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Abstract 

 
We estimate the term structure of the price of variance risk (PVR), which helps distinguish 

between competing asset-pricing theories. First, we measure the PVR as proportional to the 

Sharpe ratio of short-term holding returns of delta-neutral index straddles; second, we estimate 

the PVR in a Heston (1993) stochastic-volatility model. In both cases, the estimation is performed 

separately for different maturities. We find the PVR is negative and decreases in absolute value 

with maturity; it is more negative and its term structure is steeper when volatility is high. These 

findings are inconsistent with calibrations of established asset-pricing models that assume 

constant risk aversion across maturities. 
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1 Introduction

A fundamental debate in asset pricing has arisen concerning the term structure of risk
premia. Well-established theoretical asset-pricing models such as Campbell and Cochrane
(1999) and Bansal and Yaron (2004) predict a flat or upward-sloping term structure of
excess returns; similarly, the price of variance risk is constant across maturities in standard
option pricing models such as Heston (1993). However, van Binsbergen, Brandt, and Koijen
(2012) and van Binsbergen and Koijen (2014) find that, in the data, one-period returns in
equity and equity derivatives markets are actually higher for shorter maturities. Similarly,
Giglio, Maggiori, and Stroebel (2013) show that very long-run risk premia in housing markets
are low compared to observed risk prices for shorter maturities.

In response to these findings, several new asset pricing models have been developed that
generate a downward-sloping term structure of equity risk premia. Most of these models
enrich the underlying production economy and thus affect the expected quantity of risk
(under the physical measure) at various horizons.1 By contrast, Andries, Eisenbach, and
Schmalz (2014) maintain the long-run risk endowment economy of Bansal and Yaron (2004)
but generalize the agents’ Epstein and Zin (1989) preferences to allow for horizon-dependent
risk aversion. This framework predicts negative variance risk premia with a declining term
structure (in absolute value) as a driver of the downward-sloping term structure of equity risk
premia—both of which are amplified in times of high volatility. Importantly, the driver is a
term structure in the price of variance risk. The present paper helps inform this fundamental
debate by empirically investigating whether the price of variance risk has indeed a non-trivial
term structure.

To investigate the price of variance risk (PVR) and its term structure, we use standard
data on S&P 500 index options from February 1996 to April 2011 and estimate the PVR
separately for different maturities, ranging from 11 to 252 days. We first measure Sharpe ra-
tios of delta-neutral straddles with different maturities which are a valid qualitative measure
of the PVR. We find that Sharpe ratios are negative and large (in absolute value) for short
maturities, but they are much closer to zero at longer maturities. This finding indicates a
sharply decreasing term structure for the price of variance risk (in absolute value).

For an estimation that enables a cleaner and more robust interpretation—in particular
in light of potentially time-changing prices of risk—we then adapt the maximum-likelihood
approach of Christoffersen, Heston, and Jacobs (2013) to estimate the PVR parameter sepa-
rately for options of different maturities and find results consistent with our non-parametric

1See the literature review below. Van Binsbergen and Koijen (2015) give a comprehensive review of the
empirical and theoretical research on the term structure of risk premia.
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Sharpe-ratio analysis. From the shortest maturities, between 11 and 30 days, to the longest
maturities, between 230 and 250 days, the PVR drops by 44 percent and over half of that drop
occurs going from the 11–30 day bucket to the 30–50 day bucket. Furthermore, higher levels
of volatility are associated with more negative prices of variance risk—especially at shorter
maturities, resulting in a steeper term structure of the PVR. Our findings thus suggest that
the known fact of a negative overall PVR is predominantly driven by short maturities and
by periods of high market volatility.

The present paper contributes to the literature as follows. Possibly guided by the predic-
tions of existing option-pricing models such as Heston (1993), which predict a constant price
of variance risk across maturities, no paper to date in the options literature has investigated
if variance risk prices have a non-trivial term structure. For example, work by Coval and
Shumway (2001) or Carr and Wu (2009) measures variance risk premia for options with
a single maturity; Christoffersen et al. (2013) pool all maturities to estimate the price of
variance risk. Choi, Mueller, and Vedolin (2015) find a negative and upward-sloping term
structure of variance premia in the Treasury futures market. Given our finding that estimat-
ing a Heston (1993) model separately for different maturities rejects its assumption of a flat
term structure, the next generation of option-pricing models would benefit from allowing
risk prices to vary depending on maturity.

