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Abstract 

 
We propose a new interest rate rule that implements the optimal equilibrium and eliminates all 

indeterminacy in a canonical New Keynesian model in which the zero lower bound on nominal 

interest rates (ZLB) is binding. The rule commits to zero nominal interest rates for a length of 

time that increases in proportion to how much past inflation has deviated—either upward or 

downward—from its optimal level. Once outside the ZLB, interest rates follow a standard Taylor 

rule. Following the Taylor principle outside the ZLB is neither necessary nor sufficient to ensure 

uniqueness of equilibria. Instead, the key principle is to respond strongly enough to deviations of 

past inflation from optimal levels by sufficiently increasing the amount of time interest rates are 

promised to be kept at zero. 
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1 Introduction

Short-term nominal interest rates in many developed economies —including Japan, the US

and Europe— have by now been against their effective zero lower bound (ZLB) for several

years. For Japan and most of Europe, liftoff from the ZLB is nowhere in sight, and expec-

tations of an increase in the federal funds rate in the US have been shifting into the future

ever since the ZLB was first reached in 2008. Despite the many insightful ideas offered by

economists on how to manage a liquidity trap,1 and the concomitant unprecedented efforts

by policymakers, one thing is clear: Exiting the ZLB is not easy.

In this paper, we put forth a new class of interest rate rules for an economy in a liquidity

trap. The crucial ingredient is to make the date of liftoff from the ZLB depend on past

economic conditions. One concrete example is to keep the policy rate pegged at zero for a

period of time that increases at a fast enough rate with deviations of past inflation, either

upwards or downwards, from its optimal level. Once interest rates become positive, they

then follow a standard Taylor rule2. The essence of this example is quite dovish: Monetary

accommodation, given by the length of time spent at the ZLB, increases whether past in-

flation turns out to be lower or higher than desired. More generally, all rules within the

class we propose call for generating higher future inflation and output by increasing the time

spent at the ZLB when inflation and output at the beginning of the liquidity trap are higher

than what is socially optimal.

For our analysis, we adopt the deterministic continuous time version of the canonical New

Keynesian model of Werning (2011). A binding ZLB arises because the exogenous natural

rate of interest is negative for some initial period of time. We now discuss properties of the

rule and how it compares to previous research.

First, we show the rule implements the socially optimal “forward guidance” equilibrium of

1We use the term “liquidity trap” to refer to times in which the natural rate of interest is negative, as
in Werning (2011). Liquidity trap episodes may or may not coincide with periods in which the nominal
interest rate is at the ZLB.

2Nothing would change if we used an inflation targeting regime instead of a Taylor rule outside the ZLB. We
do not seek in this paper to contribute to the research on the relative merits of inflation targeting versus
Taylor rules.

1



the kind characterized by Werning (2011); Eggertsson and Woodford (2003); Jung, Teranishi,

and Watanabe (2005) as a globally determinate equilibrium (i.e. the optimal equilibrium is

guaranteed to always be the unique equilibrium). While indeterminacy is an important issue

in all New Keynesian models, its economic implications and the difficulties eliminating it are

amplified in the presence of a binding ZLB. In models that ignore the ZLB, the central bank

can eliminate indeterminacy and either achieve or get close to the optimal monetary policy by

following an appropriate interest rate or inflation targeting rule. For example, a Taylor rule

in which the policy rate reacts more than one-for-one with inflation —the so-called Taylor

principle— can guarantee uniqueness of equilibria. Instead, when a ZLB is introduced,

Benhabib, Schmitt-Grohe, and Uribe (2001) show that indeterminacy is a robust feature of

Taylor-style feedback rules, especially when the Taylor principle is satisfied. Indeterminacy

in this case takes the form of stable self-fulfilling deflationary equilibria that can hamper the

return to a more desirable equilibrium. Using the same framework of Werning (2011) that we

consider in this paper, Cochrane (2013) shows that an economy in a liquidity trap will exhibit

indeterminacy for any given path of nominal interest rates. One immediate implication

is that a central bank that pursues calendar-based forward guidance by announcing and

committing to a fixed future liftoff date will not eliminate indeterminacy. Furthermore, the

different equilibria that are consistent with the same given path of nominal interest rates

can be arbitrarily far from the socially optimal equilibrium and exhibit radically different

economic behavior. In the “standard” equilibrium, in which inflation and output are optimal

from a social welfare point of view, forward guidance and government spending are powerful

stimulative tools, and more price stickiness is helpful in getting out of the ZLB. In contrast,

in the “local-to-frictionless” equilibrium in which inflation and the output gap do not explode

backwards in time, forward guidance and fiscal stimulus are not expansionary while lower

price stickiness improves outcomes. Many other models on how the economy behaves at

the ZLB and what the right policy prescriptions are rely on the presence of multiple steady

states and other forms of indeterminacy.3

3 In addition to the aforementioned papers, a necessarily incomplete list includes Mertens and Ravn (2014),
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Analogously to the principle that the short-term nominal interest rate must react strongly

enough to inflation in order to prevent indeterminacy in models without the ZLB, the rules

we propose require that the amount of time spent at the ZLB increases fast enough as a

function of past inflation or output. This feature eliminates indeterminacy because, unless

initial inflation and output (at time t = 0) are socially optimal, the stimulus due to an

extended period at the ZLB is always large enough to make agents expect economic recovery

and a corresponding liftoff from the ZLB sooner than the central bank has promised. The

discrepancy between agents’ expectations and the future actions of a committed central bank

cannot support a rational expectations equilibrium.

Because the crucial expectations are about when the policy rate will exit the ZLB, what

happens after the ZLB is less important for determinacy. Whether the Taylor principle holds

once the nominal rate turns positive is inconsequential: we give examples in which a unique

optimal equilibrium is achieved with and without the Taylor principle. While the difficulties

in eliminating indeterminacy explained by Benhabib et al. (2001) and Cochrane (2013) still

apply in our setup, we show that allowing for a broader class of history-dependent interest

rate rules can restore global determinacy and preserve optimality even in the presence of

Taylor-type feedback rules outside the ZLB.

Second, our rules are simple along several dimensions. Once the optimal path for the

economy that the central bank would like to implement is known, the rule only needs to ad-

ditionally reference realized inflation4. In fact, the rules require knowledge of initial inflation

no earlier than when the liquidity trap is over and no other information about inflation, the

output gap or the natural rate of interest is needed until exit from the ZLB. While the initial

level of inflation in the model is common knowledge at t = 0, it might be helpful in the real

world to only have to know inflation with a lag. Use of real-time estimates of inflation that

may be revised or forecasts that can create further sources of indeterminacy and uncertainty

Hursey, Wolman, and Hornstein (2014), Armenter (2014), Aruoba and Schorfheide (2013), Richter and
Throckmorton (2013), Schmitt-Grohé and Uribe (2012), Sims (2004).

4 In this model, after observing realized inflation, the optimal path, the output gap and the natural rate
of interest provide the same information; knowledge of any one of them implies knowledge of all three of
them.
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can then be reduced.

Communicating the rule should also be relatively easy. The rule involves a familiar Taylor

rule and a form of uncomplicated rule-based forward guidance that requires interest rates to

stay at zero for longer in the presence of higher past inflation. Using a standard calibration,

we show that the behavior of the central bank need not be extreme for indeterminacy to

disappear. In the example described earlier, in which liftoff time increases with deviations

of past inflation from optimal, it is enough to extend the ZLB period from 2.6 to 2.8 years

when initial inflation deviates from optimal by two percentage points.

The policy parameters of the rule are also straightforward to choose and communicate.

