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Abstract 

We empirically investigate the term structure of variance risk pricing and how it varies over time. We 

estimate the aversion to variance risk in a stochastic-volatility option pricing model separately for options 

of different maturities and find that variance risk pricing decreases in absolute value with maturity but 

remains significantly different from zero up to the nine-month horizon. We find consistent non-parametric 

results using estimates from Sharpe ratios of delta-neutral straddles. We further show that the term 

structure is downward sloping both during normal times and in times of stress, when required 

compensation for variance risk increases and its term structure steepens further. 
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1 Introduction

The risks facing investors have a rich term structure with some risks relevant at shorter
maturities and other risks relevant at longer maturities. After mostly focusing on bonds,
the analysis of how risks at different maturities are priced has more recently shifted to
equities, providing new moments for asset pricing models to match (Cochrane, 2017). In
particular, van Binsbergen, Brandt, and Koijen (2012) first document a downward-sloping
term structure of equity risk premia, suggesting significantly higher risk premia for short
horizons than for long horizons and rejecting the predictions of the workhorse asset pric-
ing models of Campbell and Cochrane (1999) and Bansal and Yaron (2004). While sim-
ilar patterns have since been found in various asset classes, the evidence is still subject
to debate.1 Using equity dividend strips, Bansal et al. (2021) show evidence that the term
structure of equity risk premia is weakly upward sloping during normal times and inverts
during recessions. Giglio, Kelly, and Kozak (2024) confirm this using synthetic dividend
strips going back to the 1970s. Gormsen (2021) shows that the slope of the term structure
is countercyclical to the price-dividend ratio. These results highlight the importance of an-
alyzing both unconditional slopes as well as time-series variations in the term structure of
risk premia.

Because variance risk is an important driver of equity risk premia, how it is priced in
the term-structure is important to understand the results above. Dew-Becker et al. (2017)
show that the market for variance swaps indicates a negative price of risk at short ma-
turities, but allows investors to insure against variance risk for free for longer maturities,
suggesting that the compensation for variance risk has an important term structure com-
ponent. The goal of our paper is to deepen our understanding of the term structure of
variance risk pricing and its variation over time with over 25 years of standard index op-
tions data, using both the structural framework of a parametric options pricing model as
well as the robustness of a non-parametric approach.

For our parametric estimation, we use the stochastic variance model with a variance-
dependent stochastic discount factor of Christoffersen, Heston, and Jacobs (2013) which
yields a single parameter capturing the pricing of variance risk due to variance risk aver-
sion. Our approach is, first, to discipline the physical parameters of the return process
using the underlying index returns and, then, to estimate the parameter governing the
pricing of variance risk separately for options in distinct maturity buckets. This allows us
to study whether long horizon variance risk is priced and whether the relative pricing at
different maturities varies systematically over time.

1See van Binsbergen and Koijen (2017) and Giglio, Kelly, and Kozak (2024) for overviews.
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For our unconditional estimates, we find that the term structure of variance risk pricing
is downward sloping (in absolute value), with investors in short-maturity options exhibit-
ing significantly higher variance risk aversion than investors in longer maturity options.
Across our maturity buckets, investors display highly significant variance risk aversion
at 1 to 3 months (first bucket) and at 3 to 6 months (second bucket). However, variance
risk aversion decreases significantly between the first and second bucket and between the
second and third bucket such that it is only marginally significant at 6 to 9 months (third
bucket) and 9 to 12 months (fourth bucket). Even when we allow the other model pa-
rameters to also vary across maturity buckets, we find that only the variance risk aversion
parameter shows a systematic term structure.

In light of the fact that our parametric results contrast with the model’s implicit as-
sumption of a unique aversion to variance risk at all maturities, we also provide a non-
parametric estimate of the term structure of variance risk pricing. Specifically, we study
Sharpe ratios of delta-neutral index straddles which, as we show, proxy for the model’s
variance risk premium parameter up to a scaling factor. We find that the straddles con-
firm the results from our parametric estimation: Sharpe ratios decline in absolute value
with maturity and are significantly negative for the first twomaturity buckets. These non-
parametric results confirm the results of the parametric analysis even if the parametric
model is misspecified in the sense of its implicit assumption of constant variance risk aver-
sion.

Next, we examine time-series variation in the term structure of variance risk pricing.
We find a robust negative slope to the compensation for variance risk across periods with
high and low volatility, and low and high price-dividend ratios. During “bad times”, in-
vestors demand significantly more compensation for variance risk across all maturities.
This result contrasts with themodel’s implicit assumption that the volatility risk premium
scales linearly with current volatility and, instead, suggests a convex relationship. How-
ever, the slope of the term-structure of variance risk pricing always remains downward
sloping, in good as well as in bad times, and in stark contrasts to similar analysis on the
term-structure of the equity risk pricing, e.g. in Gormsen (2021), Bansal et al. (2021), and
Giglio, Kelly, and Kozak (2024).

Finally, we compare our results directly to those inDew-Becker et al. (2017). Using pro-
prietary data on variance swap prices, they derive variance forwards as non-parametric
estimates of the risk neutral expectation of variance at different horizons. Taking the dif-
ference to realized variance (expected variance under the physical measure) to quantify
the variance risk premium, Dew-Becker et al. (2017) find non-zero risk pricing only at the
front end of the term-structure. Both our parametric and non-parametric estimates show
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that variance shocks are priced at least up to the medium horizon (3 to 6 months, sec-
ond bucket). For a proper comparison, we derive the pricing of variance forwards in our
framework. The expected variance forward at a given horizon is determined by aweighted
average of the expected variance under the physical measure and the expected variance
under the risk-neutral measure, where the weight on the risk-neutral measure increases
with the horizon. Any stochastic volatility model with strictly positive variance risk pre-
mium thus implies a gradually increasing term structure, anchored to the low physical
mean of variance at the short end and converging to the higher risk-neutral expectation at
longer maturities.

