
 
 

 

This paper presents preliminary findings and is being distributed to economists 

and other interested readers solely to stimulate discussion and elicit comments. 

The views expressed in this paper are those of the author and do not necessarily 

reflect the position of the Federal Reserve Bank of New York or the Federal 

Reserve System. Any errors or omissions are the responsibility of the author. 

Federal Reserve Bank of New York 

Staff Reports 

 

 

Competition, Reach for Yield, and Money 

Market Funds 

 

Gabriele La Spada 

 

 

 

 

  

 

Staff Report No. 753 

December 2015 

January 2017 



Competition, Reach for Yield, and Money Market Funds 

Gabriele La Spada 

Federal Reserve Bank of New York Staff Reports, no. 753 

December 2015; revised January 2017 

JEL classification: G00, G20, G23 

 

 

 

 

 

 

 
Abstract 

Do asset managers reach for yield because of competitive pressures in a low interest rate 

environment? I propose a tournament model of money market funds (MMFs) to study this issue. 

When funds care about relative performance, an increase in the risk premium leads funds with 

lower default costs to increase risk taking, while funds with higher default costs decrease risk 

taking. Without changes in the premium, lower risk-free rates reduce the risk taking of all funds. I 

show that these predictions are consistent with MMF risk taking during the 2002-08 period and 

that rank-based performance is indeed a key determinant of money flows to MMFs. 
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Do money market funds “reach for yield” because of competitive pressure when risk-

free rates decrease? Are there differences in the cross-section? What is the proper notion

of competitive pressure for money market funds? To answer these questions, I propose a

tournament model of money market funds and test its predictions on the 2002–2008 period.

“Reach for yield” refers to the tendency to buy riskier assets in order to achieve higher

returns. Recently, there has been much debate about asset managers reaching for yield in

a low risk-free rate environment, especially in competitive industries. Asset managers are

typically compensated with asset-based fees, and it has been widely observed that investors

positively respond to fund performance. This induces asset managers to compete among

each other over relative performance to attract money flows. The concern is that lower

returns on safe assets might exacerbate this risk-taking incentive and lead asset managers to

delve into riskier assets.1 U.S. prime money market funds (MMFs), in particular, are seen

as a leading example of asset managers reaching for yield because of competitive forces.2

Both regulators and academics have lately paid close attention to prime MMFs because of

their crucial role in the recent financial crisis. However, although the possible reach for yield

of MMFs is central to the agenda of regulators and academics, there is a relative lack of

theoretical and empirical literature on the topic.

The two economic forces at work in the MMF industry are: fund competition over per-

formance and risk of “breaking the buck.” To capture these features, I model the industry

as a static fund tournament with a continuum of risk-neutral funds that have heterogeneous

default costs. The cost of default in the model represents the cost of “breaking the buck” in

the real world. The heterogeneity of default costs captures the real-world heterogeneity of

reputational damages to fund sponsors in case their funds default. These damages include

outflows from other funds in the same family and losses in the sponsor’s franchise value.3

In terms of methodological contribution, to the best of my knowledge, this is the first paper

that solves a tournament model with a continuum of players in a fully analytic way without

first-order approximations.

1See FSOC (2013), OFR (2013), Bernanke (2013), Haldane (2014), and Yellen (2014).
2 Stein (2013): “[. . . ] A leading example here comes from the money market fund sector, where even

small increases in a money fund’s yield relative to its competitors can attract large inflows of new assets
under management. [. . . ]”

3This notion of sponsor’s reputation concern was introduced by Kacperczyk and Schnabl (2013).
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First, I show that the tournament has a unique Nash equilibrium, fund risk-taking strictly

decreases with the cost of default, and the equilibrium default probability is strictly positive

for (almost) all funds. Funds trade off expected costs of default for the expected gains of

outperforming competitors by taking more risk. The fund with the highest default cost

anticipates that in equilibrium, it will have the lowest expected performance and optimally

chooses to keep its default probability at zero regardless of other funds’ actions. Funds with

slightly lower default costs anticipate this and optimally keep their default probability slightly

above zero to outperform the highest-default-cost fund in expectation. The same reasoning

applies to all other funds in descending order of default costs. That is, in equilibrium, funds

with lower default costs face higher competitive pressure, since they optimally choose to

outperform a larger fraction of competitors, and hence take on more risk. I show that the

fund-specific equilibrium competitive pressure is uniquely determined by the distribution of

default costs in the industry and is independent of asset returns. Importantly, competition

causes the equilibrium default probability to be positive for (almost) all funds regardless of

the scale of default costs in the industry. This result comes from the strategic nature of the

tournament and would not hold if funds’ payoff depended on absolute performance.

The equilibrium default probability depends on asset returns only via a tournament

version of the standard risk premium, which is exogenously given. This tournament risk pre-

mium is the risk-taking incentive of competition: it measures the marginal gain in expected

performance rank from investing in the risky asset. An increase in the premium leads all

funds to increase their equilibrium default probability, but in terms of the amount of risky

investment, it generates a bifurcation in the fund population. Consider an increase in the

riskiness of the risky asset that causes the premium to rise. Funds with higher default costs

face lower competitive pressure, are less attracted by the increase in the premium, and will

increase their default probability less. If the increase in risk is sufficiently large, they will

have to cut risky investment to keep the default probability sufficiently close to zero. Con-

versely, funds with lower default costs face higher competitive pressure, are more attracted

by the increase in the premium, and will increase their default probability more. If they face

sufficiently high competition, they will increase risky investment despite the increase in risk.

This bifurcation comes from the heterogeneity of equilibrium competitive pressure.
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Importantly, the equilibrium default probability does not depend on the level of the risk-

free rate. This is because, absent default, funds only care about relative performance, and

in case of default, they pay a fixed idiosyncratic cost. The equilibrium risky investment,

however, does depend on the level of the risk-free rate because the safe assets in a fund’s

portfolio work as a buffer against default risk. If the return on safe assets decreases, funds

are forced to cut their risky investment to keep the same default probability. That is, holding

the premium constant, a decrease in the risk-free rate reduces the risky investment of all

funds. This anti-reach-for-yield behavior is stronger for funds with higher default costs,

which implies that the cross-sectional risky investment differential increases as the risk-free

rate decreases.

These results show that to understand the risk-taking of MMFs, it is critical to distinguish

the role of the risk-free rate level from that of the risk premium. Risk premia trigger risk-

taking but affect funds with low and high default costs in opposite ways. Low risk-free rates

increase the buffer of safe assets necessary to maintain the equilibrium default probability

and therefore reduce risky investment for all funds. Both effects are peculiar to MMFs

and come from their distinctive feature of a stable net asset value and consequent risk of

“breaking the buck.”

My empirical analysis shows that these predictions are consistent with the risk-taking

of institutional prime MMFs over January 2002–August 2008. I choose this time window

because it includes both a significant surge in the risk premia available to MMFs (August

2007–August 2008) and a prolonged period of low Treasury rates (January 2003–July 2004);

at the same time, it does not include the run on MMFs of September 2008, the consequent

government intervention, and the ensuing long lasting debate on new regulation that might

have altered the standard risk-taking incentives of MMFs. Importantly, the concern for

a possible “reach for yield” of financial intermediaries, and particularly MMFs, in a low

interest rate environment emerged for the first time precisely in 2003–2004 (FDIC, 2004;

Rajan, 2006). To map the model to the data, I identify the fund’s cost of default with the

sponsor’s reputation concern introduced by Kacperczyk and Schnabl (2013), which is the

share of non-MMF business in the sponsor’s total mutual fund business.

First, I show that the rank of fund performance, and not the raw performance, determines
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money flows to MMFs, confirming the importance of relative performance competition in

the industry and justifying the choice of a tournament model. Second, I provide evidence

supporting the model’s predictions on the level of risky investment in the time series. Figure 1

shows that from August 2007 to August 2008, when the premia available to MMFs increased

significantly, funds with higher default costs (i.e., higher reputation concerns) decreased their

net risky investment, while funds with lower default costs increased it, as predicted by the

model. This observation is confirmed by the results in Table 3, in which I disentangle the
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Figure 1: MMF risk-taking in the time series: high- vs. low-default-cost funds. The sample is
U.S. institutional prime MMFs. The solid blue (dashed red) line is the average percentage of
risky assets net of the safe assets in the portfolio of funds whose sponsor’s reputation concern
is always above (below) the industry median throughout January 2006–August 2008. The
vertical black line separates the sample in two sub-periods: one in which the risk premia
available to MMFs are relatively low (before August 2007) and one in which the risk premia
available to MMFs are relatively high (after August 2007). The dotted green line is the
monthly return on 1-month T-bills. The scale for the average net holdings is on the left
y-axis. The scale for the T-bill rate is on the right y-axis. See Section 5 for details.

effect of risk-free rates from that of risk premia over the 2002–2008 period.4 After an increase

of 1% in the premium, there is a clear bifurcation in MMF risk-taking: funds with default

4My main proxy for the risk premium is an index of spreads of risky securities available to MMFs, while
the risk-free rate is proxied with the 1-month T-bill rate. See Section 5 for details.
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costs always above the industry median decrease the share of risky assets net of safe assets

in their portfolios by 3.8 percentage points, while funds with default costs always below the

median increase it by 3.1 percentage points. On the other hand, after a decrease of 1% in

the 1-month T-bill rate, all funds decrease their net risky investment by an amount between

21 and 26 percentage points. Interestingly, I find that when risk-free rates decrease, the shift

to safer asset classes predicted by the model is compensated by a lengthening of portfolio

maturity, which is stronger for funds with lower default costs.

Finally, I test the model’s predictions on the cross-sectional risk-taking differential, for

which identification of the effects of risk-free rates and risk premia is easier than for the level

of risky investment across time. I find that, as predicted by the model, the cross-sectional

differential increases when either risk premia go up or risk-free rates go down. An increase

of 1% in the premium increases the difference in net risky investment between funds in the

lowest and highest percentile of default costs by 6.5 percentage points. A decrease of 1%

in the 1-month T-bill rate increases the same difference by 49.0 percentage points. These

results are statistically significant at the 5% level and economically important, considering

that over the 2002–2008 period the standard deviation of the risk premium is 0.45%, that of

the risk-free rate is 0.12%, and the overall standard deviation of MMF net risky investment

is 25%. Similar results are obtained when the risk-taking differential is measured in terms

of portfolio maturity or yield.

The reminder of the paper is organized as follows. The next section reviews the literature.

Section 1 describes prime MMFs and their institutional setting. Section 2 introduces the

model. Section 3 characterizes and discusses the equilibrium. Section 4 contains comparative

statics with respect to asset returns. Section 5 presents the empirical analysis and tests the

model’s predictions. Section 6 concludes. Appendices A–C contain further theoretical results

and in-depth analyses of the flow-performance relation for MMFs and of their risk-taking

opportunities. The Internet Appendix (IA) contains comparative statics with respect to

the distribution of default costs, model extensions, proofs, data descriptions, and robustness

checks.
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Related literature

This paper belongs to the recent growing literature on the risk-taking and systemic im-

portance of MMFs.5 The most closely related paper is Kacperczyk and Schnabl (2013),

hereafter simply KS. KS empirically observe that in the period August 2007–August 2008,

funds whose sponsors have lower reputation concerns took more risk than funds whose spon-

sors have higher reputation concerns. This paper extends their work in that: (1) I propose a

new model of MMFs that not only formalizes the observations of KS but also provides novel

predictions on MMF risk-taking in both the cross-section and the time series; (2) I disen-

tangle the effect of risk-free rates from that of risk premia; (3) I run my empirical analysis

on a larger sample going back to 2002; (4) I show that the rank of performance is the true

determinant of money flows to MMFs.

The only other papers studying the reach for yield of MMFs are Chodorow-Reich (2014),

and Di Maggio and Kacperczyk (2015). Chodorow-Reich (2014) looks at the cross-section

of MMFs in terms of administrative costs. Di Maggio and Kacperczyk (2015) look at the

cross-section of MMFs in terms of affiliation to financial conglomerates.6 Both papers are

empirical and specifically focus on the effects of the unconventional monetary policy (i.e., the

zero lower bound) introduced in December 2008. Chodorow-Reich (2014) finds that MMFs

with higher administrative costs reached for higher returns in 2009–2011 but not thereafter.

Di Maggio and Kacperczyk (2015) find that in periods of extremely low Fed funds rates,

independent MMFs reached for higher returns than MMFs associated with conglomerates.

I consider a different type of MMF heterogeneity and add to these works by providing a

model that explains how relative performance competition affects MMFs’ reach for yield,

disentangling the direct effect of monetary policy from that of risk premia, and analyzing a

sample with a prolonged period of low rates but without runs or government interventions.

Parlatore (2015) is the only other paper that I am aware of that presents a model of

MMFs. Her model studies the effects of the new regulation put forward by the Securities

and Exchange Commission (SEC), i.e., the transition from a stable net asset value (NAV)

5E.g., Baba et al. (2009), McCabe (2010), Squam Lake Group (2011), Hanson et al. (2014), Chernenko
and Sunderam (2014), Strahan and Tanyeri (2015), Schmidt et al. (2016).

6This is also a form of sponsor’s reputation concerns but is significantly different from the one I use in
my empirical analysis. See Section 5 for details.
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to a floating NAV. This paper contributes to that debate by showing that the stable NAV,

creating a risk of default and the consequent need for a buffer of safe assets, generates

a channel of monetary policy that reduces risky investment when risk-free rates decrease.

On a broader theoretical level, this paper belongs to the literature on fund tournaments.

Most of that literature focused on the relative risk-taking of interim winners and losers in

a dynamic context (Goriaev et al., 2003; Basak and Makarov, 2014). In this paper, in

contrast, heterogeneity comes from the cost of default, which is an intrinsic property of each

fund. From a technical perspective, most theoretical papers consider fund tournaments with

only two players (winner and loser). Basak and Makarov (2012) solve a tournament with a

continuum of funds assuming that a fund’s payoff only depends on its performance relative

to the average. The methodological contribution of this paper is to develop a technique to

solve tournaments with a continuum of players without resorting to such approximations.

Finally, this paper contributes to the literature on the transmission of monetary policy to

financial intermediaries (Adrian and Shin, 2009; Borio and Zhu, 2012; Landier et al., 2015)

by studying how the level of risk-free rates affects the risk-taking of important non-bank

financial institutions such as prime MMFs.

1 Prime Money Market Funds: Institutional Features

U.S. prime MMFs are open-ended mutual funds that invest in money market instruments.

Prime MMFs are pivotal players in the financial markets. As of the end of 2014, they had

roughly $1.5 trillion in assets under management and held approximately 35% of the global

outstanding volume of commercial papers (ICI, 2015). In particular, they are a critical source

of short-term financing for financial institutions. As of May 2012, they provided roughly 35%

of such funding, and 73% of their assets consisted of debt instruments issued by large global

banks (Hanson et al., 2014).