After initial inflation is realized, the amount of time that will be spent at the ZLB and all

Taylor rule coefficients are decided and remain constant over time. The magnitude of the

policy response to inflation both inside and outside the ZLB can be made independent of the

parameters of the model by having a “strong enough” policy response function. Although

knowing the numeric value of the deep parameters of the model can give policymakers

bounds on what “strong enough” actually requires, it is always possible to find a policy rule

that eliminates indeterminacy for any ex-ante set of parameters we want to consider. We

provide necessary and sufficient conditions that characterize what “strong enough” means.

In addition, the Taylor rule coefficients can be made completely independent of inflation, the

output gap and all other economic variables if we endow the central bank with knowldege of

some of the parameters of the model, making policy memoryless (not path-dependent) after

liftoff from the ZLB.

Third, our proposal requires little change in the institutional arrangements and anlytical

framworks of most central banks, an advantage when putting it into practice. The policy

instrument of our rule is the short-term nominal interest rate, already the predominant

instrument of choice. There is no need to make reference to new or time-varying monetary or

price aggregates, price-level or inflation targets, “shadow” rates, exchange rates, the central

bank’s balance sheet, or the quantity or price of other assets. Furthermore, our rule can

be made to have history-dependence that ends as soon as the policy rate exits the ZLB. At
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that point, central banks can return to the standard policy regime they had in place before

they entered the liquidity trap without having to take into consideration their prior actions

while at the ZLB. Finally, our proposal does not rely on fiscal policy being “active” or “non-

Ricardian” to obtain global determinacy. Our results are obtained under the assumption

that the fiscal authority always adjusts taxes or spending ex-post to validate any path of the

endogenous variables that may arise. This shows that interest-rate based monetary policy

need not be “passive” at the ZLB, as is usually supposed.5

Eggertsson and Woodford (2003) implement the same optimal path we consider as a

unique equilibrium by means of an “output-gap adjusted” price-level target. Their rule has

the same informational requirements as ours and also calls for a history-dependent commit-

ment. In contrast to our proposal, in order to be globally determinate, their rule must be

accompanied by either a commitment of fiscal policy to an appropriate non-Ricardian rule, or

a commitment to a monetary-base supply rule accompanied by the milder fiscal commitment

that the government will asymptotically be neither a creditor nor a debtor. Furthermore, the

price-level target remains path-dependent after exiting the ZLB in all cases. Cochrane (2013)

shows that having a time-varying inflation target or an appropriately designed “stochastic

intercept” in the Taylor rule can also implement the optimal path as a unique equilibirum if

the Taylor principle is followed outside the ZLB. Svensson (2004) advocates an intentional

currency depreciation combined with a calibrated crawling peg. He shows optimality of this

scheme in a two-country model, although he does not address whether the resulting equilib-

rium is determinate.Without formally analyzing optimality or determinacy issues, Hall and

Mankiw (1994), McCallum (2011), Sumner (2014) and Romer (2011) recommend nominal

GDP targeting, while Blanchard, DellAriccia, and Mauro (2010) and Ball (2014) advocate

increasing the inflation target.

Section 2 presents the model. Section 3 briefly reviews the relevant elements from Wern-

ing (2011). Section 4 replicates and generalizes some of the results from Cochrane (2013).

5Of course, this does not imply that fiscal rules or the fiscal theory of the price level are unimportant
in theory or not relevant in practice. For issues related to our results that analyze the monetary-fiscal
interaction, see Sims (1994), Benhabib, Schmitt-Grohé, and Uribe (2001) and Woodford (2001).
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Section 5 describes rules that implement the socially optimal path as the unique equilib-

rium of the economy by allowing the liftoff date to depend on inflation and the output gap.

Section 6 concludes.

2 The Canonical New Keynesian Model with a ZLB

We use the framework of Werning (2011), which is a standard deterministic New Keynesian

model in continuous time, log-linearized around a zero-inflation steady state.6 The economy

is described by:

ẋt = σ−1 (it − rt − πt) , (1)

π̇t = ρπt − κxt, (2)

it ≥ 0. (3)

The “over-dot” notation represents partial derivatives with respect to time. The variables

xt and πt are the output gap and the inflation rate, respectively. The output gap is the log-

deviation of actual output from the hypothetical output that would prevail in the flexible

price, efficient equilibrium. Henceforth, for brevity, we refer to the output gap simply as

“output”. The central bank’s policy instrument is the path for the nominal short-term

interest rate it, which must remain non-negative at all times. The variable rt is the natural

rate of interest, defined as the real interest rate that would prevail in the flexible price,

efficient economy with xt = 0 for all t.

Equation (1) is the IS curve, the log-linearized Euler equation of the representative con-

sumer. The constant σ−1 > 0 is the elasticity of intertemporal substitution. Equation (2) is

6 See Woodford (2003) or Gaĺı (2009) for details.

Although essentially all analysis of determinacy in New Keynesian models is done in log-linearized models,
Braun, Körber, and Waki (2012) contend that conclusions would differ in the full non-linear model. On
the other hand, Christiano and Eichenbaum (2012) show that the additional equilibria that arise from
non-linearities in Braun et al. (2012) are not E-learnable. In addition, Christiano and Eichenbaum (2012)
show that the linear approximation are accurate except on extreme cases, such as when output deviates by
more than 20 percent from steady state.

While important, we do not seek to address these issues here and simply use the standard specification in
the literature.
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the New Keynesian Phillips Curve (NKPC), the log-linear version of firms’ first-order con-

ditions when they maximize profits by picking the price of consumption goods subject to

consumers’ demand and Calvo pricing. The constant ρ > 0 is the representative consumer’s

discount rate and κ > 0 is related to the amount of price stickiness in the economy. As

κ → ∞, the economy converges to a fully flexible price economy while prices are fully rigid

when κ = 0.

The exogenous path for the natural rate is:

rt =

⎧⎪⎨
⎪⎩

r < 0 , 0 ≤ t < T

r > 0 , T ≤ t
. (4)

The constants T > 0, r < 0 and r > 0 are given. None of our results change if we pick a

different path for rt as long as rt < 0 for t < T and rt > 0 for t ≥ T .

Definition. A rational expectations equilibrium consists of bounded paths for output,

inflation and the nominal interest rate {xt, πt, it}t≥0 that, given a path {rt}t≥0 for the natural

rate, satisfy equations (1)-(3).

There are three elements of the definition that are worth discussing in our context. First,

the requirement that output and inflation remain bounded at all times is equivalent to the

asymptotic conditions

lim
t→∞

|xt| < ∞, (5)

lim
t→∞

|πt| < ∞. (6)

The justification and role that (6) plays for determinacy of equilibria is controversial in

the literature7. We do not attempt to contribute to that debate and instead adopt the

7Cochrane (2011) argues that there is no good economic reason to prevent nominal explosions. McCallum
(2009) and Atkeson, Chari, and Kehoe (2009) agree and, among others in an active area of research, propose
different criteria to eliminate or select equilibria. Woodford (2003), Thomas (2013) and others defend the
approach. In our specific setup, inflation explodes if and only if the real output gap explodes, making it
difficult to differentiate nominal from real explosions.
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simplest, most conventional approach. Second, paths for xt and πt that satisfy equations (1)

and (2) must be continuous.8 If there were any jumps, the representative consumer’s Euler

equation would be violated due to the existence of arbitrage opportunities. Third, neither

the definition of equilibrium nor the dynamics of the economy in equations (1) and (2) make

any explicit reference to fiscal policy although, as stressed by Woodford (1995), Sims (1994),

Benhabib et al. (2001), Cochrane (2011) and others, determinacy or the lack thereof is a

result of the joint monetary-fiscal regime. In order to focus solely on monetary policy, we

assume the fiscal authority always adjusts taxes or spending ex-post to validate any path of

the endogenous variables that may arise, generating a “Ricardian” (in the nomenclature of

Woodford (2001)) or “passive” (in the nomenclature of Leeper (1991)) fiscal regime.

