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Abstract 

We document a highly significant, strongly nonlinear dependence of stock and bond returns on 
past equity market volatility as measured by the VIX. We propose a new estimator for the shape 
of the nonlinear forecasting relationship that exploits additional variation in the cross section of 
returns. The nonlinearities are mirror images for stocks and bonds, revealing flight to safety: 
expected returns increase for stocks when volatility increases from moderate to high levels, while 
they decline for Treasury securities. These findings provide support for dynamic asset pricing 
theories where the price of risk is a nonlinear function of market volatility.  
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1 Introduction

Investor flight-to-safety is pervasive in times of elevated risk (Longstaff (2004), Beber et al.
(2009), Baele et al. (2013)). Economic theories of investor flight-to-safety predict highly
nonlinear asset pricing relationships (Vayanos (2004), Weill (2007), Caballero and Krishna-
murthy (2008), Brunnermeier and Pedersen (2009)). Such nonlinear pricing relationships
are difficult to document empirically as the particular shape of the nonlinearity is model
specific, and inference of nonlinear relationships presents econometric challenges.

In this paper, we document an economically and statistically strong nonlinear risk-return
tradeoff by estimating the relationship between stock market volatility as measured by the
VIX and future returns. The nonlinear risk-return tradeoff features evidence of flight-to-
safety from stocks to bonds in times of elevated stock market volatility consistent with the
above cited theories. The VIX strongly forecasts stock and bond returns up to 24 months
into the future when the nonlinearity is accounted for, in sharp contrast to the insignificant
linear relationship.

The nature of the nonlinearity in the risk-return tradeoffs for stocks and bonds are vir-
tually mirror images, as can be seen in Figure 1 on the next page, estimated from a large
cross-section of stocks and bonds. Both stock and bond returns have been normalized by
their unconditional standard deviation in order to allow plotting them on the same scale.
There are three notable regions that characterize the nature of the nonlinear risk-return
tradeoff, defined by the VIX median of 18 and the VIX 99.3rd-percentile of 50. When the
VIX is below its median of 18, both stocks and bonds exhibit a risk return tradeoff that is
relatively insensitive to changes in the VIX. In the intermediate 18-50 percent range of the
VIX, the nonlinearity is very pronounced: as the VIX increases above its unconditional me-
dian, expected Treasury returns tend to fall, while expected stock returns rise. This finding
is consistent with a flight-to-safety from stocks to bonds, raising expected returns to stocks
and compressing expected returns to bonds. For levels of the VIX above 50, which has only
occurred in the aftermath of the Lehman failure, this logic reverses, and a further increase
in the VIX is associated with lower stock and higher bond returns. The latter finding for
very high values of the VIX likely reflects the fact that severe financial crises are followed
by abysmal stock returns and aggressive interest rate cuts, due to a collapse in real activity,
thus reflecting changes in cash flow expectations (see Campbell et al. (2013)).
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Figure 1: This figure shows the relationship between the six month cumulative equity market return
(CRSP value-weighted US equity market portfolio) and the six month lag of the VIX in red, as well as
the relationship between the six month cumulative 1-year Treasury return (CRSP 1-year constant maturity
Treasury portfolio) and the six month lag of the VIX in blue. Both nonlinear relationships are estimated
using reduced rank sieve regressions on a large cross-section of stocks and bonds. The y-axis is expressed as
a ratio of returns to the full sample standard deviation. The x-axis shows the VIX.

What is most notable is that a linear regression using the VIX does not forecast stock
or bond returns significantly at any horizon. Nonlinear regressions, on the other hand, do
forecast stock and bond returns with very high statistical significance and reveal the striking
mirror image property of Figure 1. We study the nature of the nonlinearity and mirror
image property in a variety of ways, using kernel regressions, polynomial regressions, as well
as nonparametric sieve regressions. In all cases and on subsamples, we find pronounced
nonlinearity within risky assets and reversed nonlinearities for safe assets, in terms of both
statistical and economic magnitudes.

In order to estimate the shape of the nonlinearity in a robust way, we propose a novel
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way to nonparametrically estimate the shape using a reduced-rank sieve regression on a large
cross-section of stock and bond returns. We specify a nonlinear forecasting function φh(v)

according to the following set of equations

Rxit+h = aih + bih · φh(vixt) + εit+h, i = 1, . . . , n,

where h denotes the forecasting horizon and i refers to the individual stock and bond port-
folios and Rx are excess returns. The nonlinearity of the function φh(v) is highly significant,
and its forecasting power is very strong. Importantly, when we estimate φh(v) separately
for stocks and bonds, we obtain statistically indistinguishable functions (up to an affine
transformation).

A major advantage of estimating φh(v) from a large panel of stock and bond returns is
that it exploits additional cross-sectional variation unavailable in the univariate regressions
that are typical in the return forecasting literature. The algebra for the estimator can be
described intuitively in two stages. In the first stage, returns to each asset are regressed in
the time series on lagged sieve expansions of the VIX. In the second stage, the rank of the
matrix of forecasting coefficients is reduced using an eigenvalue decomposition, and only a
rank one approximation is retained (see Adrian et al. (2015) for a related derivation). This
is a dimensionality reduction that is optimal when errors are conditionally Gaussian and the
number of regressors are fixed. The resulting factor φh(v) is a nonlinear function of volatility
and is the best common predictor for the whole cross section of stock and bond returns.

In addition to the new estimator, we also introduce asymptotically valid inference pro-
cedures for four hypotheses of interest, which may be implemented using standard critical
values. The first is a joint test of significance for whether the whole cross-section of test
assets loads on φh. The second tests the null that φh does not predict excess returns for a
specific asset, while allowing it to predict for other assets. The third test is a comparison of
whether the function φh (·) is different from zero at any fixed value v̄, generating pointwise
confidence intervals for the unknown function. The fourth is a specification test for the rank-
one restriction that the same nonlinear function of volatility φh drives expected stock and
bond returns. To conduct inference when estimating multi-horizon returns with overlapping
data we extend the “reverse regression” approach of Hodrick (1992) to our reduced-rank,
nonparametric setting.
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Our finding that the VIX forecasts stock and bond returns in a nonlinear fashion is robust
to the inclusion of standard predictor variables such as the dividend yield, the BAA/10-year
Treasury default spread, the 10-year/3-month Treasury term spread, and the variance risk
premium. Furthermore, we show that the nonlinear relationship is highly significant for the
1990-2007 sample which excludes the 2008-09 financial crisis. Importantly, the shape of the
nonlinearity in the 1990-2007 and the 1990-2014 sample resemble each other closely, even
though the tail events in those samples are distinct. We also verify that Treasury returns
are forecasted only by a nonlinear function of the VIX, not the Treasury implied volatility as
measured by the MOVE. The latter result suggests that pricing of risk is proxied by the VIX
as a common forecasting variable for stocks and bonds. These findings thus point towards
joint dynamic asset pricing of stocks and bonds, as explored in linear settings by Mamaysky
(2002), Bekaert et al. (2010), Lettau and Wachter (2011), Ang and Ulrich (2012), Koijen
et al. (2013), and Adrian et al. (2015).

Our main result that expected returns to stocks, Treasury bonds, and credit returns
are forecast by a common nonlinear function φh(v) suggests that this function is a price of
risk variable in a dynamic asset pricing model. The sieve reduced rank regression estimator
restricts expected returns of each asset i to be an affine transformation of φh(v) with intercept
aih and slope bih. Asset pricing theories predict these coefficients to be determined by risk
factor loadings. We take this prediction to the data, estimating the beta representation of a
dynamic asset pricing kernel that features the market return, the one year Treasury return,
and innovations to φh(v) as cross-sectional pricing factors, and φh(v) as price of risk variable.
We show that this asset pricing model performs well in pricing the cross-section of stock,
bond, and credit portfolios, and that there is a tight cross-sectional relationship between the
forecasting slopes bih and the risk factor loadings.

The dynamic asset pricing results indicate that the pricing of risk over time is related to
the level of volatility in a nonlinear fashion. A number of alternative theories are compatible
with such a finding, including 1) flight-to-safety theories due to redemption constraints on
asset managers, 2) macro-finance models with financial intermediaries, and 3) representative
agent models with a) habit formation and b) long-run risks.

Among asset management pricing theories, our findings are particularly in line with the
theory of Vayanos (2004), where asset managers are subject to funding constraints that (en-
dogenously) depend on the level of market volatility. When volatility increases, the likelihood
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of redemptions rises, leading to a decline in the risk appetite of the asset managers. Increases
in volatility generate flight-to-safety as managers attempt to mitigate the impact of higher
volatility on redemption risk by allocating more to relatively safe assets. In equilibrium,
the dependence of risk appetite on volatility generates expected returns with features that
are qualitatively similar to our estimated function φh(v). Furthermore, the Vayanos (2004)
theory gives rise to a dynamic asset pricing kernel that would predict that the forecasting
slope bih is cross-sectionally related to risk factor loadings, as explained earlier.

We present direct evidence in favor of the flight-to-safety mechanism related to asset
managers by estimating the shape of global mutual fund flows’ dependence on the VIX. The
shape of the function resembles the shape of the return forecasting function φh(v) closely
for the range of the VIX from 18 to 50. Furthermore, the signs of the loadings on the flow
function exhibits evidence of flight-to-safety.

Our findings are also closely linked to intermediary asset pricing theories. In Adrian
and Boyarchenko (2012), intermediaries are subject to value at risk (VaR) constraints that
directly link intermediaries’ risk taking ability to the level of volatility. Prices of risk are
a nonlinear function of intermediary leverage, which has a one-to-one relationship to the
level of volatility. A similar nonlinear risk-return tradeoff is also present in the theories of
He and Krishnamurthy (2013) and Brunnermeier and Sannikov (2014). We also discuss the
extent to which our findings are compatible with the habit formation model of Campbell
and Cochrane (1999) and the long-run risk model of Bansal and Yaron (2004).

The remainder of the paper is organized as follows. Section 2 presents evidence of the
nonlinearity in the risk-return tradeoff using polynomial, spline, and kernel regressions for
stocks and bonds. Section 3 develops our novel sieve reduced rank regression estimator
and tests of the stability of the nonlinear shape across asset classes and over time. Section
4 provides an economic analysis of the flight-to-safety feature in the nonlinear risk-return
tradeoff, establishing a link to dynamic asset pricing models and relating our findings to
theories of flight-to-safety. Furthermore, we discuss the theoretical literature in light of our
findings in detail. Section 5 concludes. Additional results are available in a Supplementary
Appendix (hereafter, Appendix).
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2 Motivating Evidence on the Nonlinear Risk-Return Trade-

off

This section presents initial evidence from univariate predictive regressions of stock and bond
returns on VIX polynomials, motivating the presence of nonlinearities in expected returns
(subsection 2.1). We find evidence of a mirror image property: the shape of the nonlinearity
of bonds mirrors inversely the shape of the nonlinearity of stocks. We document that this
mirror image property not only holds for polynomial regressions, but also for nonparametric
estimators such as kernel regressions or sieve regressions (subsection 2.2). This motivates us
to develop a panel estimation method for the shape of the nonlinearity that allows each asset
return to be an affine function of a common nonlinear function of market volatility. The
theory and our main empirical evidence using this new estimator are presented in Section 3.

2.1 Suggestive Univariate Evidence from VIX Polynomials

To demonstrate the gains that can be obtained by allowing for nonlinearities, we estimate
the linear regression

Rxit+h = aih + bih (vixt) + εit+h, (2.1)

the polynomial regression

Rxit+h = aih + bih(vixt) + cih (vixt)
2 + dih (vixt)

3 + εit+h, (2.2)

Rxit+h = aih + bih(movet) + cih (movet)
2 + dih (movet)

3 + εit+h, (2.3)

and the augmented polynomial regressions

Rxit+h = aih + bih(vixt) + cih (vixt)
2 + dih (vixt)

3

+ bmi
h(movet) + cmi

h (movet)
2 + dmi

h (movet)
3 + f i

′
zt + εit+h (2.4)

separately for i representing equity market or Treasury excess returns. Here, zt is a vector of
predictors, and Rxit+h = (12/h)[(rit+1 − r

f
t ) + · · ·+ (rit+h − r

f
t+h−1)] denotes the continuously

compounded h-month holding period return of asset i in excess of the one-month riskfree
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rate rft (at an annual rate). For comparison, we include both equity market option-implied
volatility (VIX) as well as its Treasury counterpart (MOVE).

Table 1 reports t-statistics for the coefficients of regressions (2.1) through (2.4), as well
as p-values for the joint hypothesis test under the null of no predictability (H0: Rxit+h =

aih + εit+h). While the top panel of Table 1 shows results where Rxit+h represents excess
returns on 1-year maturity US Treasuries for forecasting horizons h = 6, 12, and 18 months,
the bottom panel reports analogous results for excess returns on the CRSP value-weighted
US equity market portfolio. Since our sample represents monthly observations from 1990:1
to 2014:9, we follow Ang and Bekaert (2007) and compute standard errors using the Hodrick
(1992) correction for multihorizon overlapping observations.1

The most striking features of Table 1 are the predictive gains obtained by simply aug-
menting the VIX with squares and cubes of itself. For 1-year Treasuries, the t-statistic on
the VIX coefficient jumps from 1.91 in the linear regression to 4.13 when squares and cubes
of VIX are included at the h = 6 month forecasting horizon, from 1.86 to 3.60 at the h = 12

month horizon, and from 1.13 to 3.21 at the h = 18 month horizon. Moreover, the coefficients
on the squares and cubes of the VIX are themselves highly statistically significant – an effect
that persists even with the inclusion of standard forecasting variables like the BAA/10-year
Treasury default spread (DEF), the variance risk premium (VRP) following Bollerslev et al.
(2009), the 10-year/3-month Treasury Term Spread (TERM), and the (log) dividend yield
(DY). The p-values also suggest strong evidence for the joint predictive content of the VIX
polynomial.

Similar gains are obtained for equity market excess returns. While we can confirm the
findings of Bekaert and Hoerova (2014) and Bollerslev et al. (2013) that the VIX itself does
not (linearly) forecast excess stock market returns, we document marked improvements in
predictability when polynomials of the VIX are included: p-values for the joint test of no
predictability drop from 0.316 for the linear regression case to 0.007 for the VIX polynomial
case at the h = 6 month horizon, from 0.460 to 0.032 at the h = 12 month horizon, and from
0.439 to 0.088 at the h = 18 month horizon. More formally, a direct test of linearity (the
joint null hypothesis that the coefficients on the VIX squared and cube terms are zero) is

1Ang and Bekaert (2007) strongly argue in favor of Hodrick (1992) standard errors in return predictability
regressions with overlapping observations, as these exhibit substantially better size control than Newey and
West (1987) standard errors in the same setting. This argument is confirmed in the simulation evidence of
Wei and Wright (2013) as well as the simulations we present in the Appendix.
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strongly rejected in favor of higher order polynomial terms.2 For the short forecast horizon
h = 6, we note further that evidence for the VIX polynomial’s predictability remains even
after the inclusion of other forecasting variables, while for longer horizons, the predictive
content of VIX polynomials appears to subside.

The MOVE is an analogous portfolio of yield curve weighted options written on Treasury
futures. To the extent that some form of segmentation between Treasury and equity markets
could give rise to separate pricing kernels for bonds and stocks, one may surmise that excess
returns in either market reflect compensation for exposure to different types of volatility or
uncertainty risk. Somewhat surprisingly, however, Table 1 shows that this is not the case.
Whereas the VIX polynomials exhibit t-statistics at times above five, t-statistics on MOVE
polynomials coefficients are struggling to exceed one. The p-values show that regressions on
the MOVE cannot be statistically distinguished from regressions on a constant.

A final noteworthy feature of Table 1 are the signs on the constant and coefficients of
the VIX polynomials for Treasuries compared to equities. While the coefficients on the VIX,
VIX2, and VIX3 alternate as (b̂ih > 0), (ĉih < 0), and (d̂ih > 0) for i = Treasuries, they
are exactly the opposite for equities across all forecasting horizons. The same is true for
the intercepts: while the intercepts in the Treasury regressions are all negative when VIX
polynomials are included, the intercepts for the equity regressions are all positive. In contrast,
the linear VIX specification appears to make no signed distinction between Treasury and
equity market excess returns and is instead reporting a statistically insignificant relationship
between the VIX and future excess returns across all horizons.

The findings are also robust to a range of forecast horizons: Figure 2 plots p-values by h
ranging from 1 to 24 months for both the linear regression (2.1) (blue line) and polynomial
regression (2.2) (red line). Several noteworthy features emerge from the figure. First, the
predictive gains that result from allowing for VIX nonlinearities, as measured by the distance
between the blue and red lines, are substantial for all horizons h, Treasury maturities, and
equity returns. In particular, the polynomial specification dominates the linear one across
all Treasury and equity excess returns for horizons h = 3, . . . , 24. Second, the null of lack
of predictability for the polynomial specification is strongly rejected at the 5% level (the

2Strictly speaking, the Hodrick (1992) standard errors are asymptotically valid under the null of no
predictability. However, it is straightforward to show that they extend to hypotheses of weak (local-to-zero)
predictability. See the Appendix for further discussion.
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red line falls below the dashed line) for short-maturity Treasuries and for a wide range of
forecast horizons h. Third, as Treasury maturities lengthen, VIX polynomial predictability
begins to wane as the red line gradually shifts upward and becomes insignificant for 10-year
Treasuries. Fourth, for equity market returns, the null of no predictability is rejected at the
5% level for forecast horizons h = 3, . . . , 15 months.

As a robustness check, we examine to what extent the VIX’s predictive results are driven
by the 2008 financial crisis. Figure 3 repeats the exercise of Figure 2 with a sample spanning
only 1990:1 to 2007:7. On this pre-crisis sample, 1-year Treasuries are still strongly predicted
by VIX polynomials across horizons h = 3, . . . , 24 while outperforming the linear specifica-
tion in all panels. As Treasury maturities increase, VIX polynomial predictability appears
stronger than even in the full sample. 10-year Treasuries, in particular, are showing signs
of predictability at longer horizons, which contrasts with the result on the sample ending in
2014. On the other hand, equity market return predictability diminishes slightly and rejects
the null of no predictability only at longer horizons. In relative terms, however, we again
note that the gains from allowing the VIX to nonlinearly predict returns are substantial
compared to the linear specification across both Treasuries and equities.

We will present more details on the economic interpretation of the shape of the nonlinear
forecasting relationships in Section 4. However, we can characterize the broad findings in
the following way. When the VIX is below its median of 18, both stocks and bonds are
relatively insensitive to changes in the VIX. In the intermediate 18-50 percent range of the
VIX, the nonlinearity is very pronounced: as the VIX increases above its unconditional
median, expected Treasury returns tend to fall, while expected stock returns rise. This
finding is consistent with a flight-to-safety from stocks to bonds, raising expected returns to
stocks and compressing expected returns to bonds. For levels of the VIX above 50 which has
only occurred during the 2008 crisis, this logic reverses, and a further increase in the VIX is
associated with lower stock and higher bond returns. The latter finding for very high values
of the VIX likely reflects the fact that severe financial crises are followed by abysmal stock
returns and aggressive interest rate cuts, due to a collapse in real activity, thus reflecting
changes in cash flow expectations (see Campbell et al. (2013)). We discuss the economic
interpretation in more detail in Section 4.

Our findings are consistent with economic theories that suggest a risk-return tradeoff in
the pricing of risky assets (e.g. Sharpe (1964), Merton (1973), Ross (1976)). An unexpected
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increase in riskiness should be associated with a contemporaneous drop in the asset price and
an increase in expected returns. While the first half of this logic is readily verified—asset
returns and volatility changes tend to be strongly negatively correlated contemporaneously—
the latter prediction has been much harder to prove. Our results so far indicate that there is a
strongly significant positive risk return tradeoff in the data, once one allows for nonlinearity.
Previous studies that have documented a positive risk return tradeoff in the time series have
typically relied on the use of mixed frequency data (see Ghysels et al. (2005)), cross-sectional
approaches (see Guo and Whitelaw (2006), Bali and Engle (2010)), or very long historical
data (see Lundblad (2007)). A simple regression of asset returns on lagged measures of
risk such as the VIX or realized volatility typically do not yield any statistically significant
relationship for the risk-return tradeoff (e.g. Bekaert and Hoerova (2014) and Bollerslev
et al. (2013)). In contrast, we show that there is a strong nonlinear relationship between
stock and bond returns and lagged equity market volatility.3

2.2 Motivation of Sieve Reduced Rank Regressions

The preceding results showed that polynomials – rather than linear functions – of the VIX
have important predictive power for future excess stock and bond returns. But instead of
accepting a cubic VIX polynomial as the true data generating process for excess returns,
we conjecture that the polynomials provide an approximation to some general nonlinear
relationship between equity implied volatility and future excess stock and bond returns. To
test this conjecture, we nonparametrically estimate the relationship between the VIX and
future excess stock and bond returns via the method of sieves, which facilitates intuitive
comparisons to polynomial regressions. To motivate our nonparametric sieve estimation
framework, fix asset i and forecast horizon h and consider

Rxit+h = φih (vt) + εit+h, (2.5)

where vt = vixt. Equation (2.5) effectively replaces the polynomial (aih + bihvt + cihv
2
t + dihv

3
t )

from before with an unknown function φih (vt).
3Ghysels et al. (2014) presents a similar result using a regime switching approach. One regime features

high volatility with a negative risk-return relation, whereas the risk-return relation is positive in the second
regime.

10



To estimate the function φih (·) nonparametrically, we assume that φih ∈ Φ, where Φ is
a general function space of sufficiently smooth functions. In practice, estimation over the
entire function space Φ is challenging because it is infinite dimensional. In settings like these,
the method of sieves (e.g., Chen (2007)) proceeds instead by estimation on a sequence of
m-dimensional approximating spaces {Φm}∞m=1. We say that {Φm}∞m=1 is a valid sieve for Φ

if it is nested (i.e. Φm ⊂ Φm+1 ⊂ · · · ⊂ Φ) and eventually becomes dense in Φ (i.e. ∪∞m=1Φm

is dense in Φ). Letting m = mT → ∞ slowly as the sample size T → ∞, the idea then is
that the spaces ΦmT grow and increasingly resemble Φ, so that the least squares solution

φ̂imT ,h ≡ arg min
φ∈ΦmT

1

T

∑T

t=1
(Rxit+h − φ (vt))

2 (2.6)

converges to the true unknown function φih ∈ Φ in (2.5) in some suitable sense.
For our choice of Φm we use the space spanned by linear combinations of m B-splines of

the VIX. Thus, any element φm ∈ Φm may be written as φm (v) =
∑m

j=1 γj · Bj (v) where
γj ∈ R for j = 1, . . .m, v is a value in the support of the VIX, and Bj is the jth B-spline
(see the Appendix for further details). B-splines have a number of appealing features such
as well-established approximation properties and substantial analytical tractability. This
is because for fixed m, the solution to the least squares problem (2.6) is simply the OLS
estimator on B-spline coefficients γh =

(
γh1 , . . . , γ

h
m

)′:
γ̂h = (XmX

′
m)
−1
XmRxi, (2.7)

where Rxi =
(
Rxi1+h, . . . , Rx

i
T+h

)′ and Xm is the (m× T ) matrix of predictors with jth row
equal to [Bj (VIX1) , . . . , Bj (VIXT )]. Therefore, for fixed m, the solution to (2.6) becomes

φ̂im,h (v) =
∑m

j=1
γ̂hj ·Bj (v) . (2.8)

Equation (2.8) makes clear that the simple polynomial specification introduced in the pre-
vious subsection may be thought of as an alternative nonparametric estimate of φih (·) using
polynomial basis functions, vj, instead of B-splines Bj (v). However, this approach was in-
formal in the sense that the choice of the maximum degree of polynomial was not made with
relation to the sample size. Instead, we think of the number of basis functions m = mT as
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growing to infinity at some appropriate rate that depends on the sample size T .4

The top half of Figure 4 shows various estimates for φih (v), where h = 6 and i refers
to either 1-year Treasury excess returns (blue line) or equity market excess returns (red
line) over the full sample period from 1990:1 to 2014:9. In the left graph, we show the
cross-validated sieve B-spline estimates φ̂imT ,h(v) (equation (2.8)), whereas the middle graph
shows the functional form implied by the simple polynomial specification of the previous
section. The estimated functional forms in both the left and middle graphs are very similar,
implying that the cubic polynomial choice in the previous section provided a reasonable first
pass at investigating the nonlinear relationship. As a further robustness check, the right
panel shows the estimated function based on a nonparametric kernel regression, which gives
a qualitatively similar impression of φih (v) for stocks and bonds.

Figure 4 also demonstrates another noteworthy empirical regularity. If we compare φ̂ih(v)

using either equity returns or bond returns as test assets it appears that they are related by a
simple scale and reflection transformation. This could already be deduced from the alternat-
ing coefficient signs from the polynomial regressions, and is now additionally confirmed with
two alternative nonparametric estimators. Moreover, the bottom panel of Figure 4 shows
that the mirror image relationship between φTreasuries

h (v) and φStocks
h (v) existed prior to the

2008 financial crisis and is therefore not an artifact of a few extreme observations. Instead,
the crisis is merely helpful in identifying φih(v) for large v.

We interpret this finding as strongly suggestive that equity market and Treasury excess
returns load on a common φh(v) function, up to location, scale, and reflection transforma-
tions. In this case, we show next that φh (·) could then be estimated jointly across assets
rather than estimating univariate regressions equation by equation, as was done above. This
has the benefit of allowing Treasury returns across multiple maturities as well as the equity
market excess returns to jointly inform the estimate of the common φh (·), thereby exploiting
information in the cross-section of asset returns.

4In particular, it can be shown that m behaves very much like a bandwidth parameter in that it is chosen
to optimally trade off notions of bias and variance: heuristically, if m is too small, Φm is too small relative
to Φ, which causes bias, and if m is too big, it results in overfitting. In the remainder of the paper, we
follow the existing literature in sieve estimation and choose mT by cross-validation (see, e.g., Li and Racine
(2007)). We use for our results a mean-square forecast error (MSFE) cross validation procedure. Full details
are provided in the Appendix.
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3 Main Results

We start this section by introducing our main panel estimation method, which exploits the
common nonlinearity revealed in expected stock and bond returns (subsection 3.1). We
label this panel estimation method sieve reduced rank regressions. This method exploits
cross-sectional variation in excess returns to estimate the shape of the nonlinearity. We
use the sieve reduced rank regressions to document that the nature of the nonlinearity is
reversed when the excess return to be predicted is the equity market versus Treasuries,
pointing towards flight-to-safety from stocks to bonds as equity market volatility rises above
its unconditional median (subsection 3.2). We also document the robustness of the predictive
relationships across forecasting horizons and Treasury maturities. Strikingly, we show that
the shape of the nonlinearity is statistically indistinguishable whether it is extracted from
only bonds or only stocks. We also present results for broader cross sections, including
industry sorted portfolios, maturity sorted Treasury returns, and credit returns (subsection
3.3). We then provide robustness checks in the form of out-of-sample forecasting performance
(subsection 3.4).

3.1 Derivation of Sieve Reduced Rank Regressions

In this subsection, we formalize the intuition of a common volatility function φh(v) by in-
troducing a reduced-rank, sieve-based procedure which produces a nonparametric estimate
of φh(v) under only weak assumptions. The novelty of our approach is that we use cross-
sectional information across assets to better inform our estimate of this function. We label
our approach “sieve reduced-rank regression” (SRR regression) as it combines the cross-
sectional restrictions implied by a reduced-rank assumption with the flexibility of a non-
parametric sieve estimator. We will see that the estimator is conveniently available in closed
form and hypothesis tests rely on standard critical values.

Suppose we observe excess returns on i = 1, . . . , n assets that follow

Rxit+h = aih + bih · φh (vt) + εit+h. (3.1)

Here, aih and bih are asset-specific shift and scale parameters, φh (·) is the same for all assets,
and vt = vixt. This specification can be compared with equation (2.5), which held that
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Rxit+h = φih (vt) + εit+h. Thus in the univariate regressions from the previous section, φih (vt)

was estimated separately for each asset i, with no cross-asset restrictions imposed. In con-
trast, the specification (3.1) implies that the same function φh (vt) forecasts returns across
assets, which amounts to the restriction φih (vt) = aih + bih · φh (vt). We will provide a formal
test of this restriction later in this section.

If we take the same approach as in the univariate specification we can rewrite this equation
as

Rxit+h = aih + bih (γ′hXm,t) + f ihzt + ε̃it+h (3.2)

where
ε̃it+h = εit+h + bih · (φh (vt)− γ′hXm,t) . (3.3)

ε̃it+h in equation (3.3) is composed of two terms. The first term is the error term from the
original regression equation. The second term represents the approximation error of the true
nonlinear function and the best approximation from the space Φm. As m grows with the
sample size this approximation error vanishes in the appropriate sense. Finally, the zt terms
allow us to consider additional predictors.

If we stack equation (3.2) across n assets we obtain

Rxt+h = ah + AhXm,t + FhZt + ε̃t+h, Ah = bhγ
′
h (3.4)

where ah = (a1
h, . . . , a

n
h)
′, bh = (b1

h, . . . , b
n
h)
′, Rxt+h =

(
Rxit+h, . . . , Rx

n
t+h

)′ and ε̃t+h =(
ε̃1
t+h, . . . , ε̃

n
t+h

)′. For any fixed m, equation (3.4) is a reduced-rank regression where Ah

is assumed to be of rank one.5 The parameters (a′h,b
′
h, γ

′
h,F

′
h)
′ may be estimated in closed

form. However, in order to separately identify ah and bh additional restrictions must be im-
posed. In our empirical analysis we impose the normalization φh(0) = 0 and b1

h = bMKT
h = 1.

The first restriction allows us to identify the constant term for each asset, while the second
implies that the market return is our reference asset.

