to consumption
from t + 2 onward are evaluated with the inverse elasticity of inter-temporal substitution ρ since they are
no longer uncertain; whereas, when shocks are revealed over time, variations in consumption from t + 2
onward are still risky at t + 1 and thus evaluated with risk aversion γ.

14



Proof. See Appendix B.3.

The result of Corollary 2 is of particular interest because existing calibrations of the
long-run risk model with Epstein-Zin preferences require γ greater than ρ by an order
of magnitude to match equilibrium asset pricing moments — hence the high timing pre-
mia they imply, and the critique of Epstein et al. (2014). Under horizon-dependent risk
aversion, γ ≫ ρ no longer automatically implies such a strong preference for early resolu-
tion of uncertainty. This is true even when the long-run risk aversion also remains above
the inverse elasticity of inter-temporal substitution, i.e. when γ̃ > ρ. Figure 1 plots the
timing premium for both horizon-dependent risk aversion and for standard Epstein-Zin
preferences, under the consumption calibration of Bansal et al. (2012) with time-varying
volatility. It illustrates the first-order impact that horizon-dependent risk aversion has on
the timing premium, and the potential for our model to address the critique of Epstein
et al. (2014).

We believe this result is key for several reasons. First, it is worth noting that the recur-
sive utility model has little microeconomic or experimental foundation, contrary to other
models of preferences commonly used in finance, e.g. habit (Campbell and Cochrane,
1999) or prospect theory (Barberis et al., 2001). Since the long-run risk model built its
success solely on its ability tomatchmacroeconomics evidence, microeconomic inferences
should be subject to scrutiny.

Second, we argue, in line with Epstein et al. (2014), that the magnitudes for the tim-
ing premia implied by calibrations of the long-run risk model with standard Epstein-Zin
preferences are excessive (30% in the calibration of Bansal and Yaron (2004), 85% un-
der Bansal et al. (2012)). There is no direct evidence on the “correct” values of timing
premia, by construction a purely theoretical question. However, the microeconomic evi-
dence indicates many individuals behave as if they prefer to delay receiving information
(see e.g. Oster et al. (2013) and Oster et al. (2013) in the health economics literature; and
Golman et al. (2017) for an extensive survey of such behaviors). Closer to our theoreti-
cal framework, investors’ inattention to their own wealth disputes the notion of a strong
preference for early resolution of consumption risk; even more so because the resulting
inertia in their portfolio allocations is costly to them (Brunnermeier and Nagel, 2008; Cal-
vet et al., 2009; Bilias et al., 2010; Andersen et al., 2020). Finally, more risk averse investors
are also found to be more inattentive (Karlsson et al., 2009; Alvarez et al., 2012; Sicherman
et al., 2016).13 This is inconsistent with the standard model: from Proposition 1 for the

13Andries and Haddad (2020) propose a model of information aversion that explains investors’ inatten-
tion in the data. Beshears et al. (2017) show that information aggregation increases risk taking only with
sufficiently large payoffs at sufficiently short horizons. This is consistentwith information aggregation effects
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case γ = γ̃ (Epstein-Zin preferences), the timing premium is strictly increasing in γ, cor-
responding to a stronger preference for early resolution of uncertainty, or less inattention
for the more risk averse investors. In contrast, our model is consistent with the evidence if
more risk averse investors also have more strongly horizon-dependent risk aversion (see
Proposition 1 for the respective roles of γ and γ − γ̃ in the timing premium).

Though circumstantial, the numerous examples abovemake themagnitude of the tim-
ing premia under the standard long-run riskmodel appear unreasonable. A representative
agent whose implied preferences appear contrary to commonsense considerations raises
doubts as to the legitimacy of the long-run risk model, despite its ability to match the
macroeconomic evidence on equilibrium asset prices.14

4 Asset prices

In Section 3, we analyze how an agentwith horizon-dependent risk aversionwould choose
between two information structures, one with and one without an early resolution of un-
certainty, while keeping fixed the consumption stream she receives. In this section, instead,
we keep fixed the information structure (shocks are revealed as they occur over time)
and let the agent consider investment choices that generate different future consumption
streams.While the timing premium is a static problem, investment choiceswhere financial
assets can be traded over time before their payoffs realize are by nature repeated dynamic
optimizations.

We consider an agent who trades off the utility cost of purchasing an asset at time t
from her current wealth Wt in exchange for the expected utility payoff from the result-
ing changes to her future wealth Wt+T, where T is the time interval after which she re-
optimizes and may choose to sell the asset. To derive the equilibrium risk prices deter-
mined by a representative agent with horizon-dependent risk aversion, we assume in Sec-
tions 4.1 and 4.2 that she re-optimizes every period (T = 1). However, in Section 4.3 we
also analyze how an agent who commits, or is constrained, to trade less frequently would
price risky assets (T > 1). As we show below, the time inconsistency in our agent’s risk
taking behavior results in crucial differences between the T = 1 and the T > 1 frame-
works.
being quantitatively relevant when risk aversion is sufficiently high (large payoffs and short horizon).

14Aggregation theorems for Epstein and Zin (1989) preferences indicate that if most individuals have low
or even negative timing premia, so would the marginal, representative, investor who sets prices (Duffie and
Lions, 1992).
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4.1 One-period risk pricing

We derive the marginal pricing of risk in a standard Lucas-tree endowment economy, in
which a representative agent with the horizon-dependent preferences of Definition 1 sets
equilibrium prices. All decisions are made in sequential one-period problems, where the
no-arbitrage condition is automatically satisfied despite the agent’s time inconsistent pref-
erences, similar to Luttmer and Mariotti (2003). As discussed in Section 2, we assume the
agent is sophisticated, i.e. aware of her own time inconsistency.

Proposition 2 (Stochastic discount factor). A sophisticated agent with the horizon-dependent
risk aversion preferences of Definition 1 has a one-period stochastic discount factor (SDF)

Πt,t+1 = β

(
Ct+1

Ct

)−ρ

︸ ︷︷ ︸
(I)

×

 Ṽt+1

Et
[
Ṽ1−γ

t+1

] 1
1−γ

ρ−γ

︸ ︷︷ ︸
(II)

×
(

Ṽt+1

Vt+1

)1−ρ

︸ ︷︷ ︸
(III)

. (7)

Proof. See Appendix C.1.

As is standard in the literature using the preferences of Epstein-Zin (e.g. Hansen et al.,
2007), our derivation of the SDF relies on a homogeneous value function.15 In the standard
endowment economy setting this is guaranteed by the homotheticity of preferences and
the linearity of “technology” (Epstein and Zin, 1989), i.e. the relevant constraints on the
agent’s optimization problem. While extra care has to be taken when contemplating fric-
tions such as transaction costs (Section 4.3), the existing literature shows ways to model
information and transaction costs while preserving the homogeneity of the value function
such that standard techniques remain valid (Duffie and Sun, 1990; Abel et al., 2007, 2013;
Alvarez et al., 2012; Andries and Haddad, 2020).

The SDF in Equation (7) consists of threemultiplicative parts. The first term (I) is stan-
dard, capturing the substitution between consumption at time t and at time t + 1, and is
governed by the time discount factor β and the elasticity of inter-temporal substitution
1/ρ. The second term (II) captures the shocks to the future consumption stream that are
realized at t + 1, comparing the ex-post realized utility Ṽt+1 to its ex-ante certainty equiv-
alent Et

[
Ṽ1−γ

t+1

] 1
1−γ . The SDF at time t evaluates these t + 1 shocks with immediate risk

aversion γ. An analogous term obtains under standard Epstein-Zin preferences with the
difference that, in our model, the t + 1 utility of self t (Ṽt+1) differs from that of self t + 1
(Vt+1). Finally, the third term (III) captures the dynamic inconsistency in our model by

15We thank an anonymous referee for pointing this out.
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loading on the disagreement between selves t and t + 1 when evaluating their t + 1 utili-
ties, given by the ratio Ṽt+1/Vt+1. Horizon-dependent risk aversion affects the pricing of
shocks through terms (II) and (III) in the stochastic discount factor of Equation (7), i.e.
via the difference between Ṽt+1 andVt+1; only term (I) is unchanged from the standard
long-run risk framework.

To model the macro-economic shocks that determine asset prices, we assume a log-
normal endowment consumption process in line with the long-run risk literature where
both the expected growth and uncertainty are time varying (e.g. Bansal and Yaron, 2004;
Bansal et al., 2012):

ct+1 − ct = µc + ϕcxt + αcσtwc,t+1

xt+1 = νxxt + αxσtwx,t+1 (8)
σ2

t+1 = σ2 + νσ

(
σ2

t − σ2
)
+ ασwσ,t+1

Both xt and σt are one dimensional, |νx| < 1 and |νσ| < 1, and the three shocks wc,t+1,
wx,t+1 and wσ,t+1 are i.i.d. N (0, 1) and orthogonal to each other.16

Before deriving the pricing of the shocks {wc,t, wx,t, wσ,t} under horizon-dependent
risk aversion, we briefly explain the role each shock plays in the long-run risk model. This
allows us to clarify the comparisons we draw later between the standard model and ours.

The consumption process (8) accounts for time variation in expected consumption
growth through the state variable xt and its shocks {wx,t}, in addition to the immedi-
ate consumption shocks captured by {wc,t}, i.e. each period’s deviations from the trend.
Both sets of shocks are consistent with direct evidence in consumption data (Hansen et al.,
2008). In addition, empirical analyses of cross-sectional asset returns demonstrate that the
shocks to xt are priced (Hansen et al., 2008; Bryzgalova et al., 2023) and help capture, in
particular, the value premium of Fama and French (1993). These results are the bedrock of
the long-run risk framework: they provide the foundation for combining expected growth
shocks in the consumption process (8) with preferences that can price them: the recursive
non time-separable utility model of Epstein-Zin in the standard approach.

Consumption process (8) also accounts for time variation in the volatility σt via the
shocks {wσ,t}. In contrast to the consumption level and growth shocks {wc,t} and {wx,t},
such volatility shocks are not easily observable in the data. They are, however, necessary
to generate time-varying risk premia and for the model to capture the volatility puzzle

16These assumptions can be generalized. We employ them here to make our results comparable to those
of Bansal and Yaron (2004) and Bansal et al. (2012).
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(Shiller, 1981).17
We now derive how horizon-dependent risk aversion affects the pricing of these con-

sumption shocks. As in the standard Epstein-Zin model, exact closed-form solutions only
obtain in the case ρ = 1. To analyze the impact of variations in the elasticity of inter-
temporal substitution 1/ρ on asset prices, we derive approximate solutions to the value
function of Definition 1 assuming β ≈ 1, i.e. for a rate of time discount close to zero; a rea-
sonable approximation at the monthly frequency.18 This approximation method, which
follows the methodology of Hansen (2012) and Hansen and Scheinkman (2012), deter-
mines the value function of Definition 1 up to a constant, thus allowing us to analyze eq-
uity premia but not risk-free assets.19 Our formal results under the approximation β ≈ 1,
provided below, are therefore strictly restricted to the analysis of excess returns, i.e. to the
pricing of risk.20

The approximate solutions for equity premia that we derive under β ≈ 1 are strictly
exact when ρ = 1, i.e. they are identical to the closed-form solutions that obtain in that
specific case.21 This result validates the β ≈ 1 methodology for the analysis of excess re-
turns. In addition, given that the dynamic inconsistency in our preference model concerns
only intra-temporal choices across risky assets, and not intertemporal decisions,we believe
the analysis of excess return is the correct approach: our results on equity premia should
capture most of the impact of horizon-dependent risk aversions on asset prices. In fact,
in the case ρ = 1 for which we derive closed-form solutions, the risk-free rate is strictly
unchanged by γ̃ ̸= γ;21 which validates the exclusive analysis of equity premia.

The resultswe derive remain valid as long as 1/ρ ≥ 1, γ ≥ 1, and γ̃ ≥ 1, an assumption
we maintain throughout Section 4 — a constraint the standard long-run risk model must
also satisfy to match asset pricing data.

From Proposition 2, the variable of interest in our analysis is the ratio Ṽt+1/Vt+1, i.e.
the wedge between the t + 1 value of self t and of self t + 1. Taking logs, we obtain:

17Just like the standard Epstein-Zin model, our framework allows for the analysis of additional shocks in
the consumption process (8), e.g. jumps. Drechsler and Yaron (2010) show such shocks help capture other
features in the data, notably the pricing of variance swaps and their ability to predict market equity returns
(Bollerslev et al., 2009).

18E.g. Bansal et al. (2012) use β = 0.9989. The description of the β ≈ 1 methodology is in Appendix C.2.
19Another approximation method we could consider is ρ ≈ 1 (see e.g. Hansen et al., 2007). However, in

Appendix C.9, we solve our model in closed-form for the case ρ = 1, and find that calibrating the short-
horizon risk aversion γ and the long-horizon risk aversion γ̃ to capture the equity premium generates term-
structure results inconsistent with the data, as well as unrealistically strong preferences for late resolution
of uncertainty. These results (see Table 4 in Appendix C.9) indicate that our model is not well calibrated
around ρ ≈ 1.

20The timing premium of Section 3 is derived under the calibration β = 0.9989 of Bansal et al. (2012).
Only equity premia are analyzed under the approximation β ≈ 1.

21See Appendix C.9.
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Lemma 1. Under the Lucas-tree endowment process (8) and the preferences of Definition 1 with
β ≈ 1,

ṽt+1 − vt+1 =
1
2
(γ − γ̃)

((
α2

c + ϕ2
vα2

x

)
σ2

t+1 + ψv(γ̃)
2 α2

σ

)
> 0, (9)

where ϕv is independent of both γ and γ̃, and ψv(γ̃) is independent of γ:

ϕv =
ϕc

1 − νx
> 0, (10)

ψv(γ̃) = −1
2

γ̃ − 1
1 − νσ

(
α2

c + ϕ2
vα2

x

)
< 0. (11)

Proof. See Appendix C.2.

The wedge in Equation (9) reflects that the t + 1 value of self t and of self t + 1 only
differ in their valuation of uncertain consumption starting from t + 2 onward, which is
governed by volatility σt+1. Self t evaluates this uncertainty with low risk aversion γ̃ while
self t+ 1 evaluates it with high risk aversion γ. Thewedge ṽt+1 − vt+1 is therefore positive,
and increasing in γ − γ̃ and in the amount of uncertainty driven by volatility σt+1.

From terms (II) and (III) in the stochastic discount factor (7), horizon-dependent risk
aversion affects only the pricing of shocks that correlatewith variations in the ratio Ṽt+1/Vt+1,
and therefore with variations in σt+1. From Lemma 1, we derive the result:

Proposition 3. Under the Lucas-tree endowment process (8), horizon-dependent risk aversion
does not affect the equilibrium risk prices of shocks to consumption levels (immediate consumption
shocks and consumption growth shocks).

Proof. See Appendix C.3.

If the agent faced only consumption level shocks, she could anticipate how her future
self re-optimizes, and her time inconsistency would not cause additional uncertainty in
her one-period decision making. Only unanticipated changes in her intra-temporal deci-
sions, when the quantity of risk varies through time, interact with her time inconsistency
to modify asset prices compared to the time consistent model.

Let us now turn to the pricing of all shocks, including shocks to volatility σt. From
Lemma 1 we obtain:

Proposition 4. Under the Lucas-tree endowment process (8) and the preferences of Definition 1
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with β ≈ 1, the stochastic discount factor satisfies

πt,t+1 − Et[πt,t+1] = −γαcσtwc,t+1 − (γ − ρ) ϕvαxσtwx,t+1

+

[
(γ − ρ) + (1 − ρ) (γ − γ̃)

1 − νσ

γ̃ − 1

] ∣∣ψv(γ̃)
∣∣ ασwσ,t+1. (12)

Proof. See Appendix C.3.

In line with Proposition 3, we find that the pricing of the immediate consumption
shocks, given by the term γαcσtwc,t+1, and the pricing of the consumption growth shocks,
given by the term (γ − ρ) ϕvαxσtwx,t+1, depend only on the immediate risk aversion γ and
are unchanged from the standard long-run riskmodel. In contrast, the pricing of shocks to
consumption volatility is affected by horizon-dependent risk aversion and Equations (11)
and (12) imply the following result.
Corollary 3. Under the Lucas-tree endowment process (8) and the preferences of Definition 1 with
β ≈ 1, the volatility shocks have lower risk prices (in absolute magnitude) than in the standard
model with γ = γ̃:[

(γ − ρ) + (1 − ρ) (γ − γ̃)
1 − νσ

γ̃ − 1

] ∣∣ψv(γ̃)
∣∣ < (γ − ρ)

∣∣ψv(γ)
∣∣ . (13)

Proof. See Appendix C.4.

Our model yields a negative price for volatility shocks: assets with payoffs that covary
with aggregate volatility provide valuable insurance, consistent with the existing long-
run risk literature and the observed evidence from variance swaps and option straddles
returns (see e.g. Christoffersen et al., 2013). However, shocks to volatility make future
intra-temporal decisions uncertain and, for this reason, how risky they are depends on
horizon-dependent risk aversions. Due to the lower long-run risk aversion γ̃ < γ, their
implied long-run uncertainty does not “feel” as costly, which reduces the value of hedges
against volatility shocks.

The pricing of shocks to consumption levels, i.e. to Ct+1/Ct and to xt, allows the stan-
dard long-run risk model to match the market equity premium and the value premium,
even when assuming volatility is constant in process (8) (see e.g. Bansal and Yaron, 2004;
Hansen et al., 2008). From Proposition 3, the pricing of these shocks is exactly the same
under horizon-dependent risk aversion.

The pricing of shocks to consumption volatility in process (8) allows the standard
long-run risk model to obtain time-varying risk premia which, in turn, explain the mar-
ket volatility puzzle and the predictability of the index price-dividend ratio. Proposition 4
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shows that time variation in risk premia arises, both in the standard model and in ours,
from the pricing of the consumption level shocks and not from the pricing of consumption
volatility shocks. Time-varying risk premia resulting from time-varying volatility thus re-
main unchanged by the introduction of horizon-dependent risk aversion.

In sum, the preference model of Definition 1 with horizon-dependent risk aversion
retains the ability of the standard model to match the market equity premium and the
value premium, and to explain the volatility puzzle and the predictability puzzle. We can
therefore focus our analysis on how the lower pricing of volatility risk under horizon-
dependent risk aversion affects the relative consumption risk contributions to the equity
premium (macro-announcement premium in Section 4.2) and the term-structure of equity
risk premia (in Section 4.3).