Similarly to other mutual funds, MMFs are paid fees as a fixed percentage of their assets

under management and are therefore subject to the tournament-like incentives generated by

a positive flow-performance relation. On the other hand, contrary to regular mutual funds,

MMFs aim to keep the net asset value (NAV) of their assets at $1 per share. They do so by
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valuing assets at amortized cost and providing daily dividends as securities progress toward

their maturity date. Since their deposits are not insured by the government and are daily

redeemable, MMFs are subject to the risk of runs. If a fund “breaks the buck,” i.e., its

NAV drops below $1, it will likely suffer a run, as happened on September 16, 2008, when

Reserve Primary Fund, the oldest MMF, broke the buck because its shares fell to 97 cents

after writing off debt issued by Lehman Brothers.

MMFs are regulated under Rule 2a-7 of the Investment Company Act of 1940. This

regulation restricts fund holdings to short-term, high-quality debt securities. For example,

prime MMFs can only hold commercial papers that carry either the highest or second-

highest rating from at least two of the nationally recognized credit rating agencies. During

the January 2002–August 2008 period, prime MMFs were not permitted to hold more than

5% of investments in second tier (A2-P2) paper or more than a 5% exposure to any single

issuer (other than the government and agencies). Also, weighted average maturity of the

portfolio was capped to 90 days. In 2010, after the turmoil generated by the collapse of

Reserve Primary Fund, the SEC adopted amendments to Rule 2a-7, requiring prime MMFs

to invest in even higher-quality assets with shorter maturities. E.g., the weighted average

maturity is now capped to 60 days (SEC Release No. IC-29132).

On July 23, 2014, the SEC approved a new set of rules for prime MMFs (SEC Release

No. IC-31166). The main pillar of these rules is that from October 2016, institutional

prime MMFs have to sell and redeem shares based on the current market-based value of the

securities in their underlying portfolios. That is, they have to move from a stable NAV to

a floating NAV; the goal is to eliminate the risk of runs when the NAV falls below $1. This

new regulation has encountered the strong opposition of the industry (ICI, 2013).

2 A Model of Money Market Funds

The model is a static fund tournament with a continuum of risk neutral funds of measure

1. Funds are indexed by c ∈ [c, c] ⊆ R+, where c represents the idiosyncratic cost of default

defined below. c is distributed in the population according to a continuously differentiable

distribution function Fc, with positive density fC .
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Each fund is endowed with the same amount of initial deposits, D > 0. At the end

of the tournament, deposits pay a gross interest rate equal to 1 to some outside investor.

Funds can invest in two assets: a risk-free asset with deterministic gross return Rf > 1, and

a risky asset with random gross return R. R is distributed on [R,R] ⊂ R+ according to a

continuously differentiable distribution function FR, with positive density fR.

ASSUMPTION 1. R < 1 and median(R) > Rf .

As discussed below, Assumption 1 provides the proper notion of risk premium in a tourna-

ment context. Funds can neither short-sell nor borrow.

Let xc ∈ [0, D] be the risky investment of fund c. The ex post profit of c’s portfolio is

π(xc) = (R−Rf )xc + (Rf − 1)D

Hereafter, when it causes no confusion, π(xc) is simply denoted as πc and referred to as fund

c’s performance. Fund c is said to default, or “break the buck,” if πc < 0. In that case, fund

c pays a fixed cost equal to its type.

If a fund does not default, its payoff is proportional to its assets under management

(AUM) at the end of the tournament. Conditional on no default, fund c’s final AUM are

AUM(c) = (Rk(πc) + a)D,

where Rk(πc) is the rank of fund c’s performance at the end of the tournament, and a is the

fraction of money flows that does not depend on relative performance. Rk(πc) represents

a positive flow-performance relation. a can be regarded as the effect of advertising or the

overall attractiveness of the industry. For simplicity, a is assumed to be the same for all

funds and positive.

Given a profile of ex post performance π : [c, c]→ R, the rank of a performance π is

Rk(π) :=

∫
{c : πc < π}

dFc(c) (1)

That is, the rank of a fund’s performance is equal to the measure of funds with worse
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performance. Rk(πc) ∈ [0, 1] for all c, Rk(πc) = 1 if c has the (strictly) highest performance,

and Rk(πc) = 0 if c has the lowest performance.7 Then, the ex post payoff of fund c is

γ (Rk(πc) + a)D if c does not default

−c if c defaults

where γ ∈ (0, 1) represents the management fee paid by the outside investors. The combina-

tion of asset-based fee and positive flow-performance relation generates the fund tournament.

Under a strategy profile x : [c, c]→ [0, D], the expected payoff of fund c is

υc(xc, x−c) = γ DER[Rk(πc) + a|πc ≥ 0]PR(πc ≥ 0)︸ ︷︷ ︸
expected tournament reward

− cPR(πc < 0)︸ ︷︷ ︸
expected cost of default

(2)

where x−c is the risky investment of all funds except c, and ER[·] and PR(·) are the expected

value and probability measure over the risky return R, respectively.

Finally, all information above is common knowledge.

Discussion of model’s assumptions

The deposit rate equal to 1 represents the stable NAV of $1 in the MMF industry. The cost

of default c represents sponsor’s costs when the NAV of its MMF falls below $1. These fixed

costs include reputation costs and negative spillovers to other parts of sponsor’s business.

A default, however, might also have a variable cost depending on how large the shortfall is.

The internet Appendix IA.2 contains two model extensions that also include variable default

costs and shows that the results of the model above are robust to such extensions.

The safe asset can be regarded as a Treasury bill, while the risky asset can be regarded

as a bank obligation or some other risky fixed-income security. Under Assumption 1, neg-

ative realizations of the risky return can trigger a default if the fund is too exposed to the

risky asset. The premium on the risky asset is in terms of the median return because in a

tournament context, fund payoffs depend only on relative performance. As I discuss in more

7Under this definition of rank, the aggregate end-of-the-game AUM coming from the tournament are
equal to half of the initial aggregate deposits. Since the model is static, this plays no role, and for notational
simplicity, I omit the normalization factor 2 in my definition.
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detail below, there is a tournament risk-taking incentive if and only if the risky return is

more likely to be above the risk-free rate than below it, i.e., median(R) > Rf .

The assumption that a fund’s payoff is proportional to its AUM is consistent with the

fee structure typically used in the MMF industry (ICI, 2015). The assumption that a fund’s

AUM at the end of the tournament depend on the fund’s net return only via the flow-

performance relation is consistent with the common practice in the MMF industry of re-

distributing dividends to keep the NAV fixed at $1. The assumption that short-selling and

borrowing are not allowed is also consistent with the regulation of MMFs.

The assumption that fund performance is a major determinant of fund flows is supported

by a vast empirical literature (Chevalier and Ellison, 1997). In Appendix B, I show empiri-

cally that the rank of performance, and not the raw performance, is the main determinant

of money flows to MMFs, which supports the choice of a tournament model.

Contrary to the majority of the theoretical literature on fund tournaments (Basak and

Makarov, 2012), the above model does not assume a convex flow-performance relation.

Although there is some evidence that the flow-performance relation for MMFs is convex

(Christoffersen and Musto, 2002), that risk-taking channel is shut off to study the incentives

generated by the tournament nature of fund competition alone.8 However, the qualitative

predictions of the model hold under any payoff (convex or concave) that increases with the

performance rank. Moreover, Appendix B shows that when we control for performance rank,

any convexity in the flow-performance relation of MMFs disappears.

In the above model, the flow-performance relation is exogenously given. In mapping the

model to the data, this amounts to assuming that investors do not take into account funds’

costs of default when making their investment decisions. That is, investors do not risk-adjust

fund performance based on the sponsor’s reputation concerns. The internet Appendix IA.5

show that this assumption is satisfied in the data.

Under specification (1), the rank of a fund’s performance is equal to the measure of funds

with strictly lower performance. In Appendix IA.3, I consider the more general specification

in which the rank of a fund’s performance is equal to the measure of funds with strictly

8Moreover, Spiegel and Zhang (2013) argue that the empirically observed convexity of the flow-
performance relation in the mutual fund industry is due solely to misspecification of the empirical model.
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lower performance plus a fraction (δ ∈ [0, 1]) of the funds with the same performance. All

theoretical results in the paper are proved under this general specification.

The assumption that fund flows also depend on factors unrelated to relative performance

(e.g., advertising) has been vastly documented in the empirical literature on mutual funds

(Jain and Wu, 2000). The assumption is made mainly for technical reasons as it ensures the

existence of an equilibrium without imposing further conditions on the model’s primitives.

However, the model can be solved and gives the same results if that assumption is relaxed

and substituted with a regularity condition on the distribution of default costs.

Finally, the above model abstracts from investor heterogeneity within the same MMF.

Schmidt et al. (2016) show that the likelihood and size of a run on a MMF due to a negative

shock to its portfolio fundamentals depend on the fraction of institutional vs. retail investors.

Such within-fund heterogeneity, which may impact equilibrium risk-taking, is not considered

here. The model also abstracts from any agency problem that may arise within the fund

management company; that is, funds are identified with their sponsors.

3 The Nash Equilibrium

This section analytically characterizes the unique Nash equilibrium of the tournament. Be-

fore characterizing the equilibrium, I introduce the following variable:

x0 :=
Rf − 1

Rf −R
D ∈ (0, D).

x0 is the maximum risky investment such that the probability of default is zero. Given a

risky investment x ∈ [0, D], the probability of default is zero for x ≤ x0 and strictly positive

for x > x0. Hereafter, I refer to x0 as the critical risky investment. D − x0 is the minimum

buffer of safe assets required to fully insure the fund against the risk of default. Importantly,

x0 strictly increases with the risk-free rate: the minimum buffer of safe assets necessary to

avoid breaking the buck is larger when the risk-free rate is lower.

As solution concept, I use the standard definition of Nash equilibrium for games with a

continuum of players introduced by Aumann (1964).
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Definition 1. A risky investment strategy x : [c, c] → [0, D] is a Nash equilibrium of the

tournament defined by (2) if and only if υc(xc, x−c) ≥ υc(z, x−c) for all z ∈ [0, D] almost

everywhere (a.e.) on [c, c].

Hereafter, I omit the “a.e.” qualification. All the following results are true a.e. on [c, c].

Proposition 1. Any equilibrium risky investment x(c) must be strictly decreasing, continu-

ously differentiable with strictly negative derivative, and lim
c→c

x(c) = x0.

The first part of Proposition 1 is the differentiability and strict monotonicity of any

equilibrium. This result comes from the fact that the payoff of funds depends on the rank

order of their actions.9 The second part of Proposition 1 reveals that any equilibrium must

be in the region of positive default probability, as summarized by the following corollary.

Corollary 1. In equilibrium, the probability of “breaking the buck” is strictly positive for all

funds and decreasing in the cost of default.

If there were a positive mass of funds investing in the region of zero default probability

(bounded above by x0), each fund’s expected payoff in that region would strictly increase

with its risky investment. Hence, each fund has an incentive to invest at least x0 in the

risky asset. Since equilibrium risky investment decreases with default costs, the expected

performance rank also decreases with default costs from Assumption 1. Hence, the fund

with highest default costs invests exactly x0 because it anticipates that it will have the

lowest expected rank and optimally chooses to keep its default probability at zero, regardless

of other funds’ actions. The pressure of competition drives all other funds to invest more

than x0 in the attempt to outperform their competitors. That is, the strategic interactions

of the tournament make all MMFs (except that with highest default costs) not perfectly

safe ex ante. Since investors have historically perceived MMFs as safe as insured deposits,

Corollary 1 can be regarded as the most basic form of excessive risk-taking by MMFs.

Importantly, it holds regardless of the scale of default costs in the industry, i.e., even if all

funds have extremely large default costs. This result would not hold if fund payoffs depended

on absolute performance. In fact, in that case, all funds whose default costs are sufficiently

large in absolute terms would invest x0 in the risky asset and have zero default probability.

9Similar results are obtained in auction theory (Krishna, 2010).
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To explicitly determine the equilibrium, I proceed as follows. Under Assumption 1, the

expected rank of a fund’s performance increases with the ex ante rank of its risky investment.

Since any equilibrium is decreasing, the rank of a fund’s risky investment is equal to the mass

of funds with higher default costs. That is, given an equilibrium profile x(c), the rank of a

risky investment y is 1− FC(x−1(y)). Since any equilibrium is continuously differentiable, I

take the first-order condition of the objective function (2) with respect to x and obtain an

ordinary differential equation (ODE) in dx(c)/dc. The ODE, together with the boundary

condition given by Proposition 1, provides a well-defined Dirichlet problem, which can be

solved exactly and has a unique solution. Finally, I prove that the solution of the Dirichlet

problem is indeed the equilibrium of the tournament by checking a second-order condition.

Proposition 2. A Nash equilibrium exists if and only if EC
[

γD
γD(FC(c)+a)+c

]
≤ log

(
1 + FR(1)

1−2FR(Rf )

)
.

If a Nash equilibrium exists, it is unique, the equilibrium default probability is

p(c) = 2 q︸︷︷︸
tournament

incentive

· Q(c)︸︷︷︸
incentive

multiplier

,

and the equilibrium risky investment is

x(c) =
Rf −R

Rf − F−1R (p(c))
x0 , (3)

where

q := 0.5− FR (Rf ) > 0 ,

Q(c̃) := exp
{
γDEC

[
(γD (FC(c) + a) + c)−1 |c > c̃

]
(1− FC(c̃))

}
− 1,

F−1R (·) is the quantile function of R, and EC [·] is the expected value over the cost of default.

The equilibrium default probability is uniquely determined by q and Q(c). q is common

to all funds and strictly positive under Assumption 1. q is referred to as the tournament

incentive because it fully captures the model’s risk-taking motive. To see this, note that

the ex post rank of fund c’s performance, Rk(πc), depends on the ex ante rank of c’s risky
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investment, Rk(xc), in the following way

Rk(πc) =


Rk(xc) if R > Rf , i.e. with probability 1− FR(Rf )

1−Rk(xc) if R < Rf , i.e. with probability FR(Rf )

The incentive to increase the default probability by investing in the risky asset increases

with the difference between the above probabilities, i.e. 2q. Hence, within the debate on a

competition-driven reach for yield of MMFs, q represents the incentive to reach for yield. A

larger q means a larger default probability and more risky investment for all funds.

Roughly speaking, q is a spread between risky and safe returns in terms of probabilities.

Appendix A shows that under mild and realistic conditions on the risky return distribution,

q is linearly proportional to the standard risk premium. Hence, in the empirical analysis, I

proxy q with a measure of the risk premium available to MMFs.

Q(c) is fund-specific, positive, strictly decreasing in the cost of default, and goes to zero

as c goes to c. Q(c) is referred to as the incentive multiplier because it determines a fund’s

sensitivity to the tournament incentive by measuring the competitive pressure on the fund in

equilibrium. To see this, consider the fund with the highest cost of default, c. As discussed

above, c anticipates that in equilibrium its expected performance will have the lowest rank

and hence decides to keep its default probability at zero by investing x0 in the risky asset,

regardless of other players’ actions. That is, c is not affected by fund competition, and in

fact Q(c) = 0. Funds with slightly lower default costs anticipate c’s move and, in order

to outperform it in expectation, choose a default probability slightly greater than zero by

investing a bit more than x0 in the risky asset. This reasoning extends to the other funds in

descending order of default costs. In other words, each fund faces competitive pressure only

from funds with higher default costs. Figure 2 shows the equilibrium risky investment and

incentive multiplier as functions of the cost of default.