To describe the estimation procedure, let âh,ols (n× 1), Âh,ols (n×m) and F̂h,ols (n× p)
be the stacked OLS estimates and W a symmetric, positive-definite weight matrix. In our

5See Reinsel and Velu (1998) for a general introduction. Examples of parametric reduced-rank regressions
are systems-based cointegration analysis (see e.g. Johansen (1995)), beta representations of dynamic asset
pricing models (see e.g. Adrian et al. (2013, 2015)), and bond return forecasting (see e.g. Cochrane and
Piazzesi (2008)).
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empirical application, we setW to a diagonal matrix that scales excess returns by the inverse
of their standard deviation to avoid overweighting high-variance assets in the estimation.
Then,

b̂h =
b̃h

b̃1
h

, γ̂h = γ̃h · b̃1
h,

[
âh 99

9 F̂h

]
=
[
âh,ols 99

9 F̂h,ols

]
+
(
Âh,ols − b̃hγ̃

′
h

)
XmZ

′ (ZZ ′)
−1 ,

where Z = (Z1, Z2, . . . , ZT ), b̃h = W 1/2L, γ̃h = Â′h,olsW
−1b̂h and L is the eigenvector as-

sociated with the maximum eigenvalue of the matrix W−1/2Âh,ols (XmMZX
′
m) Â′h,olsW

−1/2

where MZ = IT − Z (ZZ ′)−1 Z ′. If it were the case that ε̃t+h ∼iid N (0,W ) and m

was fixed, then
(
â′h, b̂

′
h, γ̂

′
h, vec

(
F̂h

)′)′
would be the maximum likelihood estimates of(

a′h,b
′
h, γ

′
h, vec (Fh)

′)′.
In this paper the first three hypotheses of interest are:

H1,0 : ∀v ∈ V , φh(v) = 0 H1,A : ∃v ∈ V s.t. φh(v) 6= 0

H2,0 : ∀v ∈ V , bjhφh(v) = 0 H2,A : ∃v ∈ V s.t. bjh φh(v) 6= 0

H3,0 : φh (v̄) = 0 H3,A : φh (v̄) 6= 0

(3.5)

The first hypothesis is a joint test of significance for whether the whole cross-section of test
assets jointly loads on φh. For example, using equation (3.1), under H1,0, returns would
be invariant to the level of the VIX (i.e., would be characterized by a horizontal line). If
we were in the parametric case then this hypothesis could be written more simply as a
null hypothesis that Ah = 0. Instead, since we are in a nonparametric setting, we must
formulate the hypothesis in terms of the unknown function φh(·). The second hypothesis
tests the null that φh does not predict excess returns Rxjt+h of asset j, while allowing it to
predict another asset i 6= j. This test replaces t-tests on the loadings bjh because the scale of
bh cannot be determined separately from the scale of φh, which prompted our normalization
b1
h = 1. This means, in particular, that a test of b1

h = 0 cannot be conducted, motivating
our test on the product bjh φh. In finite samples when the number of sieve expansion terms
is fixed at some m, we show below that H1,0 and H2,0 may be tested using the standard
χ2 test.6 This represents an additional convenient aspect of the sieve-based nonparametric
procedure, since it allows us to test hypotheses about predictability in effectively the same

6The use of a χ2 test is a small sample correction. See Crump et al. (2008) and the references therein.
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way as a parametric joint test of significance. Finally, the third hypothesis is a comparison of
whether the function φh (·) is different from zero at a fixed value v̄. By inverting a test of this
hypothesis for different values of v̄ we are able to construct pointwise confidence intervals
for the unknown function.

In the following, we characterize the limiting distributions of the test statistics associated
with each of these three hypotheses.

Theorem 1. Under regularity conditions given in the Appendix

(i) T̂1 →d,H1,0 N (0, 1) , T̂1 =

(
vec
(
Â
)′

V̂−1
1 vec

(
Â
)
−mn

)/√
2mn,

(ii) T̂2 →d,H2,0 N (0, 1) , T̂2 =

((
b̂j
)2

γ̂′V̂+
2 γ̂ − 1

)/√
2,

(iii) T̂3 →d,H3,0 N (0, 1) , T̂3 =
(
φ̂h,m (v̄)− φh (v̄)

)/
V̂3,

as T → ∞, where Â, b̂j and γ̂ are obtained from the reverse regression, V̂1, V̂2, and V̂3

are defined in the Appendix, V + is the Moore-Penrose generalized inverse of V and →d,H0

signifies convergence in distribution under the hypothesis H0.

Theorem 1 provides the appropriate limiting distributions to implement the main asset
pricing tests for the paper. To conduct inference when estimating multi-horizon returns
with overlapping data we extend the “reverse regression” approach of Hodrick (1992) to
our reduced-rank, nonparametric setting (see the Appendix for further details). The test
statistics T̂1 and T̂2 are based on the estimated parameters from the reverse regression. They
represent joint tests of zero coefficients on the basis functions and are akin to a standard
F-test in a linear regression setting. The key difference here is that the number of basis
functions, m, are growing with the sample size and so a balance must be achieved to attain
the distributional approximation. In particular, the number of basis functions must grow
fast enough to achieve the nonparametric approximation to the true, unknown parameters
including φh, but also slow enough so that the approximation of the test statistics to a
standard normal random variable is maintained.7 A similar approach was taken by Crump

7In Section A.2 of the Appendix we provide results from a series of Monte Carlo simulations. These
simulations show that our new inference procedures control empirical size very well in cases with modest
sample sizes and data-generating processes which mimic the properties commonly encountered in financial
time series.
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et al. (2008) for the case of i.i.d. data to test for heterogeneity in treatment effects. Here we
introduce tests for our reduced-rank, nonparametric setting which are also valid under more
general forms of time-series dependence in the data. This framework is more appropriate for
finance and macroeconomic applications.

We are also interested in the following hypothesis which allows us to test the cross-
sectional restrictions across assets which are a key feature of our specification:

H4,0 : ∃ bh, φh (·) s.t. Et [Rxt+h] = bhφh (vt)

H4,A : 6 ∃ bh, φh (·) s.t. Et [Rxt+h] = bhφh (vt) . (3.6)

Under the null hypothesis, H4,0, there exists a single, common function φh which drives the
time variation in conditional expected returns. Under the alternative hypothesis this is not
the case. For example, the alternative hypothesis would include the case where the data
feature asset-specific, possibly nonlinear functions of the VIX.

The following theorem allows us to formally test H4,0.

Theorem 2. Under regularity conditions given in the Appendix

T̂4 →d,H4,0 N (0, 1) , T̂4 =

((
Â− b̂γ̂′

)′
V̂ +

4

(
Â− b̂γ̂′

)
− s
)/√

2s

as T → ∞, where Â, b̂ and γ̂ are obtained from the reverse regression, V̂4 is defined in
the Appendix, V + is the Moore-Penrose generalized inverse of V , s = (m− 1) (n− 1), and
→d,H4,0 signifies convergence in distribution under the hypothesis H4,0.

The test statistic T̂4 compares the unrestricted estimate, Â, to the estimate under the
cross-sectional restrictions which impose a common function across assets, b̂γ̂′.8 Under a
strictly parametric specification for conditional expected returns this can be interpreted as
a Lagrange multiplier (LM) test statistic. Alternatively, it can also be interpreted as a min-
imum distance test statistic as it compares restricted and unrestricted coefficient estimates
(for more details see Remark 1 in Appendix A.5). The proofs of Theorems 1 and 2 uti-
lize technical results for sieve estimators in time-series settings from Chen and Christensen
(2015) along with convergence rates for the multivariate central limit theorem for dependent

8We thank an anonymous referee for suggesting this additional test.
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data from Bulinskii and Shashkin (2004).

3.2 Estimation of Sieve Reduced Rank Regressions

Our main empirical findings using the SRR regressions of equation (3.1) for the market
return and the maturity sorted bond returns are presented in Table 2. As we saw in the
univariate VIX polynomial regressions, substantial improvements are gained when allowing
the cross-section of market returns and maturity sorted bond returns to depend on the VIX
nonlinearly: Whereas the VIX does not linearly forecast excess returns in panel (1), the
nonlinear forecasting relationship for stocks and bonds is highly significant in panel (2).
Moreover, panel (3) shows that the nonlinear forecasting factor is robust to the inclusion
of common predictor variables (the default spread DEF, the variance risk premium VRP,
the term spread TERM, and the log dividend yield DY). Furthermore, the significant pre-
dictability is present in the 1990-2007 period which excludes the financial crisis (Table 3).

Examining Table 2 in more detail, we see that the market return is most strongly pre-
dicted at the six month horizon at the one percent level. Per construction, the coefficient
on the market return is 1. Overall, the strongest predictability appears for shorter-maturity
bonds, as the one year and two year bond return is highly significantly predicted at the
one percent level for the 6, 12, and 18 month horizons. Interestingly, the significance is
unchanged when even the variance risk premium (a volatility measure constructed from
the VIX) is included, suggesting that the nonlinear forecasting factor is unrelated to VRP.
Longer maturity Treasuries such as the twenty year or the thirty year bond return tend to
be somewhat less significant at longer horizons. The sign on all of the Treasury variables is
negative whereas the market return is positive, revealing a mirror image relationship that is
statistically strongest for liquid short-maturity Treasuries. While individual coefficient sig-
nificance was tested by H2,0, joint significance for the function φh(vixt) in the cross-section
of excess returns is tested with H1,0.9 Again the joint test provides strong justification for
nonlinearities φh(vixt) across all forecasting horizons, whereas the linear VIX specification
cannot be statistically distinguished from specifications featuring only the constant aih. As
an additional test of H1,0 the last row in each panel reports p-values based on a block boot-
strapped distribution for the test statistic T̂1 (see Section A.4 in the Appendix for details on

9To improve the finite-sample properties of the test statistic T̂1, in our empirical implementation we
construct the estimated variance matrix under the null hypothesis, H1,0.
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the resampling approach). The bootstrap-based p-values produce very similar conclusions
as inference based on asymptotic results.

For the pre-crisis period 1990-2007 presented in Table 3, the equity market is significant
at least at the 10% level at all horizons. Treasury returns are again very significant, and
result in stronger rejections for shorter maturity Treasuries. In particular, the shorter matu-
rity Treasury returns are significant at the 1% level across all specifications and forecasting
horizons for both the pre-crisis and full samples, which include the specifications with com-
mon predictor variables. Furthermore, test H1,0 confirms that φh(vixt) is a strong predictor
of excess returns jointly across all test assets and horizons. We highlight again the gains ob-
tained by allowing excess returns to nonlinearly depend on the VIX.10 Most importantly, the
mirror image property between stock and bond returns is revealed in the pre-crisis period as
suggested by the coefficient signs, although we are careful to point out that for specification
(3), coefficient signs are difficult to interpret when φh interacts with the control predictors.
In sum, we find that the nonlinear sieve reduced rank regressions reveal the mirror image
property, which is not manifested for the linear VIX regressions.

We interpret the mirror image property as evidence of flight-to-safety, since it reveals that
the required return for holding stocks and bonds is intimately linked to the same function
of aggregate volatility φh(vixt). An alternative interpretation is that the VIX nonlinearly
forecasts stock and bond returns independently and that our SRR regression imposes a link
that is not supported by the data. We show, however, that this is not the case. Specifically,
Table 4 reports the outcome of the test of a common nonlinear function φh(vixt) driving
expected stock and bond returns (see Theorem 2). For all three of our horizons (h = 6, 12,
or 18) and in both the full sample and pre-crisis sample, we fail to reject the null hypothesis
of a single common function at the 10% level. Thus, in our sample we do not find sufficient
evidence in favor of the alternative hypothesis and, in unison with the other results presented
in this section, we find strong supporting evidence for a common nonlinear dependence of

10A related advantage of the nonlinear transformation of the VIX is that it serves to modulate the persis-
tence properties of the VIX and, consequently, better align the time series properties of the predictor with
returns. Marmer (2008) shows that this can lead to improvements when estimating forecasting relationships
as compared to a linear specification. More generally, this is related to the literature on nonlinear transfor-
mations and memory properties of a time series (see, for example, Granger (1995), Park and Phillips (1999,
2001), de Jong and Wang (2005), Pötscher (2004), or Berenguer-Rico and Gonzalo (2014)). Separately, in
Section A.3 of the Appendix we show that our results are robust to using the VIX transformed by the natural
logarithm.
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stock and bond returns on the VIX.
These results fall within the vast literature on asset return forecasting. Seminal papers

include Campbell and Shiller (1988a,b), Lettau and Ludvigson (2001), Cochrane and Piazzesi
(2005), Ang and Bekaert (2007), and are surveyed by Cochrane (2011). The majority of this
literature focuses on forecasting returns using financial ratios or yields. While much of that
literature employs linear forecasting relationships, some do model nonlinearities. Lettau
and Van Nieuwerburgh (2008) present a regime shifting model for stock return forecasting.
Pesaran et al. (2006) present forecasting relationships for US Treasury bonds subject to
stochastic breakpoint processes. Rossi and Timmermann (2010) document a nonlinear risk-
return tradeoff in equities using boosted regression trees. To the best of our knowledge,
no paper has estimated a common nonlinear forecasting relationship across different asset
classes. In a related literature, Martin (2017) shows that expected equity market returns are
bounded below by risk-neutral expected variance and shows that the latter can be measured
by the SVIX, a portfolio of S&P 500 index options that is closely related to the VIX. Our
results support the link between expected equity market returns and option-implied volatility,
but additionally show that Treasury returns have an opposite reaction, revealing flight-to-
safety. The flight-to-safety response is relatively less explored and is not an immediate
consequence of the theory in Martin (2017).

3.3 Evidence Using Broader Cross-Sections of Assets

While our results so far have focused on the aggregate stock return and maturity sorted
Treasury bond portfolios, we now estimate the SRR regression on a broader set of test assets
in order to improve our understanding of the cross-section of returns. We use the 12 industry
sorted stock portfolios from Kenneth French’s website11 and the industry and rating sorted
investment grade credit returns from Barclays. We also continue to include the maturity
sorted Treasury bond portfolios.

Figure 5 displays the results of hypothesis tests H2,0. The height of bar j represents
the point estimate of b̂jh for h = 6. For each j = 1, . . . , n, the color of the bar denotes the
significance of the associated b̂jh coefficient based on the results in Theorem 1. The figure
shows that the majority of stock and Treasury portfolios load significantly on φh(vixt).

11http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Manufacturing, known to be highly procyclical, has a strong positive exposure while the
only equity portfolios that appear invariant to the volatility factor are non-durables, energy,
utilities, and healthcare, which are known to represent inelastic sectors. Most strikingly, the
only assets with negative exposures to the volatility factor φ̂h(v) are Treasury portfolios and
AAA corporate bonds, which is consistent with a flight to safety interpretation. Furthermore,
the results confirm our previously reported findings, which showed the strongest predictive
content for nonlinear VIX functions at shorter maturity Treasuries. For h = 6, however, the
corporate bond loadings are not generally statistically significant.

Next, Figure 6 shows Êt[Rxit+h] = âih + b̂ihφ̂h(v) for each of the i = 1, . . . , 26 portfolios
and horizon h = 6 months. The dashed lines in blue represent assets with a negative b̂ih
exposure to φ̂h(v), while the solid lines in red denote positive b̂ih exposures. To differentiate
our reference asset, the black line denotes the market excess return estimate, whereas the
gray dashed line represents the short-maturity Treasury return. We note again that all
dashed assets (blue and gray) are Treasury returns and the AAA corporate bond return and
are distinguished by their negative loadings on φ̂h(v).

Finally, we examine the plausibility of the affine structure in (3.1) by estimating Rxit+h =

aih + bihφh (vt) + εit+h by SRR regression for i ranging over equities and separately for i
ranging over bonds. That is, we estimate sieve reduced rank regressions, where the left-hand
side variables are the excess return on the equity market and 11 industry portfolios, which
yields an estimate of φ̂Stocks

h (·).12 Next, we repeat the regression, but where i includes only
the seven maturity-sorted Treasury portfolios, yielding an estimate of φ̂Treas

h (·). Under the
common φh(v) assumption implicit in (3.1), φStocks

h (·) and φTreas
h (·) should be equivalent in

the population when identified separately from stocks and bonds, up to a location and scale
parameter. We find the location and scale parameters by regressing φ̂Stocks

h (v) on φ̂Treas
h (v)

for a range of v in the support of the VIX. The result of this exercise is plotted in Figure
7 which shows φ̂Stocks

h (v) along with the location- and scale-shifted φ̂Treas
h (v). The figure

clearly supports our conjecture of a common φh(v) function and underscores the mirror
image property in expected stock and bond returns.

12The 12th industry portfolio is omitted because the market portfolio is included in the regression.
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3.4 Robustness of Estimates

The preceding tables strongly suggest that expected excess returns for the market and Trea-
sury returns are driven by a common nonlinear function of the VIX, i.e. Et[Rx

i
t+h] =

aih+ bihφh(vixt). One potential concern is that these in-sample results are an artifact of over-
fitting arising from the flexibility of our nonparametric approach. If this were the case, we
would expect out-of-sample forecasting performance of our SRR regression to be particularly
poor relative to more parsimonious models. To this end, we study the out-of-sample prop-
erties relative to a model with no predictability in returns (e.g., Welch and Goyal (2008)).13

We begin by splitting our monthly sample of excess returns Rxt = (RxMKT
t , Rxcmt1t ,

. . . , Rxcmt30
t )′ and the VIX for t = 1, . . . , T into an initial in-sample estimation period t =

1, . . . , t∗, and an out-of-sample forecasting period t = (t∗ + 1), . . . , T . We consider three
different in-sample cutoffs corresponding to (t∗/T ) = 0.4, 0.5, and 0.6. We next implement
the SRR regression estimator in exactly the same way as in the full-sample analysis: at each
point t = (t∗ + 1), . . . , T , we choose the model specification via cross-validation using only
information up to and including time t and produce a forecast of the subsequent h-period
holding period return. We then repeat this exercise for each successive out-of-sample forecast
and store the resulting forecast errors.

Table 5 shows two sets of relative performance measures: the log ratio of root mean-square
forecast errors (RMSFEs) from the SRR regression model (in the numerator) and the mean-
only model (in the denominator) along with the log ratio of mean absolute forecast errors
(MAFEs). Positive numbers therefore mean that the SRR regression model produces larger
out-of-sample forecast errors on average, whereas negative numbers mean the SRR model
produces smaller forecast errors. The table shows three panels corresponding to h = 6, 12,

and 18 month forecast horizons. The two performance measures, three sample splits, eight
assets, and three forecast horizons result in 144 forecast error comparisons.

Reassuringly, the SRR model outperforms the mean-only model over 60% of the time
across horizons and sample splits. Perhaps unsurprisingly, given the modest number of
time series observations we have available, the SRR regression generally has its strongest
performance for the (t∗/T ) = 0.6 sample split. For example, if we measure performance

13In Appendix A.1 we report forecast error comparisons relative to a linear model in the VIX, along with
tests of equal predictive accuracy of Clark and West (2007). These results are consistent with the findings
in this section.
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by average absolute forecast errors, the SRR regression model outperforms the mean-only
model at least 60% at the time and as high as 100% of the time across the three horizons.
The key takeaway from Table 5 is that the SRR regression provides reasonable forecasts
in real time which should alleviate concerns about the risk of overfitting from our flexible,
nonparametric model. We can therefore focus on the full-sample results where we have more
power to discriminate between competing hypotheses.

4 Economics of Flight-to-Safety

We now turn to the economic interpretation of the nonlinear risk-return tradeoff. We first
establish the link of the SRR regression model to dynamic asset pricing theories (subsection
4.1). We empirically show that the cross-sectional dispersion of the forecasting slopes bih
from the SRR regression are related to risk factor loadings on the market return, the one
year Treasury return, and the nonlinear volatility function φh(vt). This is evidence in favor
of a dynamic pricing kernel where φh(vt) is a price of risk variable.

We next turn to asset pricing theories that can give rise to time varying effective risk
aversion as a nonlinear function of market volatility. The first types of theories that we discuss
feature flight-to-safety (subsection 4.2) that leads to time varying pricing of risk because asset
managers are subject to withdrawal after poor performance. We also verify empirically that
global mutual fund flows exhibit the nonlinear (contemporaneous) relationship to the VIX
as the expected returns do. We then review intermediary asset pricing theories that link
the pricing of risk to the level of volatility, for example due to the VaR constraint of Adrian
and Boyarchenko (2012) (subsection 4.3). We also discuss the extent to which consumption
based theories might explain the shape of φh(vt), focusing on habit formation and long-
run risks (subsection 4.4). Finally, we show in subsection 4.5 that the VIX also forecasts
macroeconomic activity in a nonlinear fashion when the crisis period is included.

4.1 Dynamic Asset Pricing

Equation (3.1) shows that expected returns are affine functions of φh(vt) with intercept ai and
slope bi. Asset pricing theory suggests that these intercepts and slopes are cross-sectionally
related to risk factor loadings (see Sharpe (1964), Merton (1973), Ross (1976)). In particular,
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an equilibrium pricing kernel with affine prices of risk, as for example presented by Adrian
et al. (2015), would suggest that

Et[Rx
i
t+h] = αih + βih (λ0 + λ1φh(vt) + Λ2xt) . (4.1)

In this expression, βih denotes a (1 × K) vector of risk factor loadings, λ0 is the (K × 1)

vector of constants for the prices of risk, λ1 is the (K × 1) vector defining how prices of risk
vary as a function of φh(vt), and Λ2 is the (K × p) matrix mapping that defines how the
price of risk depends on p additional risk factors xt. The expression also allows for a pricing
error αih, representing deviations from no-arbitrage due to trading frictions. Equation (4.1)
is the beta representation of expected returns when the pricing kernel is of an essentially
affine form (see Duffee (2002)).

Equation (4.1) has time series and cross-sectional predictions, which in turn can be linked
to alternative theories of time varying pricing of risk. We start with an investigation of the
cross-sectional predictions. In comparison to the SRR regression model of equation (3.1),
the asset pricing theories of equation (4.1) put the following constraints on the intercept and
slope:

aih = αih + βihλ0 (4.2)

bih = βihλ1. (4.3)

In order to show that the cross-sectional dispersion of aih and slope bih is compatible with such
asset pricing restrictions, we proceed in two steps. We first estimate the unrestricted panel
forecasting relationship Rxit+h = aih+bihφh(vt)+ε

i
t+h by sieve reduced rank regression, yielding

a cross-section of parametric estimates of aih and bih and a single nonparametric estimate of
φh(vt). Here, i = 1, . . . , n ranges over the CRSP market excess return, maturity-sorted
Treasury excess returns, industry-sorted portfolio excess returns, and ratings and industry
sorted corporate bond excess returns. Next, we estimate prices of risk as well as risk factor
exposures according to the dynamic asset pricing restrictions in (4.1). That is, we estimate
jointly Rxit+h = (αih + βihλ0) + βihλ1φh(vt) + βiut+h + εit+h, where the estimate of φh(vt) is
taken as given from the unrestricted first step regression, and where ut+h ≡ Yt+h − Et[Yt+h]
represents vector autoregression innovations to the risk factors Yt consisting of the market
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return, the one-year Treasury return, and the nonlinear volatility factor φh(vt). Results of
the regressions are given in Table 6, while Figure 8 shows the cross-sectional relationships
between aih and αih + βihλ0 and between bih and βihλ1 for h = 1.14

Table 6 shows that the industry portfolios and credit portfolios are highly significantly
exposed to equity market risk, while few if any of the Treasury returns load significantly
on the market return. The Treasury and corporate bond returns are significantly exposed
to the one year Treasury return and also to innovations to the nonlinear volatility factor,
although to a lesser extent. Importantly, the prices of risk λ1 show that the market return
commands a significant positive risk premium, while the Treasury return and nonlinear
volatility factor each command a negative risk premium, which is consistent with a flight-
to-safety interpretation. Taken together, the product βihλ1, representing loadings on the
forecasting factor φh(vt), has negative signs for all bond returns and positive signs for all
equity returns.

Figure 8 shows the cross-sectional relationship between the forecasting intercept aih and
slope bih and the risk factor exposures. The top left panel shows that the forecasting slope bih
is strongly related to the risk factor loadings βih and prices of risk λ1. Correspondingly, when
deviations from arbitrage αih are permitted, the top right panel supports the view that the
dynamic asset pricing model that restricts slope coefficients bih to be βihλ1 results in correct
predictions about unconditional excess returns in the cross-section. These predictions are also
captured in the unrestricted forecasting regressions (bottom right panel). However, under
no-arbitrage in frictionless markets αih is forced to zero, the pricing performance deteriorates
in the bottom left panel.15 Taken together, the results from Table 6 and Figure 8 strongly
suggest the interpretation of φh(vt) as a price of risk variable in a dynamic asset pricing
model with frictions.

Equation (4.1) also has the time series prediction that φh(vt) might be related to al-
ternative proxies for the time variation in the pricing of risk. There is a large literature
documenting the extent to which asset prices are predictable. An obvious question is to
what extent our estimated return predictor φh(vt) is related to other forecasting variables
that have been shown to be significant. To do so, we plot eight commonly used variables

14We focus on h = 1 to simplify estimation of the dynamic asset pricing model.
15The deterioration in pricing performance is attributable to our choice of industry sorted portfolios as test

assets for the equities, as those are well known to generate pricing errors relative to risk based explanations.
Size or book to market sorted portfolios would improve cross-sectional pricing performance.
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together with φh(vt) in the time series for h = 6 (see Figure 9).16 In particular, we show the
slope of the Treasury yield curve as measured by TERM, the Cochrane and Piazzesi (2005)
CP factor, the BAA-AAA credit spread (DEF), the dividend yield (DY) of the S&P500, the
CAY factor by Lettau and Ludvigson (2001), the variance risk premium (VRP) of Bollerslev
et al. (2009), the illiquidity factor of Kyle and Obizhaeva (2016), and the macroeconomic
uncertainty series of Jurado et al. (2015). It is apparent from Figure 9 that the relationships
of φ6(vt) with all eight variables is very weak. The only variables that bear some resem-
blance are the credit spread DEF, the variance risk premium VRP, and the macroeconomic
uncertainty measure, all of which increase during the financial crisis in tandem with φ6(vt).
However, outside of crisis periods, neither DEF nor the macroeconomic uncertainty vari-
able co-move strongly with φ6(vt). The latter observation is supported in the original paper
by Jurado et al. (2015), who found that their macroeconomic uncertainty variable is not
subsumed by other measures of uncertainty, including measures of stock market volatility.

The relationship between VRP and φ6(vt) merits further discussion. In particular, as a
measure of option-implied volatility, the VIX is a function of both expected future equity
realized variance and the variance risk premium. Hence we expect the VRP to bear some
resemblance to the VIX, and in fact, their correlation in our data is a sizeable 62%. Figure
9, however, compares the VRP with φ6(vt), a nonlinear function of the VIX. In our data, the
VRP and this nonlinear function φ6(vt) have a much lower correlation of 15%. In unreported
results, we estimated the sieve reduced rank regressions on the VRP itself and found evidence
against a nonlinear relationship between VRP and future stock and bond returns. Finally,
we note that our earlier SRR regression forecasting results showed that DEF and VRP do
not impact the significance of φh(vt) markedly.

4.2 Theories and Evidence of Flight-to-Safety

The theoretical literature has proposed a number of distinct mechanisms generating flight-
to-safety. Vayanos (2004) studies equilibrium asset pricing where volatility is stochastic,
and assets are invested by fund managers. Assets’ illiquidity arises as trading is subject to

16We provide a visual representation of the alternative forecasting variables, since four of the eight plotted
series were previously shown to be unrelated to the predictive content of φh(vt) (Tables 1, 2, and 3), and
since CAY is only available quarterly. In separate results (not included for brevity), we also included the
CP factor as a predictive control and found that it did not affect our results.
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fixed transactions costs. Fund managers are subject to withdrawals when fund performance
is poor, generating a preference for liquidity that is a time varying function of volatility.
Vayanos (2004) derives equilibrium expected returns of the following form17

Et
[
Rxit+1

]
= αi (vt) + A (vt)Covt

(
Rxit+1, Rx

M
t+1

)
+ Z (vt)Covt

(
Rxit+1, vt+1

)
. (4.4)

Expected returns are thus functions of their covariance with the market return and with
volatility, where the impact of these covariances on expected returns depends on the en-
dogenously time varying effective risk aversion A (vt) and the endogenously time varying
volatility risk premium Z (vt). Our estimated function φ (vt) corresponds to A (vt) · vt and
our estimated exposures on φ (vt) are related to the covariance of asset returns with the
risk factors, including market risk and interest rate risk. The solution for A (vt) is highly
nonlinear, and must be computed numerically. Pricing errors αit are related to trading costs
across assets times the withdrawal likelihood, and are also a function of vt, but they are
unrelated to risk factor loadings. We note, however, that the downward sloping φ (vt) for
the VIX below its median and above its 99th percentile is not an immediate implication of
the theory. We will discuss possible explanations below.

In Vayanos (2004), A (vt) is convex. Furthermore, our estimated φ (vt) has to be com-
pared to A (vt) · vt, making it more convex. Our estimate of φ (vt) is convex when the VIX is
in the intermediate range. Within Vayanos’ theory, the convexity arises because risk premia
are affected by fund managers’ concern with withdrawals. Withdrawals are costly to the
managers because the managers’ fee is reduced, and holding a riskier portfolio makes with-
drawals more likely by increasing the probability that performance falls below the threshold.
When volatility is low, managers are not concerned with withdrawals and hence the compo-
nent of the risk premium that corresponds to withdrawals is very small and almost insensitive
to volatility. That component starts increasing rapidly, however, when volatility increases,
leading the managers’ effective risk aversion to increase with volatility.

In the model of Vayanos (2004), conditional betas are constant, and stock-bond correla-
tions are constant. This is an equilibrium outcome that is consistent with our assumption
of having constant betas in the dynamic asset pricing model. Comparative statics in the

17We are changing notation from continuous to discrete time to make it consistent with the rest of the
notation in this paper.
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Vayanos model do suggest that changes in the contemporaneous correlation will be related
to the magnitude of expected returns. A more general model could allow for time varying be-
tas, both theoretically and empirically, but such an approach would substantially complicate
estimation and inference, and go beyond the current scope of the paper.

We next investigate direct evidence of flight-to-safety by analyzing global mutual fund
flows from the Investment Company Institute (ICI) (Table 7). The table reports a contem-
poraneous SRR regression of the mutual fund flows on the VIX. The regression is contempo-
raneous, as flows drive expected returns contemporaneously with volatility. The table shows
that US equity, world equity, and hybrid funds have strongly negative loadings on the fund
flow function φFF (vt) while government bond funds exhibit strongly positive loadings. To
interpret the meaning of these opposite signs, the top left panel of Figure 10 plots SRR-
estimated fund flows F̂ lowsit = âi + b̂iφ̂FF (vt) for government bond fund flows and the three
significant equity fund flows, where v ranges over the empirical support of the VIX. The plot
shows that as the VIX rises above 22, government bond funds experience inflows. As the
VIX rises a few points higher, the risky equity funds experience outflows, presenting direct
evidence of flight-to-safety at a slightly higher VIX threshold than we previously identified
from excess returns data. Table 7 also shows that the flight-to-safety pattern in loading signs
is present in the mutual fund flows whether the crisis is included or not. It is interesting to
note that money market funds are not found to be a safe asset in these regressions, consistent
with the fact that investors ran on money market funds.

The bottom panel of Figure 10 corroborates the SRR regression findings in the time
series. The plot shows the relationship between the VIX and aggregated flight-to-safety
flows, defined as the sum of equity fund outflows and contemporaneous government bond
fund inflows.18 Our earlier risk premium-based estimates of φ(vt) indicated the expected
returns to stocks and bonds begin to diverge when the VIX rises above its median of 18.
The plot correspondingly shows that in states of the world where the VIX exceeds its median
threshold, flight-to-safety flows strongly co-move with the VIX, with a correlation of 68%.