Outside the options literature, other papers have investigated the term structure of vari-
ance risk premia and prices, using different data sets and different methodologies than the
present paper. Most recently, Dew-Becker, Giglio, Le, and Rodriguez (2014) use proprietary
data on variance swaps to estimate term-structure models, similar to Amengual (2008) and
Ait-Sahalia et al. (2012), but add realized volatility as a third factor to a standard level-
and-slope analysis. They find that only shocks to realized volatility are priced, implying
a term structure that is steeply negative at the short end (a one-month horizon) but es-
sentially flat at zero beyond that. Both methodologies we employ, as well as our data, are
different from and complementary to Dew-Becker et al. (2014). Given the importance of the
empirical question for asset pricing, we find it valuable to provide support from an entirely
different and relatively easy-to-understand estimation approach—the one we use is unique
to the literature. In terms of results, we also find a strong concavity in the term structure,
but we measure a negative price of variance risk for all maturities. In addition, we offer more
granular estimates (daily maturity buckets) and include shorter maturities (11 days versus
1 month).

Our conditional results on the relationship between current market volatility and the
term structure of risk prices are related to the work of Cheng (2014) who studies the returns
of hedging volatility with VIX futures. Cheng documents that hedging is cheaper during
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turbulent times, whereas we find that the price of variance risk is more negative and that
its term structure is steeper when current volatility is high. Barras and Malkhozov (2015)
find differences in estimates of variance risk premia in the equity and option markets that
are driven by institutional factors. While this finding suggests a potential explanation for
the differences between our results and those of Dew-Becker et al. (2014) as well as those of
Cheng (2014), it also emphasizes the value of using different methodological approaches and
different data sets to approach an academic understanding of the market for volatility risk.

Our findings have implications for asset pricing models also outside the options literature.
In particular, our results suggest a preference-based explanation to the downward-sloping
term structure of equity risk premia. While the long-run-risk model of Bansal et al. (2013)
as well as the rare-disaster model of Wachter (2013) correctly predict a negative price per
unit of variance risk, the models cannot quantitatively match its decline with maturity (in
absolute value). Consumption-based asset pricing models with loss aversion, such as Andries
(2012) and Curatola (2014), predict a pricing per unit of risk that declines intrinsically (in
absolute value) with the quantity of risk, consistent with the evidence on markets where the
declines in Sharpe ratios in the term-structure are accompanied by increases in volatility (see
van Binsbergen and Koijen, 2015 for examples). However, our results highlight a decline in
both the pricing and quantity of risk in the term-structure and cannot be simply rationalized
by first-order risk aversion.

The paper proceeds as follows. Section 2 presents the theoretical derivation of the price of
variance risk in the Heston (1993) model as well as its relation to the Sharpe ratios of short-
term returns of delta-neutral straddles and our parametric estimation procedure. Section 3
gives the empirical results. Section 4 concludes.

2 Hypotheses Development and Empirical Strategy

2.1 Theoretical Background and Empirical Hypotheses

We use the structure of the option-pricing model of Heston (1993) to isolate the role of
variance risk. Specifically, we assume stock price St and variance vt satisfy the following
physical dynamics:

dSt = µSt dt+
√
vtSt dW1t

dvt = κ (θ − vt) dt+ σ
√
vt dW2t (1)
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The stock return has drift µ and volatility
√
vt. The variance vt itself has long-run mean

θ, to which it reverts at speed κ, and volatility σ
√
vt. Both dW1t and dW2t are Brownian

motions and ρ denotes the correlation between shocks to the return and variance processes.
To identify the premia for equity risk and variance risk, we can risk-neutralize the dy-

namics in (1) as follows:

dSt = µ∗St dt+
√
vtSt dW

∗
1t

= rSt dt+
√
vtSt dW

∗
1t

dvt = κ∗ (θ∗ − vt) dt+ σ
√
vt dW

∗
2t

=
(
κ (θ − vt)− λvt

)
dt+ σ

√
vt dW

∗
2t

The standard intuition is that to compensate for equity risk, the stock return under the
physical measure has a drift with a premium µ−r compared to the risk-free rate r. Similarly,
to compensate for variance risk, the variance under the physical measure has a drift with a
premium λvt compared to the risk-neutral drift. Alternatively, the physical variance dynamic
has a lower long-run mean, θ < θ∗, and faster mean-reversion, κ > κ∗ for a negative variance
risk premium, λvt < 0.

Our main interest is to study if and how the compensation investors demand for variance
risk depends on the horizon and what drives this dependence. Since the variance risk premium
λvt depends on current variance vt—which varies in the time series—we focus our analysis
on the parameter λ and refer to it as the ‘price of variance risk’ (PVR). Inspired by the
existing evidence on the term-structure of risk premia, we test three hypotheses:

1. The PVR is negative at all maturities.

2. The PVR decreases in absolute value with maturity.

3. The PVR is more negative and its term structure is steeper when volatility is high.

The first prediction is consistent with various established asset pricing models, including
Bansal and Yaron (2004). The latter two predictions are specific to the model by Andries
et al. (2014). We now explain the two different estimation procedures we use to test these
hypotheses: a non-parametric estimation using short-horizon Sharpe ratios and a parametric
estimation based on Christoffersen et al. (2013).