More specifically, the competitive pressure on a fund c̃ in the MMF tournament depends

on: (1) how many competitors the fund has, and (2) how competitive they are. The multiplier

Q(c̃) captures both effects through the interaction term:
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Figure 2: Equilibrium risky investment and competitive pressure. The solid black line (left y-
axis) is the equilibrium risky investment, x(c), as function of the default cost. The horizontal
dashed black line is the maximum risky investment such that the probability of default is
zero, x0. The dot-dashed red line (right y-axis) is the incentive multiplier, Q(c), as function of
the default cost. Q(c) measures the competitive pressure faced by each fund in equilibrium.

EC



γD (FC(c) + a) + c︸ ︷︷ ︸
marginal cost

of risky investment


−1∣∣∣∣∣∣∣∣∣∣∣

c > c̃

 · (1− FC(c̃))︸ ︷︷ ︸
mass of funds with
higher default costs

1−FC(c̃) measures the mass of c̃’s competitors: the mass of funds with higher default costs;

EC
[
(γD (FC(c) + a) + c)−1 |c > c̃

]
measures their competitiveness: the average of their in-

verse marginal cost of increasing the default probability by buying more risky assets. An

extra unit of risky asset increases the ex post performance rank if the realized return is

above the risk-free rate but decreases it if the realized return is below the risk-free rate.

Hence, for a competitor c, increasing the default probability by buying more risky assets has

both a direct cost (its own default cost) and an opportunity cost (the AUM it will receive

at the end of the tournament if it does not default and R < Rf ). Since equilibrium risky

investment decreases with default costs, the opportunity cost is γD (FC(c) + a). The eco-

nomic intuition is: the lower the competitors’ marginal cost of risky investment is, the more
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competitive they are. Figure 3 shows the two components of competitive pressure at work.

This in-depth analysis of Q(c) shows that in the MMF tournament, competitive pressure is

0 0

c c0 c

Q(c) ↑ with  EC[(γD(a + FC(c)) + c)−1|c > c] × (1 − FC(c))

Cost of default  c

P
D
F(
c)

A
ve

ra
ge

 c
om

pe
tit

iv
en

es
s

   
   

  o
f c

om
pe

tit
or

s

B = 1 − FC(c0)

A

Q(c0) ≈ ×BA ××

Figure 3: Components of the equilibrium competitive pressure. The solid green line (left y-
axis) is the density of the distribution of default costs in the fund population, fC . The green
shaded area is the mass of funds with default costs larger than c0 and represents the mass
of fund c0’s competitors. The dashed red line (right y-axis) is the average inverse marginal
cost of risky investment for funds with default costs larger than c̃ as a function of c̃ and
represents their average competitiveness. The upward arrow is the product of the mass of
fund c0’s competitors and their competitiveness (B and A, respectively) and represents the
competitive pressure faced by c0 in equilibrium.

fund-specific and depends only on the distribution of default costs in the industry, and not

on the risk-free rate or the return distribution.

For some comparative statics, it is more convenient to work with an approximate ver-

sion of the equilibrium risky investment. Appendix A shows that under mild and realistic

conditions on the return distribution, the equilibrium risky investment is approximately

xapp(c) := [1 + 2q̃Q(c)]x0, (4)

where q̃ :=
q

fR(R)(Rf −R)
. In Section 4, I use (4) to study how the cross-sectional risk-

taking differential reacts to changes in the risk premium and riskiness of the risky asset.

Finally, Appendix A provides two sufficient conditions for the existence of the equilibrium,
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each with a clear economic interpretation and likely to hold in the MMF industry.

4 Shocks to Asset Returns

This section studies how the equilibrium responds to changes in the risk-free rate and the

distribution of risky returns.The goal is to characterize the reach for yield of MMFs in

response to changes in the available investment opportunities.

The equilibrium default probability depends on asset returns only via the tournament

incentive q, i.e., the model’s risk premium. It does not explicitly depend on the level of the

risk-free rate or other parts of the risky return distribution. This is because, absent default,

the payoff only depends on relative performance, and in the case of default, the payoff is a

fixed cost independent of the amount of the shortfall.

Proposition 3. The equilibrium default probability increases with the tournament incentive

for all funds, with the effect being stronger for funds with lower default costs.

Proposition 3 follows immediately from the formula for the equilibrium default probability,

p(c) = 2qQ(c). An increase in q increases the equilibrium default probability of all funds

(except the highest-default-cost fund, for which Q(c) = 0). Since the effect of q is weighted

by the idiosyncratic multiplier Q(c), it is stronger for funds with lower default costs.

The equilibrium risky investment, on the other hand, does depend on the level of the

risk-free rate and the risky return distribution. The distribution of risky returns affects risky

investment via F−1R (p(c)). Importantly, only the left tail of the distribution matters. This is

because the no-short-selling constraint implies x(c) ≤ D, and hence the equilibrium default

probability must be weakly smaller than the probability that R < 1, i.e., p(c) ≤ FR(1). The

risk-free rate affects the equilibrium risky investment both explicitly via its level, Rf , and

implicitly via the tournament incentive, q = 0.5−FR(Rf ). The following section studies the

effects of these variables on equilibrium risky investment both separately and jointly, so as

to disentangle the different channels.
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4.1 Changes in risk premium, holding risk-free rate constant

First, I consider the effect of changes in the risk premium holding the risk-free rate constant.

In the real world, the premium on risky assets usually increases with their riskiness. To

mimic this scenario, I consider an increase in the tournament incentive, which is the model’s

risk premium, accompanied by an increase in the left tail of the return distribution, which is

the only other part of the distribution affecting equilibrium risky investment. In real-world

terms, the increase in the left tail of the return distribution represents an increase in the

default risk of the securities held by MMFs.

Under realistic conditions, the risky investment of funds with high default costs and that

of funds with low default costs respond in opposite ways to such changes. The increase in

the tournament incentive increases the equilibrium default probability of all funds. The shift

to the left of the return distribution, on the other hand, mechanically reduces the amount

of risky investment corresponding to any given default probability level. In equilibrium,

the heterogeneous competitive pressure determines which effect dominates, generating a

bifurcation in the fund population.

Let H :=
FR(r)

FR(1)
for all r ∈ [R, 1] be the left tail of FR, renormalized to 1 to have a proper

distribution function. Suppose there is a stochastic shift from H(1) to H(2), both with support

[R, 1], such that H(1) dominates H(2) in terms of likelihood ratio order (H(1) �LRD H(2)).

Finally, suppose the tournament incentive goes from q(1) to q(2) > q(1).

Proposition 4. Let H(1) �LRD H(2) and q(1) < q(2).

(i) If
q(2)

q(1)
> (≥) sup

H(2)

H(1)
, all funds (weakly) increase their risky investment.

(ii) If
q(2)

q(1)
< sup

H(2)

H(1)
,

(a) funds with relatively high costs of default decrease their risky investment;

(b) funds with relatively low costs of default increase their risky investment if and

only if they face sufficiently high competitive pressure.

Moreover, if
H(2)

H(1)
is decreasing, the cutting point between (a) and (b) is unique.
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Part (i) provides a predictable result: if the increase in the tournament incentive is

sufficiently larger than the increase in risk, all funds increase their risky investment.

Part (ii) considers the more realistic and interesting scenario when the increase in the

probability of low returns and that in the tournament incentive are of comparable sizes;

namely, when the growth in the tournament incentive is smaller than the maximum growth

in the left tail of the return distribution. The intuition for this case is as follows. Funds

with higher default costs face lower competitive pressure and increase their default prob-

ability less, keeping it sufficiently close to zero. Therefore, their risky investment is more

sensitive to shocks in the probability of very low returns. Under likelihood ratio dominance,

q(2)

q(1)
< sup H(2)

H(1) implies that the growth in the likelihood of very low returns is greater than

the growth in the tournament incentive. Hence, even though their default probability in-

creases, funds with higher default costs are forced to decrease their risky investment.10 On

the other hand, funds with lower default costs have a larger incentive multiplier, due to

larger competitive pressure, and are more sensitive to shocks in the tournament incentive.

If competitive pressure on those funds is sufficiently high, the increase in q dominates, and

they increase their risky investment despite the increase in risk.

Importantly, the same bifurcation also occurs if instead of assuming likelihood ratio

dominance in the left tail, we model the increase in default risk by assuming a decrease in

the lowest possible return R. This confirms the robustness of the above economic intuition.

These results suggest that the cross-sectional risky investment differential increases with

the premium and riskiness of the risky asset. When competitive pressure on low-c funds

is high, this intuition is formalized by Proposition 4 (ii). To have a formal result when

competitive pressure on those funds is low, I use the approximate equilibrium (4). As

discussed in Appendix A, that approximation is valid for all funds when the competitive

pressure on low-c funds is low. Since q̃ in (4) incorporates both the tournament incentive

and the risk of low returns, I differentiate (4) with respect to (w.r.t.) q̃ to capture the effect

of a simultaneous change in both variables.

Corollary 2.
d

dq̃

∣∣∣∣dxapp(c)dc

∣∣∣∣ > 0 for all c.

10Except the highest-default-cost fund, which always invests x0. Since by assumption H(1) and H(2) have
the same support, x0 does not change after the shock.
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Corollary 2 confirms that the cross-sectional risky investment differential also increases with

the risk premium when the competitive pressure on funds with lower default costs is low.

4.2 Changes in risk-free rate, holding risk premium constant

Here I consider changes in the risk-free rate holding the tournament incentive q constant.

Since q is proportional to the standard risk premium, this amounts to assume that the risk

premium remains constant when the risk-free rate changes.

Holding the tournament incentive constant, a decrease in the risk-free rate does not

change the equilibrium default probability of any fund. On the other hand, it forces all

funds to invest more in the safe asset to keep the same probability of default in equilibrium.

Proposition 5. Holding the tournament incentive constant, the equilibrium risky investment

strictly increases with the risk-free rate for all funds.

The effect is stronger for funds with relatively higher default costs. To see this, suppose

that the competitive pressure on the fund with the lowest default cost, c, is sufficiently high so

that its equilibrium default probability is equal to FR(1). That is, c fully invests its portfolio

in the risky asset: x(c) = D. Holding q constant, this equilibrium investment is unaffected

by changes in the level of the risk-free rate. On the other hand, in equilibrium, the fund

with the highest default cost, c, invests exactly x0, which increases with the risk-free rate.

Hence, when the risk-free rate decreases holding q constant, the risky investment differential

between c and c increases. This intuition is summarized by the following corollary.

Corollary 3. Suppose R > 2−Rf . Holding q constant, the cross-sectional risky investment

differential increases as Rf decreases, i.e.,
∂

∂Rf

∣∣∣∣dx(c)

dc

∣∣∣∣ < 0 for all c.

The partial derivative w.r.t. Rf indicates that q = 0.5 − FR(Rf ) is being held constant.

The assumption that the lowest possible return on the risky asset is not too low is likely

to hold in the data,11 since MMFs can only invest in securities of the highest credit quality

and short maturity. Moreover, for the approximate equilibrium (4), the result of Corollary 3

holds without any assumption on R, confirming the above economic intuition.

11Unless the gross risk-free rate is exactly 1, which is ruled out by model assumption.
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4.3 Simultaneous changes in risk premium and risk-free rate

Finally, in the real world, periods of low risk-free rates are often associated with periods of

high risk premia. Here I do comparative statics for this scenario. For simplicity, I hold the

distribution of risky returns constant so that a decrease in the risk-free rate, Rf , mechanically

increases the tournament incentive, q = 0.5 − FR(Rf ), i.e. the model’s risk premium.12 In

this section, I denote the tournament incentive by q(Rf ) to make its dependence on the

risk-free rate explicit. In the following proposition, the symbol of total derivative w.r.t. Rf

indicates that q is allowed to vary with Rf , while the return distribution is held constant.

ASSUMPTION 2. The reverse hazard rate of the risky return is non-increasing on [R, 1).13

Proposition 6. Under Assumption 2, there exists c∗ ∈ (c, c) s.t.

i)
dx(c)

dRf

> 0 for all c > c∗;

ii)
dx(c)

dRf

< 0 for all c < c∗ if and only if the competitive pressure on the funds with the

lowest cost of default, Q(c), is sufficiently high.

A decrease in the risk-free rate that mechanically increases the tournament incentive also

increases the equilibrium default probability of all funds (except c), with the effect being

stronger for funds with lower default costs. On the other hand, holding the default prob-

ability constant, a decrease in the risk-free rate decreases the equilibrium risky investment

of all funds, with the effect being stronger for funds with higher default costs. The idiosyn-

cratic incentive multiplier Q(c) determines which effect dominates by measuring the relative

importance of competition. To see this, take the fund with the highest cost of default, c. c

is unaffected by competition (Q(c) = 0) and always keeps its equilibrium default probability

equal to zero by investing x0 in the risky asset. Since x0 increases with Rf , a decrease in

Rf leads c to cut its risky investment despite the increase in q(Rf ). In contrast, low-c funds

face a higher competitive pressure, captured by higher Q(c). If Q(c) is sufficiently large, the

effect on the default probability via the increase in q(Rf ) dominates (see Figure 4).

12For simplicity, I do not consider a simultaneous increase in the left tail of the return distribution because
from the previous section, I already know that its effect has the same sign as that of a decrease in Rf .

13This assumption is very weak. Many common distributions with support in R+ have a decreasing reverse
hazard rate in the left tail, including uniform, log-normal, Beta, chi-squared, and exponential (Shaked and
Shanthikumar, 1994). Even more importantly, Assumption 2 is not necessary for part (i) of Proposition 6.
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Figure 4: Equilibrium risk-taking when the premium q increases and the risk-free rate Rf

decreases. Left panel: default probability (unaffected by Rf ). Right panel: risky investment.

Model Predictions: Summary

The model makes the following testable predictions.

P.1 Funds with lower costs of default always hold more risky assets.

P.2 Holding the risk-free rate constant, an increase in the risk premium:

(a) decreases the risky investment of funds with higher default costs;

(b) increases the risky investment of funds with lower default costs (if and only if

they face sufficiently high competitive pressure);

(c) always increases the cross-sectional differential.

P.3 Holding the risk premium constant, a decrease in the risk-free rate:

(a) decreases the risky investment of all funds;

(b) increases the cross-sectional differential.

The following empirical analysis provides evidence that supports these predictions.