3 The Socially Optimal Equilibrium

The social welfare loss function for the economy is

V =
1

2

∫ ∞

0

e−ρt
(
x2
t + λπ2

t

)
dt. (7)

The constant λ > 0 is a preference parameter that dictates the relative importance of

deviations of output and inflation from their desired value of zero. This quadratic loss

objective function can be obtained as a second order approximation around zero inflation

to the economy’s true social welfare function when the flexible price equilibrium is efficient

(Woodford, 2003). A socially optimal equilibrium is an equilibrium that minimizes (7).

8 Strictly speaking, differentiability of xt and πt would also be required for all t. We instead use a weaker
solution concept —viscosity solutions— for the system of ODEs (1) and (2) that, in our context, allows for
non-differentiability (in the classical “calculus 1” sense) in a set of measure zero. Without this modification,
the assumed discontinuous process for the natural rate rt in equation (4) would imply that (1) and (2)
have no solution. More importantly, even if rt were smooth, the central bank’s control problem of Section
3 would have no solution since the solution always requires a jump in the nominal rate it.
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Werning (2011) solves for the socially optimal equilibrium {x∗
t , π

∗
t , i

∗
t}t≥0. He finds that

it is unique and that the path of the policy rate satisfies

i∗t =

⎧⎪⎨
⎪⎩

0 , 0 ≤ t < t∗

(1− κσλ) π∗
t + rt , t ≥ t∗

(8)

for some t∗ > T that can be found as a function of the parameters of the model. We refer to t∗

as the liftoff date. The socially optimal policy is to commit to zero nominal interest rates for

longer than the natural rate rt is negative — one of the principal aspects of forward guidance.

However, equation (8) is not a policy rule. Indeed, the optimal path (1− κσλ) π∗
t + rt is

a single fixed path, a function of time only. It is neither contingent on the actions of the

central bank nor on whether realized inflation, output or their expectations happen to take

one value or another. As such, it addresses neither the on nor the off-equilibrium behavior

of the central bank and hence says nothing about implementability or indeterminacy.

Plugging in (8) into (1)-(2) gives the optimal paths for inflation and output for all t > 0.

Inserting these paths into equation (7) makes the objective V a function of initial output x0

and inflation π0. The optimality conditions9

∂V

∂x0

= 0 and
∂V

∂π0

= 0 (9)

determine optimal initial output x∗
0 and inflation π∗

0. The optimal initial level of output

is always negative. The optimal initial level of inflation can be positive, negative or zero

depending on parameters.10

Figure 1 shows the optimal path for three parameter configurations. It is most easily

understood in three stages, starting from the last one and then working backwards in time.

In the third and last stage, when t ≥ t∗, the economy has positive natural and nominal rates.

To ensure that inflation and output remain bounded so as to satisfy equations (5) and (6),

9Equivalently, we can use the Maximum Principle and set the initial value of the co-state variables to zero
as in Werning (2011).

10For all these results, see Proposition 4 in Werning (2011).
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xt and πt hit the saddle path, the third stage begins.

Finally, in the first stage given by t ∈ [0, T ), the natural rate is negative and nominal rate

is at the ZLB. The low contemporaneous nominal rates and the zero nominal rates past time

T from the second stage decrease today’s savings and lower the real interest rate. Inflation

and output eventually become positive during this stage as a result. The initial point (x∗
0, π

∗
0)

is determined by the optimality conditions (9).

4 Central Bank Policy, Rules and Indeterminacy

In this section, we study a central bank that attempts to implement the socially optimal

path (8) as the unique equilibrium of the economy by means of an interest rate rule. An

initial natural canditate rule is based on (8):

it =

⎧⎪⎨
⎪⎩

0 , 0 ≤ t < t∗

(1− κσλ) π∗
t + rt , t ≥ t∗

. (10)

Although equations (8) and (10) look very similar, they are conceptually different. While

equation (8) describes the single path i∗t , equation (10) is a rule —a policy response function—

by which the central bank commits to set interest rates in all possible states of the world.

It therefore provides both the on and off-equilibrium behavior of the central bank. For this

particular rule, the behavior of the central bank is the same for all states of the world; the

rule states that interest rates will follow the optimal path (which is the same in all states of

the world) come what may. The results from the previous section imlpy that if the central

bank follows rule (10), then it can implement the socially optimal equilibrium whenever

(x0, π0) = (x∗
0, π

∗
0). However, Cochrane (2013) shows that many other equilibria are also

consistent with this rule, leading to an indeterminate outcome. In fact, he goes further and

shows that if the central bank commits to any given non-explosive path of nominal rates,

irrespective of its optimality or the central bank’s commitment ability, the economy suffers

from indeterminacy. More formally, rules of the form it = f (t) produce indeterminacy for
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any bounded choice of f .

The intuition for this result is as follows. By virtue of equations (1) and (2), the choice

of it directly affects —we may even say control— inflation and output for all t > 0, but not

for t = 0. The path of nominal interest rates only affects changes in x and π starting at

t = 0, but cannot directly influence x0 or π0. The inability to affect current inflation and

output with current interest rates, economically speaking, stems from the forward-looking

nature of the IS equation. Initial inflation and output, instead of being control variables like

in the last section, are now non-predetermined or “jump” variables. Can the central bank

nevertheless influence x0 and π0 in some way? For the rules we examine in this section,

the answer is no. In the next section, we propose rules that can indeed uniquely select the

desired equilibrium by guaranteeing that (x0, π0) = (x∗
0, π

∗
0).

To understand the inability of the central bank to influence x0 or π0 with a rule like (10),

interpret it = f (t) as a Taylor rule with a time-varying intercept and coefficients of zero on

inflation and output. Such a rule does not satisfy the Taylor principle and always produces

dynamics that are saddle path stable for t ≥ t1. The existence of a saddle path breeds

indeterminacy. We can construct one equilibrium for each point in the saddle path. Pick a

point (x̃, π̃) on the saddle path and consider a candidate equilibrium with (xt1 , πt1) = (x̃, π̃).

For t ≥ t1, the economy follows the dynamics (1) and (2) by moving along the saddle path

towards the stady state. Then trace the dynamics (1) and (2) backwards in time, from t = t1

to t = T , starting at (xt1 , πt1) = (x̃, π̃) and ending at (xT , πT ). Again follow (1) and (2)

backwards in time from T to t = 0, now with initial conditions (xT , πT ) inherited from the

previous step. The resulting path is bounded, continuous, obeys the IS equation, the Phillips

Curve and the ZLB: It is an equilibrium.

Because of the linearity of the system, the set of points x0 and π0 that put the system

on the saddle path at t1, and the saddle path itself, are both lines in the x-π plane. The

set of rational expectations equilibria is thus indexed by points in a line, which we can take

to be the saddle path or the x0-π0 line that gets the economy on the saddle path at t1.

Figure 2 shows these two lines together with inflation and output from equilibria that start
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t1 to be a function of x0 and π0 and implement the optimal equilibrium uniquely.

Proposition 1. Let t1 be a constant with t1 ≥ T . Let ξπ (x0, π0) and ξx (x0, π0) be arbitrary

functions. If κσλ �= 1, the rule

it =

⎧⎪⎨
⎪⎩

0 , 0 ≤ t < t1

max (0, ξπ (x0, π0) πt + ξx (x0, π0) xt + rt) , t1 ≤ t < ∞
(11)

can never implement the socially optimal path (8) as the unique equilibrium of the economy.

[[prove without max(0,taylor) since adding max can only increase number of equilibria]]

Proof: Assume that rule (11) implements the optimal path. We then have that t1 = t∗.

