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Abstract 

Inspired by experimental evidence, we amend the recursive utility model to let risk aversion 

decrease with the temporal horizon. Our pseudo-recursive preferences remain tractable and retain 

appealing features of the long-run risk framework, notably its success at explaining asset pricing 

moments. Calibrating the agents’ preferences to explain the market returns observed in the data 

no longer implies an extreme preference for early resolutions of uncertainty and captures key 

puzzles in finance on the valuation and demand for risk at long maturities. 
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1 Introduction

We propose a model that relaxes the assumption, standard in the economics literature,
that risk aversion is constant for all payoff horizons. We define pseudo-recursive prefer-
ences similar to Epstein-Zin (Epstein and Zin, 1989) but generalized to allow for horizon-
dependent risk aversions. As the experimental evidence indicates, we assume agents are
more risk averse for short horizons payoffs. Ourmodel remains tractable, and usual recur-
sive techniques can be applied.We find horizon-dependent risk aversion solves important
puzzles in finance. First, the model can be calibrated to match the usual asset pricing mo-
ments without implying an extreme preference for early resolutions of uncertainty, diffi-
cult to reconcile with micro evidence and introspection and a fundamental challenge to
the standard framework as pointed out in Epstein et al. (2014). Second, horizon-dependent
risk aversion can reconcile the high market returns observed in the data with a strong ap-
petite for long-term risk holdings. This explains, among others, the low risk premia of buy-
and-hold assets such as private equity and housing documented in e.g. Moskowitz and
Vissing-Jørgensen (2002); Giglio et al. (2014); Chambers et al. (2019); the downward slop-
ing term-structures of excess equity returns during the recent financial crisis of 2007–2009
in van Binsbergen et al. (2012); Bansal et al. (2019); and the low demand for long-term
insurance and for options with medium and long maturities, a puzzle discussed in e.g.
Garleanu et al. (2008); Akaichi et al. (2019).

Our first contribution is methodological: we introduce horizon-dependent risk aver-
sion within the standard recursive utility model of Epstein and Zin (1989), which allows
us to build on its success at explaining asset pricing moments when combined with long-
run risk. We assume risk aversions decrease with the temporal horizon, as suggested by
experimental evidence, and analyze the pricing implications of our preference model. We
show that commonly used recursive techniques can be adapted to our setting of pseudo-
recursive preferences, enabling us to derive closed-form solutions. Our baseline model
can accommodate numerous extensions, be it on the valuation of risk (habit formation,
disappointment aversion, loss aversion, etc.), or on the quantity of risk (rare disasters,
production-based models, etc.). Further, under our preference model, inter-temporal deci-
sions for deterministic payoffs are unchanged from the standard, time consistent, model;
but intra-temporal allocations across risky assets are dynamically time inconsistent. We can
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therefore study the optimal decisions and pricing impact of horizon-dependent risk aver-
sion in isolation from quasi-hyperbolic discounting, and in general from models of time
inconsistent inter-temporal decisions.

Combining recursive Epstein-Zin preferences with risk to the expected growth and
volatility of consumption, the standard long-run riskmodel has hadgreat success atmatch-
ing asset pricingmoments and at explaining their apparent "puzzles" (see Cochrane (2016)
for a review of the literature). It explains the high equity premium, matches various cross-
sectional evidence, captures the macroeconomic announcement premium (excess returns
around the Federal Reserve’s regular monetary policy meetings), and results in time-
varying risk premia that rationalize the volatility puzzle and return predictability. To
do so, however, the model also implies that the representative agent has a high to ex-
treme timing premium, a measure of her preferences for early versus late resolutions of
uncertainty: 30% in the calibration of Bansal and Yaron (2004) and 80% in Bansal, Kiku,
and Yaron (2009). This corresponds to the portion of her lifetime consumption the agent
would be willing to forego in order to be told all her future consumption shocks in the
next period rather than over time. Such a strong preference for an early resolution of un-
certainty appears inconsistent with the evidence, for instance on investors’ inattention to
theirwealth, andwith commonsense considerations; raisingdoubts as to the validity of the
whole model (Epstein, Farhi, and Strzalecki, 2014). Further, agents are exposed to larger
aggregate risks the longer the horizon of asset payoffs, making it hard for the standard
model to explain several observed features of the data: the low risk premia of illiquid long-
term buy-and-hold assets such as private equity and housing; the examples of downward
sloping term-structures of risk premia; the low demand for long-term insurance and for
options with medium or long maturities.

The core contribution of our paper is to formally show horizon-dependent risk aver-
sion can reconcile these sets of evidence, the macroeconomic asset pricing data with mi-
croeconomic attitudes towards information, risk valuations and risk appetites. To apply
our utility model and methodology to equilibrium asset pricing, we consider a represen-
tative agent who trades and clears the market every period, and, as such, cannot pre-
commit to any specific strategy: unable to commit to future behavior but aware of her
dynamic inconsistency, in the spirit of Strotz (1955), the agent optimizes in the current
period, fully anticipating reoptimization in future periods. Solving our model this way
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yields a canonical one-period pricing problem in which the Euler equation is satisfied,
and the law of one price and no-arbitrage conditions hold. In a Lucas-tree endowment
economy with long-run risk, we find that the pricing of shocks that impact consumption
levels is unchanged from the standard model — reflecting that the dynamic inconsistency
in our model does not concern inter-temporal decisions. In contrast, shocks to consump-
tion risk (volatility) directly affect intra-temporal decisions, and their pricing changes un-
der horizon-dependent risk aversion: the lower risk aversion at long horizons reduces the
pricing of volatility shocks and this effect accumulates over time. The model can be cali-
brated to capture the usual asset pricing moments, but because of this dichotomy in the
pricing impact of our model, lowering long-horizon risk aversions compared to the short-
horizon increases the impact of consumption level shocks on the equity premium relative
to volatility shocks. This allows us to discipline the calibration of our model: we use re-
cent evidence on themacroeconomic announcement premiumas a share of the total equity
premium (Lucca and Moench, 2015; Ai and Bansal, 2018) to quantify the wedge between
short and long-horizon risk aversions. We obtain a long-term risk aversion roughly half
that of the the immediate risk aversion, consistent with the estimates in the experimental
literature (Onculer, 2000). In contrast, calibrating the same level of risk aversion for imme-
diate and long-term risks, the standard model, overestimates the contribution of volatility
risk prices to the equity premium.

We then analyze how horizon-dependent risk aversion affects the timing premium —
the willingness to pay for early resolutions of uncertainty. Specifically, we formally derive
how two consumption streams with identical risk but different timing for information ar-
rivals are valued: one where shocks are revealed gradually as they are realized over time,
the other where all future shocks are revealed at the same early date. Agents value these
consumption streams differently, even though the ex-ante distributions of risk are rigor-
ously identical.Whether andhow the twovaluations differ depends on thewedge between
risk aversions for short-horizon payoffs versus for long-horizon payoffs as well as on their
values relative to the elasticity of inter-temporal substitution. A consumption streamwith
early resolution of uncertainty shifts the risk of all future shocks into a short-horizon risk,
moving from a risk assessment using the lower risk aversion at long horizons to a risk
assessment using the higher risk aversion at short horizons. This lowers the attractiveness
of early resolution of uncertainty, compared to the standard framework with Epstein-Zin
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preferences. We formalize this intuition and prove the timing premium is unambiguously
lowered when risk aversion is decreasing in horizon. Our model calibrated to match the
usual asset pricing moments and the macro-announcement premium results in a reason-
able level of timing premia, lower than 10%.

Finally we turn to the model’s implications for the valuation and demand for risk at
different horizons of asset payoffs. If agents trade every period, our calibrated model im-
plies the compensation, or excess returns, they require for taking risk increases with the
temporal horizon of payoffs: decreasing term structures of risk aversions do not imply
decreasing term structures of risk premia. On the other hand, investors who adopt buy-
and-hold strategies have greater risk appetites for assets with longer payoff horizon. The
differential pricing implications of our model for liquid one-period risks and long-term
locked-in investments can explain important puzzles in finance, in particular the low risk
premia for private equity and housing, the sharply downward sloping term-structures of
equity returns during the financial crisis of 2007–2009 and the low demand for long-term
insurance and hedging options at all but immediate maturities.

In sum, the model of preferences we propose, where risk aversions differ for short-
horizon and long-horizon payoffs, can address the early versus late resolution of uncer-
tainty critique and explain several important puzzles in finance on the valuation and ap-
petite for long-term risks. We can solve these challenges to the long-run risk framework
concerning the timing and pricing of uncertainty without compromising on the model’s
ability tomatch the usual asset pricingmoments, andwithout departing from themethod-
ology of the widely-used Epstein-Zin preferences.

After a review of the literature, we present our model of preferences in Section 2. In
Section 3, we derive the risk pricing implications of our model and its calibration. We
analyze the preference for early or late resolution of uncertainty in Section 4. In Section 5,
we analyze the valuation and demand for risk at different horizons; and how it relates to
the evidence in the data. Section 6 concludes. Allmathematical proofs are in theAppendix.

Related literature

This paper is the first to solve for equilibrium asset prices in an economy populated by
agents with dynamically inconsistent risk aversions. Our methodology, which guarantees
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the no-arbitrage condition despite time inconsistency, follows Luttmer andMariotti (2003),
and our work complements theirs. They show that dynamically inconsistent preferences
for inter-temporal trade-offs of the kind examined by Harris and Laibson (2001) have only
limited implications for asset pricing, and little power to explain cross-sectional variations
in asset returns. Given that cross-sectional asset pricing involves intra-period risk-return
tradeoffs, it is indeed quite intuitive that inter-temporal dynamic inconsistency is not suit-
able to address puzzles related to risk premia.

Our model generalizes Epstein-Zin preferences by relaxing the dynamic consistency
axiom of Kreps and Porteus (1978) to analyze the relationship between the timing and
pricing of uncertainty. We choose the CRRA model for risk adjustments, standard to the
macro-finance literature. In contrast, Routledge and Zin (2010), Bonomo et al. (2011) and
Schreindorfer (2014) follow Gul (1991) and relax the independence axiom to analyze the
asset pricing impact of disappointment aversion within a recursive framework. They find
that their models generate endogenous predictability (Routledge and Zin, 2010); match
various asset pricing moments (Bonomo et al., 2011); and price the cross-section of op-
tions better than the standard model (Schreindorfer, 2014). Similarly, Andries (2015) in-
troduces loss aversion in recursive preferences à la Epstein and Zin (1989) and shows it
helpsmatch the securitymarket line, while Dew-Becker (2012) uses amodel of habit to ob-
tain time varying risk premia. Our framework can also accommodate these non-standard
utility functions for the valuation of risk. Within the classical model of Epstein and Zin
(1989), none of the above-mentioned preference models address the "excessive preference
for early resolutions of uncertainty puzzle", pointed out by Epstein et al. (2014) or explain
the pricing and demand for risk at long-horizons — the two questions of interest in our
analysis.

To capture various asset pricingmoments, the long-run risk literature relies on the pric-
ing of shocks to consumption growth and to consumption volatility. Hansen et al. (2008)
directly measure consumption growth shocks in the data, and Bryzgalova and Julliard
(2015) use cross-sections of returns to provide evidence consumption growth shocks are
priced, which is consistent alsowith equity premia around the Federal OpenMarket Com-
mittee (FOMC) meetings (Lucca and Moench, 2015; Ai and Bansal, 2018). The importance
of a volatility risk channel is supported by Campbell et al. (2016), who show that it is cru-
cial for asset returns in a CAPM framework, and who relate this to other works on the
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relation between volatility risk and returns (Ang et al., 2006; Adrian and Rosenberg, 2008;
Drechsler and Yaron, 2010; Bollerslev and Todorov, 2011; Menkhoff et al., 2012; Boguth
and Kuehn, 2013). However, direct evidence in the data of time-varying uncertainty in the
consumption process remains elusive.

The literature concerning the preferences for early resolutions of uncertainty in the
long-run risk framework, and the related evidence is further discussed in Section 4; that
concerning the demand and valuation of risk at different payoff horizons is at the core of
Section 5.3, and presented in details there.

2 Preferences with horizon-dependent risk aversion

Field and laboratory experiments document that risk-taking behavior is affected by how
far in the future a risk occurs: subjects tend to be more averse to risks in the near future
than to risks in the distant future. Early work by Jones and Johnson (1973) provides ev-
idence for such horizon-dependent risk aversions from a simulated medical trial. More
recent studies use the standard protocol of Holt and Laury (2002) to elicit risk aversion
— Noussair and Wu (2006) in a within-subjects design and Coble and Lusk (2010) in an
across-subjects design — and find risk aversion decreases as risk becomes more distant
in time. The same pattern is documented by Sagristano, Trope, and Liberman (2002) and
Baucells and Heukamp (2010) using binary choice among lotteries, as well as by Onculer
(2000) and Abdellaoui, Diecidue, and Onculer (2011) using certainty equivalents. Onculer
(2000) thus quantifies the premium for risk at different horizons and shows it is twice
higher for immediate payoffs than for delayed lotteries.1

Figure 1 provides an example of preferences with horizon-dependent risk aversion.
Under this illustrative example, all subjects are asked to rank a lottery with payoff x = 1
for certain versus a lottery with payoff x = 3 with a 50% chance, and x = 0 otherwise.
All subjects choose their rankings at time t = 0; however for some the lottery happens at
time t = 2 (the "distant risk" case), and for some the lottery happens at time t = 1 (the
"imminent risk" case).

The experimental evidence shows that subjects may prefer the certain lottery over the
1The premium for risk is measured as the difference between the expected payoff of a lottery and the

value, or certainty equivalent, subjects assign to it.
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Figure 1: Preferences with horizon-dependent risk aversion.

risky one when the risk is immediate but prefer the same risky lottery over the certain one
when the risk is distant in the future. For a real life intuitive example, think of someone
paying a considerable amount of money for a parachute jumping experience, and then re-
fusing to actually jumponce in the plane. This is the notion of horizon-dependent risk aversion
as introduced by Eisenbach and Schmalz (2016) in a static, time separable, framework.

In the illustrative example above, one subgroup ranks lotteries with horizon t = 1
and the other subgroup ranks lotteries with horizon t = 2: within each subgroup the
ranking is for lotteries that will happen at the same time. That the rankings change with
the horizon reveals a dynamic inconsistency in intra-temporal choices, not in inter-temporal
choices. In particular, thewell documented hyperbolic discounting (e.g. Phelps andPollak,
1968; Laibson, 1997) or other time inconsistencies concerning inter-temporal decisions do
not influence, or cause, the evidence discussed above.2

2.1 Dynamic preference model

To explore the formal implications of horizon-dependent risk aversion in a dynamic frame-
work, we introduce it in the recursive utility Epstein-Zin preferences, the standard model
for long-run risk pricing. Epstein-Zin preferences are dynamically consistent (by defini-
tion). We generalize their model by relaxing the dynamic consistency axiom of Kreps and
Porteus (1978). To simplify the exposition, we present the model with only two levels of
risk aversion γ and γ̃: we assume that the agent treats immediate uncertainty with risk
aversion γ, and all delayed uncertainty with risk aversion γ̃, where γ > γ̃ ≥ 1 in line with

2Eisenbach and Schmalz (2016) also show that horizon-dependent risk aversion is conceptually orthog-
onal to time-varying risk aversion (Constantinides, 1990; Campbell and Cochrane, 1999) .
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the experimental evidence.3

At any time t, we denote by Et[ · ] = E[ · | It] the expectation conditional on It, the
information set at time t.

Definition 1 (Dynamic horizon-dependent risk aversion). The agent’s life-time utility in
period t of a consumption stream {Cτ}τ≥t is given by

Vt =

(
(1− β)C1−ρ

t + βEt
[
Ṽ1−γ

t+1

] 1−ρ
1−γ

) 1
1−ρ

, (1)

where the continuation value Ṽt+1 satisfies the recursion

Ṽt+1 =

(
(1− β)C1−ρ

t+1 + βEt+1
[
Ṽ1−γ̃

t+2
] 1−ρ

1−γ̃

) 1
1−ρ

. (2)

The lifetime utility Vt depends on the deterministic current consumption Ct and on the
certainty equivalent Et

[
Ṽ1−γ

t+1

] 1
1−γ of the continuation value Ṽt+1, where the aggregation

of the two periods occurs with constant elasticity of intertemporal substitution given by
1/ρ > 0 under the subjective time discount β > 0. However, the certainty equivalent
of consumption starting at t + 1 is calculated with relative risk aversion γ > 0, wherein
the certainty equivalents of consumption starting at t + 2 and beyond are calculated with
relative risk aversion γ̃ > 0. Adapted to the preferences of Definition 1, the experimental
evidence in Onculer (2000) is consistent with γ̃ ≈ 1

2 γ.4

This is the concept of horizon-dependent risk aversion applied to the recursive valu-
ation of certainty equivalents, as in Epstein-Zin preferences, but with risk aversion γ for
imminent uncertainty and risk aversion γ̃ for delayed uncertainty. Our model nests the
Epstein-Zin model when γ = γ̃, and, in turn, nests the standard time-separable model
with constant relative risk aversion (CRRA) when γ = γ̃ = ρ. Any difference in the re-
sults we derive below under the preferences of Definition 1 to those obtained under the

3Our approach, with only two levels of risk aversion, is analogous to the β-δ framework (Phelps and
Pollak, 1968; Laibson, 1997) as a special case of the general non-exponential discounting model of Strotz
(1955). In Appendix A, we present the model for general sequences {γh}h≥1 of risk aversion at horizon h. As
long as risk aversions reach a constant level beyond a given horizon, closed form solutions similar to those
derived in Sections 3, 4, 5 and 5.3 obtain.

4In Section 3.2, we find a calibration of themodel with γ̃ ≈ 1
2 γ allows tomatch the asset pricing evidence.
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standard Epstein-Zin model thus hinges on γ̃ 6= γ.
The horizon-dependent valuation of risk implies a dynamic inconsistency, as the un-

certain consumption stream starting at t+ 1 is evaluated as Ṽt+1 by the agent’s self at t and
as Vt+1 by the agent’s self at t + 1:

Ṽt+1 =

(
(1− β)C1−ρ

t+1 + βEt+1
[
Ṽ1−γ̃

t+2
] 1−ρ

1−γ̃

) 1
1−ρ

6= Vt+1 =

(
(1− β)C1−ρ

t+1 + βEt+1
[
Ṽ1−γ

t+2
] 1−ρ

1−γ

) 1
1−ρ

Crucially, this disagreement between the agent’s continuation value Ṽt+1 at t and the
agent’s utility Vt+1 at t + 1 arises only for uncertain consumption streams. For any deter-
ministic consumption stream the horizon dependence in Equation (1) becomes irrelevant
and we have

Ṽt+1 = Vt+1 =
(
(1− β)∑h≥0βhC1−ρ

t+1+h

) 1
1−ρ .

Our model implies dynamically inconsistent risk preferences while maintaining dynami-
cally consistent time preferences, focusing strictly on the experimental evidence described
above. The results we obtain in the analysis that follows can therefore be attributed to
horizon-dependent risk aversion, orthogonal to extant models of time inconsistency, such
as hyperbolic discounting.

2.2 Generalized preference model

In the preferences of Definition 1, we opted for CRRA risk adjustments. However, similarly
to the Epstein-Zin model, our model of horizon-dependent risk aversion accommodates
any preferences in the Chew-Dekel class of betweenness-respecting models (Dekel, 1986;
Chew, 1989). The general model is defined as:

Definition 2 (Generalized dynamic horizon-dependent risk aversion). The agent’s utility
in period t is given by

Vt =
(
(1− β)C1−ρ

t + β
(
Rt
[
Ṽt+1

]) 1−ρ
) 1

1−ρ , (3)
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where the continuation value Ṽt+1 satisfies the recursion

Ṽt+1 =
(
(1− β)C1−ρ

t+1 + β
(
R̃t+1

[
Ṽt+2

]) 1−ρ
) 1

1−ρ , (4)

andRt[ · ] and R̃t[ · ] are certainty-equivalent operators for utility functions U and Ũ in the Chew-
Dekel class of betweenness-respecting models.

Examples of certainty equivalent operators other than CRRA (of Equations (1) and (2))
could be those of a CRRA habit model (Campbell and Cochrane, 1999) with risk aversions
γ > γ̃ or those of the disappointment aversion model (Gul, 1991) with first-order risk
aversion coefficients θ > θ̃. As mentioned in our review of the literature, introducing
these "exotic" risk adjustments helps explain cross-sectional evidence (Routledge and Zin,
2010; Bonomo et al., 2011; Schreindorfer, 2014; Andries, 2015), orthogonal to the timing
and pricing of risk we analyze in this paper and to our notion of horizon-dependent risk
aversion. The cross-sectional results derived under the standard Epstein-Zinmodel would
remain valid under the preferences of Definition 2.

At a deeper level, the preferences of Definition 2 allow for great flexibility: agents could
have first-order risk aversion (disappointment aversion or loss aversion) for immediate
risk but standard concave utility for longer horizons; they could have time-varying risk
aversion for immediate risks only; the gap between their immediate and long-term risk
aversions could vary with market conditions; etc. Our first contribution is conceptual: we
propose a model of preferences that allows for the analysis of new and complex forms of
dynamic inconsistencies within a simple framework.