2.2 Non-parametric Estimation: Short-horizon Sharpe Ratios

We show how the short-horizon Sharpe ratios of delta-neutral straddles identify the sign of
the PVR and the slope of its term structure. In the Heston model, the no-arbitrage price Xt
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of any option satisfies the following partial differential equation:

1

2

∂2X

∂S2
vtS

2
t +

∂2X

∂S∂v
ρσStvt +

1

2

∂2X

∂v2
σ2vt +

∂X

∂S
rSt

+
∂X

∂v
[κ (θ − vt)− λvt]− rXt +

∂X

∂t
= 0 (2)

The option price Xt therefore follows a dynamic given by:

dXt =

[
∂X

∂v
λvt +

(
Xt −

∂X

∂S
St

)
r +

∂X

∂S
µSt

]
dt

+
∂X

∂S
St
√
vt dW1t +

∂X

∂v
σ
√
vt dW2t (3)

A complication arises with the measurement of λ because µ is not observable. To address
this challenge, we form a measurable portfolio of straddles that are delta neutral so that
the portfolio is independent of µ.2 To that end, first note that we can use the stock-return
dynamic (1) to rewrite the option dynamic (3) as:

d

(
Xt −

∂X

∂S
St

)
=

[(
Xt −

∂X

∂S
St

)
r +

∂X

∂v
λvt

]
dt+

∂X

∂v
σ
√
vt dW2t (4)

Next, we can discretize the dynamic in (4) and rearrange to arrive at

λ

√
vt∆t

σ
+ ε =

∆
(
Xt − ∂X

∂S
St
)
−
(
Xt − ∂X

∂S
St
)
r∆t

∂X
∂v
σ
√
vt∆t

, (5)

where ε = ∆W2t/
√

∆t which is zero in expectation. Note that the denominator on the right
hand side of equation (5) is just the standard deviation of the process in equation (4). Hence,
when Xt is a delta-neutral straddle, we have

E

[
λ

√
vt∆t

σ

]
≈
E
[
∆
(
Xt − ∂X

∂S
St
)]
−
(
Xt − ∂X

∂S
St
)
r∆t√

Var
[
∆
(
Xt − ∂X

∂S
St
)]

≈ E[∆Xt]−Xtr∆t√
Var[∆Xt]

= SR(Xt) (6)

2Delta-neutral straddles are not necessarily at the money. While at-the-money straddles are approximately
delta neutral for short maturities, the delta-neutral moneyness increases with maturity; see the decreasing
ratios of St/K in the delta neutral straddles described in Table 1. Following the literature, we compute the
delta-neutral portfolios using the Black and Scholes model.

5



The expected PVR λ therefore differs from the Sharpe ratio SR(Xt) of a delta-neutral strad-
dle only by a factor of

√
vt∆t/σ.

As a result, the Sharpe ratios of delta-neutral straddles are a qualitatively valid measure
of both the sign and relative magnitude of the PVR across maturities, even though they are
not quantitatively comparable to the results from the parametric estimation we present in
section 2.3.3 In contrast to our approach, Coval and Shumway (2001) look at returns from
holding one-month delta-neutral straddles to maturity. The long holding period means they
cannot use the discretization necessary for equation (6) to hold. The straddles analyzed by
van Binsbergen and Koijen (2015) have deltas that increase with maturity, and thus depart
from the delta neutrality required by equation (6).

The instantaneous Sharpe ratio of investing in delta-neutral straddles can be estimated
by

SR =
E[∆Xt/Xt − r∆t]√
Var[∆Xt/Xt − r∆t]

,

where
∆Xt

Xt

=
Xt+∆t −Xt

Xt

.

We estimate the Sharpe ratios of options with different maturities ranging from 11 days to
252 days, using daily returns. To estimate the Sharpe ratio SRτ for options with maturity τ ,
we use returns from options with maturities in the range [τ, τ + 20) and compute the average
divided by the standard deviation of such returns. Figure 1 shows that these returns are not
auto-correlated over time. Therefore, asymptotic standard errors for the Sharpe ratios can
be computed by bootstrapping, treating each return as an independent observation. The
results of our analysis are described and discussed in Section 3.

2.3 Parametric Estimation Procedure

The factor
√
vt∆t/σ in Equation (6), while constant in the term-structure, may vary in

the time series. These time series variations can be correlated—and we show in Section 3
that they are—with variations in the slope of the PVR term-structure. Such covariation can
potentially introduce a bias into the magnitude of the estimated slope in the Sharpe ratio
analysis described above. This concern motivates us to also estimate the parameter λ directly
in a parametric model, using a discrete-time method based on Christoffersen, Heston, and
Jacobs (2013, hereafter CHJ). CHJ estimate their model using a sample of options pooled

3Because the factor
√
vt∆t/σ is guaranteed to be positive, the Sharpe ratio is a robust test of the sign of

the PVR. Moreover, the extra factor
√
vt∆t/σ does not change with maturity, so it does not affect the sign

of the slope of the term structure of the PVR.
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across different maturities and strike prices. We adapt the procedure to subsets of at-the-
money options and run the estimation of λ separately for options of different maturities
and volatility levels.4 We first describe the economic intuition and then explain the formal
estimation procedure.