The model also predicts that: (1) all funds have a strictly positive probability of “breaking

the buck,” which decreases with fund’s cost of default; (2) the probability of “breaking the

buck” is independent of the risk-free rate and increases with the risk premium, with the
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effect being stronger for funds with lower default costs. My data do not allow me to test

these predictions, but they are consistent with the empirical findings of Moody’s (2010) and

Brady et al. (2012).14

Further predictions and robustenss

Appendix IA.1 presents comparative statics with respect to changes in the distribution of

default costs across funds (which represents the industry’s competitive landscape). When

the distribution of default costs shifts to the right, funds with lower costs decrease their

risk-taking, while funds with higher costs increase it. This is because when the fraction of

high-cost funds increases, competition becomes relatively stronger among those funds and

relatively weaker for funds with lower default costs.

In Appendix IA.2, I show that Predictions 1, 2, and 3 are robust to the inclusion of

variable costs of default (i.e., costs that depend on the amount of the shortfall) in addition

to fixed ones. I do this under two modeling strategies: (i) the fund pays both the fixed

and the variable cost, (ii) the fund pays either the fixed or the variable cost, with a given

probability. The robusteness stems from three ingredients of the model: (1) the strategic

nature of the tournament, which generates an “arms race” among all funds except the one

with the highest fixed cost; (2) the fact that the buffer of safe assets necessary to eliminate

the risk of default increases as the return on safe assets decreases; and (3) the heterogeneity

of equilibrium competitive pressure due to the heterogeneous fixed costs, which determines

the cross-sectional response of MMF risk-taking to changes in asset returns.

Note that the second variable-cost specification described above can be seen as a reduced-

form model for the effect of sponsor’s support on MMF risk-taking; the probability of paying

the variable cost can be interpreted as the sponsor’s capacity to subsidize the fund. When

this probability decreases, all funds reduce risky investment, and the effect is stronger for

funds with lower fixed costs. This is because low-fixed-cost funds take on more risk in

equilibrium; as a result, their default is more likely, their expected shortfall is larger, and

hence they are more sensitive to sponsor’s support.

14They find that between 2007 and 2011, when the risk premia available to MMFs increased significantly,
at least 21 MMFs would have broken the buck if they had not received sponsor support, and that sponsor
support became more frequent and significant.
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5 Empirical Analysis

As other recent studies on prime MMFs, I focus on institutional funds because they exhibit a

stronger flow-performance relation than retail funds (KS; Chernenko and Sunderam, 2014).

I consider the period from January 2002 to August 2008 because this period experienced

significant variations in both the risk premia and the risk-free rates available to MMFs.15

Those variations help identify the differential effects of risk premia and risk-free rates on

MMF risk-taking and test the model’s predictions.

An empirical study of the flow-performance relation for MMFs is in Appendix B. I show

that the rank of fund performance, and not the raw performance, determines money flows

in the MMF industry, which supports the choice of a tournament model. In the internet

Appendix IA.5, I also show that my empirical proxy for a fund’s cost of default does not

affect the sensitivity of the fund’s flow-performance relation, which supports the model’s

assumption that all funds face the same, exogenously given, flow-performance relation.

Mapping the model to the data

To map the model to the data, I use the notion of sponsor’s reputation concern introduced by

KS. The fund’s cost of default in the model is the sponsor’s cost of possible negative spillovers

in the data. The rationale is that sponsors with a larger share of non-MMF business expect

to incur larger costs if the NAV of their MMFs falls below $1. This is because of possible

outflows from the sponsor’s other mutual funds or losses in the sponsor’s other business and

franchise value due to reputation damages.

As KS, I focus on prime institutional MMFs and proxy sponsor’s reputation concern with

FundBusiness =
sponsor’s mutual fund assets not in institutional prime MMFs

sponsor’s total mutual fund assets

Fund Business is the share of sponsor’s mutual fund assets that are not in institutional

15I do not consider the period after August 2008 because the industry-wide run occurred after Reserve
Primary broke the buck (September 16, 2008), the ensuing government intervention (from September 19,
2008 to September 18, 2009), and the debate on the new regulation of the industry (with the first reforms
adopted in March 2010, and the last amendments adopted in July 2014) might have significantly altered the
standard risk-taking incentives of MMFs.
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prime MMFs. Another plausible measure of sponsor’s reputation concern is affiliation to a

financial conglomerate (e.g., a bank or insurance company). However, such proxy would be

a binary variable, while the cost of default in my model is continuous. FundBusiness is

continuous by construction and is therefore the most natural choice.

The tournament incentive q in the model is mapped into the risk premium in the data.

My main proxy for the risk premium is an index of realized spreads of the risky securities

available to MMFs relative to U.S.treasuries. This index is defined and discussed below. For

robustness, I also use the excess bond premium for financial firms introduced by Gilchrist

and Zakrajsek (2012). Since MMFs mainly invest in debt securities issued by financial firms,

this is an appropriate measure of the premium available to MMFs.

My main proxy for the risk-free rate is the return on 1-month T-bills. Since MMFs

can only invest in high-quality, short-term securities, and U.S.treasuries are the safest asset

class available to MMFs, this is the appropriate proxy for the model’s risk-free rate. In my

robustness checks, I also proxy the model’s risk-free rate with the 3-month T-bill rate.

Summary statistics of the proxies for the model’s key variables are in Table 1.

The data set

Following KS, I construct a data set that maps MMFs to their sponsors. Data on individual

MMFs are provided by iMoneyNet. Data on fund sponsors are from the CRSP Mutual Fund

Database. For the time period considered here, iMoneyNet data are the most comprehensive

source of information on MMF holdings (see also KS; Chodorow-Reich, 2014; Di Maggio

and Kacperczyk, 2015). iMoneyNet data are at the weekly share-class level and contain

information on yield, AUM, expense ratio, age, portfolio composition by instrument type,

and weighted average portfolio maturity. Since my model is at the fund level, I aggregate

share classes by fund and compute fund characteristics as weighted average of the share class

values, with share class assets as weights. Details are in the internet Appendix IA.4.

Data on the returns of the asset classes available to MMFs are from FRED. Data on

the Gilchrist-Zakrajsek excess bond premium are from Simon Gilchrist’s website (http:

//people.bu.edu/sgilchri/). Data on T-bill rates are from Kenneth French’s website

(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/) and CRSP.
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Summary statistics of fund characteristics

The internet Appendix IA.4 contains summary statistics for all U.S. institutional prime

MMFs. Table IA.4.1 shows fund characteristics as of January 3, 2006, so as to compare

my results with those of KS, also reported in Table IA.4.1. The results are very similar,

confirming that my data are consistent with theirs. In January 2006, the sample includes

143 funds and 82 sponsors. The average fund size is $6.3 billion, and the average fund age

is 11.2 years. The average spread (i.e., the annualized gross yield before expenses minus the

1-month T-bill yield) is 7.5 basis points; the average expense ratio is 35.9 basis points. The

average size of the fund family is $73.3 billion, and the average Fund Business is 74.5%.

The internet Appendix IA.4 also shows that funds with different levels of sponsor’s rep-

utation concern do not significantly differ along other observable dimensions. In particular,

Figure IA.4.2 shows that for most of the 2002–2008 period, Fund Business is not statis-

tically significantly correlated with either fund’s incurred expenses or affiliation to a finan-

cial conglomerate, which are the dimensions of cross-sectional heterogeneity considered by

Chodorow-Reich (2014) and Di Maggio and Kacperczyk (2015), respectively. This means

that my results are not driven by the same cross-sectional variation analyzed in those papers.

The internet Appendix IA.4 also analyzes the distributional properties of Fund Business.

Figure IA.4.1 and Table IA.4.2 show that there is significant cross-sectional variation over the

whole period, which supports the validity of a “continuum-of-funds” approach and helps the

identification of the effect of Fund Business on the cross-sectional risk-taking differential.

Importantly, they also show that while the cross-sectional distribution of Fund Business is

relatively stable over time, there is significant time-series variation within fund.

5.1 Investment opportunities: risk premium vs. risk-free rate

Prime MMFs can invest only in U.S. treasuries, GSE debt, repurchase agreements, certifi-

cates of deposit (CDs, i.e., time deposits and bank obligations), floating-rate notes (FRNs),

commercial papers (CPs), and asset-backed commercial papers (ABCPs).16 E.g., as of Jan-

uary 3, 2016, prime institutional MMFs hold 31.4% in CPs, 19.9% in FRNs, 15.8% in CDs,

16MMFs can also invest in other MMFs, in particular via master-feeder relations. Consistent with the
literature (Chernenko and Sunderam, 2014), I exclude feeder funds from my analysis.
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13.6% in ABCPs, 13.4% in repos, and 5.9% in treasuries and agency-backed debt. Among

these asset categories, treasuries, GSE debt, and repos are the safest ones.

To capture time variation in the investment opportunities available to MMFs, I construct

an index of spreads of the risky securities available to MMFs. The index contains the 3-month

CD rate, 3-month LIBOR (often used as reference rate for FRNs), 3-month AA financial CP

rate, and 3-month AA ABCP rate. Data are monthly from FRED. The index is

Spread Indext =
(
aCD2002 r

CD
t + aFRNS2002 rLIBORt + aCP2002 r

CP
t + aABCP2002 rABCPt

)
−GS3Mt (5)

where rKt is the interest rate of asset category K in month t, and GS3Mt is the 3-month

constant maturity rate on T-bills. aK2002 is the average relative weight of category K in the

portfolio of institutional prime MMFs as of January 1, 2002. Weights are held constant as

of January 2002 to alleviate possible endogeneity issues. a’s are normalized to sum up to

1. Figure 5 shows Spread Index (red line) from January 2002 to August 2008. Before July

2007, Spread Index was relatively flat and consistently below 0.6%, with an average of 0.2%.

From July 2007, Spread Index started to rise, reaching a maximum of 1.9% in August 2008,

with an average of 1.3% from August 2007 to August 2008.

Spread Index is an ex post measure of the premia available to MMFs and reflects default

risk. Figure 5 also shows the excess bond premium for financial firms from Gilchrist and

Zakrajsek (2012), hereafter referred to as GZ Premium (blue line), which by construction

does not reflect default risk. The pattern is partly similar to that of Spread Index. It was

positive until February 2003 and then negative and relatively flat until July 2007, with an

average of −0.2% from January 2002 to July 2007. In August 2007, it was positive again

and started to rise steadily, reaching a maximum of 1.9% in August 2008, with an average

of more than 1% from August 2007 to August 2008.

Figure 5 also shows the 1-month T-bill monthly return (green line). The T-bill rate

experienced significant fluctuations from January 2002 to August 2008. It was around 15

basis points (bp) until August 2002. Then, it fell and remained low until June 2004, reaching

a minimum of 6 bp in May 2004, with an average of 8 bp from January 2003 to June 2004.17

17Interestingly, the debate on a possible reach for yield of MMFs in a low interest rate environment emerged
for the first time exactly during this period of historically low Treasury rates (FDIC, 2004).
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It increased steadily from July 2004 to May 2006, remaining at around 40 bp from then until

August 2007. Finally, it started to decrease sharply in September 2007 and remained low

until the end of the sample, with an average of 22 bp from September 2007 to August 2008.

Importantly, the fact that during the period considered, the proxies for risk premium

and risk-free rate vary significantly and do not comove systematically helps identify and

disentangle their differential effects on MMF risk-taking.
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Figure 5: Risk premium & risk-free rate. Spread Index (solid red line) is an index of realized
spreads of the risky securities available to prime MMFs relative to Treasuries (see equation
(5)). GZ EBP (dot-dashed blue line) is the Gilchrist-Zakrajsek excess bond premium for
financial firms. The dashed green line (right y-axis) is the monthly return on the 1-month
T-bill. The black vertical line is August 2007. Data are monthly.

Proxies of risk-taking

Since Spread Index and GZ Premium aggregate risk premia across different instrument

types, they do not identify the single, riskiest asset class available to MMFs in the period

of analysis. To do that, since I do not observe fund portfolios at the individual security

level, I run a panel regression with current fund spread on the left-hand side (LHS) and past

fund holdings by instrument category, together with a set of controls, on the right-hand side

(RHS). The coefficient on each instrument category measures its contribution to fund yields,
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and I identify the category with the largest coefficient as the riskiest one.18 Details on the

regression specification are in Appendix C, and results are in Table C.2. According to this

operational definition of risky asset, I find that bank obligations were the riskiest asset class

over the whole period. For robustness, I also run the same regression specification on non-

overlapping time windows and again find that bank obligations were the riskiest asset class

on average (see Appendix C for details). In view of these results, I define Holdings Risk

as the percentage holdings of bank obligations net of treasuries, GSE debt, and repos in a

fund’s portfolio; Holdings Risk is the main proxy for fund risk-taking.

To have a finer risk-taking proxy that might capture changes in investment opportunities

over time, I also introduce Holdings Riskdyn. For each month, Holdings Riskdyn is the

percentage holdings of that month’s riskiest asset class (identified using the above method)

net of treasuries, GSE debt, and repos.

I also use three other proxies for fund risk-taking: Spread, Maturity Risk, and Safe Holdings.

Spread is fund’s gross yield minus the 1-month T-bill rate. Since in the MMF industry there

is little scope for managerial skill, fund spreads tend to reflect portfolio risk.19 Maturity Risk

is the weighted average maturity of assets in a fund’s portfolio. Safe Holdings is the share

of U.S. treasuries, GSE debt, and repos in a fund’s portfolio and can be considered the most

robust measure of MMF risk-taking. Summary statistics are in Table 1.

5.2 Risk-taking Pre and Post July 2007

This section shows that funds with lower default costs always take on more risk (Prediction

1) and that the cross-sectional risk-taking differential increases if either the risk premium

increases or the risk-free rate decreases (Predictions 2c and 3b). Here I follow KS and do

not disentangle the effect of risk premia from that of risk-free rates. To make my results

comparable to theirs, I consider the January 2006–August 2008 period and divide it into two

sub-periods: the Pre period, January 2006–July 2007, characterized by high risk-free rates

and low risk premia, and the Post period, August 2007–August 2008, characterized by low

18KS and Chodorow-Reich (2014) use the same method and obtain similar results.
19As noted by KS, a potential problem with Spread is that it may vary over time just because the yields

of individual assets in the portfolio change and not because fund managers make any portfolio adjustment.
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risk-free rates and high risk premia.

On the balanced panel of MMFs active throughout January 2006–August 2008 (n = 122),

I run the following weekly regression:

Riski,t = αi + µt + β1FB Ranki,t−k + β2Postt ∗ FB Ranki,t−k+

+ γ · (Xi,t−k, Postt ∗Xi,t−k) + εi,t (6)

whereRisk is eitherHoldings Risk, Holdings Riskdyn, Maturity Risk, Spread, or Safe Holdings

defined in Section 5.1. FB Rank is the rank of Fund Business in percentiles normalized

to [0, 1], i.e., FB Rank = 0 for funds whose sponsor has the lowest reputation concern,

and FB Rank = 1 for funds whose sponsor has the highest reputation concern. Post is a

dummy equal to 1 for the Post period and 0 for the Pre period. X is the following set of

fund-specific controls: natural logarithm of size, expense ratio, age, and natural logarithm

of the fund family size. FB Rank and X are lagged by k weeks to mitigate endogeneity

issues. For robustness, I use different values of k, ranging from 1 week (k = 1) to 3 months

(k = 12). µt and αi are week and fund fixed effects, respectively.