Because Dew-Becker et al. (2017) document a flat term-structure, except at very short
maturities, they conclude that the aversion to variance shocks, other than transitory shocks,
is zero. However, this interpretation assumes that variance risk aversion is the same at all
horizons. If, instead, the risk-neutral expected variance is calculated separately for each
maturity bucket using the corresponding variance risk aversion parameters obtained in
our parametric estimation then we obtain an implied term structure of variance forwards
strikingly similar to the one documented by Dew-Becker et al. (2017): a large jump from
average realized variance to the average variance forward at the shortestmaturity and then
essentially flat at longermaturities. Letting variance risk pricing decreasewith the horizon
may thus allow to reconcile the classical asset pricing stochastic volatility framework with
the evidence in Dew-Becker et al. (2017), in the sameway that the horizon-dependent risk
aversion model of Andries, Eisenbach, and Schmalz (2024) reconciles the long-run risk
model of Bansal and Yaron (2004) with the term-structure evidence of van Binsbergen,
Brandt, and Koijen (2012).2

Our three main results, established parametrically and non-parametrically, (i) that
variance risk is priced beyond the short horizon, (ii) that the term-structure of variance
risk premia is downward sloping in absolute value, and (iii) that it remains so under all
market conditions, suggest the classical option pricing model should be extended to let
variance risk aversion vary with the horizon, with potentially important implications for
asset pricingmodels. Our first result is consistent with standard asset pricing models (e.g.
Bansal and Yaron (2004); Bansal et al. (2012, 2014)) where shocks to future volatility play
a key role in matching asset pricing data such as the equity premium. On the other hand,
our second and third results, that the average term-structure of variance risk premia is
downward sloping and that it remains so under all market conditions, challenges both the
standard models as well as models that capture the upward/downward variation in the

2Alternatively, the physical dynamics of the model could be enriched, e.g. allowing for additional state
variables or shocks.
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slope of equity risk premia via variation in risks, such as Gormsen (2021) and Bansal et al.
(2021). Overall, our results show the need for new models to understand the evidence
and match the conditional and unconditional term-structure of risk premia across asset
classes.

Related literature. Most of the existing option pricing literature has steered clear of the
question whether the variance risk pricing varies across maturities. For example, work by
Coval and Shumway (2001) or Carr andWu (2009) measures variance risk premia for op-
tions with a single maturity; Christoffersen, Heston, and Jacobs (2013) pool all maturities
when estimating the price of variance risk. Our repeated estimation of the price of variance
risk on subsamples of the data differs from their approach. In contrast to Gruber, Tebaldi,
and Trojani (2021), and Bardgett, Gourier, and Leippold (2019), we offer non-parametric
results that are inconsistent with a constant price of variance risk, but consistent with a
horizon-depend price of risk, similar to the model of Andries, Eisenbach, and Schmalz
(2024).

Outside the standard options pricing literature, other papers have investigated the term
structure of variance risk premia, using different data sets and different methodologies
than the present paper. As noted above, Dew-Becker et al. (2017) use proprietary data
on variance swaps to estimate term-structure models, similar to Amengual (2008) and
Aït-Sahalia, Karaman, and Mancini (2020), but add realized volatility as a third factor
in addition to the first two principle components (level and slope). They find that only
shocks to realized volatility are priced, implying a term structure that is steeply negative
at the short end (a one-month horizon) but essentially flat at zero beyond that. Both the
data (index options as opposed to variance swaps) and methodology (estimation of an
options pricing model as opposed to price of variance swaps) we use are different and
complementary to Dew-Becker et al. (2017). There is evidence of segmentation between
the equity market and the optionsmarket, as well as within different optionsmarkets such
that answers to the same economic question can differ based on which market is used and
information from different markets can be complementary (see, e.g., Barras and Malkho-
zov, 2016, Hülsbusch and Kraftschik, 2018, Park, 2020, Van Tassel, 2020, and Oh and Park,
2023). Nonetheless, as noted above, our estimates from publicly available option data have
implications for variance forwards that match the direct evidence from proprietary vari-
ance swap data in Dew-Becker et al. (2017).

One potential explanation for our finding of a non-constant price of variance risk is
a risk of jumps that have intensities or prices that vary by horizons. Some recent option
pricing models with jumps find a non-constant variance risk pricing in the term-structure
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(Gruber, Tebaldi, and Trojani, 2021; Bardgett, Gourier, and Leippold, 2019). However, a
distinguishing feature of both papers is a change of slope between high and low volatility
regimes, inconsistent with the results we obtain from the data.

Less closely related are Choi, Mueller, and Vedolin (2017), who find a negative and
upward-sloping term structure of variance premia in the Treasury futures market. Our
conditional results on the relationship between current market volatility and the term
structure of risk prices are related to Cheng (2018) who studies the returns of hedging
volatility with VIX futures.

The paper proceeds as follows. Section 2 presents our conceptual framework and es-
timation procedures. Section 3 describes our data sources and presents our main empiri-
cal results. Section 4 derives the term-structure of variance forwards under our horizon-
dependent estimates. Section 5 provides robustness checks. Section 6 concludes.