4.2 Market returns

In line with Bansal and Yaron (2004); Bansal et al. (2012), we model the dividend growth
process as

dt+1 − dt = µd + ϕdxt + χαcσtwc,t+1 + αdσtwd,t+1, (14)

where dt = log Dt, and the shockswd,t are i.i.d.N (0, 1) and orthogonal to the consumption
shocks wc,t, wx,t and wσ,t of process (8). The coefficient ϕd captures the link between the
mean consumption growth and themean dividend growth, and χ the correlation between
immediate consumption and dividend shocks in the business cycle.

As in Section 4.1, we assume a representative agent with the preferences of Definition 1
trades and clears the market every period, and thus cannot commit to any pre-determined
strategy.

4.2.1 Equity premium

The equity premium is defined as EPt = log EtRm,t+1 − log R f ,t, ∀t, where {Rm,t} are the
market returns and {R f ,t} the time-varying risk-free rate. We follow the standard log-
linearization method to formally derive the equity premium, i.e. a first-order approxima-
tion around the average log price dividend ratio p − d.

Proposition 5 (Equity Premium). Under the Lucas-tree endowment process (8), the dividend
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process (14), and the preferences of Definition 1 with β ≈ 1, the equity premium at time t is

EPt = γχα2
c σ2

t + (γ − ρ) ϕvλm,xα2
xσ2

t

+

[
(γ − ρ) + (1 − ρ) (γ − γ̃)

1 − νσ

γ̃ − 1

] ∣∣ψv(γ̃)
∣∣ λm,σ (γ, γ̃) α2

σ. (15)

λm,x is the market’s loading on {wx,t} and −λm,σ(γ, γ̃) its loading on {wσ,t}:
λm,x = κ

1−κνx
(ϕd − ρϕc)

λm,σ(γ, γ̃) = 1
2

κ
1−κνσ

×


(
(γ − 1) (γ − ρ)− (1 − ρ) (γ − γ̃) νσ

) (
α2

c + ϕ2
vα2

x
)

−
(
(γ − χ)2 α2

c + ((γ − ρ) ϕv − λm,x)
2 α2

x + α2
d

) ,

where κ =
exp(p−d)

1+exp(p−d)
, such that λm,σ(γ, γ̃) < λm,σ(γ, γ) when γ > γ̃.

Proof. See Appendix C.5.

The first term in Equation (15), γχα2
c σ2

t , is the share of the equity premium coming
from the market returns’ loading χ on the immediate consumption shocks {wc,t}; the sec-
ond term, (γ − ρ) ϕvλm,xα2

xσ2
t , is the share coming from the market returns’ loading λm,x

on the consumption growth shocks {wx,t}. Propositions 4 and 5 show that both themodel-
implied covariations of market returns with these consumption level shocks and the pric-
ing of these shocks are unchanged by horizon-dependent risk aversion.

The third term inEquation (15),
[
(γ − ρ) + (1 − ρ) (γ − γ̃) 1−νσ

γ̃−1

] ∣∣ψv(γ̃)
∣∣ λm,σ (γ, γ̃) α2

σ,
is the share of the equity premium coming from the market returns’ loading −λm,σ (γ, γ̃)

on the consumption volatility shocks {wσ,t}. Corollary 3 shows that horizon-dependent
risk aversion with γ > γ̃ generates a lower price of volatility risk (in absolute magni-
tude). Proposition 5 shows further that, under horizon-dependent risk aversion, market
returns covary less (in absolute terms) with volatility shocks: λm,σ (γ, γ̃) < λm,σ (γ, γ).
Combined, these two results imply that horizon-dependent risk aversion unambiguously
reduces the contribution of consumption volatility shocks to the equity premium.

4.2.2 Macroeconomic announcement premium

The contribution of each of the shocks in process (8) to the equity premium has direct
implications on how to interpret the evidence on the macroeconomic announcement pre-
mium. The literature documents large returns on equities around pre-scheduled macroe-
conomic news releases. Savor and Wilson (2013) consider three kinds of announcements
(inflation, labor market, and Federal Open Market Committee (FOMC) meetings) from
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1958 to 2009 and find that the average excess returns on U.S. equities on the announce-
ment days account for over 60% of the annual equity premium in their sample. Lucca and
Moench (2015) find excess returns of about 50% on and around FOMC announcements
in the 1980 to 2011 period. Ai and Bansal (2018) extend their analysis to five kinds of an-
nouncements (those of Savor andWilson (2013) plus releases of GDP data and of the ISM
manufacturing report), covering about 30 days per year in their sample (1961 to 2014),
and find the average excess returns on macroeconomic announcement days account for
55% of the equity premium.

Most macroeconnomic announcements (e.g. inflation, FOMCmeetings) are not direct
signals about the consumption shocks as we model them in process (8). The announce-
ments however, such asmonetary policy, may be influenced by expectations about growth
and uncertainty, and, as such, are informative about the risks we consider in our frame-
work. E.g. Cieslak and Pang (2021) study the channels throughwhich the Fed affects asset
prices (bonds and stocks), and find risk premium shocks generate nearly 70% of the aver-
age FOMC-day increase in stock returns, while monetary easing shocks account for only
25%. Accordingly, Ai and Bansal (2018) formalize themacroeconomic announcement pre-
mium as reflecting all information about the next-period continuation value that is not im-
mediately revealed in consumption, corresponding to the shocks {wx,t} and {wσ,t} in our
framework. Ai et al. (2021) instead propose a production economy model in which the
macroeconomic announcement premium captures information on productivity growth
shocks, similar to the consumption growth shocks {wx,t} in process (8).22 We take an
agnostic approach and use estimates of the macroeconomic announcement premium to
provide bounds on the relative contributions of the immediate consumption shocks, of
the consumption growth shocks and of the volatility shocks. We then use these bounds to
discipline the calibration of our model in Section 5.

If we assume that macroeconomic announcements reveal only information about con-
sumption growth, then Proposition 5 implies that the calibration of ourmodelmust satisfy

EP − [EP]αx=0

EP
≈ (γ − ρ) ϕvλm,xα2

xσ2

E[EPt]
≥ MAP, (16)

where MAP is the macro-announcement premium, EP = log ERm,t+1 − log ER f ,t is the
unconditional equity premium, and [EP]αx=0 is the unconditional equity premium in an
economy with no consumption growth risk.23 The inequality in (16) captures that infor-

22Ai et al. (2021) do not model variations in consumption volatility and the comparison to our economy
is not exact. Wachter and Zhu (2022) propose a model where macroeconomic announcements reduce the
uncertainty of disaster risks, orthogonal to the shocks we consider.

23The formal solutions for EP and [EP]αx=0 and [EP]αx=0,ασ=0 are provided in Appendix C.5. The relation
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mation about the consumption growth shocks {wx,t} may also arrive on days other than
those used to calculate the macroeconomic announcement premium, so the contribution
to the equity premium of the pricing of these shocks must exceed the share of 55% esti-
mated in Ai et al. (2018).

If, instead, we assume that macroeconomic announcements also reveal information
about future consumption volatility, then we obtain the less constraining bound

EP − [EP]αx=0,ασ=0

EP

≈
(γ − ρ) ϕvλm,xα2

xσ2 +
[
(γ − ρ) + (1 − ρ) (γ − γ̃) 1−νσ

γ̃−1

] ∣∣ψv(γ̃)
∣∣ λm,σ (γ, γ̃) α2

σ

E [EPt]

≥ MAP, (17)

where [EP]αx=0,ασ=0 is the unconditional equity premium in an economy with no con-
sumption growth or volatility risk.23

Satisfying inequality (17) is relatively easy in calibrations of the standard long-run
risk model where consumption volatility shocks command a high risk premium. How-
ever, by reducing the relative contribution of the consumption growth shocks, such cal-
ibrations automatically make satisfying inequality (16) more difficult. They require that
macroeconomic announcements be interpreted as providing information about consump-
tion volatility rather than consumption growth, to explain the evidence in the data.

FromEquations (16) and (17), satisfying themacroeconomic announcement premium
bounds in the standardmodelwith γ̃ = γ depends entirely on thewedge γ− ρ, which also
determines the timing premium under the preferences of Epstein-Zin (as shown in Sec-
tion 3). In response to the critique of Epstein et al. (2014), Ai and Bansal (2018) therefore
argue that the high macroeconomic announcement premium in the data can be viewed as
evidence of a strong preference for early resolutions of uncertainty. Allowing for horizon-
dependent risk aversion with γ > γ̃ helps decouple microeconomic interpretations re-
garding the preference for early or late resolution from the evidence on themacroeconomic
announcement premium by strictly lowering the timing premium (Corollary 1) while in-
creasing the contribution of the consumption growth shocks to the equity premium. As
we show in our calibration of Section 5, matching the equity premiumwhile satisfying the
macroeconomic announcement premium bounds no longer implies a strong preference
for early resolution of uncertainty.
in Equations (16) and (17) is approximate because E[EPt] does not account for the Jensen terms in the
unconditional equity premium EP.
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4.3 Term-structure of equity returns

We turn to the implications of horizon-dependent risk aversion for the term-structure of
equity risk pricing, both its average slope and its time variation. This analysis is crucial
to determine how our model differs from, and may improve upon, the standard long-run
risk framework in capturing asset prices in the data.

In linewith the specification of van Binsbergen andKoijen (2017) andGormsen (2021),
we consider one-period holding returns for dividend strip futures with maturity h, real-
ized at t + 1 as

RF
t+1,h =

Pt+1,h−1/Pt,h

Bt+1,h−1/Bt,h
, ∀h ≥ 1,

where, at any time t, Pt,h is the price of an asset that pays the dividend Dt+h in h ≥ 1
periods, Bt,h is the price of a risk-free bond that pays $1 in h ≥ 1 periods; and Pt,0 = Dt,
Bt,0 = $1.

4.3.1 Liquid markets, one period pricing

We first assume that prices are set by a representative agent who trades and clears the
market every period, as in Sections 4.1 and 4.2.

Proposition 6 (One-period pricing of dividend strip futures). Assuming one-period pric-
ing, the expected returns and Sharpe ratios of dividend strip futures under the Lucas-tree endow-
ment process (8), the dividend process (14), and the preferences of Definition 1 with β ≈ 1, are
determined, for any time t and maturity h ≥ 1 as

log Et

[
RF

t+1,h

]
= ϕhσ2

t +
(
ah − (γ − γ̃) bh

)
ψhα2

σ, (18)

SRt

(
RF

t+1,h

)
=

1 − 1
/

Et

[
RF

t+1,h

]
√

exp
(
Φhσ2

t + ψ2
hα2

σ

)
− 1

, (19)

where 
ϕh = γχα2

c +
(γ−ρνh−1

x )(1−νh−1
x )

(1−νx)
2 ϕcϕdα2

x > 0

Φh = χ2α2
c +

(
1−νh−1

x
1−νx

)2
ϕ2

dα2
x + α2

d

ah > ah − (γ − γ̃) bh > 0

(20)

and coefficients {ψh, ah, bh} vary with the maturity h and the preference parameters {γ, ρ} but not
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with γ̃ (see Appendix C.6 for the closed-from solutions for {ψh, ah, bh}).

Proof. See Appendix C.6.

In the term-structure of equity risk pricing of Equation (18), the first term ϕhσ2
t rep-

resents the pricing of the dividend strip futures’ loadings on the immediate consumption
shocks αcσtwc,t and on the consumption growth shocks αxσtwx,t. From Equation (20), ϕh

is unambiguously positive and increasing such that ϕhσ2
t in Equation (18) contributes to-

wards an upward sloping term-structure of equity risk premia. This is consistent with the
notion of long-run risk: with riskier long-horizon assets equity risk premia are increasing
in the standard model. As in our previous results, the pricing of the consumption level
shocks is unaffected by horizon-dependent risk aversion so the long-run risk “push” to-
wards an upward sloping term-structure of equity premia remains.

The second term (ah − (γ − γ̃) bh)ψhα2
σ in Equation (18) corresponds to the pricing of

the dividend futures’ loading on the volatility shocks ασwσ,t. In contrast to the first term
ϕhσ2

t , and similar to our previous results, horizon-dependent risk aversion with γ > γ̃ un-
ambiguously reduces the pricing of volatility shocks (in absolute value) compared to the
standard long-run risk model: from ah > ah − (γ − γ̃) bh > 0 in Equation (20), we obtain(

ah − (γ − γ̃) bh
)
|ψh| α2

σ < ah |ψh| α2
σ for all h. Calibrations of the consumption process (8),

dividend process (14), and preference parameters {γ, ρ} under which ψh is positive and
increasing thus imply that horizon-dependent risk aversion with γ > γ̃ generates a flatter
term-structure of equity risk prices compared to the standard long-run risk model, albeit
still an increasing one. As we show in Section 5, this is what we obtain in the calibration
of Bansal et al. (2012).

In the Sharpe ratios of Equation (19), the standard deviation of dividend strip futures’
returns at a given horizon h (the denominator in Equation (19)) is unaffected by thewedge
γ > γ̃. Given Φh positive and increasing (see Equation (20)), as is ψh in usual calibra-
tion of the long-run risk model (e.g. Bansal et al. (2012)), dividend strip future returns
are increasingly volatile at longer horizons. Combined with the flatter slope for the term-
structure of expected returns, horizon-dependent risk aversion unambiguously results in
a lower slope, and potentially a downward sloping term-structure of equity Sharpe ra-
tios. This is what we obtain at medium to long-horizon for some calibrations of γ > γ̃ in
Section 5.

Proposition 7 (Term-structure dynamics). Under the conditions of Proposition 6, the slope of
the term-structure of dividend strip futures’ expected returns varies with the index price-dividend
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ratio according to

cov
(

log Et

[
RF

t+1,h

]
, log

Pt

Dt

)
= −ϕh

λm,σ(γ, γ̃)

κ

α2
σ

1 − ν2
σ

, ∀h ≥ 1, (21)

where λm,σ(γ, γ̃) /κ is defined in Proposition 5 and ϕh in Proposition 6.

Proof. See Appendix C.7.

From Equation (18), the only source of time-series variations in the expected returns
of dividend strip futures at horizon h comes from their loading ϕh on the time varying
consumption volatility σ2

t , where ϕh is positive and increasing in h. Since the market index
dynamics also load on the consumption volatility σ2

t , via the term λm,σ(γ, γ̃) in Proposi-
tion 5, Equation (21) obtains. Periods of high consumption volatility correspond to a lower
index value relative to dividends, but to a steeper slope for the term-structure of expected
dividend strip returns, resulting in a negative relation in Equation (21).

This result is consistentwith the empirical evidence inGormsen (2021), who shows the
term-structure is counter-cyclical: more upward sloping in “bad” times, when the index
price level is relatively low.24

4.3.2 Illiquid markets, buy-and-hold pricing

The results of Propositions 6 and 7 report equilibriumasset prices under the representative
agent assumption and the one-period trading paradigm, analogous to our analysis of in-
dex returns in Proposition 5. However, the assets via which we derive the term-structure
of equity risk premia — dividend strip futures with increasing maturities h ≥ 1 — are
traded in markets considerably less liquid and transparent than the index returns (Bansal
et al., 2021). In general, it is sub-optimal to trade every period when facing transaction
costs and/or information costs (see e.g. Duffie and Sun, 1990; Abel et al., 2007, 2013; Al-
varez et al., 2012; Andries and Haddad, 2020), a theoretical result that is consistent with
the low frequencies of investor trading in the data (e.g. once a year in Sicherman et al.,
2016).

24Because λm,σ(γ, γ̃) < λm,σ(γ, γ), the covariation in Equation (21) is lower, in absolute value, than un-
der the standard model. Gormsen (2021), however, analyzes the regression of future returns on the current
dividend-price ratio, corresponding in ourmodel to log Et

[
RF

t+1,h

]
regressed on log Dt

Pt
, for which the β load-

ings are derived in Appendix C.7, and their magnitude when γ > γ̃ relative to γ = γ̃ is ambiguous. Figure 7
displays the term-structures of {βh} for the calibrations of {γ, γ̃}we consider in Section 5. Though themodel
generates lower covariationswith the index dividend-price ratio than the point estimates inGormsen (2021),
they remain within their 95% confidence intervals.
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Infrequent trading, whether for illiquid assets or during periods of high overall mar-
ket illiquidity, may affect pricing under horizon-dependent risk aversion due to the pref-
erences’ time inconsistency.25 Taking Propositions 6 and 7 directly to the data, without
allowing for potential deviations from the one-period framework, would then be incor-
rect under certain market conditions. To address this issue, we consider the case of an
investor who, when valuing an asset with payoff at maturity h, assumes she will hold on
to it until maturity, thus avoiding all transaction and/or information costs:

Proposition 8 (Term-structure of equity returns in illiquidmarkets). Assuming prices are
set by buy-and-hold strategies, the slope of the term-structure of dividend strip futures’ expected
returns under the Lucas-tree endowment process (8), the dividend process (14), and the preferences
of Definition 1 with β ≈ 1, calculated at σt = σ satisfies

lim
h→∞

(
log Et

[
RF

t+1,h

]
− log Et

[
RF

t+1,1

])
= − (γ − γ̃) χα2

c σ2 + γ̃ϕcϕd

(
αx

1 − νx

)2

σ2 + Ψ(γ̃)

(
ασ

1 − νσ

)2

, (22)

where

Ψ(γ̃) =
1
8

(γ̃2α2
c + γ̃2ϕ2

c

(
αx

1 − νx

)2
)2

−
(
(γ̃ − χ)2 α2

c + (γ̃ϕc − ϕd)
2
(

αx

1 − νx

)2
)2
 .

Proof. See Appendix C.8.

Equation (22) determines the limit slope of the term-structure of equity risk premia:
the difference between the infinite-horizon and the next-horizon dividend strip futures’
expected returns.

The second and third terms in Equation (22), γ̃ϕcϕd

(
αx

1−νx

)2
σ2 and Ψ(γ̃)

(
ασ

1−νσ

)2
, cor-

respond to the limit slope under the standard long-run risk model, calculated with long-
term risk aversion γ̃. Since the long-term assets are valued under buy-and-hold strategies
in Proposition 8, they are priced via their corresponding horizon-dependent risk aversion
γ̃. As in the standard model, these two terms contribute to higher expected returns in the
long-run, i.e. an upward sloping price of equity risk, albeit less so if γ̃ is low.