The coefficients of interest are β1 and β2. β1 measures the effect of default costs on

fund risk-taking in the Pre period, β2 measures how this effect changes from the Pre to the

Post period. Since the Post period experienced significantly higher risk premia and lower

risk-free rates, the model predicts: β1 < 0 and β2 < 0. Obviously, when Safe Holdings is

the dependent variable, the inequalities are reversed.

Table 2 shows the results for k = 4 and 8. Reported standard errors are heteroskedasticity

autocorrelation spatial correlation (HACSC) robust to account for correlations within and

across funds. For both β1 and β2, results are consistent with the model’s predictions, and

the effects are both statistically and economically significant. E.g., going from the highest to

the lowest rank of Fund Business increases Holdings Risk by roughly 7 percentage points

(pp) in the Pre period and 14 pp in the Post period, and portfolio maturity by roughly 5

days in the Pre period and 12 days in the Post period.20 Robustness checks and a detailed

comparison of my results with those of KS are in the internet Appendix IA.6.

20At the weekly level, the overall standard deviation of Holdings Risk is 23 pp, of Holdings Riskdyn is
24 pp, of Maturity Risk is 12 days, of Spread is 68 bp, and of Safe Holdings is 18 pp.
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5.3 Risky investment in the time series

My model predicts that, holding the risk-free rate constant, an increase in the premium

caused by an increase in the riskiness of the risky asset increases the risky investment of funds

with lower default costs and decreases that of funds with higher default costs (Predictions

2a, b). On the other hand, holding the premium constant, a decrease in the risk-free rate

decreases the risky investment of all funds (Prediction 3a). This section disentangles these

two effects and shows evidence in support of the model’s predictions.

I consider the January 2002–August 2008 period and only MMFs active throughout that

period (n = 85). On this balanced panel, I run the following regression:

Riski,t =αi + βrprpt + βHrprpt ∗High FBi + βLrprpt ∗ Low FBi+

+ βrfrft + βHrfrft ∗High FBi + βLrfrft ∗ Low FBi + γ ·Xi,t−1 + εi,t (7)

Risk is either HoldingsRisk, HoldingsRiskdyn, Maturity Risk, or Safe Holdings.21 rp is

a proxy for the risk premium: Spread Index in the main specification. rf is the return on

1-month T-bills. Since data on rp are monthly, weekly fund-specific data are averaged over

months, and regression (7) is at the monthly level. High FBi (Low FBi) is a dummy equal

to 1 if fund i’s Fund Business is always above (below) the industry median, and 0 otherwise.

X is the set of fund-specific controls in regression (6) with the addition of Fund Business.

Controls are lagged to mitigate endogeneity issues. αi are fund fixed effects.

In terms of the model, High FBi = 1 represents high-c funds, and Low FBi = 1

represents low-c funds. βrp + βHrp and βrf + βHrf measure how the risky investment of high-c

funds responds to changes in the risk premium and risk-free rate, respectively. βrp + βLrp

and βrf + βLrf measure the corresponding sensitivities for low-c funds. The model predicts:

βrp + βHrp < 0 < βrp + βLrp, and βrf + βHrf > βrf > βrf + βLrf > 0. Obviously, when

Safe Holdings is the dependent variable, the inequalities are reversed.

Table 3 shows the results. Reported standard errors are HACSC robust to account for

correlations within and across funds. The results confirm the predictions of the model. First,

funds with lower Fund Business always tend to take more risk (Prediction 1), with the effect

21Since Spread mechanically covaries with the risk-free rate, I do not use it as risk-taking measure in (7).
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being statistically and economically significant for Holdings Risk, Holdings Riskdyn, and

Safe Holdings. As for the effect of the risk premium, an increase of 1% in Spread Index

generates a clear bifurcation in the cross-section of funds: funds whose sponsors have

Fund Business always below the median increaseHoldings Risk by 3.1 pp andHoldings Riskdyn

by 6.9 pp, while funds whose sponsors have Fund Business always above the median de-

crease Holdings Risk by 3.8 pp and Holdings Riskdyn by 2.2 pp. These results are statis-

tically and economically significant.22 A qualitatively similar bifurcation occurs also for the

other risk-taking measures; e.g., funds with low default costs increase Maturity Risk by 3.8

days (statistically significantly), while funds with high default costs decrease it by 3.2 days.

Changes in the risk-free rate have different effects depending on whether risk-taking is

measured in terms of portfolio composition or maturity. After a decrease of 1% in the

1-month T-bill rate, funds with high default costs decrease their Holdings Risk by 25.6

pp, their Holdings Riskdyn by 41.4 pp, and increase their Safe Holdings by 25.8 pp,

as predicted by the model. These effects are statistically significant at the 1% level and

economically important.23 The effects on funds with low default costs have the same sign

but are smaller in magnitude for Holdings Risk and Safe Holdings, as predicted. On the

other hand, a decrease in the risk-free rate increases the portfolio maturity of all funds. A

decrease of 1% in the 1-month T-bill rate increases Maturity Risk by 23.3 days for funds

with high default costs and by 33.3 days for funds with low default costs. Both effects are

statistically and economically significant.

These results indicate that holding the risk premium constant, lower risk-free rates cause

MMFs to tilt their portfolios toward safer asset classes, as predicted by the model and

contrary to the conventional “reach for yield” argument. However, this shift to safer assets

is partly compensated by a lengthening of portfolio maturity.

As first robustness check, I proxy the risk premium with the Gilchrist-Zakrajsek excess

bond premium. In the model, the bifurcation between low-c and high-c funds occurs when

the increase in the premium of the risky asset is accompanied by an increase in its default

22Over the period of analysis, the standard deviation of Spread Index is 0.45%. At the monthly level, the
overall standard deviation of Holdings Risk is 25%, of Holdings Riskdyn is 26%, of Maturity Risk is 14
days, and of Safe Holdings is 18%. See Table 1 for more summary statistics.

23Over the period of analysis, the standard deviation of the 1-month T-bill rate is 0.12%.
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risk; absent the increase in default risk, all funds take more risk after an increase in the

premium, with the effect being stronger for low-c funds (see Section 4.1). Table 4 shows

the results of regression (7) when the risk premium is proxied with GZ Premium, which

by construction does not reflect default risk. In agreement with the model, an increase of

GZ Premium increases the risk-taking of all MMFs, with the effect being more statistically

and economically significant for funds with lower Fund Business. As for the effect of the

risk-free rate, results are similar to those in Table 3, confirming the model’s predictions.

Other robustness checks are in the internet Appendix IA.6. I run regression (7): on

separate subperiods, using the 3-month T-bill rate as a proxy for the risk-free rate, lagging

fund-specific time-varying RHS variables by 2 months, and using various different cutoffs to

identify high-c and low-c funds. Results are in Tables IA.6.3–IA.6.10 and in most cases are

similar to those in Table 3, confirming the model’s predictions.

5.4 Cross-sectional risk-taking differential

The previous section tests the model’s predicted effects of risk premia and risk-free rates

on the overall level of risky investment by high-c and low-c MMFs across time. However,

identification of these effects is challenging because other macroeconomic conditions might

affect both the level of MMF risk-taking and the risk premia and risk-free rates, thereby

confounding the results. To overcome this issue, I focus on the model’s cross-sectional

predictions, which allows me to control for time fixed effects, removing all time-varying

macroeconomic conditions. Moreover, to fully exploit all cross-sectional variation in default

costs, I substitute the dummies for funds with high and low default costs with the whole

distribution of Fund Business.

My model predicts that the cross-sectional risky investment differential increases if either

the risk premium goes up (Prediction 2c) or the risk-free rate goes down (Prediction 3b). To

test both predictions and disentangle the two effects, I run the following regression on the

balanced panel of MMFs active throughout January 2002–August 2008:

Riski,t = αi + µt + β1FB Ranki,t−1 ∗ rpt + β2FB Ranki,t−1 ∗ rft + γ ·Xi,t−1 + εi,t (8)
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whereRisk is eitherHoldingsRisk, HoldingsRiskdyn, Maturity Risk, Spread, or Safe Holdings.

FB Rank is the rank of Fund Business in percentiles normalized over [0, 1]. rp is a proxy

for the risk premium: Spread Index in the main specification. rf is the 1-month T-bill

rate. Since data on rp are at the monthly level, weekly fund-specific data are averaged over

months, and regression (8) is at the monthly level. X is the same set of fund-specific controls

as in (7), with FB Rank instead of Fund Business and including their interactions with

rp and rf . All RHS fund-specific variables are lagged by 1 month to mitigate endogeneity

issues. µt and αi are time and fund fixed effects, respectively.

The coefficients of interest are β1 and β2. In the context of the model, β1 represents the

cross-derivative of fund risky investment w.r.t. the cost of default and the risk premium.

β2 represents the cross-derivative of fund risky investment w.r.t. the cost of default and the

risk-free rate. The model predicts: β1 < 0 and β2 > 0. Obviously, when Safe Holdings is

the dependent variable, the inequalities are reversed.

Results are in Table 5 and confirm the predictions of the model. Reported standard

errors are HACSC robust to account for correlations within and across funds. First, funds

with lower Fund Business rank (i.e., with lower default costs) always take more risk in

terms of Holdings Risk, Holdings Riskdyn, and Safe Holdings, as predicted by the model

and observed also in Table 3. As for the effect of the risk premium, after an increase of

1% in Spread Index, the cross-sectional risk-taking differential between funds in the lowest

and highest percentile of Fund Business increases by 6.5 pp when measured in terms of

Holdings Risk, by 8.1 pp when measured in terms of Holdings Riskdyn, by 3.5 days when

measured in terms of Maturity Risk, by 6.7 bp when measured in terms of Spread, and

by 4.5 pp when measured in terms of Safe Holdings. The results for Safe Holdings,

Maturity Risk, and Spread are statistically significant at the 1% level, while those for

Holdings Risk and Holdings Riskdyn are significant at the 5% level. Since the standard

deviation of Spread Index over the period of analysis is 0.45%, all these results are also eco-

nomically important. In fact, the time-series standard deviation of the within-month average

risk-taking differential between funds in the lowest and highest percentile of Fund Business

is: 23.8 pp for Holdings Risk, 23.6 pp for Holdings Riskdyn, 9.4 days for Maturity Risk,

8.7 bp for Spread, and 13.9 pp for Safe Holdings.
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As for the effect of the risk-free rate, after a decrease of 1% in the 1-month T-bill rate,

the cross-sectional risk-taking differential between funds in the lowest and highest percentile

of Fund Business increases by 49.0 pp when measured in terms of Holdings Risk, by 45.3

pp when measured in terms of Holdings Riskdyn, by 10.6 days when measured in terms

of Maturity Risk, by 6.5 bp when measured in terms of Spread, and by 31.1 pp when

measured in terms of Safe Holdings. The results for Holdings Risk, Holdings Riskdyn,

and Safe Holdings are statistically significant at the 1%, while that for Maturity Risk is

statistically significant at the 10% level.24 Since the standard deviation of the 1-month T-bill

rate over the period of analysis is 0.13%, all these results are also economically important.

Robustness checks are in the internet Appendix IA.6. I run regression (8) using Fund Business

instead of its rank as the main explanatory variable, using GZ Premium as a proxy for rp,

using the 3-month T-bill rate as a proxy for rf , and lagging all fund-specific RHS variables

by two months instead of one. Results are in Tables IA.6.11–IA.6.14 and are always similar.

6 Conclusions

In this paper, I propose a novel tournament model of money market funds (MMFs) to study

whether competition over relative performance generates “reach for yield” in a low risk-

free rate environment. First, the model shows that in equilibrium, competitive pressure is

heterogeneous across funds: funds with lower default costs face a higher competitive pressure

and therefore take more risk. Second, the model shows that to understand the “reach for

yield” of MMFs, it is critical to distinguish the role of risk-free rates from that of risk premia.

When the risk premium increases because of an increase in the riskiness of the underlying

asset, this generates a bifurcation in the fund population: funds with lower default costs

increase their risky investment because, facing higher competitive pressure, they are more

sensitive to the increase in the chance of outperforming their competitors; funds with higher

default costs decrease their risky investment because, aiming to keep the default probability

closer to zero, they are more sensitive to the increase in the probability of low returns. On

the other hand, contrary to the standard view, in the MMF tournament a decrease in the

24The results for Spread may be insignificant because Spread does not necessarily reflect active risk-taking.
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risk-free rate reduces the risky investment of all funds, with the effect being stronger for

funds with higher default costs. This is because a decrease in the risk-free rate increases the

buffer of safe assets necessary to keep the probability of default at the equilibrium level.

The empirical analysis is over the January 2002–August 2008 period and confirms the

predictions of the model. When risk premia increased, funds whose sponsors had low repu-

tation concerns (i.e., funds with low default costs) increased risky investment, while funds

whose sponsors had high reputation concerns decreased it. On the other hand, holding the

premium constant, when risk-free rates decreased, all funds shifted their portfolios toward

safer asset classes. Finally, I also show that the performance rank, not the raw perfor-

mance, determines money flows to MMFs, justifying the choice of a tournament model and

confirming that relative performance competition is a key incentive for MMFs.