2 Conceptual framework and empirical strategy

Following Christoffersen, Heston, and Jacobs (2013, hereafter CHJ), we base our analysis
on the canonical option-pricing model with stochastic variance of Heston (1993) where
the stock price St and variance vt satisfy the following physical dynamics:

dSt = (rt + µvt) St dt +
√

vtSt dz1t

dvt = κ (θ − vt) dt + σ
√

vt

(
ρ dz1t +

√
1 − ρ2 dz2t

) (1)

The shock processes z1t and z2t are independent Brownian motions where z1t affects both
stock return and variance and z2t only affects variance. CHJ then assume an exponential-
affine stochastic discount factor that allows for aversion to variance risk, captured by the
parameter ξ:

Mt

M0
=

(
St

S0

)ϕ

exp
(

δt + η
∫ t

0
vsds + ξ (vt − v0)

)
(2)

As in the standard casewithout aversion to variance risk that obtains for ξ = 0 (Rubinstein,
1976), δ and η govern time preference and ϕ < 0 aversion to equity risk. With aversion to
variance risk, ξ > 0, the stochastic discount factor is directly increasing in variance vt.

Combining the physical dynamics with the stochastic discount factor results in the
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following risk-neutral dynamics:

dSt = rtSt dt +
√

vtSt dz∗1t

dvt =
(
κ (θ − vt)− λvt

)
dt + σ

√
vt

(
ρ dz∗1t +

√
1 − ρ2 dz∗2t

)
In this setting, both the instantaneous equity risk premium µvt and variance risk premium
λvt scale with instantaneous variance vt and depend on both equity risk aversion ϕ and
variance risk aversion ξ as

µ = −ϕ − ξσρ,

λ = −ρσϕ − σ2ξ.

Even without variance risk aversion (ξ = 0) the model can generate a non-zero variance
risk premium solely from equity risk aversion ϕ ̸= 0. However, CHJ show that allowing
for distinct variance risk aversion ξ ̸= 0 is crucial for proper variance risk pricing as it al-
lows for stochastic discount factor that is U-shapes in returns. Consistent with the fact that
volatility is high both when returns are high and when returns are low, this significantly
improves the fit of the model and reconciles several puzzles in the previous option pricing
literature (see also Heston, Jacobs, and Kim, 2022).

The focus or our analysis is to estimate if the compensation λvt that investors in options
demand to bear variance risk depends on the horizon of the options traded and how such
a term structure of variance risk pricing depends on the economic environment. Since the
instantaneous variance risk premium λvt depends on current variance vt —which varies
in the time series — we focus our analysis on the variance risk premium parameter λ and
the underlying variance risk aversion parameter ξ that CHJ show is key. Specifically, we
asses if options of different maturities imply systematically different pricing of variance
risk, as reflected in λ and ξ, while keeping the parameters of the underlying physical pro-
cess (1) constant for all options.

We now explain the two different estimation procedures we use to measure λ and ξ: a
non-parametric estimation using Sharpe ratios of delta-neutral straddles and a parametric
estimation based on Christoffersen et al. (2013).

2.1 Non-parametric approach

We first show that Sharpe ratios of delta-neutral straddles provide a non-parametric esti-
mate of the variance risk premium parameter λ, our parameter of interest. In our version
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of the Heston model, the price Xt of any option follows a physical dynamic given by:

dXt =

(
rtXt +

∂X
∂S

µvtSt +
∂X
∂v

λvt

)
dt

+
∂X
∂S

√
vtSt dz1t +

∂X
∂v

σ
√

vt dz2t (3)

For a delta-neutral straddle, we have ∂X/∂S = 0 such that the only pricing parameter
remaining in the dynamic is λ.3 If we discretize the dynamic with sufficiently small ∆t
and substitute in ∂X/∂S = 0, we obtain

∆Xt ≈
(

rtXt +
∂X
∂v

λvt

)
∆t +

∂X
∂v

σ
√

vt ∆z2t, (4)

which we can rearrange as

∆Xt
Xt

− rt∆t
1

Xt
∂X
∂v σ

√
vt
√

∆t
≈ 1

σ
λ
√

vt∆t +
∆z2t√

∆t
. (5)

Note that the variance of the discrete dynamic (4) is given by

vart(∆Xt) ≈
(

∂X
∂v

σ
√

vt

)2

∆t,

which we can rewrite to correspond to the numerator on the left-hand side of equation
(5): √

vart

(
∆Xt

Xt
− rt∆t

)
≈ 1

Xt

∂X
∂v

σ
√

vt
√

∆t (6)

Substituting this into equation (5) and taking expectations, we arrive at an expression for
the Sharpe ratio of a delta-neutral straddle which scales linearly with the variance risk
premium parameter λ:

Et

[
∆Xt
Xt

− rt∆t
]

√
vart

(
∆Xt
Xt

− rt∆t
) ≈ λ ×

√
vt∆t
σ

(7)

The Sharpe ratio of a delta-neutral straddle corresponds to our parameter of interest λ

scaled by a factor √vt∆t/σ. Since √vt∆t/σ > 0 is determined by the underlying physical
3Delta-neutral straddles are not necessarily at the money. While at-the-money straddles are approxi-

mately delta neutral for short maturities, the delta-neutral moneyness increases with maturity. Following
the literature, we compute the delta-neutral portfolios using the Black-Scholes model.
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asset process (1), it is the same at all maturities. As a result, the Sharpe ratios of delta-
neutral straddles at different maturities provide a qualitatively valid measure of the term-
structure of λ, even though they are not quantitatively comparable to the results from the
parametric estimation we present in Section 2.2.4

We estimate the Sharpe ratios of optionswith differentmaturities ranging from 20 days
to 252 days, using weekly returns. We group straddles into four maturity categories: 20 to
60 days, 60 to 125 days, 125 to 190 days, and 190 to 252 days. The results of our analysis
are described and discussed in Section 3.