CHJ discretize the continuous-time dynamic of stock return and variance in (1) using
approach of Heston and Nandi (2000) where the stock follows a GARCH process and the
one-period excess return has variance ht; the variance itself follows an ARMA(1, 1) process:5

logSt = logSt−1 + rt +
(
η − 1

2

)
ht +

√
ht zt

ht = ω + βht−1 + α
(
zt−1 − γ

√
ht−1

)2

with zt ∼ N (0, 1). Assuming a pricing kernel with equity risk aversion φ and variance risk
aversion ξ, CHJ show that the processes can be risk-neutralized as

logSt = logSt−1 + rt − 1
2
h∗t +

√
h∗t z

∗
t ,

h∗t = ω∗ + βh∗t−1 + α∗
(
z∗t−1 − γ∗

√
h∗t−1

)2

,

with

h∗t =
1

1− 2αξ
ht, ω∗ =

1

1− 2αξ
ω,

α∗ =
1

1− 2αξ
α, γ∗ = γ − φ,

and z∗t ∼ N (0, 1). The difference between physical and risk-neutral processes is intuitively
analogous to the continuous-time case. To compensate for variance risk, the physical variance
process has a lower long-run mean and lower persistence for ξ > 0. The only notable difference
is that over a discrete time interval, there is a difference in the contemporaneous levels of
physical variance ht and risk-neutral variance h∗t while in continuous time there is only one
instantaneous variance vt.

Conditional on the physical GARCH parameters Θ = {ω, β, α, γ, η}, a value of the param-
4In principle, the maximum-likelihood estimation (MLE) can be applied to options that are not at the

money. However, we restrict the MLE to at-the-money options to limit the effect of jumps on the estimation
since jumps have a much larger effect on the price of out-of-the-money options.

5Heston and Nandi (2000) show that this discrete time model nests the continuous time model of Heston
(1993) as a special case when the number of trading periods per unit of physical time goes to infinity.
Therefore this GARCH approach is precisely the discrete time analogue of the continuous time Heston
(1993) model.
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eter ξ generates risk-neutral volatilities h∗t that can be used to price options.6 We therefore
perform the estimation in two stages: In the first stage, we estimate the parameters Θ gov-
erning the GARCH process in index returns. In the second stage, we use this set of common
GARCH parameters to estimate the PVR separately for subsets of options by maturity and
volatility state.7,8

For the first stage, we estimate the GARCH parameters through maximum likelihood.
Using daily series on index returns Rt = log(St/St−1) and the risk-free rate rt, we solve

Θ̂ = argmin
Θ={ω,β,α,γ,η}

{
−1

2

T∑
t=1

[
log ht +

(
Rt − rt −

(
η − 1

2

)
ht
)2

ht

]}
,

where

ht = ω + βht−1 + α
(
zt−1 − γ

√
ht−1

)2

,

zt =
Rt − rt −

(
η − 1

2

)
ht√

ht
,

h1 =
ω + α

1− β − αγ2
.

For the second stage, given a value of Θ̂ from the first stage and a particular subset of
option prices {Pi}Ni=1, we estimate ξ through maximum-likelihood estimation

ξ̂ = argmin
ξ

{
−1

2

N∑
i=1

(
log ŝ2

ε +
ε2
i

ŝ2
ε

)}
,

where we treat the Black-Scholes Vega (BSV) weighted pricing errors as Gaussian random
6Given the physical parameters Θ and the variance risk aversion ξ, the equity risk aversion φ is pinned

down as φ = −
(
η − 1

2 + γ
)

(1− 2αξ) +γ− 1
2 . The details of the option-pricing model come from Heston and

Nandi (2000) and are replicated in the appendix.
7In our approach, we do not smooth the inputs by computing a volatility surface. Instead, we smooth the

outputs from the estimation procedure. This ensures that we are basing our estimates on actual observed
prices and that we do not inflate our dataset with interpolated values.

8CHJ show that a joint maximum-likelihood procedure with both options and returns gives estimates
comparable to those of a procedure that estimates the models sequentially with returns first and options
second. The sequential procedure is particularly important in our case because the options all derive value
from the same underlying time series for stock returns, so it makes sense for them to share the same time-
series parameters.
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variables, following the method of CHJ:

ŝ2
ε =

1

N

N∑
i=1

ε2
i

εi =
PMkt
i − PMod

i (ξ)

BSVMkt
i

We then derive the continuous-time PVR λ following CHJ by calibrating it to obtain the
same unconditional variance of stock returns and the same ratio between physical and risk-
neutral unconditional variances as in the discrete-time model:

λ = −κE
∗[h∗t ]− E[ht]

E∗[h∗t ]
,

where

κ =
(
1− β − αγ2

)
× 252,

E[ht] =
ω + α

1− β − αγ2
,

E∗[h∗t ] =
ω∗ + α∗

1− β − α∗γ∗2
.