25The effects are in addition to the risk premium directly attributable to liquidity constraints (e.g. Acharya
and Pedersen, 2005; Lee, 2011; Muir, 2017). See also Duffie (2010) and Tirole (2011) for surveys of the lit-
erature on liquidity. Our approach here is complementary since our focus is on how illiquidity, in the form
of low trading frequencies, affects the term-structure of risk premia in the presence of time inconsistent
preferences.
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The first term in Equation (22), − (γ − γ̃) χα2
c σ2, captures the impact of the horizon-

dependent risk aversion model: γ > γ̃ unambiguously pushes the pricing of next-horizon
equity risk up relative to the long-horizon, so the term-structure may become downward
sloping.26

Proposition 8 therefore formalizes the intuition that time inconsistency in investors’
risk aversion affects asset valuations more if choices are less dynamic. For buy-and-hold
investors, the relation between horizon-dependent risk aversion and horizon-dependent
risk premia becomes tight: since long-horizon asset are priced via the low long-horizon
risk aversion, they can require overall lower risk compensation than short-horizon assets
despite their higher outright long-run risk.

We acknowledge that the partial equilibrium results of Proposition 8 are not directly
comparable, without a fully-fledged model for the market clearing conditions of illiquid
assets, to the general equilibrium risk pricing of Propositions 5, 6 and 7 derived for a rep-
resentative agent in the one-period framework. However, we appeal to the growing liter-
ature that establishes that households’ demand influences general equilibrium outcomes
and therefore affects prices, in particular via intermediaries holdings (He and Krishna-
murthy, 2013; Koijen and Yogo, 2019; Haddad and Muir, 2021), to take the limit result of
Equation (22) to the data in Section 5; and verify that horizon-dependent risk aversion
interacting with time-varying market liquidity induces dynamics in the term-structure of
risk pricing consistent with the observed evidence.

5 Data and model calibration

We assess howwell the horizon-dependent risk aversionmodel fits the data and its poten-
tial to explain the documented puzzles on the slope and dynamics of the term-structure
of equity risk premia, while implying a reasonable timing premium.

To highlight how the horizon-dependent risk aversion model of Definition 1, rather
than changes in the calibration for the endowment process, affects prices, we calibrate the
consumption processes (8) and the dividend growth processes (14) strictly as in Bansal
et al. (2012) (see Table 1). Bansal et al. (2012) document that their calibration matches the
evidence on consumption and dividend growth dynamics.

Given the calibration of Table 1, and the approximation β ≈ 1 under which the formal
results of Section 4 are derived, our remaining choice variables to calibrate asset prices are
the preference parameters {ρ, γ, γ̃}.

26The limit result of Equation (22) for the case σt ̸= σ is provided in Appendix C.8. Whether σt > σ
induces a steeper downward sloping term-structure depends on the parameters of the model.
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To determine the impact of the elasticity of intertemporal substitution EIS = 1/ρ on as-
set prices, we consider ρ = 1/2 and ρ = 1/1.5, standard in the asset pricing literature.27 In
our choice of the long-term risk aversion γ̃, we consider the case γ̃ = 2, a level of risk aver-
sion common in the microeconomic literature; and γ̃ = 1, corresponding to the strongest
departure of our horizon-dependent risk aversion model from the standard framework.
For each {ρ, γ̃} pair, we choose the short-term risk aversion γ so as to match the equity
premia (dividend strip futures returns) in the data.

The calibration results are in Table 2. Column (1) provides the estimates in the data for
the moments we consider (discussed below). Column (2) provides the results under the
standard long-run risk framework in the calibration of Bansal et al. (2012). Columns (3)
and (4) provide the results of our horizon-dependent risk aversion model for the case
ρ = 1/2, and γ̃ = 2 (Column (3)) and γ̃ = 1 (Column (4)). Finally, Columns (5) and (6)
provide the equivalent results for ρ = 1/1.5.

As we discuss in more detail below, the horizon-dependent risk aversion model fits
the slopes of the term-structure data quite well. To illustrate these results, we display the
slopes of the dividend strip unconditional expected excess returns (Figure 2) and Sharpe
ratios (Figure 3), as well as the slope of the forward equity yields during normal times
(Figure 4) and in recessions (Figure 5), for the calibrations of Table 2. The calibration of
the standard long-run risk model is also displayed, in a dotted black line, alongside the
results of the horizon-dependent risk aversion model. Figures 2, 3, 4 and 5 make readily
apparent how horizon-dependent risk aversion improves on the standard long-run risk
model at capturing the evidence, both in normal times and in recessions.

5.1 Data and interpretation of individual results

We discuss below the data sources we use and the interpretation of our results, with an
emphasis on the term-structure results, our core contribution in the matching of asset
pricing data:

5.1.1 Timing premium

As discussed in Section 3, there is no clear estimate in the data to which to compare the
timing premium we formally derived in Proposition 1. However, the micro evidence on
attitudes towards information, as well as commonsense considerations, suggest that the
timing premium should be close to zero. From Figure 1, horizon-dependent risk aver-

27As we show in Table 2 and in Appendix Table 4, lower (higher) EIS (ρ) parameters would fit the data
more poorly.
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sion can generate a wide range of timing premia, and the larger the wedge between γ

and γ̃ the lower the timing premium, including preferences for late resolution of uncer-
tainty. This is what we obtain in Table 2, with a timing premium as low as −42% for
γ̃ = 1, γ = 14, ρ = 1/1.5 (Column (6)), an unrealistic preference against early informa-
tion.28 At the other extreme, in line with Epstein et al. (2014) and the results of Section 3,
we find that the standard long-run risk model generates an unrealistically high timing
premium of 85% (Column (2)). In contrast, the horizon-dependent risk aversion model
under the calibration γ̃ = 2, γ = 11, ρ = 1/2 of Column (3) generates a realistic tim-
ing premium of 1%, corresponding to a slight preference for early resolution. Given that
γ̃ = 2, γ = 11, ρ = 1/2 also captures the asset pricing evidence, as discussed below, it
offers a clear resolution to the puzzle of Epstein et al. (2014).

5.1.2 Equity premium

The formal solution for the conditional market equity premium is in Proposition 5. To take
it to the data, we derive its unconditional counterpart in Appendix C.5. We compare it to
the estimate, obtained for the 1930–2008 period, in Bansal et al. (2012), and to their cali-
brated equity premium in Column (2). Our calibrated equity premium is close to Bansal
et al. (2012) (between 5.4% and 5.7% versus 6.6%) and their data estimate (6.8%). This is
achieved while keeping the immediate risk aversion γ as low as possible: γ = 11 in the
calibration with γ̃ = 2 and ρ = 1/2 (Column (3)), versus γ = 10 in the standard model.

5.1.3 Macro announcement premium

In Section 4.2, we describe how the evidence on the macro-announcement premium pro-
vides lower bounds on the relative contributions of the different consumption shocks to
the equity premium. The two bounds — the contribution of the consumption growth
shocks for the first bound, and the contribution of both the consumption growth shocks
and the consumption volatility shocks for the second bound — are formally derived in
Appendix C.5; and compared to the macro-announcement premium estimate in the data
of Ai et al. (2018).29 In all the calibrations of horizon-dependent risk aversion in Table 2,
80% or more of the macro-announcement premium can be explained via the signals on
the consumption growth shocks {wx,t} provided on announcement days. In contrast, in
the standard long-run risk model in the calibration of Bansal et al. (2012), more than 40%

28The results for ρ ̸= 1 in Table 2 are numerically derived, under the procedure described inAppendixD.2.
29As discussed in Section 4.2, other estimates of the macro-announcement premium in the literature yield

similar results.
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of the macro-announcement premium is explained via the pricing of the consumption
volatility shocks {wσ,t}.

5.1.4 Term structure of equity premia

To take our term-structure results to the data, we use the 1973–2020 time series of monthly
dividend strip prices, for maturities 1 year to 15 years, in Giglio et al. (2023). In line with
Giglio et al. (2023), we distinguish periods of “normal times”, wherewe remove from their
1973–2020 sample all NBER recession months; and periods of “recessions” corresponding
to the NBER recession months in their 1973–2020 sample. We consider the NBER reces-
sions as proxy-periods of liquidity break-downs, in line with the evidence in Pedersen
(2009), Brunnermeier (2009), and Bansal et al. (2021) for the Great Financial Crisis; corre-
sponding to the formal framework of Section 4.3.2, where prices are set by an investor who
uses buy-and-hold strategies. By contrast, the “normal times” periods of liquid markets
correspond to the one-period trading standard approach of Section 4.3.1.

In Proposition 6, the conditional expected excess returns of dividend strip futures with
monthly maturities h ≥ 1 are derived for a representative agent who trades and clears the
market every period, i.e. for “normal times”.30 In Proposition 8, we formally derive the
limit slope of the term-structure as the expected return of the infinite-horizon versus the
next-month dividend strip futures when prices are set by an investor who uses buy-and-
hold strategies, i.e. for “recessions”. Both sets of formal results are based on closed-form
solutions for the pricing of dividend strip futures at monthly horizons, from which we
obtain the annual dividend strip counterparts and the formal moments of Table 2.31

Unconditional excess returns (Table 2 and Figures 2 and 3). In line with the specifica-
tion of Section 4.3, we estimate from the data and calibrate the one-period holding returns
for the dividend strip future with annual maturity h

RF
t+1,h =

Pt+1,h−1/Pt,h

Bt+1,h−1/Bt,h
, ∀h ≥ 2,

where, at any time t, Pt,h is the price of an asset that pays the annual dividend Dt+h in h ≥ 1
years, Bt,h is the price of a risk-free bond that pays $1 in h ≥ 1 years, and t + 1 corresponds
to t plus 1 year. To estimate the unconditional expected excess returns and Sharpe ratios,
we use the sample averages from the data of Giglio et al. (2023), using their entire 1973–

30We derive the corresponding unconditional returns in Appendix C.6
31See Appendix D.1 for details.
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2020 sample.32 For the model counterpart calibrations we use the returns obtained for
“normal times” (the one-period framework of Section 4.3.1) and “recessions” (the buy-
and-hold framework of Section 4.3.2) in same proportion as in the 1973–2020 sample.31

As seen in Figures 2 and 3, as well as in Table 2, the shape of the slowly upward
sloping expected excess returns (Figure 2) and Sharpe ratios (Figure 3) are well cap-
tured by the horizon-dependent risk aversion model. For example, comparing the cali-
bration γ̃ = 2, γ = 11, ρ = 1/2 in Column (3) to the data in Column (1), we obtain:
log E

[
RF

5
]
− log E

[
RF

2
]
= 1.4% and log E

[
RF

15
]
− log E

[
RF

5
]
= 2.6% in the data versus

1.9% and 2.1% for the horizon-dependent risk aversion model; SR
[
RF

5
]
− SR

[
RF

2
]
= 0.08

and SR
[
RF

15
]
− SR

[
RF

5
]
= 0.09 in the data versus 0.08 and 0.06 for the horizon-dependent

risk aversion model. In contrast, the standard long-run risk model of Column (2) gen-
erates excessively steep slopes: log E

[
RF

15
]
− log E

[
RF

5
]
= 8.7% versus 2.6% in the data;

SR
[
RF

15
]
− SR

[
RF

5
]
= 0.29 versus 0.09 in the data.

The horizon-dependent risk aversion model overestimates the expected excess return
levels compared to the unconditional estimates: log E

[
RF

5
]
= 4.8% in Column (3) versus

2.3% in the data (and 5.7% in the long-run risk calibration of Bansal et al. (2012) in Col-
umn (2)). We note, however, that our calibrated moments do not account for price level
transitions between the “normal times” and the “recessions”, which may account for the
low unconditional data estimate: excluding all NBER recession months from the annual
return sample estimates yields log E

[
RF

5
]
= 3.9% in the data of Giglio et al. (2023), quite

close to our calibrated moment of log E
[
RF

5
]
= 4.8% in Column (3).

Normal times/ liquidmarket (Table 2 and Figure 4). To analyze howwell the horizon-
dependent risk aversion model under the one-period trading framework of Section 4.3.1
captures the term-structure evidence during “normal times”, we formally derive the cor-
responding forward equity yields, defined as FEYt,h = − 1

h log
(

Pt,h
Dt

× 1
Bt,h

)
, ∀h ≥ 1 where

Pt,h (Bt,h) is the price of the annual dividend strip (risk-free bond) with horizon h years.
In Table 2, we report the slope of the forward equity yields, which provides a proxy for the
analysis of returns: e.g., comparing FEYt,h versus FEYt,h−1 corresponds to comparing Pt,h

Bt,h

to Pt,h−1
Bt,h−1

, similar to the one-period return. The estimates in the data are taken from Giglio
et al. (2023), where we remove from their 1973–2020 sample all NBER recessionmonths.33

32Because the maturity of dividend strips in the data of Giglio et al. (2023) is in years, our holding period
is also one year which reduces concerns of measurement error raised by Golez and Jackwerth (2023).

33Analyzing the forward equity yields rather than the excess returns of dividend strips allows us to obtain
data estimates that are less sensitive to the exact transition times between NBER recession months and non
NBER recession months and are not affected by to the large price movements that can accompany these
transitions.
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As seen in Figure 4 and in Table 2, the average forward equity yields in “normal times”
are slowly upward sloping, which the horizon-dependent risk aversion model captures
better than the standard long-run risk model. For example, comparing Column (3) to the
data in Column (1), the calibration γ̃ = 2, γ = 11, ρ = 1/2 yields: E

[
FEYF

5
]
− E

[
FEYF

2
]
=

1.2% versus 0.5% in the data, E
[
FEYF

15
]
− E

[
FEYF

5
]
= 1.9% versus 1.2% in the data. In con-

trast the standard long-run risk model of Column (2) generates excessively steep slopes:
E
[
FEYF

5
]
− E

[
FEYF

2
]
= 1.6% versus 0.5% in the data, E

[
FEYF

15
]
− E

[
FEYF

5
]
= 4.5% versus

1.2% in the data.

Recessions/ Illiquid market (Table 2 and Figure 5). We replicate the analysis of the
slope of the forward equity yields during “recessions” to analyze how well the horizon-
dependent risk aversion model under the buy-and-hold framework of Section 4.3.2 cap-
tures the term-structure evidence. The estimates in the data are taken from Giglio et al.
(2023), where we restrict their 1973–2020 sample to the NBER recession months.33 In Ta-
ble 2, we also report the limit slope of the term-structure of equity premia determined by
the expected return of the infinite-horizon versus the next-period dividend strip futures,
derived in Proposition 8 for buy-and-hold framework. Evidence in the data indicates the
slope is negative during recessions (van Binsbergen and Koijen, 2017; Bansal et al., 2021).

As seen in Figure 5 and Table 2, the horizon-dependent risk aversion model captures
the negative slope of the term-structure of forward equity yields and of equity premia.
(Our calibration cannot fully match the magnitude of the downward slope in the data.)
For example, comparing the calibration γ̃ = 2, γ = 11, ρ = 1/2 (Column (3)) to the
evidence in Giglio et al. (2023) (Column (1)), we obtain: E[FEY5] − E[FEY2] = −0.2%
versus −3.0% in the data, and E[FEY15]− E[FEY5] = −0.1% versus −1.4% in the data.34
On the other hand, the standard long-run risk model is grossly off, with an upward slop-
ing term-structure of forward equity yields, and an unrealistically high infinite horizon
expected return; the standardmodel of Column (2) does not just generate thewrongmag-
nitudes, but the wrong signs: E[FEY5]− E[FEY2] = +1.6% versus −3.0% in the data, and
E[FEY15]− E[FEY5] = +4.5% versus −1.4% in the data.

Other data estimates. As discussed in the introduction, analyzing the slope of the term
structure of equity risk premia has been the focus of active research in the finance literature
since van Binsbergen et al. (2012), and empirical estimates vary across papers and sample

34Considering other calibrations of the EIS would not improve on this result: ρ barely affects the term-
structure of forward equity premia (see Table 2 and Appendix Table 4). We posit that extending the pref-
erence model of Definition 1 to a decreasing sequence of risk aversions, as in Appendix A.2, could improve
on the results we obtain for the {γ, γ̃} framework, though this is left for future research.
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periods. To be consistent in the analysis of the term-structure results described above, we
chose to systematically compare them to estimates from the same database of dividend
strip (proxies) in Giglio et al. (2023), who provide, to our knowledge, the longest sample
(1973–2020). The main result we exploit above, that the slope of the term-structure of risk
premia is slowly upward sloping in “normal times” and downward sloping during NBER
recessions, is confirmed in the proprietary data on dividend strip futures at maturity 1
year to 7 years in Gormsen (2021), which also displays a steeply downward sloping term-
structure during the Great Financial Crisis, as well as in Bansal et al. (2021).35

5.2 Discussion

The calibration of Table 2 and Figures 2, 3, 4, and 5 show that the horizon-dependent risk
aversion model can help match the evidence in the data and is a clear improvement on the
standard long-run risk model: First, the slowly upward sloping average term-structure of
expected excess returns and Sharpe ratios matches the evidence in Giglio et al. (2023);
second, the dynamics of the slope of equity premia matches the evidence during reces-
sions, where the term-structure of expected forward equity yields becomes downward
sloping (Giglio et al., 2023), as well as in “normal times”, where equity premia grow
at a steeper slope when the index price is low (see Proposition 7 and the evidence in
Gormsen, 2021); third, the implied timing premium is close to zero (in the calibration
γ̃ = 2, γ = 11, ρ = 1/2); and fourth, this obtains within a calibration that can match the
equity premium and satisfy the macro-announcement premium bounds without having
to rely heavily on consumption volatility risks to be revealed on announcement days.

6 Conclusion

Relaxing the restriction of Epstein and Zin (1989) that risk preferences be constant across
horizons makes it possible to retain the tractability and desirable pricing properties of the
long-run asset pricingmodel, while addressing key challenges to the standard framework.