2.3 Timing of risk and dynamic inconsistency

Anagentwith the time-inconsistent preferences ofDefinition 1 orDefinition 2 can be either
naive or sophisticated about the disagreement between her temporal selves; in addition,
she may be able to commit to multi-period strategies or be compelled to reoptimize every
period. These modeling choices matter for dynamic outcomes, and the asset prices we
derive. In contrast, the valuation of early versus late resolution of uncertainty is by nature
a static problem: its solutions are the same for naive and sophisticated investors, with or
without commitment.
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We follow the tradition of Strotz (1955), and assume the agent is fully rational and so-
phisticated when making choices in period t to maximize Vt. Self t realizes that her valua-
tion of future consumption, given by Ṽt+1, differs from the objective function Vt+1 which
self t + 1 will maximize. The solution then corresponds to the subgame-perfect equilib-
rium in the sequential game played among the agent’s different selves (see Appendix A.1).

We assume no commitment in Section 3, as appropriate for a representative agent who
trades and clears the market at all times, and as such cannot precommit to a given strategy
— similar to the framework of Luttmer and Mariotti (2003) for non-geometric discount-
ing. However, in Section 5, we analyze the implications of letting the sophisticated agents
commit to buy-and-hold strategies, e.g. for illiquid assets and periods of liquidity crises
in which one-period pricing breaks down.

Extending our results to an agent naive about her own dynamic inconsistencies is
straightforward and does not present any conceptual challenge. We briefly discuss and
derive formal results for this alternative approach in Appendix A.3.

3 Asset prices

We derive the marginal pricing of risk in a standard Lucas-tree endowment economy, in
which a representative agent with the horizon-dependent preferences of Definition 1 sets
equilibrium prices. All decisions are made in sequential one-period problems, where the
no-arbitrage condition is automatically satisfied despite the agent’s time inconsistent pref-
erences (see Appendix A.1 for details). This one-period pricing framework is the classical
approach.

Assuming a sophisticated representative agent with the preferences of Definition 1,
who trades and re-optimizes her utility every period and cannot commit to any specific
strategy, the object of interest for asset pricing purposes is the stochastic discount factor
(SDF). The SDF’s derivation is based on the inter-temporal marginal rate of substitution

Πt,t+1 =
dVt/dWt+1

dVt/dCt
,

which satisfies the Euler equation, whereby the equilibrium price at time t of a future
payoff Xt+1 is given by Pt = Et[Πt,t+1Xt+1].
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Proposition 1. An agent with the horizon-dependent risk aversion preferences of Definition 1 has
a one-period stochastic discount factor

Πt,t+1 = β

(
Ct+1

Ct

)−ρ

︸ ︷︷ ︸
(I)

×

 Ṽt+1

Et
[
Ṽ1−γ

t+1

] 1
1−γ

ρ−γ

︸ ︷︷ ︸
(II)

×
(

Ṽt+1

Vt+1

)1−ρ

︸ ︷︷ ︸
(III)

. (5)

The SDF consists of three multiplicative parts. The first term (I) is standard, capturing
the inter-temporal substitution between t and t + 1, and is governed by the time discount
factor β and the elasticity of inter-temporal substitution 1/ρ.

The second term (II) captures the unexpected shocks realized in t + 1 to consumption
in the long-run, i.e. beyond t + 1. It compares the ex-post realized t + 1 utility Ṽt+1 to
its ex-ante certainty equivalent Et

[
Ṽ1−γ

t+1

] 1
1−γ ; both the comparison as well as the certainty

equivalent are evaluated with immediate risk aversion γ. The same term obtains under
standard Epstein-Zin preferences with the difference that, in our model, the t + 1 utility
of self t (Ṽt+1) differs from that of self t + 1 (Vt+1).

Finally, the third term (III) captures the dynamic inconsistency in ourmodel by loading
on the disagreement between selves t and t + 1 when evaluating their t + 1 utilities, given
by the ratio Ṽt+1/Vt+1.

3.1 Risk model, risk prices

To interpret what aggregate shocks the three terms (I), (II) and (III) in the stochastic dis-
count factor of Equation (5) price, we assume a log-normal endowment consumption pro-
cess where both the expected growth and uncertainty are time varying, in line with the
long-run risk literature (e.g. Bansal and Yaron, 2004; Bansal et al., 2009):

ct+1 − ct = µc + φcxt + αcσtwc,t+1

xt+1 = νxxt + αxσtwx,t+1 (6)

σ2
t+1 = σ2 + νσ

(
σ2

t − σ2
)
+ ασwσ,t+1
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For simplicity, we assume that xt is one dimensional and the three shocks wc,t, wx,t and wσ,t

are i.i.d.N (0, 1) and orthogonal.5 Both νx and νσ are contracting. Throughout, ct = log Ct.
Before deriving the pricing of the shocks {wc,t, wx,t, wσ,t} under horizon-dependent

risk aversion, we briefly explain the role they play in the long-run risk model. This allows
us to clarify the comparisons we draw later between ours and the classical framework.

The consumption process (6) accounts for time variations in expected consumption
growth, through the state variable xt, consistent with direct evidence in the data (Hansen
et al., 2008). Cross-sectional asset pricing returns demonstrate further that shocks to xt are
priced in the data (Hansen et al., 2008; Bryzgalova and Julliard, 2015), capturing in par-
ticular the value premium from Fama and French (1993); while the analysis of the macro-
announcement premium shows their pricing contributes to a large portion of the market
equity premium (55% in Ai and Bansal, 2018, and 80% in Lucca and Moench, 2015, who
study a shorter, more recent, time period). This set of evidence provides a foundation for
combining expected growth risk in the consumption process (6) with recursive non time-
separable preferences such as Epstein-Zin preferences: the long-run risk framework.

The time variations in the volatility σt, in consumption process (6) have a separate role
to play: though not directly observable in the data, they are necessary to generate time-
varying risk premia, and for the model to capture the volatility puzzle (Shiller, 1981).6

We now turn to how horizon-dependent risk aversion (Definition 1) affects the pricing
of these consumption shocks. To derive closed-form solutions, we focus on the case ρ = 1,
a unit elasticity of inter-temporal substitution.7 From Proposition 1, the variable of interest
in our analysis is the ratio between the t+ 1 value of self t (Ṽt+1) and that of self t+ 1 (Vt+1).
Taking logs, we obtain:

5These assumptions can be generalized. We employ them here to make our results comparable to those
of Bansal and Yaron (2004) and Bansal et al. (2009).

6Just like the standard Epstein-Zin model, our framework allows for the analysis of additional shocks in
the consumption process (6), e.g. jumps. Drechsler and Yaron (2010) show such shocks help capture other
features in the data, notably the pricing of variance swaps and their ability to predict market equity returns
(Bollerslev et al., 2009).

7In Appendix C, we consider ρ 6= 1 and the approximation of a rate of time discount close to zero, β ≈ 1.
We show our main results remain valid as long as the elasticity of inter-temporal substitution is greater or
equal to one (1/ρ ≥ 1) — a constraint the standard long-run risk model must also satisfy to match asset
pricing data.
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Lemma 1. Under the Lucas-tree endowment process (6) and ρ = 1,

ṽt+1 − vt+1 =
1
2

β (γ− γ̃)
(

α2
c + φ2

vα2
x + ψv(γ̃)

2 α2
σ

)
σ2

t+1, (7)

where φv is independent of both γ and γ̃, and ψv(γ̃) < 0 is independent of γ:

φv =
βφc

1− βνx
, (8)

ψv(γ̃) =
1
2

β (1− γ̃)

1− βνσ

(
α2

c + φ2
vα2

x

)
. (9)

Equation (7) reflects that the t + 1 value of self t (ṽt+1) and that of self t + 1 (vt+1) only
differ in their t + 1 valuation of uncertain consumption starting in t + 2 onwards, which is
governed by volatility σt+1. Self t evaluates this uncertainty with low risk aversion γ̃ while
self t + 1 evaluates it with high risk aversion γ; implying that ṽt+1 − vt+1 is positive, and
increasing in γ− γ̃ and in the amount of uncertainty driven by volatility σt+1.

From terms (II) and (III) in Equation (5), horizon-dependent risk aversion affects only
the pricing of shocks that correlate with variations in the ratio Ṽt/Vt, therefore with vari-
ations in σt. From Lemma 1, we derive the central result:

Proposition 2. Horizon-dependent risk aversion does not affect the equilibrium risk prices of
shocks to consumption levels (immediate consumption shocks and shocks to consumption growth).

If the agent faced consumption level shocks only, she could anticipate how her future
self reoptimizes, and her time inconsistencywould not cause additional uncertainty in her
one-period decision making. Only unanticipated changes in her intra-temporal decisions,
when the quantity of risk varies through time, interact with her dynamic inconsistency to
modify risky assets’ excess returns compared to the time consistent model. This result cru-
cially hinges on the fact that, in our preference framework, only intra-temporal decisions
are time inconsistent: inter-temporal decisions are unchanged from the standard model.
One important implication of Proposition 2 is that themacroeconomic announcement pre-
mium described and analyzed in Lucca andMoench (2015) andAi and Bansal (2018) is the
same under standard Epstein-Zin preferences and horizon-dependent risk aversion.

Let us now turn to the pricing of all shocks, including shocks to volatility σt. From
Lemma 1 we obtain:
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Proposition 3. Under the Lucas-tree endowment process (6) and ρ = 1, the stochastic discount
factor satisfies

πt,t+1 − Et[πt,t+1] = −γαcσtwc,t+1 + (1− γ) φvαxσtwx,t+1

+ (1− γ)ψv(γ̃) ασwσ,t+1. (10)

The risk free rate is independent of γ̃:

r f ,t = − log β + µc + φcxt +

(
1
2
− γ

)
α2

c σ2
t (11)

The pricing of the immediate consumption shocks, given by the term γαcσtwc,t+1; the
pricing of drift shocks, the term (1− γ) φvαxσtwx,t+1; as well as the risk-free rate, in Equa-
tions (10) and (11); all depend only on the immediate risk aversion γ, and are unchanged
from the standard long-run riskmodel.8 In contrast, fromEquations (9) and (10), we obtain
the formal result:

Corollary 1. For an agent with horizon-dependent risk aversion, γ > γ̃ unambiguously lowers
the pricing of volatility shocks:

ψv(γ̃)

ψv(γ)
=

1− γ̃

1− γ
< 1. (12)

Ourmodel yields a negative price for volatility shocks: (1− γ)ψv(γ̃) ασwσ,t+1 in Equa-
tion (10). Assets with payoffs that covary with aggregate volatility provide valuable in-
surance, consistent with the existing long-run risk literature and the observed evidence
from variance swaps and option straddles returns (see Dew-Becker et al., 2016, and An-
dries et al., 2016 for recent examples). However, shocks to volatility make future intra-
temporal decisions uncertain and, for this reason, how risky they are depends on horizon-
dependent risk aversion. Due to the lower risk aversion γ̃ < γ, their implied long-run
uncertainty does not "feel" as costly, which reduces the value of hedges against volatility
shocks; the intuition behind Corollary 1.

Before turning to the quantitative analysis of our model, let us pause to interpret the
8When ρ 6= 1, the risk-free rate can depend on γ̃, though not the risk prices for immediate consumption

shocks and drift shocks – see Appendix C.
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qualitative implications of our results. First, as discussed above, the pricing of shocks to
consumption levels, i.e. to Ct+1/Ct and to xt, allows the standard long-run risk model to
match the market equity premium, the macroeconomic announcement premium and the
value premium. From Equations (8) and (10), the pricing of these shocks is exactly the
same under horizon-dependent risk aversion: the preference model of Definition 1 retains
the same ability to match these market premia.

Second, the shocks to consumption growth uncertainty in process (6) allow to obtain
time-varying risk premia and explain themarket volatility puzzle in the standard long-run
risk model. As Equation (10) shows, time variations in risk premia arise from the pricing
of both the immediate consumption shocks and the long-run consumption growth shocks
— the terms γαcσtwc,t+1 and (1− γ) φvαxσtwx,t+1 —and not through the pricing of shocks
to volatility. Variations in the pricing of risk thus remain unchanged by the introduction
of horizon-dependent risk aversion with γ̃ < γ, providing the exact same rationalization
of the volatility puzzle.

Third, in calibrations of the consumption process (6), the pricing of shocks to volatil-
ity under the Epstein-Zin model also contributes to the equity premia, sometimes to a
large extent (e.g. Bansal et al., 2009). Introducing horizon-dependent risk aversion unam-
biguously reduces the magnitude of their impact. In the extreme case γ̃ ≈ 1, the pricing of
volatility shocks goes to zero (Corollary 1). To assess ourmodel, we appeal to the evidence
concerning the macroeconomic announcement premium and its share of the equity pre-
mium (80% in Lucca andMoench, 2015, 55% in Ai and Bansal, 2018). As driven exclusively
by the pricing of shocks to consumption levels, themagnitude of this share provides direct
evidence on the relative values of the risk prices of immediate and long-term consumption
shocks versus volatility shocks; and, in turn, on how small the long-run risk aversion γ̃ of
the representative agent must be compared to her immediate risk aversion γ. This allows
us to discipline the calibration of our model.

3.2 Model calibration

The consumption processes (6) is calibrated, Table 1, strictly as in Bansal et al. (2009).9

This allows us to highlight how the horizon-dependent risk aversion preference model
9Table 1 also provides the calibration of the dividend growth processes (15) in Sections 5 and 5.3.
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Table 1: Calibration.

Process Parameters

ct µc = 0.15% φc = 1 αc = 1
xt νx = 0.975 αx = 0.0038
σt σ = 0.72% νσ = 0.999 ασ = 0.00028%
dt µd = 0.15% φd = 2.5 αd = 5.96 χ = 2.6

of Definition 1, rather than changes in the calibration for the endowment process, affects
prices. In line with Bansal et al. (2009), we use β = 0.9989 for the monthly rate of time
discount. The elasticity of inter-temporal substitution is 1

ρ = 1 throughout (see Appendix
C for ρ 6= 1 results).

Thewedge between the immediate risk aversion γ and the long horizon risk aversion γ̃,
by reducing the pricing of shocks to volatility (see Corollary 1), impacts the equity pre-
mium. And because γ 6= γ̃ affects only the pricing of volatility shocks in the consumption
process (6), but not that of shocks to both immediate and long-run consumption growth,
increases in the wedge γ− γ̃ leadmonotonically to similar increases in the share of the eq-
uity premium that comes from the pricing of consumption level shocks, measured in the
data by the macroeconomic announcement premium.We quantify this relation in Table 2.
Under the calibration of the consumption process (6) in Bansal et al. (2009) (Table 1) and
given the data estimates in Lucca and Moench (2015); Ai and Bansal (2018), we calibrate
the horizon-dependent risk aversionmodel of Definition 1 with γ = 11 and γ̃ = 5.3.10 The
immediate risk aversion γ = 11, slightly higher than under Bansal et al. (2009), compen-
sates for the lower pricing of volatility shocks when γ̃ < γ in order to capture the equity
premium. Crucially, the calibration of the wedge between the immediate and long-term
risk aversions under which the macro-accouncement premium contribution to the equity
premium obtains as in the data matches exactly the experimental evidence in Onculer
(2000): γ̃ ≈ 1

2 γ.
10The calibration of the standard Epstein and Zin (1989) model in Bansal et al. (2009), with γ = γ̃ = 10

matches the macroeconomic announcement premium in Ai and Bansal (2018) but underestimates it relative
to Lucca and Moench (2015); ours falls between the two estimates in Ai and Bansal (2018) and Lucca and
Moench (2015).
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Table 2: Equity and macro-announcement premia.

Market returns Macro-announcement
share

Data 7.66% 55% – 80%

Calibration γ̃ ≈ 1, γ = 11 5.90% 96%
γ̃ = 2, γ = 11 6.31% 89%
γ̃ = 4, γ = 11 7.13% 77%
γ̃ = 4.65, γ = 11 7.40% 73%
γ̃ = 5.3, γ = 11 7.66% 70%
γ̃ = 7, γ = 11 7.95% 64%
γ̃ = 8, γ = 11 8.76% 60%
Bansal et al. (2009): γ̃ = γ = 10 8.75% 54%

Annualized returns under ρ = 1 and the calibration of Table 1;
Data is from Bansal et al. (2009), annual 1930–2008; and from Lucca and Moench (2015); Ai and Bansal (2018).

4 Preference for early or late resolution of uncertainty

To what extent do the horizon-dependent risk aversion preferences of Definition 1 affect
agents’ decisions regarding the timing of information arrivals? To analyze this issue, and
determine whether agents have a preference for early or late resolutions of uncertainty,
we strictly follow the set up of Epstein et al. (2014). Two types of consumption streams,
subject to the exact same shocks over time, are evaluated at a given time t. In the first
case, consumption shocks are revealed gradually, whenever they are realized: the shock
affecting consumption at time t + h is revealed at t + h, for all horizons h ≥ 1. In the
second case, all future consumption shocks are revealed in the next period, at time t + 1,
even when they affect consumption at a later period: the shock affecting consumption at
t + h is revealed at time t + 1, for all h ≥ 1.

Crucially, evenwhen she receives the information about her future consumption shocks
earlier, the agent cannot act on the information to change her future consumption stream.
From the point of view of time t, when the agent evaluates the two consumption streams
with or without early resolution of uncertainty, the distributions of future risks are there-
fore exactly the same in both cases; in the expected utility framework, she would assign
them the exact same value. However, in the non time-separable models of Epstein and Zin
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(1989) andDefinition 1, two consumption streamswith ex ante identical risks, but different
timing for the resolution of uncertainty, can have different values.

An agent with Epstein-Zin utility prefers early resolutions of uncertainty if and only
if her risk aversion is greater than her inverse elasticity of inter-temporal substitution:
γ > ρ.11 Howmuch she prefers early resolutions depends on the wedge γ− ρ and on the
magnitude of the uncertainty in the consumption shocks. However, choosing a consump-
tion streamwith an early resolution (i.e., where all shocks are revealed at time t+ 1) rather
than the same consumption streamwith late resolutions (i.e., where shocks are revealed as
they come over time) corresponds to shifting all future risk, short-term and long-term, to
a next-period risk. Whether long-term risks are evaluated with the same risk aversion as
immediate risks will thusmatter for the relative values of the two theoretical consumption
streams, and therefore for the preference for early or late resolutions of uncertainty.12

Importantly, assigning values to the two consumption streams above is a static prob-
lem: the agent evaluates the two (infinite) streams of consumption, with early or late res-
olution of uncertainty, exactly once. How her preferences change over time, whether she
is naive or sophisticated about it, whether she can commit to specific future choices, are
irrelevant to the relative values she assigns to the two consumption streams, i.e. to her
preference for early or late information.

4.1 Timing premium

Denoting by V∗t the agent’s utility at t if all uncertainty (i.e., the entire sequence of shocks
{wt+h}h≥1 in the consumption process (6)) is resolved at t + 1, and by Vt the agent’s utility

11To see why, note that in the case where all future shocks are revealed at t + 1, the shocks to consumption
from t + 2 onward are evaluated with the inverse elasticity of inter-temporal substitution ρ since they are
no longer uncertain; whereas, when shocks are revealed over time, variations in consumption from t + 2
onward are still risky at t + 1 and thus evaluated with risk aversion γ.

12In Appendix B.1, we derive the timing premium under hyperbolic discounting, whereby γ = γ̃ but, at
time t, the value Vt is derived with time discount parameter β, and the continuation value Ṽt+1 is derived
with time discount parameter β̃ > β. The preference for an early resolution of uncertainty still holds if and
only if γ > ρ, but the magnitude of the timing premium is lower than if the time discount is β̃ everywhere
(and greater than if it is β everywhere). Introducing hyperbolic discounting has, however, a small quantita-
tive effect: e.g. under the calibration of Bansal and Yaron (2004) with constant volatility, γ = 10, ρ = 1, and
β = 0.8, β̃ = 0.998, the timing premium only goes from 27% (under β = β̃ = 0.998) to 22.5%.
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if uncertainty is revealed over time, the timing premium is defined as

TPt =
V∗t −Vt

V∗t
.

This timing premium represents the fraction of utility, or equivalently the fraction of life-
time consumption, the agent is willing to forgo for an early rather than late resolution of
uncertainty. As before, we assume a unit elasticity of inter-temporal substitution. The for-
mal derivations are presented for the case σt = σ in consumption process (6), where they
aremore readily interpretable and convey all the relevant intuitions. The interested reader
can find the derivations for the case with time varying volatility in Appendix B.1.

Proposition 4. An agent with the horizon-dependent risk aversion preferences of Definition 1 with
ρ = 1, facing the consumption process (6) with σt = σ, has a constant timing premium

TP = 1− exp
(

1
2

(
1−

(
γ− (1 + β) (γ− γ̃)

)) β2

1− β2 α2
vσ2
)

, (13)

where α2
v = α2

c +
(

βφc
1−βνx

)2
α2

x.