2.2 Parametric approach

The factor√vt∆t/σ in the Sharpe ratio of a delta-neutral straddle in (7) varies in the time
series with instantaneous volatility vt. These time series variations can be correlated with
variations in the slope of the term-structure of variance risk pricing— andwe show in Sec-
tion 3 that they are. Such covariation can potentially introduce a bias into the magnitude
of the estimated slope in the Sharpe ratio analysis described above. This concernmotivates
us to also study the parameter λ directly in a parametric model.

We follow CHJ and use the discrete-time analog to the continuous time model above,
as developed by Heston and Nandi (2000) where the stock price St follows a GARCH-in-
means process and the one-period excess return has variance ht,

log St = log St−1 + rt +
(

µ − 1
2

)
ht +

√
ht zt

ht = ω + βht−1 + α
(

zt−1 − γ
√

ht−1

)2
,

(8)

with zt ∼ N (0, 1). Heston and Nandi (2000) show that this discrete time model nests
the continuous time model of Heston (1993) as a special case when the number of trad-
ing periods per unit of physical time goes to infinity. Therefore this GARCH approach is
precisely the discrete time analogue of the continuous time Heston (1993) model.

The discrete-time analog of the stochastic discount factor in (2) is given by

Mt

M0
=

(
St

S0

)ϕ

exp

(
δt + η

t

∑
s=1

hs + ξ (ht+1 − h1)

)
.

4In contrast to our approach, Coval and Shumway (2001) look at returns from holding one-month delta-
neutral straddles tomaturity. The long holding periodmeans they cannot use the discretization necessary for
equation (7) to hold. The straddles analyzed by van Binsbergen and Koijen (2017) have deltas that increase
with maturity, and thus depart from the delta neutrality required by equation (4).
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CHJ show that the risk-neutral counterpart to process (8) is

log St = log St−1 + rt −
1
2

h∗t +
√

h∗t z∗t ,

h∗t = ω∗ + βh∗t−1 + α∗
(

z∗t−1 − γ∗
√

h∗t−1

)2
,

(9)

with z∗t ∼ N (0, 1) and

h∗t = Ξht, ω∗ = Ξω,

α∗ = Ξ2α, γ∗ =
1
Ξ

(
γ + µ − 1

2

)
+

1
2

,

where the factor Ξ ≡ (1 − 2αξ)−1, increasing in variance risk aversion ξ, plays the key
role in the transformation from physical to risk-neutral terms.5 To compensate for variance
risk, the risk neutral variance process has a higher long-run mean and higher persistence
for ξ > 0 or, equivalently, Ξ > 1. The only notable difference between the discrete time
and continuous time models is that, over a discrete time interval, there is a difference in
the contemporaneous levels of physical variance ht and risk-neutral variance h∗t while in
continuous time there is only one instantaneous variance vt. Heston andNandi (2000) also
showby simulation that as the time intervals converge to zero, theGARCHprice converges
to the continuous time Heston price.

CHJ estimate the GARCH parameters and a common variance risk aversion through
the factor Ξ = (1 − 2αξ)−1 jointly with a likelihood that incorporates both returns and
option prices. The empirical methodology of CHJ has two important advantages. First, the
GARCH discrete-time structure reduces the complexity of the filtering problem inherent
in any empirical implementation of the Heston model. Second, using the returns data and
the options data jointly means fitting the physical and risk neutral processes with a single
set of internally consistent GARCH and preference parameters.

We therefore follow their approach exactly except for two differences.6 First, we do
not smooth the inputs by computing a volatility surface but, instead, smooth the outputs
from the estimation procedure; this ensures that we are basing our estimates on actual
observed prices and that we do not inflate our dataset with interpolated values. Second,
and more importantly, we allow the variance risk aversion factor Ξ to vary by maturity,

5Given the physical GARCH parameters Θ = {ω, β, α, µ, γ} and the variance risk aversion ξ, the equity
risk aversion ϕ is pinned down as ϕ = −Ξ−1 (µ − 1/2 + γ) + γ − 1/2 (see Heston and Nandi (2000) and
CHJ for additional details).

6Our estimation methodology, adapted from CHJ, is described in more detail in the appendix.
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using four maturity buckets: options with maturities of 20 to 60 days, 60 to 125 days, 125
to 190 days, and 190 to 252 days. In our main results in Section 3, we keep the parameters
of the underlying process (8) constant across maturities; we show in Section 5 that our
results are robust to letting all parameters vary across maturities.

Using the estimates for Ξ1, . . . , Ξ4, we calibrate the corresponding term structure of
continuous-time variance risk premium parameters λ1, . . . , λ4 following CHJ to obtain
the same unconditional variance of stock returns, the same physical variance persistence,
and the same ratio between physical and risk-neutral unconditional variances as in the
discrete-time model:

λj = −κ
E∗[h∗t ]− E[ht]

E∗[h∗t ]
,

where

κ =
(

1 − β − αγ2
)
× 252,

E[ht] =
ω + α

1 − β − αγ2 ,

E∗[h∗t ] =
ω∗

j + α∗j

1 − β − α∗j γ∗2
j

,

and ω∗
j , α∗j , γ∗

j are the risk neutralized parameters using the variance aversion factor Ξj for
each maturity bucket.