Matching the equity premium, and the macroeconomic announcement premium, can
be achieved without implying a willingness to pay for earlier resolutions of uncertainty
that defies both observed behaviors in the data and the introspection. In addition horizon-
dependent risk aversion preferences provide a rationalization why the term-structure of

35We are grateful to Niels Gormsen for providing us with the average term-structure results for the De-
cember 2007 to June 2009 period, over which the 7-year horizon strip return is 23 percentage points below
that of the 1-year horizon strip.
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risk premia is upward sloping for some assets or over some periods, and downward slop-
ing for others, as observed in the data.

Under the standard one-period trading pricing paradigm, all assets, no matter their
maturity, are priced at the next-period horizon, so the (low) long-term risk aversion has a
limited impact on risk premia. As the risk exposures of equity assets increasewith the hori-
zon, so does the term-structure of their expected returns. However, for assets with high
trading costs and/or low liquidity, investors may prefer to consider buy-and-hold strate-
gies, in which case the dynamic inconsistency in their preferences has a greater “bite”:
when longer maturity assets are evaluated with the corresponding longer horizon risk
aversion, the term-structure of risk premia can become downward sloping.

This feature of our model allows us to explain, both qualitatively and quantitatively,
important puzzles in empirical finance on the term-structure of equity risk premia and its
negative slope during NBER recessions. Additional implications include the abnormally
low returns in private equity and housing investments, or the very low trading volumes
for medium to long-term options and insurance.

We conclude that formalizing a model where risk aversion is higher at short-horizons
than long-horizons, consistent with the experimental evidence, provides a useful new tool
for asset pricing and macro-finance. We focused our attention on applications to finance
but the tractability of this model makes it suitable to analyze features of other markets,
such as health decisions, where attitudes towards risk and time inconsistencies are key.
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Tables and Figures

Table 1: Calibration parameters

Process Parameters

ct µc = 0.0015 ϕc = 1 αc = 1
xt νx = 0.975 αx = 0.038
σt σ = 0.0072 νσ = 0.999 ασ = 0.0000028
dt µd = 0.0015 ϕd = 2.5 χ = 2.6 αd = 5.96
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Table 2: Data and model calibration

Data Standard LRR Horizon-dependent risk aversion
ρ = 1/2 ρ = 1/1.5

γ̃ = 2 γ̃ = 1 γ̃ = 2 γ̃ = 1
Moment Estimate Bansal et al. (2012) γ = 11 γ = 13 γ = 12 γ = 14

(1) (2) (3) (4) (5) (6)

Timing Premium NA, ≈ 0 85% 1% −14% −22% −42%

Equity Premium
log E[Rm,t+1]− log E

[
R f ,t

]
6.8% 6.6% 5.6% 5.4% 6.0% 5.5%

Macro-Announcement Premium
Bound on {wx,t} shocks 55% 32% 49% 61% 45% 58%
Bound on {wx,t} and {wσ,t} shocks 55% 75% 68% 61% 68% 58%

Term Stucture of Equity Premia

Unconditional excess returns and Sharpe ratios:
log E

[
RF

5
]
− log E

[
RF

2
]

1.4% 3.4% 1.9% 1.9% 2.0% 2.0%
log E

[
RF

15
]
− log E

[
RF

5
]

2.6% 8.7% 2.1% 1.5% 2.4% 1.7%
log E

[
RF

5
]

2.3% 5.7% 4.8% 4.9% 5.3% 5.4%

SR
[
RF

5
]
− SR

[
RF

2
]

0.08 0.14 0.08 0.08 0.08 0.08
SR
[
RF

15
]
− SR

[
RF

5
]

0.09 0.29 0.06 0.03 0.07 0.03
SR
[
RF

5
]

0.16 0.24 0.23 0.24 0.24 0.26

Normal times/ liquid market, forward equity yields:
E[FEY5]− E[FEY2] 0.5% 1.6% 1.2% 1.3% 1.3% 1.5%
E[FEY15]− E[FEY5] 1.2% 4.5% 1.9% 1.6% 2.1% 1.8%

Recessions/ Illiquid market, forward equity yields:
E[FEY5]− E[FEY2] −3.0% 1.6% −0.2% −0.3% −0.2% −0.3%
E[FEY15]− E[FEY5] −1.4% 4.5% −0.1% −0.3% −0.1% −0.3%

log E
[
RF

∞
]
− log E

[
RF

1
]

≤ 0 90.2% −1.0% −1.9% −1.1% −2.0%

Data is from Bansal et al. (2012) (1930 to 2008 sample) for the equity premium, from Ai et al. (2018) (1961
to 2014 sample) for the macro-announcement premium, and Giglio et al. (2023) for the term-structure data
using dividend strip proxies (1973 to 2020 sample excluding NBER recessions for the Normal times/ liquid
market estimates and restricted to NBER recessions for the Recessions/ Illiquid market estimates). The Tim-
ing Premium is described in Section 3. We derive its value for ρ ̸= 1 according to the algorithm described
in Appendix D.2, under β = 0.9989. The Equity Premium and Macro-announcement Premium, including the
description of the Bound on {wx,t} shocks and Bound on {wx,t} and {wσ,t} shocks, are in Section 4.2. Standard
LRR stands for the standard “long-run risk” model (Bansal et al., 2012) (with parameters γ̃ = γ = 10 and
ρ = 1/1.5). All returns are annual or annualized. The model estimates for the term-structure of uncondi-
tional expected excess returns and Sharpe ratios of dividend strips is obtained by using returns in Normal
times/ liquid market (the one-period framework) and in Recessions/ Illiquid market (the buy-and-hold frame-
work) in same proportion as in the 1973 to 2020 sample of Giglio et al. (2023). TheNormal times/ liquid market
forward equity yields E[FEYh] are the average equity yield of the dividend strips futures at the annual h ≥ 1
horizon under one-period trading. The Recessions/ Illiquid market returns log E

[
RF

∞
]
− log E

[
RF

1
] is derived

in Proposition 8 under buy-and-hold trading. The Recessions/ Illiquid market forward equity yields E[FEYh]

are the average equity yield of the dividend strips futures at the annual h ≥ 1 horizon under buy-and-hold
trading. See Appendix D.1 for additional details.
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Figure 1: Timing premium

Effect of horizon-dependent risk aversion (HDRA) on willingness to pay for early resolution of uncertainty
(timing premium), compared to Epstein-Zin preferences (EZ) with γ = 10. Calibration of Table 1, with
ρ = 1 and β = 0.9989.
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Appendix

A Appendix to Section 2

A.1 Experimental evidence for horizon-dependent risk aversion

In this appendix, we discuss in detail the experimental evidence for risk aversion decreas-
ing with horizon. The experimental literature on risk attitudes is large, spans the fields of
psychology and economics and predominantly investigates deviations from the standard
expected utility model. We therefore focus on three papers that use modern techniques
of experimental economics such as real monetary payoffs and that explicitly study or al-
low us to infer how risk attitudes are affected by the horizon at which a lottery is resolved
and paid out: Noussair and Wu (2006), Baucells and Heukamp (2010), and Abdellaoui,
Diecidue, and Öncüler (2011).

Noussair andWu (2006) employ the protocol of Holt and Laury (2002), a widely used
method in experimental economics, to gauge risk aversion. Subjects are presented with a
list of choices between two binary lotteries in each row. The lottery in the first column al-
ways has two intermediate prizes, e.g., $10.00 and $8.00, whereas the lottery in the second
column always has a high and a low prize, e.g., $19.25 and $0.50. Going down the list, only
the respective probabilities of the two prizes change, varying, e.g. from (0.1, 0.9) to (1, 0).
As probability mass shifts from the second prize to the first prize of both lotteries, the
second, riskier lottery becomes increasingly attractive compared to the first, safer lottery.
Subjects are asked to pick one of the two lotteries in each row and typically switch from
the safer lottery to the riskier lottery at some row. A subject who switches at a later row
exhibits greater risk aversion than a subject who switches at an earlier row.

Noussair andWu (2006) use this protocol with real payoffs on a sample of undergrad-
uate students from economics courses at Emory University. In the main treatment (ses-
sions 1–6), each subject makes choices for resolution and payout to occur immediately
and also for resolution and payout to occur three months later.36 Pooling the six sessions,
the sample consists of 44 subjects, five of which make choices inconsistent with expected
utility maximization (switching back and forth) and are excluded from the analysis. Of
the remaining 39 subjects, 15 subjects (38.5%) exhibit risk aversion decreasing in hori-
zon, 21 subjects (53.8%) exhibit constant risk aversion and three subjects (7.7%) exhibit
increasing risk aversion (their Table 2). Decreasing risk aversion is therefore five times
more prevalent in the sample than increasing risk aversion.

36The experiment includes one additional session that does not include immediate resolution and one
that increase the payoffs of the lotteries resolved in the future.
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Figure 6 provides a simplified example of the experiment of Noussair and Wu (2006),
and illustrates the notion of horizon-dependent risk aversion (HDRA). In Figure 6, subjects
are asked to rank a lottery with payoff x = 1 for certain versus a lottery with payoff x = 3
with a 50% chance, and x = 0 otherwise. All subjects choose their rankings at time t = 0;
however for some the lottery happens at time t = 2 (the "distant risk" case), and for some
the lottery happens at time t = 1 (the "imminent risk" case).

3

01/2

1/2

� 1

1≺
3

01/2

1/2

Imminent risk:

Distant risk:

Figure 6: Preferences with horizon-dependent risk aversion.

To gauge statistical significance, we show 95% confidence intervals for the three pro-
portions of subjects in Table 3 and find that the confidence intervals for the proportions
with increasing and decreasing risk aversion do not overlap.37 Noussair andWu (2006) re-
port that a paired t-test rejects the hypothesis that decreasing and increasing risk aversion
are equally likely at the 1% level.

Table 3: Proportions of subjects with different forms of HDRA (Horizon-dependent risk
aversion). The table reports proportions of subjects with decreasing, constant and increasing
HDRA and corresponding Wald 95% confidence intervals for the horizon comparisons in the
papers listed at the top (NW is Noussair and Wu (2006); ADO is Abdellaoui, Diecidue, and
Öncüler (2011)). For NW, the last confidence interval is clipped at the lower bound.

NW ADO
0–3 months 0–6 months 0–12 months 6–12 months

Decreasing HDRA 0.385 0.569 0.627 0.465
[0.232, 0.537] [0.525, 0.612] [0.584, 0.669] [0.422, 0.509]

Constant HDRA 0.538 0.250 0.187 0.373
[0.382, 0.695] [0.213, 0.290] [0.154, 0.223] [0.331, 0.416]

Increasing HDRA 0.077 0.181 0.187 0.162
[0, 0.161] [0.149, 0.217] [0.154, 0.223] [0.131, 0.196]

Num. obs. 39 52 × 10 52 × 10 52 × 10

37Noussair and Wu (2006) include the five subjects with inconsistent choices when they report 95%
confidence interval of the proportion with decreasing and increasing risk aversion as [0.242, 0.520] and
[0.006, 0.176], respectively, on their page 406. Their footnote 11 reports the confidence intervals excluding
the inconsistent subjects.

55



Baucells andHeukamp (2010) study a sample of 221MBA and EMBA students at IESE
Business School who choose between binary lotteries that pay either a positive amount or
zero (real payoffs). Similar to the protocol of Holt and Laury (2002), the first lottery is
safer (higher probability of a lower payoff or deterministic) while the second lottery is
riskier (lower probability of a higher payoff) such that the share of subjects choosing the
safer lottery is a proxy for average risk aversion across subjects. In seven groups of choices,
the lotteries are kept constant within each group and only the horizon of the resolution
and payoff of both lotteries differs. Two of the groups cover horizons 0, 3, 6 and 12 months
(tasks 1–4 and 8–11 in their Table 5); two cover 0, 3 and 6 months (tasks 5–7 and 12–14);
two cover 0, 1 and 3months (tasks 15–17 and 18–20); and one covers 0 and 3months (tasks
21–22).38 Within each of the seven groups, we can compare horizons h > 0 to horizon
h = 0, yielding 15 comparisons. Subjects exhibit decreasing average risk aversion for 12 out
of the 15 comparisons (more subjects choosing the safe alternative at horizon h > 0 than
at horizon h = 0). Baucells and Heukamp (2010) do not report results of paired t-tests;
using the data reported in their Table 5 (sample size and share of subjects choosing each
lottery), we can only conduct two-sample t-tests. In the plausible case that risk aversion is
positively correlated across horizon at the subject level, the two-sample t-statistic is biased
downward compared to the paired t-statistic so we are biased against finding a significant
difference. Nevertheless, we find that five of those 12 cases of decreasing risk aversion are
significant at conventional levels against the alternative of increasing risk aversion (three
at the 10% level, one at 5% and one at 1%). In contrast, subjects exhibit increasing risk
aversion in only three out of the 15 comparisons with the difference never significant at
conventional levels. Baucells and Heukamp (2010) do not report results that would allow
us to calculate the proportions of subjects with decreasing, constant and increasing risk
aversion.

Abdellaoui, Diecidue, and Öncüler (2011) who gauge risk attitudes on a sample of 52
undergraduates from economics courses at Bogazici University. The experiment consid-
ers 10 different binary lotteries varying in their prizes and probabilities (real payoffs). For
each subject, the experiment elicits the certainty equivalents for the 10 lotteries at each of
three horizons (0, 6 and 12 months), where the certainty equivalent is paid at the same
time as the lottery would be.39 Their Table 2 reports means and standard deviations for
the certainty equivalents of the 10 lotteries at the three horizons; their Table 3 reports t-
statistics for paired tests against the hypothesis of equal certainty equivalents at horizons

38The experiment includes three additional tasks which do not allow comparison of the same lotteries
across different horizons.

39The experiment includes a fourth session with uncertain horizon.
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0 vs. 6 months and 0 vs. 12 months (also 6 vs. 12). Analogous to our discussion of Baucells
and Heukamp (2010) above, we have 20 comparisons of horizons h > 0 to horizon h = 0.
Subjects exhibit strictly decreasing average risk aversion for 18 out of the 20 comparisons
(the mean certainty equivalent is higher at horizon h > 0 than at horizon h = 0). Now
using the reported t-statistics for the proper paired test, 14 of the 18 differences are signif-
icant at conventional levels against the alternative of equal risk aversion (two at the 10%
level, two at 5% and ten at 1%). In contrast, subjects exhibit increasing risk aversion in only
two out of the 20 comparisons with the difference never significant at conventional levels.
Abdellaoui, Diecidue, and Öncüler (2011) also report that one-way ANOVA tests detect
significantly decreasing risk aversion at the 5% level for seven of the 10 lotteries. For risk
premia (EV/CE − 1), their Table 2 implies that the average risk premium across the 10
lotteries at horizon 0, 6 and 12 months is 35.7%, 28.4% and 25.6%, respectively, while the
median risk premium is 43.8%, 32.6% and 25.9%. Risk premia are therefore 40% to 70%
higher for the present than for the 12 month horizon.

Further, their Table 3 reports, for each lottery, the number of subjects with decreasing
and with increasing risk aversion which allows us to calculate the proportion of subjects
with decreasing, constant and increasing risk aversionwith corresponding 95% confidence
intervals. Pooling across lotteries, our Table 3 shows that the share of subjects with de-
creasing risk aversion is between 46.5% and 56.9% across the three horizon comparisons,
the share with constant risk aversion is between 18.7% and 37.3% and the share with in-
creasing risk aversion between 16.2% and 18.1%; the 95% confidence intervals for the share
with decreasing risk aversion never overlapwith the confidence intervals for the other two
shares. Including the results from Noussair and Wu (2006) shown in the first column of
Table 3, the share of subjects that display decreasing risk aversion is higher at longer hori-
zons which is consistent with the effect being stronger and thus easier to detect at longer
horizons.

In sum, a consistent picture of the quantitative importance of decreasingHDRAemerges
across the three papers by Noussair and Wu (2006), Baucells and Heukamp (2010), and
Abdellaoui, Diecidue, andÖncüler (2011).While all three possibilities ofHDRAare present
among subjects (decreasing, constant and increasing), the share of subjects with decreas-
ing risk aversion is between 40% and 60%, significantly outweighs the share with increas-
ing risk aversion and is at least comparable to the sharewith constant risk aversion. Second,
when averaging across subjects, risk aversion is decreasing in horizon in the vast majority
of comparisons, with the decrease both statistically and economically significant.
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A.2 General sequence of risk aversions

Let {γh}h≥1 be a sequence representing risk aversion at horizon h. In period t, the agent
evaluates a consumption stream starting in period t + h by

Vt,h =

(
(1 − β)C1−ρ

t+h + βEt+h

[
V1−γh+1

t,h+1

] 1−ρ
1−γh+1

) 1
1−ρ

for all h ≥ 0.

The agent’s utility in period t, corresponding to h = 0, is denoted Vt ≡ Vt,0 for all t.
Assuming the risk aversion sequence becomes a constant at somehorizon H, i.e. γh = γ̃

for h ≥ H, then Vt,H, corresponds to the standard Epstein-Zin recursion with risk aversion
γ̃, for whichwe can use the standard solution. Solving backwards from Vt,H to Vt,H−1, then
Vt,H−2 etc. determines Vt. See Appendix B.5 for additional details.

A.3 Naive investors

If our agent is naive about her own dynamic inconsistencies, she wrongly assumes she
will optimize on Ṽt+h instead of Vt+h for all h ≥ 1. The envelope conditions at t + 1 thus
applies to Ṽt+1 in her one-period SDF, which becomes:

Πnaive
t,t+1 = β

(
Ct+1

Ct

)−ρ
 Ṽt+1

Et
[
Ṽ1−γ

t+1

] 1
1−γ

ρ−γ

The following one-period SDFs for h ≥ 1 are then given by:

Πnaive
t+h,t+h+1 = β

(
Ct+h+1

Ct+h

)−ρ
 Ṽt+h

Et+h
[
Ṽ1−γ̃

t+h+1

] 1
1−γ̃

ρ−γ̃

When ρ = 1, naive agents behave as the buy-and-hold investors of Proposition 8:

Πnaive
t,t+1 × · · · × Πnaive

t+h−1,t+h |ρ=1 = Πbuy-and-hold
t,t+h |ρ=1 .

B Appendix to Section 3

Section 3 discusses the timing premium for the case with constant volatility of consump-
tion, i.e. process (5), but we derive all proofs for the more general case with time varying
volatility, using consumption process (8).
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The results presented in Proposition 1, Corollary 1, and Corollary 2, correspond to the
case σt = σ. Figure 1 reports the timing premium under consumption process (8) and the
calibration of Bansal et al. (2012).