To highlight the role played by horizon-dependent risk aversion, note that an agent
with the standard Epstein-Zin preferences with risk aversion γ has a timing premium
given by TP = 1− exp

(
1
2 (1− γ)

β2

1−β2 α2
vσ2
)
, obtained by setting γ = γ̃ in Equation (13).

When γ > γ̃, the timing premium is instead determined by:

γ− (1 + β) (γ− γ̃) < γ.

Corollary 2. For an agent with horizon-dependent risk aversion, γ > γ̃ unambiguously lowers
the timing premium.

When would the timing premium turn negative, indicating a preference for late reso-
lution? For an Epstein-Zin agent, this happens if and only if γ < ρ. In our model, with
ρ = 1 and the consumption process (6) with σt = σ, the timing premium is negative if and
only if

γ < 1 + (1 + β) (γ− γ̃) . (14)
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When γ > γ̃, we immediately obtain 1 + (1 + β) (γ− γ̃) > ρ = 1, and the agent with
horizon-dependent risk aversion can have a preference for late resolution, evenwhen both
risk aversions γ and γ̃ are greater than the inverse elasticity of inter-temporal substitution
— as long as the decline in risk aversion across horizons is sufficiently large. For example,
suppose we set immediate risk aversion γ = 10 and β close to 1. Then the agent will prefer
uncertainty to be resolved late rather than early according to the condition of Equation (14)
as long as γ̃ < 5.5 which is substantially larger than ρ = 1.13

Corollary 3. An agent with horizon-dependent risk aversion can prefer a late resolution of uncer-
tainty even when all risk aversions exceed the inverse elasticity of inter-temporal substitution, i.e.
when γ > γ̃ > ρ.

The result of Corollary 3 is of particular interest because extant calibrations of the long-
run risk model with Epstein-Zin preferences require γ greater than ρ by an order of mag-
nitude to match equilibrium asset pricing moments — hence the high timing premia they
imply. Under horizon-dependent risk aversion, the same calibration for γ and ρ no longer
automatically implies such a strong preference for early resolutions of uncertainty. This is
true even when the long-run risk aversion γ̃ also remains above the inverse elasticity of
inter-temporal substitution, in line with the micro evidence.14

Ai and Bansal (2018) document a high macroeconomic announcement premium, as
measured by the high share of the equity premium that realizes around pre-scheduled
FOMCmeetings (55% over the 1961–2014 period), and argue that this pricing of shocks to
future consumption levels implies a strong preference for early resolution of uncertainty.
Indeed, the link between the two is tight for time consistent recursive preferences: both are
determined by thewedge γ− ρ (see Proposition 1) . In contrast, Corollary 3 establishes that
a high γ− ρ need not imply a high or even a positive timing premium under the horizon-

13In the calibrated model of Section 3.2, with time varying volatility in the consumption process (6), we
obtain a preference for late resolution whenever γ̃ < 4.42 when γ = 10.

14In following the analysis of Epstein et al. (2014) and assuming only two levels of risk aversion γ, γ̃, we are
implicitly mixing two comparisons: gradual resolution versus one-shot resolution and early resolution ver-
sus late resolution. In addition, we are placing the early resolution at time t + 1, exactly in the period where
the risk aversion changes from γ to γ̃. However, we show in Appendix B.2 that the results of Proposition 4
and Corollaries 2 and 3 below are robust by (i) allowing for a general decreasing sequence of risk aversions
{γh}∞

h=1 to show that the result is based on horizon-dependent risk aversion and not on a particular period
and (ii) comparing resolution of all uncertainty at t + 1 to resolution of all uncertainty at t + 2 to show that
the relevant comparison is between early and late resolution, not between gradual and one-shot resolution.
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dependent risk averse preferences of Definition 1; whereaswe showed in Section 3 that the
macroeconomic announcement premium is unchanged by our model. Our framework de-
couplesmicroeconomic interpretations regarding preferences for early or late information
from the direct evidence in macroeconomic data (macroeconomic annoucement premia
or asset pricing moments). We show in below, in Section 4.2 that an equity premium and
macroeconomic announcement premium consistent with the evidence no longer implies
a strong preference for early resolutions of uncertainty (see Table 2).

We believe this result is key for several reasons. First, it is worth noting that the recur-
sive utility Epstein-Zin model has little microeconomics or experimental foundation, con-
trary to other models of preferences commonly used in finance, e.g. prospect theory (Kah-
neman andTversky, 1979), disappointment aversion (Gul, 1991), habit and dynamic incon-
sistency such as hyperbolic discounting (Laibson, 1997) or our model of preferences (Defi-
nition 1). The long-run risk model built its success solely on its ability to match macroeco-
nomics evidence, meaning microeconomic inferences should be subject to deep scrutiny.

Second, we argue, in line with Epstein et al. (2014), that the magnitudes for the timing
premia implied by calibrations of the long-run riskmodel with standard Epstein-Zin pref-
erences are excessive. There is no direct evidence on the "correct" values of timing premia,
by construction a purely theoretical question: we do not know how much an agent who
cannot act to modify the consumption stream she will receive would pay to receive early
information about it. But it seems somewhat unreasonable that she would be willing to
forgo a large fraction of her wealth for earlier resolutions. Even more problematic for the
timing premia obtained under the long-run risk calibration of Epstein-Zin preferences,
the microeconomic evidence indicates many individuals behave as if they prefer to delay
receiving information and avoid early resolutions, even in cases where information can
be used to improve outcomes. In the health economics literature for instance, various ex-
amples of "information avoidance" are documented, whereby individuals prefer to not be
told about their own test results, including concerning life-threatening diseases (e.g. Os-
ter et al., 2013; Persoskie et al., 2014). Golman et al. (2016) provide an extensive survey of
such behaviors. Closer to the theoretical framework we use to derive the timing premium,
investors’ inattention to their own wealth disputes the notion of a strong preference for
early resolution of consumption risk; even more so because early information is instru-
mental in this case (inertia in portfolio allocations comes at a cost, e.g. Brunnermeier and
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Nagel, 2008; Calvet et al., 2009; Bilias et al., 2010; Andersen et al., 2015). These examples do
not, per se, constitute a direct proof of a preference for late resolution of uncertainty, but
they appear inconsistent with the high timing premium implied by the existing calibra-
tions of the long-run risk model (usual citations).15 Further, Karlsson et al., 2009; Alvarez
et al., 2012; Sicherman et al., 2016 document that more risk averse investors are also more
inattentive. This is inconsistent with the standard model: from Proposition 4 for the case
γ = γ̃ (Epstein-Zin preferences), the timing premium is strictly increasing in γ, corre-
sponding to a stronger preference for early resolutions of risk, or less inattention for the
more risk averse investors. In contrast, our model may be consistent with the evidence:
more risk averse investors may also have more strongly horizon-dependent preferences
(see Proposition 4 for the respective roles of γ and γ− γ̃ in the timing premium).

Though circumstantial, the numerous examples above where agents prefer not to ob-
serve early information even when they can act on it make the magnitude of the timing
premia under the standard long-run risk model appear unreasonable. A representative
agent whose implied preferences appear contrary to commonsense considerations— here
on early versus late resolution of uncertainty — raises doubts as to the legitimacy of the
long-run risk model, despite its ability to match the macroeconomic evidence on equilib-
rium asset prices.16

4.2 Timing premium in the calibration of Section 3.2

Figure 2 plots the timing premium for both horizon-dependent risk aversion and for stan-
dard Epstein-Zin preferences, when the immediate risk aversion is γ = 11, as in Section
3.2. It illustrates the first-order impact that horizon-dependent risk aversion has on the
timing premium, and the potential for our model to address the critique of Epstein et al.
(2014). Depending on γ̃, an agent with horizon-dependent risk aversion can have a sig-
nificantly lower willingness to pay for an early resolution than in the standard model. In
fact, for delayed risk aversion γ̃ ≤ 4.65, the agent prefers a late resolution of risk (negative

15Golman et al., 2016 discuss other theoretical rationalizations; Andries and Haddad, 2018 propose a
model of information aversion that explains investors’ inattention in the data.

16Aggregation theorems for Epstein and Zin (1989) preferences (Duffie and Lions, 1992) indicate that if
most individuals have low or even negative timing premia, so would the marginal, representative, investor
who sets prices.
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timing premium).
Delayed risk aversion γ̃ = 5.3 combined with immediate risk aversion γ = 11, which

matches both the equity and the macro-announcement premia (Section 3.2), imply a tim-
ing premium of 10%, corresponding to the share of her lifetime consumption the repre-
sentative investor would be willing to pay to observe all her future consumption shocks
next period. The introspection as well as the available evidence we discuss above, circum-
stantial as it may be, indicate this is a considerably more reasonable value than the 30%
obtained for the standard Epstein-Zin model in the calibration of Bansal and Yaron (2004),
and of course the 80% timing premium under Bansal et al. (2009).

HDRA
EZ

2 4 6 8 10 12 14
Delayed risk
aversion γ̃

-0.4

-0.2

0.2
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Fraction of
consumption
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5.3

Figure 2: Effect of horizon-dependent risk aversion (HDRA) on willingness to pay for early
resolution of uncertainty (timing premium), compared to Epstein-Zin preferences (EZ) with
γ = 11.
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5 Long-term valuations, long-term demand

Many puzzles remain on the valuation and demand for long-horizon assets. The long-
run risk model with standard Epstein-Zin preferences calibrated to match asset pricing
moments (e.g. Bansal and Yaron, 2004; Hansen et al., 2008; Bansal et al., 2009) implies
agents face greater aggregate shocks at longer horizons, and therefore require a greater
compensation, or risk premia, to invest in long-term assets. But counter-examples to this
simple rule abound, whereby investors appear to demand low expected excess returns
at long horizons and to be willing to hold considerable risks, as we review in details in
Section 5.3.

Themodel of Definition 1 formalizes the experimental evidence that agents have lower
risk aversions for long-horizon payoffs than for immediate risks. Under these preferences,
it seems immediate that a financial asset expected to deliver payoffs far in the future should
be evaluated with a lower price of risk than one with payoffs at a short horizon. This sim-
ple narrative yields potentially opposite implications than the standard model, i.e. lower
risk premia for long-term assets; and a potential explanation for the evidence in the data.
It does not take into account, however, that investors may not assess risky assets whithin
buy-and-hold strategies, under which the horizon of payoffs may matter. In the one pe-
riod pricing model for instance, where trading occurs every period, all financial assets are
priced at the next period horizon, nomatterwhen payoffs are to be paid, so the one-for-one
relation between risk aversions and risk prices need not obtain.

To derive the implications of our model with respect to the valuation and demand
for assets with different horizons, we focus on equity risk. In line with the long-run risk
literature, we assume that dividends have log-normal growth:

dt+1 − dt = µd + φdxt + χαcσtwc,t+1 + αdσtwd,t+1, (15)

where the shocks wd,t are i.i.d. N (0, 1) and orthogonal to the consumption shocks wc,t,
wx,t and wσ,t of process (6); φd captures the link between the mean consumption growth
and the mean dividend growth; χ the correlation between immediate consumption and
dividend shocks in the business cycle.17

17Once again, these assumptions can be generalized, but they are those of Bansal and Yaron (2004) and
Bansal et al. (2009).
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5.1 Long-term risk premia

In Section 3, we derived equilibrium asset prices under the representative agent assump-
tion in a one-period trading paradigm. However, individual investors trade a much lower
frequencies. Recent direct evidence on trading activities in their retirement accounts in-
dicates investors re-adjust their portfolios once a year on average (Sicherman et al., 2016).
Why investors trade so rarely may be exogenously imposed, e.g. through infrequent trad-
ing opportunities, or endogenously optimal, e.g. when buy-and-hold strategies help avoid
rising information costs (Alvarez et al., 2012; Andries andHaddad, 2018), or the high trad-
ing costs of illiquid assets. The literature on asset prices with liquidity risk points out the
additional risk premium directly attributable to illiquidity (e.g. Acharya and Pedersen,
2005; Lee, 2011; Muir, 2016).18 Our approach here is complementary since our focus is on
how illiquidity, in the form of low trading frequencies, affect the slope of risk premia in
their variations with the risk horizons.

Proposition 5. Under the horizon-dependent risk aversion preferences of Definition 1 and ρ = 1,
the stochastic discount factor for an investment strategy at horizon h > 1 is given by19

Πbuy-and-hold
t,t+h = βh

(
Ct+h

Ct

)−1

×
Ṽ1−γ

t+1

Et
[
Ṽ1−γ

t+1

]︸ ︷︷ ︸
high γ

×
Ṽ1−γ̃

t+2

Et+1
[
Ṽ1−γ̃

t+2
] × · · · × Ṽ1−γ̃

t+h

Et+h−1
[
Ṽ1−γ̃

t+h

]︸ ︷︷ ︸
low γ̃

.

Compared to the one-period investor, with implicit risk aversion γ for future shocks at
all horizons, an agent who assumes no retrading at the intermediate dates between t and
t+ h evaluates the shocks between t+ 2 and t+ h with lower risk aversion γ̃ —suggesting
a higher willingness to pay for risky assets and therefore lower expected returns than
under frequent intermediate trading.

Proposition 6. Under the Lucas-tree endowment process (6) and the dividend process (15),

1. Under high frequency (one-period) strategies,
18See also Duffie (2010) and Tirole (2011) for surveys of the literature on liquidity.
19The more general case with ρ 6= 1 is provided in Appendix A.2.
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• the difference between long-term versus short-term risk compensations investors require
is lower when γ > γ̃, but of the same sign, than under the standard model γ = γ̃;20

• the difference between long-term versus short-term risk compensations investors require
is greater when σt is high.

2. Under investment strategies at horizon h > 1,

• the long-term risk compensations investors require decreases with h > 1 when γ̃ < γ;
they can become lower than for short-term risks.

• the downward pressure from h > 1 and γ̃ < γ is greater when σt is high.

Proposition 6 derives from the intuition, explored and discussed in previous sections,
that the less dynamic choices are, the more time inconsistencies in the agents’ preferences
can affect equilibrium outcomes. In particular, for buy-and-hold investors, the relation
between horizon-dependent risk aversions and horizon-dependent risk prices becomes
tighter. Because their appetite for risk is greater at longer horizons of payoffs, illiquidity
has an ambiguous impact on prices: it makes asset holdings riskier because less capable
to compensate income shocks — the traditional channel

Propositions 5 and 6 contain partial equilibrium results: they derive the valuations of
risk for an investor who chooses a fixed strategy for the next h periods and commits to it.21

Nonetheless, a growing literature establishes that households’ demand influences general
equilibrium outcomes, in particular via intermediaries holdings (He and Krishnamurthy,
2013; Koijen and Yogo, 2015; Haddad and Muir, 2017), and therefore affects prices. We
appeal to these results to derive the following testable implications:

Corollary 4. Under the Lucas-tree endowment process (6) and the dividend process (15), and the
calibration of Table 1:

1. Equity expected returns are higher at long horizons for assets with no trading costs.
20Similarly, we derive a flatter slope, but of same sign for the term-structure of zero-coupon bond yields in

Appendix B.5. Taking into account inflation risk, as in e.g. Bansal and Shaliastovich (2013), allows to obtain
upward sloping bond yields and match the evidence.

21We show in Appendix A.3 that naive agents in the one-period standard framework behave as buy-and-
hold investors: an asset with payoff horizon h is evaluated at frequency h under Proposition 5.
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2. The higher the trading costs, the lower the expected returns at long horizons relative to short
horizons.

3. Differences in the pricing of long and short horizon assets are greater the higher the consump-
tion volatility.

Weassess in Section 5.3 howwell the testable predictions of Corollary 4 fare in the data;
and how much the horizon-dependent risk aversion model helps understand puzzling
empirical evidence on the pricing of long-term assets.

5.2 Long-term risk taking

We turn to the analysis of agents’ optimal risk taking, as a function of the horizon of their
portfolios’ rebalancing. An investor with the horizon-dependent risk aversion preferences
of Definition 1 and horizon h ≥ 1 optimizes at time t the value Vt of her wealth Wt by
choosing her consumption plan {Ct, Ct+1, ..., Ct+h−1} and her investment portfolio, under
the constraint her risk share position remains constant over h periods. She has access to a
risky asset with dividend process (15), on which she invests a share θt of her savings. The
rest of her portfolio accrues at the risk-free rate. Her optimization problem at time t for
horizon h ≥ 1 is given by:

Vt (Wt) = max
{Ct,...,Ct+h−1,θt}

[
(1− β)C1−ρ

t + βRt

(
Ṽt+1 (Wt+1)

)1−ρ
] 1

1−ρ

s.t.

Wt+τ = θt (Wt − Ct→t+h) Rt,t+τ, ∀τ ∈ {1, h}, (16)

Ct→t+h =
h−1

∑
τ=0

e−τr f ,tCt+τ.

To simplify the analysis, we analyze the risk dividend process (15) in the special case
σt = σ.22

Proposition 7. Under the horizon-dependent risk aversion preferences of Definition 1 and ρ = 1,
an investor with horizon h ≥ 1 optimizing Problem (16) under dividend process (15) in the special

22The case with time varying volatility is analyzed in Appendix B.7
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case σt = σ invests, on average, a share θ = θM + θH of her savings into the risky asset, such that
the myopic demand is:

θM =
1

1 + (γ̃−γ)
γ

(
1− σ2

1,h
σ2

h

) E
(

Rm,h − R f ,h
)

γσ2
h

+ o (1− β) , (17)

and the hedging demand is:

θH =
1

1 + (γ̃−γ)
γ

(
1− σ2

1,h
σ2

h

) cov
(

Ṽt+1
Wt+1

, Rm,t+1

)
γσ2

h
×

(1− γ) if h = 1

(1− γ̃) if h > 1
+ o (1− β) . (18)

E
(

Rm,h − R f ,h
)
and σ2

h are the expected excess returns and the variance of the total risky returns
between t and t + h, with σ2

1,h the contribution of the t + 1 shocks.23

The solutions of Proposition 7 simplify greatly under an i.i.d dividend process, in
which case the hedging demand disappears:

θ =
1

1 + (γ̃−γ)
γ

h−1
h

E
(

Rm − R f
)

γσ2
1

+ o (1− β) ,

inwhich case it is transparently clear the risk share increaseswith the horizon h if and only
if γ̃ < γ. This increase occurs rapidly, e.g. the demand for risk at the two-month horizon
in the calibration of Section 3.2 with γ̃ = 5.3 and γ = 11 is more than 1/3 greater than at
the one month horizon.

When the dividend process of the risky asset has predictable components, the variance
of the cumulated risk returns σ2

m,h increases, but less than linearly,with the horizon h. From

23The solutions of Equations (17) and (18) are exact for h = 1; for h > 1, the exact solution for θ is:

θ =

E(Rm,h−R f ,h)
σ2

m,h
+ (1− γ̃)

cov
(

Ṽt+1
Wt+1

,Rm,t+1

)
σ2

m,h(
βγ + (1− β)

(
β + (γ− 1) σ2

m
σ2

m,h

))
+ (γ̃− γ)

(
1− σ2

1,h
σ2

m,h
+ σ2

m
σ2

m,h

(
1−β

β

)) .
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Equations (17) and (18), the myopic demand increases and the term
cov
(

Ṽt+1
Wt+1

,Rm,t+1

)
γσ2

m,h
in the

hedging demand decreases in absolute value with h, even when γ̃ = γ. Both variations
are however greatly amplified by γ̃ < γ. In the calibration of Section 3.2 with γ̃ = 5.3
and γ = 11, the hedging demand for the two-period horizon is 40% smaller, in abso-
lute value, than under the standard model, and the myopic demand 35% greater. Since
cov

(
Ṽt+1
Wt+1

, Rm,t+1

)
> 0 in the solution to optimization problem (16), these variations in

the myopic and the hedging demand both contribute to a greater risk share θ as the hori-
zon h increases.

Corollary 5. The demand for risk in optimization problem (16) with dividend process (15) is in-
creasing in the investment horizon h:

• faster when γ̃ < γ if dividends have predictable components,

• only when γ̃ < γ if dividends have i.i.d growth,

• in the calibration of Section 3.2, the demand for risk is 35% greater at the two-period than at
the one-period horizon.

5.3 Related empirical evidence

We turn to how well the implications derived in Corollaries 4 and 5 match the empirical
evidence; and argue the horizon-dependent risk aversion model provides a reasonable
answer to various important puzzles in finance, without sacrificing the ability to match
the usual asset pricing moments (as seen in Section 3).

Illiquid long-term assets. Illiquidity has been extensively analyzed as an additional
source of risk to the investors, resulting in higher returns compensations (e.g. Acharya and
Pedersen, 2005). Corollary 4 however proposes another viewpoint whereby illiquidity, by
making trades less frequent and the assessment horizons longer, serves as a commmitment
device to evaluate long-termpayoffswith lower long-term risk aversion. This second chan-
nel via which illiquidity decreases the pricing of risk, specific to horizon-dependent risk
aversion, can rationalize the low risk premia we observe in the data for several illiquid

30



long-term assets, a puzzle otherwise. The abnormally low excess returns in private eq-
uity investments (e.g. Moskowitz and Vissing-Jørgensen, 2002) and in real estate holdings
(Giglio et al., 2014; Chambers et al., 2019) are two extensively documented and analyzed
such examples in the literature.