Consider the point (x0, π0) that reaches (xt, πt) = (0, 0) at t = t∗ when following (1) and

(2). If κσλ �= 1, this point is different from (x∗
0, π

∗
0) and is an equilibrium for any choice of

functions ξπ (x0, π0) and ξx (x0, π0). Converesely, if the equilibrium is unique, the dynamics

of the economy for t ≥ t1 must be explosive unless the steady state is reached at liftoff, i.e.

unless (xt1 , πt1) = (xss, πss) = (0, 0). But optimality conditions imply that
(
x∗
t1
, π∗

t1

) �= (0, 0)

whenever κσλ �= 1, showing that the resulting unique equilibrium is suboptimal. When

κσλ = 1, the optimal path happens to have (x∗
t , π

∗
t ) = (0, 0) for all t ≥ t1 and can thus be

uniquely implemented by a choice of coefficients in rule (11) that obey the Taylor principle.

The central bank faces a trade-off. It can either implement a determinate yet suboptimal

equilibrium or pick a rule that can support the optimal equilibrium but also many other

equilibira, resulting in indeterminacy. One direct implication of the proposition is that

following the Taylor principle outside the ZLB does guarantee a unique equilibrium, as is

the case in models without the ZLB, but at the cost of being suboptimal (except for the case

κσλ = 1). The equilibrium in which the Taylor principle holds requires the economy to be

at its steady state (xss, πss) = (0, 0) at t = t1, right after exiting the ZLB, since otherwise

(5) and (6) would be violated. This equilibrium is similar to the no-commitment equilibrium

for time-varying inflation and output targets can also overcome the problem of indeterminacy. As explained
in the introduction, we want to restrict ourselves to simpler rules that should be easier to implement and
explain to the public.
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5 A Rule to Implement the Socially Optimal Equilib-

rium without Indeterminacy

In this section, we show the main result of our paper: Allowing the time t1 of exit from the

ZLB to depend on initial inflation and output makes it possible to implement the optimal

equilibrium without indeterminacy. We focus our analysis on implementing the socially

optimal equilibrium because it is what a central bank in our model would prefer to do.

However, our techniques can be used to implement any other equilibrium uniquely, which

may be of use if the researcher or central banker believes, for whatever reason, that the

optimal path is unreasonable or unattainable.

Instead of conditioning t1 on π0 and x0, we could have as easily decided to condition on

other points from the paths for inflation and output and obtained identical results. Both

due to theoretical and practical reasons, we find it more compelling to focus on variables

at t = 0. Theoretically, the idea of conditioning actions on π0 and x0 goes to the heart of

the indeterminacy problem, since these are the values that cannot be directly controlled by

changes in the nominal rate, as argued in the last section. For a real-world central bank, there

are several practical benefits that are admittedly outside the model but nevertheless relevant.

Conditioning the liftoff date on time-zero variables has the advantage that its specific value

does not need to be known until at least t = T , sidestepping the need to produce forecasts

and minimizing the need for surveys of private sector expectations. Private sector agents

should show less disagreement with each other and with the central bank when thinking

about a past value instead of a forecast. The lag between the realization of π0 and x0 and

when their values need to be used may also reduce policy mistakes arising from statistical

revisions, which are fairly common and sometimes quantitatively significant. Allowing t1 to

depend on xt1 in addition to x0 and π0 reduces some of the benefits just discussed but can

further simplify the communication of the rule, as we show in the last part of this section.

We start with the smallest necessary deviation from rule (10) that produces a determinate

optimal equilibrium. The new feature is to make the liftoff time be equal to t∗, t∗ + 1 or
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t∗ +2 depending on the realized values of x0 and π0. This example shows that a rule for the

liftoff time is a powerful tool to fight indeterminacy at the ZLB.

Proposition 2. There exist a function f (x0, π0) such that the interest rate rule

it =

⎧⎪⎨
⎪⎩

0 , 0 ≤ t < t1

(1− κσλ) π∗
t + rt , t ≥ t1

(12)

t1 = t∗ + f (x0, π0)

implements the optimal equilibrium path without indeterminacy.

Proof. See Appendix.

The proof is constructive: An example of the desired function is

f (x0, π0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , if (π0 = π∗
0 and x0 = x∗

0) or Ax0 +Bπ0 �= C

1 , if Ax0 +Bπ0 = C and Dx0 + Eπ0 �= C

2 , otherwise

(13)

where A, B, C and D are appropriately selected constants given in the Appendix.

[[highlight you never go back to zlb]]

When π0 = π∗
0 and x0 = x∗

0, the rule gives t1 = t∗, it = i∗t and therefore the optimal path

is an equilibrium. In all other cases, we pick a t1 that ensures no equilibrium is possible. To

do so, we proceed as follows. Consider a candidate equilibrium with initial conditions π0 and

x0 different from (x∗
0, π

∗
0) and let the economy flow over time using the IS and the NKPC. We

consider three cases. First, if the economy is not on the saddle path at t∗, set f (x0, π0) = 0.

The equation Ax0 + Bπ0 �= C in rule (13) describes the set of points (x0, π0) for which this

happens. Because the economy is not on its saddle path at the time of liftoff, either inflation

and output instantaneously jump a discrete amount to reach the saddle path, or else inflation

and output become unbounded. In either case, we have precludeded an equilibrium. For the
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second case, consider the points that are on the saddle path at t∗ but not on the saddle path

at t∗ + 1. In rule (13), this corresponds to the case Ax0 + Bπ0 = C and Dx0 + Eπ0 �= C.

For those points, we assign f (x0, π0) = 1. As explained in the last section, the set of initial

conditions that reach the saddle path at t∗ constitute a line in the x-π plane. For points in

that line that do not reach the saddle path at t∗ +1, we have precluded an equilibrium from

forming by the same argument as in the first case. Those that do reach the saddle path at

t∗ + 1 constitute the third case, for which we set f (x0, π0) = 2. There is at most one point

in this category, since it is given by the intersection of two distinct lines: The line of initial

conditions that reaches the saddle path at t∗ and the one that reaches it at t∗ + 1. This

point, if it exists, cannot reach the saddle path at t∗ + 2, the time of liftoff, and is therefore

not an equilibrium. Since we have covered all possible π0 and x0 in the plane, the proof is

complete.

The amount of time spent at the ZLB takes one of three values: zero, one or two years.

We have picked these concrete values for simplicity. The argument in the last paragraph

makes clear that, other than requiring f (x∗
0, π

∗
0) = 0, any three or more distinct values (no

smaller than −t∗, of course) for the other cases would also work.

The way equilibria are eliminated can be alternatively cast in terms of expectations.

Suppose agents have an expectation π̃0 and x̃0 for initial inflation and output. If the central

bank is credibly committed to rule (13), liftoff time will be rationally expected to be at

t1 = t∗+f (x̃0, π̃0). On the other hand, rational expectations also require non-explosive paths

for inflation and output. Therefore, agents have two rational ways to form expectations for

xt1 and πt1 . The first is to trace the evolution of xt and πt from t = 0 until t1 = t∗+f (x̃0, π̃0)

starting at (π̃0, x̃0), giving an expected outcome of (π̃t1 , x̃t1). The second is to realize that

non-explosive paths are expected to be on the saddle path at t1. If (π̃t1 , x̃t1) is not on the

saddle path, we cannot have an equilibrium, since the two computations give contradictory

expectations. By appropriately picking the value of f (π̃0, x̃0), the central bank can always

create the expectation that liftoff will occur at a time when the economy is not on the saddle

path, thus eliminating any undesired equilibria.
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The same rule for t1 given by equation (13), with different constants A, B, C and D, can

also implement the optimal equilibrium without indeterminacy for Taylor rules of the form

[[modify to max]]

it =

⎧⎪⎨
⎪⎩

0 , 0 ≤ t < t1

ξπ (x0, π0) πt + ξx (x0, π0) xt + rt , t1 ≤ t < ∞
, (14)

t1 = t∗ + f (x0, π0) (15)

For example, setting ξπ (x0, π0) = 1− κσλ, ξx (x0, π0) = 0 and f (x0, π0) as in equation (13)

implements the optimal equilibrium uniquely with constant Taylor rule coefficients. This

means that once the economy exits the ZLB, all policy is memoryless, which is one of the

key distinctions from price-targeting regimes. Just as rule (12)-(13) was a generalization

of (10), the rule in equations (14)-(15) can be thought of as an improvement over rule

(11). Compared with equation (12), we now allow interest rates outside the ZLB to respond

contemporaneously to inflation and output, with Taylor rule coefficients that are constant

after t = 0 but in general path-dependent since they can be functions of time-zero inflation

and output.