In the interest of (some) brevity, the derivations in the appendix are not always 100%
fleshed out step by step. Readers whowould likemore precision on the intermediate steps
are more than welcome to contact us.

B.1 Proof of Proposition 1

Under ρ = 1, and denoting logs by lowercase letters, our general model (1), (2) becomes

vt = (1 − β) ct +
β

1 − γ
log(Et[exp ((1 − γ) ṽt+1)]) ,

and

ṽt+1 = (1 − β) ct+1 +
β

1 − γ̃
log(Et+1[exp ((1 − γ̃) ṽt+2)]) .

The continuation value Ṽt+1 is determined by a standard Epstein-Zin recursion, for
which closed-form solutions obtain under the lognormal stochastic process (8). Following
the usual methodology, we guess a solution of the form

ṽt − ct = µ̃v + ϕvxt + ψ̃vσ2
t ,

where we write ψ̃v = ψv (γ̃) throughout the appendix to simplify the notation.
Then, using

ṽt = (1 − β) ct +
β

1 − γ̃
log(Et[exp ((1 − γ̃) ṽt+1)]) , i.e.

ṽt − ct =
β

1 − γ̃
log(Et[exp ((1 − γ̃) (ṽt+1 − ct+1 + ct+1 − ct))]) ,

it is straightforward to verify that the linear functional form is the solution to the recursion
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for ṽt − ct, with:

ϕv =
βϕc

1 − βνx

ψ̃v =
1
2

β (1 − γ̃)

1 − βνσ

(
α2

c + ϕ2
vα2

x

)
µ̃v =

β

1 − β

(
µc + ψ̃vσ2 (1 − νσ) +

1
2
(1 − γ̃) ψ̃2

vα2
σ

)
.

From

vt = (1 − β) ct +
β

1 − γ
log(Et[exp ((1 − γ) ṽt+1)]) , i.e.

vt − ct =
β

1 − γ
log(Et[exp ((1 − γ) (ṽt+1 − ct+1 + ct+1 − ct))]) ,

we obtain

ṽt − vt =
β

1 − γ̃
log(Et[exp ((1 − γ̃) (ṽt+1 − ct+1 + ct+1 − ct))])

− β

1 − γ
log(Et[exp ((1 − γ) (ṽt+1 − ct+1 + ct+1 − ct))]) .

The constant terms in the expectations cancel out; the volatility terms remain with coeffi-
cient 1

2 β(1 − γ̃)− 1
2 β(1 − γ).

We arrive at the solution

ṽt − vt =
1
2

β (γ − γ̃)
[(

α2
c + ϕ2

vα2
x

)
σ2

t + ψ̃2
vα2

σ

]
,

which, using the solution for ψ̃v, we can rewrite as

vt − ṽt = −1
2

β (γ − γ̃) ψ̃2
vα2

σ − (γ − γ̃)
1 − βνσ

1 − γ̃
ψ̃vσ2

t .

Combining this with our solution for ṽt − ct, we obtain

vt − ct =
β

1 − β

(
µc + ψ̃vσ2 (1 − νσ) +

1
2

ψ̃2
v ((1 − γ) + β (γ − γ̃)) α2

σ

)
+ ϕvxt +

ψ̃v

1 − γ̃
((1 − γ) + βνσ (γ − γ̃)) σ2

t ,

the solution to the value function at time t if consumption follows risk process (8).
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If all risk is resolved at t + 1, the log continuation utility v∗t,t+1 is given by

v∗t,t+1 = (1 − β) ct+1 + β
(
(1 − β) ct+2 + β

(
(1 − β) ct+3 + · · ·

))
= ct+1 +

∞

∑
h=1

βh (ct+h+1 − ct+h) .

From the perspective of period t, this continuation utility is normally distributed with
mean and variance given by

Et[v∗t,t+1] = ct +
1

1 − β
µc +

ϕc

1 − βνx
xt,

vart(v∗t,t+1) =
1

1 − β2νσ

(
σ2

t +
β2

1 − β2 σ2 (1 − νσ)

)(
α2

c +

(
βϕc

1 − βνx

)2

α2
x

)
.

Using these expressions, and the relation

v∗t = (1 − β) ct +
β

1 − γ
log
(
Et
[
exp

(
(1 − γ) v∗t,t+1

)])
= (1 − β) ct + β

(
Et
[
v∗t,t+1

]
+

1
2
(1 − γ) vart

(
v∗t,t+1

))
,

we obtain the early resolution utility at t as

v∗t − ct =
β

1 − β
µc +

βϕc

1 − βνx
xt +

1
2

β (1 − γ)

1 − β2νσ

(
α2

c +

(
βϕc

1 − βνx

)2

α2
x

)(
σ2

t +
β2

1 − β2 σ2 (1 − νσ)

)
=

β

1 − β
µc + ϕvxt +

(1 − γ) (1 − βνσ)

(1 − γ̃) (1 − β2νσ)
ψ̃v

(
σ2

t +
β2

1 − β2 σ2 (1 − νσ)

)
.

From the definition of the timing premium,

log (1 − TPt) = vt − v∗t ,

and from the calculations above, we derive

vt − v∗t =
β

1 − β
ψ̃vσ2 (1 − νσ)

(
1 − 1 − γ

1 − γ̃

1 − βνσ

1 − β2νσ

β

1 + β

)
+ ψ̃vνσσ2

t
β

1 − γ̃

(
(1 − γ)

1 − β

1 − β2νσ
+ (γ − γ̃)

)
+

1
2

β

1 − β
((1 − γ) + β (γ − γ̃)) ψ̃2

vα2
σ.
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In the case with constant volatility, σt = σ, ασ = 0, νσ = 1, we obtain

vt − v∗t = ψ̃vσ2 β

1 − γ̃

(
(1 − γ)

1 − β

1 − β2 + (γ − γ̃)

)
=

1
2

β2

1 − β

(
α2

c +

(
βϕc

1 − βνx

)2

α2
x

)
σ2
(
(1 − γ)

1 − β

1 − β2 + (γ − γ̃)

)
.

We thus obtain the timing premium

log (1 − TPt) =
1
2

β2

1 − β2

(
α2

c +

(
βϕc

1 − βνx

)2

α2
x

)
σ2 ((1 − γ) + (1 + β) (γ − γ̃)

)
,

or, as stated in the proposition,

TP = 1 − exp

(
1
2

(
1 −

(
γ − (1 + β) (γ − γ̃)

)) β2

1 − β2

(
α2

c +

(
βϕc

1 − βνx

)2

α2
x

)
σ2

)
.

□

B.2 Proof of Corollary 1

From Proposition 1,

log (1 − TPt) =
1
2

β2

1 − β2

(
α2

c +

(
βϕc

1 − βνx

)2

α2
x

)
σ2

︸ ︷︷ ︸
≥0

(1 − γ) + (1 + β) (γ − γ̃)︸ ︷︷ ︸
≥0 iff γ≥γ̃

 ,

so γ ≥ γ̃ unambiguously increases log (1 − TPt), i.e. unambiguously lowers TPt.
□

B.3 Proof of Corollary 2

From Proposition 1,

log (1 − TPt) =
1
2

β2

1 − β2

(
α2

c +

(
βϕc

1 − βνx

)2

α2
x

)
σ2

︸ ︷︷ ︸
≥0

(
(1 − γ) + (1 + β) (γ − γ̃)

)
,
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so

TPt ≤ 0 ⇔ (1 − γ) + (1 + β) (γ − γ̃) ≥ 0

⇔ γ̃ ≤ 1 + βγ

1 + β
.

Let γ > ρ = 1. Then γ > 1+βγ
1+β > 1, and any γ̃ such that γ > 1+βγ

1+β > γ̃ > 1 = ρ implies a
preference for a late resolution of uncertainty.

□

B.4 Timing premium under hyperbolic discounting “β-δ model”

We now assume risk aversion constant across horizons γ = γ̃, but instead two different
discount factors β < β̃. The preference model becomes

Vt =

(
(1 − β)C1−ρ

t + βEt
[
Ṽ1−γ

t+1

] 1−ρ
1−γ

) 1
1−ρ

,

and

Ṽt =

((
1 − β̃

)
C1−ρ

t + β̃Et
[
Ṽ1−γ

t+1

] 1−ρ
1−γ

) 1
1−ρ

.

Assuming ρ = 1, and focusing on the simpler case σt = σ of process (5), we can use
the recursions

ṽt − ct =
β̃

1 − γ
Et [exp (1 − γ) (ṽt+1 − ct+1 + ct+1 − ct)]

vt − ct =
β

1 − γ
Et [exp (1 − γ) (ṽt+1 − ct+1 + ct+1 − ct)] ,

to derive the solutions

ṽt − ct =
β̃

1 − β̃
µc +

β̃ϕc

1 − β̃νx
xt +

1
2

β̃ (1 − γ)

1 − β̃

α2
c +

(
β̃ϕc

1 − β̃νx

)2

α2
x

 σ2

vt − ct =
β

1 − β̃
µc +

βϕc

1 − β̃νx
xt +

1
2

β (1 − γ)

1 − β̃

α2
c +

(
β̃ϕc

1 − β̃νx

)2

α2
x

 σ2.
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If all risk is resolved at t + 1, the log continuation utility v∗t,t+1 is given by

v∗t+1 =
(

1 − β̃
)

ct+1 + β̃
((

1 − β̃
)

ct+2 + β̃
((

1 − β̃
)

ct+3 + · · ·
))

= ct +
∞

∑
h=0

β̃h (ct+h+1 − ct+h) .

From the perspective of period t, this continuation utility is normally distributed with
mean and variance given by

Et[v∗t+1] = ct +
1

1 − β̃
µc +

ϕc

1 − β̃νx
xt,

vart(v∗t+1) =
1

1 − β̃2
σ2

α2
c +

(
β̃ϕc

1 − β̃νx

)2

α2
x

 .

Using these expressions, we can derive the early resolution utility at t as

v∗t = ct +
β

1 − γ
Et
[
exp (1 − γ)

(
v∗t+1 − ct

)]
= ct +

β

1 − β̃
µc +

βϕc

1 − β̃νx
xt +

1
2

β (1 − γ)

1 − β̃2

α2
c +

(
β̃ϕc

1 − βνx

)2

α2
x

 σ2,

so we have

vt − v∗t =
1
2

ββ̃ (1 − γ)

1 − β̃2

α2
c +

(
β̃ϕc

1 − β̃νx

)2

α2
x

 σ2.

In the case of hyperbolic discounting where β < β̃, we have

β̃2

1 − β̃2
>

ββ̃

1 − β̃2
>

β2

1 − β2 .

Given log (1 − TPt) = vt − v∗t , and assuming γ > 1 = ρ, the timing premium under the
β-β̃ hyperbolic model is greater than under the β-only model and lower than under the β̃-
onlymodel. Under the β-β̃ hyperbolicmodel, agents have a preference for early resolutions
of uncertainty if and only if γ > 1 = ρ.
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B.5 Extension to other information arrival structures

General sequence of risk aversions

Suppose we have a sequence of risk aversions {γh}∞
h=1 that is decreasing until horizon H

and constant afterwards: γh = γ̃, ∀h ≥ H. We consider the case ρ = 1 and σt = σ, i.e.
process (5), as in Proposition 1. Following the same methodology as in Appendix B.1, we
start from the standard recursion

vt,H−1 = (1 − β) ct+1 +
β

1 − γH
log(Et+1[exp ((1 − γH) vt+1,H−1)]) ,

with solution

vt,H−1 − ct = µv,H + ϕvxt,

where

ϕv =
βϕc

1 − βνx

µv,H =
β

1 − β

(
µc +

1
2
(1 − γH)

(
α2

c + ϕ2
vα2

x

))
.

Then, from

vt,H−2 = (1 − β) ct +
β

1 − γH−1
log(Et[exp ((1 − γH−1) vt+1,H−1)]) ,

we obtain

vt,H−2 − ct = µv,H−1 + ϕvxt,

where

µv,H−1 = β

(
µc +

1
2
(1 − γH−1)

(
α2

c + ϕ2
vα2

x

)
+ µv,H

)
.

Similarly, we obtain:

vt,H−3 − ct = µv,H−2 + ϕvxt,
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where

µv,H−2 = β

(
µc +

1
2
(1 − γH−2)

(
α2

c + ϕ2
vα2

x

)
+ µv,H−1

)
.

Iterating down to vt,0 = vt, we obtain:

vt − ct = µv,1 + ϕvxt,

where

µv,1 = βµc

(
1 + β + · · ·+ βH−2

)
+ βH−1µv,H

+
1
2

β
[
(1 − γ1) + β (1 − γ2) + · · ·+ βH−2 (1 − γH−1)

] (
α2

c + ϕ2
vα2

x

)
.

Rearranging the terms in 1−γh as 1−γ1 +γ1 −γ2 + · · · , and using the recursive solution
for µv,H above, we obtain

µv,1 =
β

1 − β
µc +

1
2

β

1 − β

[
(1 − γ1) +

H−1

∑
h=1

βh (γh − γh+1)

] (
α2

c + ϕ2
vα2

x

)
.

The value under early resolution of uncertainty is unchanged from the γ, γ̃ framework:

v−t ct =
β

1 − β
µc + ϕvxt +

1
2

β

1 − β2 (1 − γ1)
(

α2
c + ϕ2

vα2
x

)
.

Combining these results, we obtain

vt − v∗t =
1
2

β

1 − β

[
(1 − γ1)

β

1 + β
+

H−1

∑
h=1

βh (γh − γh+1)

] (
α2

c + ϕ2
vα2

x

)
.

The agent therefore prefers later resolutions of uncertainty if and only if

∑H−1
h=1 βh−1 (γh − γh+1) >

γ1 − 1
1 + β

,

i.e. as long as the sequence {γh}H
h=1 is sufficiently decreasing.
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Resolution of uncertainty at t + 2 versus at t + 1

As seen in Appendix B.1, if all risk is resolved at t + 1, the log continuation utility v∗,1
t,t+1 is

given by

v∗,1
t,t+1 = ct+1 +

∞

∑
h=1

βh (ct+h+1 − ct+h) ,

such that

Et[v∗,1
t,t+1] = ct +

1
1 − β

µc +
ϕc

1 − βνx
xt,

vart(v∗,1
t,t+1) =

α2
c +

(
βϕc

1−βνx

)2
α2

x

1 − β2 .

From

v∗,1
t = ct +

β

1 − γ
log
(

Et

[
exp

(
(1 − γ)

(
v∗,1

t,t+1 − ct

))])
,

we obtain the early resolution utility at t given by

v∗,1
t = ct +

β

1 − β
µc +

βϕc

1 − βνx
xt +

1
2

β (1 − γ)

1 − β2

(
α2

c +

(
βϕc

1 − βνx

)2

α2
x

)
.

If all risk is resolved at t + 2 instead, we can apply the same methodology as above to
derive v∗,2

t,t+1:

v∗,2
t,t+1 = ct+1 +

β

1 − β
µc +

βϕc

1 − βνx
xt+1 +

1
2

β (1 − γ̃)

1 − β2

(
α2

c +

(
βϕc

1 − βνx

)2

α2
x

)

To which we apply

v∗,2
t = ct +

β

1 − γ
log
(

Et

[
exp

(
(1 − γ)

(
v∗,2

t,t+1 − ct+1 + ct+1 − ct

))])
,

to obtain

v∗,2
t = ct +

β

1 − β
µc +

βϕc

1 − βνx
xt +

1
2

β

(
β (1 − γ̃)

1 − β2 + 1 − γ

)(
α2

c +

(
βϕc

1 − βνx

)2

α2
x

)
.

67



The difference in utility between resolution at t + 2 and at t + 1 is therefore given by

v∗,2
t − v∗,1

t =
1
2

β2

1 − β2

(
(1 − γ̃)− β (1 − γ)

) (
α2

c +

(
βϕc

1 − βνx

)2

α2
x

)
.

An agent with standard Epstein-Zin preferences, i.e. γ = γ̃, prefers the later resolution at
t + 2 to the earlier resolution at t + 1, i.e. v∗,1

t > v∗,2
t , if and only if γ > 1. In contrast, an

agent with horizon dependent risk aversion and γ > 1 prefers the later resolution at t + 2
to the earlier resolution at t + 1 if and only if γ − γ̃ > (1 − β) (γ − 1).

C Appendix to Section 4

In the interest of (some) brevity, the derivations in the appendix are not always 100%
fleshed out step by step. Readers whowould likemore precision on the intermediate steps
are more than welcome to contact us.

C.1 Proof of Proposition 2

Toderive the one-period ahead stochastic discount factor,weuse the inter-temporalmarginal
rate of substitution

Πt,t+1 =
dVt/dWt+1

dVt/dCt
.

We have:

dVt

dWt+1
=

dVt

dṼt+1
× dṼt+1

dWt+1

Due to the homotheticity of our preferences, we can rely on the fact that both Ṽt+1 and
Vt+1 are homogeneous of degree one which implies that

dṼt+1/dWt+1

dVt+1/dWt+1
=

Ṽt+1

Vt+1
.

Further, the envelope condition guarantees:

dVt

dWt
=

dVt

dCt
.
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This allows us to derive:

Πt,t+1 =
dVt/dṼt+1 × dVt+1/dCt+1 × Ṽt+1/Vt+1

dVt/dCt
.

Given

Vt =

(
(1 − β)C1−ρ

t + βEt
[
Ṽ1−γ

t+1

] 1−ρ
1−γ

) 1
1−ρ

,

we have:

dVt

dCt
=

(
(1 − β)C1−ρ

t + βEt

[
Ṽ1−γ

t+1

] 1−ρ
1−γ

) 1
1−ρ−1

(1 − β)C−ρ
t

= Vρ
t (1 − β)C−ρ

t ,

and

dVt

dṼt+1
=

(
(1 − β)C1−ρ

t + βEt

[
Ṽ1−γ

t+1

] 1−ρ
1−γ

) 1
1−ρ−1

βṼ−γ
t+1Et

[
Ṽ1−γ

t+1

] 1−ρ
1−γ−1

= Vρ
t βṼ−γ

t+1Et
[
Ṽ1−γ

t+1

] γ−ρ
1−γ .

Combining these, we obtain:

Πt,t+1 = β

(
Ct+1

Ct

)−ρ

 Ṽt+1

Et

[
Ṽ1−γ

t+1

] 1
1−γ


ρ−γ(

Ṽt+1

Vt+1

)1−ρ

.