These results shed light on the transmission of monetary policy to MMFs and contribute

to the recent debate on their new regulation. The risk-free rate, intended as the return on

treasuries, affects MMF risk-taking through the risk of “breaking the buck” that comes from

the use of a stable NAV. This channel of monetary policy, peculiar to MMFs and contrary

to the conventional “reach for yield” argument, reduces risk-taking when risk-free rates are

low. The new regulation, taking effect in October 2016, requires institutional prime MMFs

to adopt a floating NAV; such regulatory change, while possibly eliminating the risk of runs,

may actually lead institutional prime MMFs to take more risk.
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Min 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.
Fund default cost
Fund Business 0.00 0.59 0.74 0.71 0.90 1.00 0.23

Fund risk-taking
Holdings Risk (%) −100.0 −20.3 −5.4 −7.8 6.5 73.0 25.0
Holdings Riskdyn (%) −100.0 −21.0 −5.8 −7.4 6.5 97.0 26.1
Safe Holdings (%) 0.0 8.3 17.8 21.5 29.6 100.0 18.2
Maturity Risk (days) 1.0 34.5 43.8 43.5 52.3 90.0 13.7
Spread (bp) −260.3 16.4 29.3 40.9 45.0 322.1 47.8

Macroeconomic variables
1-month T-bill rate (%) 0.06 0.10 0.16 0.21 0.34 0.43 0.12
Spread Index (%) 0.04 0.12 0.17 0.37 0.32 1.88 0.45
GZ Premium (%) −0.68 −0.38 −0.27 −0.04 0.25 1.95 0.56

Table 1: Overall summary statistics of the proxies for fund default costs, fund risk-taking, and
macroeconomic conditions (i.e., risk-free rate and risk premium). For fund-level variables, the
sample is all U.S. institutional prime MMFs from 1/1/2002 to 8/31/2008. Data are monthly.
Fund Business is the share of mutual fund assets other than institutional prime MMFs in
the sponsor’s total mutual fund assets. Holdings Risk is the percentage of bank obligations
(i.e., the riskiest asset class over the whole period) net of U.S.treasuries, GSE debt, and
repos (i.e., the safe assets) in a fund’s portfolio. For each month, Holdings Riskdyn is the
percentage of that month’s riskiest asset class (identified via regression (C.1) in Appendix C)
net of safe assets in a fund’s portfolio. Safe Holdings is the percentage of safe assets in
a fund’s portfolio. Maturity Risk is the average portfolio maturity in days. Spread is a
fund’s annualized gross yield minus the yield of the 1-month T-bill in basis points. As for
the macroeconomic variables, Spread Index is the index of spreads of the risky securities
available to prime MMFs defined by equation (5). GZ Premium is the excess bond premium
for financial firms from Gilchrist and Zakrajsek (2012).
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(1) (2) (3) (4)

Holdings Riski,t Holdings Riskdyni,t Maturity Riski,t Safe Holdingsi,t
rpt −0.387 0.498 −1.091 −0.862

(0.613) (0.719) (1.286) (1.001)
rpt ∗ Low FBi 3.533∗∗∗ 6.375∗∗∗ 4.920∗∗∗ 0.377

(1.106) (1.990) (0.863) (0.468)
rpt ∗High FBi −3.450∗∗ −2.717∗∗ −2.145∗∗ 1.949∗∗∗

(1.329) (1.052) (0.957) (0.631)
rft 24.207∗∗∗ 32.992∗∗∗ −22.035∗∗∗ −20.901∗∗∗

(6.320) (5.261) (5.475) (3.154)
rft ∗ Low FBi −3.372 13.622 −11.278∗ 0.943

(3.597) (7.455) (5.408) (3.169)
rft ∗High FBi 1.359 8.448∗ −1.228 −4.889

(4.728) (4.444) (6.235) (4.227)
Fund Businessi,t−1 −9.555∗ −17.064∗∗ 1.629 3.457∗∗

(4.981) (6.928) (4.588) (1.324)
Controlsi,t−1 Y Y Y Y
Fund Fixed Effects Y Y Y Y
Observations 6,715 6,715 6,715 6,715
Adj. R2 (within) 0.089 0.077 0.182 0.098
R2 (overall) 0.654 0.429 0.448 0.656
βrp + βLrp 3.146∗∗ 6.873∗∗ 3.829∗ −0.485
βrp + βHrp −3.837∗∗∗ −2.219∗ −3.236 1.087∗

βrf + βLrf 20.835∗∗ 46.614∗∗∗ −33.313∗∗∗ −19.958∗∗∗

βrf + βHrf 25.566∗∗∗ 41.440∗∗∗ −23.263∗∗ −25.790∗∗∗

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 3: Reach for yield: risk premium vs. risk-free rate. The sample is all U.S. institutional
prime MMFs continuously active from 1/1/2002 to 8/31/2008 (n = 85). Data are monthly
(T = 80). The dependent variables are: the percentage of bank obligations (i.e., the riskiest
asset class over the whole period) net of safe assets (i.e., U.S.treasuries, GSE debt, and
repos) in a fund’s portfolio (Holdings Risk) in column (1); the percentage of each month’s
riskiest asset class net of safe assets in a fund’s portfolio (Holdings Riskdyn) in column (2);
average portfolio maturity (Maturity Risk) in days in column (3); and the percentage of
safe assets in a fund’s portfolio (Safe Holdings) in column (4). For a detailed discussion
of Holdings Riskdyn, see Section 5.1 and Appendix C. The risk premium rp is the index of
spreads available to MMFs defined by equation (5) in percentage points. The risk-free rate
rft is the 1-month T-bill rate in percentage points. High (Low) FBi is a dummy equal to
1 if fund i’s FundBusiness is always above (below) the cross-sectional median throughout
the period, and 0 otherwise. Fund Business is the share of mutual fund assets other than
institutional prime MMFs in the sponsor’s total mutual fund assets. Controls are: fund
size, expense ratio, fund age, fund family size, and Fund Business. All regressions include
fund fixed effects. Standard errors are HACSC robust from Driscoll and Kraay (1998) with
8-month lag. ***, **, * represent 1%, 5%, and 10% statistical significance, respectively. The
corresponding critical values from fixed-b asymptotics for the t-statistics are roughly 3.03,
2.24, and 1.85. For the Wald statistics they are roughly 9.31, 4.94, and 3.35.
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(1) (2) (3) (4)

Holdings Riski,t Holdings Riskdyni,t Maturity Riski,t Safe Holdingsi,t
rpt 4.358∗∗∗ 2.586∗∗ 0.286 −1.786∗∗∗

(0.700) (0.963) (1.411) (0.543)
rpt ∗ Low FBi 0.878∗ 6.011∗∗∗ 3.875∗∗∗ −0.486

(0.419) (0.865) (0.916) (0.449)
rpt ∗High FBi −1.950 −1.641∗ 2.021∗ 1.147

(1.406) (0.832) (1.047) (0.678)
rft 30.963∗∗∗ 36.923∗∗∗ −22.176∗∗ −24.162∗∗∗

(3.930) (3.598) (7.431) (2.728)
rft ∗ Low FBi −3.764 14.666∗∗ −6.046 1.309

(3.734) (5.593) (5.705) (3.130)
rft ∗High FBi −0.889 7.689 2.340 −3.699

(4.888) (4.180) (6.518) (4.054)
Fund Businessi,t−1 −5.513 −11.855∗ 3.855 3.454∗∗∗

(6.454) (5.863) (3.208) (0.955)
Controlsi,t−1 Y Y Y Y
Fund Fixed Effects Y Y Y Y
Observations 6,715 6,715 6,715 6,715
Adj. R2 (within) 0.102 0.087 0.186 0.103
R2 (overall) 0.659 0.435 0.451 0.658
βrp + βLrp 5.236∗∗∗ 8.597∗∗∗ 4.161∗ −2.272∗

βrp + βHrp 2.408 0.945 2.307 −0.639
βrf + βLrf 27.199∗∗∗ 51.589∗∗∗ −28.222∗∗ −22.853∗∗∗

βrf + βHrf 30.074∗∗∗ 44.612∗∗∗ −19.836 −27.861∗∗∗

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 4: Reach for yield: risk premium vs. risk-free rate. The sample is all U.S. institutional
prime MMFs continuously active from 1/1/2002 to 8/31/2008 (n = 85). Data are monthly
(T = 80). The dependent variables are: the percentage of bank obligations (i.e., the riskiest
asset class over the whole period) net of safe assets (i.e., U.S.treasuries, GSE debt, and
repos) in a fund’s portfolio (Holdings Risk) in column (1); the percentage of each month’s
riskiest asset class net of safe assets in a fund’s portfolio (Holdings Riskdyn) in column (2);
average portfolio maturity (Maturity Risk) in days in column (3); and the percentage of
safe assets in a fund’s portfolio (Safe Holdings) in column (4). For a detailed discussion
of Holdings Riskdyn, see Section 5.1 and Appendix C. The risk premium rp is the excess
bond premium for financial firms from Gilchrist and Zakrajsek (2012) in percentage points.
The risk-free rate rft is the 1-month T-bill rate in percentage points. High (Low) FBi is
a dummy equal to 1 if fund i’s FundBusiness is always above (below) the cross-sectional
median throughout the period, and 0 otherwise. Fund Business is the share of mutual
fund assets other than institutional prime MMFs in the sponsor’s total mutual fund assets.
Controls are: fund size, expense ratio, fund age, fund family size, and Fund Business. All
regressions include fund fixed effects. Standard errors are HACSC robust from Driscoll and
Kraay (1998) with 8-month lag. ***, **, * represent 1%, 5%, and 10% statistical significance,
respectively. The corresponding critical values from fixed-b asymptotics for the t-statistics
are roughly 3.03, 2.24, and 1.85. For the Wald statistics they are roughly 9.31, 4.94, and
3.35.
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Appendix A Further theoretical results

Standard risk premium, approximate equilibrium, and sufficient conditions

The tournament incentive is a spread between risky and safe returns in terms of probabilities.

Under mild regularity conditions on the distribution of risky returns, it can be directly related

to the standard risk premium.25

Lemma 1. Suppose FR is twice differentiable at µ := E[R] and |FR(µ)−0.5| is small. Then,

q ≈ fR(µ) (µ−Rf ) for small µ−Rf > 0.

If the distribution of risky returns is sufficiently smooth, with its mean and median being

close, q is linearly proportional to the standard risk premium, µ − Rf , when the premium

is small. Since the spread on the risky securities available to MMFs is typically very small,

the approximation provided by Lemma 1 is likely to hold in the data. This suggests using a

measure of risk premium as proxy for the tournament incentive in the empirical analysis.

For some comparative statics, the equilibrium risky investment (3) is not easily tractable.

However, under mild regularity conditions, it can be written in a more tractable form.

Corollary 4. Suppose FR is twice differentiable on [R, 1] and fR(R) > 0. Then, for small

equilibrium default probability, the equilibrium risky investment is

x(c) ≈
(

1 +
2qQ(c)

fR(R)(Rf −R)

)
x0 . (A.1)

If the distribution of risky returns is sufficiently smooth in its left tail, the equilibrium risky

investment is proportional to the tournament incentive, normalized by a measure of default

risk and scaled by the fund-specific multiplier. Approximation (A.1) always holds for funds

with higher default costs because they keep the default probability close to zero. It also

holds for all funds if the maximum competitive pressure in the industry, Q(c), is sufficiently

small. In Section 4, I use (A.1) to study how the cross-sectional risk-taking differential reacts

to changes in the risk premium and riskiness of the risky asset.

Finally, the following corollary provides two sufficient conditions, with a straightforward

economic interpretation, for the existence of the equilibrium.

25Hereafter, f ≈ g(x) for small x means f = g(x) + o(x) in the standard small o(·) notation.
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Corollary 5. The equilibrium exists if either
(
e1/a − 1

)−1 ≥ 2q

FR(1)
or
(
eγD/c − 1

)−1 ≥ 2q

FR(1)
.

The first condition says that the fraction of AUM that does not depend on fund performance

must be sufficiently greater than the tournament incentive, normalized by the probability

that the risky return falls below the rate on deposits (i.e., 1). The second condition says that

the minimum default cost in the industry must be sufficiently greater than the normalized

tournament incentive. Both conditions are likely to hold in the MMF industry, where the

spread on eligible risky securities is small, and therefore q is also small (Lemma 1). Moreover,

the second condition is likely to hold more generally because the cost of “breaking the buck,”

as happened to Reserve Primary Fund, is arguably very high in absolute terms even for the

funds with relatively low default costs.

Appendix B Flow-performance relation and tournament

This section analyzes the flow-performance relation in the MMF industry during the period

of analysis. In particular, it tests the modeling assumptions that investor money flows

are determined by the rank of fund performance (like in a tournament), and not by their

raw performance. To estimate the sensitivity of fund flows to past performance, I run the

following regression:

Fund F lowi,t+1 = αi + µt + βPerformancei,t + γ ·Xit + εi,t+1 (B.1)

where Fund F lowi,t+1 is the percentage increase in fund i’s size from week t to week t + 1,

adjusted for earned interest and trimmed at the 0.5% level to mitigate the effect of outliers.

Performancei,t is a measure of fund i’s performance in week t (see below). Xi,t is the

following set of fund-specific controls: natural logarithm of fund size in millions of dollars,

fund expenses in basis points, fund age in years, natural logarithm of the fund family size in

billions of dollars, and volatility of fund flows measured as the standard deviation of weekly

fund flows over the previous quarter. µt are week fixed effects, which account for variations in

the macroeconomic environment, and αi are fund fixed effects, which account for unobserved

time-invariant fund characteristics. The coefficient of interest is β.
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In my first specification, Performancei,t is the raw spread (Spreadi,t), i.e. the annual-

ized gross yield of fund i in week t minus the yield of the 1-month T-bill in week t. The

raw spread is expressed in percentages. Results are in Column (1) of Table C.1. Standard

errors are heteroskedasticity and autocorrelation (HAC) robust. As common in the empirical

mutual fund literature, I find that the flow-performance relation is positive and statistically

significant when performance is measured in terms of raw spreads. In the MMF industry,

however, the cross-sectional distribution of spreads is typically very compressed, and a dif-

ference of even a few basis points can crucially alter fund flows. Hence, raw measures of

past performance might not be appropriate to explain investor money flows. In my second

specification, Performancei,t is the spread rank (Spread Ranki,t), i.e. the rank of fund i’s

spread in week t. The rank is expressed in percentiles normalized over the interval [0, 1],

with Spread Rank = 0 for the worst performance and Spread Rank = 1 for the best one.

Results are in Column (2). Again, when the spread rank is the main explanatory variable,

the flow-performance relation is positive and statistically significant. Moreover, the adjusted

R2 increases by 0.2%.

These results suggest that the rank of fund performance might be more important than

raw performance in explaining fund flows to MMFs. To test this hypothesis, I estimate

model (B.1) including both measures of performance. Results are in Column (3) of Table C.1.

When both raw spreads and spread ranks are included, the spread rank remains positive

and statistically significant, while the raw spread becomes statistically insignificant and less

economically important. These results indicate that performance rank, not raw performance,

determines fund flows in the MMF industry.26 In terms of economic importance, moving

from the lowest to the highest rank of past performance increases subsequent fund flows by

roughly 1% per week, which implies that a fund could increase its annual revenue by roughly

68% by moving from the lowest to the highest rank.27

In the mutual fund literature, there is empirical evidence that the flow-performance

26Massa (1998) and Patel, Zeckhauser, and Hendricks (1994) obtained similar results for equity mutual
funds. Moreover, since regression (B.1) includes time fixed effects, this result indicates that it is not even
the performance relative to the time-varying industry average that determines money flows, but it is really
the performance rank.

27An increase equal to the cross-sectional average of the within-fund standard deviation of Spread Rank,
i.e. roughly 0.22, increases future fund flows by 0.23% per week, i.e. by 13% per year. A standard-deviation
shock to Spread, i.e. roughly 40 bp, would increase fund flows only by 10% per week, i.e. by 5% per year.

49



relation is convex in raw performance (Chevalier and Ellison, 1997). To check that convexity

is not driving my results, I run regression (B.1) including also Spread2 on the RHS to

capture possible convexity effects. When only Spread and Spread2 are included, they are

both positive and statistically significant, indicating some convexity in the relation between

money flows to MMFs and their raw performance. However, when Spread Rank is also

included, both Spread and Spread2 lose their statistical and economic significance, while

Spread Rank remains positive and statistically and economically significant, indicating that

it is really relative performance that matters in the MMF industry.