Before presenting other concrete choices for ξπ, ξx and f , we state a straightforward

necessary and sufficient condition for the optimal path to be a determinate equilibrium:

Expectations that initial inflation and output are (x∗
0, π

∗
0) must lead to the optimal path

while all other expectations must lead to paths that are either discontinuous or explosive.

Under rule (14)- (15), the initial optimal point (x∗
0, π

∗
0) leads to the optimal path if and only

if

f (x∗
0, π

∗
0) = 0 (16)

and

ξπ (x
∗
0, π

∗
0) π

∗
t1
+ ξx (x

∗
0, π

∗
0) x

∗
t1
= (1− κσλ) π∗

t1
(17)
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Equations (16) and (17) put the economy on the optimal saddle path x = φπ at t∗. We show

explicit necessary and sufficient conditions for paths to be continuous and non-explosive in

the Appendix, which must be violated for all (x0, π0) �= (x∗
0, π

∗
0) if a determinate optimal

equilibrium is to arise. The condition for continous paths follows from making the right and

left limits of xt and πt equal to each other at t = T and t = t1. They are “continuous pasting”

conditions that connect the paths of xt and πt when either rt or it jump. The conditions for

bounded paths are identical to those in models without the ZLB —the economy must be on

a saddle path or steady-state at t1— since after liftoff we assume the ZLB is not binding.

Although instructive and simple in many dimensions, a rule like (13) for t1, whether

coupled with (12) or (14), may not be the easiest to communicate to the public, as it

references somewhat complicated conditions on initial inflation and output like Ax0+Bπ0 �=
C. In addition, the degrees of freedom in the choice of f , both in the number of distinct values

it can take and in the numeric values themselves, may call into question the central bank’s

economic rationale behind any particular choice. We thus now propose rules for t1 that

attempt to make the function f (x0, π0) a continuous function of (x0, π0). We seek to model

the intuitive real-world phenomenon that, at least during non-crisis times, small changes

in economic conditions generally lead to changes in monetary policy of commensurate size.

This feature is present in all interest rate and targetting rules in the literature and, in the

present context, reveals additional intuition about how a central bank should tackle the

ZLB. Whether a continuous rule is easier to explain and communicate to the public than

something like rule (13) is left for the reader to decide.

The first concrete rule we propose has (16) and (17) together with

ξπ > 1 (18)

ξx = 0 (19)

f (x0, π0) = t̄+ A |π0 − π∗
0| (20)

whenever (x0, π0) �= (x∗
0, π

∗
0), where t̄ and A are any large enough positive constants. This
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rule prescribes zero nominal interest rates for a period of time that depends on deviations

of initial inflation from optimal and a Taylor rule with ξx = 0 and any constant ξπ > 1

thereafter. More generally, we can replace the choice of ξx and ξπ by any combination that

satisfies the Taylor principle, given by

κ (ξπ − 1) + ρξx > 0 and ξx + σρ > 0. (21)

The intuition for why this rule eliminates indeterminacy is as follows. Because ξπ > 1, the

Taylor principle holds for t ≥ t1 so any value of (xt1 , πt1) different from the steady state

(0, 0) leads to explosive paths. In other words, the central bank is “tough” on inflation after

the ZLB, inducing the economy to have πt = 0 for all t ≥ t1. On the other hand, the central

bank provides additional stimulus by extending the amount of time spent at the ZLB as π0

moves away from π∗
0. If the stimulus from this extension is large enough —meaning t̄ and

A are large enough— the expectations of the ensuing high inflation are inconsistent with

the expectations of zero inflation that arise from following the Taylor principle. Hence, no

equilibrium of this type can exist.

One way to think about the inconsistent expectations of a large stimulus during the ZLB

and of zero inflation after the ZLB is that the central bank generates such high inflation

during the ZLB that inflation expectations become unanchored. Another way, equally com-

patible with the equations, is to think that the non-existence of equilibrium does not arise

because the central bank is unable to rein in the self-inflicted inflation. On the contrary,

the central bank makes a credible commitment to stimulate the economy during the ZLB

and can completely revert back to zero inflation by using the Taylor principle outside the

ZLB. The key inconsistency in this version of the story is that there is no π0 so dire —so

far away from π∗
0— that requires the central bank to put in action the large stimulus and

large reversal specified by the rule. More concretely, consider initial inflation expectations of

π̃0 �= π∗
0. Rule (20) implies that expectations of t1 are t̄+ A |π̃0 − π∗

0|. Using the IS and the

NKPC to trace the path of the economy backwads in time from (0, 0) at t = t1 to (x0, π0)
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always reveals that π0 �= π̃0. While inflation expectations are finite and the central bank

keeps its commitment throughout, the equilibrium cannot exist because no initial level of

inflation is rational.

Agents form rational expectations about several objects: π0, πt1 , t1, etc. Non-existence

of equilibria only requires that one of these expectations is not validated. In our first inter-

pretation, we assumed expectations of π0 were correct and concluded inflation expectations

must be unbounded. In the second case, we started by asserting inflation is bounded and

could not find a rational expectation for π0. There are, of course, other ways to tell the

non-existence story based on the expectations that we choose to assume are unquestionably

rational and the ones we subsequently check for consistency.

We now show another variation of the rule that also implements the optimal equilibrium

uniquely but without satisfying the Taylor principle. Define the functions

m (u) =
rh
κ

φ2
1e

−φ2u − φ2
2e

−φ1u

φ1 − φ2

+

(
rh − rl

κ

)
φ2
2e

−Tφ1 − φ2
1e

−Tφ2

φ1 − φ2

− rlρ

κ
(22)

h (u) = rh
φ1e

−φ2u − φ2e
−φ1u

φ1 − φ2

+ (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl (23)

where

φ1 =
1

2
ρ+

1

2

√
ρ2 + 4

κ

σ
(24)

φ2 =
1

2
ρ− 1

2

√
ρ2 + 4

κ

σ
(25)

The rule is

ξπ < 1 (26)

ξx = σκ
m′ (t1)
h′ (t1)

(ξπ − 1) +
h′ (t1)
m′ (t1)

+ σρ (27)

f (x0, π0) = t̄+ A |π0 − π∗
0| (28)

where t̄ and A are any large enough positive constants and ξπ is any constant smaller than

22



1. Both m′(t1)
h′(t1)

and h′(t1)
m′(t1)

are positive; m′(t1)
h′(t1)

is decreasing in |π0 − π∗
0| and h′(t1)

m′(t1)
is increasing

in |π0 − π∗
0|. Picking any other ξπ (including ξπ > 1) will give identical results as long as

κ (ξπ − 1) + ρξx < 0 (29)

since the economy is then guaranteed to have a saddle path, which is the essential distinction

from rules that satisfy the Taylor principle given in equation (21).

Compared to the previous rule, the form of stimulus during the ZLB remains unchanged,

requiring that t1 increases fast enough as a function of |π0 − π∗
0|. However, instead of en-

visioning the economy to be in steady-state immediately after liftoff by being aggressive on

inflation, the central bank pursues a more gradual adjustment strategy. The economy is

anticipated to be on its saddle path at t1 and then travel on it towards the steady-state as

time passes.