□

C.2 Proof of Lemma 1

In Hansen (2012) and Hansen and Scheinkman (2012), the authors show that taking the
recursion of the value function under Epstein-Zin preferences:

(
Vt

Ct

)1−γ

=

(1 − β) + βEt

[(
Vt+1

Ct+1

Ct+1

Ct

)1−γ
] 1−ρ

1−γ


1−γ
1−ρ
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to the limit β → 1 to solve for a function e(Xt), where Xt are the state variables of the
dynamic problem, s.t.

e(Xt) = β
1−γ
1−ρ Et

[
e(Xt+1)

(
Ct+1

Ct

)1−γ
]

determines the value function up to a constant:
(

Vt

Ct

)1−γ

= Ke(Xt).

Theirmethodology allows us to derive the solution to the value function of the Epstein-Zin
utility model when β → 1 up to a constant term.

Applying their methodology to the preferences of Definition 1, the recursion in Ṽ can
be rewritten as:

(
Ṽt

Ct

)1−γ̃

=

(1 − β)1−ρ + βEt

( Ṽt+1

Ct+1

Ct+1

Ct

)1−γ̃


1−ρ
1−γ̃


1−γ̃
1−ρ

,

so, for β = 1 − ϵ, with ϵ ≪ 1, we obtain the approximation:
(

Ṽt

Ct

)1−γ̃

≈ β
1−γ̃
1−ρ Et

( Ṽt+1

Ct+1

Ct+1

Ct

)1−γ̃
 .

This is an eigenfunction problem with eigenvalue β
− 1−γ̃

1−ρ and eigenfunction
(

Ṽ/C
)1−γ̃

,
known up to a constant multiplier term.

As usual, we assume and verify:

ṽt − ct ≈ µ̃v + ϕvxt + ψ̃vσ2
t ,

where we obtain from the recursion above

ϕv =
ϕc

1 − νx

ψ̃v =
1
2

1 − γ̃

1 − νσ

(
α2

c + ϕ2
vα2

x

)
< 0.
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Using the approximation β ≈ 1 throughout, we derive:

Vt

Ṽt
≈=

(
Et

[(
Ṽt+1
Ct+1

Ct+1
Ct

)1−γ
]) 1

1−γ

(
Et

[(
Ṽt+1
Ct+1

Ct+1
Ct

)1−γ̃
]) 1

1−γ̃

,

and therefore:

vt − ṽt ≈ −1
2
(γ − γ̃)

[(
α2

c + ϕ2
vα2

x

)
σ2

t + ψ̃2
vα2

σ

]
.

□

C.3 Proof of Proposition 3 and Proposition 4

From Proposition 2:

Πt,t+1 = β

(
Ct+1

Ct

)−ρ


(

Ṽt+1
Ct+1

Ct+1
Ct

)1−γ

Et

[(
Ṽt+1
Ct+1

Ct+1
Ct

)1−γ
]


ρ−γ
1−γ (

Ṽt+1

Vt+1

)1−ρ

.

Using the solution for ṽt − ct and for ṽt − vt derived in Appendix C.2, denoting logs
by lowercase letters, and defining π̄t = Et [πt,t+1], the expression for the SDF becomes:

πt,t+1 = π̄t − γαcσtwc,t+1 + (ρ − γ) ϕvαxσtwx,t+1

+

[
(ρ − γ) + (1 − ρ) (γ − γ̃)

1 − νσ

1 − γ̃

]
ψ̃vασwσ,t+1.

□

C.4 Proof of Corollary 3

From ψv (γ̃) < 0 (see Appendix C.2), and given γ > γ̃ > 1 > ρ, we immediately obtain:[
(ρ − γ) + (1 − ρ) (γ − γ̃)

1 − νσ

1 − γ̃

]
ψ̃v > 0,

corresponding to a negative price of risk for volatility shocks.
From Appendix C.2, ψ̃v = ψv (γ̃) =

1−γ̃
1−γ ψv (γ) =

(
1 + γ−γ̃

1−γ

)
ψv (γ), so we can rewrite
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the pricing of volatility shocks under horizon dependent risk aversion as:[
(ρ − γ) + (1 − ρ) (γ − γ̃)

1 − νσ

1 − γ̃

]
ψ̃v = (ρ − γ)ψv + [(1 − γ)− νσ (1 − ρ)]

γ − γ̃

1 − γ
ψv︸ ︷︷ ︸

≤0

.

□

C.5 Proof of Proposition 5

To derive the equity premium, we log-linearize the market returns {rm,t} as a first-order
approximation around the average log price-dividend ratio z = p − d:

rm,t+1 = log
(

Pt+1 + Dt+1

Pt

)
= ∆dt+1 + log (1 + ezt+1)− zt

≈ κ0 + κzt+1 − zt + ∆dt+1

where zt = pt − dt and κ = ez

1+ez < 1, κ0 = log
(
1 + ez)− zκ, and z = p − d is taken from

the data.
From

Et (Πt,t+1Rm,t+1) = 1

we obtain a recursion in zt:

log Et (exp [πt,t+1 + κ0 + κzt+1 − zt + ∆dt+1]) = 0.

From Appendix C.2 and C.3:

πt,t+1 = π̄t − γαcσtwc,t+1 + (ρ − γ) ϕvαxσtwx,t+1

+

[
(ρ − γ) + (1 − ρ) (γ − γ̃)

1 − νσ

1 − γ̃

]
ψ̃vασwσ,t+1.

where,

π̄t = π̄ − ρϕcxt −
1
2

(
α2

c + ϕ2
vα2

x

)
[(ρ − γ) (1 − γ)− (1 − ρ) (γ − γ̃) νσ] σ2

t .
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Guess: zt = A0 + A1xt + A2σ2
t , and verify:

log Et


exp





π̄ + κ0 + (κ − 1)A0 + κA2σ2 (1 − νσ)

−ρϕcxt + (κνx − 1)A1xt + ϕdxt

−1
2

(
α2

c + ϕ2
vα2

x
)
[(ρ − γ) (1 − γ)− (1 − ρ) (γ − γ̃) νσ] σ2

t + (κνσ − 1)A2σ2
t

+(−γ + χ)αcσtwc,t+1

+((ρ − γ) ϕv + κA1)αxσtwx,t+1

+
([

(ρ − γ) + (1 − ρ) (γ − γ̃) 1−νσ
1−γ̃

]
ψ̃v + κA2

)
ασwσ,t+1

+αdσtwd,t+1




= 0.

We obtain:

A1 =
ϕd − ρϕc

1 − κνx
,

A2 (1 − κνσ) = −1
2
[(ρ − γ) (1 − γ)− (1 − ρ) (γ − γ̃) νσ]

[
α2

c + ϕ2
vα2

x

]
+

1
2
(χ − γ)2 α2

c +
1
2
(κA1 + (ρ − γ) ϕv)

2 α2
x +

1
2

α2
d.

Given these results, we can rewrite:

rm,t+1 = rm,t + χαcσtwc,t+1 + κA1αxσtwx,t+1 + κA2(γ, γ̃)ασwσ,t+1 + αdσtwd,t+1,

where A2(γ, γ̃) = A2(γ) +
1

2(1−κνσ)
[(1 − ρ) (γ − γ̃) νσ]

[
α2

c + ϕ2
vα2

x
]
≥ A2(γ), strictly so

when γ > γ̃: the market returns covary less negatively with the consumption volatility
shocks.

Given Et (Πt,t+1Rm,t+1) = 1, we obtain:

log EtRm,t+1 − log R f ,t = γχα2
c σ2

t + (γ − ρ) ϕvκA1α2
xσ2

t

+

[
(γ − ρ) + (1 − ρ) (γ − γ̃)

1 − νσ

γ̃ − 1

]
ψ̃vκA2(γ, γ̃)α2

σ.

□

To derive the unconditional equity premium, we note that the volatility process is sta-
tionary under the constraint νσ < 1, such that σ2

t ∼ N
(
σ2, Σ2

σ

), where Σ2
σ = α2

σ

1−ν2
σ
.

Since the shocks to xt and to σ2
t between t − 1 and t are independent and E (xt) = 0,
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we have

cov
(

xt, σ2
t

)
= EEt−1

(
xtσ

2
t

)
= νxνσE

(
xt−1σ2

t−1

)
,

i.e. cov (xt, σ2
t
)
= 0.

We note:

log R f ,t = − log EtΠt,t+1

= ρϕcxt +
1
2

(
α2

c + ϕ2
vα2

x

)
[(ρ − γ) (1 − γ)− (1 − ρ) (γ − γ̃) νσ] σ2

t

− 1
2

(
γ2α2

c + (ρ − γ)2 ϕ2
vα2

x

)
σ2

t + r f

= ρϕcxt + r f ,σσ2
t + r f ,

where r f contains all the constant terms, and r f ,σ contains all the terms in σ2
t , in log R f ,t.

From:

log EtRm,t+1 − log R f ,t = γχα2
c σ2

t + (γ − ρ) ϕvκA1α2
xσ2

t

+

[
(γ − ρ) + (1 − ρ) (γ − γ̃)

1 − νσ

γ̃ − 1

]
ψ̃vκA2(γ, γ̃)α2

σ,

we obtain:

log ERm,t+1 − log ER f ,t = γχα2
c σ2 + (γ − ρ) ϕvκA1α2

xσ2

+

[
(γ − ρ) + (1 − ρ) (γ − γ̃)

1 − νσ

γ̃ − 1

]
ψ̃vκA2(γ, γ̃)α2

σ

+
1
2

[
γχα2

c + (γ − ρ) ϕvκA1α2
x

]2
Σ2

σ

+
[
γχα2

c + (γ − ρ) ϕvκA1α2
x

]
r f ,σΣ2

σ,

where r f ,σ = 1
2

(
α2

c + ϕ2
vα2

x
)
[(ρ − γ) (1 − γ)− (1 − ρ) (γ − γ̃) νσ]− 1

2

(
γ2α2

c + (ρ − γ)2 ϕ2
vα2

x

)
.

Finally, the unconditional macro-announcement bounds are determined as the contri-
bution to the unconditional equity premium of all terms coming from the {wx,t} shocks;
or all the terms coming from the {wx,t, wσ,t} shocks:

MAP ({wx,t}) =
[
log ERm,t+1 − log ER f ,t

]
−
[
log ERm,t+1 − log ER f ,t

]
αx=0

log ERm,t+1 − log ER f ,t
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MAP ({wx,t, wσ,t}) =
[
log ERm,t+1 − log ER f ,t

]
−
[
log ERm,t+1 − log ER f ,t

]
αx=0,ασ=0

log ERm,t+1 − log ER f ,t
.

C.6 Proof of Proposition 6

Let the price at time t for the full dividend Dt+h in h periods be Pt,h, and Pt,0 = Dt. Then
for h ≥ 1:

Pt,h

Dt
= Et

(
Πt,t+1

Dt+1

Dt

Pt+1,h−1

Dt+1

)
.

We guess and verify

Pt,h

Dt
= exp

(
µ̃d,h + ϕd,hxt + ψ̃d,hσ2

t

)
,

where µ̃d,0 = ϕd,0 = ψ̃d,0 = 0.
The recursion above becomes, for h ≥ 1:

Et


exp





π̄ + µd + µ̃d,h−1 + ψ̃d,h−1(1 − νσ)σ2

+ (−ρϕc + ϕd + ϕd,h−1νx) xt

+
(
−1

2

(
α2

c + ϕ2
vα2

x
)
[(ρ − γ) (1 − γ)− (1 − ρ) (γ − γ̃) νσ] + ψ̃d,h−1νσ

)
σ2

t

+(−γ + χ)αcσtwc,t+1

+((ρ − γ) ϕv + ϕd,h−1)αxσtwx,t+1

+
([

(ρ − γ) + (1 − ρ) (γ − γ̃) 1−νσ
1−γ̃

]
ψ̃v + ψ̃d,h−1

)
ασwσ,t+1

+αdσtwd,t+1




= exp

(
µ̃d,h + ϕd,hxt + ψ̃d,hσ2

t

)
.

Matching coefficients, we find the recursions, for h ≥ 1:

• Terms in xt:

ϕd,h = −ρϕc + ϕd + ϕd,h−1νx

⇒ ϕd,h = (−ρϕc + ϕd)
1 − νh

x
1 − νx
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• Terms in σ2
t :

ψ̃d,h = −1
2
((ρ − γ) (1 − γ)− (1 − ρ) (γ − γ̃) νσ)

(
α2

c + ϕ2
vα2

x

)
+ ψ̃d,h−1νσ

+
1
2

(
(−γ + χ)2 α2

c + ((ρ − γ) ϕv + ϕd,h−1)
2 α2

x + α2
d

)
• Constant:

µ̃d,h − µ̃d,h−1 = π̄ + µd + ψ̃d,h−1 (1 − νσ) σ2

+
1
2

([
(ρ − γ) + (1 − ρ) (γ − γ̃)

1 − νσ

1 − γ̃

]
ψ̃v + ψ̃d,h−1

)2

α2
σ.

We replicate the method above to the case of bond assets, i.e. to constant $1 payoffs,
such that:

Bt,h = exp
(

µ̃b,h + ϕb,hxt + ψ̃b,hσ2
t

)
,

where Bt,h is the price of $1 at horizon h, and obtain:

• Terms in xt:

ϕb,h = −ρϕc
1 − νh

x
1 − νx

.

• Terms in σ2
t :

ψ̃b,h = −1
2
((ρ − γ) (1 − γ)− (1 − ρ) (γ − γ̃) νσ)

(
α2

c + ϕ2
vα2

x

)
+ ψ̃b,h−1νσ

+
1
2

(
γ2α2

c + ((ρ − γ) ϕv + ϕb,h−1)
2 α2

x

)
.

• Constant:

µ̃b,h − µ̃b,h−1 = π̄ + ψ̃b,h−1 (1 − νσ) σ2

+
1
2

([
(ρ − γ) + (1 − ρ) (γ − γ̃)

1 − νσ

1 − γ̃

]
ψ̃v + ψ̃b,h−1

)2

α2
σ.
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The returns for dividend strips futures are:

RF
t+1,h =

Pt+1,h−1/Dt+1

Pt,h/Dt

Dt+1

Dt

Bt,h

Bt+1,h−1

=
Πt,t+1

Dt+1
Dt

Pt+1,h−1
Dt+1

Et

(
Πt,t+1

Dt+1
Dt

Pt+1,h−1
Dt+1

) Et (Πt,t+1Bt+1,h−1)

Πt,t+1Bt+1,h−1
.

We obtain:

log
(

RF
t+1,h

)
= χαcσtwc,t+1 + (ϕd,h−1 − ϕb,h−1) αxσtwx,t+1 + (ψ̃d,h−1 − ψ̃b,h−1) ασwσ,t+1 + αdσtwd,t+1

−
([

(ρ − γ) + (1 − ρ) (γ − γ̃)
1 − νσ

1 − γ̃

]
ψ̃v (ψ̃d,h−1 − ψ̃b,h−1) +

1
2

(
ψ̃2

d,h−1 − ψ̃2
b,h−1

))
α2

σ

− 1
2

((
−2γχ + χ2

)
α2

c +
(

2 (ρ − γ) ϕv (ϕd,h−1 − ϕb,h−1) +
(

ϕ2
d,h−1 − ϕ2

b,h−1

))
α2

x + α2
d

)
σ2

t ,

so

log Et

(
RF

t+1,h

)
=

([
(γ − ρ) + (1 − ρ) (γ − γ̃)

1 − νσ

γ̃ − 1

]
ψ̃v − ψ̃b,h−1

)
(ψ̃d,h−1 − ψ̃b,h−1) α2

σ

+
(

γχα2
c + ((γ − ρ) ϕv − ϕb,h−1) (ϕd,h−1 − ϕb,h−1) α2

x

)
σ2

t .

We note:
First

((γ − ρ) ϕv − ϕb,h−1) (ϕd,h−1 − ϕb,h−1) =
(

γ − ρνh−1
x

) ϕc

1 − νx

(
1 − νh−1

x

) ϕd
1 − νx

,

strictly positive and increasing in h.
Second,

ψ̃d,h − ψ̃b,h = (ψ̃d,h−1 − ψ̃b,h−1) νσ

+ χ

(
1
2

χ − γ

)
α2

c +

(
(ρ − γ) ϕv +

1
2
(ϕd,h−1 + ϕb,h−1)

)
(ϕd,h−1 − ϕb,h−1) α2

x +
1
2

α2
d︸ ︷︷ ︸

does not depend on γ̃

,

so ψ̃d,h − ψ̃b,h = ψd,h − ψb,h, ∀h.
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Third,

ψ̃b,h = ψ̃b,h−1νσ + Ψh−1︸ ︷︷ ︸
does not depend on γ̃

+
1
2
(1 − ρ) (γ − γ̃) νσ

(
α2

c + ϕ2
vα2

x

)
,

where Ψh−1 = −1
2 (ρ − γ) (1 − γ)

(
α2

c + ϕ2
vα2

x
)
+ 1

2

(
γ2α2

c + ((ρ − γ) ϕv + ϕb,h−1)
2 α2

x

)
>

0, when γ > γ̃ > 1 ≥ ρ. So:

ψ̃b,h = ψb,h +
1
2
(1 − ρ) (γ − γ̃) νσ

(
α2

c + ϕ2
vα2

x

) 1 − νh
σ

1 − νσ
,

where ψb,h ≥ 0, ∀h. We obtain:[
(γ − ρ) + (1 − ρ) (γ − γ̃)

1 − νσ

γ̃ − 1

]
ψ̃v − ψ̃b,h−1 = ((γ − ρ)ψv − ψb,h−1)

+
1
2

γ − γ̃

1 − νσ

(
α2

c + ϕ2
vα2

x

) (
(γ − 1) + (1 − ρ) νh

σ

)
,

where the second term (positive) cannot offset the first term (negative) when γ > γ̃ >

1 ≥ ρ.
Taking these results together, we obtain:

log Et

(
RF

t+1,h

)
=(γ − ρ) |ψv|+ ψb,h−1 −

1
2

γ − γ̃

1 − νσ

(
α2

c + ϕ2
vα2

x

) [
(γ − 1) + (1 − ρ) νh

σ

]
︸ ︷︷ ︸

≥0


︸ ︷︷ ︸

≥0

× (ψb,h−1 − ψd,h−1) α2
σ

+

γχα2
c +

(
γ − ρνh−1

x

) ϕc

1 − νx

(
1 − νh−1

x

) ϕd
1 − νx︸ ︷︷ ︸

≥0 and increasing

α2
x

 σ2
t .