To test the different hypotheses, we perform the second stage on several subsets of the
data:

1. We estimate λ by considering the prices of options in maturity buckets ranging from
11 to 250 to see if the PVR changes across the term structure.

2. We split the options into two regimes for current volatility. Doing so enables a first
look into how the term structure of the price of variance risk changes in high-volatility
periods (high ht) and calm periods (low ht).

The results of our analysis are described and analyzed in Section 3.

3 Data and Empirical Results

3.1 Data Sources and Summary Statistics

We use daily closing data from February 1996 to April 2011 of European SPX index options
and SPX index levels from OptionMetrics. Value-weighted S&P 500 returns, excluding div-
idends, from January 1990 to December 2014 come from CRSP. The three-month risk-free
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rate data are taken from FRED. The risk-free rate for a given daily observation is defined
as log(1 + rm)/252, where rm is the risk-free rate recorded for the last week of the previous
month.

We clean the data by removing duplicate observations of calls or puts on the same day
that have the same expiration date, strike price, and midprice. Next, we keep only options
that have a maturity between 11 and 252 trading days on the day of observation.9 We
exclude shorter-maturity options to avoid microstructure noise close to expiration affecting
our results, and we exclude longer-maturity options because they are thinly traded.

For the non-parametric estimation, for each maturity and strike on a given day, we
estimate the Black-Scholes implied volatility by the average of the call and put Black-Scholes
implied volatilities. We then use this implied volatility to estimate the Black-Scholes delta
of the call and the put at that strike and maturity observation on that day. We then pick
the strike and maturity such that the straddle delta, which is the sum of the put and call
deltas, is closest to zero. We drop observations that have straddle deltas greater than 0.10 in
absolute value and that have bid ask spreads greater than 10 percent of the midprice.10 As
such, the options under consideration are highly liquid and close to delta neutral. We also
follow Bakshi et al. (1997) in excluding any options that do not obey the futures arbitrage
constraints.11

We further restrict our sample to options that satisfy the delta constraint and have
a maturity between 11 and 252 days during the entire [−1,+1]-day window relative to the
observation date for the Sharpe ratio analysis. If a given option contract violates an arbitrage
bound or goes out of the money in the [−1,+1]-day window, then its return is not used in
the calculations.12 Hence, the Sharpe-ratio analysis excludes options in periods when the
index changed dramatically in the span of 3 days, thereby excluding crisis periods. We thus
ensure that abnormal events do not drive our results. We keep only calls and puts that can
be paired into a straddle.

For the parametric estimation, for each year and each maturity bin of 10 days starting
at every 10th day, we drop the observations corresponding to the top and bottom 1 percent
of residuals in a third-order polynomial regression of the option price against the GARCH

9Using trading days to measure maturity is essential. The GARCH estimation treats the index return
series as a continuous series without weekends. Thus, to be consistent, the option maturities should also be
expressed in trading days.

10We find that the results are not sensitive to changing the straddle delta threshold to a lower value of
0.05. Sample sizes decrease substantially, however. We therefore don’t focus the analysis on that reduced
sample.

11For a call with maturity τ , C(τ) ≥ max{0, St −Xte
−rτ}, and for a put, P (τ) ≥ max{0, Xte

−rτ − St}.
12We do not need to make such corrections for the parametric estimation because the parametric estimation

fits prices, not returns.
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volatility variable ht.13 We do this instead of restricting the options to be delta neutral in
the [−1,+1]-day window. The results are not quantitatively sensitive to the exact level of
truncation.

We present summary statistics for the sample of 47,416 option-day observations in Table
1. We note in Table 2 that the dollar value of the bid-ask spread increases along the maturity
structure but decreases as a percentage of the option price. We view this observation as an
indication of good liquidity across the entire term structure—one of the benefits of studying
index returns as opposed to individual-name returns.

3.2 Non-parametric Estimation Results

We provide the “model-free” estimation of Sharpe ratios of straddle returns, interpreted as
the sign of intercept and slope of the term structure of the PVR in Figure 3. We present the
point estimates for maturity buckets of length 20 days in Table 3.