The top right panel of Figure 10 compares (an affine transformation of) the shape of
the nonlinearity from the fund flows, φFF (vt), to the φ(vt) function estimated from excess
returns. While the mutual fund flows line up with the φ(vt) function in the intermediate
range of the VIX between 18 and 50, the φ(vt) function is downward sloping outside of

18Note that Figure 10 plots the VIX in excess of its median.
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that range. For the lower end of the range, the theory by Buffa et al. (2014) might offer an
explanation. The upper part of the range, when stock returns depend negatively on volatility
when the VIX is above 50 is not consistent with Vayanos (2004). In our interpretation, that
negative dependence of future returns on the VIX is due to changes in cash flow news during
the depth of the financial crisis, as argued by Campbell et al. (2013).19

Buffa et al. (2014) augment the Vayanos (2004) model with competition among fund
managers. Because of agency frictions, investors make managers’ fees more sensitive to
performance and benchmark performance against a market index. This makes managers
unwilling to deviate from the index and exacerbates price distortions. Because trading
against overvaluation exposes managers to greater risk of deviating from the index than
trading against undervaluation, agency frictions bias the aggregate market upwards. They
can also generate a negative relationship between risk and return because they raise the
volatility of overvalued assets.

Caballero and Krishnamurthy (2008) study a very different but complementary mech-
anism for flight-to-safety, based on Knightian uncertainty. In their model, agents faced
with Knightian uncertainty consider the worst case among the scenarios over which they
are uncertain. When the aggregate quantity of liquidity is limited, Knightian agents grow
concerned with liquidity shortages and they therefore sell risky financial claims in favor of
safe and uncontingent claims, i.e. there is flight-to-safety. Even though the flight-to-safety
seems prudent from individuals’ point of views, it is collectively costly for the macroecon-
omy because scarce liquidity goes wasted. To the extent that a high level of the VIX might
trigger Knightian agents to a flight-to-safety, or a high level of the VIX is correlated with
an increase in uncertainty, the predictions of Caballero and Krishnamurthy (2008) broadly
support our empirical finding that riskier securites tend to load positively on φ (vt), while
safe securities load negatively on φ (vt).

19Note that our interpretation of the economic driver of the nonlinear risk return tradeoff differs from the
interpretation by Ghysels et al. (2014), who argue that their high volatility regime corresponds to the flight-
to-safety regime. In contrast, our evidence presented in this paper is that flight-to-safety is most relevant
for the range of the VIX between 18 and 50, which occurs 49.3 percent of the time. For the VIX above 50
(occurring .7 percent of the sample), cash flow news, not discount rate news are the likely driver of returns.
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4.3 Intermediary Asset Pricing Theories

Intermediary asset pricing theories model the impact of intermediary balance sheet frictions
on the pricing of risk and real activity within dynamic general equilibrium models of the
macroeconomy. The strand of literature was pioneered by He and Krishnamurthy (2013),
who model an intermediary sector whose ability to raise external equity capital depends on
past performance, similar to Vayanos (2004).

Adrian and Boyarchenko (2012) expand on those intermediary asset pricing theories by
introducing intermediary leverage as an additional state variable. The intermediary lever-
age state variable arises endogenously, as intermediaries are subject to value at risk (VaR)
constraints. Furthermore, intermediaries face liquidity shocks in addition to productivity
shocks, while the models of He and Krishnamurthy (2013) and Brunnermeier and Sannikov
(2014) only feature a single shock.

The VaR constraint directly links aggregate volatility to the leverage of intermediaries.
Increases in volatility, which arise endogenously, tighten the leverage constraints on interme-
diaries, increasing their effective risk aversion, as well as equilibrium pricing of risk. Booms
correspond to periods when volatility is endogenously low, pricing of risk is compressed, and
intermediary leverage is elevated. When adverse shocks hit, either to productivity or to
liquidity, volatility rises endogenously, tightening balance sheet constraints and leading to a
widening in the pricing of risk.

In order to gauge the relationship of our pricing of risk function φ (vt) to intermediary
asset pricing theories, we estimate the relationship between the cross-section of VaRs over
time and the VIX, using SRR regressions. We obtain the VaRs from Bloomberg for Bank of
America, Citigroup, Goldman Sachs, JP Morgan, and Morgan Stanley. VaRs are expressed
in dollar terms. We use the aforementioned five banks as those institutions are the main
US banking organizations with trading operations that have reported data continuously
since 2004. The VaR data is, unfortunately, only available at a quarterly frequency, so that
return forecasting regressions have very few observations.20 Instead, we present in Figure
11 the results of regressing the panel of VaRs contemporaneously on the VIX, using SRR
regressions. The result of this is shown in the lower panel of Figure 11, while the upper

20We did perform SRR regressions of the stock and bond portfolios on the six month lag of the summed
VaRs and found significant forecasting ability using the SRR regressions. We also uncovered the mirror
image property.
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panel presents the sum of VaRs together with the VIX. We can see that there is a tight
association between the VIX and the VaRs, and that the SRR regression is suggestive of a
slightly concave relationship.

The empirical results of Figure 11 support the assumption of Adrian and Boyarchenko
(2012) that intermediary balance sheet constraints are related to market volatility due to risk
management constraints. Furthermore, our earlier finding that expected returns are system-
atically related to the VIX are compatible with the notion that constraints on intermediary
balance sheets matter for the pricing of risk. Of course, this evidence is only suggestive, and
more rigorous analysis would require the calibration of intermediary asset pricing models, or
an identification strategy for exogenous variation in dealer balance sheet capacity. We leave
such research for future work.

4.4 Time Varying Pricing of Risk in Consumption-Based Asset

Pricing

Besides theories of flight-to-safety and intermediary asset pricing theories, consumption-
based asset pricing models can also give rise to variation in the pricing of risk. Among the
workhorse consumption-based asset pricing models, we consider habit formation and long-
run risk models with recursive preferences and compare them with the SRR-implied time
varying price of risk.

In habit formation theories, utility depends not just on the level of current consumption,
but rather on current consumption in excess of previously experienced consumption. Asset
pricing implications of habit formation were pioneered by Abel (1990), Constantinides (1990),
and Sundaresan (1989). Our discussion will focus on the theory by Campbell and Cochrane
(1999, 2000), which has synthesized earlier work, and proven successful in explaining asset
pricing puzzles.

The key state variable in the Campbell and Cochrane (1999, 2000) setup is the surplus
consumption ratio st, which is a slow moving, mean reverting function of past shocks to
aggregate consumption. The pricing of risk is a function of the surplus consumption ratio.
Campbell and Cochrane (1999, 2000) present parameter calibrations that have been shown
to be able to explain asset pricing puzzles, both in the cross-section and in the time series.

In order to gauge the plausibility of our estimated φ (vt) function within the Campbell
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and Cochrane (1999, 2000) asset pricing context, we consider the conditional Sharpe ratio

generated by that pricing kernel,
Et[R∗t+1]√
V art[R∗t+1]

=
√
V art (lnMt+1) = γ (1 + λ (st))σ, where

R∗t+1 corresponds to the returns of the maximum Sharpe ratio portfolio. Because the maxi-
mum Sharpe ratio represents the conditional variance of the (log) stochastic discount factor,
it provides an analytically tractable way to study the habit model’s price of risk. Given the
SRR-estimated φ (vt) interpretation as a price of risk, the time-variation in the two objects
can be meaningfully compared.

In long-run risk (LRR) models, preferences are recursive and consumption and divi-
dends contain a small, persistent expected growth rate component, as well as stochastic
consumption volatility. Bansal and Yaron (2004) initially showed that such models capture
salient features of the equity premium, the risk-free rate, and market volatility. By anal-

ogy to the habit model, we examine the LRR-implied maximum Sharpe ratio
Et[R∗t+1]√
V art[R∗t+1]

=√
V art (lnMt+1) =

√
a0 + a1σ2

t , which is driven by conditional consumption volatility σt,
and use the parameter calibrations for a0 and a1 from the empirical LRR implementation in
Bansal et al. (2012). σt is estimated as a 4-quarter moving average of squared consumption
AR(1) innovations that have been projected on lagged innovations and the dividend yield.21

The top panel of Figure 12 shows the Campbell-Cochrane implied maximum conditional
Sharpe ratio together with the (mean shifted) SRR-implied price of risk φ (vt) over time.
The bottom panel shows the analogous figure for the long-run risk maximum Sharpe ratio.
There is some positive correlation among the two consumption-based price of risk measures,
and the SRR regression implied price of risk φ (vt). For example, during the financial crisis,
when φ (vt) increases sharply, the Sharpe ratio from the habit model and the LRR model
also increases unusually strongly. However, while φ (vt) reverts back to lower levels after
2009, the habit Sharpe ratio remains high through 2015. The LRR Sharpe ratio also stays
elevated through 2011. Another striking divergence occurs during the late 1990s and early
2000s, when the tech boom in the stock market was associated with high volatility, but a
low level of the habit and LRR Sharpe ratios. Hence overall, the correlations between the
φ (vt) and the consumption-based Sharpe ratios (0.07 for habit and 0.21 for LRR) are fairly
low.

Our takeaway from this finding is that time variation of expected returns derived from
21We thank Amir Yaron for providing us with this data.
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the SRR regressions on the VIX captures distinct economic mechanism when compared to
the time variation of expected returns induced by habit formation. While habit formation
and LRR pricing kernels are very tightly linked to the growth of aggregate consumption,
expected returns derived from the VIX are likely to capture funding constraints on financial
institutions such as major banking organizations and fund managers, as we argued above.
Hence the two sources of time variation in expected returns and Sharpe ratios capture com-
plementary economic forces.

4.5 Macroeconomic Consequences

Our final investigation concerns macroeconomic aggregates. A strand of macroeconomics has
developed concerning the impact of uncertainty shocks on real economic activity. The model
of Bloom (2009), for example, provides a mechanism in which time-varying uncertainty
about productivity and demand (i.e. “business conditions”) affects firm investment and
hiring decisions. Interestingly, his usage of non-convex adjustment costs results in nonlinear
hiring and investment decisions due to a real-options effect: Only when capital and labor
productivity exceed certain thresholds do returns to investment and hiring exceed the option
value of waiting. Moreover, the option value of waiting increases with uncertainty as firms
raise their required return to hiring and investment. Thus when firms choose to wait, the
result is a temporary decline in real investment and hiring activity.

Bloom’s empirical proxy for uncertainty shocks is calibrated from stock market implied
volatility. A recent set of findings, however, present challenges to this proxy. For example,
Jurado et al. (2015) extract the unforecastable component of a large panel of real activity
variables and find that their measure of economic uncertainty has little in common with
stock market implied volatility. Along similar lines, Berger et al. (2017) identify uncertainty
shocks as second-moment news shocks and find that shocks to uncertainty have no significant
effect on the real economy, whereas shocks to stock market volatility do. Furthermore, they
find that investors do not appear willing to pay a premium to hedge shocks to uncertainty,
in contrast to the large variance risk premium they pay to hedge shocks to stock market
volatility. Both papers suggest that stock market volatility and uncertainty about business
conditions are not fully interchangeable, which leaves open the question as to how stock
market volatility spills over into real activity.
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The empirical evidence presented so far in our paper sheds some light on this question.
In particular, our results support the notion that stock market implied volatility is related
to the pricing of risk in stock and bond markets, which several models in the literature
have linked to real economic activity. For example, the work of He and Krishnamurthy
(2013), Brunnermeier and Sannikov (2014), and Adrian and Boyarchenko (2012) formalize
the notion that fund flows and bank balance sheet constraints will translate into distortions
of consumption and savings decisions, which would provide a link between stock market
volatility and real activity. Under this view, one would therefore expect the VIX to fore-
cast macroeconomic aggregates. Table 8 reports the output of SRR regressions on the five
business cycle indicators that receive the largest weight in the Chicago Fed National Activ-
ity Index (CFNAI): industrial production (IP), IP manufacturing (IPMFG), manufacturing
capacity utilization (CUMFG), change in goods-producing employment (LAGOODA), and
total private nonfarm payroll series (LAPRIVA), with the market return included as the
reference series.22 We can see that the VIX strongly forecasts macro activity, with all of
the business cycle indicators receiving the same sign. Furthermore, allowing for nonlinearity
helps in terms of explanatory power.

Figure 13 shows the relationship between macroeconomic activity, as measured by the
CFNAI’s 3-month moving average, and φh(vixt), estimated solely from asset return data as
in Section 3.3 using our benchmark 6-month forecast horizon. The figure illustrates that
the reversal of φh(vixt) as VIX rises above its 99th percentile in the fall of 2008 (vertical
line) presages the subsequent collapse in real activity. We therefore conjecture that very
extreme observations of the VIX lead to a drastic update of expected cash flows, leading to
the downward sloping φh (vt) seen in prior figures. For Treasury returns, expectations about
accommodative monetary policy might lead to the sharp rise in the relation between returns
and the VIX, preserving the mirror image property even at extreme events. Because the
entire cross-section of asset returns considered is pricing this reversal in expected returns,
we emphasize that the shape of φh (vt) is still precisely estimated for these extreme values
of the VIX.

22We use the same stationarity-inducing transformations employed in the actual CFNAI calcula-
tion. For more details, see https://www.chicagofed.org/~/media/publications/cfnai/background/
cfnai-technical-report-pdf.pdf.
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5 Conclusion

We propose sieve reduced rank (SRR) regressions to extract a common nonlinear function
of the VIX that jointly forecasts stock and bond returns at horizons up to two years. We
conclude, based on new nonparametric tests, that the forecasting function φh(v) is the same
across diverse sets of stock, bond, and credit returns, up to affine transformations. Intrigu-
ingly, the loadings of stock and bond returns on the common forecasting variable switch
signs when comparing stocks and bonds. This is evidence of investor flight-to-safety: when
the VIX rises above its median value, investors tend to reallocate from stocks to bonds,
leading to an increase in expected returns for stocks and a compression of expected returns
for bonds. We show that the shape of the functional form is robust across asset classes
and across time. We can extract virtually indistinguishable shapes from only stocks or only
bonds, or use subsamples of the data that exclude the 2008 crisis, or vice versa.

When we relate φh(v) to common return predictors, we find only very weak relationships,
suggesting that the nonlinear function of equity market volatility captures economic forces
that are complementary to previously documented forecasting variables. Cross-sectional
regressions show that the loadings of future returns on φh(v) are cross-sectionally related risk
factor loadings, suggesting that φh(v) is a price of risk variable in a dynamic asset pricing
model. Our findings support the nonlinear pricing predictions of the asset management
theory by Vayanos (2004) where flight-to-safety is associated with increases in equity market
volatility, and the intermediary asset pricing theory of Adrian and Boyarchenko (2012) where
value at risk constraints on banks give rise to a tight relationship between the pricing of
risk and the level of aggregate volatility. We provide supportive evidence for both theories
by analyzing global mutual fund flows and the value at risk constraints of major banking
organizations.
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Figure 2: P-values by Forecast Horizon: 1990 to 2014

This figure plots p-values by forecast horizon for linear and polynomial VIX predictive regres-
sions. The regressions Rxit+h = ai0 +ai1(vixt)+εit+h and Rxit+h = bi0 + bi1(vixt)+ bi2(vixt)

2 +
bi3(vixt)

3 + εit+h are each estimated by OLS for h = 1, . . . 24, where i ranges over 1-year,
2-year, 3-year, 5-year, and 10-year Treasury excess returns and stock market excess returns.
p-values for Wald tests of joint significance of slope coefficients H0 : bi1 = bi2 = bi3 = 0 using
Hodrick (1992) standard errors are reported. The sample period is 1990:1-2014:9.
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Figure 3: P-values by Forecast Horizon: 1990 to 2007

This figure plots p-values by forecast horizon for linear and polynomial VIX predictive regres-
sions. The regressions Rxit+h = ai0 +ai1(vixt)+εit+h and Rxit+h = bi0 + bi1(vixt)+ bi2(vixt)

2 +
bi3(vixt)

3 + εit+h are each estimated by OLS for h = 1, . . . 24, where i ranges over 1-year,
2-year, 3-year, 5-year, and 10-year Treasury excess returns and stock market excess returns.
p-values for Wald tests of joint significance of slope coefficients H0 : bi1 = bi2 = bi3 = 0 using
Hodrick (1992) standard errors are reported. The sample period is 1990:1-2007:7.
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Figure 4: Univariate Nonparametric and Polynomial Estimates of φih(v)

This figure shows sieve, polynomial, and kernel estimates of the nonlinear volatility function
φih(v) from univariate predictive regressions Rxit+h = φih(vt)+εt+h, where Et[Rxit+h] = φih(vt).
The superscript i indexes separate regressions in which the left hand side variable is either
equity market excess returns or 1-year Treasury excess returns. In the top panel, the sample
consists of monthly observations on vt = V IXt from 1990:1 to 2014:9, whereas in the bottom
panel, the sample consists of monthly observations from 1990:1 to 2007:7. In both panels,
the forecast horizon plotted is h = 6 months. Within each panel, the left plot shows the
nonparametric sieve estimate of φih(vt), where the number of B-spline basis functions used in
the estimation is chosen by out-of-sample cross validation. The middle plot shows a parametric
cubic polynomial regression where φih(vt) = ai0 + ai1vt + ai2v

2
t + ai3v

3
t , and the right plot shows

φih(vt) estimated by a Nadaraya-Watson kernel regression, where the bandwidth was chosen by
Silverman’s rule of thumb. The y-axis was rescaled by the unconditional standard deviation of
Rxit to display risk-adjusted returns.

φih(V IX) 1990:1 to 2014:9

φih(V IX) 1990:1 to 2007:7
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Figure 5: SRR Regression Loadings: b̂ih
This figure plots SRR regression estimated portfolio loadings b̂ih, where i ranges over the
market return (MKT), 11 industry portfolio returns, constant-maturity Treasury returns
with 1, 2, 5, 7, 10, 20, and 30 year maturities, and Barclays corporate bond portfolios. The
shades of bars denote outcomes of the hypothesis test H2,0 : bihφh = 0 of whether asset i
loads signficantly on φh(v) (see Theorem 1). The samples consist of monthly observations
from 1990:1 to 2014:9.
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Figure 6: SRR Regression: Expected Excess Returns for ith Portfolio

This figure plots normalized SRR regression estimated excess returns on portfolio i,
Êt[Rx

i
t+h]/σ̂(Rxit+h), where Êt[Rxit+h] = α̂ih + b̂ihφ̂h(vt), σ̂(Rxit+h) scales by unconditional

excess return standard deviation, and where i ranges over the market return (MKT), 11
industry portfolio returns, constant-maturity Treasury returns with 1, 2, 5, 7, 10, 20, and 30
year maturities, and Barclays corporate bond portfolios. Red lines denote estimated excess
returns with positive b̂ih loadings, and blue dashed lines denote estimated excess returns
with negative b̂ih loadings. The forecast horizon is h = 6, and the sample consists of monthly
observations from 1990:1 to 2014:9.
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Figure 7: SRR Regression φh(v): Separately Estimated from Equities and Trea-
suries

This figure plots two versions of φ̂h(v) based on SRR regressions. The first estimates φ̂h(v)
from the sieve reduced rank regression Rxit+h = aih + bihφh(v) + εit+h where i ranges over
equity industry and market portfolios only (red dashed). The second estimate of φh(v) comes
from a sieve reduced rank regression, but where i ranges over Treasury return portfolios only
(blue). The figure examines whether the two resulting nonlinear volatility functions φ̂Treas

h (v)

and φ̂Equity
h (v) differ only by location and scale. This is tested by regressing φ̂Equity

h (vt) on
φ̂Treas
h (vt) and a constant, and then plotting φ̂Equity

h (v) and ĉ1 + ĉ2φ̂
Treas
h (v) alongside each

other, where ĉ1 and ĉ2 are the regression coefficients. Dotted lines represent 95-percent
confidence intervals from test H3,0 in Theorem 1 in the text. The forecast horizon is h = 6,
and the sample consists of monthly observations from 1990:1 to 2014:9.
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Figure 8: Cross-Sectional Pricing

This figure plots the results of the unrestricted joint forecasting regressions Rxit+1 = ai +
biφ(vt) + εit+1 against the restricted joint forecasting regressions Rxit+1 = (αi + βiλ0) +
βiλ1φ(vt) +βiut+1 + εit+1, obtained from a dynamic asset pricing model with affine prices of
risk. The innovations ut+1 = Yt+1−Et[Yt+1] correspond to the cross-sectional pricing factors
Yt = (MKTt, TSY 1t, φ(vt)), where MKT is the return to the CRSP value-weighted equity
market return, TSY1 is the return to the one year Treasury, and φ(vt) is the nonlinear pricing
factor for vt = vixt. Excess returns over i refer to 11 equity portfolios sorted by industry
from Ken French’s website, seven maturity-sorted Treasury portfolios, the six Barclay’s
industry and ratings sorted corporate bond portfolios, and the CRSP market return. To
obtain estimates, the unrestricted regression is estimated by sieve reduced rank regression,
yielding parametric estimates of ai and bi and a nonparametric estimate of φ(vt). Then the
restricted joint forecasting regression is estimated by taking φ(vt) as given, making ai and bi
from the unrestricted forecasts directly comparable to (αi+βiλ0) and βiλ1 in the restricted
regressions. The comparisons are scattered in the plots. The sample consists of monthly
observations from 1990:1 to 2014:9.
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Figure 9: Comparison to other Variables

This figure plots a nonlinear function of the VIX, φ6(vt), estimated by sieve reduced rank
regression against known price of risk, liquidity, and uncertainty factors: the 10-year Treasury
yield (TSY10), the term spread between the 10-year and 3-month Treasury yield (TERM),
the Cochrane-Piazzesi Factor (CP), the spread between Moody’s Baa-rated corporate bonds
and the 10-year Treasury yield (DEF), the log dividend yield (DY), the Lettau-Ludvigson
CAY factor (CAY), the Kyle-Obizhaeva illiquidity factor (ILL), and the Jurado-Ludvigson-
Ng macro uncertainty variable. To facilitate visual comparisons, all variables are demeaned
and scaled by their unconditional standard deviations. The sample period is 1990:1-2014:9.
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Figure 10: Fund Flows, φh(vixt), and Flight-to-Safety

Using a panel of mutual fund flows, we estimate sieve reduced rank regressions Flowsit = ai+

biφFF (vixt)+ε
i
t. The top left panel shows the predicted fund flows F̂ lowsit = âi+b̂iφ̂FF (vixt)

for the subset of fund types that were found to load significantly on φFF (vixt) (Table 7).
The dashed vertical line indicates when government bond funds experience net inflows. The
top right panel shows φ̂FF (v) alongside φ̂h(v) and its 95% pointwise confidence intervals
estimated separately from sieve reduced rank regressions Rxit+h = aih + bihφh(vt) + εit+h,
where h = 6 months and i = 1, . . . , n ranges over the CRSP value-weighted market excess
return and the seven CRSP constant maturity Treasury excess returns corresponding to 1,
2, 5, 7, 10, 20, and 30 years to maturity. Given the different units in each regression, φFF (v)
was affine-translated to the scale of φh(v). The sample period is 1990:1 to 2014:9. The
bottom panel plots values of the VIX above its sample median (left axis, solid blue line)
next to combined stock fund outflows and government bond fund inflows (right axis, dashed
red line). Stock fund outflows are the sum of US equity, non-US equity, and hybrid equity
mutual fund outflows. The sample consists of monthly observations from 2000:1 to 2014:12.
Source: ICI Trends in Mutual Fund Activity.

49



Figure 11: SRR Regression: Value-at-Risk Cross-Section and the VIX

The top panel of this figure plots the VIX (left axis, solid line) next to major dealer banks’
summed Value-at-Risks (VaR) (right axis, dashed line) over time. The bottom panel shows
the estimated φV aR(vix) from the contemporaneous sieve reduced rank regression of dealers’
disaggregated VaRs on the VIX, V aRit = ai + biφV aR(vixt) + εit, where i = 1, . . . , 5 indexes
individual VaRs of the dealer banks that comprise the aggregate measure: Bank of America,
Citigroup, Goldman Sachs, JP Morgan, and Morgan Stanley. Dotted lines represent 95-
percent confidence intervals from test H3,0 in Theorem 1 in the text. The sample consists of
quarterly observations from 2004:1 to 2014:4.
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Figure 12: Relation to Consumption-Based Asset Pricing

The plot shows the SRR regression estimate of the nonlinear price of risk φh(vixt), for h = 6,
together with the maximum Sharpe ratio of the habit formation model by Campbell and
Cochrane (1999, 2000) (top panel) and the long-run risk model of Bansal and Yaron (2004)
(bottom panel). For the habit model, we use NIPA consumption data on nondurable goods
and services and generate a time series st of the log surplus consumption ratio, yielding
the maximal implied time-varying Sharpe Ratio as a function of st. For the long-run risk
model, the maximal Sharpe ratio is a function of conditional consumption volatility, which
is estimated as a 4-quarter moving average of squared consumption AR(1) innovations that
have been projected on lagged innovations and the dividend yield. φh(vixt) is plotted in
solid red. The sample consists of quarterly observations from 1990:1 to 2014:4.
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Figure 13: Real Activity and φh(vixt)

This plot shows the Federal Reserve Bank of Chicago’s measure of real activity, the CFNAI-
MA3, alongside φ(vt) estimated from stocks and bonds alone. The sample consists of monthly
observations from 1990:1 to 2014:9.
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Table 1: Excess Return Predictability: VIX and MOVE Polynomials: 1990 to
2014

This table reports Hodrick (1992) t-statistics for coefficients from the regressions Rxit+h = aih +
bih(vixt, vix

2
t , vix

3
t )
′+ cih(movet,move

2
t ,move

3
t )
′+ f ihzt + εit+h, where vixt is the VIX equity implied volatil-

ity index at time t, and movet is the MOVE Treasury implied volatility index. The superscript i indexes
separate regressions in which the left hand side variable is either the indicated Treasury excess return (top
panel) or the equity market excess return (bottom panel). zt consists of control variables representing the
default spread between the 10-year Treasury yield and Moody’s BAA corporate bond yield, the variance
risk premium, the term spread between the 10-year and 3-month Treasury yield, and the log dividend yield.
p-values report the outcome of the joint hypothesis test under the null of no predictability. The line labeled
Linearity reports the p-values for the test of linearity in VIX, which corresponds to the null hypothesis that
the coefficients on vix2t and vix3t are zero. The sample consists of monthly observations from 1990:1 to
2014:9.

1-year Treasury Excess Returns

h = 6 months h = 12 months h = 18 months
V IX1 1.91 4.13 5.01 1.86 3.60 5.02 1.13 3.21 4.73
V IX2 -4.08 -4.77 -3.61 -4.86 -3.37 -4.71
V IX3 3.89 4.66 3.51 4.76 3.38 4.64
MOV E1 0.26 -0.57 -0.58 -1.94 -0.23 -2.21
MOV E2 0.17 0.81 1.00 2.14 0.54 2.43
MOV E3 -0.35 -0.97 -1.16 -2.27 -0.69 -2.57
DEF -0.99 -0.99 -1.23
VRP 2.49 2.84 3.87
TERM -1.45 -2.76 -3.47
DY 3.34 3.58 3.24
const 1.40 -3.42 -0.14 0.58 1.65 -2.75 1.05 1.57 2.17 -2.19 1.19 1.63

p-value 0.057 0.001 0.089 0.000 0.064 0.005 0.303 0.000 0.260 0.004 0.845 0.000
Linearity 0.000 0.000 0.002 0.000 0.004 0.000

Stock Excess Returns

h = 6 months h = 12 months h = 18 months
V IX1 1.00 -3.18 -2.68 0.74 -2.47 -1.98 0.78 -1.87 -1.35
V IX2 3.36 2.90 2.61 2.22 2.01 1.54
V IX3 -3.24 -2.68 -2.45 -2.15 -1.87 -1.48
MOV E1 0.15 0.27 1.14 1.26 0.13 0.33
MOV E2 -0.06 -0.23 -1.17 -1.35 -0.07 -0.41
MOV E3 -0.01 -0.01 1.20 1.23 0.16 0.40
DEF -0.58 -0.62 -0.34
VRP -2.34 -2.03 -2.33
TERM 0.47 0.94 1.03
DY 1.17 1.51 1.63
const -0.15 3.28 0.13 2.43 0.50 2.68 -0.65 2.06 0.58 2.10 0.15 2.01

p-value 0.316 0.007 0.991 0.018 0.460 0.032 0.674 0.075 0.439 0.088 0.810 0.112
Linearity 0.004 0.013 0.031 0.085 0.119 0.296
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Table 2: Nonlinear VIX Predictability using the Cross-Section: 1990 - 2014
This table reports results from three predictive sieve reduced rank (SRR) regressions for each of h = 6, 12, and
18 month ahead forecasting horizons: (1) estimates of aih and bih from the regression Rxit+h = aih+bihvt+ε

i
t+h

of portfolio i’s excess returns on linear vt = vixt; (2) estimates of aih and bih from the SRR regression
Rxit+h = aih + bihφh(vt) + εit+h of portfolio i’s excess return on the common nonparametric function φh(·) of
vt = vixt; (3) the same regression augmented with controls f i ·(DEFt, V RPt, TERMt, DYt)

′ representing the
default spread (DEF, 10-year Treasury yield minus Moody’s BAA corporate bond yield), the variance risk
premium (VRP, realized volatility minus VIX), the term spread (TERM, 10-year minus 3-month Treasury
yields), and the S&P 500’s (log) dividend yield. The index i = 1, . . . , n ranges over the CRSP value-weighted
market excess return and the seven CRSP constant maturity Treasury excess returns corresponding to 1, 2,
5, 7, 10, 20, and 30 years to maturity. The sieve reduced rank regressions are introduced in Section 3 in the
text. ***, **, and * denote statistical significance at the 1%, 5%, and 10% level for t-statistics on ai and f i

and for the χ2-statistic on biφh(·) derived in Theorem 1. The joint test p-value reports the likelihood that
the sample was generated from the model where Ah = 0.