Term-structures of expected returns. Starting with van Binsbergen et al. (2012), several
recent papers (van Binsbergen et al., 2012; Lustig et al., 2016; van Binsbergen and Koijen,
2016; Giglio et al., 2014; Dew-Becker et al., 2016; Andries et al., 2016) provide empirical ev-
idence of downward sloping term structures of expected excess returns for various types
of risk; a puzzle for the long-run riskmodel. These striking empirical findings have started
a vigorous debate and triggered numerous new theoretical works (Kogan and Papaniko-
laou, 2010, 2014; Ai et al., 2015; Gârleanu et al., 2012; Favilukis and Lin, 2015; Croce et al.,
2015; Andries, 2015; Curatola, 2015; Backus et al., 2016;Marfe, 2015;Nzesseu, 2018), explic-
itly focused on systematically deriving downward sloping term structures of risk prices.
However, Bansal et al. (2019), but also van Binsbergen et al. (2013); van Binsbergen andKoi-
jen (2016), document that expected excess returns of dividend risk are upward sloping on
average, but became sharply downward sloping during the financial crisis of 2007–2009.
Gormsen (2016) further indicates that low price-dividend ratios driven, in particular, by
periods of high volatility, correspond to more upward sloping term structures of dividend
expected excess returns. Other asset classes on the other hand display downward sloping
term-structures in and out of crisis, e.g. Andries et al. (2016) for the price of variance risk
and Giglio et al. (2014) for housing.

Horizon-dependent risk aversion and the results of Corollary 4 allow to shed light on
these various conflicting results: they suggest differences in trading costs across markets
and across different time periods can greatly influence the slopes of the term-structures of
expected returns with smaller or even negative slopes under lower liquidity. They explain
why expected excess returns on dividend risk are increasing in the horizon of payoffs in
normal one-period pricing conditions, even more so when volatility is high as pointed
out in Gormsen (2016) (Points 1. and 3. in Corollary 4); but turned downward sloping
during the recent financial crisis when liquidity broke down and trading costs, i.e. bid-
ask spreads, shot up dramatically (see e.g. Pedersen, 2009; Brunnermeier, 2009; Bansal
et al., 2019), as van Binsbergen et al. (2013); van Binsbergen and Koijen (2016); Bansal et al.
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(2019) document (Point 2. in Corollary 4). Additional supporting evidence for our horizon-
dependent risk aversion model can be found inWeber (2016) who shows that higher cash-
flow durations, i.e. longer payoff horizons, of equity shares have a downward influence
on expected returns only within short-sale constrained stocks, in line with the results of
Corollary 4.

Risk positions and investment horizons Abstracting from labor income and life-cycle
considerations, which are not modeled in our analysis, our horizon-dependent risk aver-
sion model results in a simple rule of thumb for risk taking decisions, Corollary 5: the
longer the rebalancing horizon, the more investors should be willing to take risks.

In line with this result, Shum and Faig (2006) find, using data from the 1995 Survey of
Consumer Finances, that thosewho are saving for the long-term (retirement) allocatemore
of their financial portfolios to equities, than those saving for the short-term, e.g. to buy or
renovate a home. To assess the validity of Corollary 5 further, we compare the risk-taking
evidence of mutual funds and hedge funds investors. The evidence shows hedge funds,
which are characterized by their considerablymore binding constraints, havemore volatile
and higher risk than mutual funds (Ackermann et al., 1999), and even more so for hedge
funds with greater lockup constraints (Aragon, 2007). Similarly, mutual funds with higher
exit costs tend to be more actively traded and to hold more illiquid assets (Pastor et al.,
2017), resulting in riskier returns (Kacperczyk et al., 2005). Both lockup conditions and exit
costs provide valid proxies to assess the trading frequencies of the different portfolios,with
greater constraints corresponding to longer investment horizons. The evidence above thus
provides further support for the results derived under horizon-dependent risk aversion.

Insurance and hedging at different horizons The counterpart to the greater risk-taking
in financial portfolios at longer horizons, and another direct result fromCorollary 5, is that
the demand for insurance should decrease with the risk horizon. In addition, investors as-
sign lower values to buy-and-hold long-term term hedging assets under Corollary 4. As
the supply side for such assets (insurances or banks) assesses their risk at high frequen-
cies (e.g. daily P&L running), the horizon-dependent risk aversionmodel predicts trading
volumes sharply decreasing with the horizon of insurable or hedgeable risks.

The evidence in the data strongly supports the results of Corollaries 4 and 5. In Akaichi
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et al. (2019), the authors find the willingness to pay for lifetime insurance policies falls be-
low the existing market rates, explaining why they are largely not being sold anymore
(American Association for Long-Term Care Insurance, 2015). The authors show further
the additional premium individuals in their survey would be willing to pay for an ad-
ditional year of coverage decreases fast with the horizon; they are below their actuarial
fair values beyond the three-year horizon. Further evidence is found in option markets.
Garleanu et al. (2008) formalize why end-users hedging demands impact option prices,
whereby a higher demand can sustain higher prices and thus higher risk-aversions in op-
tion suppliers (e.g. banks) and greater volumes. Under this channel, horizon-dependent
risk aversion predicts low volumes and low prices in options, at all but short maturities.
This is verified by Dew-Becker et al. (2016); Andries et al. (2016) who find close to zero
assigned value for medium and long-term variance risk insurance. It is also reflected by
the trading volumes in option markets. Garleanu et al. (2008) reports the average non-
market-maker net demand for put and call equity option contracts is 10 times higher for
options up to six-month maturities than for the 6-months to one-year maturities, and 15
times higher than for options at any higher than one year maturities. Both sets of results,
important puzzles in empirical finance, are well explained by our horizon-dependent risk
aversionmodel; includingwhy the decrease in volumes and hedging costs decrease so fast
(Corollary (5)).

6 Conclusion

Calibrations of the long-run risk model (Bansal and Yaron, 2004; Bansal et al., 2009) are
difficult to reconcile with the microeconomic foundations of the preferences they employ.
Epstein et al. (2014) point out they imply a willingness to pay for earlier resolutions of
uncertainty that defies both observed behaviors in the data and introspection. We show
that relaxing the restriction of Epstein and Zin (1989) that risk preferences be constant
across horizons makes it possible to retain the desirable pricing properties of the long-run
risk model, including the matching of the equity premium and of the macroeconomic an-
nouncement premium, and at the same time obtain reasonable implications for the timing
of the resolution of uncertainty.

We show further horizon-dependent risk aversion preferences formally imply assets
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with high trading costs and/or low liquidity can have relatively low risk premia at long-
horizon; and that investors may be willing to take more risk over longer lock-in periods
— illiquidity provides a form of commitment device to accept more risk, with lower risk
compensation. This feature of our model allows to explain several features of the data
and important puzzles in empirical finance, such as the abnormally low returns in pri-
vate equity and housing investments, the downward sloping term-structure of equity risk
during the financial crisis of 2007–2009, and the very low trading volumes for medium to
long-term options and insurance.

We conclude that formalizing a model where risk aversion is higher at short-horizons
than long-horizons, consistent with the experimental evidence, provides a useful new tool
for asset pricing and macro-finance. We focused our attention on applications to finance
but the tractability of this model makes it suitable to analyze features of other markets,
such as health decisions, where attitudes towards risk and time inconsistencies are key.
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Appendix

A Derivations under general sequence of risk aversions

Let {γh}h≥1 be a decreasing sequence representing risk aversion at horizon h. In period t,
the agent evaluates a consumption stream starting in period t + h by

Vt,t+h =

(
(1− β)C1−ρ

t+h + βEt+h

[
V1−γh+1

t,t+h+1

] 1−ρ
1−γh+1

) 1
1−ρ

for all h ≥ 0. (19)

The agent’s utility in period t is given by setting h = 0 in (19) which we denote by Vt ≡ Vt,t

for all t:

Vt =

(
(1− β)C1−ρ

t + βEt

[
V1−γ1

t,t+1

] 1−ρ
1−γ1

) 1
1−ρ

As in the Epstein-Zin model, utility Vt depends on deterministic current consumption Ct

and a certainty equivalent Et

[
V1−γ1

t,t+1

] 1
1−γ1 of uncertain continuation values Vt,t+1, where

the aggregation of the two periods occurs with constant elasticity of inter-temporal sub-
stitution given by 1/ρ, regardless of the horizon h. However, in contrast to the Epstein-Zin
model, the certainty equivalent of consumption starting at t + 1 is calculated with relative
risk aversion γ1, wherein the certainty equivalent of consumption starting at t+ 2 is calcu-
lated with relative risk aversion γ2, and so on. Our model therefore nests the Epstein-Zin
model if we set γh = γ for all h, which, in turn, nests the standard time-separable model
for γ = ρ.

In order to derive the closed-form solution for Vt ≡ Vt,t, we assume that risk aversion is
decreasing until some horizon H and constant thereafter, γh > γh+1 for h < H and γh = γ̃

for h ≥ H. Starting with Vt,t+H, our model then corresponds to the standard Epstein-Zin
recursion with risk aversion γ̃ for which we can use the standard solution. Determining
Vt then is just a matter of solving backwards.
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A.1 Stochastic discount factor

We present the derivation of the stochastic discount factor with a general sequence of risk
aversions {γh}h≥1. The equations simplify to the ones in the main text by setting γ1 = γ

and γh = γ̃ for h ≥ 2.

Proof of Proposition 1. This appendix derives the stochastic discount factor of our dy-
namic model using an approach similar to the one used by Luttmer and Mariotti (2003)
for dynamic inconsistency due to non-geometric discounting. In every period t the agent
chooses consumptionCt for the current period and state-contingent levels ofwealth {Wt+1,s}
for the next period to maximize current utility Vt subject to a budget constraint and antic-
ipating optimal choice C∗t+h in all following periods (h ≥ 1):

max
Ct,{Wt+1}

(
(1− β)C1−ρ

t + βEt

[(
V∗t,t+1

)1−γ1
] 1−ρ

1−γ1

) 1
1−ρ

s.t. ΠtCt + Et[Πt+1Wt+1] ≤ ΠtWt

V∗t,t+h =

(
(1− β)

(
C∗t+h

)1−ρ
+ βEt+h

[(
V∗t,t+h+1

)1−γh+1
] 1−ρ

1−γh+1

) 1
1−ρ

for all h ≥ 1.

Denoting by λt the Lagrangemultiplier on the budget constraint for the period-t problem,
the first order conditions are:24

• For Ct: (
(1− β)C1−ρ

t + βEt

[
V1−γ1

t,t+1

] 1−ρ
1−γ1

) 1
1−ρ−1

(1− β)C−ρ
t = λt.

24For notational ease we drop the star from all Cs and Vs in the following optimality conditions but it
should be kept in mind that all consumption values are the ones optimally chosen by the corresponding
self.
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• For each Wt+1,s:

1
1− ρ

(
(1− β)C1−ρ

t + βEt

[
V1−γ1

t,t+1

] 1−ρ
1−γ1

) 1
1−ρ−1

β
d

dWt+1,s
βEt

[
V1−γ1

t,t+1

] 1−ρ
1−γ1

= Pr[t + 1, s]
Πt+1,s

Πt
λt.

Combining the two, we get an initial equation for the SDF:

Πt+1,s

Πt
= β

1
1−ρ

1
Pr[t+1,s]

d
dWt+1,s

Et

[
V1−γ1

t,t+1

] 1−ρ
1−γ1

1
1

(1− β)C−ρ
t

. (20)

The agent in state s at t + 1 maximizes

(
(1− β)C1−ρ

t+1,s + βEt+1,s

[(
V∗t+1,s,t+2

)1−γ1
] 1−ρ

1−γ1

) 1
1−ρ

and has the analogous first order condition for Ct+1,s:

(
(1− β)C1−ρ

t+1,s + βEt+1,s

[
V1−γ1

t+1,s,t+2

] 1−ρ
1−γ1

) 1
1−ρ−1

(1− β)C−ρ
t+1,s = λt+1,s.

The Lagrange multiplier λt+1,s is equal to the marginal utility of an extra unit of wealth in
state t + 1, s:

λt+1,s =
1

1− ρ

(
(1− β)C1−ρ

t+1,s + βEt+1,s

[
V1−γ1

t+1,s,t+2

] 1−ρ
1−γ1

) 1
1−ρ−1

× d
dWt+1,s

(
(1− β)C1−ρ

t+1,s + βEt+1,s

[
V1−γ1

t+1,s,t+2

] 1−ρ
1−γ1

)
.
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Eliminating the Lagrange multiplier λt+1,s and combining with the initial Equation (23)
for the SDF, we get:

Πt+1,s

Πt
= β

1
Pr[t+1,s]

d
dWt+1,s

Et

[
V1−γ1

t,t+1

] 1−ρ
1−γ1

d
dWt+1,s

(
(1− β)C1−ρ

t+1,s + βEt+1,s

[
V1−γ1

t+1,s,t+2

] 1−ρ
1−γ1

) (Ct+1,s

Ct

)−ρ

.

Expanding the V expressions, we can proceed with the differentiation in the numerator:

Πt+1,s

Πt
= Et

((1− β)C1−ρ
t+1 + βEt+1[. . . ]

1−ρ
1−γ2

) 1−γ1
1−ρ


1−ρ

1−γ1
−1

×
(
(1− β)C1−ρ

t+1,s + βEt+1,s[. . . ]
1−ρ

1−γ2

) 1−γ1
1−ρ −1

× β

d
dWt+1,s

(
(1− β)C1−ρ

t+1,s + βEt+1,s[. . . ]
1−ρ

1−γ2

)
d

dWt+1,s

(
(1− β)C1−ρ

t+1,s + βEt+1,s[. . . ]
1−ρ

1−γ1

) (Ct+1,s

Ct

)−ρ

. (21)

ForMarkov consumption C = φW, we can divide by Ct+1,s and solve both differentiations:

• For the numerator:

d
dWt+1,s

(1− β)C1−ρ
t+1,s + βEt+1,s

((1− β)C1−ρ
t+2 + βEt+2[. . . ]

1−ρ
1−γ3

) 1−γ2
1−ρ


1−ρ

1−γ2



=

(1− β) 1 + βEt+1,s

((1− β)

(
Ct+2

Ct+1,s

)1−ρ

+ βEt+2[. . . ]
1−ρ

1−γ3

) 1−γ2
1−ρ


1−ρ

1−γ2


× φ

1−ρ
t+1,sW

−ρ
t+1,s.
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• For the denominator:

d
dWt+1,s

(1− β)C1−ρ
t+1,s + βEt+1,s

((1− β)C1−ρ
t+2 + βEt+2[. . . ]

1−ρ
1−γ2

) 1−γ1
1−ρ


1−ρ

1−γ1



=

(1− β) 1 + βEt+1,s

((1− β)

(
Ct+2

Ct+1,s

)1−ρ

+ βEt+2[. . . ]
1−ρ

1−γ2

) 1−γ1
1−ρ


1−ρ

1−γ1


× φ

1−ρ
t+1,sW

−ρ
t+1,s.

Substituting these into Equation (24) and canceling we get:

Πt+1,s

Πt
=

(1− β)C1−ρ
t+1,s + βEt+1,s

((1− β)C1−ρ
t+2 + βEt+2[. . . ]

1−ρ
1−γ3

) 1−γ2
1−ρ


1−ρ

1−γ2

(1− β)C1−ρ
t+1,s + βEt+1,s

((1− β)C1−ρ
t+2 + βEt+2[. . . ]

1−ρ
1−γ2

) 1−γ1
1−ρ


1−ρ

1−γ1

× β

(
Ct+1,s

Ct

)−ρ


(1− β)C1−ρ

t+1,s + βEt+1,s[. . . ]
1−ρ

1−γ2

Et

((1− β)C1−ρ
t+1,s + βEt+1[. . . ]

1−ρ
1−γ2

) 1−γ1
1−ρ





ρ−γ1

.

Simplifying and cleaning up notation, we arrive at

Πt,t+1 = β

(
Ct+1

Ct

)−ρ

 Vt,t+1

Et

[
V1−γ1

t,t+1

] 1
1−γ1


ρ−γ1 (

Vt,t+1

Vt+1

)1−ρ

,

as stated in the text. �
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A.2 Stochastic discount factor — horizon h > 1

Proof of Proposition 6 . To derive the h-period ahead stochastic discount factor, we use
the inter-temporal marginal rate of substitution

Πt,t+h =
dVt/dWt+h

dVt/dCt

where

dVt

dWt+h
=

dVt

dVt,t+h
× dVt,t+h

dWt+h

=
dVt

dVt,t+1
×

h−1

∏
τ=1

dVt,t+τ

dVt,t+τ+1
× dVt,t+h

dWt+h
.

Due to the homotheticity of our preferences, we can rely on the fact that both Vt,t+h and
Vt+h are homogeneous of degree one which implies that

dVt,t+h/dWt+h

dVt+h/dWt+h
=

Vt,t+h

Vt+h
.

This allows us to derive the h-period SDF Πt,t+h as

Πt,t+h = βh
(

Ct+h
Ct

)−ρ (Vt,t+h

Vt+h

)1−ρ h

∏
τ=1

 Vt,t+τ

Et+τ−1

[
V1−γτ

t,t+τ

] 1
1−γτ


ρ−γτ

.

A.3 Naive investors

In our analysis so far, we assumed agents are self-aware about their own dynamic incon-
sistencies. If our agent is naive about it instead, she wrongly assumes she will optimize on
Vt,t+h instead of Vt+h for all h ≥ 1. In particular, the envelope conditions at t + 1 applies
to Vt,t+1 in her one-period SDF, which becomes:

Πnaive
t,t+1 = β

(
Ct+1

Ct

)−ρ
 Vt,t+1

Et
[
V1−γ1

t,t+1

] 1
1−γ1

ρ−γ1
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The following one-period SDFs for h ≥ 1 are then given by:

Πnaive
t+h,t+h+1 = β

(
Ct+h+1

Ct+h

)−ρ
 Vt,t+h+1

Et+h
[
V1−γh+1

t,t+h+1

] 1
1−γh+1

ρ−γh+1

When ρ = 1, naive agents behave as the buy-and-hold investors in Proposition 5 :

Πnaive
t,t+1 × · · · ×Πnaive

t+h−1,t+h |ρ=1 = Πbuy-and-hold
t,t+h |ρ=1 .

B Exact solutions for ρ = 1

This appendix presents the exact solutions derived for unit elasticity of inter-temporal
substitution, 1/ρ = 1, and log-normal uncertainty. Denoting logs by lowercase letters, our
general model (19) becomes

vt = (1− β) ct + β

(
Et[vt,t+1] +

1
2
(1− γ1) vart(vt,t+1)

)
, (22)

with the continuation value vt,t+1 satisfying the recursion

vt,t+h = (1− β) ct+h + β

(
Et+1[vt,t+h+1] +

1
2
(1− γh+1) vart+1(vt,t+h+1)

)
.

B.1 Valuation of risk and temporal resolution

Proof of Proposition 4. Starting at horizon t + 1, Equation (22) corresponds to the stan-
dard recursion

ṽt+1 = (1− β) ct+1 +
β

1− γ̃
log(Et+1[exp ((1− γ̃) ṽt+2)]) .

If consumption follows process (6) with σt = σ, guess and verify that the solution to the
recursion satisfies

ṽt − ct = µ̃v + φ̃vxt.
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Substituting in and matching coefficients yields

ṽt − ct =
β

1− β
µc +

βφc

1− βνx
xt +

1
2

β (1− γ̃)

1− β

(
α2

c +

(
βφc

1− βνx

)2

α2
x

)
σ2.

From the perspective of period t,

vt = (1− β) ct +
β

1− γ
log(Et[exp ((1− γ) ṽt+1)])

and

vt− ct =
β

1− β
µc +

βφc

1− βνx
xt +

1
2

β

1− β

(
α2

c +

(
βφc

1− βνx

)2

α2
x

)
σ2 ((1− γ) + β (γ− γ̃)) ,

as stated in the text.
If all risk is resolved at t + 1, log continuation utility v∗t,t+1 is given by

v∗t+1 = (1− β) ct+1 + β
(
(1− β) ct+2 + β

(
(1− β) ct+3 + · · ·

))
= ct+1 +

∞

∑
h=1

βh (ct+h+1 − ct+h) .

From the perspective of period t, this continuation utility is normally distributed with
mean and variance given by

E[v∗t+1] = ct +
1

1− β
µ +

φc

1− βνx
xt,

var(v∗t+1) =
1

1− β2 σ2

(
α2

c +

(
βφc

1− βνx

)2

α2
x

)
.

Using these expressions, we can derive the early resolution utility at t as

v∗t − ct =
β

1− β
µc +

βφc

1− βνx
xt +

1
2

β (1− γ)

1− β2

(
α2

c +

(
βφc

1− βνx

)2

α2
x

)
σ2.