2.3 Sample splits

Our interest is in whether estimated variance risk pricing varies with the state of the econ-
omy as well as with the horizon of the option. To explore this question, we calculate the
likelihoodswhen splitting the data by VIX levels and price-dividend ratios, mimicking the
two state variables St and vt of Equations (1) and (2), and compare the estimated variance
risk pricing across horizons and across splits. In particular, we obtain daily closing VIX in-
dex values from the CBOE Indexes data and monthly data on the S&P500 price-dividend
ratio from S&P500 Ratios via Nasdaq Data Link. For each of these variables, we split our
samples into “low” and “high” based onwhether the variable is below or above its median
value over our sample period.

Table 1 reports summary statistics over these subsamples. Times of high VIX and low
PD ratios are associated with greater implied volatility and higher option prices. How-
ever, these times are also associated with higher option implied volatility at short maturi-
ties than at long maturities. Our parametric analysis is designed to determine how much
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Table 1: Summary statistics of options pricing data by subsamples. The table shows sum-
mary statistics of SPX index options prices in the sample used for this paper from January
1996 to August 2023 for sample splits by high and low VIX, and low and high price-dividend
(PD) ratio; and, for implied volatility, by maturity.

Full sample VIX split PD ratio split
High Low Low High

Implied volatility 19.67 23.16 15.03 19.43 19.9
Mid-price 57.14 69.01 41.35 44.71 68.9
Bid-ask spread 1.74 2.01 1.39 1.93 1.56
Implied volatility by maturity
≤30 19.58 23.70 14.22 19.36 19.79
30-60 19.51 23.49 14.28 19.33 19.68
60-90 19.62 23.56 14.84 19.58 19.68
90-120 19.80 23.07 15.37 19.52 20.03
120-180 19.87 23.07 15.46 19.55 20.15
>180 19.68 22.47 15.79 19.30 19.99

of these differences are due to the underlying index return process versus the pricing of
variance risk.

3 Data and empirical results

3.1 Data sources and summary statistics

We use daily closing data of European SPX index options and SPX index levels from Jan-
uary 1996 toAugust 2023 fromOptionMetrics. S&P 500 returns, excluding dividends, from
January 1990 to August 2023 come from CRSP. The risk-free rate for a given daily return
observation is defined as log(1 + rt)/252, where rt is the average effective federal funds
rate for the month.

We clean the data by removing duplicate observations of calls or puts on the same
day that have the same expiration date, strike price, and midprice. Next, we keep only
options that have a maturity between 20 and 252 trading days, inclusive, on the day of
observation. Using trading days to measure maturity is essential. The GARCH estimation
treats the index return series as a continuous series without weekends. To be consistent,
the optionmaturities should therefore also be expressed in trading days.We followBakshi,
Cao, and Chen (1997) in excluding shorter-maturity options to avoidmicrostructure noise
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Table 2: Summary statistics of options pricing data. The table shows summary statistics
sorted by moneyness and maturity of SPX index options prices in the full data sample used
for this paper from January 1996 to August 2023.

Summary Statistics by Maturity
Maturity ≤30 30-60 60-90 90-120 120-180 >180 All
Count 5,322 10,608 7,908 5,058 9,280 11,365 49,541
Implied volatility 19.58 19.51 19.62 19.80 19.87 19.68 19.67
Mid-price 16.16 27.31 42.06 60.17 75.40 98.39 57.14
Bid-ask spread 0.90 1.28 1.51 1.55 1.90 2.69 1.74

Summary Statistics by Moneyness
Moneyness ≤0.96 0.96-0.98 0.98-1.02 1.02-1.04 1.04-1.06 >1.06 All
Count 13,434 4,166 11,950 4,254 3,866 11,871 49,541
Implied volatility 17.14 17.43 18.41 20.13 21.38 23.87 19.67
Mid-price 43.25 72.19 77.04 61.06 54.19 47.08 57.14
Bid-ask spread 1.73 1.92 1.90 1.76 1.66 1.56 1.74

close to expiration, andwe exclude longer-maturity options because they are thinly traded.
We use only AM-settled options to establish a stable panel of comparable options over
time, and restrict moneyness to between 85% and 115%. We also follow Bakshi, Cao, and
Chen (1997) in excluding any options that have quoted bid prices below $3/8 to avoid
discretization issues or options that do not obey the futures arbitrage constraints: for a call
withmaturity τ, C(τ) ≥ max{0, St − Xte−rtτ}, and for a put, P(τ) ≥ max{0, Xte−rtτ − St}.

We restrict our attention to out of the money options to avoid well known issues with
the liquidity of in the money options. On every Wednesday, for each maturity we select
the out of the money option from each of the 6 most highly traded strikes: if the strike is
greater than the stock price we choose the call; if the strike is less than the stock price we
choose the put. We convert all put prices to call prices by put-call parity.7

Table 2 presents summary statistics for the sample of 49,541 option-day observations
used in the parametric analysis. In this sample, the average implied volatility is increasing
with maturity. When sorted by moneyness, we also see evidence of both put skew and
the volatility smile; out of the money puts have much higher implied volatility than calls
and, in general, out of the money options have higher implied volatility than at the money
options. Liquidity improves at longer maturities, with the mean bid-ask spread at around
6% of the average mid-price for short maturities and declining to around 3% at longer

7We use the dividend yield for the index and an interpolated yield curve from the IvyDB interest rate
curve data to construct discounted dividends to then get to call prices.
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Table 3: Estimation on full sample and subsamples. The table shows shows estimates of the
model using joint maximum-likelihood estimation for the full sample as well as for sample
splits by high and low VIX and low and high price-dividend (PD) ratio. GARCH processes
are held constant over both splits in columns (2)–(5). The top panel shows the estimates for
GARCH parameters, the middle panel shows estimates for the variance risk risk aversion
factor, Ξ, and the bottom panel shows the likelihood from the fit to returns, ΦR, the fit to
options prices, ΦO, and the joint likelihood which is the sum of the returns likelihood and
the options prices likelihood.