Horizon h = 6

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT −0.01 1.00 1.00* 1.00*** 0.31 1.00*** 0.05**−1.42***−0.01 0.17
cmt1 0.00 0.07* −0.05* −0.07*** −0.09**−0.20*** 0.00 0.03* 0.00* 0.02***
cmt2 0.01 0.09 −0.11* −0.14*** −0.15* −0.32*** 0.00 0.08** 0.00 0.02**
cmt5 0.03 0.04 −0.26 −0.31*** −0.25 −0.60***−0.02* 0.23** 0.01** 0.01
cmt7 0.04 0.04 −0.31 −0.38*** −0.27 −0.70***−0.03** 0.32** 0.02** 0.00
cmt10 0.05 −0.08 −0.30 −0.37*** −0.25 −0.66***−0.03** 0.39** 0.03*** 0.01
cmt20 0.08 −0.22 −0.39 −0.49** −0.23 −0.74** −0.05*** 0.51* 0.05***−0.03
cmt30 0.10 −0.52 −0.58 −0.68** −0.29 −0.98** −0.07*** 0.70* 0.06***−0.06

Joint p-val 0.465 0.000 0.001
Bootstrap p-val 0.494 0.018 0.001

Horizon h = 12

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.03 1.00 0.64 1.00** 0.09 1.00*** 0.03**−0.70*** 0.00* 0.18
cmt1 0.00 0.11* −0.05 −0.10*** −0.08 −0.36*** 0.00 0.03** 0.00** 0.02***
cmt2 0.01 0.22 −0.08 −0.18*** −0.12 −0.57*** 0.00 0.05** 0.00 0.03***
cmt5 0.02 0.33 −0.18 −0.39*** −0.21 −1.03***−0.01 0.08* 0.01 0.03
cmt7 0.02 0.35 −0.23 −0.48*** −0.24 −1.23***−0.02* 0.12* 0.01** 0.02
cmt10 0.03 0.15 −0.22 −0.47*** −0.25 −1.25***−0.02** 0.13* 0.02** 0.03
cmt20 0.05 0.12 −0.31 −0.65** −0.27 −1.52** −0.04** 0.16 0.03*** 0.00
cmt30 0.06 −0.17 −0.44 −0.88** −0.33 −1.92** −0.05** 0.21 0.04***−0.01

Joint p-val 0.456 0.002 0.002
Bootstrap p-val 0.472 0.038 0.000

Horizon h = 18

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.03 1.00 0.44 1.00** −0.03 1.00** 0.02**−0.59*** 0.01 0.18
cmt1 0.01 0.07 −0.04 −0.13*** −0.06 −0.60*** 0.00 0.04*** 0.00** 0.02***
cmt2 0.01 0.19 −0.07 −0.24*** −0.10 −0.95*** 0.00 0.07***−0.01 0.03***
cmt5 0.02 0.36 −0.14 −0.48** −0.18 −1.65***−0.01 0.11** 0.00 0.03**
cmt7 0.02 0.38 −0.16 −0.56** −0.19 −1.87***−0.01* 0.14** 0.00 0.03*
cmt10 0.03 0.23 −0.15 −0.52** −0.20 −1.90***−0.01* 0.15** 0.01* 0.04
cmt20 0.04 0.29 −0.19 −0.69* −0.20 −2.16* −0.02* 0.15 0.02** 0.01
cmt30 0.05 0.04 −0.28 −0.91** −0.24 −2.63** −0.03** 0.18 0.03** 0.00

Joint p-val 0.665 0.052 0.027
Bootstrap p-val 0.662 0.071 0.001
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Table 3: Nonlinear VIX Predictability using the Cross-Section: 1990 - 2007
This table reports results from three predictive sieve reduced rank (SRR) regressions for each of h = 6, 12, and
18 month ahead forecasting horizons: (1) estimates of aih and bih from the regression Rxit+h = aih+bihvt+ε

i
t+h

of portfolio i’s excess returns on linear vt = vixt; (2) estimates of aih and bih from the SRR regression
Rxit+h = aih + bihφh(vt) + εit+h of portfolio i’s excess return on the common nonparametric function φh(·) of
vt = vixt; (3) the same regression augmented with controls f i ·(DEFt, V RPt, TERMt, DYt)

′ representing the
default spread (DEF, 10-year Treasury yield minus Moody’s BAA corporate bond yield), the variance risk
premium (VRP, realized volatility minus VIX), the term spread (TERM, 10-year minus 3-month Treasury
yields), and the S&P 500’s (log) dividend yield. The index i = 1, . . . , n ranges over the CRSP value-weighted
market excess return and the seven CRSP constant maturity Treasury excess returns corresponding to 1, 2,
5, 7, 10, 20, and 30 years to maturity. The sieve reduced rank regressions are introduced in Section 3 in the
text. ***, **, and * denote statistical significance at the 1%, 5%, and 10% level for t-statistics on ai and f i

and for the χ2-statistic on biφh(·) derived in Theorem 1. The joint test p-value reports the likelihood that
the sample was generated from the model where φh = 0.

Horizon h = 6

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.03 1.00 0.72 1.00** 0.25 1.00 −0.03 −0.84* 0.00 0.12
cmt1 0.00 0.23** −0.09 −0.16*** −0.15 −0.59*** 0.01 0.03 0.00* 0.03***
cmt2 0.00 0.29 −0.16 −0.28*** −0.22 −0.92*** 0.01 0.10* 0.00 0.03***
cmt5 0.01 0.30 −0.31 −0.53*** −0.34 −1.57*** 0.00 0.25* 0.01 0.03*
cmt7 0.03 0.18 −0.36 −0.62*** −0.35 −1.75***−0.01 0.31* 0.02 0.02
cmt10 0.04 −0.23 −0.37 −0.62** −0.32 −1.74***−0.03 0.36* 0.02* 0.02
cmt20 0.06 −0.16 −0.42 −0.72** −0.31 −1.95** −0.05 0.46** 0.03**−0.01
cmt30 0.05 −0.27 −0.51 −0.85* −0.35 −2.25** −0.06 0.58** 0.04**−0.03

Joint p-val 0.045 0.000 0.003
Bootstrap p-val 0.086 0.005 0.002

Horizon h = 12

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.09 1.00 0.46 1.00* −0.01 1.00 −0.03 −0.52* 0.00 0.16
cmt1 0.00 −2.09** −0.08 −0.23*** −0.12 3.25*** 0.00 0.03 0.00 0.03***
cmt2 0.00 −3.21* −0.13 −0.40*** −0.18 5.27*** 0.00 0.07* 0.00 0.03***
cmt5 0.00 −4.69 −0.24 −0.72*** −0.31 9.32*** 0.00 0.12 0.01 0.04
cmt7 0.01 −3.98 −0.28 −0.84*** −0.33 10.77***−0.01 0.13 0.01* 0.03
cmt10 0.03 −0.71 −0.27 −0.80*** −0.33 11.27***−0.03* 0.14 0.02** 0.04
cmt20 0.04 −1.06 −0.33 −1.00*** −0.34 13.10***−0.04** 0.14 0.03** 0.01
cmt30 0.04 −1.15 −0.40 −1.17** −0.39 15.27***−0.06** 0.16 0.04*** 0.00

Joint p-val 0.010 0.000 0.002
Bootstrap p-val 0.036 0.024 0.033

Horizon h = 18

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.11 1.00 0.57 1.00*** 0.13 1.00 −0.03 −0.54** 0.00 0.13
cmt1 0.00 −0.36** −0.07 −0.17*** −0.11 −0.92*** 0.00 0.05** 0.00 0.03***
cmt2 0.00 −0.59 −0.13 −0.30*** −0.19 −1.55*** 0.00 0.11** 0.00 0.03***
cmt5 0.00 −0.93 −0.24 −0.55*** −0.35 −2.83*** 0.01* 0.19** 0.00 0.05*
cmt7 0.01 −0.86 −0.27 −0.63*** −0.39 −3.28*** 0.00** 0.22** 0.01* 0.05
cmt10 0.03 −0.25 −0.25 −0.59*** −0.40 −3.44***−0.01** 0.24** 0.01** 0.06
cmt20 0.04 −0.45 −0.29 −0.70*** −0.41 −3.81***−0.02** 0.20* 0.02** 0.03
cmt30 0.03 −0.43 −0.37 −0.85*** −0.50 −4.55***−0.03** 0.25** 0.03*** 0.03

Joint p-val 0.016 0.000 0.000
Bootstrap p-val 0.057 0.011 0.003
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Table 4: An LM Test of Flight-to-Safety

This table reports the test statistic, T̂4, and associated p-values of the test of whether expected stock and bond
returns load on the same nonlinear function φh(vt). The columns of the table correspond to three predictive
sieve reduced rank regressions (SRRR) for each of h = 6, 12, and 18 month ahead forecasting horizons. The
sieve reduced rank regressions are introduced in Section 3 in the text and the limiting distribution of T̂4 is
characterized in Theorem 2. For reference, the 90%, 95% and 99% quantile of a chi-square random variable
with 14 degrees of freedom are 21.0641, 23.6848, and 29.1412. The full sample period is 1990:1-2014:9 and
the pre-crisis sample period is 1990:1-2007:7.

SRRR LM Test Statistic

Horizon h = 6 Horizon h = 12 Horizon h = 18

Full sample 19.914 20.094 20.204
(0.133) (0.127) (0.124)

Pre-crisis 18.409 19.566 20.973
(0.189) (0.144) ( 0.102)
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Table 5: Forecast Error Comparison: Mean-Only Model

This table compares out-of-sample forecast errors of the sieve reduced rank (SRR) regression against a mean-
only model. We split our full monthly sample from 1990:1 to 2014:9 into an in-sample period t = 1, . . . , (t∗−1)
and an out-of-sample period t = t∗, . . . , T . We then evaluate the SRR regression model and the running
mean forecast Êt∗ [Rxit∗+h] and compare it against the h ∈ {6, 12, 18} realized compound return Rxit∗+h
for i indexing the market and seven constant maturity Treasury portfolios. We report the log of the ratio
of unadjusted root MSFEs and mean absolute forecast errors (MAFEs), where the mean-only model is in
the denominator. Note that for each new t = t∗, . . . , T , sieve expansion terms are chosen by a new cross-
validation on the in-sample portion of the data. Each panel of the table corresponds to a different in-sample
starting period t∗/T = 0.4 (Nov-1999), t∗/T = 0.5 (May-2002), and t∗/T = 0.6 (Nov-2004).

Forecast Error Comparison

In-sample Split In-sample Split In-sample Split
(t∗/T ) = 0.4 (t∗/T ) = 0.5 (t∗/T ) = 0.6

Log Ratio of RMSFEs, MAFEs (h=6)

RMSFE MAFE RMSFE MAFE RMSFE MAFE
MKT −0.01 0.00 0.00 0.01 0.00 0.00
cmt1 0.18 0.04 0.21 0.06 0.26 0.06
cmt2 0.16 0.06 0.21 0.08 0.23 0.05
cmt5 0.07 0.02 0.10 0.02 0.09 −0.01
cmt7 0.03 0.00 0.05 0.01 0.03 −0.03
cmt10 0.00 −0.02 0.02 −0.01 0.00 −0.04
cmt20 −0.02 −0.03 −0.01 −0.02 −0.02 −0.04
cmt30 −0.02 −0.03 −0.01 −0.03 −0.02 −0.04

Log Ratio of RMSFEs, MAFEs (h=12)

RMSFE MAFE RMSFE MAFE RMSFE MAFE
MKT −0.06 −0.03 −0.06 −0.01 −0.07 −0.01
cmt1 0.00 −0.01 0.01 0.00 −0.05 −0.05
cmt2 0.00 0.00 0.03 0.03 −0.05 −0.04
cmt5 −0.04 −0.06 −0.03 −0.05 −0.11 −0.16
cmt7 −0.05 −0.08 −0.04 −0.07 −0.11 −0.17
cmt10 −0.05 −0.07 −0.05 −0.09 −0.11 −0.18
cmt20 −0.06 −0.08 −0.07 −0.10 −0.09 −0.15
cmt30 −0.08 −0.08 −0.08 −0.09 −0.10 −0.13

Log Ratio of RMSFEs, MAFEs (h=18)

RMSFE MAFE RMSFE MAFE RMSFE MAFE
MKT −0.06 −0.03 −0.03 0.02 −0.03 0.01
cmt1 0.00 0.01 0.01 0.01 −0.03 −0.01
cmt2 0.00 0.01 0.04 0.07 0.00 0.04
cmt5 −0.02 −0.03 0.02 0.03 −0.03 −0.03
cmt7 −0.02 −0.04 0.01 0.01 −0.03 −0.06
cmt10 −0.02 −0.01 −0.01 0.00 −0.05 −0.07
cmt20 −0.05 −0.06 −0.04 −0.06 −0.06 −0.08
cmt30 −0.06 −0.06 −0.06 −0.07 −0.06 −0.06
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Table 6: Dynamic Asset Pricing: Factor Risk Exposures and Prices of Risk
This table provides estimates of factor risk exposures and prices of risk from the dynamic asset pricing model
Rxit+1 = (αi + βiλ0) + βiλ1φ(vt) + βiut+1 + εit+1, where i ranges over the test assets in the left column:
MKT denotes the CRSP value-weighted market excess return, (NoDur . . . Fin) are industry-sorted portfolio
excess returns from Ken French’s website, (cmt1, . . . , cmt30) are constant maturity Treasury portfolio excess
returns, and (AAA, . . . , igfin) are Barclay’s ratings and industry sorted corporate bond excess returns. In a
first stage, φ(vt) is estimated from a sieve reduced rank regression Rxit+1 = ai + biφ(vt) + εit+1 jointly across
i. The factor innovations ut+1 = Yt+1 − Et[Yt+1] are then estimated from a VAR on the market (MKT),
Treasury (TSY1), and nonlinear volatility factor (φ(vt)), for vt = vixt. In a second stage, coefficients are
estimated jointly across all i = 1, . . . , n via a reduced rank regression. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% level.

Exposures βiMKT βiRF βiφ(v) βiλ1 (αi + βiλ0)

MKT 1.00*** −0.24*** 0.02 1.08*** 0.33***
NoDur 0.61*** 0.45 0.01 0.49** 0.21***
Durbl 1.19*** −2.24** 1.90** 0.68 0.23
Manuf 1.09*** −0.86 0.85*** 0.83*** 0.30***
Enrgy 0.71*** −1.11 1.11 0.36 0.18
Chems 0.75*** −0.80 0.20 0.87*** 0.30***
BusEq 1.44*** −1.76** −1.47*** 2.88*** 0.80***
Telcm 0.94*** 0.06 0.27 0.77* 0.25**
Utils 0.39*** 0.10 0.59 0.01 0.08
Shops 0.86*** −0.64 0.10 0.99*** 0.32***
Hlth 0.69*** 1.04 0.12 0.33 0.18**
Fin 1.08*** 1.26 −0.24 0.90** 0.30***
cmt1 0.00 0.73*** −0.07 −0.16** −0.03*
cmt2 −0.01 1.40*** −0.14 −0.32** −0.06*
cmt5 −0.03* 2.90*** 0.16 −0.95*** −0.19***
cmt7 −0.04* 3.55*** 0.77* −1.52*** −0.32***
cmt10 −0.04 3.90*** 1.19*** −1.88*** −0.41***
cmt20 −0.08* 4.76*** 1.96*** −2.64*** −0.57***
cmt30 −0.12** 5.45*** 2.23* −3.03*** −0.67***
AAA 0.02 2.54*** 0.68 −1.11*** −0.23***
AA 0.06*** 2.28*** 0.71 −1.02*** −0.21***
A 0.09*** 2.00*** 1.24*** −1.24*** −0.26***
BAA 0.12*** 1.55*** 1.58*** −1.29*** −0.26***
igind 0.08*** 1.90*** 1.67*** −1.48*** −0.31***
igutil 0.07** 1.99*** 1.73*** −1.56*** −0.33***
igfin 0.11*** 1.83*** 0.57 −0.76*** −0.14**

Prices of Risk MKT RF φ(vt)

λ1 1.02*** −0.28** −0.62**
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Table 7: Fund Flows and Nonlinear VIX
This table reports results from the contemporaneous panel regressions of mutual fund flows into the funds of
indicated type i (left column) on the common nonparametric function φFF (vixt), Flowsit = ai+biφFF (vixt)+
εit. The panel regressions were estimated via the sieve reduced rank regressions introduced in Section 3 in
the text. ***, **, and * denote statistical significance at the 1%, 5%, and 10% level for t-statistics on ai and
for the χ2-statistic on biφFF (·) derived in Theorem 1. The joint test p-value reports the likelihood that the
sample was generated from the model where (b1, . . . , bn) · φFF (·) = 0.

Sample: 1990 - 2014 Sample: 1990 - 2007

ai bi ai bi

us equity 9361.10 −1.00*** 4590.51 −1.00
world equity 8729.01 −0.89*** −2154.22 −1.86***
hybrid 4332.69 −0.44*** −994.43 −0.79***
corporate bond 1596.10* −0.06 677.27*** 0.01
HY bond 280.97 0.01 302.78 0.02
world bond 1976.57 −0.14* −28.00 −0.06
govt bond −1677.29 0.27*** 2448.24 0.91***
strategic income 2591.58** −0.02 2377.08 0.25
muni bond 575.98 0.01 384.06 −0.03
govt mmmf −10 568.01 2.06 3836.77 0.96
nongovt mmmf 812.84 0.09 11 653.76 2.67
national mmmf 192.97 0.00 1410.59 0.21
state mmmf 639.50 −0.09*** 560.80 0.06

Joint p-value 0.000 0.000
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Table 8: Business Cycle Panel Predictability
This table reports results from two cross-sectional predictability regressions of various macro business cycle
indicators on h = 6 month lagged functions of vt = vixt. The left panel is estimated on our full sample of
monthly observations from 1990 to 2014, whereas the right panel is estimated on the pre-crisis subsample.
The business cycle indicators represent the industrial production index (IP), the IP manufacturing index
(IPMFG), the manufacturing capacity utilization index (CUMFG), the change in goods-producing employ-
ment (LAGOODA), and the total private nonfarm payroll series (LAPRIVA), which receive the largest weight
within the Chicago Fed National Activity index. The leading reference asset is the market excess return. The
left panel shows estimates of aih and bih from the sieve reduced rank regression yit+h = aih+bihφ

macro(vt)+εit+h
of series i on the common nonparametric function φmacro

h (·). ***, **, and * denote statistical significance
at the 1%, 5%, and 10% level for t-statistics on ai and for the χ2-statistic on biφmacro

h (·) derived in Theo-
rem 1. The joint test p-value reports the likelihood that the sample was generated from the model where
(b1, . . . , bn) · φh(·) = 0.

Sample: 1990 - 2014 Sample: 1990 - 2007

ai bi ai bi

MKT −0.02 1.00 0.10 1.00
IP 0.01 −0.06*** 0.00 −0.22***
IPMFG 0.01 −0.07*** 0.00 −0.25***
CUMFG 0.00 −0.05*** −0.01 −0.26***
LAPRIVA 0.00 −0.04*** 0.00 −0.14***
LAGOODA 0.01 −0.07*** −0.01 −0.26***
Joint p-value 0.000 0.000
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Supplementary Appendix

The Supplementary Appendix has five main sections. The first section, A.1, beginning on this page,
provides details on the empirical implementation used throughout the paper including data sources.
The section also provides additional results on forecast error comparisons to complement Section
3.4 and additional details on our theoretical setup. The second section, A.2, beginning on page 15,
discusses the design and results of our Monte Carlo simulations. The third section, A.3, beginning
on page 28, demonstrates the robustness of our results to using log(VIX) rather than VIX in our
empirical applications. The fourth section, A.4, beginning on page 31, discusses the design and
results of the block bootstrap resampling exercise we conducted. Finally, the fifth section, A.5,
beginning on page 35, provides the proofs of the theoretical results introduced in the paper.

A.1 Details of Empirical Implementation
A.1.1 Data and Estimation

Our main results are based on excess returns for equities, Treasury bonds, and corporate bonds. For
equities we use the value-weighted market return and the 12 industry-sorted portfolio returns, both
from Ken French’s website.23 For Treasury bond returns we primarily use the constant maturity
Treasury portfolios with maturities one, two, five, seven, ten, 20, and 30 years from the Center
for Research in Securities Prices (CRSP). We also use returns (in Table 1 and Figures 2–4) and
yields (Table 6 and Figure 8) from the Gurkaynak et al. (2007) data set available from the Board
of Governors of the Federal Reserve’s research data page.24 For corporate bond returns, industry
and rating sorted investment grade credit returns are obtained from Barclays. As our measure
of the risk-free rate we use the CRSP 1-month risk-free rate. Our measure of equity volatility is
the 1-month CBOE Volatility Index (VIX) (FRED mnemonic: VIXCLS) and for implied Treasury
bond volatility is the 1-month Merrill Lynch Option Volatility Expectations (MOVE) index (Haver
mnemonic: SPMLV1@DAILY).

The default spread is measured as the Moody’s BAA corporate bond yield (FRED mnemonic:
DBAA) less the 10-year Treasury yield (FRED mnemonic: DGS10) with each series obtained from the
H15 statistical release from the Federal Reserve Board. The term spread is measured as the 10-year
Treasury yield less the 3-month Treasury bill rate (FRED mnemonic: DGS3MO) each also from the
H15 statistical release. The variance risk premium is calculated as in Bollerslev et al. (2009). We
obtain the dividend yield of the S&P 500 from Haver and, in regressions, apply a log transformation
to the series (Haver mnemonic: SDY5COMM@USECON). The CP factor is calculated as in Cochrane
and Piazzesi (2005). The CAY factor is obtained from Martin Lettau’s website.25 The Kyle and
Obizhaeva (2016) ILL factor is computed as a scaled ratio of S&P 500 intra-month realized volatility
and corresponding total dollar volume. The realized volatility in this calculation is the square root
of the sum of squared daily log returns within a calendar month.

23http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
24https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
25http://faculty.haas.berkeley.edu/lettau/data_cay.html
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All our main results are based on monthly data. To obtain monthly data we transform daily
data to monthly data by using the last (non-missing) observation for the month. All data on returns
are reported as annualized rates of return. Our full sample is January 1990–September 2014 while
our pre-crisis sample covers January 1990–July 2007.

The B-spline basis in the paper is constructed via de Boor’s algorithm (De Boor (1972)). Knots
are placed with equal spacing on the empirical support of the VIX. With a choice of m we can
estimate the parameters in the model by following the steps detailed in Section 3.1. In order to
choose the specification for the nonparametric estimator of φ(·), we use a mean-square forecast error
(MSFE) cross validation procedure. The procedure is implemented as follows. We begin by splitting
our full sample of T monthly observations into an initial test sample of t∗ = d0.6T e observations,
which are used to estimate the model. Beginning at t = t∗, we therefore obtain an estimate
Êmt [Rxit+h], where Êmt [·] refers to a forecast conditional on m sieve basis functions and information
up to time-t. The estimate is then compared to the realized Rxit+h. We then keep incrementing
t by one month and re-estimating the model, each time obtaining a forecast Êmt [Rxit+h] that we
compare against the pseudo out-of-sample realization Rxit+h. The number of sieve basis functions
selected solves

arg min
m

T−h∑
t=t∗

(
Rxt+h − Êmt [Rxt+h]

)2
, (A.1)

where we have stacked the test asset excess returns, Rxt+h = (Rx1
t+h, . . . , Rx

n
t+h)′.

In the paper, the number of B-spline basis functions m equals s+ k− 1, where s is the assumed
order of the spline and k is the number of interior knots. Following the terminology in (Li and
Racine 2007, Chapter 15) or (Friedman et al. 2009, Chapter 5), the order of the spline is one plus
the order of the piecewise polynomial between knots. For example, s = 2 corresponds to a piecewise
linear spline, and s = 4 corresponds to a piecewise cubic spline. Under de Boor’s algorithm, a cubic
spline with 2 interior knots generates s + k = 4 + 2 = 6 basis functions. Because our regressions
include a constant term, we drop one of the basis functions (the one on the left boundary of the
support) to avoid multicollinearity. m in our setup therefore refers to the usual family of B-spline
basis functions s+ k minus the one dropped to accommodate the constant. In the sieve literature,
asymptotics for m→∞ typically assume that the spline order s is known and fixed, so that m→∞
is understood to mean that the number of knots k → ∞ as the sample size grows (see also Chen
(2007)). However, the sieve literature provides little guidance on the selection of s in practice. To
remain agnostic, we therefore allow the search for the optimal m to consider both cubic and fourth
order splines. It turns out that fixing s to be 4 or 5 ex ante or allowing cross validation to choose
either one has no material impact on our results for both the full sample SRR regression and the pre-
crisis sample. To illustrate this form of robustness, Table 9 below shows our main SRR regression
table with s fixed at 4 and m ranging from {0, 1, . . . , 5}, for a total of 6 different basis function
configurations. The table confirms that under fixed s, the nonlinear specification is still significantly
rejected across assets and forecast horizons, and that Treasuries and equities have differently signed
loadings on φ(v). For completeness, we also report the results on the pre-crisis sample in Table 10.
For our simulations and out-of-sample results, we perform cross-validations several thousand times.
To ease the computational burden while allowing s to be 4 or 5, we therefore cap the number of
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interior knots and allow k to range over {0, 1, 2}, for a total of 2 × 3 = 6 different basis function
configurations. Our Monte Carlo results below verify that performing cross-validations over this
range of m has good finite sample coverage properties for a variety of nonlinear functions while at
the same time being computationally manageable.

Once we obtain the estimators as described in Section 3.2, we can then conduct inference based
on Theorem 1 constructing the test statistics as in equations (A.6) and (A.7). Following footnote
9, note that the variance estimator is computed under the null hypothesis, i.e., that we impose
the zero restrictions when calculating the estimator. As we discussed in Section 3.1 (see Footnote
6) we use critical values from the appropriate chi-square distribution rather than the standard
normal distribution implied by the results in Theorems 1 and 2. This is a small-sample correction
to improve the finite-sample properties of the inference procedure which we also employ in our
simulations described in the next section. Finally note that in Table 1 and Figures 2–3 we make
use of Hodrick (1992)’s variance estimator which is characterized in equations (1)–(8) of Hodrick
(1992).

A.1.2 Forecast Error Comparison

As mentioned in Section 3.4, we utilize forecast error comparisons as a robustness check to ensure
that our full-sample results are not an artifact of the flexibility of our nonparametric approach.
In this section, we implement the tests of equal predictive accuracy of Clark and West (2007) as a
further confirmation that the SRR regression estimates do not demonstrate signs of overfitting. The
Clark and West (2007) test statistic is appropriate for cases where the models being compared are
nested as they are in our setting. The test statistic compares the mean-squared errors between the
encompassing model (SRR regression) and the nested model (regression with only a constant) but
adds an adjustment term to appropriately center the test statistic. The intuition for this adjustment
term is that under the null hypothesis that the nested model is the true model, the encompassing
model will tend to have larger mean-square prediction errors because of the sampling uncertainty
induced by estimating parameters whose true value is zero. In our setting, this is further complicated
by the cross-sectional restrictions that we impose across assets. The nested model has equivalent
forecast errors whether estimated equation by equation or jointly. Thus, when the null hypothesis
holds, we are estimating parameters whose true value is zero but also imposing joint restrictions on
these parameters. Therefore there is an additional source of deviation from a properly centered test
statistic.

Tables 11, 12, and 13 display the outcomes from the Clark and West (2007) test applied to
horizons h of 6, 12, and 18 months, respectively. The null hypothesis is that the true model is
a mean-only model. The rows of each table correspond to our test assets whereas the columns
correspond to the Clark and West (2007) test statistic calculated using two different choices of
variance estimators across the three sample splits. In the first, third and fifth columns, the variance
is estimated assuming a parametric form, a moving average model with h−1 lags (denoted by MA(h-
1)) with all MA coefficients equal to unity.26 This can be thought of as the analog of the Hodrick

26For an MA(h-1) process based on white noise innovations (with variance η2), the long-run variance can
be shown to be η2 · h2. We then utilize a plug-in estimate of η2 to calculate the variance estimator.
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(1992) 1B standard errors in the out-of-sample testing setting of Clark and West (2007). Intuitively,
this estimator is motivated by the observation that the dominant source of variation under the null
hypothesis arises from the overlapping observations with known (and identical) coefficients. To our
knowledge, this variance estimator has not been applied in the context of the Clark and West (2007)
test statistic and may be of independent interest. In the second, fourth and sixth columns are the
results using the variance estimator of Hansen and Hodrick (1980) (denoted by HH). The Clark and
West (2007) procedure is based on a one-sided test and so we reject the null hypothesis for large
positive values of the test statistic. Below each test statistic in the table is the associated p-value
in parentheses.

For every sample split and each asset across all three horizons the test statistic is strictly positive.
The p-values are lower using Hansen and Hodrick (1980) standard errors than using the MA(h-1)-
based variance estimator. However, simulation results in Table 24 of the Appendix suggest that
while the MA(h-1) variance estimator has better size properties than Hansen and Hodrick (1980),
it often produces conservative inference (i.e., under-rejecting the null when it is true and so local
power is likely to be below nominal size).27 For h = 6 (Table 11) we find that p-values using HH
are generally between 1% and 5% whereas those using the MA(h-1) estimator are generally between
10% and 15%. A similar pattern emerges for h = 12 (Table 12) where we can formally reject the
mean-only model using HH and less so with MA(h-1). However, for a number of assets and sample
splits we are able to reject the mean-only model using either variance estimator. For h = 18 (Table
13) the results are weaker than in the other two horizons, although the test statistics remain positive
throughout. Along with the evidence presented in Table 5 these results show that the SRR model
produces reasonable out-of-sample forecasts in real time and so our full-sample results do not appear
to be an artifact of overfitting from the flexibility of our nonparametric approach.

Finally, we also report results comparing forecast errors of the SRR regression model to a model
which is linear in the VIX. Table 14 shows the RMSFEs and MAFEs whereas Tables 15–17 show
the results of the Clark and West (2007) test. Overall, these results are broadly in line with the
comparison to the mean-only model.

A.1.3 Theoretical Setup

As discussed in the main text we utilize the “reverse regression” approach of Hodrick (1992) in our
multivariate setting to ameliorate concerns about spurious inference induced by overlapping returns.
For a similar derivation for the univariate case see Wei and Wright (2013). Consider the multivariate
h-period long-horizon return regression of y(h)

t+h := yt+1 + yt+2 + · · ·+ yt+h on the predictor xt. The

best linear predictor is Ch = C
(
y

(h)
t+h, xt

)
V (xt)

−1. Similarly, for the multivariate h-period reverse

27Table 24 in Appendix A.2 reports simulation results showing the finite-sample properties of this variance
estimator against popular alternatives available in the literature and shows that the size control is better.
These simulation results are for h = 6 only as the computational burden of simulating out-of-sample estima-
tion with cross-validation at each period in the testing sample is substantial. In unreported results we have
confirmed using the data-generating process in Clark and West (2007, DGP 1) that the MA(h-1) variance
estimator controls size well although becomes more conservative in general as h grows, whereas popular
alternatives are considerably oversized.
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regression, the best linear predictor is C = C
(
yt+1, x

(h)
t

)
V
(
x

(h)
t

)−1
where x(h)

t := xt+xt−1 + · · ·+

xt−h. Then, if (yt, x
′
t)
′ is covariance stationary we have that C

(
y

(h)
t+h, xt

)
= C

(
yt+1, x

(h)
t

)
and so

Ch = CV
(
x

(h)
t

)
V (xt)

−1. Thus, the ith row of Ch has all elements equal to zero if and only if the
ith row of C has all elements equal to zero. Consequently, in our setting, tests of the null hypothesis
of no predictability of asset i in the forward regression can be conducted using the same test in the
reverse regression which formally justifies our empirical approach.