To derive the unconditional expected returns, observe that the volatility process is sta-
tionary under the constraint νσ < 1 such that: σ2

t ∼ N
(
σ2, Σ2

σ

), where Σ2
σ = α2

σ

1−ν2
σ
, so

log E
(

RF
t+1,h

)
= E log Et

(
RF

t+1,h

)
+

1
2

(
γχα2

c +
(

γ − ρνh−1
x

) ϕc

1 − νx

(
1 − νh−1

x

) ϕd
1 − νx

α2
x

)2

Σ2
σ.
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Turning to the Sharpe Ratio:

SRF
t,h =

Et

(
RF

t+1,h − 1
)

√
vart

(
RF

t+1,h

)
=

1 − 1/Et

(
RF

t+1,h

)
√

expσ2
t

(
χ2α2

c+(ϕd,h−1−ϕb,h−1)
2
α2

x+α2
d

)
+(ψd,h−1−ψb,h−1)

2
α2

σ −1

,

where the denominator is unchanged from the standard model.
Finally the unconditional Sharpe ratio is:

SRF
h =

E
(

RF
t+1,h − 1

)
√

var
(

RF
t+1,h

)
=

1 − 1/E
(

RF
t+1,h

)
√√√√√exp

σ2
(

χ2α2
c + (ϕd,h−1 − ϕb,h−1)

2 α2
x + α2

d

)
+ (ψd,h−1 − ψb,h−1)

2 α2
σ

+7
4

(
χ2α2

c + (ϕd,h−1 − ϕb,h−1)
2 α2

x + α2
d

)2
Σ2

σ

− 1

,

where the denominator is unchanged from the standard model.
We define:

ϕh = γχα2
c +

(
γ − ρνh−1

x

) ϕc

1 − νx

(
1 − νh−1

x

) ϕd
1 − νx

α2
x,

ψh = ψb,h−1 − ψd,h−1,

Ψh = χ2α2
c + (ϕd,h−1 − ϕb,h−1)

2 α2
x + α2

d,

ah = (γ − ρ) |ψv|+ ψb,h−1,

bh =
1
2

1
1 − νσ

(
α2

c + ϕ2
vα2

x

) [
(γ − 1) + (1 − ρ) νh

σ

]
,

to derive Equation (18) and Equation (19). □

C.7 Proof of Proposition 7

From Section C.5, the log price-dividend ratio at time is determined by zt = A0 + A1xt +

A2σ2
t , and, in the notations of Proposition 5, λm,x = κA1 and λm,σ (γ, γ̃) = −κA2, where

κ = ez̄

1+ez̄ .
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From Equation (18), the only time variations in log Et

(
RF

t+1,h

)
come from the term

ϕhσ2
t .
The volatility process is stationary under the constraint νσ < 1, such that σ2

t ∼ N
(
σ2, Σ2

σ

),
where Σ2

σ = α2
σ

1−ν2
σ
.

Since the shocks to xt and to σ2
t between t − 1 and t are independent and E (xt) = 0,

we have

cov
(

xt, σ2
t

)
= EEt−1

(
xtσ

2
t

)
= νxνσE

(
xt−1σ2

t−1

)
,

i.e. cov (xt, σ2
t
)
= 0.

In addition,

cov (xt, xt) = EEt−1

(
x2

t

)
= ν2

xE
(

x2
t−1

)
+ α2

xE
(

σ2
t−1

)
,

so var (xt) =
α2

xσ2

1−ν2
x
.

We obtain:

cov
(

pt − dt, log Et

(
RF

t+1,h

))
= −ϕh

λm,σ (γ, γ̃)

κ

α2
σ

1 − ν2
σ

,

and,

var (pt − dt) =

(
λm,x

κ

)2 α2
xσ2

1 − ν2
x
+

(
λm,σ (γ, γ̃)

κ

)2 α2
σ

1 − ν2
σ

.

The regression of log Et

[
RF

t+1,h

]
on log Pt

Dt
yields

βh =
−ϕh

λm,σ(γ,γ̃)
κ

α2
σ

1−ν2
σ(

λm,x
κ

)2
α2

xσ2

1−ν2
x
+
(

λm,σ(γ,γ̃)
κ

)2
α2

σ

1−ν2
σ

.

□
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Due to the homotheticity of our preferences, we can rely on the fact that both Ṽt+h and
Vt+h are homogeneous of degree one which implies

dṼt+h/dWt+h
dVt+h/dWt+h

=
Ṽt+h
Vt+h

,

where the envelope condition guarantees:

dVt+h
dWt+h

=
dVt+h
dCt+h

.

From the preferences of Definition 1:

dVt

dCt
= Vρ

t (1 − β)C−ρ
t ,

dVt

dṼt+1
= Vρ

t βṼ−γ
t+1Et

[
Ṽ1−γ

t+1

] γ−ρ
1−γ ,

and

dṼt

dṼt+1
= Ṽρ

t βṼ−γ̃
t+1Et

[
Ṽ1−γ̃

t+1

] γ̃−ρ
1−γ̃ .

Combining these results allows us to derive the h-period SDF Πt,t+h as

Πt,t+h = βh
(

Ct+h
Ct

)−ρ
(

Ṽt+h
Vt+h

)1−ρ

 Ṽt+1

Et

[
Ṽ1−γ

t+1

] 1
1−γ


ρ−γ

h

∏
τ=2

 Ṽt+τ

Et+τ−1

[
Ṽ1−γ̃

t+τ

] 1
1−γ̃


ρ−γ̃

.

Consider a dividend strip and bond at horizon h priced at time t under Πt,t+h,

Pt,h/Dt = Et[Πt,t+hDt+h/Dt] ,

Bt,h = Et[Πt,t+h] ,

then, at time t + 1, priced under Πt+1,t+1+h−1

Pt+1,h−1/Dt+1 = Et+1[Πt+1,t+1+h−1Dt+h/Dt+1] ,

Bt+1,h−1 = Et+1[Πt+1,t+1+h−1] .
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The one-period return of the dividend strip future at horizon h is:

RF
t+1,h =

[(Pt+1,h−1/Dt+1) / (Pt,h/Dt)]× (Dt+1/Dt)

Bt+1,h−1/Bt,h
.

We note:

dt+h − dt = hµd +
1 − νh−1

x
1 − νx

ϕdxt +
h

∑
j=1

σt+j−1

(
χαcwc,t+j + ϕd

1 − ν
h−j
x

1 − νx
αxwx,t+j + αdwd,t+j

)
,

ct+h − ct = hµc +
1 − νh−1

x
1 − νx

ϕcxt +
h

∑
j=1

σt+j−1

(
αcwc,t+j + ϕc

1 − ν
h−j
x

1 − νx
αxwx,t+j

)
,

ṽt+h − vt+h =
1
2
(γ − γ̃)

[(
α2

c + ϕ2
vα2

x

)(
σ2 + νh

σ

(
σ2

t − σ2
)
+ ασ

h

∑
j=1

ν
h−j
σ wσ,t+j

)
+ ψ̃2

vα2
σ

]
,

and

log

 Ṽ1−γ̃
t+τ

Et+τ−1

[
Ṽ1−γ̃

t+τ

]


ρ−γ̃
1−γ̃

= (ρ − γ̃)
(
σt+τ−1 (αcwc,t+τ + ϕvαxwx,t+τ) + ψ̃vασwσ,t+τ

)
− 1

2
(ρ − γ̃) (1 − γ̃)

(
σ2

t+τ−1

(
α2

c + ϕ2
vα2

x

)
+ ψ̃2

vα2
σ

)
,

log

 Ṽ1−γ
t+1

Et

[
Ṽ1−γ

t+1

]


ρ−γ
1−γ

= (ρ − γ)
(
σt (αcwc,t+1 + ϕvαxwx,t+1) + ψ̃vασwσ,t+1

)
− 1

2
(ρ − γ) (1 − γ)

(
σ2

t

(
α2

c + ϕ2
vα2

x

)
+ ψ̃2

vα2
σ

)
.

Write α2
v = α2

c + ϕ2
vα2

x, and

dt+h − dt = dt+h − dt +
h

∑
j=1

σt+j−1∆j,hWt+j,

πt,t+h = πt,t+h +
h

∑
j=1

σt+j−1Qj,hWt+j +
h

∑
j=1

qj,hwσ,t+j + π
h

∑
j=2

σ2
t+j−1,

where

dt+h − dt = hµd +
1 − νh−1

x
1 − νx

ϕdxt,
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and

∆j,hWt+j = χαcwc,t+j + ϕd
1 − ν

h−j
x

1 − νx
αxwx,t+j + αdwd,t+j

Qj,hWt+j = −γ̃αcwc,t+τ +
(

ρν
h−j
x − γ̃

)
ϕvαxwx,t+τ, ∀j ≥ 2

Q1,hWt+1 = −γαcwc,t+1 +
(

ρνh−1
x − γ

)
ϕvαxwx,t+1

qj,h = ασ

[
(ρ − γ̃) ψ̃v +

1
2

α2
v (1 − ρ) (γ − γ̃) ν

h−j
σ

]
, ∀j ≥ 2

q1,h = ασ

[
(ρ − γ) ψ̃v +

1
2

α2
v (1 − ρ) (γ − γ̃) νh−1

σ

]
π = −1

2
(ρ − γ̃) (1 − γ̃) α2

v.

So:

log
Pt,h

Dt
= dt+h − dt + πt,t+h + log Etexp

[
h

∑
j=1

σt+j−1
(
∆j,h + Qj,h

)
Wt+j +

h

∑
j=1

qj,hwσ,t+j + π
h

∑
j=2

σ2
t+j−1

]
.

Relatively straightforward calculations yield:

Etexp

[
h

∑
j=1

σt+j−1
(
∆j,h + Qj,h

)
Wt+j +

h

∑
j=1

qj,hwσ,t+j + π
h

∑
j=2

σ2
t+j−1

]

= exp

∑h
j=1

(
1
2

∣∣∆j,h + Qj,h
∣∣2 + π

) (
ν

j−1
σ σ2

t + σ2
(

1 − ν
j−1
σ

))
+1

2 q2
h,h +

1
2 ∑h−1

j=1

(
qj,h + ασ ∑h

k=j+1 ν
k−(j+1)
σ

(
1
2 |∆k,h + Qk,h|2 + π

))2

To arrive at this solution, we start with separating the last term at horizon h:

Etexp

[
h

∑
j=1

σt+j−1
(
∆j,h + Qj,h

)
Wt+j +

h

∑
j=1

qj,hwσ,t+j + π
h

∑
j=2

σ2
t+j−1

]

= Etexp

[
h−1

∑
j=1

σt+j−1
(
∆j,h + Qj,h

)
Wt+j +

h−1

∑
j=1

qj,hwσ,t+j + π
h−1

∑
j=2

σ2
t+j−1

]

× exp
[

σ2
t+h−1

(
1
2
|∆h,h + Qh,h|2 + π

)
+

1
2

q2
h,h

]
Then, using σ2

t+h−1 = νσσ2
t+h−2 + (1 − νσ) σ2 + ασwσ,t+h−1, and separating and solving for

the terms in h − 1 under the expectation Et+h−2 using the law of iterated expectations, we
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obtain:

Etexp

[
h

∑
j=1

σt+j−1
(
∆j,h + Qj,h

)
Wt+j +

h

∑
j=1

qj,hwσ,t+j + π
h

∑
j=2

σ2
t+j−1

]

= exp
[
(1 − νσ) σ2

(
1
2
|∆h,h + Qh,h|2 + π

)]

× exp

σ2
t+h−2

((
1
2 |∆h−1,h + Qh−1,h|2 + π

)
+ νσ

(
1
2 |∆h,h + Qh,h|2 + π

))
+1

2 q2
h,h +

1
2

(
qh−1,h + ασ

(
1
2 |∆h,h + Qh,h|2 + π

))2

× Etexp

[
h−2

∑
j=1

σt+j−1
(
∆j,h + Qj,h

)
Wt+j +

h−2

∑
j=1

qj,hwσ,t+j + π
h−3

∑
j=1

σ2
t+j

]
.

Repeating the same step with σ2
t+h−2 = νσσ2

t+h−3 + (1 − νσ) σ2 + ασwσ,t+h−2, and sepa-
rating and solving for the terms in h − 2 under the expectation Et+h−3 using the law of
iterated expectations, we obtain:

Etexp

[
h

∑
j=1

σt+j−1
(
∆j,h + Qj,h

)
Wt+j +

h

∑
j=1

qj,hwσ,t+j + π
h

∑
j=2

σ2
t+j−1

]

= exp
[
(1 − νσ) σ2

((
1
2
|∆h,h + Qh,h|2 + π

)
(1 + νσ) +

(
1
2
|∆h−1,h + Qh−1,h|2 + π

))]

× exp



σ2
t+h−3 ×


(

1
2 |∆h−2,h + Qh−2,h|2 + π

)
+νσ

(
1
2 |∆h−1,h + Qh−1,h|2 + π

)
+ν2

σ

(
1
2 |∆h,h + Qh,h|2 + π

)
+1

2 q2
h,h +

1
2

(
qh−1,h + ασ

(
1
2 |∆h,h + Qh,h|2 + π

))2

+1
2

(
qh−2,h + ασ

((
1
2 |∆h−1,h + Qh−1,h|2 + π

)
+ νσ

(
1
2 |∆h,h + Qh,h|2 + π

)))2

× Etexp

[
h−3

∑
j=1

σt+j−1
(
∆j,h + Qj,h

)
Wt+j +

h−3

∑
j=1

qj,hwσ,t+j + π
h−4

∑
j=1

σ2
t+j

]
.
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Repeating these steps until step j = 1 yields:

Etexp

[
h

∑
j=1

σt+j−1
(
∆j,h + Qj,h

)
Wt+j +

h

∑
j=1

qj,hwσ,t+j + π
h

∑
j=2

σ2
t+j−1

]

= exp

[
σ2

h

∑
j=2

(
1
2

∣∣∆j,h + Qj,h
∣∣2 + π

)(
1 − ν

j−1
σ

)]

× exp

1
2

q2
h,h +

1
2

h−1

∑
j=1

(
qj,h + ασ

h

∑
k=j+1

ν
k−(j+1)
σ

(
1
2
|∆k,h + Qk,h|2 + π

))2


× exp

[
σ2

t

h

∑
k=1

νk−1
σ

(
1
2
|∆k,h + Qk,h|2 + π

)]
.

Such that:

Etexp

[
h

∑
j=1

σt+j−1
(
∆j,h + Qj,h

)
Wt+j +

h

∑
j=1

qj,hwσ,t+j + π
h

∑
j=2

σ2
t+j−1

]

= exp

∑h
j=1

(
1
2

∣∣∆j,h + Qj,h
∣∣2 + π

) (
ν

j−1
σ σ2

t + σ2
(

1 − ν
j−1
σ

))
+1

2 q2
h,h +

1
2 ∑h−1

j=1

(
qj,h + ασ ∑h

k=j+1 ν
k−(j+1)
σ

(
1
2 |∆k,h + Qk,h|2 + π

))2

We obtain

log
Pt,h

Dt
− log Bt,h = hµd +

1 − νh−1
x

1 − νx
ϕdxt +

1
2

h

∑
j=1

(∣∣∆j,h + Qj,h
∣∣2 − ∣∣Qj,h

∣∣2) (σ2
(

1 − ν
j−1
σ

)
+ ν

j−1
σ σ2

t

)

+
1
2

h−1

∑
j=1

(
qj,h + ασ

h

∑
k=j+1

ν
k−(j+1)
σ

(
1
2
|∆k,h + Qk,h|2 + π

))2

− 1
2

h−1

∑
j=1

(
qj,h + ασ

h

∑
k=j+1

ν
k−(j+1)
σ

(
1
2
|Qk,h|2 + π

))2

.