Other robustness checks are in the internet Appendix IA.5. I run regression (B.1): using

the rank of Fund F low as the dependent variable to mitigate the effect of outliers without

resorting to trimming, using only time fixed effects, and normalizing fund flows by each week’s

or month’s mean or median flow. Results are in Tables IA.5.1–IA.5.4 and are always very

similar. As further robustness checks, I also run regression (B.1) trimming the distribution

of fund flows at either 1% or multiples of the interquartile range, and on separate time

windows. Results are always similar and omitted for brevity.

In Appendix IA.5, I also show that over the January 2002–August 2008 period, the flow-

performance relation is not explicitly affected by the reputation concerns of fund sponsors.

That is, investors do not risk-adjust fund yields based on sponsors’ reputation concerns (as

also observed by KS for the January 2006–August 2008 period). This evidence indicates

that the flow-performance relation can be taken as exogenous in the context of my model.

Appendix C Risk-taking opportunities of MMFs

This section analyzes the risk-taking opportunities of prime MMFs from January 2002 to

August 2008 and identifies the riskiest (in the sense of having the largest spread w.r.t.

treasuries) asset class available to MMFs in that period. To have a complete historical

perspective and determine what asset classes have historically been perceived by MMFs as

the riskiest ones, I also consider an extended time window starting from January 1999. The

analysis is at the level of the asset classes in MMF portfolios as reported by iMoneyNet.

Since I do not directly observe the yield of the individual instruments, I follow KS and infer
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the spread of each instrument via the regression

Spreadi,t+1 = αi + µt +
∑
j

βjHoldingsi,j,t + γ ·Xi,t + εi,t+1 (C.1)

where Spreadi,t+1 is the gross yield of fund i in week t + 1 minus the 1-month T-bill

weekly return, Holdingsi,j,t is fund i’s fractional holdings of instrument type j in week t, αi

and µt are fund and week fixed effects, respectively. The instrument types include repurchase

agreements, time deposits, bank obligations (i.e., negotiable deposits), floating-rate notes,

commercial papers, and asset-backed commercial papers. The omitted category is treasuries

and GSE debt. X is the set of fund-specific controls in (B.1) without Flow V olatility, which

is not relevant to this analysis.28 The coefficients of interest are βj, which measure the return

on instrument category j in week t+ 1 relative to that of treasuries and GSE debt.

Table C.2 shows the results. All standard errors are HAC robust. Columns (1) and (2)

use weekly data. Columns (3) and (4) use monthly data (i.e., weekly variables are averaged

over months, and regression (C.1) is run on this monthly sample). Columns (1) and (3) are

for the period 01/1999–08/2008. Columns (2) and (4) are for the period 01/2002–08/2008.

Similarly to the results of KS for the period 01/2006–08/2008, Bank Obligations show the

largest contribution to fund yields relative to treasuries and GSE debt. This result holds

true both for the period 01/2002–08/2008 and for the period 01/1999-08/2008. The yield of

a fund fully invested in bank obligations would have been roughly 25 basis points higher than

the yield of a fund fully invested in Treasury and agency debt. Right after bank obligations,

ABCP is the asset class with the largest contribution to fund spread.

To have a more granular identification of the riskiest asset class over time, I also split the

sample into monthly and quarterly sub-periods and estimate regression (C.1) separately over

these non-overlapping time windows using weekly data. For each sub-period, I calculate the

rank of each asset class based on its contribution to fund spreads: asset class j has rank 1 if it

has the largest contribution (i.e., largest βj) and rank 1/6 if it has the smallest contribution

(i.e., smallest βj). Then, I take the average rank over the whole period. Column (5) shows

the results when regression (C.1) is run on monthly sub-panels, and column (6) shows the

28However, my results are robust to the inclusion of Flow V olatility on the RHS of (C.1).
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results when regression (C.1) is run on quarterly sub-panels. Bank Obligations have the

largest average rank, followed by ABCPs.

In light of these results, bank obligations can be regarded as the riskiest security available

to MMFs over the January 2002–August 2008 period, consistently with the result of KS for

the January 2006–August 2008 period. This motivates the use of Holdings Risk, i.e, the

percentage of assets held in bank obligations net of U.S. treasuries, GSE debt, and repos, as

the main proxy for MMF risk-taking.
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Fund F lowi,t+1

(1) (2) (3) (4) (5)
Spread Ranki,t 1.107∗∗∗ 1.040∗∗∗ 1.011∗∗∗

(0.149) (0.158) (0.152)
Spreadi,t (%) 1.558∗∗ 0.255 1.494∗∗∗ 0.269

(0.695) (0.301) (0.501) (0.238)
Spread2i,t 0.283∗ 0.100

(0.160) (0.100)
Log(Fund Size)i,t −1.196∗∗∗ −1.239∗∗∗ −1.239∗∗∗ −1.204∗∗∗ −1.241∗∗∗

(0.181) (0.180) (0.180) (0.182) (0.181)
Expense Ratioi,t −0.002 −0.002 −0.002 −0.002 −0.002

(0.006) (0.006) (0.006) (0.006) (0.006)
Agei,t −0.122∗∗∗ −0.121∗∗ −0.121∗∗ −0.121∗∗ −0.120∗∗

(0.047) (0.049) (0.049) (0.048) (0.049)
Flow V olatilityi,t −0.021∗ −0.011 −0.013 −0.034∗ −0.018

(0.012) (0.008) (0.008) (0.018) (0.011)
Log(Family Size)i,t −0.050 −0.046 −0.046 −0.053 −0.048

(0.061) (0.061) (0.060) (0.060) (0.060)
Week fixed effect Y Y Y Y Y
Fund fixed effect Y Y Y Y Y
Observations 47,268 47,268 47,268 47,268 47,268
Adj. R2 (within) 0.007 0.009 0.009 0.008 0.009
R2 (overall) 0.042 0.043 0.043 0.042 0.043
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table C.1: Flow-performance relation: performance rank vs. raw performance. The sample
is all U.S. institutional prime MMFs from 1/1/2002 to 8/31/2008. The dependent variable is
Fund F low, computed as the percentage change in total net assets from week t to week t+1,
adjusted for earned interest and trimmed at the 0.5%. Independent variables are the weekly
annualized spread from t − 1 to t in percentage points, its rank in percentiles normalized
to [0, 1], log of fund size in millions of dollars, fund expense ratio in basis points, fund age
in years, volatility of fund flows based on past 12-week fund flows, and log of fund family
size in billions of dollars. All regressions are at the weekly frequency and include week and
fund fixed effects. Standard errors are HAC robust. ***, **, * represent 1%, 5%, and 10%
statistical significance, respectively.
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Spreadi,t+1 Average Rank
(1) (2) (3) (4) (5) (6)

Portfolio Holdings
Repurchase Agreementsi,t 9.08∗∗∗ 14.09∗∗∗ 7.38∗∗ 12.25∗∗∗ 0.496 0.402

(3.20) (3.83) (3.32) (3.83)
Time Depositsi,t 8.74∗∗ 5.87 5.33 1.19 0.556 0.513

(4.43) (5.42) (6.28) (6.72)
Bank Obligationsi,t 23.26∗∗∗ 25.30∗∗∗ 21.87∗∗∗ 24.22∗∗∗ 0.625 0.679

(3.27) (4.08) (3.24) (3.87)
Floating-Rate Notesi,t 20.46∗∗∗ 22.80∗∗∗ 19.58∗∗∗ 21.93∗∗∗ 0.601 0.620

(3.38) (4.32) (3.27) (4.15)
Commercial Papersi,t 17.95∗∗∗ 21.11∗∗∗ 16.51∗∗∗ 19.79∗∗∗ 0.608 0.624

(3.18) (4.02) (2.94) (3.63)
Asset-Backed CPi,t 21.85∗∗∗ 24.28∗∗∗ 20.61∗∗∗ 22.75∗∗∗ 0.615 0.662

(3.30) (4.09) (3.20) (3.90)
Fund Characteristics
Log(Fund Size)i,t 0.71∗ 1.30∗∗ 0.61 0.99∗

(0.43) (0.58) (0.39) (0.53)
Expense Ratioi,t 0.05 0.03 0.02 0.01

(0.03) (0.03) (0.03) (0.03)
Agei,t −0.12 −0.37 −0.14 −0.36∗

(0.14) (0.23) (0.13) (0.19)
Log(Family Size)i,t −0.01 0.24 −0.02 0.26

(0.14) (0.33) (0.14) (0.37)
Time fixed effect Y Y Y Y
Fund fixed effect Y Y Y Y
Observations 68, 846 49, 133 15, 978 11, 377
Adj. R2 (within) 0.056 0.074 0.054 0.071
R2 (overall) 0.967 0.970 0.969 0.974
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table C.2: Contribution to fund yields by asset class. The sample is all U.S. institutional
prime MMFs. The dependent variable, Spread, is the annualized fund yield minus the
1-month T-bill rate. Holdings variables are the fraction of assets invested in repurchase
agreements, time deposits, bank obligations, floating-rate notes, commercial papers (CP),
and asset-backed CP. The omitted category is U.S. Treasury and GSE debt. Fund charac-
teristics are: log of fund size in millions of dollars, fund expense ratio in basis points, fund
age in years, and log of fund family size in billions of dollars. All regressions are at the fund
level. Columns (1) and (2) are at the weekly frequency. Columns (3) and (4) are at the
monthly frequency (i.e., monthly averages of weekly observations). Columns (1) and (3) are
for the period 1/1999-08/2008. Column (2) and (4) are for the period 1/2002-08/2008. All
regressions include time and fund fixed effects. Standard errors are HAC robust. ***, **, *
represent 1%, 5%, and 10% statistical significance, respectively. Columns (5) and (6) report
the average monthly and quarterly rank of each asset class in terms of contribution to fund
yields. The ranks are obtained from separate regressions on non-overlapping monthly and
quarterly sub-periods, respectively (see Appendix C).
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Internet Appendix to

“Competition, Reach for Yield, and Money Market Funds”

This appendix contains supplemental material to the paper “Competition, Reach for Yield,

and Money Market Funds.” Appendix IA.1 studies the comparative statics of the equi-

librium risky investment with respect to the distribution of default costs in the industry.

Appendix IA.2 presents extensions of the model that also include variable costs of default.

Appendix IA.3 contains the proofs of the theoretical results. Appendix IA.4 describes the

data set and analyzes the distributional properties of the proxy for sponsor’s reputation

concerns (i.e., Fund Business). Appendix IA.5 presents robustness checks for the empir-

ical results on the flow-performance relation. Appendix IA.6 presents robustness checks

for the empirical results on fund risk-taking, in both the time series and the cross-section.

Appendix IA.7 presents a random utility model that rationalizes a purely rank-based flow-

performance relation from investors’ perspective. Sections, equations, tables, and figures of

the original paper are referred to with the same numbering as in the paper.

Appendix IA.1 Shocks to the competitive environment

This section studies how fund risky investment responds to changes in the competitive en-

vironment. As discussed in Section 3, the competitive environment (i.e., the profile of fund-

specific competitive pressures in equilibrium) is uniquely determined by the distribution of

default costs. Suppose the distribution of default costs shifts from F
(1)
C to F

(2)
C , both with

support [c, c], where F
(2)
C dominates F

(1)
C in the likelihood ratio order.

Proposition 7. If F
(2)
C �LRD F

(1)
C , there exist c∗ ≤ c∗ ∈ (c, c) s.t. equilibrium default

probability and risky investment decrease for all c ∈ (c, c∗) and increase for all c ∈ (c∗, c).

The intuition is as follows. The shift in the likelihood ratio order means that the mass

of the distribution moves to the right. Fund c̃’s equilibrium risk-taking depends on the
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distribution of default costs only through its incentive multiplier Q(c̃), which increases with

EC
[
(γD(FC(c) + a) + c)−1 |c > c̃

]
(1− FC(c̃)) =

c∫
c̃

fC(u)du

γD(FC(u) + a) + u
. (IA.1.1)

The fund with the highest default cost, c, is unaffected by shocks to the distribution of

default costs because it is unaffected by competition. That is, Q(c) = 0 under any FC . For

the funds in a left-neighborhood of c, the LRD shift increases both the mass of competitors

(f
(2)
C (u) > f

(1)
C (u) in the upper tail) and their competitiveness by lowering the opportunity

cost of risky investment (F
(2)
C (u) < F

(1)
C (u) everywhere). As a result, for large c̃, the right-

hand side of (IA.1.1) increases, increasing the multiplier and hence the risk-taking of funds

with relatively high default costs. On the other hand, for the fund with the lowest default

cost c, the mass of competitors remains equal to 1, and their average opportunity cost of risky

investment does not change.29 However, the LRD shift decreases the average competitiveness

of c’s competitors by increasing their average cost of default. Hence, for c (and by continuity,

for other funds with relatively low default costs), a shift of FC to the right decreases the

incentive multiplier and hence the risk-taking.30

Intuitively, if the mass of the default cost distribution shifts to the right (i.e., the fraction

of funds with relatively high default costs increases), competition becomes relatively stronger

for funds with higher default costs and relatively weaker for funds with lower default costs.

Again, this result shows that in the MMF tournament, competitive pressure is not a global

property of the industry but a local property of each fund.

Proposition 7 suggests that shocks to the competitive landscape might have surprising

effects in the aggregate. E.g., if the right tail of the distribution of default costs is sufficiently

fat, an increase in the fraction of funds with relatively high default costs could increase

aggregate risk-taking rather than decrease it. This is because the increase in risk-taking of

high-c funds could more than offset the decrease in risk-taking of low-c funds.

29Specifically,
∫ c
c

f(u)du
γD(F (u)+a) = 1

γD log
(
1 + a−1

)
for any CDF F on [c, c].

30The assumption of LRD is made for simplicity. For Proposition 7 to hold, it is sufficient to assume a
first-order stochastic dominance shift such that the two density functions cross only a finite number of times.
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Appendix IA.2 Model extensions: variable default costs

In the paper, I assume that the default of a MMF only has a fixed (idiosyncratic) cost.

However, a default might also have a variable cost according to how large the shortfall is. To

address this concern, here I present two extensions of the model that also include variable

default costs equal to the amount of the shortfall. The first extension assumes that in case

of default, a fund pays both the fixed and the variable cost. The second extension assumes

that in case of default, a fund pays either the fixed or the variable cost, depending on the

realization of an exogenous random variable that represents the sponsor’s ex post capacity

to subsidize the fund. The second extension can be seen as a reduced form model to study

the effect of sponsor’s support on MMF risk-taking.

For both model extensions, I show that the main features of the equilibrium and results of

the model in the paper carry through also under these specifications. The robustness of the

model comes from three fundamental ingredients: (1) the strategic nature of the tournament,

which generates an “arms race” among all funds except that with the highest fixed cost; (2)

the fact that the buffer of safe assets necessary to insure a fund against the risk of default

increases as the return on safe assets decreases; and (3) the heterogeneity of equilibrium

competitive pressure due to heterogeneous fixed costs of default, which determines how the

cross-sectional risk-taking differential responds to changes in asset returns.