Subtracting this from the utility vt under gradual resolution, we arrive at a timing pre-
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mium given by

TP = 1− exp

(
1
2

β2 (1− γ)

1− β

(
α2

c +

(
βφc

1− βνx

)2

α2
x

)
σ2
(

γ− γ̃

1− γ
+

1
1 + β

))
,

as stated in the text. �

Casewith stochastic volatility: If consumption followsprocess (6)with stochastic volatil-
ity, guess and verify that the solution to the recursion for ṽt satisfies

ṽt − ct = µ̃v + φvxt + ψ̃vσ2
t

where

µ̃v =
β

1− β

(
µc + ψ̃vσ2 (1− νσ) +

1
2
(1− γ̃) ψ̃2

vα2
σ

)
φv =

βφc

1− βνx

ψ̃v =
1
2

β (1− γ̃)

1− βνσ

(
α2

c + φ2
vα2

x

)
.

We then obtain:
vt − ṽt = −

1
2

β (γ− γ̃)
[(

α2
c + φ2

vα2
x

)
σ2

t + ψ̃2
vα2

σ

]

vt − ct =
β

1− β

(
µc + ψ̃vσ2 (1− νσ) +

1
2

ψ̃2
v ((1− γ) + β (γ− γ̃)) α2

σ

)
+ φvxt +

ψ̃v

1− γ̃
((1− γ) + βνσ (γ− γ̃)) σ2

t

If all risk is resolved at t + 1, log continuation utility v∗t,t+1 is given by

v∗t+1 = (1− β) ct+1 + β
(
(1− β) ct+2 + β

(
(1− β) ct+3 + · · ·

))
= ct+1 +

∞

∑
h=1

βh (ct+h+1 − ct+h) .
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From the perspective of period t, this continuation utility is normally distributed with
mean and variance given by

Et[v∗t+1] = ct +
1

1− β
µ +

φc

1− βνx
xt,

vart(v∗t+1) =
1

1− β2νσ

(
σ2

t +
β2

1− β2 σ2 (1− νσ)

)(
α2

c +

(
βφc

1− βνx

)2

α2
x

)
.

Using these expressions, we can derive the early resolution utility at t as

v∗t − ct =
β

1− β
µc +

βφc

1− βνx
xt +

1
2

β (1− γ)

1− β2νσ

(
α2

c +

(
βφc

1− βνx

)2

α2
x

)(
σ2

t +
β2

1− β2 σ2 (1− νσ)

)

and

vt − v∗t =
β

1− β
ψ̃vσ2 (1− νσ)

(
1− 1− γ

1− γ̃

1− βνσ

1− β2νσ

β

1 + β

)
+ ψ̃vνσσ2

t
β

1− γ̃

(
(1− γ)

1− β

1− β2νσ
+ (γ− γ̃)

)
+

1
2

β

[
(1− γ) + β (γ− γ̃)

1− β

]
ψ̃2

vα2
σ

Time premium under hyperbolic discounting "β-δ" model Assume γ = γ̃, but β < β̃.

ṽt − ct =
β̃

1− β̃
µc +

β̃φc

1− β̃νx
xt +

1
2

β̃ (1− γ)

1− β̃

α2
c +

(
β̃φc

1− β̃νx

)2

α2
x

 σ2

vt − ct =
β

1− γ
Et [exp (1− γ) (ṽt+1 − ct+1 + ct+1 − ct)]

ṽt − ct =
β̃

1− γ
Et [exp (1− γ) (ṽt+1 − ct+1 + ct+1 − ct)]
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vt − ct =
β

β̃
(ṽt − ct)

=
β

1− β̃
µc +

βφc

1− β̃νx
xt +

1
2

β (1− γ)

1− β̃

α2
c +

(
β̃φc

1− β̃νx

)2

α2
x

 σ2

If all risk is resolved at t + 1, log continuation utility v∗t,t+1 is given by

v∗t+1 =
(

1− β̃
)

ct+1 + β̃
(
(1− β) ct+2 + β̃

(
(1− β) ct+3 + · · ·

))
= ct+1 +

∞

∑
h=1

β̃h (ct+h+1 − ct+h)

= ct +
∞

∑
h=0

β̃h (ct+h+1 − ct+h) .

From the perspective of period t, this continuation utility is normally distributed with
mean and variance given by

Et[v∗t+1] = ct +
1

1− β̃
µc +

φc

1− β̃νx
xt,

vart(v∗t+1) =
1

1− β̃2
σ2

α2
c +

(
β̃φc

1− β̃νx

)2

α2
x

 .

Using these expressions, we can derive the early resolution utility at t as

v∗t − ct =
β

1− γ
Et
[
exp (1− γ)

(
v∗t+1 − ct

)]

v∗t − ct =
β

1− β̃
µc +

βφc

1− β̃νx
xt +

1
2

β (1− γ)

1− β̃2

α2
c +

(
β̃φc

1− βνx

)2

α2
x

 σ2
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and

vt − v∗t =
1
2

ββ̃ (1− γ)

1− β̃2

α2
c +

(
β̃φc

1− β̃νx

)2

α2
x

 σ2

with β < β̃, β̃2

1−β̃2 > ββ̃

1−β̃2 > β2

1−β2 .

When γ > ρ, the timing premium under {β, β̃} is greater than under the β -onlymodel
and lower than under the β̃ -only model.

B.2 Extension to other information arrival structures

General sequence of risk aversions and comparison t + 1 vs. t + 2. In the main text,
we show that while an agent with Epstein-Zin preferences prefers early resolution iff γ >

ρ = 1, our agent with horizon-dependent risk aversion can prefer late resolution, even if
γ > γ̃ > 1, as long as

γ− γ̃ >
γ− 1
1 + β

,

i.e. as long as γ is sufficiently greater than γ̃. Suppose we have a sequence of risk aversions
{γh}∞

h=1 that is decreasing to some horizon H and then constant at γ̃. For the comparison
of gradual resolution vs. resolution at t + 1, denoted by vt+1

t , we have

vt − vt+1
t =

1
2

(
1−

(
γ1 − (1 + β)∑∞

h=1βh−1 (γh − γh+1)
)) β2

1− β2 α2
vσ2,

which has the same structure as in the timing premium for just two levels of risk aversion
in equation (13). The agent prefers gradual later resolution if

∑∞
h=1βh−1 (γh − γh+1) >

γ1 − 1
1 + β

i.e. as long as the sequence {γh}∞
h=1 is sufficiently decreasing.
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For the comparison of resolution at t + 1 vs. resolution at t + 2 we have

vt+1
t − vt+2

t =
1
2

(
β (1− γ1)− (1− γ2)

) β2

1− β2 α2
vσ2.

While an agent with Epstein-Zin preferences prefers early resolution iff γ > 1 since

β (1− γ)− (1− γ) = (1− β) (γ− 1) ,

our agent can prefer late resolution, as long as

γ1 − γ2 > (1− β) (γ1 − 1)

i.e. as long as γ1 is sufficiently greater than γ2.

B.3 Stochastic discount factor

We now specialize to the case of two levels of risk aversion, setting γ1 = γ and γh = γ̃ for
h ≥ 2.

Proof of Lemma 1. Under the stochastic process (6), we can guess and verify that the
solution to the recursion for ṽt satisfies

ṽt − ct = µ̃v + φvxt + ψ̃vσ2
t

where we write ψ̃v = ψv (γ̃) throughout for simplification, and

µ̃v =
β

1− β

(
µc + ψ̃vσ2 (1− νσ) +

1
2
(1− γ̃) ψ̃2

vα2
σ

)
φv =

βφc

1− βνx

ψ̃v =
1
2

β (1− γ̃)

1− βνσ

(
α2

c + φ2
vα2

x

)
.

54



Substituting these into (22), we arrive at the solution for vt:

vt − ṽt = −
1
2

β (γ− γ̃)
[(

α2
c + φ2

vα2
x

)
σ2

t + ψ̃2
vα2

σ

]
and

vt − ct =
β

1− β

(
µc + ψ̃vσ2 (1− νσ) +

1
2

ψ̃2
v ((1− γ) + β (γ− γ̃)) α2

σ

)
+ φvxt +

ψ̃v

1− γ̃
((1− γ) + βνσ (γ− γ̃)) σ2

t

�

Proof of Proposition 3. Using the results of Lemmas 1 and (22), the expression for the
SDF follows from Equation (5):

πt,t+1 =

π̄t︷ ︸︸ ︷
log β− µc − φcxt −

1
2
(1− γ)2

([
α2

c + φ2
vα2

x

]
σ2

t + ψ̃2
vα2

σ

)
− γαcσtwc,t+1 + (1− γ) φvαxσtwx,t+1

+ (1− γ)ψv(γ̃) ασwσ,t+1,

The risk-free rate is defined as r f ,t = − log Et (Πt,t+1) and simplifies to

r f ,t = − log β + µc + φcxt +

(
1
2
− γ

)
α2

c σ2
t

as stated in the text. �
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B.4 Equity premium

To derive the equity premium, we log-linearize the returns on the dividend stream:

rm,t+1 = log
(

Pt+1 + Dt+1

Pt

)
= ∆dt+1 + log (1 + ezt+1)− zt

≈ k0 + k1zt+1 − zt + ∆dt+1

where zt = pt − dt and k1 = ez̄

1+ez̄ .
From

Et (Πt,t+1Rm,t+1) = 1

we obtain a recursion in zt.
Guess: zt = A0 + A1xt + A2σ2

t

log Et


exp





log β− µc − 1
2 (1− γ)2 ψ̃2

vα2
σ + k0 + k1A2σ2 (1− νσ)

−φcxt − A1xt + φdxt + k1A1νxxt

−1
2 (1− γ)2 [α2

c + φ2
vα2

x
]

σ2
t − A2σ2

t + k1A2νσσ2
t

−γαcσtWc,t+1 + χαcσtWt+1 + αdσtWt+1+

(1− γ) φvαxσtWx,t+1 + k1A1αxσtWx,t+1

+ (1− γ)ψv(γ̃) ασWσ,t+1 + k1A2ασWσ,t+1




= 0

and so:
φd − φc

1− k1νx
= A1

−1
2
(1− γ)2

[
α2

c + φ2
vα2

x

]
+

1
2

α2
d +

1
2
(χ− γ)2 α2

c +
1
2
(k1A1 + (1− γ) φv)

2 α2
x = A2 (1− k1νσ)

Note A1 and A2 are both unaffected by γ̃, and therefore identical to the standard model.
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Since the equity premium is determined by the covariation between the returns rm,t+1

and the stochastic discount factor πt,t+1, and the loadings on the consumption level shocks
are unchanged relative to the standard model for both the market returns and the SDF,
the only term that is impacted is the cross-term for the loadings on the volatility shocks.
The contribution of volatility shocks to the equity premium under horizon dependent risk
aversion is simply the one under the standard model multiplied by 1−γ̃

1−γ (see Corollary 1).

B.5 Term structure of returns

B.5.1 General claims

To make the problem as general as possible, we analyze horizon-dependent claims that
are priced recursively as

Yt,h = Et
[
Πt,t+1Gy,t+1Yt+1,h−1

]
,

that is

yt,h = Et
[
πt,t+1 + gy,t+1 + yt+1,h−1

]
+

1
2

vart
(
πt,t+1 + gy,t+1 + yt+1,h−1

)
,

where

gy,t+1 = µy + φyxt + ψyσ2
t

+ αy,cαcσtwc,t+1 + αy,xαxσtwx,t+1 + αy,σασσtwσ,t+1 + αy,dαdσtwd,t+1,

and Yt,0 = 1.
Guess that

Yt,h = exp
(

µ̃y,h + φy,hxt + ψy,hσ2
t

)
.
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Suppose h ≥ 1, then:

log Π̃t,t+1Gt,t+1Yt+1,h−1 =



log β− µc − φcxt − 1
2 (1− γ)2 [(α2

c + φ2
vα2

x
)

σ2
t + ψ̃2

vα2
σ

]
+µy + φyxt + ψyσ2

t

+µ̃y,h−1 + φy,h−1νxxt + ψy,h−1
(
σ2 (1− νσ) + νσσ2

t
)

+
(
−γ + αy,c

)
αcσtWt+1 +

(
(1− γ) φv + αy,x + φy,n−1

)
αxσtWt+1

+
(
(1− γ) ψ̃v + αy,σ + ψy,h−1

)
ασWt+1

+αy,dαdσtWt+1

Matching coefficients, we find the recursions, for h ≥ 1:

• Terms in xt:

φy,h = −φc + φy + φy,h−1νx

⇒ φy,h =
(
−φc + φy

) 1− νh
x

1− νx

• Terms in σ2
t :

ψy,h = −1
2
(1− γ)2

(
α2

c + φ2
vα2

x

)
+ ψy,h−1νσ + ψy

+
1
2

((
−γ + αy,c

)2
α2

c +
(
(1− γ) φv + αy,x + φy,h−1

)2
α2

x + α2
y,dα2

d

)
and thus the solution, for h ≥ 1:

ψy,h =

[
−1

2
(1− γ)2

(
α2

c + φ2
vα2

x

)
+ ψy +

1
2

((
−γ + αy,c

)2
α2

c + α2
y,dα2

d

)] 1− νh
σ

1− νσ

+
1
2

h−1

∑
n=0

νn
σ

(
(1− γ) φv + αy,x + φy,n−1−h

)2
α2

x
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• Constant:

µ̃y,h − µ̃y,h−1 = log β− µc + µy + σ2 (1− νσ)ψy,h−1

+
1
2

((
(1− γ) ψ̃v + αy,σ + ψy,h−1

)2 − (1− γ)2 ψ̃2
v

)
α2

σ

and thus the solution, for h ≥ 1:

µ̃y,h = h
(

log β− µc + µy −
1
2
(1− γ)2 ψ̃2

vα2
σ

)
+

h−1

∑
n=0

[
σ2 (1− νσ)ψy,n +

1
2
(
(1− γ) ψ̃v + αy,σ + ψy,n

)2
α2

σ

]

Note only the constant terms
{

µ̃y,h
}
are affected by the wedge between γ and γ̃.

�

In line with the specification of van Binsbergen and Koijen (2016), we consider one-
period holding returns for these claims of the form

1 + RY
t+1,h =

Gy,t+1Yt+1,h−1

Yt,h
=

Gy,t+1Yt+1,h−1

Et
[
Πt,t+1Gy,t+1Yt+1,h−1

]
= R f ,t

Et[Πt,t+1] Gy,t+1Yt+1,h−1

Et
[
Πt,t+1Gy,t+1Yt+1,h−1

] ,

with the risk-free rate
R f ,t =

1
Et[Πt,t+1]

.
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The conditional Sharpe Ratio is

SRY
t,h =

Et

[
1 + RY

t+1,h

]
− 1√

vart

(
1 + RY

t+1,h

)
=

Et

(
1 + RY

t+1,h

)
− 1√

Et

((
1 + RY

t+1,h

)2
)
−
(

Et

(
1 + RY

t+1,h

))2

≈

r f ,t +


(
γαy,cα2

c − (1− γ) φv
(
αy,x + φy,h−1

)
α2

x
)

σ2
t

− (1− γ) ψ̃v
(
αy,σ + ψy,h−1

)
α2

σ√
σ2

t

(
α2

y,cα2
c +

(
αy,x + φy,h−1

)2
α2

x + α2
y,dα2

d

)
+
(
αy,σ + ψy,h−1

)2
α2

σ

.

In line with the specification of van Binsbergen and Koijen (2016), we also consider
one-period holding returns for futures on these claims of the form

RF,Y
t+1,h + 1 =

1 + RY
t+1,h

1 + RB
t+1,h

=
Gy,t+1Yt+1,h−1

Yt,h

Bt,h

Bt+1,h−1

=
Gy,t+1Yt+1,h−1

Et
(
Πt,t+1Gy,t+1Yt+1,h−1

) Et (Πt,t+1Bt+1,h−1)

Bt+1,h−1
,

where Bt,h is the price of $1 at horizon h, i.e. the price of a Bond with horizon h.
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Their conditional Sharpe Ratio is

SRF,Y
t,h =

Et

(
1 + RF,Y

t+1,h

)
− 1√

vart

(
1 + RF,Y

t+1,h

)
=

Et

(
1 + RF,Y

t+1,h

)
− 1√

Et

((
1 + RF,Y

t+1,h

)2
)
−
(

Et

(
1 + RF,Y

t+1,h

))2

≈

σ2
t
(
γαy,cα2

c −
(
αy,x + φy,h−1 − φb,h−1

)
((1− γ) φv + φb,h−1) α2

x
)

−
(
αy,σ + ψy,h−1 − ψb,h−1

) (
(1− γ) ψ̃v + ψb,h−1

)
α2

σ√
σ2

t

(
α2

y,cα2
c +

(
αy,x + φy,h−1 − φb,h−1

)2
α2

x + α2
y,dα2

d

)
+
(
αy,σ + ψy,h−1 − ψb,h−1

)2
α2

σ

.

For the unconditional Sharpe ratio observe that the volatility process

σ2
t+1 − σ2 = νσ

(
σ2

t − σ2
)
+ ασWt+1

is stationary under the constraint νσ < 1 with normal distribution with mean σ2 and
variance Σσ = α2

σ

1−ν2
σ
.

and therefore E
(
exp

(
aσ2

t
))

= exp
(

aσ2 + 1
2 a2 α2

σ

1−ν2
σ

)
.

B.5.2 Bonds

Bond prices Let the price at time t for $1 in h periods be Bt,h with Bt,0 = 1. For h ≥ 1, we
have

Bt,h = Et[Πt,t+1Bt+1,h−1]

This is the general problem from above with gy,t+1 = 0 for all t and therefore

bt,h = µ̃b,h + φb,hxt + ψb,hσ2
t ,
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with

φb,h = −φc
1− νh

x
1− νx

ψb,h = −1
2
(1− γ)2

(
α2

c + φ2
vα2

x

)
+ ψb,h−1νσ

+
1
2

(
γ2α2

c + ((1− γ) φv + φb,h−1)
2 α2

x

)
and

ψb,1 =

(
γ− 1

2

)
α2

c > 0

and ψb,h > 0 for all h, and ψb,h increasing in h.
Further,

µ̃b,h − µ̃b,h−1 = log β− µc + σ2 (1− νσ)ψb,h−1 +

(
(1− γ) ψ̃vψb,h−1 +

1
2

ψ2
b,h−1

)
α2

σ

increasing in h. But µ̃b,h can be decreasing if log β− µc < 0.

Bond returns The one-period returns are given by:

RB
t+1,h =

Bt+1,h−1

Bt,h
− 1

and therefore

log
(

RB
t+1,h + 1

)
= − log β + µc −

(
(1− γ) ψ̃vψb,h−1 +

1
2

ψ2
b,h−1

)
α2

σ + φcxt + (ψb,h−1νσ − ψb,h) σ2
t

+ ψb,h−1ασWt+1 + φb,h−1αxσtWt+1

the term structure of expected returns is given by:
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Et

(
RB

t+1,h + 1
)
≈ − log β+µc− (1− γ) ψ̃vψb,h−1α2

σ +φcxt−
((

γ− 1
2

)
α2

c + (1− γ) φvφb,h−1α2
x

)
σ2

t

Et

(
RB

t+1,h+1

)
−Et

(
RB

t+1,h

)
≈ (γ− 1) ψ̃v (ψb,h − ψb,h−1) α2

σ +(γ− 1) φvφc
νh

x − νh−1
x

1− νx
α2

xσ2
t ≤ 0.

The only impact of γ̃ is through ψ̃v, and makes the slope less decreasing (but not in-
creasing).

Risk-free rate The risk-free rate is given by

r f ,t = − log Bt,1

i.e.

r f ,t = − log β + µc + φcxt −
(

γ− 1
2

)
α2

c σ2
t

B.5.3 Dividend strips

Let the price at time t for the full dividend Dt+h in h periods be Pt,h with Pt,0 = Dt. Then
for h ≥ 1:

Pt,h

Dt
= Et

(
Πt,t+1

Dt+1

Dt

Pt+1,h−1

Dt+1

)
,

which is the general problem from above with

gp,t+1 = dt+1 − dt = µd + φdxt + χαcσtWt+1 + αdσtWt+1,

for all t and therefore
pt,h − dt = µ̃p,h + φd,hxt + ψd,hσ2

t ,

with
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φd,h = (−φc + φd)
1− νh

x
1− νx

ψd,h = −1
2
(1− γ)2

(
α2

c + φ2
vα2

x

)
+ ψd,h−1νσ

+
1
2

(
(−γ + χ)2 α2

c + ((1− γ) φv + φd,h−1)
2 α2

x + α2
d

)

ψd,1 =
1
2

α2
d + (χ + 1− 2γ) (χ− 1)

1
2

α2
c

the sign depends on the parameters of the model.