The intuition for why suboptimal equilibria cannot be sustained is similar to before. In

the previous rule, we picked t1 so that the economy could not reach steady-state for any

(x0, π0) �= (x∗
0, π

∗
0) under rational expectations. In this rule, we choose policy so that the

economy cannot reach its saddle path. Avoiding the saddle path (a line) requires more

fine-tuning than avoiding the steady state (a point). Given a coefficient ξπ for inflation,

the output coefficient ξx is engineered so that expectations for π0 remain the same when

expectations for xt1 and πt1 change. Under the last rule described in equations (18)-(20),

expectations of xt1 and πt1 do matter for π0, but they are anchored at xt1 = πt1 = 0 because

of the Taylor principle. Effectively, then, π0 depends only on the time spent at the ZLB.

Under the new rule described in equations (26)-(28), the central bank contends with the

more intricate case in which expectations of π0 depend on expectations of πt1 and xt1 that

are not anchored by the Taylor principle. The relative influence that expectations of πt1 and

xt1 have on π0 is influenced by the relative weight that the central bank places on inflation

and output in its Taylor rule. The choice of ξx given by equation (27) ensures that the

central bank places a relative weight of inflation and output that makes any changes in the
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expectation of π0 stemming from changes in expectations of inflation at t1 be exactly offset

by changes in expectations of output at t1, and vice-versa. As a result, the saddle path of the

economy is the same for any π0 �= π∗
0. Because the central bank can achieve this strategy by

picking the relative weight it places on inflation and output, the absolute level of its reaction

to inflation, ξπ, is free (as long as ξπ < 1 so that we are not in the realm of the Taylor

principle, analyzed in the last rule).

While the last two rules have liftoff times t1 that are continuous for all (x0, π0) �= (x∗
0, π

∗
0),

t1 is discontinuous at (x
∗
0, π

∗
0) since t

∗+ t̄ is not in a small neighborhood of t∗. In addition, the

rule t1 = t∗+ t̄+A |π0 − π∗
0| with large enough positive t̄ and A has a decidedly dovish flavor,

as not only lower, but also higher initial inflation prolong the time spent at the ZLB, which

(eventually) makes inflation and output larger than when t1 = t∗. In the next propositions,

we show that these two features are common to all rules that implement the optimal path

as a unique equilibrium and have a t1 that is continuous in (x0, π0) for all off-equilibrium

paths. In addition, Proposition 4 shows that the Taylor rules we considered in equations

(18)-(19) and (26)-(27) are the only two possible types of rules that can be followed outside

the ZLB to implement a unique optimal equilibrium, providing a complete characterization

of the class of rules with a state-dependent t1.

Proposition 3. If f (x0, π0) is continuous at (x∗
0, π

∗
0) and κσλ �= 1, then the rule given in

equations (14)-(15) cannot implement the optimal equilibrium without indeterminacy.

Proof. Appendix

Proposition 4. Let g (x0, π0) be a continuous function with g (x∗
0, π

∗
0) �= 0 and set

f (x0, π0) =

⎧⎪⎨
⎪⎩

0 , if (x0, π0) = (x∗
0, π

∗
0)

g (x0, π0) , if (x0, π0) �= (x∗
0, π

∗
0)

The interest rate rule given by equations (14)-(15) implements the optimal path as the unique

equilibrium of the economy if and only if the following two conditions are satisfied:

1. Either (21) holds, or (27) and (29) hold
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2. For all x0 ≥ m (T ) and π0 ≥ h (T ), the liftoff time t1 = t∗ + f (x0, π0) satisfies

t1 ≥ max
{
m−1 (x0) , h

−1 (π0)
}
, (30)

where the functions m and h are given by equations (22) and (23).

Proof. Appendix

The first condition in the proposition asserts that expectations of x0 and π0 are invariant

with respect to expectations of xt1 and πt1 . When the Taylor principle holds, expectations

of xt1 and πt1 are fixed at zero lest we have unbouded outcomes, so there cannot be changes

in expectations of x0 and π0 stemming from xt1 or πt1 . When the Taylor principle does not

hold, the choice of ξx given by (27) makes the influences of πt1 and xt1 on x0 and π0 exactly

cancel each other. Irrespective of whether they Taylor principle holds, once x0 and π0 are

decoupled from xt1 and πt1 , they are solely controlled by t1. The second condition in the

proposition then makes the choice of t1 inconsistent with any rational expectations agents

may form for x0 and π0 whenever (x0, π0) �= (x∗
0, π

∗
0). For x0 < m (T ) and π0 < h (T ), no

equilibrium is possible independent of the choice of t1, as initial inflation and output are too

far from the steady-state for the economy to ever get there by following the IS and NKPC.

For x0 ≥ m (T ) and π0 ≥ h (T ), we eliminate undesired equilibria by following the same

strategy as in the examples we have already examined. The second condition in Proposition

4 makes the stimulus “strong enough”, where the meaning of strong enough is made precise

by equation (30). The functions m−1 (x0) and h−1 (π0), being the inverses of m and h, are

continuous, increasing, concave, bounded below by T and tend to infinity as their arguments

grow to infinity. As initial inflation and output increase, so must the time spent at the ZLB,

confirming the dovish nature of the class of rules we study in this paper.

One immediate consequence of the proposition is that the two examples we proposed in

(18)-(19) and (26)-(27) indeed implement the optimal path as the unique equilibrium. The

proposition is also useful to construct additional rules. The bound (30) on t1 is independent

of ξπ and ξx, so we can always first choose a rule for liftoff without thinking about what to
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do after t1 and then pick appropriate ξπ and ξx that satisfy the first condition in Proposition

4. For example, a particularly simple alternative to (20) is to set t1 = t̄+ Amax (0, π0).

To make the results more concrete, we use the parameter values in Werning (2011) (T = 2,

σ = 1, κ = 0.5, λ = 1/κ, ρ = 0.01, rh = 0.04 and rl = −0.04) to numerically examine the

rules. Based on (30), the tightest bounds on t̄ and A for rule (18)-(20) are12

t̄ ≥ t∗ = 2.6

A ≥ 11.2

These magnitudes mean, for example, that a deviation of π0 from π∗
0 of two percentage points

(in either direction) must lead to an extension of the ZLB period from 2.6 to at least 2.8

years in order to eliminate indeterminacy. In this case, fairly modest extensions in the length

of the ZLB can be enough to preclude indeterminacy. For the rule (26)-(28), the functions

a (π0) and b (π0) at π
∗
0 are

a (π∗
0) = 0.07 (31)

b (π∗
0) = 0.68 (32)

If we set ξπ = 0.5, the Taylor rule is then given by

it = 0.5πt + 0.41xt + rt

If |π0 − π∗
0| = 2%, then

a (π0) = 0.04 (33)

b (π0) = 0.69 (34)

12Note that in this example κσλ = 1 so we are able to make f continuous at (x∗
0, π

∗
0).
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and the Taylor rule is given by

it = 0.5πt + 0.39xt + rt.

Finally, we present a variation that simplifies the communication of the rule for liftoff

time t1, at the cost of allowing ξπ and ξx to depend not only on expectations of initial

inflation, but also on expectations of output at t1.

Proposition 5. If we allow ξπ and ξx to depend on xt1 then we can implement the optimal

path as the unique equilibrium with f (x0, π0) continuous at (x
∗
0, π

∗
0).

Proof. See Appendix.