Now consider equation (3.4). For simplicity, the results in the Appendix are derived for the
case Fh = 0. The extension to the general case follows by similar derivations. The best lin-
ear predictor (pseudo-true value) in the forward regression has constant term a∗h with linear co-
efficient A∗h = b∗hγ

∗′
h . The corresponding pseudo-true value in the reverse regression is a∗ and

A∗ = A∗hV (Xm,t)V
(
X

(h)
m,t

)−1
=: b∗γ∗′. Under our assumptions, we have that b∗ = (1,b∗′0 )′ and

the pseudo-true value in both the forward and reverse regressions are of the reduced-rank form.
Note that the parameters a∗h, A∗h, etc. are a function of m; however, we suppress this dependence
for notational simplicity. Finally, define the pseudo-true value regression error from the reverse
regression as e∗t+1 := Rxt+1 − a∗ − b∗γ∗′X

(h)
m,t.

5



Table 9: Robustness: SRR Regression with Fixed B-spline Order: 1990 - 2014
This table verifies that the main results of the paper hold when the order of the B-spline is held fixed at
s = 4 and the number of interior knots ranges from 0 to 5.

Horizon h = 6

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT −0.01 1.00 1.70 1.00*** 0.59 1.00*** 0.05**−1.43***−0.01 0.18
cmt1 0.00 0.07* −0.11 −0.08*** −0.16 −0.21*** 0.00 0.04* 0.00** 0.02***
cmt2 0.01 0.09 −0.23 −0.15*** −0.25 −0.34*** 0.00 0.09* 0.00 0.02**
cmt5 0.03 0.04 −0.56 −0.36*** −0.45 −0.64***−0.02* 0.24** 0.01** 0.01
cmt7 0.04 0.04 −0.68 −0.45*** −0.51 −0.74***−0.03** 0.33** 0.02** 0.00
cmt10 0.05 −0.08 −0.71 −0.46*** −0.48 −0.72***−0.03** 0.40** 0.03*** 0.01
cmt20 0.08 −0.22 −0.91 −0.59*** −0.48 −0.80** −0.05** 0.53* 0.05***−0.04
cmt30 0.10 −0.52 −1.27 −0.81*** −0.62 −1.05***−0.07*** 0.72* 0.06***−0.06

Joint p-val 0.465 0.000 0.024
Bootstrap p-val 0.494 0.000 0.000

Horizon h = 12

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.03 1.00 0.64 1.00** 0.09 1.00*** 0.03**−0.70*** 0.00* 0.18
cmt1 0.00 0.11* −0.05 −0.10*** −0.08 −0.36*** 0.00 0.03** 0.00** 0.02***
cmt2 0.01 0.22 −0.08 −0.18*** −0.12 −0.57*** 0.00 0.05** 0.00 0.03***
cmt5 0.02 0.33 −0.18 −0.39*** −0.21 −1.03***−0.01 0.08* 0.01 0.03
cmt7 0.02 0.35 −0.23 −0.48*** −0.24 −1.23***−0.02* 0.12* 0.01** 0.02
cmt10 0.03 0.15 −0.22 −0.47*** −0.25 −1.25***−0.02** 0.13* 0.02** 0.03
cmt20 0.05 0.12 −0.31 −0.65** −0.27 −1.52** −0.04** 0.16 0.03*** 0.00
cmt30 0.06 −0.17 −0.44 −0.88** −0.33 −1.92** −0.05** 0.21 0.04***−0.01

Joint p-val 0.456 0.002 0.002
Bootstrap p-val 0.472 0.038 0.000

Horizon h = 18

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.03 1.00 0.44 1.00** −0.03 1.00** 0.02**−0.59*** 0.01 0.18
cmt1 0.01 0.07 −0.04 −0.13*** −0.06 −0.60*** 0.00 0.04*** 0.00** 0.02***
cmt2 0.01 0.19 −0.07 −0.24*** −0.10 −0.95*** 0.00 0.07***−0.01 0.03***
cmt5 0.02 0.36 −0.14 −0.48** −0.18 −1.65***−0.01 0.11** 0.00 0.03**
cmt7 0.02 0.38 −0.16 −0.56** −0.19 −1.87***−0.01* 0.14** 0.00 0.03*
cmt10 0.03 0.23 −0.15 −0.52** −0.20 −1.90***−0.01* 0.15** 0.01* 0.04
cmt20 0.04 0.29 −0.19 −0.69* −0.20 −2.16* −0.02* 0.15 0.02** 0.01
cmt30 0.05 0.04 −0.28 −0.91** −0.24 −2.63** −0.03** 0.18 0.03** 0.00

Joint p-val 0.665 0.052 0.027
Bootstrap p-val 0.662 0.071 0.001
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Table 10: Robustness: SRR Regression with Fixed B-spline Order: 1990 - 2007
This table verifies that the main results of the paper hold when the order of the B-spline is held fixed at
s = 4 and the number of interior knots ranges from 0 to 5.

Horizon h = 6

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.03 1.00 0.72 1.00** 0.25 1.00 −0.03 −0.84* 0.00 0.12
cmt1 0.00 0.23** −0.09 −0.16*** −0.15 −0.59*** 0.01 0.03 0.00* 0.03***
cmt2 0.00 0.29 −0.16 −0.28*** −0.22 −0.92*** 0.01 0.10* 0.00 0.03***
cmt5 0.01 0.30 −0.31 −0.53*** −0.34 −1.57*** 0.00 0.25* 0.01 0.03*
cmt7 0.03 0.18 −0.36 −0.62*** −0.35 −1.75***−0.01 0.31* 0.02 0.02
cmt10 0.04 −0.23 −0.37 −0.62** −0.32 −1.74***−0.03 0.36* 0.02* 0.02
cmt20 0.06 −0.16 −0.42 −0.72** −0.31 −1.95** −0.05 0.46** 0.03**−0.01
cmt30 0.05 −0.27 −0.51 −0.85* −0.35 −2.25** −0.06 0.58** 0.04**−0.03

Joint p-val 0.045 0.000 0.003
Bootstrap p-val 0.086 0.005 0.002

Horizon h = 12

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.09 1.00 0.46 1.00* −0.01 1.00 −0.03 −0.52* 0.00 0.16
cmt1 0.00 −2.09** −0.08 −0.23*** −0.12 3.25*** 0.00 0.03 0.00 0.03***
cmt2 0.00 −3.21* −0.13 −0.40*** −0.18 5.27*** 0.00 0.07* 0.00 0.03***
cmt5 0.00 −4.69 −0.24 −0.72*** −0.31 9.32*** 0.00 0.12 0.01 0.04
cmt7 0.01 −3.98 −0.28 −0.84*** −0.33 10.77***−0.01 0.13 0.01* 0.03
cmt10 0.03 −0.71 −0.27 −0.80*** −0.33 11.27***−0.03* 0.14 0.02** 0.04
cmt20 0.04 −1.06 −0.33 −1.00*** −0.34 13.10***−0.04** 0.14 0.03** 0.01
cmt30 0.04 −1.15 −0.40 −1.17** −0.39 15.27***−0.06** 0.16 0.04*** 0.00

Joint p-val 0.010 0.000 0.002
Bootstrap p-val 0.036 0.024 0.033

Horizon h = 18

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.11 1.00 0.57 1.00*** 0.13 1.00 −0.03 −0.54** 0.00 0.13
cmt1 0.00 −0.36** −0.07 −0.17*** −0.11 −0.92*** 0.00 0.05** 0.00 0.03***
cmt2 0.00 −0.59 −0.13 −0.30*** −0.19 −1.55*** 0.00 0.11** 0.00 0.03***
cmt5 0.00 −0.93 −0.24 −0.55*** −0.35 −2.83*** 0.01* 0.19** 0.00 0.05*
cmt7 0.01 −0.86 −0.27 −0.63*** −0.39 −3.28*** 0.00** 0.22** 0.01* 0.05
cmt10 0.03 −0.25 −0.25 −0.59*** −0.40 −3.44***−0.01** 0.24** 0.01** 0.06
cmt20 0.04 −0.45 −0.29 −0.70*** −0.41 −3.81***−0.02** 0.20* 0.02** 0.03
cmt30 0.03 −0.43 −0.37 −0.85*** −0.50 −4.55***−0.03** 0.25** 0.03*** 0.03

Joint p-val 0.016 0.000 0.000
Bootstrap p-val 0.057 0.011 0.003
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Table 11: Clark-West Test: Mean-Only Model (h = 6)

This table compares out-of-sample forecast errors of the sieve reduced rank (SRR) regression against a mean-
only model. The forecast error comparison follows the procedure in Clark and West (2007), which examines
the difference in adjusted mean squared forecast errors (MSFEs) between nested models. We split our full
monthly sample from 1990:1 to 2014:9 into an in-sample period t = 1, . . . , (t∗−1) and an out-of-sample period
t = t∗, . . . , T . We then evaluate the SRR regression model and the running mean forecast Êt∗ [Rxit∗+h] and
compare it against the h = 6 realized compound return Rxit∗+h for i indexing the market and seven constant
maturity Treasury portfolios. The forecast errors of the nested model 1 (running mean) and encompassing
model 2 (SRRR regression model) are each squared, differenced, and adjusted

ft∗,t∗+h ≡
(
ε̂i1,t∗,t∗+h

)2 − (ε̂i2,t∗,t∗+h)2 +
(
ε̂i1,t∗,t∗+h − ε̂i2,t∗,t∗+h

)2
.

The table reports the t-statistic from regressions of ft,t+h on a constant for the out-of-sample period t =
t∗, . . . , T , where the model is re-estimated for each t on an expanding window. A positive number indicates
that adjusted, squared forecast errors of the nested model are larger than those of the encompassing SRR
regression model. MA(h-1) and HH denote test statistics formed using a parametric MA model or Hansen
and Hodrick (1980), respectively. The difference is statistically significant if the t-statistic on this intercept
exceeds one-sided standard critical values for 1% (***), 5% (**), and 10% (*) significance levels. Note that
for each new t = t∗, . . . , T , sieve expansion terms are chosen by a new cross-validation on the in-sample
portion of the data. Each panel of the table corresponds to a different in-sample starting period t∗/T = 0.4
(Nov-1999), t∗/T = 0.5 (May-2002), and t∗/T = 0.6 (Nov-2004).

Clark-West Forecast Error Comparison

In-sample Split In-sample Split In-sample Split
(t∗/T ) = 0.4 (t∗/T ) = 0.5 (t∗/T ) = 0.6

MA-h HH MA-h HH MA-h HH

MKT 1.18 1.70** 1.06 1.49* 1.09 1.59*
(0.12) (0.04) (0.15) (0.07) (0.14) (0.06)

cmt1 1.14 1.91** 1.09 1.84** 1.17 2.11**
(0.13) (0.03) (0.14) (0.03) (0.12) (0.02)

cmt2 1.26 2.23** 1.13 1.94** 1.32* 2.54***
(0.10) (0.01) (0.13) (0.03) (0.09) (0.01)

cmt5 1.19 2.18** 1.07 1.93** 1.18 2.31**
(0.12) (0.01) (0.14) (0.03) (0.12) (0.01)

cmt7 0.95 1.92** 0.86 1.75** 0.92 1.98**
(0.17) (0.03) (0.19) (0.04) (0.18) (0.02)

cmt10 0.97 2.10** 0.85 1.85** 0.91 2.09**
(0.17) (0.02) (0.20) (0.03) (0.18) (0.02)

cmt20 1.01 1.94** 0.94 1.80** 0.99 2.02**
(0.16) (0.03) (0.17) (0.04) (0.16) (0.02)

cmt30 1.27 1.94** 1.21 1.86** 1.25 2.01**
(0.10) (0.03) (0.11) (0.03) (0.11) (0.02)
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Table 12: Clark-West Test: Mean-Only Model (h = 12)

This table compares out-of-sample forecast errors of the sieve reduced rank (SRR) regression against a
mean-only model. The forecast error comparison follows the procedure in Clark and West (2007), which
examines the difference in adjusted mean squared forecast errors (MSFEs) between nested models. We split
our full monthly sample from 1990:1 to 2014:9 into an in-sample period t = 1, . . . , (t∗ − 1) and an out-of-
sample period t = t∗, . . . , T . We then evaluate the SRR regression model and the running mean forecast
Êt∗ [Rxit∗+h] and compare it against the h = 12 realized compound return Rxit∗+h for i indexing the market
and seven constant maturity Treasury portfolios. The forecast errors of the nested model 1 (running mean)
and encompassing model 2 (SRRR regression model) are each squared, differenced, and adjusted

ft∗,t∗+h ≡
(
ε̂i1,t∗,t∗+h

)2 − (ε̂i2,t∗,t∗+h)2 +
(
ε̂i1,t∗,t∗+h − ε̂i2,t∗,t∗+h

)2
.

The table reports the t-statistic from regressions of ft,t+h on a constant for the out-of-sample period t =
t∗, . . . , T , where the model is re-estimated for each t on an expanding window. A positive number indicates
that adjusted, squared forecast errors of the nested model are larger than those of the encompassing SRR
regression model. MA(h-1) and HH denote test statistics formed using a parametric MA model or Hansen
and Hodrick (1980), respectively. The difference is statistically significant if the t-statistic on this intercept
exceeds one-sided standard critical values for 1% (***), 5% (**), and 10% (*) significance levels. Note that
for each new t = t∗, . . . , T , sieve expansion terms are chosen by a new cross-validation on the in-sample
portion of the data. Each panel of the table corresponds to a different in-sample starting period t∗/T = 0.4
(Nov-1999), t∗/T = 0.5 (May-2002), and t∗/T = 0.6 (Nov-2004).

Clark-West Forecast Error Comparison

In-sample Split In-sample Split In-sample Split
(t∗/T ) = 0.4 (t∗/T ) = 0.5 (t∗/T ) = 0.6

MA-h HH MA-h HH MA-h HH

MKT 1.38* 1.79** 0.96 1.25 0.97 1.30*
(0.08) (0.04) (0.17) (0.11) (0.17) (0.10)

cmt1 0.87 1.07 0.71 0.83 1.10 1.31*
(0.19) (0.14) (0.24) (0.20) (0.14) (0.10)

cmt2 0.91 1.28 0.63 0.81 1.09 1.49*
(0.18) (0.10) (0.26) (0.21) (0.14) (0.07)

cmt5 1.29* 2.02** 1.09 1.51* 1.50* 2.27**
(0.10) (0.02) (0.14) (0.07) (0.07) (0.01)

cmt7 1.38* 2.31** 1.23 1.85** 1.57* 2.61***
(0.08) (0.01) (0.11) (0.03) (0.06) (0.00)

cmt10 1.37* 2.46*** 1.27 2.07** 1.60* 2.90***
(0.09) (0.01) (0.10) (0.02) (0.05) (0.00)

cmt20 1.48* 2.61*** 1.43* 2.45*** 1.55* 2.96***
(0.07) (0.00) (0.08) (0.01) (0.06) (0.00)

cmt30 1.50* 2.57*** 1.47* 2.55*** 1.49* 2.87***
(0.07) (0.01) (0.07) (0.01) (0.07) (0.00)
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Table 13: Clark-West Test: Mean-Only Model (h = 18)

This table compares out-of-sample forecast errors of the sieve reduced rank (SRR) regression against a
mean-only model. The forecast error comparison follows the procedure in Clark and West (2007), which
examines the difference in adjusted mean squared forecast errors (MSFEs) between nested models. We split
our full monthly sample from 1990:1 to 2014:9 into an in-sample period t = 1, . . . , (t∗ − 1) and an out-of-
sample period t = t∗, . . . , T . We then evaluate the SRR regression model and the running mean forecast
Êt∗ [Rxit∗+h] and compare it against the h = 18 realized compound return Rxit∗+h for i indexing the market
and seven constant maturity Treasury portfolios. The forecast errors of the nested model 1 (running mean)
and encompassing model 2 (SRRR regression model) are each squared, differenced, and adjusted

ft∗,t∗+h ≡
(
ε̂i1,t∗,t∗+h

)2 − (ε̂i2,t∗,t∗+h)2 +
(
ε̂i1,t∗,t∗+h − ε̂i2,t∗,t∗+h

)2
.

The table reports the t-statistic from regressions of ft,t+h on a constant for the out-of-sample period t =
t∗, . . . , T , where the model is re-estimated for each t on an expanding window. A positive number indicates
that adjusted, squared forecast errors of the nested model are larger than those of the encompassing SRR
regression model. MA(h-1) and HH denote test statistics formed using a parametric MA model or Hansen
and Hodrick (1980), respectively. The difference is statistically significant if the t-statistic on this intercept
exceeds one-sided standard critical values for 1% (***), 5% (**), and 10% (*) significance levels. Note that
for each new t = t∗, . . . , T , sieve expansion terms are chosen by a new cross-validation on the in-sample
portion of the data. Each panel of the table corresponds to a different in-sample starting period t∗/T = 0.4
(Nov-1999), t∗/T = 0.5 (May-2002), and t∗/T = 0.6 (Nov-2004).

Clark-West Forecast Error Comparison

In-sample Split In-sample Split In-sample Split
(t∗/T ) = 0.4 (t∗/T ) = 0.5 (t∗/T ) = 0.6

MA-h HH MA-h HH MA-h HH

MKT 1.20 1.64* 0.54 0.91 0.58 1.02
(0.11) (0.05) (0.29) (0.18) (0.28) (0.15)

cmt1 0.71 1.24 0.60 1.00 0.78 1.21
(0.24) (0.11) (0.27) (0.16) (0.22) (0.11)

cmt2 0.73 1.63* 0.45 0.94 0.71 1.41*
(0.23) (0.05) (0.33) (0.17) (0.24) (0.08)

cmt5 0.92 2.62*** 0.63 1.57* 0.87 1.96**
(0.18) (0.00) (0.26) (0.06) (0.19) (0.03)

cmt7 0.94 3.88*** 0.70 2.39*** 0.88 2.72***
(0.17) (0.00) (0.24) (0.01) (0.19) (0.00)

cmt10 0.98 3.12*** 0.84 2.37*** 0.97 2.46***
(0.16) (0.00) (0.20) (0.01) (0.17) (0.01)

cmt20 1.15 2.70*** 1.05 2.49*** 1.05 2.34***
(0.13) (0.00) (0.15) (0.01) (0.15) (0.01)

cmt30 1.30* 4.09*** 1.22 4.56*** 1.15 4.38***
(0.10) (0.00) (0.11) (0.00) (0.13) (0.00)
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Table 14: Forecast Error Comparison: Linear Model

This table compares out-of-sample forecast errors of the sieve reduced rank (SRR) regression against a linear
VIX model. We split our full monthly sample from 1990:1 to 2014:9 into an in-sample period t = 1, . . . , (t∗−1)
and an out-of-sample period t = t∗, . . . , T . We then evaluate the SRR regression model and the linear VIX
forecast Êt∗ [Rxit∗+h] and compare it against the h ∈ {6, 12, 18} realized compound return Rxit∗+h for i
indexing the market and seven constant maturity Treasury portfolios. We report the log of the ratio of
unadjusted root MSFEs and mean absolute forecast errors (MAFEs), where the linear VIX model is in
the denominator. Note that for each new t = t∗, . . . , T , sieve expansion terms are chosen by a new cross-
validation on the in-sample portion of the data. Each panel of the table corresponds to a different in-sample
starting period t∗/T = 0.4 (Nov-1999), t∗/T = 0.5 (May-2002), and t∗/T = 0.6 (Nov-2004).

Forecast Error Comparison

In-sample Split In-sample Split In-sample Split
(t∗/T ) = 0.4 (t∗/T ) = 0.5 (t∗/T ) = 0.6

Log Ratio of RMSFEs, MAFEs (h=6)

RMSFE MAFE RMSFE MAFE RMSFE MAFE
MKT 0.00 0.00 0.03 0.03 0.02 0.01
cmt1 0.21 0.06 0.25 0.08 0.29 0.08
cmt2 0.18 0.07 0.24 0.09 0.26 0.07
cmt5 0.07 0.01 0.10 0.02 0.09 −0.01
cmt7 0.03 −0.01 0.04 0.00 0.03 −0.03
cmt10 0.00 −0.03 0.01 −0.02 −0.01 −0.05
cmt20 −0.02 −0.03 −0.01 −0.03 −0.02 −0.04
cmt30 −0.01 −0.02 −0.01 −0.02 −0.01 −0.03

Log Ratio of RMSFEs, MAFEs (h=12)

RMSFE MAFE RMSFE MAFE RMSFE MAFE
MKT −0.03 0.01 −0.04 0.02 −0.04 0.03
cmt1 0.06 0.04 0.06 0.02 0.00 −0.02
cmt2 0.07 0.07 0.09 0.09 0.02 0.03
cmt5 0.00 −0.01 0.03 0.01 −0.06 −0.10
cmt7 −0.01 −0.03 0.00 −0.02 −0.06 −0.10
cmt10 −0.04 −0.07 −0.03 −0.06 −0.09 −0.15
cmt20 −0.05 −0.07 −0.05 −0.08 −0.08 −0.13
cmt30 −0.07 −0.06 −0.07 −0.08 −0.09 −0.11

Log Ratio of RMSFEs, MAFEs (h=18)

RMSFE MAFE RMSFE MAFE RMSFE MAFE
MKT 0.00 0.03 −0.01 0.04 0.01 0.06
cmt1 0.06 0.03 0.06 0.03 0.02 0.00
cmt2 0.08 0.08 0.11 0.11 0.06 0.09
cmt5 0.06 0.04 0.09 0.09 0.04 0.03
cmt7 0.04 0.04 0.07 0.08 0.03 0.02
cmt10 0.00 0.01 0.02 0.04 −0.01 −0.01
cmt20 −0.03 −0.03 −0.02 −0.02 −0.03 −0.03
cmt30 −0.05 −0.05 −0.04 −0.05 −0.05 −0.05



Table 15: Clark-West Test: Linear Model (h = 6)

This table compares out-of-sample forecast errors of the sieve reduced rank (SRR) regression against a
linear VIX model. The forecast error comparison follows the procedure in Clark and West (2007), which
examines the difference in adjusted mean squared forecast errors (MSFEs) between nested models. We
split our full monthly sample from 1990:1 to 2014:9 into an in-sample period t = 1, . . . , (t∗ − 1) and an
out-of-sample period t = t∗, . . . , T . We then evaluate the SRR regression model and the linear VIX forecast
Êt∗ [Rxit∗+h] and compare it against the h = 6 realized compound return Rxit∗+h for i indexing the market
and seven constant maturity Treasury portfolios. The forecast errors of the nested model 1 (linear VIX) and
encompassing model 2 (SRR regression model) are each squared, differenced, and adjusted

ft∗,t∗+h ≡
(
ε̂i1,t∗,t∗+h

)2 − (ε̂i2,t∗,t∗+h)2 +
(
ε̂i1,t∗,t∗+h − ε̂i2,t∗,t∗+h

)2
.

The table reports the t-statistic from regressions of ft,t+h on a constant for the out-of-sample period t =
t∗, . . . , T , where the model is re-estimated for each t on an expanding window. A positive number indicates
that adjusted, squared forecast errors of the nested model are larger than those of the encompassing SRR
regression model. MA(h-1) and HH denote test statistics formed using a parametric MA model or Hansen
and Hodrick (1980), respectively. The difference is statistically significant if the t-statistic on this intercept
exceeds one-sided standard critical values for 1% (***), 5% (**), and 10% (*) significance levels. Note that
for each new t = t∗, . . . , T , sieve expansion terms are chosen by a new cross-validation on the in-sample
portion of the data. Each panel of the table corresponds to a different in-sample starting period t∗/T = 0.4
(Nov-1999), t∗/T = 0.5 (May-2002), and t∗/T = 0.6 (Nov-2004). Note that ÒUndÓ signifies a case where
the HH estimated variance is negative.

Clark-West Forecast Error Comparison

In-sample Split In-sample Split In-sample Split
(t∗/T ) = 0.4 (t∗/T ) = 0.5 (t∗/T ) = 0.6

MA-h HH MA-h HH MA-h HH

MKT 1.22 1.87** 0.90 1.36* 1.00 1.60*
(0.11) (0.03) (0.18) (0.09) (0.16) (0.05)

cmt1 0.34 1.32* 0.34 1.54* 0.39 3.64***
(0.37) (0.09) (0.37) (0.06) (0.35) (0.00)

cmt2 0.64 3.19*** 0.52 2.86*** 0.70 Und.
(0.26) (0.00) (0.30) (0.00) (0.24) (Und.)

cmt5 1.55* 2.39*** 1.40* 2.07** 1.58* 2.57***
(0.06) (0.01) (0.08) (0.02) (0.06) (0.01)

cmt7 1.17 1.97** 1.07 1.80** 1.15 2.05**
(0.12) (0.02) (0.14) (0.04) (0.12) (0.02)

cmt10 1.01 2.10** 0.93 1.94** 0.97 2.18**
(0.16) (0.02) (0.18) (0.03) (0.17) (0.01)

cmt20 1.05 1.93** 1.00 1.85** 1.06 2.09**
(0.15) (0.03) (0.16) (0.03) (0.15) (0.02)

cmt30 1.26 1.97** 1.21 1.91** 1.27 2.15**
(0.10) (0.02) (0.11) (0.03) (0.10) (0.02)
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Table 16: Clark-West Test: Linear Model (h = 12)

This table compares out-of-sample forecast errors of the sieve reduced rank (SRR) regression against a
linear VIX model. The forecast error comparison follows the procedure in Clark and West (2007), which
examines the difference in adjusted mean squared forecast errors (MSFEs) between nested models. We
split our full monthly sample from 1990:1 to 2014:9 into an in-sample period t = 1, . . . , (t∗ − 1) and an
out-of-sample period t = t∗, . . . , T . We then evaluate the SRR regression model and the linear VIX forecast
Êt∗ [Rxit∗+h] and compare it against the h = 12 realized compound return Rxit∗+h for i indexing the market
and seven constant maturity Treasury portfolios. The forecast errors of the nested model 1 (linear VIX) and
encompassing model 2 (SRR regression model) are each squared, differenced, and adjusted

ft∗,t∗+h ≡
(
ε̂i1,t∗,t∗+h

)2 − (ε̂i2,t∗,t∗+h)2 +
(
ε̂i1,t∗,t∗+h − ε̂i2,t∗,t∗+h

)2
.

The table reports the t-statistic from regressions of ft,t+h on a constant for the out-of-sample period t =
t∗, . . . , T , where the model is re-estimated for each t on an expanding window. A positive number indicates
that adjusted, squared forecast errors of the nested model are larger than those of the encompassing SRR
regression model. MA(h-1) and HH denote test statistics formed using a parametric MA model or Hansen
and Hodrick (1980), respectively. The difference is statistically significant if the t-statistic on this intercept
exceeds one-sided standard critical values for 1% (***), 5% (**), and 10% (*) significance levels. Note that
for each new t = t∗, . . . , T , sieve expansion terms are chosen by a new cross-validation on the in-sample
portion of the data. Each panel of the table corresponds to a different in-sample starting period t∗/T = 0.4
(Nov-1999), t∗/T = 0.5 (May-2002), and t∗/T = 0.6 (Nov-2004).

Clark-West Forecast Error Comparison

In-sample Split In-sample Split In-sample Split
(t∗/T ) = 0.4 (t∗/T ) = 0.5 (t∗/T ) = 0.6

MA-h HH MA-h HH MA-h HH

MKT 0.85 1.24 0.84 1.21 0.75 1.08
(0.20) (0.11) (0.20) (0.11) (0.23) (0.14)

cmt1 0.37 0.54 0.43 0.61 0.80 1.35*
(0.36) (0.30) (0.34) (0.27) (0.21) (0.09)

cmt2 0.42 0.65 0.36 0.52 0.89 1.63*
(0.34) (0.26) (0.36) (0.30) (0.19) (0.05)

cmt5 0.86 1.37* 0.71 1.05 1.07 1.79**
(0.20) (0.08) (0.24) (0.15) (0.14) (0.04)

cmt7 1.01 1.69** 0.87 1.36* 1.14 1.92**
(0.16) (0.05) (0.19) (0.09) (0.13) (0.03)

cmt10 1.27 2.20** 1.11 1.71** 1.41* 2.33***
(0.10) (0.01) (0.13) (0.04) (0.08) (0.01)

cmt20 1.30* 2.17** 1.21 1.95** 1.32* 2.28**
(0.10) (0.02) (0.11) (0.03) (0.09) (0.01)

cmt30 1.32* 2.28** 1.27 2.20** 1.31* 2.44***
(0.09) (0.01) (0.10) (0.01) (0.10) (0.01)
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Table 17: Clark-West Test: Linear Model (h = 18)

This table compares out-of-sample forecast errors of the sieve reduced rank (SRR) regression against a
linear VIX model. The forecast error comparison follows the procedure in Clark and West (2007), which
examines the difference in adjusted mean squared forecast errors (MSFEs) between nested models. We
split our full monthly sample from 1990:1 to 2014:9 into an in-sample period t = 1, . . . , (t∗ − 1) and an
out-of-sample period t = t∗, . . . , T . We then evaluate the SRR regression model and the linear VIX forecast
Êt∗ [Rxit∗+h] and compare it against the h = 18 realized compound return Rxit∗+h for i indexing the market
and seven constant maturity Treasury portfolios. The forecast errors of the nested model 1 (linear VIX) and
encompassing model 2 (SRR regression model) are each squared, differenced, and adjusted

ft∗,t∗+h ≡
(
ε̂i1,t∗,t∗+h

)2 − (ε̂i2,t∗,t∗+h)2 +
(
ε̂i1,t∗,t∗+h − ε̂i2,t∗,t∗+h

)2
.

The table reports the t-statistic from regressions of ft,t+h on a constant for the out-of-sample period t =
t∗, . . . , T , where the model is re-estimated for each t on an expanding window. A positive number indicates
that adjusted, squared forecast errors of the nested model are larger than those of the encompassing SRR
regression model. MA(h-1) and HH denote test statistics formed using a parametric MA model or Hansen
and Hodrick (1980), respectively. The difference is statistically significant if the t-statistic on this intercept
exceeds one-sided standard critical values for 1% (***), 5% (**), and 10% (*) significance levels. Note that
for each new t = t∗, . . . , T , sieve expansion terms are chosen by a new cross-validation on the in-sample
portion of the data. Each panel of the table corresponds to a different in-sample starting period t∗/T = 0.4
(Nov-1999), t∗/T = 0.5 (May-2002), and t∗/T = 0.6 (Nov-2004).