µ̃d,h − µ̃d,h−1 = log β− µc + µd + σ2 (1− νσ)ψd,h−1 +

(
(1− γ) ψ̃vψd,h−1 +

1
2

ψ2
d,h−1

)
α2

σ

where the sign depends again on the parameters of the model.
For the dividend strips, the spot one-period returns are given by

RP
t+1,h + 1 =

Pt+1,h−1/Dt+1

Pt,h/Dt

Dt+1

Dt
,

log
(

RP
t+1,h + 1

)
= − log β + µc −

(
(1− γ) ψ̃vψd,h−1 +

1
2

ψ2
d,h−1

)
α2

σ

+ φcxt + (ψd,h−1νσ − ψd,h) σ2
t

+ ψd,h−1ασWt+1 + φd,h−1αxσtWt+1 + χαcσtWt+1 + αdσtWt+1
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the conditional expected one-period returns are

Et

(
RP

t+1,h + 1
)
≈ − log β + µc − (1− γ) ψ̃vψd,h−1α2

σ + φcxt

−
((

γ (1− χ)− 1
2

)
α2

c + (1− γ) φvφd,h−1α2
x

)
σ2

t

Et

(
RP

t+1,h+1

)
−Et

(
RP

t+1,h

)
≈ (γ− 1) ψ̃v︸ ︷︷ ︸

≤0

(ψd,h − ψd,h−1) α2
σ +(γ− 1) φv (φc − φd)

νh
x − νh−1

x
1− νx

α2
xσ2

t︸ ︷︷ ︸
≥0

We need (ψd,h − ψd,h−1) ≥ 0 to generate a downward sloping term structure, but that
does not depend on the choice of γ̃. If (ψd,h − ψd,h−1) ≤ 0, then the returns are upward
sloping, but less so in our model.

Note, that the returns are MORE upward sloping when σt is high...
�

The future one-period returns are given by:

RF,P
t+1,h + 1 =

1 + RP
t+1,h

1 + RB
t+1,h

log
(

RF,P
t+1,h + 1

)
= −

(
(1− γ) ψ̃v (ψd,h−1 − ψb,h−1) +

1
2

(
ψ2

d,h−1 − ψ2
b,h−1

))
α2

σ

+ ((ψd,h−1 − ψb,h−1) νσ − (ψd,h − ψb,h)) σ2
t

+ (ψd,h−1 − ψb,h−1) ασWt+1 + (φd,h−1 − φb,h−1) αxσtWt+1 + χαcσtWt+1 + αdσtWt+1
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Et

(
RF,P

t+1,h + 1
)
= −

((1− γ) ψ̃v + ψb,h−1
)︸ ︷︷ ︸

≥0 and increasing

(ψd,h−1 − ψb,h−1)

 α2
σ

+

γχα2
c + ((γ− 1) φv − φb,h−1) (φd,h−1 − φb,h−1)︸ ︷︷ ︸

≥0 and increasing

α2
x

 σ2
t

Note:

ψd,h − ψb,h = (ψd,h−1 − ψb,h−1) νσ

+

χ

(
1
2

χ− γ

)
︸ ︷︷ ︸

≤0

α2
c +

(
(1− γ) φv +

1
2
(φd,h−1 + φb,h−1)

)
︸ ︷︷ ︸

≤0 for γ high enough

(φd,h−1 − φb,h−1)︸ ︷︷ ︸
≥0

α2
x +

1
2

α2
d︸︷︷︸

≥0


the sign depends on the parameters. But if it is positive increasing, γ̃ reduces the down-

ward impact of it on the term structure of expected returns. Only if it is negative and de-
creasing does our model help relative to the standardmodel, but then the slope is upward
sloping....

Note, a higher σt means a MORE upward sloping term structure again
�

the Sharpe ratio term structure is given by:

SRF,P
t,n ≈

σ2
t
(
γχα2

c − (φd,h−1 − φb,h−1) ((1− γ) φv + φb,h−1) α2
x
)

− (ψd,h−1 − ψb,h−1)
(
(1− γ) ψ̃v + ψ1

b,h−1

)
α2

σ√
σ2

t

(
χ2α2

c + (φd,h−1 − φb,h−1)
2 α2

x + α2
d

)
+ (ψd,h−1 − ψb,h−1)

2 α2
σ

If the expected returns term structure is upward sloping with ψd,h − ψb,h ≤ 0 and
decreasing, then γ̃ can help make the sharpe ratio term structure downward sloping.
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The unconditional Sharpe ratio term structure is:

SRF,P
h ≈


σ2 (γχα2

c − (φd,h−1 − φb,h−1) ((1− γ) φv + φb,h−1) α2
x
)

+1
2

α2
σ

1−ν2
σ

(
γχα2

c − (φd,h−1 − φb,h−1) ((1− γ) φv + φb,h−1) α2
x
)2

− (ψd,h−1 − ψb,h−1)
(
(1− γ) ψ̃v + ψ1

b,h−1

)
α2

σ√√√√√√√√√√√√



σ2
(

χ2α2
c + (φd,h−1 − φb,h−1)

2 α2
x + α2

d

)
+2
(
(ψd,h−1 − ψb,h−1) νσ − (ψd,h − ψb,h) + (φd,h−1 − φb,h−1)

2 α2
x + χ2α2

c + α2
d

)2
Σσ

−
(
(ψd,h−1 − ψb,h−1) νσ − (ψd,h − ψb,h) +

1
2

(
(φd,h−1 − φb,h−1)

2 α2
x + χ2α2

c + α2
d

))2
Σσ

+ (ψd,h−1 − ψb,h−1)
2 α2

σ

.

B.6 Term structure of returns - Illiquid markets

We analyze horizon-dependent dividend claims when markets are illiquid and prices are
set by buy-and-hold investors. From above, the SDF for a horizon h investor is (when ρ =

1):

Πt,t+h = βh
(

Ct+h
Ct

)−1

 Ṽt+1

Et

[
Ṽ1−γ

t+1

] 1
1−γ


1−γ Ṽt+2

Et+1

[
Ṽ1−γ̃

t+2

] 1
1−γ̃


1−γ̃

. . .

 Ṽt+h

Et+h−1

[
Ṽ1−γ̃

t+h

] 1
1−γ̃


1−γ̃

Consider a dividend with horizon h priced at time t under Πt,t+h,

Pt,h = Et[Πt,t+hDt+h] ,

Pt,h = Et

βh
(

Ct+h
Ct

)−1

 Ṽt+1

Et

[
Ṽ1−γ

t+1

] 1
1−γ


1−γ Ṽt+2

Et+1

[
Ṽ1−γ̃

t+2

] 1
1−γ̃


1−γ̃

. . .

 Ṽt+h

Et+h−1

[
Ṽ1−γ̃

t+h

] 1
1−γ̃


1−γ̃

Dt+h

 ,

The price at time t + 1 is under Πt+1,t+1+(h−1),

Pt+1,h−1

Dt+1
= Et+1

[
Πt+1,t+1+h−1

Dt+h
Dt

]
,
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Pt+1,h−1 = Et+1

βh−1
(

Ct+h
Ct+1

)−1

 Ṽt+2

Et+1

[
Ṽ1−γ

t+2

] 1
1−γ


1−γ Ṽt+3

Et+2

[
Ṽ1−γ̃

t+3

] 1
1−γ̃


1−γ̃

. . .

 Ṽt+h

Et+h−1

[
Ṽ1−γ̃

t+h

] 1
1−γ̃


1−γ̃

Dt+h

 ,

The one-period return is given by:

RF,P
t+1,h + 1 =

Pt+1,h−1
Pt,h

Bt+1,h−1
Bt,h

so

Et

(
RP

t+1,h

)
=

Et

βh−1
(

Ct+h
Ct+1

)−1
 Ṽt+2

Et+1

[
Ṽ1−γ

t+2

] 1
1−γ

1−γ Ṽt+3

Et+2

[
Ṽ1−γ̃

t+3

] 1
1−γ̃

1−γ̃

. . .

 Ṽt+h

Et+h−1

[
Ṽ1−γ̃

t+h

] 1
1−γ̃

1−γ̃

Dt+h
Dt


Et

βh
(

Ct+h
Ct

)−1
 Ṽt+1

Et

[
Ṽ1−γ

t+1

] 1
1−γ

1−γ Ṽt+2

Et+1

[
Ṽ1−γ̃

t+2

] 1
1−γ̃

1−γ̃

. . .

 Ṽt+h

Et+h−1

[
Ṽ1−γ̃

t+h

] 1
1−γ̃

1−γ̃

Dt+h
Dt


To simplify notations, write:

Dt+h
Dt

(
Ct+h

Ct

)−1

Et

(
Dt+h

Dt

(
Ct+h

Ct

)−1
) = exp

(
h

∑
j=1

∆jWt+j

)

where

∆jWt+j = σt+j−1

(
(φd − φc)

1− ν
h−j
x

1− νx
αxwx,t+j + αdwd,t+j + (χ− 1) αcwc,t+j

)

and  Ṽt+j

Et+j−1

[
Ṽ1−γ̃

t+j

] 1
1−γ̃


1−γ̃

= exp
(
(1− γ̃)ΣjWt+j −

1
2

∣∣(1− γ̃)Σj
∣∣2)
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(substitute γ̃ with γ when necessary) where

Σj = σt+j−1
(
φvαxwx,t+j + αcwc,t+j

)
+ ψ̃vασwσ,t+j

whereWt+j is the 4× 1vector of the independent iid shocks at time t+ j, and∆j,t+j−1, Σj,t+j−1

is written ∆j, Σj to simplify the formulas.
We obtain:

Et (Rt+1,h) =
Et

(
Ct+1

Ct

)
exp

[
∑h

j=3

[(
∆j + (1− γ̃)Σj

)
Wt+j − 1

2

∣∣(1− γ̃)Σj
∣∣2]+ (∆2 + (1− γ)Σ2)Wt+2 − 1

2 |(1− γ)Σ2|2 + ∆1Wt+1

]
βEt

[
exp

[
∑h

j=2

[(
∆j + (1− γ̃)Σj

)
Wt+j − 1

2

∣∣(1− γ̃)Σj
∣∣2]+ (∆1 + (1− γ)Σ1)Wt+1 − 1

2 |(1− γ)Σ1|2
]]

Because the shocks are iid, we obtain, when volatility is constant:

Et

(
RP

t+1,h

)
=

β−1Et

(
Ct+1

Ct

)
exp

[
(∆2 + (1− γ)Σ2)Wt+2 − 1

2 |(1− γ)Σ2|2 + ∆1Wt+1

]
Et

[
exp

[
(∆2 + (1− γ̃)Σ2)Wt+2 − 1

2 |(1− γ̃)Σ2|2 + (∆1 + (1− γ)Σ1)Wt+1 − 1
2 |(1− γ)Σ1|2

]]
log Et

(
RP

t+1,h

)
= − log β + µc + φcxt +

1
2

α2
c σ2 + cov (∆1, αc) + (γ̃− γ) cov (∆2, Σ2)− (1− γ) cov (∆1, Σ1)

log Et

(
RP

t+1,h

)
= − log β + µc + φcxt +

(
χ− 1

2

)
α2

c σ2 − (1− γ) σ2

[
φv (φd − φc)

1− νh−1
x

1− νx
α2

x + (χ− 1) α2
c

]

+ (γ̃− γ) σ2

[
φv (φd − φc)

1− νh−2
x

1− νx
α2

x + (χ− 1) α2
c

]
︸ ︷︷ ︸

<0

Evenwhen volatility is constant, HDRA impacts the term structure of expected returns
when investors choose buy-and-hold strategies. The negative impact of HDRA increases
with the horizon.

�
To obtain the returns on bonds, and the expected excess returns, replace φd, αd and χ

by 0 in the formula above:

log Et

(
RB

t+1,h

)
= − log β + µc + φcxt +−

1
2

α2
c σ2 + (1− γ) σ2

[
φvφc

1− νh−1
x

1− νx
α2

x + α2
c

]

− (γ̃− γ) σ2

[
φvφc

1− νh−2
x

1− νx
α2

x + α2
c

]
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and

log Et

(
RP,F

t+1,h

)
= γχα2

c σ2 − (1− γ) σ2

[
φvφd

1− νh−1
x

1− νx
α2

x

]

+ (γ̃− γ) σ2

[
φvφd

1− νh−2
x

1− νx
α2

x + χα2
c

]
︸ ︷︷ ︸

<0

When volatility is time varying, we can rewrite,

Et

(
Ct+1

Ct

)
exp

[
∑h

j=3

[(
∆j + (1− γ̃)Σj

)
Wt+j − 1

2

∣∣(1− γ̃)Σj
∣∣2]+ (∆2 + (1− γ)Σ2)Wt+2 − 1

2 |(1− γ)Σ2|2 + ∆1Wt+1

]
βEt

[
exp

[
∑h

j=2

[(
∆j + (1− γ̃)Σj

)
Wt+j − 1

2

∣∣(1− γ̃)Σj
∣∣2]+ (∆1 + (1− γ)Σ1)Wt+1 − 1

2 |(1− γ)Σ1|2
]] =

exp (− log β + µc + φcxt) Et exp
[
∑h

j=3

[
Ψ̃jσ

2
t+j−1

]
+ (∆2 + (1− γ)Σ2)Wt+2 − 1

2 |(1− γ)Σ2|2 + (∆1Wt+1 + αcσtwc,t+1)
]

Et exp
[
∑h

j=3

[
Ψ̃jσ

2
t+j−1

]
+ (∆2 + (1− γ̃)Σ2)Wt+2 − 1

2 |(1− γ̃)Σ2|2 + (∆1 + (1− γ)Σ1)Wt+1 − 1
2 |(1− γ)Σ1|2

]
where

Ψ̃j =
1
2

((φd − φc)
1− ν

h−j
x

1− νx
αx

)2

+ α2
d + (χ− 1)2 α2

c

+(1− γ̃)

[
φv (φd − φc)

1− ν
h−j
x

1− νx
α2

x + (χ− 1) α2
c

]

Ψ̃∞ =
1
2

((
(φd − φc)

αx

1− νx

)2

+ α2
d + (χ− 1)2 α2

c

)
+ (1− γ̃)

[
φv (φd − φc)

α2
x

1− νx
+ (χ− 1) α2

c

]
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replace γ̃ with γ to get Ψj

Et exp
[
∑h

j=3

[
Ψ̃jσ

2
t+j−1

]
+ (∆2 + (1− γ)Σ2)Wt+2 − 1

2 |(1− γ)Σ2|2
]

Et

[
exp

[
∑h

j=2

[
Ψ̃jσ

2
t+j−1

]
+ (∆2 + (1− γ̃)Σ2)Wt+2 − 1

2 |(1− γ̃)Σ2|2 + (1− γ) ψ̃vασwσ,t+1 − 1
2

∣∣(1− γ) ψ̃vασ

∣∣2]] =

Et exp
[
ασ (νσwσ,t+1 + wσ,t+2)∑h

j=3 Ψ̃jν
j−3
σ + (∆2 + (1− γ)Σ2)Wt+2 − 1

2 |(1− γ)Σ2|2
]

Et exp
[
ασ (νσwσ,t+1 + wσ,t+2)∑h

j=3 Ψ̃jν
j−3
σ + (∆2 + (1− γ̃)Σ2)Wt+2 − 1

2 |(1− γ̃)Σ2|2 + (1− γ) ψ̃vασwσ,t+1 − 1
2

∣∣(1− γ) ψ̃vασ

∣∣2] =

Et exp
[
ασνσwσ,t+1

(
∑h

j=3 Ψ̃jν
j−3
σ + Ψ2

)
+ Ψ2

(
σ2 (1− νσ) + νσσ2

t
)
+ 1

2 ∑h
j=3 Ψ̃jν

j−3
σ

(
∑h

j=3 Ψ̃jν
j−3
σ + 2 (1− γ) ψ̃v

)
α2

σ

]
Et exp

[
1
2 ∑h

j=3 Ψ̃jν
j−3
σ

(
∑h

j=3 Ψ̃jν
j−3
σ + 2 (1− γ̃) ψ̃v

)
α2

σ + Ψ̃2
(
σ2 (1− νσ) + νσσ2

t
)
+
(

νσ ∑h
j=3 Ψ̃jν

j−3
σ + (1− γ) ψ̃v + Ψ̃2

)
ασwσ,t+1 − 1

2

∣∣(1− γ) ψ̃vασ

∣∣2] =

exp
[

α2
σ

[
1
2 (Ψ2)

2 + 1+ν2
σ

2

(
∑h

j=3 Ψ̃jν
j−3
σ

)2
+
(
Ψ2νσ + (1− γ) ψ̃v

)
∑h

j=3 Ψ̃jν
j−3
σ

]
+ Ψ2

(
σ2 (1− νσ) + νσσ2

t
)]

exp
[

α2
σ

[
1
2

(
Ψ̃2

)2
+ 1+ν2

σ
2

(
∑h

j=3 Ψ̃jν
j−3
σ

)2
+
(

Ψ̃2νσ + [(1− γ̃) + νσ (1− γ)] ψ̃v

)
∑h

j=3 Ψ̃jν
j−3
σ + (1− γ) ψ̃vΨ̃2

]
+ Ψ̃2

(
σ2 (1− νσ) + νσσ2

t
)] =

exp
[
α2

σ

[
1
2 (Ψ2)

2 +
(
Ψ2νσ + (1− γ) ψ̃v

)
∑h

j=3 Ψ̃jν
j−3
σ

]
+ Ψ2

(
σ2 (1− νσ) + νσσ2

t
)]

exp
[

α2
σ

[
1
2

(
Ψ̃2

)2
+
(

Ψ̃2νσ + [(1− γ̃) + νσ (1− γ)] ψ̃v

)
∑h

j=3 Ψ̃jν
j−3
σ + (1− γ) ψ̃vΨ̃2

]
+ Ψ̃2

(
σ2 (1− νσ) + νσσ2

t
)] =

exp

[
1
2

α2
σ

(
Ψ2

2 − Ψ̃2
2

)
+
(

Ψ2 − Ψ̃2

)(
σ2 (1− νσ) + νσσ2

t + α2
σ

h

∑
j=3

Ψ̃jν
j−2
σ

)
+ (γ̃− γ) ψ̃vα2

σ

h

∑
j=3

Ψ̃jν
j−3
σ − (1− γ) ψ̃vα2

σ

h

∑
j=2

Ψ̃jν
j−2
σ

]

log Et

(
RP

t+1,h

)
= − log β + µc + φcxt +

(
χ− 1

2

)
α2

c σ2
t − (1− γ) σ2

t

[
φv (φd − φc)

1− νh−1
x

1− νx
α2

x + (χ− 1) α2
c

]

+ (γ̃− γ)

[
φv (φd − φc)

1− νh−2
x

1− νx
α2

x + (χ− 1) α2
c

]
︸ ︷︷ ︸

<0

(
σ2 (1− νσ) + νσσ2

t

)

+ α2
σ

[
1
2

(
Ψ2

2 − Ψ̃2
2

)
+
(

Ψ2 − Ψ̃2

) h

∑
j=3

Ψ̃jν
j−2
σ + (γ̃− γ) ψ̃v

h

∑
j=3

Ψ̃jν
j−3
σ − (1− γ) ψ̃v

h

∑
j=2

Ψ̃jν
j−2
σ

]
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log Et

(
RP

t+1,h

)
= − log β + µc + φcxt +

(
χ− 1

2

)
α2

c σ2
t − (1− γ) σ2

t

[
φv (φd − φc)

1− νh−1
x

1− νx
α2

x + (χ− 1) α2
c

]

+ (γ̃− γ)

[
φv (φd − φc)

1− νh−2
x

1− νx
α2

x + (χ− 1) α2
c

]
︸ ︷︷ ︸

<0

(
σ2 (1− νσ) + νσσ2

t

)

+ α2
σ (γ− 1) ψ̃v︸ ︷︷ ︸

<0

h

∑
j=2

Ψ̃jν
j−2
σ︸ ︷︷ ︸

<0 under γ but >0 for sufficiently low γ̃

+ α2
σ


1
2

(
Ψ2

2 − Ψ̃2
2

)
+
(

Ψ2 − Ψ̃2

) h

∑
j=3

Ψ̃jν
j−2
σ + (γ̃− γ) ψ̃v

h

∑
j=3

Ψ̃jν
j−3
σ︸ ︷︷ ︸

<0 for sufficiently low γ̃



Note: we write Φk =
Ψ̃h+1−k

νk
σ

=⇒νh−2
σ ∑h−2

k=1 Φk = ∑h
j=3 Ψ̃jν

j−3
σ in the matlab document

To obtain the returns on bonds, and their expected excess returns, replace φd, αd and χ
by 0 in the formula above:

log Et

(
RB

t+1,h

)
= − log β + µc + φcxt −

1
2

α2
c σ2

t + (1− γ) σ2
t

[
φvφc

1− νh−1
x

1− νx
α2

x + α2
c

]

− (γ̃− γ)

[
φvφc

1− νh−2
x

1− νx
α2

x + α2
c

]
︸ ︷︷ ︸

<0

(
σ2 (1− νσ) + νσσ2

t

)

+ α2
σ (γ− 1) ψ̃v︸ ︷︷ ︸

<0

h

∑
j=2

Ψ̃B,jν
j−2
σ︸ ︷︷ ︸

<0 under γ but >0 for sufficiently low γ̃

+ α2
σ


1
2

(
Ψ2

B,2 − Ψ̃2
B,2

)
+
(

ΨB,2 − Ψ̃B,2

) h

∑
j=3

Ψ̃B,,jν
j−2
σ + (γ̃− γ) ψ̃v

h

∑
j=3

Ψ̃B,jν
j−3
σ︸ ︷︷ ︸

<0 for sufficiently low γ̃


where

Ψ̃B,j =
1
2

(φc
1− ν

h−j
x

1− νx
αx

)2

+ α2
c

− (1− γ̃)

[
φvφc

1− ν
h−j
x

1− νx
α2

x + α2
c

]
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and

Ψ̃j− Ψ̃B,j =
1
2

φd (φd − 2φc)

(
1− ν

h−j
x

1− νx
αx

)2

+ α2
d + χ (χ− 2) α2

c

+(1− γ̃)

[
φvφc

1− νh−2
x

1− νx
α2

x + α2
c

]

log Et

(
RP,F

t+1,h

)
= γχα2

c σ2
t − (1− γ) σ2

t

[
φvφd

1− νh−1
x

1− νx
α2

x

]

+ (γ̃− γ)

[
φvφd

1− νh−1
x

1− νx
α2

x + χα2
c

]
︸ ︷︷ ︸

<0

(
σ2 (1− νσ) + νσσ2

t

)

+ α2
σ (γ− 1) ψ̃v︸ ︷︷ ︸

<0

h

∑
j=2

(
Ψ̃j − Ψ̃B,j

)
ν

j−2
σ︸ ︷︷ ︸

<0 under γ but >0 for sufficiently low γ̃

+ α2
σ


1
2

(
Ψ2

2 − Ψ̃2
2

)
+
(

Ψ2 − Ψ̃2

)
∑h

j=3 Ψ̃jν
j−2
σ

− 1
2

(
Ψ2

B,2 − Ψ̃2
B,2

)
+
(

ΨB,2 − Ψ̃B,2

)
∑h

j=3 Ψ̃B,jν
j−2
σ

+ (γ̃− γ) ψ̃v

h

∑
j=3

(
Ψ̃j − Ψ̃B,j

)
ν

j−3
σ


�

Using

r f ,t = − log β + µc + φcxt −
(

γ− 1
2

)
α2

c σ2
t

we have

Et

βh
(

Ct+h
Ct

)−1

 Ṽt+1

Et

[
Ṽ1−γ

t+1

] 1
1−γ


1−γ Ṽt+2

Et+1

[
Ṽ1−γ̃

t+2

] 1
1−γ̃


1−γ̃

. . .