The intuition for Proposition 5 is that the central bank can now directly affect expecta-

tions of x0 and π0 not just by using t1 but also by influencing expectations of xt1 by changing

the coefficients of the Taylor rule. This gives the central bank more flexibility to pick t1,

as some of the burden of a “high enough” t1 can be eased by regulating xt1 . The need to

make f discontinuous in the previous cases was required to create expectations of a large

enough boom when expectations were very close to optimal. Now that the central bank can

directly condition its actions on expectations of output after the ZLB, there is no need to

increase output expectations through the choice of f around (x∗
0, π

∗
0). A corollary of this

proposition is that we can set t̄ = 0 in equation (20). The advantage in this case is that the

central bank need not concern itself with the choice of t̄ and can now use the same formula

t1 = t∗ + A |π0 − π∗
0| for all on and off equilibrium paths alike. One disadvantage is that it

requires a more complicated choice of ξπ and ξx that uses contemporaneous information at

t1, in contrast to the previous rules that only required knowledge of π0 at t1.

6 Conclusion

We have presented a new way to manage a liquidity trap. The core of our proposal is to

make the time of liftoff from the ZLB contingent on inflation (or the output gap) at the
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beginning of the liquidity trap episode. If liftoff is sufficiently delayed as initial inflation (or

the output gap) increase, then the class of rules we examine can eliminate indeterminacy in

the context of a rational expectations New Keynesian model and uniquely implement the

socially optimal (or any other feasible) path for the economy. Another virtue of the rules we

propose is their relative simplicity: they are easy to communicate, can be made independent

of the deep parameters of the model, can be made memoryless once the ZLB is over, do not

hinge on active or non-Ricardian fiscal policy and, perhaps more importantly, do not require

a change in regime as would be the case for price-level targets, money-supply rules, exchange

rate management or time-varying inflation targets.

Although our rules have desirable properties in the workhorse New Keynesian model —

which we believe is a useful first step towards understanding them— we have not studied

their broader applicability. Assessing the robustness and efficiency of the rule in different

models is an important next step towards real-world use. A central bank may benefit from

understanding the properties of our rule in the presence of informational frictions, learning,

more comlpex investment dynamics, imports and exports, coordination with fiscal policy,

limited commitment, imperfect credibility, heterogeneous agents, financial intermediation

and financial stability concerns, etc.

Maybe it’s difficult to increase t1 when inflation is high, but because of spiral nature

of dynamics, inflation will decrease going forward, perhaps making the CB appear more

prescient.
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8 Appendix

8.1 Preliminaries

Consider an interest rate rule of the form:

it =

⎧⎪⎨
⎪⎩

0 , 0 ≤ t < t1

ξπ (π0, x0) πt + ξx (π0, x0) xt + rt , t1 ≤ t < ∞
(35)

t1 (π0, x0) = t∗ + f (π0, x0) (36)

g (π0, x0) ≥ T − t∗ (37)

where ξπ (π0, x0), ξx (π0, x0) and f (π0, x0) are functions of initial inflation and output. Using

this interest rate rule, the system of ODEs (1)-(2) in matrix form is

⎡
⎢⎣ ẋt

π̇t

⎤
⎥⎦ =

⎡
⎢⎣ − 1

σ
rl

0

⎤
⎥⎦+

⎡
⎢⎣ 0 − 1

σ

−κ ρ

⎤
⎥⎦
⎡
⎢⎣ xt

πt

⎤
⎥⎦ for t ∈ [0, T ) (38)

⎡
⎢⎣ ẋt

π̇t

⎤
⎥⎦ =

⎡
⎢⎣ − 1

σ
rh

0

⎤
⎥⎦+

⎡
⎢⎣ 0 − 1

σ

−κ ρ

⎤
⎥⎦
⎡
⎢⎣ xt

πt

⎤
⎥⎦ for t ∈ [T, t1) (39)

⎡
⎢⎣ ẋt

π̇t

⎤
⎥⎦ =

⎡
⎢⎣

1
σ
ξx

1
σ
(ξπ − 1)

−κ ρ

⎤
⎥⎦
⎡
⎢⎣ xt

πt

⎤
⎥⎦ for t ∈ [t1,∞) (40)

Because the solution must be continuous, we require that the solutions to (38) and (39)

“paste continuously” at t = T and that the solutions to (39) and (40) paste continuously at

time t = t1:

lim
t→T

xt = xT , lim
t→T

πt = πT , lim
t→t1

xt = xt1 , lim
t→t1

πt = xt1 . (41)
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Let φ1 > 0, φ2 < 0 be the eigenvalues of

Azlb =

⎡
⎢⎣ 0 − 1

σ

−κ ρ

⎤
⎥⎦

given in equations (24) and (25). Let α1, α2 be the eigenvalues of the steady-state dynamics

matrix

Ass =

⎡
⎢⎣

1
σ
ξx

1
σ
(ξπ − 1)

−κ ρ

⎤
⎥⎦

given by

α1 =
1

2σ

(
ξx + σρ+

√
ξ2x − 2σρξx + σ2ρ2 − 4κσ (ξπ − 1)

)

α2 =
1

2σ

(
ξx + σρ−

√
ξ2x − 2σρξx + σ2ρ2 − 4κσ (ξπ − 1)

)

Explicitly solving (38)-(40), the continuous pasting condition (41) in terms of t1, x0, π0, xt1

and πt1 is

x0 =

(
φ1e

−φ2t1 − φ2e
−φ1t1

)
(φ1 − φ2)

xt1 −
1

σ

(
e−φ1t1 − e−φ2t1

)
(φ1 − φ2)

πt1 + rh
φ2
1e

−φ2t1 − φ2
2e

−φ1t1

κ (φ1 − φ2)
(42)

+ (rh − rl)
φ2
2e

−Tφ1 − φ2
1e

−Tφ2

κ (φ1 − φ2)
− rlρ

κ
,

π0 = −κ

(
e−φ1t1 − e−φ2t1

)
(φ1 − φ2)

xt1 +

(
φ1e

−φ1t1 − φ2e
−φ2t1

)
(φ1 − φ2)

πt1 + rh
φ1e

−φ2t1 − φ2e
−φ1t1

(φ1 − φ2)
(43)

+ (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

(φ1 − φ2)
− rl.
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By analyzing the asymptotic behavior of the solution to (40), the transversality conditions

(5) and (6) can be equivalently written as

(1− ξπ) πt1 = (ξx − σα2) xt1 , if detAss < 0 (44)

πt1 = xt1 = 0, if detAss > 0 and traceAss > 0 (45)

ρπ1 = κx1, if detAss = 0 and ξx + σρ ≥ 0 (46)

any πt1 , xt1 ∈ R, otherwise13 (47)

The first case corresponds to saddle-path stability (system explodes unless it starts on the

saddle path), the second to instability (system explodes unless it starts at the steady-state),

the third to a knife-edge case (system either explodes or remains constant at its starting

point) and the last to stability (system never explodes).

8.2 Constants in Proposition 2

A =
φ1

φ2

− φ2

φ1

B = κ

(
1

φ1

− 1

φ2

)

C = efφ2
(
rl + e−Tφ2 (rh − rl)

)− efφ1
(
rl + e−Tφ1 (rh − rl)

)

D =
φ1

φ2

eφ1 − φ2

φ1

eφ2

E = κ

(
eφ2

φ1

− eφ1

φ2

)

8.3 Proof of Proposition 3

If f (x0, π0) is continuous at (x
∗
0, π

∗
0) and κσλ �= 1, then the rule given in equations (14)-(15)

cannot implement the optimal equilibrium without indeterminacy.

Proof. Let f (x0, π0) be a continuous function and κσλ �= 1. Assume, for the sake of con-

tradiction, that the rule in equations (14)-(15) implements the optimal equilibrium uniquely.
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This means there the only solution to the system of equations (42)-(47) is
(
π∗
0, π

∗
t1
, x∗

0, x
∗
t1

)
.