Clark-West Forecast Error Comparison

In-sample Split In-sample Split In-sample Split
(t∗/T ) = 0.4 (t∗/T ) = 0.5 (t∗/T ) = 0.6

MA-h HH MA-h HH MA-h HH

MKT 0.30 0.71 0.40 0.81 0.21 0.40
(0.38) (0.24) (0.35) (0.21) (0.42) (0.34)

cmt1 0.22 0.44 0.25 0.49 0.55 1.13
(0.41) (0.33) (0.40) (0.31) (0.29) (0.13)

cmt2 0.23 0.53 0.18 0.36 0.62 1.45*
(0.41) (0.30) (0.43) (0.36) (0.27) (0.07)

cmt5 0.51 1.45* 0.35 0.86 0.71 2.05**
(0.30) (0.07) (0.36) (0.19) (0.24) (0.02)

cmt7 0.62 2.45*** 0.43 1.49* 0.67 2.31**
(0.27) (0.01) (0.33) (0.07) (0.25) (0.01)

cmt10 0.89 2.80*** 0.64 1.77** 0.78 1.94**
(0.19) (0.00) (0.26) (0.04) (0.22) (0.03)

cmt20 1.01 2.68*** 0.88 2.28** 0.86 2.13**
(0.16) (0.00) (0.19) (0.01) (0.20) (0.02)

cmt30 1.16 3.36*** 1.06 3.24*** 0.98 2.93***
(0.12) (0.00) (0.15) (0.00) (0.16) (0.00)
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A.2 Simulation Results
A.2.1 Main Setup

We conduct Monte Carlo simulations to examine the finite-sample performance of the inference
procedures in Theorem 1. Our simulations focus on the sieve-reduced rank system

Rxit+h = aih + bih · φh (vt) + εit+h, (A.2)

proposed in equation (3.1) in the main text. Within the simulated environment, i = 1 indexes
the market excess return MKT , and i = 2, . . . , 8 indexes the seven constant-maturity Treasury
portfolios cmt1, cmt2, cmt5, cmt7, cmt10, cmt20, cmt30 we consider in the paper, for a total of 8
test assets.

The DGPs for these return series depend on the null hypothesis in question. Since H1,0 tests
the joint restriction that the VIX does not predict any of the test assets, we first simulate excess
returns under the DGP

Rxit+h = aih + εit+h, i = 1, . . . , 8 (A.3)

1,000 times and assume that the researcher instead runs regressions of the form (A.2). For example,
if the test of no predictability H1,0 is chosen to haven a nominal size of 5% and controls Type I
error, then the null of no predictability should be rejected among 5% of simulated samples.

To estimate regressions of the form in equation (A.2) inside the simulation environment, we
require a realistic data generating process (DGP) for vt = V IXt. To that end, we use results from
Van Tassel and Vogt (2016), who provide evidence that the term structure of variance swap rates is
affine in three factors: the level of the variance swap curve (PC1), its slope (PC2), and the level of
realized variance (RV). Because the VIX is the square-root of the annualized 1-month variance swap
rate multiplied by 100, simulating the three primitive variance factors produces a VIX. To be precise,
we follow Van Tassel and Vogt (2016) and assume that the standardized Xt = (RVt, PC1t, PC2t)
follows the VAR

Xt+1 = µ+ ΦXt + vt+1. (A.4)

Using their empirical estimates of µ,Φ, and the variance matrix of the error terms, the affine pricing
kernel and no-arbitrage arguments yield a V IXt = 100

√
A1 +B′1Xt, where A1 and B1 are functions

of these estimated parameters and the prices of risk. Figure 14 shows that this multi-component
approach can produce an empirically realistic VIX given an appropriate set of shocks.

We then proceed by simulating Gaussian shocks to the systems in equations (A.3) and (A.4)
jointly, matching the mean and covariance found in the data. This ensures that our simulated data
mimic the properties observed in the sample such as leverage effects. Figure 15 shows the residual
autocorrelations of this joint system as estimated from the data and shows them to be statistically
indistinguishable from white noise. We follow this feature in the simulations by not imposing an
autoregressive structure on the shocks. Note that for PC1, PC2, and RV, we are ignoring the first
stage estimation error on µ̂ and Φ̂ for simplicity in the calculation of the autocorrelation confidence
bands in Figure 15.

The simulation design for H2,0 requires adjustments. In particular, H2,0 tests the null hypothesis
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Figure 14: Diagnostics: Multi-Factor Model for VIX Dynamics

This figure plots the true VIX against the Van Tassel and Vogt (2016) multi-factor model for
VIX dynamics. In that model, VIX2 is an affine function of three factors, given by realized
variance, the level of variance swap term structure, and the slope of the variance swap term
structure, which evolve according to a vector autoregression. The figure shows that the three
factor model is an effective DGP for the VIX timeseries.
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Figure 15: Diagnostics: Multi-Factor Model Residuals

This figure plots autocorrelation functions of excess returns along with factor residuals from
the Van Tassel and Vogt (2016) three-factor VAR model for VIX dynamics. Dashed lines
denote 95% confidence bands.
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that asset i does not predict returns, but there is at least one asset j 6= i that does.28 Thus, the
simulation design for H2,0 requires us to specify a function φh(vt) on which bjh loads for some j 6= i.
To that end, we consider six different specifications for φh(vt), which we plot in Figure 16. The
top left panel of the figure shows a cubic polynomial sieve estimate obtained directly from an SRR
regression of our 8 test assets on lagged VIX. Beyond this data-determined φh, we also examine 5
other nonlinear functions to test various forms of non-monotonicities, concavities/convexities, and
multiple inflection points.

In simulating DGPs under the null H2,0, we make use of the relationship between SRR regression
loadings at the h-month horizon versus the 1-month horizon described in Section A.1.3 which allows
us to simulate one-step ahead returns calibrated from h-month ahead regressions.

A.2.2 Simulation Design under Heteroskedasticity

We also repeat each simulation exercise under heteroskedasticity. Thus, when simulating the shocks
to the joint system of excess returns (A.3) and volatility factors (A.4), we allow for a multivariate
GARCH-CCC structure in the return equations (see Bollerslev (1990)). The GARCH-CCC pa-
rameters are estimated from actual returns and variance factors, thereby mimicking the correlation
structure found in the data and, importantly, also preserving leverage effects between returns and
volatility. We chose not to estimate time-varying correlations for parsimony, given that our variance
factor observations start in only 1996. Following a referee’s advice, we specified the time-varying
volatilities in the GARCH process to be affine in the lagged V IXt−1. We found this parsimonious
specification to generate empirically realistic (in terms of moments and autocorrelations), and yet
numerically stable sample paths in the simulation.

A.2.3 Cross-Validation Procedures

For each simulation exercise, we examine two different cross-validation procedures to select the
number of sieve basis functions used to estimate φ. We refer to the first procedure as MSFE
cross-validation (described in Section A.1) and to the second procedure as leave-k-out. The MSFE
procedure selects the number of sieve basis functions that minimizes the out-of-sample mean-squared
error, where the observation left out is always at the end of the sample. We do this to preserve any
long-run dependencies in the data.

The leave-k-out cross-validation procedure leaves out k contiguous observations [i−k+ 1, . . . , i]
for i = k, . . . , T and sets those aside for out-of-sample evaluation.29 The remaining observations
are used to form the estimate Êmt [Rxit+h], which are then compared against the realizations Rxit+h
for t ∈ [i − k + 1, . . . , i]. For our simulations, we set k = 10 months to account for time series
dependencies in the DGP. Thus, the number of sieve basis functions selected via leave-k-out cross-

28Recall that the case where none of the assets predict returns is subsumed in test H1,0.
29Note that unlike the MSFE cross validation procedure, the sample left out of estimation in the leave-k-out

procedure is not necessarily at the end of the sample.
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Figure 16: Monte Carlo DGPs for φ(vix)

This figure plots the candidate DGPs used in the Monte Carlo simulations. The polynomial
function is φ(v) = a · v + b · v2 + c · v3, where the coefficients come from a sieve reduced
rank regression of the market and seven maturity-sorted Treasury portfolios on the VIX in
percent, using polynomial basis functions. The remaining functions are chosen to display
concavity, convexity, multiple inflection points, and multiple local extrema, with each func-
tion translated and scaled to fit in the VIX domain and to take bounded values over this
domain. The normal CDF is a · Ncdf (µ, σ) − b; the cube root is x1/3 − a; the exponential
is (exp(ax) − b)/c; the normal PDF is a · Npdf (µ, σ) − b; and the trigonometric function is
(cos(aπx+ π

2 ) + sin(bπx+ π
2 ))/c.
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validation solves

arg min
m

T∑
i=k

1

k

i∑
t=i−k+1

(
Rxt+h − Êmt [Rxt+h]

)2
. (A.5)

A.2.4 Results

Our simulation results are presented in Tables 18–23. Table 18 shows rejection rates for the joint
null hypothesis H1,0 of no predictability. Table 19 shows the empirical size for the test of the
null hypothesis H2,0 under MSFE cross-validation procedure, and Table 20 shows empirical size
under leave-k-out cross-validation for k = 10. Tables 21 through 23 repeat the exercise with the
heteroskedastic error structure described previously. All reported results are based on three common
choices for the nominal size of the test, namely, 1%, 5% and 10%. The tables below show that the
empirical size of our tests are very close to the empirical size across all of the different modeling
specifications.
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Table 18: Monte Carlo: Reverse Regression under the Joint Null

This table examines the finite sample performance of test H1,0 in Theorem 1. We simulate
1000 samples of excess returns under the joint null hypothesis H1,0 of no predictability. Each
sample represents a multivariate time series of eight different assets with sample mean and
covariance calibrated to excess returns to the equity market and seven constant maturity
Treasury portfolios cmt1, cmt2, cmt5, cmt7, cmt10, cmt20, cmt30. The variance estimator
V̂2 used to form the test statistic, T̂2, is constructed under the null hypothesis of no pre-
dictability. For each Monte Carlo simulation the order of sieve B-splines is chosen by MSFE
cross-validation, where the last observations is left out from a series of expanding-window
pseudo out-of-sample forecasts (first row). The second row reports results for leave-k-out
cross-validation, where blocks of size k = 10 are removed from estimation and are set aside
for out-of-sample evaluation.

Nominal Size: 1% 5% 10%

MSFE 0.010 0.052 0.107
Leave-k-out 0.010 0.053 0.113
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Table 19: Monte Carlo Rejection Frequencies: MSFE Cross-Validation

This table examines the finite sample performance of test H2,0 in Theorem 1. We simulate
1000 samples under the null hypothesis H2,0 that asset i does not predict returns (bihφ = 0),
but that the other assets do predict returns nonlinearly (bjhφ 6= 0 for j 6= i). The type of
nonlinearity φ is given by the DGPs in Figure 16. For each Monte Carlo simulation the
order of sieve B-splines is chosen by MSFE cross-validation, where the last observations is
left out from a series of expanding-window pseudo out-of-sample forecasts.

Nominal Size: 1% 5% 10% 1% 5% 10%

Polynomial Normal CDF

MKT 0.006 0.061 0.111 0.008 0.057 0.109
cmt1 0.015 0.062 0.115 0.017 0.065 0.129
cmt2 0.015 0.064 0.117 0.015 0.062 0.121
cmt5 0.009 0.051 0.106 0.011 0.055 0.112
cmt7 0.006 0.040 0.097 0.012 0.055 0.122
cmt10 0.017 0.065 0.111 0.010 0.049 0.103
cmt20 0.018 0.066 0.126 0.018 0.061 0.119
cmt30 0.010 0.044 0.087 0.014 0.071 0.123

Cube Root Exponential

MKT 0.017 0.056 0.097 0.014 0.059 0.127
cmt1 0.012 0.055 0.094 0.020 0.078 0.136
cmt2 0.010 0.056 0.106 0.018 0.067 0.122
cmt5 0.007 0.052 0.100 0.019 0.063 0.129
cmt7 0.009 0.044 0.096 0.017 0.062 0.113
cmt10 0.013 0.049 0.104 0.017 0.063 0.126
cmt20 0.011 0.057 0.110 0.021 0.067 0.128
cmt30 0.008 0.050 0.115 0.023 0.064 0.125

Normal PDF Cosine and Sine

MKT 0.011 0.050 0.107 0.013 0.070 0.113
cmt1 0.013 0.055 0.105 0.010 0.042 0.097
cmt2 0.013 0.052 0.089 0.010 0.051 0.100
cmt5 0.009 0.055 0.089 0.018 0.060 0.119
cmt7 0.010 0.049 0.111 0.014 0.063 0.108
cmt10 0.004 0.046 0.100 0.012 0.063 0.104
cmt20 0.009 0.053 0.114 0.016 0.066 0.116
cmt30 0.015 0.060 0.112 0.011 0.050 0.102
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Table 20: Monte Carlo Rejection Frequencies: Leave-k-Out Cross-Validation

This table examines the finite sample performance of test H2,0 in Theorem 1. We simulate
1000 samples under the null hypothesis H2,0 that asset i does not predict returns (bihφ = 0),
but that the other assets do predict returns nonlinearly (bjhφ 6= 0 for j 6= i). The type of
nonlinearity φ is given by the DGPs in Figure 16. For each Monte Carlo simulation the
order of sieve B-splines is chosen by leave-k-out cross-validation for k = 10.

Nominal Size: 1% 5% 10% 1% 5% 10%

Polynomial Normal CDF

MKT 0.015 0.052 0.104 0.016 0.064 0.128
cmt1 0.016 0.052 0.099 0.013 0.050 0.110
cmt2 0.007 0.064 0.117 0.019 0.063 0.106
cmt5 0.012 0.056 0.117 0.016 0.063 0.118
cmt7 0.015 0.071 0.121 0.011 0.052 0.103
cmt10 0.013 0.051 0.101 0.018 0.061 0.122
cmt20 0.013 0.052 0.113 0.014 0.063 0.125
cmt30 0.012 0.064 0.103 0.009 0.048 0.101

Cube Root Exponential

MKT 0.020 0.065 0.117 0.021 0.072 0.121
cmt1 0.016 0.051 0.101 0.024 0.077 0.130
cmt2 0.016 0.062 0.124 0.020 0.077 0.133
cmt5 0.013 0.054 0.111 0.016 0.068 0.128
cmt7 0.017 0.053 0.091 0.017 0.076 0.131
cmt10 0.013 0.047 0.103 0.025 0.078 0.139
cmt20 0.013 0.070 0.121 0.018 0.072 0.133
cmt30 0.012 0.057 0.114 0.011 0.060 0.122

Normal PDF Cosine and Sine

MKT 0.009 0.054 0.104 0.018 0.074 0.136
cmt1 0.010 0.045 0.105 0.016 0.056 0.100
cmt2 0.010 0.049 0.106 0.006 0.042 0.094
cmt5 0.016 0.054 0.102 0.016 0.050 0.112
cmt7 0.017 0.063 0.121 0.012 0.052 0.102
cmt10 0.014 0.049 0.110 0.010 0.051 0.097
cmt20 0.013 0.055 0.107 0.011 0.062 0.116
cmt30 0.013 0.062 0.111 0.012 0.056 0.101
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Table 21: Monte Carlo: Reverse Regression under the Joint Null and Het-
eroskedasticity

This table examines the finite sample performance of test H1,0 in Theorem 1. We simulate
1000 samples of excess returns under the joint null hypothesis H1,0 of no predictability. Each
sample represents a multivariate time series of eight different assets with sample mean and
covariance calibrated to excess returns to the equity market and seven constant maturity
Treasury portfolios cmt1, cmt2, cmt5, cmt7, cmt10, cmt20, cmt30. The variance estimator
V̂2 used to form the test statistic, T̂2, is constructed under the null hypothesis of no pre-
dictability. For each Monte Carlo simulation the order of sieve B-splines is chosen by MSFE
cross-validation, where the last observations is left out from a series of expanding-window
pseudo out-of-sample forecasts (first row). The second row reports results for leave-k-out
cross-validation, where blocks of size k = 10 are removed from estimation and are set aside
for out-of-sample evaluation.

Nominal Size: 1% 5% 10%

MSFE 0.003 0.046 0.097
Leave-k-out 0.007 0.058 0.109
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Table 22: Heteroskedasticity Monte Carlo: MSFE Cross-Validation

This table examines the finite sample performance of test H2,0 in Theorem 1. We simulate
1000 samples under the null hypothesis H2,0 that asset i does not predict returns (bihφ = 0),
but that the other assets do predict returns nonlinearly (bjhφ 6= 0 for j 6= i). The type of
nonlinearity φ is given by the DGPs in Figure 16. For each Monte Carlo simulation the
order of sieve B-splines is chosen by MSFE cross-validation, where the last observations is
left out from a series of expanding-window pseudo out-of-sample forecasts.

Nominal Size: 1% 5% 10% 1% 5% 10%

Polynomial Normal CDF

MKT 0.017 0.063 0.108 0.011 0.053 0.117
cmt1 0.013 0.060 0.110 0.010 0.058 0.106
cmt2 0.010 0.061 0.110 0.016 0.071 0.136
cmt5 0.016 0.054 0.107 0.021 0.067 0.127
cmt7 0.013 0.061 0.121 0.014 0.068 0.121
cmt10 0.018 0.069 0.129 0.021 0.079 0.139
cmt20 0.019 0.072 0.124 0.015 0.072 0.145
cmt30 0.011 0.061 0.126 0.018 0.063 0.117

Cube Root Exponential

MKT 0.022 0.072 0.132 0.024 0.085 0.142
cmt1 0.017 0.058 0.130 0.016 0.080 0.141
cmt2 0.016 0.072 0.127 0.018 0.067 0.137
cmt5 0.024 0.078 0.151 0.026 0.079 0.147
cmt7 0.018 0.077 0.133 0.016 0.076 0.152
cmt10 0.024 0.087 0.151 0.030 0.081 0.158
cmt20 0.017 0.077 0.139 0.018 0.081 0.144
cmt30 0.017 0.070 0.121 0.032 0.086 0.147

Normal PDF Cosine and Sine

MKT 0.013 0.072 0.130 0.019 0.061 0.115
cmt1 0.017 0.064 0.113 0.015 0.069 0.123
cmt2 0.010 0.061 0.116 0.013 0.067 0.125
cmt5 0.015 0.071 0.126 0.020 0.083 0.140
cmt7 0.014 0.060 0.108 0.023 0.067 0.121
cmt10 0.014 0.065 0.120 0.026 0.083 0.130
cmt20 0.024 0.080 0.142 0.023 0.079 0.144
cmt30 0.017 0.067 0.123 0.023 0.075 0.128
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Table 23: Heteroskedasticity Monte Carlo: Leave-k-Out Cross-Validation

This table examines the finite sample performance of test H2,0 in Theorem 1. We simulate
1000 samples under the null hypothesis H2,0 that asset i does not predict returns (bihφ = 0),
but that the other assets do predict returns nonlinearly (bjhφ 6= 0 for j 6= i). The type of
nonlinearity φ is given by the DGPs in Figure 16. For each Monte Carlo simulation the
order of sieve B-splines is chosen by leave-k-out cross-validation for k = 10.

Nominal Size: 1% 5% 10% 1% 5% 10%

Polynomial Normal CDF

MKT 0.015 0.052 0.095 0.009 0.061 0.125
cmt1 0.013 0.058 0.121 0.014 0.071 0.126
cmt2 0.015 0.055 0.115 0.025 0.072 0.122
cmt5 0.019 0.066 0.130 0.015 0.070 0.130
cmt7 0.015 0.060 0.116 0.014 0.070 0.136
cmt10 0.012 0.062 0.127 0.020 0.064 0.117
cmt20 0.014 0.055 0.108 0.019 0.076 0.119
cmt30 0.018 0.063 0.113 0.014 0.060 0.121

Cube Root Exponential

MKT 0.012 0.065 0.111 0.026 0.085 0.126
cmt1 0.019 0.074 0.147 0.026 0.077 0.142
cmt2 0.015 0.072 0.117 0.023 0.076 0.133
cmt5 0.017 0.068 0.129 0.019 0.077 0.133
cmt7 0.016 0.067 0.127 0.030 0.097 0.166
cmt10 0.018 0.065 0.120 0.027 0.096 0.147
cmt20 0.016 0.072 0.127 0.025 0.100 0.154
cmt30 0.019 0.078 0.128 0.032 0.094 0.169

Normal PDF Cosine and Sine

MKT 0.013 0.068 0.129 0.020 0.072 0.134
cmt1 0.008 0.048 0.103 0.033 0.096 0.155
cmt2 0.019 0.076 0.132 0.020 0.068 0.120
cmt5 0.023 0.081 0.136 0.020 0.082 0.146
cmt7 0.015 0.067 0.130 0.019 0.072 0.143
cmt10 0.017 0.070 0.134 0.016 0.064 0.126
cmt20 0.018 0.075 0.134 0.019 0.073 0.132
cmt30 0.016 0.065 0.124 0.018 0.064 0.117
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Table 24: Monte Carlo: Test of Equal Predictive Accuracy

This table examines the finite sample performance of the Clark and West (2007) test statistic for h = 6. We
simulate 1000 samples of excess returns under the joint null hypothesis H1,0 of no predictability. Each sample
represents a multivariate time series of eight different assets with sample mean and covariance calibrated
to excess returns to the equity market and seven constant maturity Treasury portfolios cmt1, cmt2, cmt5,
cmt7, cmt10, cmt20, cmt30. The Clark and West (2007) test is implemented with three sample splits—40%,
50%, and 60%—and three variance estimators—the MA(h-1) approach discussed in Appendix A.1, Newey
and West (1987) with h lags, and Hansen and Hodrick (1980). For each Monte Carlo simulation the order
of sieve B-splines is chosen by MSFE cross-validation, where the last observations is left out from a series of
expanding-window pseudo out-of-sample forecasts.

Nominal Size: 1% 5% 10% 1% 5% 10% 1% 5% 10%
MA(h-1)

40% in-sample 50% in-sample 60% in-sample
MKT 0.007 0.069 0.189 0.006 0.066 0.172 0.003 0.052 0.154
cmt1 0.001 0.046 0.132 0.000 0.037 0.125 0.003 0.034 0.100
cmt2 0.000 0.034 0.123 0.002 0.023 0.102 0.001 0.028 0.073
cmt5 0.001 0.025 0.113 0.000 0.015 0.078 0.001 0.014 0.055
cmt7 0.001 0.024 0.108 0.000 0.017 0.068 0.001 0.019 0.057
cmt10 0.000 0.035 0.108 0.000 0.021 0.073 0.000 0.021 0.068
cmt20 0.001 0.032 0.122 0.001 0.026 0.094 0.000 0.030 0.082
cmt30 0.001 0.032 0.120 0.001 0.024 0.091 0.001 0.026 0.085
Newey-West

40% in-sample 50% in-sample 60% in-sample
MKT 0.173 0.376 0.525 0.165 0.343 0.451 0.156 0.325 0.439
cmt1 0.120 0.300 0.444 0.119 0.262 0.412 0.104 0.259 0.380
cmt2 0.115 0.292 0.443 0.102 0.249 0.378 0.097 0.230 0.361
cmt5 0.098 0.284 0.429 0.094 0.223 0.356 0.087 0.213 0.336
cmt7 0.100 0.281 0.435 0.093 0.234 0.376 0.086 0.207 0.329
cmt10 0.109 0.279 0.426 0.090 0.237 0.380 0.086 0.223 0.337
cmt20 0.116 0.294 0.439 0.099 0.248 0.384 0.107 0.230 0.361
cmt30 0.114 0.285 0.451 0.099 0.267 0.373 0.102 0.239 0.372
Hansen-Hodrick

40% in-sample 50% in-sample 60% in-sample
MKT 0.146 0.357 0.517 0.148 0.318 0.439 0.141 0.300 0.439
cmt1 0.105 0.295 0.439 0.102 0.250 0.392 0.098 0.243 0.372
cmt2 0.108 0.269 0.427 0.081 0.234 0.368 0.078 0.212 0.340
cmt5 0.075 0.263 0.432 0.070 0.197 0.339 0.062 0.181 0.310
cmt7 0.076 0.266 0.418 0.074 0.217 0.350 0.060 0.176 0.307
cmt10 0.086 0.267 0.406 0.074 0.208 0.352 0.060 0.199 0.309
cmt20 0.097 0.273 0.434 0.067 0.223 0.352 0.070 0.205 0.343
cmt30 0.099 0.267 0.427 0.075 0.240 0.349 0.077 0.220 0.352
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A.3 Robustness to Using Log of VIX
Our preferred specification, presented in the main text, allows returns to be driven by a common,
unknown function of the level of the VIX. Here we include an extension of our main empirical
results, in which we use the log of the VIX rather than the VIX level itself, as a robustness check.
In particular, Tables 25 and 26 report sieve reduced rank regressions of stock and bond returns
on lagged values of the log of VIX. The tables show that the log of VIX does not linearly predict
excess stock and bond returns, while a nonlinear transformation of the log of VIX does. The main
conclusions of the paper are therefore upheld in the log of VIX case. For reference, we also plot the
time series of φh(vt) for h = 6 under the log specification in Figure 17.

Figure 17: φh(vt) for vt = log(vixt)

This plot shows the common nonlinear function φh(vt) estimated from stocks and bonds for
vt = log(vixt). The forecast horizon is h = 6. The sample consists of monthly observations
from 1990:1 to 2014:9.
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Table 25: Nonlinear log(V IX) Predictability using the Cross-Section: 1990 - 2014
This table reports results from three predictive sieve reduced rank regressions (SRRR) for each of h = 6, 12,
and 18 month ahead forecasting horizons: (1) estimates of aih and bih from the SRRR Rxit+h = aih+bihvt+ε

i
t+h

of portfolio i’s excess returns on linear vt = log(vixt); (2) estimates of aih and bih from the SRRR Rxit+h =
aih + bihφh(vt) + εit+h of portfolio i’s excess return on the common nonparametric function φh(·) of vt; (3) the
same regression augmented with controls f i · (DEFt, V RPt, TERMt, DYt)

′ representing the default spread
(DEF, 10-year Treasury yield minus Moody’s BAA corporate bond yield), the variance risk premium (VRP,
realized volatility minus VIX), the term spread (TERM, 10-year minus 3-month Treasury yields), and the
S&P 500’s (log) dividend yield. The index i = 1, . . . , n ranges over the CRSP value-weighted market excess
return and the seven CRSP constant maturity Treasury excess returns corresponding to 1, 2, 5, 7, 10, 20,
and 30 years to maturity. The sieve reduced rank regressions are introduced in Section 2 in the text. ***,
**, and * denote statistical significance at the 1%, 5%, and 10% level for t-statistics on ai and f i and for the
χ2-statistic on biφh(·) derived in Theorem 1. The joint test p-value reports the likelihood that the sample
was generated from the model where Ah = 0.

Horizon h = 6

(1) Linear lVIX (2) Nonlinear lVIX (3) Nonlinear lVIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT −0.12 1.00 0.55 1.00** 0.03 1.00*** 0.05**−1.42***−0.01 0.19
cmt1 −0.02 0.14** −0.04 −0.10*** −0.05 −0.27*** 0.00 0.04** 0.00* 0.02***
cmt2 −0.02 0.21 −0.08 −0.20*** −0.08 −0.43*** 0.00 0.10** 0.00 0.02**
cmt5 −0.01 0.23 −0.18 −0.45*** −0.12 −0.79***−0.02** 0.25** 0.01** 0.01
cmt7 −0.01 0.24 −0.21 −0.54*** −0.13 −0.92***−0.03** 0.34** 0.02** 0.00
cmt10 0.03 0.04 −0.23 −0.57*** −0.12 −0.90***−0.04** 0.42** 0.03*** 0.01
cmt20 0.08 −0.11 −0.28 −0.72*** −0.08 −1.00** −0.05*** 0.54* 0.05***−0.04
cmt30 0.14 −0.42 −0.40 −0.97*** −0.09 −1.30***−0.08*** 0.74* 0.06***−0.06

Joint p-val 0.228 0.005 0.005
Bootstrap p-val 0.274 0.009 0.000

Horizon h = 12

(1) Linear lVIX (2) Nonlinear lVIX (3) Nonlinear lVIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.00 1.00 0.30 1.00* −0.07 1.00** 0.02**−0.68*** 0.00* 0.19
cmt1 −0.01 0.32** −0.02 −0.14*** −0.03 −0.55*** 0.00 0.04*** 0.00** 0.02***
cmt2 −0.03 0.62* −0.04 −0.26*** −0.05 −0.86*** 0.00 0.07*** 0.00 0.03***
cmt5 −0.05 1.05 −0.09 −0.55*** −0.08 −1.54***−0.01 0.10** 0.01 0.02
cmt7 −0.05 1.14 −0.11 −0.67** −0.08 −1.83***−0.02* 0.14* 0.01** 0.02
cmt10 −0.01 0.72 −0.11 −0.68** −0.09 −1.86** −0.02** 0.16* 0.02** 0.03
cmt20 −0.01 0.83 −0.15 −0.92** −0.07 −2.25** −0.04** 0.19 0.03*** 0.00
cmt30 0.01 0.50 −0.22 −1.22** −0.08 −2.83** −0.05** 0.25 0.04***−0.02

Joint p-val 0.313 0.061 0.007
Bootstrap p-val 0.351 0.042 0.002

Horizon h = 18

(1) Linear lVIX (2) Nonlinear lVIX (3) Nonlinear lVIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT −0.01 1.00 0.22 1.00 −0.11 1.00** 0.02**−0.58*** 0.01 0.18
cmt1 −0.01 0.20 −0.02 −0.19*** −0.03 −0.86*** 0.00 0.04*** 0.00** 0.02***
cmt2 −0.02 0.44 −0.03 −0.37** −0.04 −1.37*** 0.00 0.08***−0.01 0.02***
cmt5 −0.04 0.87 −0.08 −0.78** −0.08 −2.40***−0.01 0.12*** 0.00 0.03**
cmt7 −0.04 0.95 −0.09 −0.92** −0.08 −2.74***−0.01* 0.16** 0.00 0.03*
cmt10 −0.02 0.66 −0.09 −0.93** −0.09 −2.83***−0.02* 0.17** 0.01* 0.04*
cmt20 −0.02 0.86 −0.12 −1.26** −0.08 −3.30* −0.02* 0.17 0.02** 0.01
cmt30 0.00 0.60 −0.18 −1.64** −0.09 −4.05** −0.03** 0.21 0.03** 0.00

Joint p-val 0.573 0.630 0.064
Bootstrap p-val 0.578 0.105 0.002
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Table 26: Nonlinear log(V IX) Predictability using the Cross-Section: 1990 - 2007
This table reports results from three predictive sieve reduced rank regressions (SRRR) for each of h = 6, 12,
and 18 month ahead forecasting horizons: (1) estimates of aih and bih from the SRRR Rxit+h = aih+bihvt+ε

i
t+h

of portfolio i’s excess returns on linear vt = log(vixt); (2) estimates of aih and bih from the SRRR Rxit+h =
aih + bihφh(vt) + εit+h of portfolio i’s excess return on the common nonparametric function φh(·) of vt; (3) the
same regression augmented with controls f i · (DEFt, V RPt, TERMt, DYt)

′ representing the default spread
(DEF, 10-year Treasury yield minus Moody’s BAA corporate bond yield), the variance risk premium (VRP,
realized volatility minus VIX), the term spread (TERM, 10-year minus 3-month Treasury yields), and the
S&P 500’s (log) dividend yield. The index i = 1, . . . , n ranges over the CRSP value-weighted market excess
return and the seven CRSP constant maturity Treasury excess returns corresponding to 1, 2, 5, 7, 10, 20,
and 30 years to maturity. The sieve reduced rank regressions are introduced in Section 2 in the text. ***,
**, and * denote statistical significance at the 1%, 5%, and 10% level for t-statistics on ai and f i and for the
χ2-statistic on biφh(·) derived in Theorem 1. The joint test p-value reports the likelihood that the sample
was generated from the model where Ah = 0.