 Ṽt+h

Et+h−1

[
Ṽ1−γ̃

t+h

] 1
1−γ̃


1−γ̃
 ∝

exp

[((
γ̃− 1

2

)
1− νh

σ

1− νσ
+ (γ− γ̃)

)
α2

c σ2
t

]
×

Et


 Ṽt+1

Et

[
Ṽ1−γ

t+1

] 1
1−γ


1−γ Ṽt+2

Et+1

[
Ṽ1−γ̃

t+2

] 1
1−γ̃


1−γ̃

. . .

 Ṽt+h−1

Et+h−2

[
Ṽ1−γ̃

t+h−1

] 1
1−γ̃


1−γ̃

exp (−φc (xt + . . . + xt+h−1))


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exp (−φcxt+h−1) = exp
(
−φc

(
ν2

xxt+h−3 + νxαxσt+h−3Wt+h−2 + αxσt+h−2Wt+h−1

))
= exp

(
−φc

(
νh−1

x xt + αx

(
νh−2

x σtWt+1 + . . . + σt+h−2Wt+h−1

)))

exp (−φcxt+h−2) = exp
(
−φc

(
νh−2

x xt + αx

(
νh−3

x σtWt+1 + . . . + σt+h−3Wt+h−2

)))

exp (−φc (xt + . . . + xt+h−1)) =

exp
(
− φc

1− νx

((
1− νh

x

)
xt + αx

((
1− νh−1

x

)
σtWt+1 + . . . + (1− νx) σt+h−2Wt+h−1

)))

Et


(

Ct+h
Ct

)−1

 Ṽt+1

Et

[
Ṽ1−γ

t+1

] 1
1−γ


1−γ Ṽt+2

Et+1

[
Ṽ1−γ̃

t+2

] 1
1−γ̃


1−γ̃

. . .

 Ṽt+h

Et+h−1

[
Ṽ1−γ̃

t+h

] 1
1−γ̃


1−γ̃
 ∝

exp

(
h−1

∑
j=1

[
1− ν

j
x

1− νx

(
1
2

φc
1− ν

j
x

1− νx
− (1− γ̃) φv

)]
ν

h−1−j
σ +

1− νh−1
x

1− νx
((γ− γ̃) φv)

)
φcα2

xσ2
t

We painfully arrive at

ΣB
h,t =

(
h−1

∑
j=1

[
1− ν

j
x

1− νx

(
1
2

φc
1− ν

j
x

1− νx
− (1− γ̃) φv

)]
ν

h−1−j
σ +

1− νh−1
x

1− νx
((γ− γ̃) φv)

)
φcα2

x

+

((
γ̃− 1

2

)
1− νh

σ

1− νσ
+ (γ− γ̃)

)
α2

c

�
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B.7 Demand for risk

Wealth:

• start with Vt homogenous of degree one in {Ct, Vt,t+1}:

Vt =
dVt

dCt
Ct + Et

(
dVt

dVt,t+1
Vt,t+1

)

=
dVt

dCt

Ct + Et

 dVt
dVt,t+1

dVt,t+1
dWt+1

dVt
dCt

Vt,t+1
dVt,t+1
dWt+1


and

Vt
dVt
dCt

= Ct + Et

Πt,t+1
Vt,t+1
dVt,t+1
dWt+1


• remember from above:

Vt,t+1
dVt,t+1
dWt+1

=
Vt+1
dVt+1
dWt+1

so we end up with

Wt =
Vt
dVt
dCt

and

Wt

Ct
=

1
1− β

(
Vt

Ct

)1−ρ

which is the standard formula
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• what if the next optimization is at h > 1?

Vt =
dVt

dCt
Ct + Et

(
dVt

dVt,t+1
Vt,t+1

)

=
dVt

dCt

Ct + Et

 dVt
dVt,t+1

dVt,t+1
dWt+1

dVt
dCt

Vt,t+1
dVt,t+1
dWt+1


=

dVt

dCt

Ct + Et

 dVt
dVt,t+1

dVt,t+1
dWt+1

dVt
dCt

(
Ct+1 +

dVt,t+1

dVt+1,t+2
Vt+1,t+2

)
=

dVt

dCt

[
Ct + Et

(
Πt,t+1Ct+1 + Πt,t+2

dVt+2

dCt+2

)]
we still obtain

Wt =
Vt
dVt
dCt

• when ρ = 1, Ct = αWt

Market returns:

• long-linearization of market returns:

Rt+1 =
Pt+1 + Dt+1

Pt
=

Dt+1

Dt

1 + Pt+1/Dt+1

Pt/Dt

rt+1 = ∆dt+1 + k1zt+1 − zt + κ0

where zt = log Pt
Dt
; from earlier calculations, zt = A0 + A1xt, so

rm,t+1 = am,0 + am,1xt + χαcσtwc,t+1 + χ2αxσtwx,t+1 + αdσtwd,t+1

dt+1 − dt = µd + φdxt + χαcσtwc,t+1 + αdσtwd,t+1
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• to simplify, we assume σt = σ

rm,t+1 = µm + (k1νx − 1) A1xt + χαcσwc,t+1 + k1A1αxwx,t+1 + αdwd,t+1

= µm + (φc − φd) xt + σmwm,t+1

= µm,t + σmwm,t+1

and k1 = ez

1+ez , A1 = φd−φc
1−k1νx

• portfolio investment θ:

erp,t+1 = R f + θt
(

Rm − R f
)

= R f
(
1 + θt

(
erm−r f − 1

))
if log-normal:

E (erp,t+1) = µp +
1
2

σ2
p = er f

(
1 + θt

(
eµm−r f +

1
2 σ2

m − 1
))

first-order approximation:

rp,t+1 − r f = θt
(
rm,t+1 − r f

)
+

1
2

θt (1− θt) σ2
m

s.t. E
(
rp,t+1

)
= r f + θt

(
µm,t − r f

)
+ 1

2 θtσ
2
m

One period optimization:

Vt = max
{Ct,θt}

C1−β
t Rt

(
Ṽt+1

)β

s.t.

Wt+1 = (Wt − Ct) erp,t+1
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By homogeneity in the value function, we have Vt = V (xt)Wt, Ṽt = Ṽ (xt)Wt and Ct =

αWt, so the optimization becomes:

V (xt) = max
{α,θt}

α1−β (1− α)βRt
(
Ṽ (xt+1) erp,t+1

)β

so θt is chosen to maximize:

logRt
(
Ṽ (xt+1) erp,t+1

)
=

1
1− γ

log E exp
[
(1− γ)

(
ṽ(xt+1) + θt

(
µm,t − r f ,t + σmwm,t+1

)
+

1
2

θt (1− θt) σ2
m

)]
• If cov (wm,t+1, wx,t+1) = 0, we get back to the standard myopic demand:

max
(

θt
(
µm,t − r f ,t

)
+

1
2

θt (1− θt) σ2
m +

1
2

θ2
t (1− γ) σ2

m

)
so:

(
µm,t − r f ,t

)
+

1
2

σ2
m − γθtσ

2
m = 0

i.e.

θt =
E
(

Rm − R f
)

γσ2
m

• When cov (wm,t+1, wx,t+1) 6= 0, we get:

max
(

θt
(
µm,t − r f ,t

)
+

1
2

θt (1− θt) σ2
m +

1
2
(1− γ)

(
θ2

t σ2
m + 2θtσmcov (ṽ(xt+1), wm,t+1)

))
so:

(
µm,t − r f ,t

)
+

1
2

σ2
m − γθtσ

2
m + (1− γ) (σmcov (ṽ(xt+1), wm,t+1)) = 0

i.e.

θt =
E
(

Rm − R f
)

γσ2
m

+
(1− γ)

γ

cov (ṽ(xt+1), wm,t+1)

σm
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which combines the standard myopic demand with the hedging demand due to the
predictability of consumption growth shocks.

Two period optimization:

Vt = max
{Ct,Ct+1θt}

C1−β
t Rt

(
C1−β

t+1 R̃t+1
(
Ṽt+2

)β
)β

s.t.

Wt+2 = (Wt − Ct→t+2) erp,t+2

As above, we have Vt = V (xt)Wt, Ṽt = Ṽ (xt)Wt and Ct = α1Wt, Ct+1 = α2WtR f so the
optimization becomes:

V (xt) = max
{α1,α2,θt}

(
α

1−β
1

(
α2R f

)β(1−β)
(1− (α1 + α2))

β2)
Rt

(
R̃t+1

(
Ṽ (xt+2) erp,t+2

)β
)β

We have:

rp,t+2 − r f ,t,2 = θt
(
rm,t+2 − r f ,t,2

)
+

1
2

θt (1− θt) σ2
m,2

rm,t+2 = rm,t+1 + rm,t+1,t+2

= 2µm + (φc − φd) (1 + νx) xt + (φc − φd) αxwx,t+1 + σmwm,t+1 + σmwm,t+2

= µm,t,2 + ((φc − φd) αxwx,t+1 + σmwm,t+1) + σmwm,t+2

so getting rid of the terms that do not affect the optimization,

log R̃t+1
(
Ṽ (xt+2) erp,t+2

)
= φvνxxt+1 + θt

(
µm,t+2 − r f ,t,2 + ((φc − φd) αxwx,t+1 + σmwm,t+1)

)
+

1
2

θt (1− θt) σ2
m,2

+
1
2
(1− γ̃)

(
θ2

t σ2
m + 2θtσmcov (ṽ(xt+1), wm,t+1)

)
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and therefore

logRt

(
R̃t+1

(
Ṽ (xt+2) erp,t+2

)β
)
= β


(

φvν2
xxt + θt

(
µm,t+2 − r f ,t,2

)
+ 1

2 θt (1− θt) σ2
m,2

)
+1

2 (1− γ̃)
(
θ2

t σ2
m + 2θtσmcov (ṽ(xt+1), wm,t+1)

)
+

1
2

β2 (1− γ) θ2
t

(
σ2

m,2 − σ2
m

)
so θt is chosen to maximize:

max


θt
(
µm,t+2 − r f ,t,2

)
+ 1

2 θt (1− θt) σ2
m,2

+1
2 (1− γ̃)

(
θ2

t σ2
m + 2θtσmcov (ṽ(xt+1), wm,t+1)

)
+1

2 β (1− γ) θ2
t

(
σ2

m,2 − σ2
m

)
At horizon h ≥ 2, we expand to get:

µm,t+h − r f ,t,h +
1
2 σ2

m,h + (1− γ̃) σmcov (ṽ(xt+1), wm,t+1)

+θt

(
σ2

m (1− β) (1− γ)− β (γ + (1− β)) σ2
m,h

)
+θt (γ− γ̃) β

(
σ2

m,h − σ2
1,h + σ2

m

(
1−β

β

)) = 0

where σ2
1,h is the variance of the wt+1 shocks in rm,t+h.

when β ≈ 1:
µm,t+h − r f ,t,h +

1
2 σ2

m,h + (1− γ̃) σmcov (ṽ(xt+1), wm,t+1)

+θt

(
−γσ2

m,h

)
+θt (γ− γ̃)

(
σ2

m,h − σ2
1,h

) = 0

and

θt =

E(Rm,h−R f )
γσ2

m,h

1 + (γ̃−γ)
γ

(
1− σ2

1,h
σ2

m,h

) +
(1− γ̃)

σmcov(ṽ(xt+1),wm,t+1)

γσ2
m,h

1 + (γ̃−γ)
γ

(
1− σ2

1,h
σ2

m,h

)
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with no predictability, we would get:

θt =
1

1 + (γ̃−γ)
γ

h−1
h

E
(

Rm − R f
)

γσ2
m

with β: 
µm,t+h − r f ,t,h +

1
2 σ2

m,h + (1− γ̃) σmcov (ṽ(xt+1), wm,t+1)

−θtσ
2
m,h

(
βγ + (1− β)

(
β + (γ− 1) σ2

m
σ2

m,h

))
+θt (γ− γ̃) β

(
σ2

m,h − σ2
1,h + σ2

m

(
1−β

β

)) = 0

and

θ =

E(Rm,h−R f )
σ2

m,h
+ (1− γ̃)

cov
(

Ṽt+1
Wt+1

,Rm,t+1

)
σ2

m,h(
βγ + (1− β)

(
β + (γ− 1) σ2

m
σ2

m,h

))
+ (γ̃− γ)

(
1− σ2

1,h
σ2

m,h
+ σ2

m
σ2

m,h

(
1−β

β

))
Both the myopic and the hedging demands are increased by γ̃ > γ when the horizon

of optimization is h > 1, as long as cov (wx,t+1, wm,t+1) ≥ 0.

C Approximation for β ≈ 1

As in Appendix B, consider the simplified model with only two levels of risk aversion:

Vt =

[
(1− β)C1−ρ

t + β
(
Rt,γ

(
Ṽt+1

))1−ρ
] 1

1−ρ

,

Ṽt =

[
(1− β)C1−ρ

t + β
(
Rt,γ̃

(
Ṽt+1

))1−ρ
] 1

1−ρ

,

where
Rt,λ (X) =

(
Et

(
X1−λ

)) 1
1−λ .
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Also, as in Appendix B, take the evolutions:

ct+1 − ct = µ + φcxt + αcσtWt+1,

xt+1 = νxxt + αxσtWt+1,

σ2
t+1 − σ2 = νσ

(
σ2

t − σ2
)
+ ασWt+1,

and suppose the three shocks are independent. (We can relax this assumption.)
For β close to 1, we have:

(
Ṽt

Ct

)1−γ̃

≈ β
1−γ̃
1−ρ Et

( Ṽt+1

Ct+1

Ct+1

Ct

)1−γ̃
 .

This is an eigenfunction problem with eigenvalue β
− 1−γ̃

1−ρ and eigenfunction
(

Ṽ/C
)1−γ̃

known up to a multiplier. Let’s assume:

ṽt − ct = µ̃v + φvxt + ψ̃vσ2
t .

Then we have:

• Terms in xt (standard formula with β = 1):

φv = φc (I − νx)
−1

• Terms in σ2
t :

ψ̃v =
1
2

1− γ̃

1− νσ

(
α2

c + φ2
vα2

x

)
< 0

• Constant terms:

log β = − (1− ρ)

(
µ + ψ̃vσ2 (1− νσ) +

1
2
(1− γ̃) ψ̃2

vα2
σ

)
we verify the solution for β is such that β < 1 and β ≈ 1. We find that, as long as
γ̃ ≤ 5, β < 1⇔ ρ < 1; and β ≈ 1 is easily satisfied even for very low levels of ρ. e.g.
in the calibration of Section (3.2), 1 > β ≥ 0.9988 for ρ = 0.2 and γ̃ ≤ 5.
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For β close to 1, we have:

Vt

Ṽt
≈
Rt,γ

(
Ṽt+1

)
Rt,γ̃

(
Ṽt+1

) =

(
Et

[(
Ṽt+1
Ct+1

Ct+1
Ct

)1−γ
]) 1

1−γ

(
Et

[(
Ṽt+1
Ct+1

Ct+1
Ct

)1−γ̃
]) 1

1−γ̃

,

and therefore:

vt − ṽt = −
1
2
(γ− γ̃)

[(
α2

c + φ2
vα2

x

)
σ2

t + ψ̃2
vα2

σ

]
,

The stochastic discount factor becomes:

πt,t+1 = π̄t − γαcσtWt+1 + (ρ− γ) φvαxσtWt+1

+

[
(ρ− γ) + (1− ρ) (γ− γ̃)

1− νσ

1− γ̃

]
ψ̃vασWt+1,

where

π̄t = log β− ρµc − ρφcxt − (ρ− γ)
1
2
(1− γ)

([(
α2

c + φ2
vα2

x

)
σ2

t + ψ̃2
vα2

σ

])
+ (1− ρ)

1
2
(γ− γ̃)

[(
α2

c + φ2
vα2

x

) (
νσσ2

t + σ2 (1− νσ)
)
+ ψ̃2

vα2
σ

]

π̄t = −µc − ρφcxt − (1− ρ)
1
2

(
α2

c + φ2
vα2

x

)( 1− γ̃

1− νσ
− (γ− γ̃)

)
σ2 (1− νσ)

− 1
2
(1− γ)2 ψ̃2

vα2
σ

− 1
2
((ρ− γ) (1− γ)− (1− ρ) (γ− γ̃) νσ)

([(
α2

c + φ2
vα2

x

)
σ2

t

])
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The risk-free rate is defined as r f ,t = − log Et (Πt,t+1) :

r f ,t = µc + ρφcxt + (1− ρ)
1
2

(
α2

c + φ2
vα2

x

)( 1− γ̃

1− νσ
− (γ− γ̃)

)
σ2 (1− νσ)

+
1
2

[
(1− γ)2 −

[
(ρ− γ) + (1− ρ) (γ− γ̃)

1− νσ

1− γ̃

]2
]

ψ̃2
vα2

σ

+
1
2
((ρ− γ) (1− γ)− (1− ρ) (γ− γ̃) νσ)

([(
α2

c + φ2
vα2

x

)
σ2

t

])
− 1

2

(
γ2α2

c σ2
t + (ρ− γ)2 φ2

vα2
xσ2

t

)
Note the risk-free rate now depends on γ̃. �

C.1 Term structure of returns

C.1.1 General claims

To make the problem as general as possible, we analyze horizon-dependent claims that
are priced recursively as

Yt,h = Et
[
Πt,t+1Gy,t+1Yt+1,h−1

]
,

that is

yt,h = Et
[
πt,t+1 + gy,t+1 + yt+1,h−1

]
+

1
2

vart
(
πt,t+1 + gy,t+1 + yt+1,h−1

)
,

where

gy,t+1 = µy + φyxt + ψyσ2
t

+ αy,cαcσtwc,t+1 + αy,xαxσtwx,t+1 + αy,σασσtwσ,t+1 + αy,dαdσtwd,t+1,

and Yt,0 = 1.
Guess that

Yt,h = exp
(

µ̃y,h + φy,hxt + ψ̃y,hσ2
t

)
.
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Suppose h ≥ 1, then:

πt,t+1 = π̄t − γαcσtWt+1 + (ρ− γ) φvαxσtWt+1

+

[
(ρ− γ) + (1− ρ) (γ− γ̃)

1− νσ

1− γ̃

]
ψ̃vασWt+1,

log Π̃t,t+1Gt,t+1Yt+1,h−1 =



π̄t

+µy + φyxt + ψyσ2
t

+µ̃y,h−1 + φy,h−1νxxt + ψy,h−1
(
σ2 (1− νσ) + νσσ2

t
)

+
(
−γ + αy,c

)
αcσtWt+1 +

(
(ρ− γ) φv + αy,x + φy,n−1

)
αxσtWt+1

+
([

(ρ− γ) + (1− ρ) (γ− γ̃) 1−νσ
1−γ̃

]
ψ̃v + αy,σ + ψy,h−1

)
ασWt+1

+αy,dαdσtWt+1

where

π̄t = −µc − ρφcxt − (1− ρ)
1
2

(
α2

c + φ2
vα2

x

)( 1− γ̃

1− νσ
− (γ− γ̃)

)
σ2 (1− νσ)

− 1
2
(1− γ)2 ψ̃2

vα2
σ

− 1
2
((ρ− γ) (1− γ)− (1− ρ) (γ− γ̃) νσ)

([(
α2

c + φ2
vα2

x

)
σ2

t

])
Matching coefficients, we find the recursions, for h ≥ 1:

• Terms in xt:

φy,h = −ρφc + φy + φy,h−1νx

⇒ φy,h =
(
−ρφc + φy

) 1− νh
x

1− νx

• Terms in σ2
t :

ψ̃y,h = −1
2
((ρ− γ) (1− γ)− (1− ρ) (γ− γ̃) νσ)

(
α2

c + φ2
vα2

x

)
+ ψ̃y,h−1νσ + ψy

+
1
2

((
−γ + αy,c

)2
α2

c +
(
(ρ− γ) φv + αy,x + φy,h−1

)2
α2

x + α2
y,dα2

d

)
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• Constant:

µ̃y,h − µ̃y,h−1 = −µc − (1− ρ)
1
2

(
α2

c + φ2
vα2

x

)( 1− γ̃

1− νσ
− (γ− γ̃)

)
σ2 (1− νσ)

+
1
2

[([
(ρ− γ) + (1− ρ) (γ− γ̃)

1− νσ

1− γ̃

]
ψ̃v + αy,σ + ψ̃y,h−1

)2

− (1− γ)2 ψ̃2
v

]
α2

σ

+ µy + σ2 (1− νσ) ψ̃y,h−1

Note only both the constant terms
{

µ̃y,h
}
and the loadings on the volatility shocks

{
ψ̃y,h

}
are affected by the wedge between γ and γ̃.