The term structure of Sharpe ratios is concave and trends upwards at almost all maturi-
ties. Between the first two maturity buckets, the 11–30 day maturity bucket and the 30–50
day maturity bucket, the Sharpe ratio increases from −1.15 to −0.71. This sharp increase
represents 40 percent of the overall range in Sharpe ratios over the entire term structure,
showing that most of the variation stems from the short end. The Sharpe ratio continues to
slope upwards, albeit more slowly, for maturities beyond 50 days. It is −0.54 for intermediate
maturities 50–70 days, more than three times as negative as for the 230–250 day straddles,
−0.16. It steadily approaches zero for longer maturities.14

Our findings indicate that existing measures of the negative price of variance risk in the
literature, if obtained from a pooled sample, are mainly driven by short maturities. Moreover,
our results are qualitatively consistent with those reported in van Binsbergen and Koijen
(2015), although their straddles are not necessarily delta-neutral (which can potentially bias
the results) and the Sharpe ratios are only reported for a small number maturities.

As noted in Section 2.2, the factor
√
vt∆t/σ is not constant in the time series so interaction

with the sample size may introduce bias into the magnitude of the estimated slope. As this
issue is not present in the parametric estimation, it can account for different slope estimates
across the analyses. Further, differences in liquidity between the delta-neutral straddles and
the at-the-money options used in the non-parametric and parametric analysis, respectively,
may introduce differences.

13Put prices are converted to equivalent call prices by put-call parity.
14Because shorting short-maturity straddles generates very high expected returns also when the positions

are crash-hedged (Coval and Shumway, 2001), one-sided crash risk is unlikely to be the driver of our Sharpe-
ratio results (see also Constantinides et al., 2013).
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3.3 Parametric Estimation Results

We present the parametric estimation of the term structure of the PVR in Figure 4, and a
selection of data points grouped by maturity bucket in Table 4.15 Our results show that the
PVR decreases in absolute value with maturity. For example, the point estimate is −0.61 for
maturities 11–30, and −0.34 for maturities 230–250.16 This result confirms our first two key
hypotheses: the PVR is negative, and decreases in absolute value with maturity.

Interestingly, we observe a dip in the unconditional term structure at the 70–90 day
maturity bucket, consistent with results obtained from the alternative estimation procedure
employed in Dew-Becker et al. (2014). We attribute this anomaly to a change in the distri-
bution of option maturities before and after 2007. As seen in Figure 2, prior to 2007 most
traded options had maturities between 0 and 60 days. After 2007, however, the maturity
range for most traded options increases to 0–90 days. Our results for the pricing of variance
risk in the 70–90 day maturity bucket are thus artificially driven by the post 2007 period.
Consistent with our hypothesis for why the dip exists, we find that the dip disappears when
we split our sample into pre- and post-2007 subsamples (see Figure 5 and Table 5). Once
we split by time period, the term structures are smoothly concave and upward sloping at all
maturities, in line with our Sharpe ratio results. In both time periods, most of the change
in the PVR occurs in the 11–50 day maturity range, with only 30 percent of the overall
term-structure variation occurring at the intermediate maturities, between 50 and 250 days.

To test the third hypothesis, we explore how volatility levels affect the term structure
of the PVR. We divide all days into two categories of expected future volatility, based on
whether ht+1 from the GARCH estimation is above or below the sample median, and then
run the previous procedure on each subsample. We present our results in Figure 6 and
Table 6. Compared to the low volatility state, the PVR in the high volatility state is more
negative and the term structure is steeper. The economic magnitude of these differences
is substantial. For the shortest maturities, the point estimate is −1.15 in high volatility
states, which compares to −0.31 in the low volatility states. For the longest maturities, the
point estimates are −0.58 and −0.13, respectively. To ensure robustness of this result to a
procedure that does not “break” options within their maturities, we alternatively split the
sample into a period that includes the beginning of the sample until 2007 and a post-2007

15We only show second-stage results for brevity. The first-stage GARCH estimation yields ω = 0, β = 0.835,
α = 3.54× 10−6, η = 3.48, and γ = 191.03. These results are in line with estimates from Christoffersen et al.
(2013).

16We do not correct for variations in Θ̂ in the asymptotic MLE standard errors: variations in Θ̂ might
increase the variance of the estimate ξ̂ on any given subset, but do not imply we are overstating differences
in ξ between subsets, which is the measure we are interested in. For a more detailed discussion on how we
correct the asymptotic MLE standard errors, see the appendix.
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subsample, where the latter is a higher-volatility period. We find qualitatively similar results,
presented in Figure 7 and Table 7. We conclude that the third hypothesis, a lower PVR and
steeper term structure, finds robust support in the data as well.

4 Conclusion

We provide estimates of the price of variance risk at various horizons, first, by measuring
model-free Sharpe ratios of straddle returns with varying maturities and, second, by esti-
mating the price of variance risk in a Heston (1993) model, based on the empirical approach
developed by Christoffersen et al. (2013). We find the price of insurance against increases in
volatilities varies with the horizon of the risk insured: short-term insurance is more expensive
than long-term insurance, and this effect is more pronounced in times of higher volatility.