Horizon h = 6

(1) Linear lVIX (2) Nonlinear lVIX (3) Nonlinear lVIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.01 1.00 0.34 1.00* 0.09 1.00 −0.03 −0.82* 0.00 0.12
cmt1 −0.03* 0.57*** −0.04 −0.18*** −0.06 −0.68*** 0.01 0.02 0.00* 0.03***
cmt2 −0.04 0.79* −0.07 −0.33*** −0.08 −1.07*** 0.01 0.10* 0.00 0.03***
cmt5 −0.05 1.00 −0.13 −0.63*** −0.11 −1.83*** 0.00 0.24* 0.01 0.03*
cmt7 −0.03 0.86 −0.16 −0.75*** −0.09 −2.05***−0.02 0.30* 0.02 0.02
cmt10 0.03 0.08 −0.17 −0.78** −0.07 −2.05***−0.03 0.35* 0.02* 0.02
cmt20 0.03 0.31 −0.19 −0.92** −0.03 −2.37** −0.05 0.46** 0.03**−0.01
cmt30 0.03 0.20 −0.23 −1.07** −0.02 −2.72** −0.07* 0.57** 0.04**−0.03

Joint p-val 0.016 0.007 0.003
Bootstrap p-val 0.046 0.010 0.006

Horizon h = 12

(1) Linear lVIX (2) Nonlinear lVIX (3) Nonlinear lVIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.14 1.00 0.23 1.00 0.00 1.00 −0.03 −0.51* 0.00 0.16
cmt1 −0.03** −0.73*** −0.03 −0.30*** −0.05 2.31*** 0.00 0.03 0.00 0.03***
cmt2 −0.05 −1.16** −0.06 −0.54*** −0.08 3.76*** 0.01 0.07* 0.00 0.03***
cmt5 −0.08 −1.79 −0.12 −1.00*** −0.13 6.67*** 0.00 0.11* 0.01 0.04
cmt7 −0.07 −1.69 −0.14 −1.19*** −0.13 7.72***−0.01 0.13* 0.01* 0.03
cmt10 −0.01 −0.79 −0.14 −1.20*** −0.12 8.13***−0.03* 0.13* 0.02** 0.04
cmt20 −0.01 −1.04 −0.17 −1.48*** −0.09 9.44***−0.04** 0.13* 0.03** 0.01
cmt30 −0.03 −1.19 −0.22 −1.75** −0.11 11.04***−0.06** 0.16* 0.04** 0.00

Joint p-val 0.005 0.001 0.007
Bootstrap p-val 0.026 0.031 0.052

Horizon h = 18

(1) Linear lVIX (2) Nonlinear lVIX (3) Nonlinear lVIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.22 1.00 0.27 1.00*** 0.05 1.00 −0.03 −0.54** 0.00 0.14
cmt1 −0.03* −0.28** −0.03 −0.19*** −0.04 −1.01*** 0.00 0.05** 0.00 0.03***
cmt2 −0.05 −0.47* −0.05 −0.35*** −0.07 −1.72*** 0.00 0.10** 0.00 0.03***
cmt5 −0.08 −0.77 −0.10 −0.65*** −0.13 −3.15*** 0.01* 0.18** 0.00 0.05*
cmt7 −0.07 −0.77 −0.11 −0.76*** −0.14 −3.66*** 0.00* 0.21** 0.01* 0.04
cmt10 −0.02 −0.40 −0.11 −0.73*** −0.14 −3.86***−0.01** 0.23** 0.01** 0.06
cmt20 −0.03 −0.56 −0.12 −0.88*** −0.12 −4.28***−0.02** 0.19** 0.02** 0.03
cmt30 −0.04 −0.62 −0.17 −1.08*** −0.15 −5.13***−0.03** 0.24** 0.03*** 0.03

Joint p-val 0.009 0.000 0.000
Bootstrap p-val 0.044 0.019 0.002
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A.4 Block Bootstrap Results
In this section we provide results of a block bootstrap procedure.30 In this resampling exercise
we jointly block bootstrap only the equity and bond returns (i.e., we resample under the null of
no predictability). Under our technical assumptions, we can allow for higher-order dependence in
returns even under the null of no predictability. Thus, we want to choose an appropriate block
size to best capture the time series and cross-sectional dependencies in the raw returns. To this
end, we jointly bootstrap the returns and choose the optimal time series block size in a data-
driven way utilizing results of Politis and White (2004) and Patton et al. (2009). We choose
the maximum block length across assets suggested by the optimal choice derived in Politis and
White (2004). The optimal choice is seven for our sample. Each bootstrapped sample can then be
interpreted as representing a pseudo data set of raw returns. From here, our estimation procedure
follows that of the paper repeated on each bootstrapped sample. That is, for a given bootstrapped
sample, we first construct holding period returns for the particular forecast horizon h of interest.
Then, for the same bootstrapped sample, we estimate the model on the holding period returns and
construct the test statistic T̂1 using the reverse regression estimates based on the observed VIX and
control variables. It is important to emphasize that the observed VIX and control variables are
not resampled. By resampling under the null hypothesis we can then compare the bootstrap-based
distribution to that of the distribution we use to conduct inference in our main results. This exercise
is a natural counterpart to the simulation study from above, but has the additional advantage of
generating pseudo-data sets directly from the observed returns. Therefore it does not require explicit
assumptions on the underlying data generating process. Figures 18, 19, and 20, plot the comparison
of the bootstrapped test statistic distribution and the asymptotic distribution derived in Theorem
1 for the forecast horizons h = 6, 12, and 18 considered in the paper. The figures show a close
alignment between the bootstrapped distributions and the asymptotic distribution for each forecast
horizon.

30We thank our referees for suggesting this exercise.
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Figure 18: Block Bootstrapped Test Statistics T̂1 for h = 6

This figure shows block boostrapped test statistics of the null hypothesis H1,0 as a histogram
in blue. The bootstrap test statistics are obtained by jointly block resampling the equity
and Treasury returns. Next, T̂1 is formed using the observed VIX and control variables. In
red is the corresponding χ2 distribution. The bootstrap block size is seven and all results
are based on 10,000 replications. The sample consists of monthly observations from 1990:1
to 2014:9.
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Figure 19: Block Bootstrapped Test Statistics T̂1 for h = 12

This figure shows block boostrapped test statistics of the null hypothesis H1,0 as a histogram
in blue. The bootstrap test statistics are obtained by jointly block resampling the equity
and Treasury returns. Next, T̂1 is formed using the observed VIX and control variables. In
red is the corresponding χ2 distribution. The bootstrap block size is seven and all results
are based on 10,000 replications. The sample consists of monthly observations from 1990:1
to 2014:9.
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Figure 20: Block Bootstrapped Test Statistics T̂1 for h = 18

This figure shows block boostrapped test statistics of the null hypothesis H1,0 as a histogram
in blue. The bootstrap test statistics are obtained by jointly block resampling the equity
and Treasury returns. Next, T̂1 is formed using the observed VIX and control variables. In
red is the corresponding χ2 distribution. The bootstrap block size is seven and all results
are based on 10,000 replications. The sample consists of monthly observations from 1990:1
to 2014:9.
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A.5 Proofs
Assumptions and Preliminary Lemmas

To prove the theorem we need a number of assumptions. To impose conditions on time-series
dependence we utilize the conditions of Doukhan and Louhichi (1999) along with certain mixing
conditions (see, for example, Bradley (2007)). Before providing the assumptions let ‖·‖ denote the
Euclidean matrix norm, i.e., for a matrix A, ‖A‖ =

√
tr (A′A) and ‖·‖1 denote the L1 matrix norm,

i.e., for a n×m matrix A with (i, j) element Aij , ‖A‖1 =
∑m

i=1

∑n
j=1 |Aij |.

Assumption A.1. (i) (Rx′t, vt)t∈N are strictly stationary and satisfy equation (3.4) with E ‖(Rx′t, vt)‖
2+δ

bounded for some δ > 0 and satisfy
∥∥∥T−1

∑T
t=1 Rxt+1Rx′t+1 − E

[
Rxt+1Rx′t+1

]∥∥∥ = Op
(
T−ζ

)
for some ζ > 0.

(ii) vt has a density that is bounded and bounded away from zero on a compact support V

(iii) {vt}t∈N is algebraically beta-mixing at rate ϕ

(iv) The sequence m = m (T ) satisfies m → ∞ and there exists a ν > 0 and constants C1 and C2

such that C1T
1/ν ≤ m ≤ C2T

1/ν and ν < ϕ(1+ε)
1+ϕ for some ε > 0

(v) Let ξm,t := vec
(
e∗t X̃

(h)′
m,t−1

)
and FL the class of bounded Lipschitz functions. Then {ξm,t}t∈N is

(ϑ,FL, ψ)-weak dependent in the sense that there exists a sequence {ϑu}u∈N such that ϑu → 0

when u → 0 and for any `1-tuple (t1, . . . , t`1) and any `2-tuple
(
t′1, . . . , t

′
`2

)
with t1 ≤ · · · ≤

t`1 < t`1 + u = t′1 ≤ · · · ≤ t′`2∣∣∣C(f (ξm,t1 , . . . , ξm,t`1) , g (ξm,t′1 , . . . , ξm,t′`2))∣∣∣ ≤ Lip (f) Lip (g)ω (`1, `2)ϑu,

where ω : N2 7→ [0,∞), f ∈ FL : R`1 7→ R, g ∈ FL : R`2 7→ R, and

Lip (h) = sup
y1 6=y2

|h (y1)− h (y2)|
‖y1 − y2‖1

.

ξm,t also satisfies E
[
ξ′m,tξm,s

]
= 0 for s 6= t and

Tm9/2 sup
t∈{1,...,T},f,g∈FL

∣∣∣C(f (ξm,t) , g
(
ξm,1, . . . , ξm,t−1, ξm,t+1, . . . , ξm,t′`2

))∣∣∣→ 0.

(vi) Let ςm,t := vech
(
ξm,tξ

′
m,t

)
. Then ςm,t is uniform mixing with mixing coefficients {κj} which

satisfy limJ→∞ J
6ν−1UJ = C <∞ where UJ =

∑J
j=1 κ

1/2
j .

(vii) Let Σ (vt) = E
[
e∗t+1e

∗′
t+1

∣∣ vt]. There exists a nonrandom, positive definite matrix Σ such that
Σ (vt)−Σ is positive semi-definite and λmin (Σ) ≥ c > 0 for some c.
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(viii) φh (·) belongs to a Holder space of smoothness p ≥ 1 on the domain V

Define Ωm ≡ E
[
X̃

(h)
m,tX̃

(h)′
m,t

]
where X̃(h)

m,t =
(

1, X
(h)′
m,t

)′
. Also define Ω̂m,T = T−1

∑T
t=1 X̃

(h)
m,tX

(h)′
m,t

and let κm,n be the mn × mn commutation matrix which satisfies vec(L′) = κm,nvec (L) for an
m× n matrix L. It will also be convenient to define SX =

[
0m×1 Im

]
so that X(h)

m,t = SXX̃
(h)
m,t and

let sd,g be the d× 1 unit vector with a one for the gth element. In addition define

Γm := E
[
vec
(
e∗t+1X̃

(h)′
m,t

)
vec
(
e∗t+1X̃

(h)′
m,t

)′]
= E

[(
X̃

(h)
m,tX̃

(h)′
m,t ⊗ E

[
e∗t+1e

∗′
t+1

∣∣ vt])] .
Also note that all limits are taken as T → ∞ and C is a generic positive constant. To simplify
notation, note that all derivations are on the sequence of events where the minimum eigenvalues of
Ω̂m,T , Γ̂m,T and Ŵ are bounded away from zero. Based on our results these conditions hold with
probability approaching one.

Before proceeding, we will list a number of useful results that we will use throughout. The proofs
rely on two technical results obtained in Chen and Christensen (2015). Recall that the B-spline
basis is X̃(h)

m,t = X̃
(h)
m (vt).

sup
vt∈V

∥∥∥X̃m,t

∥∥∥ = O
(
m1/2

)
, (CC1)

∥∥∥Ω
−1/2
m,t Ω̂m,tΩ

−1/2
m,t − Im+1

∥∥∥ = Op

(√
T−ϕ/(1+ϕ)m log (m)

)
. (CC2)

Then we have the following lemma.

Lemma 3. Let Assumption A.1 hold. Then,

(i)
∥∥∥Ω̂m,T − Ωm

∥∥∥ = Op

(√
T−ϕ/(1+ϕ)m log (m)

)
;

(ii) V (Rxt+1)− E
[
e∗t+1e

∗′
t+1

]
≥ 0 in a positive semi-definite sense;

(iii)
∥∥∥D̂ols −D∗

∥∥∥ = Op
(
m1/2T−1/2

)
where D =

[
a bγ′

]
;

(iv) supv∈V

∥∥∥(D̂ols −D∗
)
X̃

(h)
m (v)

∥∥∥ = Op
(
mT−1/2

)
;

(v) E
[
‖e∗t ‖

2+%
]
≤ Cm2+% for % ≤ δ;

(vi) E
∣∣∣γ∗′X̃(h)

m,t

∣∣∣ < C

(vii) E
∥∥∥b∗γ∗′X̃(h)

m,t

∥∥∥ < C

(viii)
∥∥∥T−1

∑T
t=1 vec

(
ξm,t+1ξ

′
m,t+1 − Γm

)∥∥∥ = Op

(√
T 6ν−1UT

)
for δ ≥ 2 ;
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(ix)
∥∥∥Γ̂m,T − Γm

∥∥∥ = Op

(√
T 6ν−1UT

)
+Op

(
m2T−1/2

)
for δ ≥ 2.

Proof of Lemma 3 (i) follows by CC2. (ii) follows by properties of the best linear predictor
since b∗γ∗′V

(
X

(h)
m,t

)
γ∗b∗′ ≥ 0 in a positive semi-definite sense. Next, consider (iii). Let 1Ω,T be

an indicator of the event that λmin

(
Ω
−1/2
m,t Ω̂m,TΩ

−1/2
m,t

)
≤ 1

2 . By (i). Note that 1Ω,T = 0 with

probability approaching one. Thus,
∥∥∥D̂ols −D∗

∥∥∥ = (1− 1Ω,T )
∥∥∥D̂ols −D∗

∥∥∥+ op (1) and

(1− 1Ω,T )
∥∥∥D̂ols −D∗

∥∥∥ ≤ (1− 1Ω,T )λmax

(
Ω̂−1
m,T

)∥∥∥∥T−1
∑T

t=1
e∗t X̃

(h)′
m,t−1Ω̂−1

m,T

∥∥∥∥ .
Then,

∥∥∥T−1
∑T

t=1 e
∗
t X̃

(h)′
m,t−1

∥∥∥2
= Op

(
mT−1

)
by Markov’s inequality, (ii), and since

E
∥∥∥∥T−1

∑T

t=1
e∗t+1X̃

(h)′
m,t

∥∥∥∥2

= T−2
∑T

t=1
E
[∥∥∥X̃(h)′

m,t

∥∥∥2 ∥∥e∗t+1

∥∥2
]
≤ CmT−1.

Next, (iv) follows since

sup
v∈V

∥∥∥(D̂ols −D∗
)
X̃(h)
m (vt)

∥∥∥ ≤ C sup
v∈V

∥∥∥X̃(h)
m (v)

∥∥∥∥∥∥D̂ols −D∗
∥∥∥ ≤ CmT−1/2,

by CC1 and (iii). (v) follows by Minkowski’s inequality since

(
E
[∥∥e∗t+1

∥∥2+%
]) 1

2+% ≤
(
E
[
‖Rxt+1‖2+%

]) 1
2+%

+

(
E
[∥∥∥D∗X̃(h)

m,t

∥∥∥2+%
]) 1

2+%

,

and
∥∥∥D∗X̃(h)

m,t

∥∥∥2
≤ Cm2. For (vi),

γ∗′X̃
(h)
m,t = s′n,1Rxt+1 − s′n,1a∗ − s′n,1e∗t+1,

so that

E
∣∣∣γ∗′X̃(h)

m,t

∣∣∣2 ≤ C ·E ∣∣s′n,1Rxt+1

∣∣2 +C ·
∣∣s′n,1a∗∣∣2 +C·E

∣∣s′n,1e∗t+1

∣∣2 ≤ C ·E ∣∣s′n,1Rxt+1

∣∣2 +C ·
∣∣s′n,1a∗∣∣2 .

(vii) follows by similar steps. Next consider (viii). We have that

E
∥∥∥∥T−1

∑T

t=1
vec
(
ξm,t+1ξ

′
m,t+1 − Γm

)∥∥∥∥2

= T−2
∑T

t=1
E
[
tr
(

vec
(
ξm,t+1ξ

′
m,t+1 − Γm

)
vec
(
ξm,tξ

′
m,t − Γm

)′)]
+T−2E

[∑
1≤|j|≤T

∑
{t:t,t+j∈{1,...,T}}

tr
(

vec
(
ξm,t+1ξ

′
m,t+1 − Γm

)
vec
(
ξm,t+1+jξ

′
m,t+1+j − Γm

)′)] .
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The first term is

T−2
∑T

t=1
E
[
vec
(
ξm,t+1ξ

′
m,t+1 − Γm

)′
vec
(
ξm,t+1ξ

′
m,t+1 − Γm

)]
≤ T−1E

[
tr
(

vec
(
ξm,t+1ξ

′
m,t+1

)
vec
(
ξm,t+1ξ

′
m,t+1

)′)]
= T−1E

[∥∥∥X̃(h)
m,t

∥∥∥4 ∥∥e∗t+1

∥∥4
]

≤ CT−1m6,

by CC1 and (v). This term is o (1) under our assumptions. The second term is

T−2E
[∑

1≤|j|≤T

∑
{t:t,t+j∈{1,...,T}}

vec
(
ξm,t+1ξ

′
m,t+1 − Γm

)′
vec
(
ξm,t+1+jξ

′
m,t+1+j − Γm

)]
≤ 2T−1

∑
1≤|j|≤T

κ1/2
j E

∑n(m+1)

`=1

∣∣∣s′n(m+1),`vec
(
ξm,t+1ξ

′
m,t+1 − Γm

)∣∣∣2
= 2T−1

∑
1≤|j|≤T

κ1/2
j E

[
vec
(
ξm,t+1ξ

′
m,t+1 − Γm

)′
vec
(
ξm,t+1ξ

′
m,t+1 − Γm

)]
≤ CT−1

∑
1≤|j|≤T

κ1/2
j m6

≤ CT 6ν−1
∑

1≤j≤T
κ1/2
j ,

by properties of uniform mixing variables. Finally, for (ix) we have that Γ̂m,T = A1 + A2 + A′2 +

A3,where

A1 = T−1
∑T

t=1
vec
(
e∗t+1X̃

(h)′
m,t

)
vec
(
e∗t+1X̃

(h)′
m,t

)′
− Γm

A2 = T−1
∑T

t=1
vec
((
êt+1 − e∗t+1

)
X̃

(h)′
m,t

)
vec
(
e∗t+1X̃

(h)′
m,t

)′
A3 = T−1

∑T

t=1
vec
((
êt+1 − e∗t+1

)
X̃

(h)′
m,t

)
vec
((
êt+1 − e∗t+1

)
X̃

(h)′
m,t

)′
.

By (v) we have that

‖A1‖ = Op

(√
T 6ν−1

∑
1≤j≤T

κ1/2
j

)
.

Next consider A2,

‖A2‖ ≤ CT−1
∑T

t=1

(∥∥∥X̃(h)
m,tX̃

(h)′
m,t

∥∥∥∥∥(êt+1 − e∗t+1

)
e∗′t+1

∥∥) ,
which is Op

(
m2T−1/2

)
by CC1 and (iv). By similar steps, A3 is of lower order than A2.

�
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Let θ = (a′,b′, γ′)′ and note that our estimator solves,

θ̂ = arg min
θ
Q̂T

(
θ; Ŵ

)
, Q̂T

(
θ; Ŵ

)
= T−1

∑T

t=1

(
Rxt+1 −DX̃(h)

m,t

)′
Ŵ−1

(
Rxt+1 −DX̃(h)

m,t

)
.

Recall that D =
[
a bγ′

]
. Then,

Q̂T
(
θ; Ŵ

)
= Q̂1T

(
θ; Ŵ

)
+ Q̂2T

(
Ŵ
)
,

where

Q̂1T (θ;W ) = T−1
∑T

t=1

((
D̂ols −D

)
X̃

(h)
m,t

)′
W−1

(
D̂ols −D

)
X̃

(h)
m,t

Q̂2T (W ) = T−1
∑T

t=1

(
Rxt+1 − D̂olsX̃

(h)
m,t

)′
W−1

(
Rxt+1 − D̂olsX̃

(h)
m,t

)
.

Also define

Q1T (θ;W ) = E
[((

D̂ols −D
)
X̃

(h)
m,t

)′
W−1

(
D̂ols −D

)
X̃

(h)
m,t

]
Q2T (W ) = E

[(
Rxt+1 −D∗X̃(h)

m,t

)′
W−1

(
Rxt+1 −D∗X̃(h)

m,t

)]
.

We have the following lemma:

Lemma 4. Let Assumption A.1 hold. Also, assume that
∥∥∥Ŵ −W∥∥∥ = Op

(
T−ζ

)
where W has

eigenvalues bounded and bounded away from zero. Then,

sup
θ

∣∣∣Q̂alt
T

(
θ; Ŵ

)
−Qalt (θ;W )

∣∣∣ = Op
(
mT−1

)
+Op

(
mT−1/2

)
+Op

(
mT−ζ

)
+Op

(
T−ϕ/2(1+ϕ)m3/2 log (m)

)
Proof of Lemma 4 We have

sup
θ

∣∣∣Q̂1T

(
θ; Ŵ

)
−Q1T

(
θ; Ŵ

)∣∣∣ ≤ sup
θ

∣∣∣∣T−1
∑T

t=1

((
D̂ols −D∗

)
X̃

(h)
m,t

)′
Ŵ−1

(
D̂ols −D∗

)
X̃

(h)
m,t

∣∣∣∣
+ sup

θ

∣∣∣∣2T−1
∑T

t=1

((
D̂ols −D∗

)
X̃

(h)
m,t

)′
Ŵ−1 (D∗ −D) X̃

(h)
m,t

∣∣∣∣
+ sup

θ

∣∣∣∣T−1
∑T

t=1

(
(D∗ −D) X̃

(h)
m,t

)′
Ŵ−1 (D∗ −D) X̃

(h)
m,t −Q1T

(
θ; Ŵ

)∣∣∣∣ .
The first term is

sup
θ

∣∣∣∣T−1
∑T

t=1

((
D̂ols −D∗

)
X̃

(h)
m,t

)′
Ŵ−1

(
D̂ols −D∗

)
X̃

(h)
m,t

∣∣∣∣ ≤ λmax

(
Ω̂m,T ⊗ Ŵ−1

)∥∥∥D̂ols −D∗
∥∥∥2

,
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and so is Op
(
mT−1

)
. The second term is

sup
θ

∣∣∣∣2T−1
∑T

t=1

((
D̂ols −D∗

)
X̃

(h)
m,t

)′
Ŵ−1 (D∗ −D) X̃

(h)
m,t

∣∣∣∣
≤ 2

∣∣∣∣vec
(
D̂ols −D∗

)′ (
Ω̂m,T ⊗ Ŵ−1

)
vec
(
D̂ols −D∗

)∣∣∣∣1/2 ×
2 sup

θ

∣∣∣vec (D∗ −D)′
(

Ω̂m,T ⊗ Ŵ−1
)

vec (D∗ −D)
∣∣∣1/2 .

The first factor is Op
(
m1/2T−1/2

)
by the steps above and the second factor is Op

(
m1/2

)
. Thus,

the second term is Op
(
mT−1/2

)
. Finally, by similar steps, the third term can be shown to be

Op
(
mT−ζ

)
+ Op

(
T−ϕ/2(1+ϕ)m3/2 log (m)

)
and

∣∣∣Q̂2T (W )−Q2T (W )
∣∣∣ = op (1) under our assump-

tions.
Define θ∗ = (a∗,b∗, γ∗′)′ with corresponding estimator θ̂. Also define θh,0 = (a′h,b

′
h, φh (·)) with

corresponding estimator θ̂h. Based on these results we now have:

Lemma 5. Let Assumptions A.1 hold along with the assumptions of Lemma 4. In addition assume
that

mT−1/2 +mT−ζ + T−ϕ/2(1+ϕ)m3/2 log (m)→ 0.

Then
∥∥∥θ̂ − θ∗∥∥∥ = op (1) and

∥∥∥θ̂h − θh,0∥∥∥ = op (1).

The proof of Lemma 5 follows by Lemma 4 along with Theorem 3.1 from Chen (2007). The
other conditions can be verified straightforwardly.

Main Results

The hypotheses of interest are

H1,0 : Ah = 0, H1,A : Ah 6= 0

H2,0 : bjhφh (·) = 0, H2,A : bjhφh (·) 6= 0
H3,0 : φh (v̄) = 0, H3,A : φh (v̄) 6= 0

for some fixed v̄ ∈ V, where V is the support of the random variable vt, along with

H4,0 : ∃ bh, φh (·) s.t. E [Rxt+h| Ft] = bhφh (vt)

H4,A :6 ∃ bh, φh (·) s.t. E [Rxt+h| Ft] = bhφh (vt) .

We would like to prove the following two theorems:

Theorem 1: Let Assumption A.1 hold along with the assumptions of Lemma 5. Then,

(i) if ν <
(

δ
3δ+21 ∧

ϕ(1+ε)
3(1+ϕ) ∧

1
6

)
and δ ≥ 2,

(
vec
(
Â
)′

V̂−1
1 vec

(
Â
)
−mn

)/√
2mn→d,H1,0 N (0, 1);
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(ii) if ν <
(

δ
4δ+23 ∧

1
6

)
and δ ≥ 2,

((
b̂j
)2
γ̂′V̂+

2 γ̂ − 1

)/√
2 →d,H2,0 N (0, 1), where V̂ +

2 is the

Moore-Penrose inverse of V̂2;

(iii)
(
φ̂h,m (v̄)− φh (v̄)

)/
V̂3 →d,H3,0 N (0, 1).

Theorem 2: Let Assumption A.1 hold along with the assumptions of Lemma 5. Then, if ν <(
δ

4δ+23 ∧
1
6

)
and δ ≥ 2,((

Â− b̂γ̂′
)′
V̂ +

4

(
Â− b̂γ̂′

)
− s
)/√

s→d,H4,0 N (0, 1) ,

where s = (m− 1) (n− 1) and V̂ +
4 is the Moore-Penrose inverse of V̂4.

Here Â is the OLS estimator from the reverse regression and b̂j , γ̂ are the reduced-rank estimators
from the reverse regression. φ̂h,m (v̄) is formed via the forward regression.

Remark 1 To gain intuition for the test statistic in Theorem 2 consider the parametric reduced-rank
regression,

yt = Axt + et, t = 1, . . . , T,

yt is (n × 1), xt is ((m + 1) × 1) and A is of reduced rank. For simplicity, suppose that et ∼i.i.d.
N (0, σ2). Then an LM test is based on

∑
t vec (êtx

′
t) where êt := yt−Ârrxt and Ârr is the MLE with

the reduced-rank restrictions imposed. Then by standard properties of the OLS estimator, Âols,

∑
t

vec
(
êtx
′
t

)
=
∑
t

vec
((
Âols − Ârr

)
xtx
′
t

)
=

(∑
t

xtx
′
t ⊗ In

)
vec
(
Âols − Ârr

)
Under regularity conditions, plimT→∞

∑
t xtx

′
t is nonsingular and so inference using the LM test

statistic is equivalent to conducting inference based on the difference,
(
Âols − Ârr

)
. Note that we

can also interpret the test statistic as a minimum distance criterion function (see Adrian et al.
(2015)).

Proof of Theorem 1(i): The OLS estimator in the reverse regression is,

D̂ols =
[
â Â

]
= RX̃ ′

(
X̃X̃ ′

)−1
, X̃ =

[
X̃

(h)
m,0 · · · X̃

(h)
m,T−1

]
,
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where R is n×T and X̃ is (m+ 1)×T . Then, if we define the selection matrix SA =
[
0mn×n Inm

]
,

√
Tvec

(
Â−A∗

)
=
√
TSAvec

(
D̂ols −D∗

)
= SA

(
Ω−1
m ⊗ In

)
T−1/2

∑T

t=1
vec
(
e∗t+1X̃

(h)′
m,t

)
+SA

((
Ω̂−1
m,T − Ω−1

m

)
⊗ In

)
T−1/2

∑T

t=1
vec
(
e∗t+1X̃

(h)′
m,t

)
= T11 + T12.

First note that T12 is of lower order than T11 by Lemma 3(i). Now consider the re-scaled version
of T11:

R11 =
[
SA
(
Ω−1
m ⊗ In

)
Γm
(
Ω−1
m ⊗ In

)
S′A
]−1/2 (

Ω−1
m ⊗ In

)
T−1/2

∑T

t=1
vec
(
e∗t+1X̃

(h)′
m,t

)
.