�

In line with the specification of van Binsbergen and Koijen (2016), we consider one-
period holding returns for these claims of the form

1 + RY
t+1,h =

Gy,t+1Yt+1,h−1

Yt,h
=

Gy,t+1Yt+1,h−1

Et
[
Πt,t+1Gy,t+1Yt+1,h−1

]
= R f ,t

Et[Πt,t+1] Gy,t+1Yt+1,h−1

Et
[
Πt,t+1Gy,t+1Yt+1,h−1

] ,

with the risk-free rate
R f ,t =

1
Et[Πt,t+1]

.

In line with the specification of van Binsbergen and Koijen (2016), we also consider one-
period holding returns for futures on these claims of the form

RF,Y
t+1,h + 1 =

1 + RY
t+1,h

1 + RB
t+1,h

=
Gy,t+1Yt+1,h−1

Yt,h

Bt,h

Bt+1,h−1

=
Gy,t+1Yt+1,h−1

Et
(
Πt,t+1Gy,t+1Yt+1,h−1

) Et (Πt,t+1Bt+1,h−1)

Bt+1,h−1
,

where Bt,h is the price of $1 at horizon h, i.e. the price of a Bond with horizon h.
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Their conditional Sharpe Ratio is

SRF,Y
t,h =

Et

(
1 + RF,Y

t+1,h

)
− 1√

vart

(
1 + RF,Y

t+1,h

)
=

Et

(
1 + RF,Y

t+1,h

)
− 1√

Et

((
1 + RF,Y

t+1,h

)2
)
−
(

Et

(
1 + RF,Y

t+1,h

))2

≈

σ2
t
(
γαy,cα2

c −
(
αy,x + φy,h−1 − φb,h−1

)
((ρ− γ) φv + φb,h−1) α2

x
)

−
(
αy,σ + ψ̃y,h−1 − ψ̃b,h−1

) ([
(ρ− γ) + (1− ρ) (γ− γ̃) 1−νσ

1−γ̃

]
ψ̃v + ψ̃b,h−1

)
α2

σ√
σ2

t

(
α2

y,cα2
c +

(
αy,x + φy,h−1 − φb,h−1

)2
α2

x + α2
y,dα2

d

)
+
(
αy,σ + ψ̃y,h−1 − ψ̃b,h−1

)2
α2

σ

.

C.1.2 Bonds

Let the price at time t for $1 in h periods be Bt,h with Bt,0 = 1. For h ≥ 1, we have

Bt,h = Et[Πt,t+1Bt+1,h−1]

This is the general problem from above with gy,t+1 = 0 for all t and therefore

bt,h = µ̃b,h + φb,hxt + ψ̃b,hσ2
t ,

with

φb,h = −ρφc
1− νh

x
1− νx

ψ̃b,h = −1
2
((ρ− γ) (1− γ)− (1− ρ) (γ− γ̃) νσ)

(
α2

c + φ2
vα2

x

)
+ ψ̃b,h−1νσ

+
1
2

(
γ2α2

c + ((ρ− γ) φv + φb,h−1)
2 α2

x

)
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C.1.3 Dividend strips

Let the price at time t for the full dividend Dt+h in h periods be Pt,h with Pt,0 = Dt. Then
for h ≥ 1:

Pt,h

Dt
= Et

(
Πt,t+1

Dt+1

Dt

Pt+1,h−1

Dt+1

)
,

which is the general problem from above with

gp,t+1 = dt+1 − dt = µd + φdxt + χαcσtWt+1 + αdσtWt+1,

for all t and therefore
pt,h − dt = µ̃p,h + φd,hxt + ψ̃d,hσ2

t ,

with

φd,h = (−ρφc + φd)
1− νh

x
1− νx

ψ̃d,h = −1
2
((ρ− γ) (1− γ)− (1− ρ) (γ− γ̃) νσ)

(
α2

c + φ2
vα2

x

)
+ ψ̃d,h−1νσ

+
1
2

(
(−γ + χ)2 α2

c + ((ρ− γ) φv + φd,h−1)
2 α2

x + α2
d

)

µ̃y,h − µ̃y,h−1 = −µc − (1− ρ)
1
2

(
α2

c + φ2
vα2

x

)( 1− γ̃

1− νσ
− (γ− γ̃)

)
σ2 (1− νσ)

+
1
2

[([
(ρ− γ) + (1− ρ) (γ− γ̃)

1− νσ

1− γ̃

]
ψ̃v + ψ̃d,h−1

)2

− (1− γ)2 ψ̃2
v

]
α2

σ

+ µd + σ2 (1− νσ) ψ̃d,h−1

For the dividend strips, the spot one-period returns are given by

RP
t+1,h + 1 =

Pt+1,h−1/Dt+1

Pt,h/Dt

Dt+1

Dt
,
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log
(

RP
t+1,h + 1

)
= µc + (1− ρ)

1
2

(
α2

c + φ2
vα2

x

)( 1− γ̃

1− νσ
− (γ− γ̃)

)
σ2 (1− νσ)

− 1
2

[([
(ρ− γ) + (1− ρ) (γ− γ̃)

1− νσ

1− γ̃

]
ψ̃v + ψ̃d,h−1

)2

− (1− γ)2 ψ̃2
v

]
α2

σ

+ ρφcxt + (ψ̃d,h−1νσ − ψ̃d,h) σ2
t

+ ψ̃d,h−1ασWt+1 + φd,h−1αxσtWt+1 + χαcσtWt+1 + αdσtWt+1

the conditional expected one-period returns are

Et

(
RP

t+1,h + 1
)
≈ constant (in h)−

[
(ρ− γ) + (1− ρ) (γ− γ̃)

1− νσ

1− γ̃

]
ψ̃vψ̃d,h−1α2

σ

+ (ψ̃d,h−1νσ − ψ̃d,h) σ2
t +

1
2

(
φ2

d,h−1α2
xσ2

t

)

Et

(
RP

t+1,h + 1
)
≈ constant (in h)−

[
(ρ− γ) + (1− ρ) (γ− γ̃)

1− νσ

1− γ̃

]
ψ̃vψ̃d,h−1α2

σ

− ((ρ− γ) φvφd,h−1) α2
xσ2

t

Et

(
RP

t+1,h

)
− Et

(
RP

t+1,h−1

)
≈
[
(γ− ρ) + (1− ρ) (γ− γ̃)

1− νσ

1− γ̃

]
ψ̃v︸ ︷︷ ︸

≤0

(ψ̃d,h − ψ̃d,h−1) α2
σ

+ (γ− ρ) φv (ρφc − φd)
νh

x − νh−1
x

1− νx
α2

xσ2
t︸ ︷︷ ︸

≥0

Weneed (ψ̃d,h − ψ̃d,h−1) ≥ 0 to generate a downward sloping term structure. If (ψ̃d,h − ψ̃d,h−1) ≤
0, then the returns are upward sloping, but less so in our model.

Note, that the returns are MORE upward sloping when σt is high...
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The future one-period returns are given by:

RF,P
t+1,h + 1 =

1 + RP
t+1,h

1 + RB
t+1,h

log
(

RP
t+1,h + 1

)
= µc + (1− ρ)

1
2

(
α2

c + φ2
vα2

x

)( 1− γ̃

1− νσ
− (γ− γ̃)

)
σ2 (1− νσ)

− 1
2

[([
(ρ− γ) + (1− ρ) (γ− γ̃)

1− νσ

1− γ̃

]
ψ̃v + ψ̃d,h−1

)2

− (1− γ)2 ψ̃2
v

]
α2

σ

+ ρφcxt + (ψ̃d,h−1νσ − ψ̃d,h) σ2
t

+ ψ̃d,h−1ασWt+1 + φd,h−1αxσtWt+1 + χαcσtWt+1 + αdσtWt+1

log
(

RF,P
t+1,h + 1

)
= −

([
(ρ− γ) + (1− ρ) (γ− γ̃)

1− νσ

1− γ̃

]
ψ̃v (ψ̃d,h−1 − ψ̃b,h−1) +

1
2

(
ψ̃2

d,h−1 − ψ̃2
b,h−1

))
α2

σ

+ ((ψ̃d,h−1 − ψ̃b,h−1) νσ − (ψ̃d,h − ψ̃b,h)) σ2
t

+ (ψ̃d,h−1 − ψ̃b,h−1) ασWt+1 + (φd,h−1 − φb,h−1) αxσtWt+1 + χαcσtWt+1 + αdσtWt+1

Et

(
RF,P

t+1,h + 1
)
= −


([

(ρ− γ) + (1− ρ) (γ− γ̃)
1− νσ

1− γ̃

]
ψ̃v + ψ̃b,h−1

)
︸ ︷︷ ︸

≥0 and increasing

(ψ̃d,h−1 − ψ̃b,h−1)

 α2
σ

+

γχα2
c + ((γ− ρ) φv − φb,h−1) (φd,h−1 − φb,h−1)︸ ︷︷ ︸

≥0 and increasing

α2
x

 σ2
t
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Note:

ψ̃d,h − ψ̃b,h = (ψ̃d,h−1 − ψ̃b,h−1) νσ

+

χ

(
1
2

χ− γ

)
︸ ︷︷ ︸

≤0

α2
c +

(
(ρ− γ) φv +

1
2
(φd,h−1 + φb,h−1)

)
︸ ︷︷ ︸

≤0 for γ high enough

(φd,h−1 − φb,h−1)︸ ︷︷ ︸
≥0

α2
x +

1
2

α2
d︸︷︷︸

≥0


the sign depends on the parameters. But if it is positive increasing, γ̃ reduces the down-

ward impact of it on the term structure of expected returns. Only if it is negative and de-
creasing does our model help relative to the standardmodel, but then the slope is upward
sloping....

Note, a higher σt means a MORE upward sloping term structure again. �
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Internet Appendix

IA.1 Alternative derivation of stochastic discount factor

This appendix derives the stochastic discount factor of our dynamic model using an ap-
proach similar to the one used by Luttmer and Mariotti (2003) for dynamic inconsistency
due to non-geometric discounting. In every period t the agent chooses consumption Ct

for the current period and state-contingent levels of wealth {Wt+1,s} for the next period to
maximize current utility Vt subject to a budget constraint and anticipating optimal choice
C∗t+h in all following periods (h ≥ 1):

max
Ct,{Wt+1}

(
(1− β)C1−ρ

t + βEt

[(
V∗t,t+1

)1−γ1
] 1−ρ

1−γ1

) 1
1−ρ

s.t. ΠtCt + Et[Πt+1Wt+1] ≤ ΠtWt

V∗t,t+h =

(
(1− β)

(
C∗t+h

)1−ρ
+ βEt+h

[(
V∗t,t+h+1

)1−γh+1
] 1−ρ

1−γh+1

) 1
1−ρ

for all h ≥ 1.

Denoting by λt the Lagrangemultiplier on the budget constraint for the period-t problem,
the first order conditions are:25

• For Ct: (
(1− β)C1−ρ

t + βEt

[
V1−γ1

t,t+1

] 1−ρ
1−γ1

) 1
1−ρ−1

(1− β)C−ρ
t = λt.

• For each Wt+1,s:

1
1− ρ

(
(1− β)C1−ρ

t + βEt

[
V1−γ1

t,t+1

] 1−ρ
1−γ1

) 1
1−ρ−1

β
d

dWt+1,s
βEt

[
V1−γ1

t,t+1

] 1−ρ
1−γ1

= Pr[t + 1, s]
Πt+1,s

Πt
λt.

25For notational ease we drop the star from all Cs and Vs in the following optimality conditions but it
should be kept in mind that all consumption values are the ones optimally chosen by the corresponding
self.
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Combining the two, we get an initial equation for the SDF:

Πt+1,s

Πt
= β

1
1−ρ

1
Pr[t+1,s]

d
dWt+1,s

Et

[
V1−γ1

t,t+1

] 1−ρ
1−γ1

1
1

(1− β)C−ρ
t

. (23)

The agent in state s at t + 1 maximizes

(
(1− β)C1−ρ

t+1,s + βEt+1,s

[(
V∗t+1,s,t+2

)1−γ1
] 1−ρ

1−γ1

) 1
1−ρ

and has the analogous first order condition for Ct+1,s:

(
(1− β)C1−ρ

t+1,s + βEt+1,s

[
V1−γ1

t+1,s,t+2

] 1−ρ
1−γ1

) 1
1−ρ−1

(1− β)C−ρ
t+1,s = λt+1,s.

The Lagrange multiplier λt+1,s is equal to the marginal utility of an extra unit of wealth in
state t + 1, s:

λt+1,s =
1

1− ρ

(
(1− β)C1−ρ

t+1,s + βEt+1,s

[
V1−γ1

t+1,s,t+2

] 1−ρ
1−γ1

) 1
1−ρ−1

× d
dWt+1,s

(
(1− β)C1−ρ

t+1,s + βEt+1,s

[
V1−γ1

t+1,s,t+2

] 1−ρ
1−γ1

)
.

Eliminating the Lagrange multiplier λt+1,s and combining with the initial Equation (23)
for the SDF, we get:

Πt+1,s

Πt
= β

1
Pr[t+1,s]

d
dWt+1,s

Et

[
V1−γ1

t,t+1

] 1−ρ
1−γ1

d
dWt+1,s

(
(1− β)C1−ρ

t+1,s + βEt+1,s

[
V1−γ1

t+1,s,t+2

] 1−ρ
1−γ1

) (Ct+1,s

Ct

)−ρ

.
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Expanding the V expressions, we can proceed with the differentiation in the numerator:

Πt+1,s

Πt
= Et

((1− β)C1−ρ
t+1 + βEt+1[. . . ]

1−ρ
1−γ2

) 1−γ1
1−ρ


1−ρ

1−γ1
−1

×
(
(1− β)C1−ρ

t+1,s + βEt+1,s[. . . ]
1−ρ

1−γ2

) 1−γ1
1−ρ −1

× β

d
dWt+1,s

(
(1− β)C1−ρ

t+1,s + βEt+1,s[. . . ]
1−ρ

1−γ2

)
d

dWt+1,s

(
(1− β)C1−ρ

t+1,s + βEt+1,s[. . . ]
1−ρ

1−γ1

) (Ct+1,s

Ct

)−ρ

. (24)

ForMarkov consumption C = φW, we can divide by Ct+1,s and solve both differentiations:

• For the numerator:

d
dWt+1,s

(1− β)C1−ρ
t+1,s + βEt+1,s

((1− β)C1−ρ
t+2 + βEt+2[. . . ]

1−ρ
1−γ3

) 1−γ2
1−ρ


1−ρ

1−γ2



=

(1− β) 1 + βEt+1,s

((1− β)

(
Ct+2

Ct+1,s

)1−ρ

+ βEt+2[. . . ]
1−ρ

1−γ3

) 1−γ2
1−ρ


1−ρ

1−γ2


× φ

1−ρ
t+1,sW

−ρ
t+1,s.
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• For the denominator:

d
dWt+1,s

(1− β)C1−ρ
t+1,s + βEt+1,s

((1− β)C1−ρ
t+2 + βEt+2[. . . ]

1−ρ
1−γ2

) 1−γ1
1−ρ


1−ρ

1−γ1



=

(1− β) 1 + βEt+1,s

((1− β)

(
Ct+2

Ct+1,s

)1−ρ

+ βEt+2[. . . ]
1−ρ

1−γ2

) 1−γ1
1−ρ


1−ρ

1−γ1


× φ

1−ρ
t+1,sW

−ρ
t+1,s.

Substituting these into Equation (24) and canceling we get:

Πt+1,s

Πt
=

(1− β)C1−ρ
t+1,s + βEt+1,s

((1− β)C1−ρ
t+2 + βEt+2[. . . ]

1−ρ
1−γ3

) 1−γ2
1−ρ


1−ρ

1−γ2

(1− β)C1−ρ
t+1,s + βEt+1,s

((1− β)C1−ρ
t+2 + βEt+2[. . . ]

1−ρ
1−γ2

) 1−γ1
1−ρ


1−ρ

1−γ1

× β

(
Ct+1,s

Ct

)−ρ


(1− β)C1−ρ

t+1,s + βEt+1,s[. . . ]
1−ρ

1−γ2

Et

((1− β)C1−ρ
t+1,s + βEt+1[. . . ]

1−ρ
1−γ2

) 1−γ1
1−ρ





ρ−γ1

.

Simplifying and cleaning up notation, we arrive at

Πt,t+1 = β

(
Ct+1

Ct

)−ρ

 Vt,t+1

Et

[
V1−γ1

t,t+1

] 1
1−γ1


ρ−γ1 (

Vt,t+1

Vt+1

)1−ρ

,

as stated in the text. �
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IA.2 Additional figures

0 100 200 300 400 500 600
Horizon n, in month

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

An
nu

al
iz

ed
 re

tu
rn

s 
(in

 %
)

Term-structure of Bond Expected (one-month holding returns), ;=1

HDRA with ~. : 1,. = 10

HDRA with ~. = 2,. = 10

HDRA with ~. = 3,. = 10

HDRA with ~. = 5,. = 10

EZ model, ~. = . = 10

Figure IA.1: Term structure of bond returns under horizon-dependent risk aversion (HDRA)
and Epstein-Zin (EZ), with the calibration of Table 1. Returns are conditional, with state vari-
ables set at their means: xt = 0 and σt = σ.

0 100 200 300 400 500 600
Horizon n, in month

4

5

6

7

8

9

10

11

12

An
nu

al
iz

ed
 re

tu
rn

s 
(in

 %
)

Term-structure of Dividend Strips (Expected one-month holding returns), ;=1

HDRA with ~. : 1,. = 10

HDRA with ~. = 2,. = 10

HDRA with ~. = 3,. = 10

HDRA with ~. = 5,. = 10

EZ model, ~. = . = 10

Figure IA.2: Term structure of dividend strip expected returns under horizon-dependent risk
aversion (HDRA) and Epstein-Zin (EZ), with the calibration of Table 1. Returns are conditional,
with state variables set at their means: xt = 0 and σt = σ.
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Figure IA.3: Term structure of dividend strip unconditional Sharpe ratios of excess returns
under horizon-dependent risk aversion (HDRA) and Epstein-Zin (EZ), with the calibration of
Table 1.
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Figure IA.4: Term structure of of bond returns under illiquid buy-and-hold strategies, under
horizon-dependent risk aversion (HDRA) and Epstein-Zin (EZ), with the calibration of Table 1.
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Figure IA.5: Term structure of dividend strip expected excess returns under illiquid buy-and-
hold strategies, under horizon-dependent risk aversion (HDRA) and Epstein-Zin (EZ), with
the calibration of Table 1.

IA.7


	Introduction
	Preferences with horizon-dependent risk aversion
	Dynamic preference model
	Generalized preference model
	Timing of risk and dynamic inconsistency

	Asset prices
	Risk model, risk prices
	Model calibration

	Preference for early or late resolution of uncertainty
	Timing premium
	Timing premium in the calibration of Section 3.2

	Long-term valuations, long-term demand 
	Long-term risk premia
	Long-term risk taking
	Related empirical evidence

	Conclusion
	Derivations under general sequence of risk aversions
	Stochastic discount factor
	Stochastic discount factor — horizon h>1
	Naive investors

	Exact solutions for =1
	Valuation of risk and temporal resolution
	Extension to other information arrival structures
	Stochastic discount factor
	Equity premium
	Term structure of returns
	General claims
	Bonds
	Dividend strips

	Term structure of returns - Illiquid markets
	Demand for risk 

	Approximation for 1
	Term structure of returns
	General claims
	Bonds
	Dividend strips


	Alternative derivation of stochastic discount factor
	Additional figures