These results extend the accumulating evidence for non-trivial term structures of risk
prices to the market for variance risk. A comparative advantage to the literature is a focus
on the price of risk as a driver of the term structure of risk premia. The findings thus
help motivate a new generation of option pricing models that allow for horizon-dependent
risk prices. However, our findings are informative not only for option pricing. Specifically,
the results presented in this paper support preference-based rationalizations of the term-
structure of expected returns, such as the horizon-dependent risk aversion model of Andries
et al. (2014).

The implicit assumption that risk prices are flat across horizons—which is rejected in
this paper—would lead market observers to attribute too much of the term structure of
risk premia to a term structure in expected volatility. In other words, our results emphasize
that the conversion between objective and risk-neutral measures depends on maturity. This
finding may help inspire future generations of asset pricing models and econometricians’
interpretation of economic forecasts.
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Figure 1: Daily straddle returns used in Sharpe ratio analysis. Daily option and
index price data from February 1996 to April 2011 come from OptionMetrics.
Each dot represents the net arithmetic return of a straddle-day observation. Each
facet of the plot contains options of different maturities, labeled at the top of
each facet.
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Figure 2: Calendar of options by maturity and date. Daily option and index
price data from February 1996 to April 2011 come from OptionMetrics. Each dot
represents an option-day observation. The vertical axis is the maturity, and the
horizontal axis has the days of the year. Diagonal lines reflect the fact that not
every maturity is traded every day, and that certain maturities are only observed
on certain calendar days.
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Figure 3: Estimates of the Sharpe ratio of delta-neutral straddle returns SRτ .
Daily option and index price data from February 1996 to April 2011 come from
OptionMetrics. The Sharpe ratio SRτ for options with maturity τ is computed
by collecting all returns from options with a maturity in the interval [τ, τ + 20)
and then dividing the sample mean by the sample standard deviation. Dotted
lines mark 95 percent confidence intervals formed by the 2.5 and 97.5 percentiles
of 10,000 bootstrap estimates, and the solid line is the mean of such estimates.
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Figure 4: Parametric estimation of the term structure of the price of variance
risk λτ . Daily option and index price data from February 1996 to April 2011
come from OptionMetrics. Return data from January 1990 to December 2014
come from CRSP. The first maturity bucket includes options with maturities of
11 through 29 trading days. Each subsequent point at maturity τ represents the
estimation results on options with maturity [τ, τ + 20). The last bucket contains
options with maturities 230 through 250. Dotted lines mark asymptotic 95 percent
confidence intervals conditional on the given realization of GARCH parameters
from the second-stage maximum-likelihood estimation.
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Figure 5: Parametric estimation of the term structure of the price of variance risk
λτ by time period. Daily option and index price data from February 1996 to April
2011 come from OptionMetrics. Return data from January 1990 to December 2014
come from CRSP. The first maturity bucket includes options with maturities of
11 through 29 trading days. Each subsequent point at maturity τ represents the
estimation results on options with maturity [τ, τ + 20). The last bucket contains
options with maturities 230 through 250. Dotted lines mark asymptotic 95 percent
confidence intervals conditional on the given realization of GARCH parameters
from the second-stage maximum-likelihood estimation.
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Figure 6: Parametric estimates of the price of variance risk λτ at different
states of forecasted GARCH volatility ht+1. Daily option and index price data
from February 1996 to April 2011 come from OptionMetrics. Error bars mark
asymptotic 95 percent confidence intervals conditional on the given realization of
GARCH parameters from the second-stage maximum-likelihood estimation.
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Figure 7: Parametric estimates of the price of variance risk λτ at different states
of forecasted GARCH volatility ht+1 and by different time periods. Daily op-
tion and index price data from February 1996 to April 2011 come from Option-
Metrics. Error bars mark asymptotic 95 percent confidence intervals conditional
on the given realization of GARCH parameters from the second-stage maximum-
likelihood estimation.
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Table 2: Liquidity (bid-ask ratio) of options of various maturities and moneyness.
All intervals are inclusive on the left and exclusive on the right. Bid-Ask Ratio is
computed as Bid-Ask Spread

Current Price ×100. Data come from the full universe of OptionMetrics
data from February 1996 to April 2011, after cleaning for duplications.

Black-Scholes Delta
Maturity 0–1% 1–5% 5–10% > 10%
0–11 159.78 77.50 26.64 35.90
11–30 53.46 33.78 12.03 17.21
30–50 7.14 10.56 8.57 12.40
50–70 5.25 5.47 6.05 8.51
70–90 4.57 4.53 4.63 6.54
90–110 3.95 4.19 4.31 5.47
110–130 3.92 3.83 3.88 4.86
130–150 3.54 3.55 3.54 4.41
150–170 3.36 3.40 3.41 4.16
170–190 3.34 3.34 3.37 4.04
190–210 3.27 3.24 3.32 3.87
210–230 3.26 3.15 3.18 3.70
230–252 3.23 3.25 3.25 3.64
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Table 4: Point estimates and confidence intervals of the unconditional price of
variance risk λτ from the parametric estimation. Daily option and index price
data from February 1996 to April 2011 come from OptionMetrics. An estimate of
λτ is estimated by maximum likelihood in order to best price the subset of options
in a given maturity bucket. N refers to the number of options observations used
to compute λτ . All maturity buckets are inclusive on the left and exclusive on the
right. Standard errors are derived from the delta method applied to the mapping
between ξτ and λτ .