(1) (2) (3) (4) (5)
Full sample VIX split PD ratio split

High Low Low High
β 0.660 0.694 0.681

(0.011) (0.043) (0.014)
α 1.41×10−6 1.30×10−6 1.28×10−6

(0.02×10−6) (0.04×10−6) (0.01×10−6)

γ 483.32 475.42 490.69
(4.86) (1.85) (4.41)

Ξ20−60 1.153 1.773 1.051 1.288 1.133
(0.011) (0.043) (0.102) (0.013) (0.014)

Ξ60−125 1.085 1.522 1.035 1.215 1.038
(0.008) (0.031) (0.008) (0.009) (0.009)

Ξ125−190 1.031 1.374 1.000 1.116 1.000
(0.007) (0.026) (0.016) (0.007) (0.008)

Ξ190−252 1.017 1.307 1.000 1.090 1.000
(0.006) (0.029) (0.018) (0.006) (0.007)

ΦR 35,708 35,766 35,717
ΦO 136,485 75,762 65,978 70,827 66,189
ΦR + ΦO 172,193 177,506 172,733
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and we see that investors require significantly higher compensation for variance risk and
the slope of the term structure remains downward sloping.9

The difference between the term structures is starkest for the VIX split where both the
level of the curve and the slope (in absolute magnitude) increase in stressed times com-
pared to normal times.10 This is consistent with the VIX being conceptually closest as the
relevant measure to split the price of variance risk on. The VIX split also provides con-
siderably more variation and is reasonably orthogonal to the PD ratio split (correlation of
0.001).Moreover, acrossmaximum likelihood estimates, the VIX split displays the greatest
improvement in the total log likelihood, again emphasizing the close relationship between
the VIX and the price of variance risk (bottom of Table 3).

4 Implied term structures of variance forwards

Dew-Becker et al. (2017) provide an alternative perspective on the pricing of variance
risk at different maturities using proprietary data on variance swap prices to construct
“variance forwards.” These represent claims on realized variance at future dates such that
the price Fn

t of an n-month variance forward at date t is a model-free measure of the risk
neutral expectation of variance in month t + n:11

Fn
t = E∗

t−1[h
∗
t+n]

In the CHJ model, as in the original Heston model, physical variance and risk neutral
variance have conditional term structures since both are expected to revert to their respec-
tive unconditional averages. For physical variance ht we have from the evolution in (8)
that the conditional expectation of variance n periods ahead is given by

Et−1[ht+n] =
(

β + αγ2
)n

ht +
(

1 −
(

β + αγ2
)n)

E[h] ,

9Note that the full-sample estimate of Ξ does not necessarily have to be within the range spanned by the
subsample estimates because the GARCH parameters of the full-sample estimation can differ from those of
the split-sample estimation.

10The standard error for the low-VIX, short-maturity estimate is notably higher than other estimates. This
does not occur in estimates which exclude the post-COVID period, and therefore is likely driven by the sud-
den increase in volatility during March 2020, immediately following a period of low volatility. This period
was especially important for identifying short-maturity options pricing parameters, since these options are
expected tomature entirelywithin the high-VIX period, and so a sudden transition from low-VIX to high-VIX
is difficult for the model to match.

11Note that in discrete time, the variance ht of the stock return log(St/St−1) at date t is already known at
t − 1 after the realization of the shock zt−1.
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with the unconditional average given by

E[h] =
ω + α

1 − β − αγ2 .

Analogously for risk neutral variance h∗t , we have from the evolution in (9) that the con-
ditional expectation (under the risk-neutral measure) of risk-neutral variance n periods
ahead is given by

E∗
t−1[h

∗
t+n] =

(
β + α∗γ∗2

)n
h∗t +

(
1 −

(
β + α∗γ∗2

)n)
E∗[h∗] , (10)

with the unconditional average given by

E∗[h∗] =
ω∗ + α∗

1 − β − α∗γ∗2 .

While the unconditional term structures of both variances are flat under their respec-
tive measures, the unconditional term structure of risk-neutral variance under the physical
measure is not flat. Specifically, substituting h∗t = Ξ ht into (10) and taking unconditional
expectations under the physical measure, we have

E[h∗t+n] ≡ E
[
E∗

t−1[h
∗
t+n]

]
=
(

β + α∗γ∗2
)n

Ξ E[h] +
(

1 −
(

β + α∗γ∗2
)n)

E∗[h∗] . (11)

At the short end, average risk neutral variance E
[
h∗t+n

] is anchored by average realized
variance E[h],

E[h∗t+0] = Ξ E[h] ,

where the factor Ξ is due to the discrete-time structure. With increasing horizon, this an-
chor grows weaker and average risk neutral variance converges to its expectation under
the risk-neutral measure:

lim
n→∞

E[h∗t+n] = E∗[h∗]

Dew-Becker et al. (2017) show that, in the data, the unconditional average term struc-
ture of variance forward prices, i.e. E[Fn

t ] = E
[
h∗t+n

], is steeply upward-sloping at the short
end but then essentially flat at longer maturities. This is in contrast to the more gradually
increasing term structure in (11) that is implied by a Heston (1993) stochastic variance
model such as CHJ.