The case (47) cannot occur since, without any restrictions on πt1 and xt1 , (42)-(43) clearly

have an infite number of solutions. For the other three cases (44)-(46), the (non-linear, be-

cause of t1) system of two equations (42)-(43) in the four uknowns (π0, πt1 , x0, xt1) always

has more than one solution unless

(
φ1e

−φ2t1 − φ2e
−φ1t1

)
(φ1 − φ2)

xt1 −
1

σ

(
e−φ1t1 − e−φ2t1

)
(φ1 − φ2)

πt1 = 0 (48)

and

−κ

(
e−φ1t1 − e−φ2t1

)
(φ1 − φ2)

xt1 +

(
φ1e

−φ1t1 − φ2e
−φ2t1

)
(φ1 − φ2)

πt1 = 0 (49)

Using the last two equations in (42) and (43), we get

x0 = rh
φ2
1e

−φ2t1 − φ2
2e

−φ1t1

κ (φ1 − φ2)
+ (rh − rl)

φ2
2e

−Tφ1 − φ2
1e

−Tφ2

κ (φ1 − φ2)
− rlρ

κ
, (50)

π0 = rh
φ1e

−φ2t1 − φ2e
−φ1t1

(φ1 − φ2)
+ (rh − rl)

φ2e
−Tφ1 − φ1e

−Tφ2

(φ1 − φ2)
− rl. (51)

Evaluating (42) and (43) at
(
π∗
0, π

∗
t1
, x∗

0, x
∗
t1

)
and substracting from (50) and (51), we get

x0 − x∗
0 = rh

φ2
1e

−φ2t1 − φ2
2e

−φ1t1

κ (φ1 − φ2)
− rh

φ2
1e

−φ2t
∗ − φ2

2e
−φ1t

∗

κ (φ1 − φ2)

−
(
φ1e

−φ2t
∗ − φ2e

−φ1t
∗)

(φ1 − φ2)
x∗
t1

(52)

+
2κ

σ

(
e−φ1t

∗ − e−φ2t
∗)

(φ1 − φ2)

(
ρ+

√
4λκ2 + ρ2

)−1

x∗
t1

(53)

π0 − π∗
0 = rh

φ1e
−φ2t1 − φ2e

−φ1t1

(φ1 − φ2)
− rh

φ1e
−φ2t

∗ − φ2e
−φ1t

∗

(φ1 − φ2)

+κ

(
e−φ1t

∗ − e−φ2t
∗)

(φ1 − φ2)
x∗
t1

(54)

−2κ

(
φ1e

−φ1t
∗ − φ2e

−φ2t
∗)

(φ1 − φ2)

(
ρ+

√
4λκ2 + ρ2

)−1

x∗
t1

(55)

where we have used that π∗
t1

= 2κ
(
ρ+

√
4λκ2 + ρ2

)−1

x∗
t1
, as show in Werning (2011).
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Letting (x0, π0) → (x∗
0, π

∗
0), continuity of f (x0, π0) at (x

∗
0, π

∗
0) implies t1 → t∗ and thus

0 =

(
φ1e

−φ2t
∗ − φ2e

−φ1t
∗ − 2κ

σ

(
e−φ1t

∗ − e−φ2t
∗) (

ρ+
√

4λκ2 + ρ2
)−1

)
x∗
t1

0 =

(
−κ

(
e−φ1t

∗ − e−φ2t
∗)

+ 2κ
(
φ1e

−φ1t
∗ − φ2e

−φ2t
∗) (

ρ+
√

4λκ2 + ρ2
)−1

)
x∗
t1

If x∗
t1
= 0, then we’re in the case κσλ = 1. Otherwise,

(
φ1e

−φ2t
∗ − φ2e

−φ1t
∗)− 2κ

σ

(
e−φ1t

∗ − e−φ2t
∗) (

ρ+
√

4λκ2 + ρ2
)−1

= 0

−κ
(
e−φ1t

∗ − e−φ2t
∗)

+ 2κ
(
φ1e

−φ1t
∗ − φ2e

−φ2t
∗) (

ρ+
√

4λκ2 + ρ2
)−1

= 0

lead to a contradiction: Solving for t∗ in each of the equations yields different solutions unless

κ2λ = 0, which is impossible since κ > 0 and λ > 0.

8.4 Proof of Proposition 4

Proposition 6. Assume f (x0, π0) is continuous for all (x0, π0) �= (x∗
0, π

∗
0). The interest rate

rule given by equations (14)-(15) implements the optimal path as the unique equilibrium of

the economy if and only if

1. Either (21) holds, or (27) and (29) hold

2. For all x0 ≥ m (T ) and π0 ≥ h (T ), the liftoff time t1 = t∗ + f (x0, π0) satisfies

t1 ≥ max
{
m−1 (x0) , h

−1 (π0)
}
, (56)

where the functions m and h are given by equations (22) and (23).

Proof. Let f (x0, π0) be continuous for all (x0, π0) �= (x∗
0, π

∗
0). We first assume that

conditions 1 and 2 hold and prove the optimal equilibrium is the unique equilibrium. The

optimal equilibrium is an equilibrium by equations (14)-(15). If condition 1 holds, then for
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all (x0, π0) �= (x∗
0, π

∗
0)

(
φ1e

−φ2t1 − φ2e
−φ1t1

)
(φ1 − φ2)

xt1 −
1

σ

(
e−φ1t1 − e−φ2t1

)
(φ1 − φ2)

πt1 = 0

−κ

(
e−φ1t1 − e−φ2t1

)
(φ1 − φ2)

xt1 +

(
φ1e

−φ1t1 − φ2e
−φ2t1

)
(φ1 − φ2)

πt1 = 0

Equations (42)-(43) then give

x0 = m (t1) ,

π0 = h (t1) .

Condition 2 ensures that at least one of the last two equations is violated, precluding all

non-optimal equilibrium.

Conversely, assume that the optimal path is the unique equilibrium. From the proof of

the last proposition, we know that the case (47) cannot occur. The case (46) cannot occur

either, since the solution to the ODE (40) would be constant, allowing for equilibria other

than the optimal one. Indeed, any path for xt and πt that is in the line ρπ = κx at t1 is an

equilibrium. From the proof of the last proposition, we also know that (48) and (49) must

hold. If equation (45) holds, (48) and (49) are immediately satisfied. If equation (44) holds,

(48) and (49) are satisfied if and only if (27). It follows that condition 1 is true.

Because the optimal equilibrium is unique and (48) and (49) hold, we must have that,

for all (x0, π0) �= (x∗
0, π

∗
0), either

x0 �= m (t1) (57)

or

π0 �= h (t1) (58)

(or both). For x0 < m (T ), (57) is immediately satisfied since t1 ≥ T bounds m (t1) below

by m (T ). For the same reason, (58) is immediately satisfied for π0 < h (T ). Now assume
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x0 ≥ m (T ) and π0 ≥ h (T ). If there exist x̄0 and π̄0 such that

t1 < max
{
m−1 (x̄0) , h

−1 (π̄0)
}

(59)

then there is more than one equilibrium. To see this, note that t1 is bounded below by T

and thus there exist constants m̄ and h̄ such that

m (t1) ≥ m̄ (60)

h (t1) ≥ h̄ (61)

On the other hand, we can always find
¯
x0 and

¯
π0 such that

¯
x0 < m̄ ≤ m (t1)

¯
π0 < h̄ ≤ h (t1)

Because m and h is monotonic, the last two equations imply

m−1 (
¯
x0) < t1 (62)

h−1 (
¯
π0) < t1 (63)

By continuity of f (x0, π0), (59), (62) and (63) together imply that there exist (x∗∗
0 , π∗∗

0 ) �=
(x∗

0, π
∗
0) such that x∗∗

0 = m (t1) and π∗∗
0 = h (t1). The paths for inflation and output starting

at (x∗∗
0 , π∗∗

0 ) are an equilibrium, and therefore we must have, for all (x0, π0) �= (x∗
0, π

∗
0) that

t1 ≥ max
{
m−1 (x0) , h

−1 (π0)
}

(64)

which proves that condition 2 is satisfied.

8.5 Proof of Proposition 5
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