Maturity τ N λτ Standard
Error

11–30 5932 -0.61 0.03
30–50 6912 -0.47 0.02
50–70 6200 -0.46 0.02
70–90 3658 -0.55 0.02
90–110 2920 -0.40 0.02
110–130 2878 -0.38 0.02
130–150 2908 -0.39 0.02
150–170 2940 -0.37 0.02
170–190 2896 -0.37 0.02
190–210 2890 -0.37 0.02
210–230 2858 -0.36 0.02
230–250 2920 -0.34 0.02
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Appendix

Option Pricing in Discrete Time under a GARCH Model of the Underlying

Appendix B of Christoffersen et al. (2013) gives a closed-form solution for the call price. Let
t denote the current trading day, and let T denote the future trading day on which the option
expires. Let St be the current stock price. Observe that the option price depends on both the
particular current and future days, and not just the maturity, because there is dependence
on the current state of volatility h∗t+1:

CMod
i = Ct

(
St, h

∗
t+1, K, T

)
= StP1 (t)−K exp (−r (T − t))P2 (t)

P1 (t) =
1

2
+

exp (−r (T − t))
π

ˆ ∞
0

<
[
K−iϕg∗t,T (iϕ+ 1)

iϕS (t)

]
dϕ

P2 (t) =
1

2
+

1

π

ˆ ∞
0

<
[
K−iϕg∗t,T (iϕ)

iϕ

]
dϕ

g∗i,T (ϕ) = exp
{
ϕ logSt + At,T (ϕ) +Bt,T (ϕ)h∗t+1

}
At,T = At+1,T (ϕ) + ϕr +Bt+1,T (ϕ)ω∗ − 1

2
log (1− 2Bt+1,T (ϕ)α∗)

AT,T = 0

Bt,T = −1

2
ϕ+Bt+1,T (ϕ) β +Bt+1,T (ϕ)α∗ (γ∗)2

+
1
2
ϕ2 + 2Bt+1,T (ϕ)α∗γ∗ (Bt+1,T (ϕ)α∗γ∗ − ϕ)

1− 2Bt+1,T (ϕ)α∗

BT,T = 0

h∗t+1 = ω∗ + βh∗t + α∗
(
z∗ (t)− γ∗

√
h∗t

)2

=
ht

1− 2αξ
.

The put price is computed using put-call parity. Observe that delta is just P1 (t).
In the parametric estimation, we use Black-Scholes vegas, which come from inverting the
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Black-Scholes formula:

σ̂ = arg min
σ

(
StΦ(d1)−Ker(T−t)Φ(d2)− CMkt

)2

d1 =
log St

K
+
(
r + 1

2
σ2
)
τ

σ
√
τ

d2 = d1 − σ
√
τ

BSVMkt
t =

√
τStΦ

′(d1)

Φ = CDF of Standard Normal.

Standard Errors

There are two potential reasons the standard errors computed from the parametric estimation
may be too narrow:

1. There is uncertainty in the estimation of the GARCH parameters and the sequential
estimation procedure does not propagate this uncertainty into the standard errors for
λ.

2. The parametric procedure treats the pricing errors as independent over time, which
may not be the case if there are unobserved shocks that cause the prices of all options
of a certain expiration date to move together.

There are two reasons why the uncertainty in the GARCH parameters is unlikely to have a
quantitatively large effect on our results. First, the time period for the GARCH estimation is
very long—it covers over 6,301 trading days—so any uncertainty would be very small. Second,
recall that the key mechanism that determines ξ̂ is trying to match the wedge between the
physical variance implied by the GARCH process and the risk-neutral variance implied by
the options prices. Although variation in the GARCH parameters may change the size of
the wedge and therefore increase the variance of the estimate ξ̂ on any given subset, that
variation does not imply we are overstating differences in ξ̂ between subsets.

To address the problems due to correlated pricing errors in the time dimension, observe
that in a given maturity window of 20 trading days there are up to 20 repeated observation
of contracts with a given expiration date. Christoffersen et al. (2013) for example consider
weekly options in their estimation of ξ and interpret the resulting log likelihood as the result
of i.i.d. pricing errors. If we adopt this standard convention then we divide our number of
observations by 4 and therefore the standard error when computed under an assumption of
i.i.d. pricing errors should be multiplied by 2. These are the standard errors reported in the
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plots and figures for the parametric estimation. Note that no similar correction needs to be
made for the Sharpe ratios as those look at returns, which would still be independent if there
were a persistent shock that raised prices.
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