Using

∆j+1,h = ∆j,h−1, ∀j ≥ 1

Qj+1,h = Qj,h−1, ∀j ≥ 2

qj+1,h = qj,h−1, ∀j ≥ 2

q2,h = q1,h−1 + ασ (γ − γ̃) ψ̃v,
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we derive:

log EtRF
t+1,h =

1
2

χ2α2
c +

(
1 − νh−2

x
1 − νx

)2

ϕ2
dα2

x + α2
d

 σ2
t

− 1
2

((
|Q1,h−1|2 − |∆1,h−1 + Q1,h−1|2

)
−
(
|Q2,h|2 − |∆2,h + Q2,h|2

)) (
σ2 (1 − νσ) + νσσ2

t

)
+

1
2

(
|Q1,h|2 − |∆1,h + Q1,h|2

)
σ2

t

+
1
4

(
h

∑
j=3

(∣∣Qj,h
∣∣2 − ∣∣∆j,h + Qj,h

∣∣2) ν
j−2
σ +

(
|Q1,h−1|2 − |∆1,h−1 + Q1,h−1|2

))2

α2
σ

+
1
2

α2
σ (γ − γ̃) ψ̃v

h

∑
j=3

ν
j−3
σ

(∣∣Qj,h
∣∣2 − ∣∣∆j,h + Qj,h

∣∣2)

+
1
2

(q1,h + ασ

h

∑
k=2

νk−2
σ

(
1
2
|Qk,h|2 + π

))2

−
(

q1,h + ασ

h

∑
k=2

νk−2
σ

(
1
2
|∆k,h + Qk,h|2 + π

))2


Re-arranging, and using:

∣∣Qj,h
∣∣2 − ∣∣∆j,h + Qj,h

∣∣2 =
(∣∣Qj,h

∣∣2 − ∣∣∆j,h + Qj,h
∣∣2)

γ
− 2 (γ − γ̃)

(
χα2

c + ϕd
1 − ν

h−j
x

1 − νx
ϕvα2

x

)

and
(
|∆1,h + Q1,h|2 − |Q1,h|2

)
−
(
|∆1,1 + Q1,1|2 − |Q1,1|2

)
= ϕd

1 − νh−1
x

1 − νx

(
ϕd

1 − νh−1
x

1 − νx
+ 2

(
ρνh−1

x − γ
)

ϕv

)

we obtain:

log EtRF
t+1,1 − log EtRF

t+1,h =

− ϕd
1 − νh−1

x
1 − νx

(
γ − ρνh−1

x

)
ϕvα2

xσ2
t +

1
2

νh−2
x

(
1 − νh−2

x
1 − νx

+
1 − νh−1

x
1 − νx

)
ϕ2

dα2
xσ2

t

+ (γ − γ̃)


(

χα2
c + ϕd

1−νh−2
x

1−νx
ϕvα2

x

) (
σ2 (1 − νσ) + νσσ2

t
)

+1
2 α2

σ

∣∣ψ̃v
∣∣∑h

j=3 ν
j−3
σ

(∣∣Qj,h
∣∣2 − ∣∣∆j,h + Qj,h

∣∣2)
− 1

2

(q1,h + ασ

h

∑
k=2

νk−2
σ

(
1
2
|Qk,h|2 + π

))2

−
(

q1,h + ασ

h

∑
k=2

νk−2
σ

(
1
2
|∆k,h + Qk,h|2 + π

))2
 .
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Using (
q1,h + ασ

π

1 − νσ

)
−→

h→+∞
ασ

∣∣ψ̃v
∣∣ (γ − γ̃)

h

∑
j=2

ν
j−2
σ ν

h−j
x −→

h→+∞
0

We obtain

log EtRF
t+1,1 − log EtRF

t+1,h

−→
h→+∞

(γ − γ̃)

[
χα2

c

(
σ2 (1 − νσ) + νσσ2

t

)
+

ϕdϕv

1 − νx
α2

x

(
σ2 − σ2

t

)
(1 − νσ)

]

− γ̃
ϕdϕv

1 − νx
α2

xσ2
t −

1
8

(
ασ

1 − νσ

)2
γ̃4

(
α2

c + ϕ2
vα2

x

)2
−
(
(γ̃ − χ)2 α2

c +

(
γ̃ϕv −

ϕd
1 − νx

)2

α2
x

)2


︸ ︷︷ ︸
>0

Calculated at σt = σ:

log EtRF
t+1,1 − log EtRF

t+1,h

−→
h→+∞

(
(γ − γ̃) χα2

c − γ̃
ϕdϕv

1 − νx
α2

x

)
σ2

− 1
8

(
ασ

1 − νσ

)2
γ̃4

(
α2

c + ϕ2
vα2

x

)2
−
(
(γ̃ − χ)2 α2

c +

(
γ̃ϕv −

ϕd
1 − νx

)2

α2
x

)2


︸ ︷︷ ︸
>0

.

□

C.9 Exact Solutions, ρ = 1

Stochastic Discount Factor. Using Proposition 2 for the case ρ = 1, we obtain:

Πt,t+1 = β

(
Ct+1

Ct

)−1 Ṽ1−γ
t+1

Et

[
Ṽ1−γ

t+1

]
= β

(
Ct+1

Ct

)−1
(

Ṽt+1
Ct+1

Ct+1
Ct

)1−γ

Et

[(
Ṽt+1
Ct+1

Ct+1
Ct

)1−γ
] .
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Using the solution ṽt − ct = µ̃v +ϕvxt + ψ̃vσ2
t and ṽt − vt =

1
2 β (γ − γ̃)

[(
α2

c + ϕ2
vα2

x
)

σ2
t + ψ̃2

vα2
σ

]
derived in Appendix B when ρ = 1, the expression for the SDF becomes:

πt,t+1 =

π̄t=Et[πt,t+1]︷ ︸︸ ︷
log β − µc − ϕcxt −

1
2
(1 − γ)2

([
α2

c + ϕ2
vα2

x

]
σ2

t + ψ̃2
vα2

σ

)
− γαcσtwc,t+1 + (1 − γ) ϕvαxσtwx,t+1

+ (1 − γ) ψ̃vασwσ,t+1.

The log risk-free rate is given by r f ,t = − log Et (Πt,t+1):

r f ,t = −π̄t −
1
2

(
γ2α2

c σ2
t + (1 − γ)2 ϕ2

vα2
xσ2

t + (1 − γ)2 ψ̃2
vα2

σ

)
,

which simplifies to

r f ,t = − log β + µc + ϕcxt +

(
1
2
− γ

)
α2

c σ2
t .

Equity Premium. Following the same methodology as in Appendix C.5, we write the
market returns as rm,t+1 ≈ κ0 + κzt+1 − zt + ∆dt+1, where zt = pt − dt and κ = ez

1+ez < 1,
κ0 = log

(
1 + ez)− zκ, and z = p − d is taken from the data; which gives us the recursion

in zt: log Et (exp [πt,t+1 + κ0 + κzt+1 − zt + ∆dt+1]) = 0, given

πt,t+1 = π̄t − γαcσtwc,t+1 + (1 − γ) ϕvαxσtwx,t+1 + (1 − γ) ψ̃vασwσ,t+1.

where π̄t = π̄ − ϕcxt − 1
2 (1 − γ)2 (α2

c + ϕ2
vα2

x
)

σ2
t , and β enters in π̄ only.

We can guess and verify: zt = A0 + A1xt + A2σ2
t as in Appendix C.5; and obtain as in

Appendix C.5 that A1 and A2 are invariant to the constant π̄ (only A0 depends on π̄).
We can therefore derive the conditionalmarket excess returns strictly as inAppendixC.5

and obtain for the case ρ = 1:

log EtRm,t+1 − log R f ,t = γχα2
c σ2

t + (γ − 1) ϕvκA1α2
xσ2

t + (γ − 1) ψ̃vκA2α2
σ,

where A1 = ϕd−ϕc
1−κνx

and

A2 (1 − κνσ) = −1
2
(1 − γ)2

[
α2

c + ϕ2
vα2

x

]
+

1
2
(χ − γ)2 α2

c +
1
2
(κA1 + (1 − γ) ϕv)

2 α2
x +

1
2

α2
d.

To derive the unconditional equity premium, we proceed as in Appendix C.5. We ob-
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tain:

log ERm,t+1 − log ER f ,t = γχα2
c σ2 + (γ − 1) ϕvκA1α2

xσ2 + (γ − 1) ψ̃vκA2α2
σ

+
1
2

[
γχα2

c + (γ − 1) ϕvκA1α2
x

]2
Σ2

σ

+
[
γχα2

c + (γ − 1) ϕvκA1α2
x

] (1
2
− γ

)
α2

c Σ2
σ.

Note that the closed-form solution for the case ρ = 1 is exactly equal to our approximate
solution for β ≈ 1 in Appendix C.5 where we replace all terms in ρ to reflect ρ = 1. Our
approximation for the market excess returns under β ≈ 1 is exact in the corner case where
closed-form solutions obtain.

Term-structure results. Following the methodology of Appendix C.6, and taking into
account that β < 1 enters only in π̄, we obtain, given the price-dividend ratio of the horizon
h strip Pt,h

Dt
= exp

(
µ̃d,h + ϕd,hxt + ψ̃d,hσ2

t
), where µ̃d,0 = ϕd,0 = ψ̃d,0 = 0:

ϕd,h = (−ϕc + ϕd)
1 − νh

x
1 − νx

ψ̃d,h = −1
2
(1 − γ)2

(
α2

c + ϕ2
vα2

x

)
+ ψ̃d,h−1νσ +

1
2

(
(−γ + χ)2 α2

c + ((1 − γ) ϕv + ϕd,h−1)
2 α2

x + α2
d

)
µ̃d,h − µ̃d,h−1 = π̄ + µd + ψ̃d,h−1 (1 − νσ) σ2 +

1
2
(
(1 − γ) ψ̃v + ψ̃d,h−1

)2
α2

σ.

And for bonds Bt,h = exp
(
µ̃b,h + ϕb,hxt + ψ̃b,hσ2

t
), where Bt,h is the price of $1 at horizon

h, we obtain:

ϕb,h = −ϕc
1 − νh

x
1 − νx

ψ̃b,h = −1
2
(1 − γ)2

(
α2

c + ϕ2
vα2

x

)
+ ψ̃b,h−1νσ +

1
2

(
γ2α2

c + ((1 − γ) ϕv + ϕb,h−1)
2 α2

x

)
µ̃b,h − µ̃b,h−1 = π̄ + ψ̃b,h−1 (1 − νσ) σ2 +

1
2
(
(1 − γ) ψ̃v + ψ̃b,h−1

)2
α2

σ.

Observing that π̄ does not enter in {ϕd,h, ψ̃d,h, ϕb,h, ψ̃b,h} and therefore does not affect the
results of Appendix C.6 for the expected returns and Sharpe ratios of dividend strips fu-
tures, the closed-form solutions for the case ρ = 1 are those of Equation (18) and Equa-
tion (19) where all terms in ρ are replaced to account for ρ = 1. Our approximation for
dividend strip excess returns and Sharpe ratios under β ≈ 1 is exact in the corner case
where closed-form solutions obtain.

90



Table 4: Data and model calibration, case ρ = 1

Data Standard LRR Horizon-dependent risk aversion
ρ = 1/2 ρ = 1

γ̃ = 2 γ̃ = 1 γ̃ = 2 γ̃ = 1
Moment Estimate Bansal et al. (2012) γ = 11 γ = 13 γ = 13 γ = 16

(1) (2) (3) (4) (5) (6)

Timing Premium NA, ≈ 0 85% 1% −14% −46% −73%

Equity Premium
log E[Rm,t+1]− log E

[
R f ,t

]
6.8% 6.6% 5.6% 5.4% 6.2% 5.5%

Macro-Announcement Premium
Bound on {wx,t} shocks 55% 32% 49% 61% 38% 53%
Bound on {wx,t} and {wσ,t} shocks 55% 75% 68% 61% 66% 53%

Term Stucture of Equity Premia

Unconditional excess returns and Sharpe ratios:
log E

[
RF

5
]
− log E

[
RF

2
]

1.4% 3.4% 1.9% 1.9% 2.4% 2.4%
log E

[
RF

15
]
− log E

[
RF

5
]

2.6% 8.7% 2.1% 1.5% 2.8% 2.0%
log E

[
RF

5
]

2.3% 5.7% 4.8% 4.9% 5.4% 6.2%

SR
[
RF

5
]
− SR

[
RF

2
]

0.08 0.14 0.08 0.08 0.09 0.09
SR
[
RF

15
]
− SR

[
RF

5
]

0.09 0.29 0.06 0.03 0.07 0.02
SR
[
RF

5
]

0.16 0.24 0.23 0.24 0.26 0.29

Normal times/ liquid market, forward equity yields:
E[FEY5]− E[FEY2] 0.5% 1.6% 1.2% 1.3% 1.5% 1.8%
E[FEY15]− E[FEY5] 1.2% 4.5% 1.9% 1.6% 2.4% 2.1%

Recessions/ Illiquid market, forward equity yields:
E[FEY5]− E[FEY2] −3.0% 1.6% −0.2% −0.3% −0.2% −0.4%
E[FEY15]− E[FEY5] −1.4% 4.5% −0.1% −0.3% −0.1% −0.2%

log E
[
RF

∞
]
− log E

[
RF

1
]

≤ 0 90.2% −1.0% −1.9% −1.3% −2.3%

See Table 2 for details.

A similar replication of the methodology of Appendix C.8 would yield the same result
for the term-structure of dividend strip returns for illiquidmarkets: replacing ρ with ρ = 1
in the solutions we obtain for the β ≈ 1 approximation yields the closed-form solutions
for the corner case ρ = 1.

We replicate the calibration of Table 2 for the case ρ = 1 (we reproduced our calibration
for ρ = 1/2 under the approximation β ≈ 1 for comparison):

As Table 4 shows, to capture both the equity premium and the macro-announcement
premia under ρ = 1, the best calibration of themodel corresponds to γ = 16, γ̃ = 1. Under
this calibration, the term-structures of expected excess returns and Sharpe ratios are too
high and too upward sloping. More crucially, this calibration of the horizon-dependent
risk aversion model implies an extreme preference for late resolutions of uncertainty: the
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representative agent would bewilling to forgo 73% of herwealth to discover her consump-
tion shocks over time rather than have all information revealed next period.

D Appendix to Section 5

D.1 Term-structure: estimates and model solutions

The closed-form solutions of Appendix C.6 and C.8 allow us to obtain the monthly divi-
dend strip futures prices, i.e. at time t the dividend strip with maturity m is a claim to the
monthly dividend at time t + m, the bond with maturity m is a claim to $1 at month t + m,
and we have in closed-form log

(
Pt,m
Dt

× 1
Bt,m

)
, where Dt is the monthly dividend at time t.

For the corresponding data estimates, we use the equity yield proxy data provided in
Giglio et al. (2023)’s replication package corresponding to annual dividend strips prices
Pt,a/Dt,12 where the dividend strip with maturity a is a claim to the 12 months of divi-
dends in period t + a, where a ≥ 1 correspond to the horizon in years; Dt,12 is the past
12-month of dividends at time t. The annual dividend strip prices are provided at the
monthly frequency. To obtain the equivalent annual bond prices, we follow the method-
ology of Giglio et al. (2023), and use the estimates from Gürkaynak et al. (2007). Finally,
to obtain the monthly dividends, we proceed as in van Binsbergen et al. (2013), using the
difference between returns with and without dividends times the lagged value of index,
which allows us to obtain Pt,a from Pt,a/Dt,12 (using 12-month rolling annual dividends).

To convert the closed-form solutions log
(

Pt,m
Dt

× 1
Bt,m

)
for the monthly strips of Ap-

pendix C.6 andC.8 into annual strips, we use the sum ∑m∈year a
(

Pt,m
Dt

× 1
Bt,m

)
as the best ap-

proximation for the annual strip prices Pt,a
Dt

× 1
Bt,a

=
(

∑m∈year a
Pt,m
Dt

)
× 1

Bt,a
; whichwe derive

in closed-form for any {xt, σt, dt}. From the initial conditions {Ct = 1, xt = 0, σt = σ, Dt =

1}, we simulate 1,000 paths of 1,000 months for {ct, xt, σt, dt} to obtain time series of div-
idend strips prices Pt,a

Dt,12
× 1

Bt,a
and Pt,a

Bt,a
, for the “Normal times” solutions of Appendix C.6

and the “Recessions/ Illiquid market” solutions of Appendix C.8.
For the “Normal times” and the “Recessions/ Illiquidmarket” calibrations, we analyze

the average forward equity yields directly, where the forward equity yield of the annual
dividend strip of annual horizon h is given by

FEYt,h = −1
h

log
(

Pt,h

Dt,12
× 1

Bt,h

)
.

We exclude from the 1973–2020 sample data the NBER recession months to derive the
data estimates in “Normal times” which we compare to the simulated solutions using the
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closed-form solutions of Appendix C.6 for the one-periodmodel; we restrict the 1973–2020
sample to the NBER recessionmonths to derive the data estimates in “Recessions/ Illiquid
market” which we compare to the simulated solutions using the closed-form solutions of
Appendix C.8 for the buy-and-hold model.

We obtain the data estimates of the annual returns on the dividend strip futures fol-
lowing the formula:

RF
t+1,h =

Pt+1,h−1/Pt,h

Bt+1,h−1/Bt,h
, ∀h ≥ 2,

where t + 1 is t+ 12 months, h is the horizon in years. Since the dividend strips at horizon
less than 1 year are not defined, we obtain a monthly times series of annual returns for
horizon h ≥ 2, from which we calculate the unconditional sample average returns and
Sharpe ratios over the whole 1973–2020 sample.

For the model counterparts, we use the simulated of monthly dividends and the time
series of dividend strips prices Pt,a

Bt,a
derived in the one-period framework of Appendix C.6

and extract the time series of annual returns RF
t+1,a =

Pt+1,a−1/Pt,a
Bt+1,a−1/Bt,a

, ∀a ≥ 2 for “Nor-
mal times”; and the time series of dividend strips prices Pt,a

Bt,a
derived in the buy-and-hold

model of Appendix C.8, from which we extract the time series of annual returns RF
t+1,a =

Pt+1,a−1/Pt,a
Bt+1,a−1/Bt,a

, ∀a ≥ 2 for “Recessions/ Illiquid market”. We then produce a time series of an-
nual returns that contains the “Normal time” returns and the “Recessions/ Illiquid mar-
ket” returns in same proportions as the 1973–2020 sample, where we define a “Normal
time” return as one where there was no NBER recession month between t and t + 1 =
t + 12 months when the return is realized. We take the average and Sharpe ratio of this
simulated time series of returns obtained from the closed-form solutions of Appendix C.6
and C.8 to determine the model expected returns and Sharpe ratios.

D.2 Timing Premium when ρ ̸= 1

When ρ ̸= 1, we cannot derive closed-form solutions for the timing premium. We solve
numerically instead, using the following method:

1. Starting from x0 = 0 and σ0 = σ, simulate T = 100 periods of {xt, σt} from pro-
cess (8).

2. To derive the value with slow release of information:

(a) For each t, make 1000 random draws of possible next-period {xt+1, σt+1}.
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(b) define ṽct = ṽt − ct, ∀t. For each random draw, derive ṽct+1 (0), the exact solu-
tion to the value function of Equation (2) under ρ = 1, as a function of {xt, σt}
(see Appendix B.1)

(c) Adapting Equation (2) to

ṽct (1) =
1

1 − ρ
log
(
(1 − β) + β

(
Et
[

exp [(1 − γ̃) (ṽct+1 (0) + ct+1 − ct)]
) 1−ρ

1−γ̃

)
,

obtain ṽct (1) from ṽct (0), as a function of {xt, σt}.
(d) Repeat the method to obtain ṽct (2) from ṽct (1), then ṽct (3) from ṽct (2) etc, all

functions of {xt, σt}. Stop after N = 100. We construct a 40x40 grid for {xt, σt},
and interpolate for pairs {xt+1, σt+1} not on the grid points.

(e) For each t, average across the random draws to get the expectation of the next-
period t + 1 value using ṽct (N); then calculate the first-period t value using
Equation (1) adapted to value-to-consumption ratios.

3. To derive the value with early release of information:

(a) for each t, simulate 1000 random paths of 10,000 years each.
(b) Average across the random draws to get the expectation of the next-period t +

1 value; then calculate the first-period t value using Equation (1) adapted to
value-to-consumption ratios.

4. Calculate the timing premium for each t

5. Take the average over T periods of the timing premium.
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