How do our estimates by maturity bucket relate to this evidence? We have a differ-
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Table 4: Sequential estimation and allowing theGARCHparameters to varywith horizon.
The table shows shows alternative specifications of the unconditional estimates of themodel.
Column (1) uses joint maximum-likelihood estimation for the full sample, column (2) uses
sequential estimation, first estimating the GARCHprocess using returns and then estimating
Ξ using option prices, and columns (3)–(6) use joint estimation which allow both GARCH
parameters and Ξ to vary by maturity. The top panel shows the estimates for GARCH pa-
rameters, the middle panel shows estimates for the variance risk risk aversion factor, Ξ, and
the bottom panel shows the likelihood from the fit to returns, ΦR, the fit to options prices,
ΦO, and the joint likelihoodwhich is the sum of the returns likelihood and the options prices
likelihood.

(1) (2) (3) (4) (5) (6)
Joint Sequential Joint, by maturity

β 0.660 0.801 0.676 0.651 0.719 0.767
(0.011) (0.004) (0.010) (0.013) (0.016) (0.010)

α 1.41×10−6 5.21×10−6 1.61×10−6 1.57×10−6 1.30×10−6 1.08×10−6

(0.02×10−6) (0.01×10−6) (0.01×10−6) (0.03×10−6) (0.04×10−6) (0.02×10−6)

γ 483.32 170.01 438.94 464.08 456.15 456.58
(4.86) (1.27) (0.61) (7.44) (9.43) (7.62)

Ξ20−60 1.153 1.107 1.170
(0.011) (0.004) (0.010)

Ξ60−125 1.085 1.102 1.045
(0.008) (0.001) (0.013)

Ξ125−190 1.031 1.118 1.000
(0.007) (0.004) (0.016)

Ξ190−252 1.017 1.131 1.000
(0.006) (0.004) (0.010)

ΦR 35,708 35,967 35,757 35,704 35,698 35,663
ΦO 136,485 118,341 39,603 39,274 28,977 28,502
ΦR + ΦO 172,193 154,307 75,361 74,978 64,675 64,165
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α, β and γ while column (1) repeats the joint estimation of the benchmark specification.
Not allowing the options data to inform the GARCH parameters results in an essen-

tially flat or weakly increasing term structure for variance risk pricing Ξ. Comparing the
likelihoods at the bottom of Table 4, we see that the total likelihood of the sequential es-
timation is considerably lower due to a large decline in the options likelihood. This high-
lights the importance of the options data informing the GARCH parameters such that, in
turn, the options pricing improves (as in CHJ). The difference in the parameter estimates
suggest that options prices imply higher volatility and lower persistence of volatility than
would be gained by estimation of the GARCHprocess using returns alone. One possibility
is that the period of the sample estimation has seen relatively high volatility compared to
the physical process, which option prices foresee but which the GARCH process is unable
to pick up.

5.2 Allowing the GARCH parameters to vary with horizon

Our benchmark specification only allows the variance risk aversion factor Ξ to vary with
the horizon but maintains a single set of GARCH parameters α, β, and γ. Figure 6 shows
the coefficient estimates if we allow the GARCH parameters to vary with the horizon. Ta-
ble 4, columns (3) to (6) show the full estimation results. While this additional flexibility
results in some variation in the GARCH parameter estimates across horizons, the effect on
the estimates of Ξ (and therefore λ) is negligible (top-left panel of Figure 6). Considering
the variation in the GARCH parameters, only α and β show a somewhat monotonic term
structure. The estimates for α and β from short-horizon options suggest lower persistence
of the variance and fatter tails in the distribution of shocks to the variance process, respec-
tively. Both are conceptually consistent with our main finding of a higher price of variance
risk (in absolute value) at shorter horizons.

5.3 Allowing GARCH parameters to vary with sample splits

Our benchmark specification estimates one set of GARCH parameters and only estimates
the variance risk aversion factor Ξ separately on different subsamples. We could, instead,
allow the GARCH parameters to vary with sample splits as well. However, due to the
auto-regressive nature of the process, estimating separate GARCH parameters for differ-
ent subsamples is conceptually problematic if the subsamples are not sufficiently long.
This concern is particularly strong for our VIX split and our PD ratio split which can vary
at daily frequency.
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Figure 7 shows the coefficient estimates of λ and Ξ if we do allow the GARCH param-
eters to vary with the sample splits. Table 5, columns (2) to (5) show the full estimation
results while column (1) repeats the estimation of the benchmark specification. For both
splits, the ordering of the term structures changes as now Ξ is higher in the low-VIX and
high-PD ratio sample than the high-VIX and low-PD ratio sample, respectively, and higher
in each of the VIX sub-periods than in the full sample period. This is due to the fact that
the GARCH parameters change considerably in the two subsamples. In the high VIX and
low PD ratio samples, we estimate considerably larger kurtosis α and smaller correlation
with returns γ (and slightly higher persistence β). The reason that the GARCH process
impacts the pricing of variance risk is intuitive: Options pricesmay be higher at longerma-
turities either because of a lower aversion to variance risk at longer horizons or because
variance is expected to be lower in the future. Again, this emphasizes the importance of
joint estimation of returns and options prices (as in CHJ). Irrespective of the level effects,
variance risk remains priced out to medium maturities or longer across all sub-periods
and the term structure remain downward-sloping.