Note that this is a sample average of mean zero random variables with the sum of variances equal
to Inm. Let DC be the class of convex sets on Rnm and Z a nm× 1 Gaussian random vector with
variance matrix Inm. Then by Bulinskii and Shashkin (2004, Corollary 2) and Assumption A.1(v):

sup
D∈DC

|P (R11 ∈ D)− P (Z ∈ D)|

≤ (n (m+ 1))5/2

(∑T

t=1
E
∥∥∥[SA (Ω−1

m ⊗ In
)

Γm
(
Ω−1
m ⊗ In

)
S′A
]−1/2 (

Ω−1
m ⊗ In

)
T−1/2ξm,t+1

∥∥∥2+δ
)1/3

= Cm5/2

(∑T

t=1
E
∥∥∥[SA (Ω−1

m ⊗ Σ
)
S′A
]−1/2 (

Ω−1
m ⊗ In

)
T−1/2ξm,t+1

∥∥∥2+δ
)1/3

≤ Cm5/2

(∑T

t=1
E
∥∥∥T−1/2ξm,t+1

∥∥∥2+δ
)1/3

≤ CT−δ/6m5/2
((√

m
)2+δ E

[∥∥e∗t+1

∥∥2+δ
])1/3

≤ CT−δ/6m5/2
((√

m
)2+δ

m2+δ
)1/3

where the last inequality follows by CC1 and Lemma 3(v). Then we have that

sup
D∈DC

|P (R11 ∈ D)− P (Z ∈ D)| ≤ C
(
T−1m(3+21/δ)

)δ/6
,

which is o (1) under the assumptions of Theorem 1. Thus if we define

T 0
1 = Tvec

(
Â−A∗

)′ [(
Ω−1
m ⊗ In

)
Γm
(
Ω−1
m ⊗ In

)]−1
vec
(
Â−A∗

)
,

then we can show that (2mn)−1/2 (T 0
1 −mn

)
→d N (0, 1). To see this note first that we may define
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the set Uc = {u ∈ Rmn : u′u ≤ c}. Uc is a convex set in Rmn. Thus if Zmn ∼ N (0, Imn) then

sup
c

∣∣P (T 0
1 ≤ c

)
− P

(
Z ′Z ≤ c

)∣∣
= sup

c
|P (R11 ∈ Uc)− P (Z ∈ Uc)|

≤ sup
D∈DC

|P (R11 ∈ D)− P (Z ∈ D)| ,

which is o (1) based on the previous result under our assumptions. Finally, let Φ (·) be the CDF of
the standard normal distribution. Then,

sup
c

∣∣∣P((2mn)−1/2 (T 0
1 −mn

)
≤ c
)
− Φ (c)

∣∣∣
≤ sup

c

∣∣∣P(T 0
1 ≤ mn+ (2mn)1/2 c

)
− P

(
Z ′Z ≤ mn+ (2mn)1/2 c

)∣∣∣
+ sup

c

∣∣∣P(Z ′Z ≤ mn+ (2mn)1/2 c
)
− Φ (c)

∣∣∣ .
The first term is o (1) by the previous result and the second term is

sup
c

∣∣∣P((2mn)−1/2 (Z ′Z −mn) ≤ c)− Φ (c)
∣∣∣ .

Let Zi be the ith element of Z so that

(2mn)−1/2 (Z ′Z −mn) = (2mn)−1/2
∑mn

i=1

(
Z2
i − 1

)
.

Thus, by the Berry-Esseen inequality

sup
c

∣∣∣P((2mn)−1/2 (Z ′Z −mn) ≤ c)− Φ (c)
∣∣∣ ≤ C (mn)−1/2 ,

and the result follows. It only remains to show that for

T̂ 0
1 = Tvec

(
Â−A∗

)′ [(
Ω̂−1
m,T ⊗ In

)
Γ̂m,T

(
Ω̂−1
m,T ⊗ In

)]−1
vec
(
Â−A∗

)
, (A.6)

we have that m−1/2
∣∣∣T̂ 0

1 − T 0
1

∣∣∣ = op (1), where

Γ̂m,T = T−1
∑T

t=1
vec
(
êt+1X̃

(h)′
m,t

)
vec
(
êt+1X̃

(h)′
m,t

)′
, êt+1 = Rxt+1 − D̂olsX̃

(h)
m,t.
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We have,

√
m
∥∥∥(Ω̂−1

m,T ⊗ In

)
Γ̂m,T

(
Ω̂−1
m,T ⊗ In

)
− (Ωm ⊗ In) Γ−1

m (Ωm ⊗ In)
∥∥∥

≤
√
m
∥∥∥((Ω̂−1

m,T − Ω−1
m

)
⊗ In

)
Γm
(
Ω−1
m ⊗ In

)∥∥∥
+
√
m
∥∥∥(Ω−1

m ⊗ In
)

Γm

((
Ω̂−1
m,T − Ω−1

m

)
⊗ In

)∥∥∥
+
√
m
∥∥∥(Ω−1

m ⊗ In
) (

Γ̂m,T − Γm

) (
Ω−1
m ⊗ In

)∥∥∥
+
√
m
∥∥∥((Ω̂−1

m,T − Ω−1
m

)
⊗ In

)(
Γ̂m,T − Γm

) (
Ω−1
m ⊗ In

)∥∥∥
+
√
m
∥∥∥((Ω̂−1

m,T − Ω−1
m

)
⊗ In

)
Γm

((
Ω̂−1
m,T − Ω−1

m

)
⊗ In

)∥∥∥
+
√
m
∥∥∥(Ω−1

m ⊗ In
) (

Γ̂m,T − Γm

)((
Ω̂−1
m,T − Ω−1

m

)
⊗ In

)∥∥∥
+
√
m
∥∥∥((Ω̂−1

m,T − Ω−1
m

)
⊗ In

)(
Γ̂m,T − Γm

)((
Ω̂−1
m,T − Ω−1

m

)
⊗ In

)∥∥∥
=

∑7

`=1
‖N`‖ .

So we need only show that these seven terms are op(1). First note that,

‖N1‖ =
√
m
∥∥∥((Ω̂−1

m,T − Ω−1
m

)
⊗ In

)
Γm
(
Ω−1
m ⊗ In

)∥∥∥
=
√
mλmax

(
Ω−1
m

)
λmax (Γm)

∥∥∥Ω−1
m

(
Ω̂m,T − Ωm

)
Ω̂−1
m,T

∥∥∥ ‖In‖
≤ C

√
mλmax

(
Ω−1
m

)2
λmax

(
Ω̂−1
m,T

)
λmax (Γm)

∥∥∥Ω̂m,T − Ωm

∥∥∥
= O (1)Op (1)O (1) op (1) ,

under our assumptions. N2 −N7 follow by similar bounding arguments using Lemma 3.

Proof of Theorem 1(ii): Note first that implicit in this hypothesis test is that rank (bφh (·)) = 1

since the previous hypothesis has tested whether rank (bφh (·)) = 0. Let θ = (α,b′0, γ
′)′ ∈ Θ which

is dθ × 1 where dθ = 2n− 1 +m. We solve for

θ̂ = arg min
θ

1

2
T−1

∑T

t=1
eo′
t+1Ŵ

−1eo
t+1, eo

t (θ) = Rxt − α− bγ′X(h)
m,t−1.

Define ∂b/∂b′0 =:Jn,n−1,

st (θ) = ∂eo
t /∂θ

′ = −
[
In γ′X

(h)
m,t−1Jn,n−1 bX

(h)′
m,t−1

]
,

and
qT (ϑ)′ := ∂QT

(
θ; Ŵ

)/
∂θ′
∣∣∣
θ=ϑ

= T−1
∑T

t=1
eo′
t+1Ŵ

−1st+1 (ϑ) ,
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for any ϑ ∈ Θ. Then,
qT

(
θ̂
)

= 0 = qT (θ∗) +
{
q̇T
(
θ̄
)}(

θ̂ − θ∗
)
,

where θ̄ ∈
[
θ̂, θ∗

]
, θ∗ = (a∗′,b∗′0 , γ

∗′)′ are the pseudo-true values and q̇T (θ) = ∂QT
(
θ; Ŵ

)
/∂θ∂θ′.

To complete the result we need the following lemma:

Lemma 6. Under our assumptions,

q̇T (θ) =
1

T

∑T

t=1
st+1 (θ)′ Ŵ−1st+1 (θ) +

1

T

∑T

t=1

(
Idθ ⊗ e

o
t+1 (θ)′ Ŵ−1

)
s̃t+1

where

s̃t = −

0 0 0

0 0 vec (Jn,n−1)X
(h)′
m,t−1

0
(
X

(h)
m,t−1 ⊗ In

)
0

 .

Also, ∥∥q̇T (θ̄)− q̇T (θ∗)
∥∥ = op (1) ,

and
‖q̇T (θ∗)−HT (θ∗)‖ = op (1) , HT (θ) = T−1

∑T

t=1
st+1 (θ)′W−1st+1 (θ) .

By our mean-value expansion we have that,
√
T
(
θ̂ − θ∗

)
= −

([
q̇T
(
θ̄
)]−1 − [q̇T (θ∗)]−1

)√
TqT (θ∗)−

(
[q̇T (θ∗)]−1 −HT (θ∗)−1

)√
TqT (θ∗)

−HT (θ∗)−1
√
TqT (θ∗)

= T21 + T22 + T23

The first and second terms are of lower order by Lemma 6. Thus we have that,

√
T
(
θ̂ − θ∗

)
= HT (θ∗)−1×T−1/2

∑T

t=1
G∗vec

(
e∗t+1X̃

(h)′
m,t

)
+op (1) , G∗ =


(
s′(m+1),1 ⊗W

−1
)(

γ∗′SX ⊗ J ′n,n−1W
−1
)(

b∗′W−1 ⊗ SX
)
κn,m+1

 .

The leading term is a sample average of mean-zero random variables. Each summand has variance

Ψm := E
[
G∗vec

(
e∗t X̃

(h)′
m,t−1

)
vec
(
e∗t X̃

(h)′
m,t−1

)′
G∗′
]

= G∗ΓmG
∗′.

Consider the rescaled statistic,

R21 = V
−1/2
θ {q̇T (θ∗)}−1 T−1/2

∑T

t=1
G∗vec

(
e∗t+1X̃

(h)′
m,t

)
,
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where
Vθ = {HT (θ∗)}−1 Ψm {HT (θ∗)}−1

This is now a sample average of mean-zero random variables with the sum of the variances equal
to Idθ . Let DC be the class of convex sets in Rdθ and Z a Gaussian random vector with variance
matrix Idθ . Then by Bulinskii and Shashkin (2004, Corollary 2) and Assumption A.1(v):

sup
D∈DC

|P (R21 ∈ D)− P (Z ∈ D)|

≤ Cd
5/2
θ

(∑T

t=1
E
∥∥∥T−1/2V

−1/2
θ [HT (θ∗)]−1G∗vec

(
e∗t+1X̃

(h)′
m,t

)∥∥∥2+δ
)1/3

≤ Cm5/2

(∑T

t=1
λmin

(
V
−1/2
θ

)
λmin (HT (θ∗))E

∥∥∥T−1/2G∗vec
(
e∗t+1X̃

(h)′
m,t

)∥∥∥2+δ
)1/3

≤ Cm5/2

(
T−δ/2T−1

∑T

t=1
E
∥∥∥G∗vec

(
e∗t+1X̃

(h)′
m,t

)∥∥∥2+δ
)1/3

= Cm5/2

(
T−δ/2E

∥∥∥G∗vec
(
e∗t+1X̃

(h)′
m,t

)∥∥∥2+δ
)1/3

Note that

E
∥∥∥G∗vec

(
e∗t+1X̃

(h)′
m,t

)∥∥∥2+δ
= E

[(∥∥W−1e∗t+1

∥∥2
+
∥∥∥W−1e∗t+1X

(h)′
m,t γ

∗
∥∥∥2

+
∥∥∥X(h)

m,te
∗′
t+1W

−1b∗
∥∥∥2
)1+δ/2

]

≤ E

[(
C1

∥∥e∗t+1

∥∥2
+ C2 (1 +m)

∥∥∥e∗t+1X
(h)′
m,t

∥∥∥2
)1+δ/2

]
≤ C

(
1 +m+m2

)1+δ/2 E
∥∥e∗t+1

∥∥2+δ

≤ C
(
1 +m+m2

)1+δ/2
m2+δ

≤ Cm2(2+δ)

by CC1 and Lemma 3(v). Thus, we have that

sup
D∈DC

|P (R21 ∈ D)− P (Z ∈ D)| ≤ C
(
T−1m(4+23/δ)

)δ/6
,

which is o (1) under the assumptions of the theorem. Next

s′n,j

(
b̂γ̂′ − b∗γ∗

)
=
(
γ∗ ⊗ s′n,j

) (
b̂− b∗

)
+
(
Im ⊗ s′n,jb∗

)
(γ̂ − γ∗) + op (1) = Sbγ,j

(
θ̂ − θ∗

)
,

where
Sbγ,j =

[
0
(
γ∗ ⊗ S′j

)
s′n,jb

∗ · Im
]
.
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Note next that the expression Sbγ,jVθS′bγ,j is rank one. To see this observe first that in the special
case of homoskedasticity that,

Sbγ,jVθS
′
bγ,j =

((
SXΩ̂m,TS

′
X

)−1
⊗ Σjj

)
−
([(

SXΩ̂m,TS
′
X

)−1
− γ∗

(
γ∗
′
SXΩ̂m,TS

′
Xγ
∗
)−1

γ∗
′
]
⊗[

Σjj −
(
b∗j
)2 (

b∗
′
W−1b∗

)−1
b∗
′
W−1ΣW−1b∗

(
b∗
′
W−1b∗

)−1
])

Then, by Cline and Funderlic (1979, Corollary 3.3), under the null hypothesis, it follows that
Sbγ,jVθS

′
bγ,j is rank one. For the heteroskedastic case, we can appeal to the sandwich form of the

variance matrix and so it is also rank one in general under the null hypothesis. By the same steps
we can also show that the plug-in variance estimator, Sb̂γ̂,jV̂θS

′
b̂γ̂,j

, is rank one. Next note that,

T 0
2 =

(
V
−1/2
θ HT (θ∗)−1 T−1/2

∑T

t=1
G∗vec

(
e∗t+1X̃

(h)′
m,t

))′
V

1/2
θ

×S′bγ,j
(
Sbγ,jVθS

′
bγ,j

)+
Sbγ,jV

1/2
θ

(
V
−1/2
θ HT (θ∗)−1 T−1/2

∑T

t=1
G∗vec

(
e∗t+1X̃

(h)′
m,t

))
.

Define the set Uc =

{
u ∈ Rdθ : u′V

1/2
θ S′bγ,j

(
Sbγ,jVθS

′
bγ,j

)+
Sbγ,jV

1/2
θ u ≤ c

}
, where V + is the Moore-

Penrose inverse of a matrix V . Note that Uc is a convex set in Rdθ . Then,

sup
c

∣∣∣P (T 0
2 ≤ c

)
− P

(
Z ′V1/2

θ S′bγ,j
(
Sbγ,jVθS

′
bγ,j

)+
Sbγ,jV

1/2
θ Z ≤ c

)∣∣∣
= sup

c
|P (R21 ∈ Uc)− P (Z ∈ Uc)|

≤ sup
D∈Dc

|P (R21 ∈ D)− P (Z ∈ D)| ,

which is o (1) under our assumptions. Finally,

sup
c

∣∣∣P(√2
(
T 0

2 − 1
)
≤ c
)
− Φ (c)

∣∣∣
= sup

c

∣∣∣P(T 0
2 ≤ 1 + c

√
2
)
− Φ (c)

∣∣∣
≤ sup

c

∣∣∣P(T 0
2 ≤ 1 + c

√
2
)
− P

(
Z ′V1/2

θ S′bγ,j
(
Sbγ,jVθS

′
bγ,j

)+
Sbγ,jV

1/2
θ Z ≤ 1 + c

√
2
)∣∣∣

+ sup
c

∣∣∣P(Z ′V1/2
θ S′bγ,j

(
Sbγ,jVθS

′
bγ,j

)+
Sbγ,jV

1/2
θ Z ≤ 1 + c

√
2
)
− Φ (c)

∣∣∣ .
The first term goes to zero by the steps above and the second term satisfies, by the Berry-Esseen
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inequality, and the results above,

sup
c

∣∣∣P(Z ′V1/2
θ S′bγ,j

(
Sbγ,jVθS

′
bγ,j

)+
Sbγ,jV

1/2
θ Z ≤ 1 + c

√
2
)
− Φ (c)

∣∣∣ ≤ Cm−1/2.

Thus, we have that 2−1/2
(
T 0

2 − 1
)
→d N (0, 1). Finally, we need only show that

∣∣∣T̂ 0
2 − T 0

2

∣∣∣ = op (1)

where
T̂ 0

2 = T
(
b̂j γ̂ − b∗jγ∗

)′ (
Sb̂γ̂,jV̂θS

′
b̂γ̂,j

)+ (
b̂j γ̂ − b∗jγ∗

)
, (A.7)

and
V̂θ =

{
HT

(
θ̂
)}−1

Ψ̂m,T

{
HT

(
θ̂
)}−1

.

By the previous results, Andrews (1987, Theorem 2), and since Sb̂γ̂,jV̂θS
′
b̂γ̂,j

is rank one under the

null hypothesis then we need only show that
∥∥∥V̂θ − Vθ

∥∥∥ = op (1). In order to do so, note that we

have already shown that
∥∥∥HT

(
θ̂
)
−HT (θ∗)

∥∥∥ = op (1) in the proof of Lemma 6. Next to show Ψ̂m,T

is consistent recall that

Ψ̂m = ĜΓ̂mĜ
′, Ĝ :=


(
s′(m+1),1 ⊗ Ŵ

−1
)(

γ̂′SX ⊗ Ŵ−1
)(

b̂′Ŵ−1 ⊗ Im

)
κn,m+1

 .

Thus we need only show that
∥∥∥Ĝ−G∗∥∥∥ = op (1). Note that

∥∥∥Ĝ−G∗∥∥∥2
=

∥∥∥(s′(m+1),1 ⊗
(
Ŵ−1 −W−1

))∥∥∥2

+
∥∥∥(γ̂′SX ⊗ Ŵ−1

)
−
(
γ∗′SX ⊗W−1

)∥∥∥2

+
∥∥∥((b̂′Ŵ−1 − b∗′W−1

)
⊗ Im

)
κn,m+1

∥∥∥2

= O1 + O2 + O3

O1 is ∥∥∥(s′(m+1),1 ⊗
(
Ŵ−1 −W−1

))∥∥∥2
≤ λmax

(
W−1

)2
λmax

(
Ŵ−1

)2 ∥∥∥Ŵ −W∥∥∥2
,

and so is op (1). O2 is∥∥∥(γ̂′SX ⊗ Ŵ−1
)
−
(
γ∗′SX ⊗W−1

)∥∥∥2

≤ C
∥∥(γ̂ − γ∗)′ SX

∥∥2
∥∥∥D̂−1

R

∥∥∥2
+ C

∥∥γ∗′SX∥∥2
∥∥∥Ŵ−1 −W−1

∥∥∥2
+ C

∥∥(γ̂ − γ∗)′ SX
∥∥2
∥∥∥Ŵ−1 −W−1

∥∥∥2

= O21 + O22 + O23
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Then O21

O21 =
∥∥(γ̂ − γ∗)′ SX

∥∥2
∥∥∥Ŵ−1

∥∥∥2

≤ n · λmin

(
Ŵ
)2 ∥∥(γ̂ − γ∗)′ SX

∥∥2

≤ n · λmin

(
Ŵ
)2
‖γ̂ − γ∗‖2 ,

and so is op (1) and O22 is

O22 =
∥∥γ∗′SX∥∥2

∥∥∥Ŵ−1 −W−1
∥∥∥2

≤ λmin

(
Ŵ
)
λmin (W ) ‖γ∗‖2

∥∥∥Ŵ −W∥∥∥2

≤ Cmλmin

(
Ŵ
)
λmin (W )

∥∥∥Ŵ −W∥∥∥2
,

and so is Op
(
m1/2T−ζ/2

)
which is op (1) under our assumptions. Next,

O23 =
∥∥(γ̂ − γ∗)′ SX

∥∥2
∥∥∥Ŵ−1 −W−1

∥∥∥2

≤ ‖(γ̂ − γ∗)‖2 × λmin (W )λmin

(
Ŵ
)∥∥∥Ŵ −W∥∥∥2

,

and so is op (1). Finally, by similar steps note that O3

O
1/2
3 =

∥∥∥Im ⊗
(
b̂′D̂−1

R − b∗′D−1
R

)∥∥∥
≤
√
m

∥∥∥∥(b̂− b∗
)′
Ŵ−1

∥∥∥∥+
√
m
∥∥∥b∗′ (Ŵ−1 −W−1

)∥∥∥+
√
m

∥∥∥∥(b̂− b∗
)′ (

Ŵ−1 −W−1
)∥∥∥∥

= Op

(
m3/2T−1

)
+Op

(
m1/2T−ζ

)
,

which is op (1) under our assumptions. Thus
∥∥∥Ψ̂m,T −Ψm

∥∥∥ = op (1) and the result follows.

Proof of Lemma 6 The first result follows by standard properties of matrix differentiation. Next
note that we have,

q̇T
(
θ̄
)
− q̇T (θ∗)

=
1

T

∑T

t=1

[
st+1

(
θ̄
)′
Ŵ−1st+1

(
θ̄
)
− st+1 (θ∗)′ Ŵ−1st+1 (θ∗)

]
+

1

T

∑T

t=1

(
Idθ ⊗

(
eo
t+1

(
θ̄
)
− e∗t+1

)′
Ŵ−1

)
s̃t+1.
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Consider the second term first. We have∥∥∥∥ 1

T

∑T

t=1

(
Idθ ⊗

(
eo
t+1

(
θ̄
)
− e∗t+1

)′
Ŵ−1

)
s̃t+1

∥∥∥∥2

≤ Cλmax

(
Ŵ−1

)2 ∥∥∥(D∗ − D̄) Ω̂m,TS
′
X

∥∥∥2

≤ Cλmax

(
Ŵ−1

)2
λmax

(
Ω̂m,T

)2 ∥∥∥D̂ −D∗∥∥∥2
,

which is op (1). Now consider the first term,

D :=
1

T

∑T

t=1

[
st+1

(
θ̄
)′
Ŵ−1st+1

(
θ̄
)
− st+1 (θ∗)′ Ŵ−1st+1 (θ∗)

]
,

which may be written as a partitioned matrix with elements

D11 = 0

D12 = (γ̄ − γ∗)′
(
T−1

∑T

t=1
SXX̃

(h)
m,t

)
Ŵ−1Jn,n−1

D13 = Ŵ−1
(
b̄− b∗

)(
T−1

∑T

t=1
X̃

(h)′
m,t S

′
X

)
D22 = T−1

∑T

t=1

(
γ̄′SXX̃

(h)
m,t

)2
J′n,n−1Ŵ

−1Jn,n−1 − T−1
∑T

t=1

(
γ∗′SXX̃

(h)
m,t

)2
J′n,n−1Ŵ

−1Jn,n−1

D23 = T−1
∑T

t=1
J′n,n−1Ŵ

−1b̄X̃
(h)′
m,t S

′
X

(
γ̄′SXX̃

(h)
m,t

)
− T−1

∑T

t=1
J′n,n−1Ŵ

−1b∗X̃
(h)′
m,t S

′
X

(
γ∗′SXX̃

(h)
m,t

)
D33 = T−1

∑T

t=1

[
b̄′Ŵ−1b̄− b∗′Ŵ−1b∗

]
SXX̃

(h)
m,tX

(h)′
m,t S

′
X .

Note that

‖D12‖2 =

∥∥∥∥(γ̄ − γ∗)′
(
T−1

∑T

t=1
SXX̃

(h)
m,t

)
Ŵ−1Jn,n−1

∥∥∥∥2

≤ (n− 1)λmin

(
Ŵ
)

tr
(

(γ̄ − γ∗)′ SXΩ̂m,T s(m+1),1s
′
(m+1),1Ω̂m,TS

′
X (γ̄ − γ∗)′

)
= (n− 1)λmin

(
Ŵ
)
λmax

(
Ω̂m,T

)2
‖γ̄ − γ∗‖2 ,

and so is op (1). D13 is op (1) by similar steps. Next we have

‖D22‖ =

∥∥∥∥T−1
∑T

t=1

(
γ̄′SXX̃

(h)
m,t−1

)2
J′n,n−1Ŵ

−1Jn,n−1 − T−1
∑T

t=1

(
γ∗′SXX̃

(h)
m,t−1

)2
J′n,n−1Ŵ

−1Jn,n−1

∥∥∥∥
≤

∥∥∥∥T−1
∑T

t=1

(
(γ̄ − γ∗)′ SXX̃(h)

m,t−1

)2
J′n,n−1Ŵ

−1Jn,n−1

∥∥∥∥
+2

∥∥∥∥T−1
∑T

t=1

(
(γ̄ − γ∗)′ SXX̃(h)

m,t−1

)
γ∗′SXX̃

(h)
m,t−1J′n,n−1Ŵ

−1Jn,n−1

∥∥∥∥ .
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The first term is∥∥∥∥T−1
∑T

t=1

(
(γ̄ − γ∗)′ SXX̃(h)

m,t−1

)2
J′n,n−1Ŵ

−1Jn,n−1

∥∥∥∥ ≤ λmax

(
Ω̂m,T

)
‖γ̂ − γ∗‖2×(n− 1)λmin

(
Ŵ
)
,

and so is op (1). The second term is∥∥∥∥T−1
∑T

t=1

(
(γ̄ − γ∗)′ SXX̃(h)

m,t−1

)
γ∗′SXX̃

(h)
m,t−1Ŵ

−1

∥∥∥∥2

≤ λmax

(
Ŵ−1

)2
(
T−1

∑T

t=1

(
(γ̄ − γ∗)′ SXX̃(h)

m,t−1

)2
)
× T−1

∑T

t=1

(
γ∗′SXX̃

(h)
m,t−1

)2
.

The second factor is

T−1
∑T

t=1

(
(γ̄ − γ∗)′ SXX̃(h)

m,t

)2
≤ λmax

(
Ω̂m,T

)
‖γ̄ − γ∗‖2 ,

and the third factor has expectation

T−1
∑T

t=1
E
(
γ∗′SXX̃

(h)
m,t

)2
= E

[(
γ∗′X

(h)
m,t

)2
]
≤ C,

by Lemma 3(vi). Thus, ‖D22‖ = op (1). D23 and D33 follow by similar arguments.
Finally,

q̇T (θ∗) =
1

T

∑T

t=1
st+1 (θ∗)′W−1st+1 (θ∗) +

1

T

∑T

t=1
st+1 (θ∗)′

(
Ŵ−1 −W−1

)
st+1 (θ∗)

+
1

T

∑T

t=1

(
Idθ ⊗ e

∗′
t+1Ŵ

−1
)
s̃t+1.

The second term is of lower order than the first term. The third term satisfies,∥∥∥∥ 1

T

∑T

t=1

(
Idθ ⊗ e

∗′
t+1Ŵ

−1
)
s̃t+1

∥∥∥∥2

≤ C
∥∥∥∥Ŵ−1T−1

∑T

t=1
e∗t+1X

(h)′
m,t−1

∥∥∥∥2

≤ Cλmin

(
Ŵ
)2
∥∥∥∥T−1

∑T

t=1
e∗t+1X

(h)′
m,t

∥∥∥∥2

.

By the steps in the proof of Lemma 3 (iii) we have that
∥∥∥T−1

∑T
t=1 e

∗
t+1X

(h)′
m,t

∥∥∥2
= Op

(
mT−1

)
and

λmin

(
Ŵ
)

= Op (1) so this term is op (1) by our assumptions and the result follows.

Proof of Theorem 1(iii): This result follows directly from the results of Chen and Christensen
(2015).

Proof of Theorem 2 Based on our results above we have that
√
Tvec

(
Âols −A∗

)
= SA

(
Ω−1
m ⊗ In

)
T−1/2

∑T

t=1
vec
(
e∗t+1X̃

(h)′
m,t

)
+ op (1) ,
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√
T
(
θ̂ − θ∗

)
= HT (θ∗)−1 × T−1/2

∑T

t=1
G∗vec

(
e∗t+1X̃

(h)′
m,t

)
+ op (1) ,

and

vec
(
b̂γ̂
′ − b∗γ∗′

)
= Sbγ

(
θ̂ − θ∗

)
+ op (1) , Sbγ =

[
0 (γ∗ ⊗ Jn,n−1) (Im ⊗ b∗)

]
.

Then,

vec
(
Â− b̂γ̂′

)
= SA

(
Ω−1
m ⊗ In

)
T−1

∑T

t=1
vec
(
e∗t+1X̃

(h)′
m,t

)
−
(
b̂γ̂′ −A∗

)
+ op (1)

= SA
(
Ω−1
m ⊗ In

)
T−1

∑T

t=1
vec
(
e∗t+1X̃

(h)′
m,t

)
−SbγHT (θ∗)−1G∗T−1

∑T

t=1
vec
(
e∗t+1X̃

(h)′
m,t

)
=

(
SA
(
Ω−1
m ⊗ In

)
− SbγHT (θ∗)−1G∗

)
T−1

∑T

t=1
vec
(
e∗t+1X̃

(h)′
m,t

)
=

(
SA
(
Ω−1
m ⊗ In

)
− SbγHT (θ∗)−1G∗

)
(Ωm ⊗ In) vec

(
Â−A∗

)
+ op (1)

Let us, without loss of generality, change the normalization scheme so that the first element of γ∗

is equal to one and no restrictions are placed on b∗. Thus, γ∗ = (1, γ∗′0 )′. It can be shown that we
can rewrite the above relationship as

√
Tvec

(
Â− b̂γ̂′

)
= (Imn−Hm)SA

√
Tvec

(
Â−A∗

)
+ op (1) ,

Hm := (Υ⊗ In) +
(

(Im −Υ) Jm,m−1γ̃ ⊗ b∗
(
b∗′W−1b∗

)−1
b∗′W−1

)
,

where γ̃ :=
[
−γ∗0 Im−1

]
and

Υ := γ∗γ∗′
(
SXΩ−1

m SX
)−1

[
γ∗′
(
SXΩ−1

m SX
)−1

γ∗
]−1

.

Note that the sample counterpart of
(
SXΩ−1

m SX
)−1 is XMιX where Mι = IT −T−1 · ιT ι′T . We can

then form the test statistic as

T 0
4 = Tvec

(
Â− b̂γ̂′

)′
V+

4 vec
(
Â− b̂γ̂′

)
,

where
V4 = (Imn −Hm)SA

(
Ω−1
m ⊗ In

)
Γm
(
Ω−1
m ⊗ In

)′
S′A (Imn −Hm)′ .

To show that V4 has rank s we can appeal to Cline and Funderlic (1979, Corollary 3.3) under
the assumption of conditional homoskedasticity. Then the result follows immediately in the more
general case because of the sandwich form of V4. By similar steps as in the proof of Theorem 1 we
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then have that (2s)−1/2 (T 0
4 − s

)
→d N (0, 1). A feasible test statistic is then formed using

T̂ 0
4 = Tvec

(
Â− b̂γ̂′

)′
V̂+

4 vec
(
Â− b̂γ̂′

)
,

where
V̂4 =

(
Imn − Ĥm

)
SA

(
Ω̂−1
m ⊗ In

)
Γ̂m

(
Ω̂−1
m ⊗ In

)′
S′A

(
Imn − Ĥm

)′
.

By our previous results we need only show that m−1/2
∣∣∣T̂ 0

4 − T 0
4

∣∣∣ = op (1). This follows by the same
steps as in the proof of Theorem 1.
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