The finding that Ξ is higher in each VIX sub-period than in the full sample deserves
some discussion and interpretation. We note that the estimated variance of variance that
results from estimating the returns process from either high- or low-variance sub-periods
is artificially low, compared to the true returns process, which has a chance to move from
a high- to a low-variance regime, reflecting relatively high variance of variance. As a re-
sult, the estimated model would have trouble making sense of high option prices in any
sub-period, unless it assumes a high price of variance risk (in absolute value). The joint
estimation solves this problem by inferring different GARCH parameters for the two peri-
ods based on the option prices as well as the returns process, which then leads to different
variance risk pricing parameters that could be hard to compare. The fact that the model
fit does not greatly differ between the results in which GARCH is separated for the entire
sample as opposed to separately estimated in each subsample while the estimated price
of variance risk differs quite starkly suggests that the reason for the latter findings is more
likely to be a change in the pricing of variance risk rather than a change in the underlying
returns process.

6 Conclusion

Weprovide parametric and non-parametric estimates of the term structure of variance risk
pricing and how it varies over time by estimating the price of variance risk in a Heston
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Table 5: Allowing GARCH parameters to vary with sample splits. The table shows shows
alternative specifications of the sample splits. Columns (2)–(5) repeat the sample splits of
Table 3 but allow for the GARCH parameters to vary with the sample splits. The top panel
shows the estimates for GARCH parameters, the middle panel shows estimates for the vari-
ance risk risk aversion factor, Ξ, and the bottom panel shows the likelihood from the fit to
returns, ΦR, the fit to options prices, ΦO, and the joint likelihood which is the sum of the
returns likelihood and the options prices likelihood.

(1) (2) (3) (4) (5)
Joint VIX split PD ratio split

High Low Low High
β 0.660 0.714 0.680 0.761 0.521

(0.011) (0.018) (0.019) (0.016) (0.019)
α 1.41×10−6 1.59×10−6 1.37×10−6 2.10×10−6 0.73×10−6

(0.02×10−6) (0.03×10−6) (0.04×10−6) (0.04×10−6) (0.01×10−6)

γ 483.32 414.24 466.39 326.93 807.13
(4.86) (5.25) (4.39) (4.76) (9.51)

Ξ20−60 1.153 1.483 1.429 1.077 1.458
(0.011) (0.018) (0.019) (0.016) (0.019)

Ξ60−125 1.085 1.308 1.366 1.054 1.268
(0.008) (0.013) (0.015) (0.011) (0.014)

Ξ125−190 1.031 1.203 1.321 1.007 1.160
(0.007) (0.011) (0.012) (0.009) (0.011)

Ξ190−252 1.017 1.156 1.335 1.001 1.115
(0.006) (0.009) (0.012) (0.008) (0.010)

ΦR 35,708 35,768 35,570 35,794 35,423
ΦO 136,485 76,731 70,544 72,098 68,173
ΦR + ΦO 172,193 112,500 106,114 107,892 103,595
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(1993) stochastic-volatility model. We find that the price of insurance against volatility
shocks varies with the horizon of the risk insured: short-term insurance is significantly
more expensive than long-term insurance, and this effect is more pronounced in times of
higher volatility. The price is significant across short- and longer-maturity options and the
term structure is consistently downward sloping (in absolute value) across normal times
and periods of stress.

These results extend the accumulating evidence for non-trivial term structures of risk
prices to the market for variance risk, and suggest the need for a new generation of op-
tion pricing models that allow for horizon-dependent risk aversion and/or more general
physical dynamics.

The implicit assumption that risk prices are flat across horizons —which is rejected in
this paper — would lead market observers to attribute too much of the term structure of
risk premia to a term structure in expected volatility. In otherwords, our results emphasize
that the conversion between objective and risk-neutral measures depends on maturity.
Combined with the time series variations in our variance price term-structure estimates,
which contrast to similar analysis on the term-structure of the equity risk pricing, our
finding may help inspire future generations of asset pricing models and econometricians’
interpretation of economic forecasts.
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Appendix

Estimation procedure

Define daily index returns Rt = log(St/St−1) and the risk-free rate rt. The return log
likelihood is only a function of the GARCH parameters Θ = {ω, β, α, µ, γ}

ℓret(Θ) = −1
2

T

∑
t=1

[
log ht +

1
ht

(
Rt − rt −

(
µ − 1

2

)
ht

)2
]

,

where
h1 =

ω + α

1 − β − αγ2 .

Define Black-Scholes vega weighted pricing errors as

εi =
Pmkt

i − Pmod
i

BSVmkt
i

,

where Pmkt
i is the market price of option i, BSVmkt

i is the market Black-Scholes vega of
option i, and Pmod

i is the model price for option i. Note that Pmod
i depends on both the

GARCH parameters Θ as well as the variance risk aversion factor Ξ for the maturity cat-
egory to which option i belongs. We use four maturity categories and assign different
variance risk aversion factors Ξ1, . . . , Ξ4 for options with maturities of 20 to 60 days, 60 to
125 days, 125 to 190 days, and 190 to 252 days, respectively. Assume that the Black-Scholes
vega weighted pricing errors are i.i.d. normal with mean zero and variance σ2. The option
likelihood is then a function of Θ, Ξ1, . . . , Ξ4, and σ2:

ℓopt

(
Θ, Ξ1, . . . , Ξ4, σ2

)
= −1

2

N

∑
i=1

(
log σ2 +

ε2
i

σ2

)

Maximum likelihood can then be used to estimate Θ and Ξ1, . . . , Ξ4,{
Θ̂, Ξ̂1, . . . , Ξ̂4, σ̂2

}
= argmax

{Θ,Ξ1,...,Ξ4,σ2}

(
ℓret + ℓopt

)
.

We also follow CHJ in setting ω = ω∗ = 0 in the estimation and µ to its maximum likeli-
hood estimate from just the returns data.
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