All variables are defined as in the paper. For notational simplicity, I drop the subscript

from CDFs, PDFs, and expectations when it is clear what variable they refer to. E.g., f(c)

is the PDF of the fixed default cost c, and the expectation of the profit π is taken over the

risky return R. Finally, the assumptions of the paper are maintained, and as in the paper,

all statements on fund behavior are true up to a zero-measure set of funds.

IA.2.1 Extension 1: variable default cost

Suppose that in case of default (i.e., π < 0), a fund pays both a fixed idiosyncratic cost c and

a variable cost equal to the shortfall |π|. Then, under a strategy profile x : [c, c] → [0, D],
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the expected payoff of fund c becomes

υc(xc, x−c) = γ DE[Rk(πc) + a|πc ≥ 0]P(πc ≥ 0)︸ ︷︷ ︸
expected tournament reward

−

 c︸︷︷︸
fixed cost

+E [|πc| | πc < 0]︸ ︷︷ ︸
variable cost

P(πc < 0)

︸ ︷︷ ︸
expected cost of default

= υ(0)c (xc, x−c)− E [|πc| | πc < 0]P(πc < 0) , (IA.2.1)

where υ(0) is the expected payoff when only fixed costs are incurred. The fundamental

features of the equilibrium carry through under specification (IA.2.1).

Proposition 1a. Proposition 1 and Corollary 1 hold unchanged under model (IA.2.1).

Proposition 1a says that the first testable prediction of the model in the paper (Prediction

1 therein) remains unchanged by the inclusion of variable costs: funds with lower fixed costs

of default always hold more risky assets. Moreover, as in the model with only fixed costs, all

funds have a strictly positive probability of “breaking the buck,” which decreases with the

fund’s fixed cost of default.

Importantly, Proposition 1a implies that the behavior of high-c funds in the model with

variable costs is identical to that in the model with only fixed costs. This is because in both

models, the fund with the highest fixed cost c optimally decides to always keep its probability

of “breaking the buck” at zero. Therefore, by continuity of the equilibrium, the comparative

statics for the funds with relatively high fixed costs (i.e., in a left-neighborhood of c) remain

unchanged by the inclusion of variable default costs.

In general, for the model that includes variable costs, it is not possible to solve for an

equilibrium in closed form. However, I can find sufficient conditions for the existence of

an equilibrium, show that it must be unique, and fully characterize it as the solution of a

Dirichlet problem. To this purpose, let R0(x) := Rf − (Rf − 1)
D

x
be the critical risky return

such that a fund investing x in the risky asset would default if and only if the realized risky

return falls below R0(x), i.e., R < R0(x).
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Proposition 2a. If an equilibrium exists, it is unique and satisfies:

dx

dc
= − γDf(c) [2q + F (R0(x))]x2

[c+ γD (a+ F (c))] (Rf − 1)Df(R0(x)) + E [Rf −R | R < R0(x)]F (R0(x))x2

lim
c→c

x(c) = x0,

(IA.2.2)

with c ∈ [c, c] and x ∈ [x0, D].

Moreover, if E
[

γD

γD [F (c) + a] + c

]
≤ log

(
1 +

FR(1)

2q

)
, the equilibrium exists.

Proposition 2a is the equivalent of Proposition 2 in the paper. The existence of the

equilibrium risky investment in [x0,∞) is guaranteed by the Picard-Linderhöf theorem, which

applies because the PDFs of c and R are continuous and strictly positive by assumption.

The existence condition in Proposition 2a is to ensure that the no-short-sales constraint is

satisfied. It is the same condition as in Proposition 2; the difference is that here the condition

is only sufficient, while it is also necessary for the model without variable costs. This means

that in the model with variable costs, the equilibrium exists for a larger set of primitive

parameters than in the model with only fixed costs. This is because the inclusion of variable

default costs on top of the fixed ones reduces the equilibrium risk-taking of all funds.

In the following, I use characterization (IA.2.2) to study the comparative statics of the

equilibrium risky investment with respect to (w.r.t.) the distribution of risky returns and the

risk-free rate. Since there is no closed-form expression for the equilibrium risky investment,

I have to impose a few additional conditions to derive some of the results in the paper.

However, as discussed below, the conditions are mild, realistic, and only sufficient.

IA.2.1.1 Shocks to risk premium and default risk

Under economically reasonable sufficient conditions, the comparative statics w.r.t. the risky

return distribution are robust to the inclusion of variable default costs. As in the model

without variable costs, the return distribution affects the equilibrium risky investment only

through its left tail, which represents the default risk of the risky asset, and the tournament

incentive, which is the model’s risk premium. Under realistic conditions, I show that: (1) an

increase in the premium and riskiness of the risky asset generates a “bifurcation” between
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low-c funds and high-c funds (Predictions 2a, b in the paper), and (2) the cross-sectional

risky investment differential always increases with the risk premium (Prediction 2c).

First, I consider an increase in the tournament incentive holding the left tail fixed.

Proposition 3a. Ceteris paribus, the equilibrium default probability and risky investment of

all funds increase with the tournament incentive q, with the effect being stronger for funds

with lower fixed costs of default.

Absent an increase in the riskiness of the risky asset, an increase in the premium increases the

default probability and risky investment of all funds (except the one with the highest fixed

cost, which always keeps its default probability at zero by investing x0 in the risky asset).

Moreover, the response of funds with lower fixed costs is stronger, which implies that, ceteris

paribus, the cross-sectional risky investment differential increases with the premium. The

same predictions hold for the model with only fixed costs (see Proposition 4 and Corollary 2

in the paper). My empirical analysis provides evidence supporting these predictions in

Tables 4 and IA.6.12, which show the results of regressions (7) and (8) when q is proxied by

Gilchrist-Zakrajsek’s excess bond premium.

Next I consider a change in the risk premium accompanied by an increase in the left tail

of the return distribution. An increase in the left tail means an increase in the probability

of lower returns and can be interpreted as an increase in the default risk of the risky asset.

As in the paper, the left tail is over [R, 1], and I renormalize it by FR(1) to have a proper

distribution function for the comparative statics exercise. Let H and h be the CDF and

PDF of R over the left tail, respectively. As in the paper, I assume that the tail shifts to the

left in the likelihood ratio order: H(1) �LRD H(2). For each tail i, let G
(i)
1 (x) =

h(i) (R0(x))

H(i) (R0(x))

be the reverse hazard rate calculated at R0(x), and G
(i)
2 (x) = E [Rf −R | R < R0(x)] be the

marginal expected shortfall per unit of risky investment conditional on default. Finally, let

G := sup
x∈[x0,D]

G
(2)
2 (x)−G(1)

2 (x)

G
(1)
1 (x)−G(2)

1 (x)
<∞. G is well-defined and bounded since R has a positive

and continuous PDF.

Proposition 4a. Let H(1) �LRD H(2) and q(1) < q(2). Suppose
c

D
+ γa >

G

Rf − 1
.

(i) If
q(2)

q(1)
≥ sup

H(2)

H(1)
, all funds increase their risky investment.
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(ii) If
q(2)

q(1)
< sup

H(2)

H(1)
,

(a) funds with higher fixed costs of default decrease their risky investment;

(b) funds with lower fixed costs of default increase their risky investment if
q(2)

q(1)
is

sufficiently close to sup
H(2)

H(1)
.

Moreover, if
H(2)

H(1)
is decreasing, the cutting point between (a) and (b) is unique.

Proposition 4a is analogous to the bifurcation result presented in Proposition 4 of the pa-

per. The economic intuition is the same: low-c funds are more sensitive to the increase in

the premium, while high-c funds are more sensitive to the increase in risk. Hence, if the

increase in the premium and that in risk are of comparable size, low-c funds increase their

risky investment, while high-c funds decrease it. My empirical analysis provides evidence

supporting this prediction in Table 3, which shows the results of regression (7) when q is

proxied by Spread Index, i.e., by the index of realized spreads on the risky asset classes

available to MMFs (see equation (5) of the paper).

However, with respect to the bifurcation result presented in the paper, there are two

differences. First, I assume that the minimum fixed cost of default in the fund population is

sufficiently high. The reason is the following. In the model without variable costs, funds only

care about the probability of default and not the extent of their shortfall. As a consequence,

an increase in the riskiness of the risky asset always has a stronger effect on high-c funds

because: (1) they are more sensitive to the probability of very low returns since they keep

their default probability closer to zero, and (2) the shift to the left of the return distribution

increases the probability of very low returns relatively more. In the model with variable

costs, on the other hand, funds also pay the shortfall in case of default. As a consequence,

an increase in the riskiness of the risky asset can have an ambiguous effect across funds,

depending on the form of the return distribution, the extent of the shift, and the initial

equilibrium position. However, if the minimum fixed cost of default in the industry is

sufficiently high, the effect of an increase in default probability dominates the effect of a

change in expected shortfall for all funds. Hence, in this case, the overall effect of an increase
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in risk is stronger on high-c funds also when variable costs are included, and the bifurcation

of equilibrium risky investments occurs.

Importantly, the condition of Proposition 4a is economically reasonable and likely to hold

in the real world. In fact, as discussed in the paper, the fixed costs of “breaking the buck”

in the MMF industry are very large for any fund sponsor, as shown by the cases of Reserve

Primary Fund in 2008 and Community Bankers US Government Fund in 1994.

Second, in the model without variable costs, the response of low-c funds is fully char-

acterized by the competitive pressure they face in equilibrium, i.e., by the distribution of

fixed costs of default in the fund population. In that model, an increase in the premium

leads low-c funds to increase their risky investment if and only if they face sufficiently high

competitive pressure, regardless of any increase in the riskiness of the risky asset. In the

model with variable costs, on the other hand, this is not necessarily true because in case of

default funds also pay a variable cost proportional to their risky investment. However, if the

increase in the premium is not too low compared to the increase in risk, low-c funds will still

increase their risky investment, generating a bifurcation.

Finally, note that these additional assumptions for the bifurcation between low-c and

high-c funds are needed only to characterize the behavior of low-c funds. As mentioned

above, the behavior of high-c funds in the model with variable costs is exactly the same as

in the model with only fixed costs.

As Proposition 4 of the paper, Proposition 4a suggests that the cross-sectional risky

investment differential always increases after a simultaneous increase in the premium and

riskiness of the risky asset.

Corollary 4a. Under the conditions of Proposition 4a, the cross-sectional risky investment

differential increases in both case (i) and case (ii).

Corollary 4a is the analogous of Corollary 2 in the paper, and the intuition is the same:

regardless of the relative importance of the increase in the premium vis-à-vis the increase in

the riskiness of the risky asset, low-c funds are always more affected by the former, while high-

c funds are always more affected by the latter. The result of Corollary 4a is particularly

important because, together with Proposition 3a, it implies that an increase in the risk
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premium always increases the cross-sectional risky investment differential, regardless of what

happens to the tail of the return distribution. My empirical analysis tests this prediction in

regression (8) when the premium q is proxied by either Spread Index or GZ Premium (see

Tables 5 and IA.6.12).

IA.2.1.2 Risk-free rate

The comparative statics w.r.t. the risk-free rate Rf are unchanged by the inclusion of variable

default costs. Namely, I show that: (1) the equilibrium risky investment increases with risk-

free rate for all funds (Prediction 2a in the paper), and (2) under economically reasonable

conditions, the cross-sectional risky investment differential increases when the risky-free rate

decreases (Prediction 2b).

Proposition 5a. Proposition 5 holds unchanged under model (IA.2.1).

Proposition 5a says that when the risk-free rate decreases, all funds decrease their risky

investment, exactly as in the model without variable costs. This is because of two reasons.

First, as in the model without variable costs, the fund with the highest fixed cost c optimally

decides to keep its default probability at zero, and the buffer of safe assets necessary to do

so increases as the risk-free rate decreases. Second, if a fund’s default probability is positive,

the marginal expected shortfall per unit of risky investment increases as the risk-free rate

decreases. This implies that relative to the model with only fixed costs, all funds (except c)

have a further incentive to cut their risky investment after a decrease in the risk-free rate.

Moreover, as in the model without variable costs, a change in the risk-free rate has a

stronger effect on the equilibrium risky investment of funds with higher fixed costs. This

implies that the risky investment differential between low-c and high-c funds increases when

the risk-free rate decreases. The intuition behind this result is the same as in the model of

the paper: the risky investment of high-c funds is closer to the critical risky investment x0,

which decreases as Rf decreases, and is therefore more sensitive to changes in Rf . To prove

this result for the model with variable costs, I assume that the PDF of the risky return is

continuously differentiable31 and define J := sup
R∈[R,1]

f ′(R)

f(R)
<∞.

31This is done for technical reasons, since the equilibrium risky investment does not have a closed-form
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Corollary 5a. If
c

D
+ γa >

(Rf − 1)(1−R)

(Rf −R) [1− J(1−R)]
, the cross-sectional risky investment

differential increases when the risk-free rate decreases.

Corollary 5a is the equivalent of Corollary 3 in the paper. As the condition of Corollary 3, the

condition of Corollary 5a is mild and likely to hold in the real world. It is satisfied if either the

minimum fixed cost of default in the fund population c is sufficiently high, or the lowest pos-

sible return on the risky asset R is not too low (exactly as in Corollary 3). As discussed above

and in the paper, both conditions are realistic in the MMF industry. Moreover, the condition

can actually be weakened significantly by assuming:
Rf −R
Rf − 1

(
1

1−R
− f ′(R)

f(R)

)
>

1

c/D + γa
for all R ∈ [R, 1], which is even milder. Importantly, my empirical analysis tests the predic-

tion of Corollary 5a in regression (8), using either the 1-month or the 3-month T-bill rate as

proxy for the risk-free rate (see Tables 5 and IA.6.13).

IA.2.2 Extension 2: the role of sponsor’s support

In this section, I present a variation of the model that can be seen as a reduced form to

study the effects of sponsor support on MMF risk-taking. Empirical evidence (Brady et

al., 2012; Moody’s, 2010) shows that when a MMF suffers a loss, the sponsor typically

provides support by covering the shortfall, so as to prevent the fund from “breaking the

buck.” However, it can happen that after the loss occurs, the sponsor does not have the

resources to cover the shortfall, and the MMF is forced to “break the buck.” This was the

case for Reserve Primary Fund in 2008 and Community Bankers US Government Fund in

1994. Such evidence suggests that sponsors will always subsidize their MMFs if they are ex

post able to do so. Under this assumption, the MMF portfolio problem can be analyzed by

treating fund and sponsor as a unique entity and allowing for the possibility that this entity

is ex post unable to cover a loss, in which case it would have to incur a fixed default cost.

The extension presented here is a reduced-form model to study such a scenario.

I assume that if a fund suffers a loss, it pays either the amount of the shortfall or its

idiosyncratic fixed cost of default, depending on the realization of an exogenous random

variable. This random variable represents the possibility that the sponsor is ex post cash-

solution.
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poor and therefore unable to subsidize the fund. Under economically reasonable sufficient

conditions, I show that: (1) the main features of the equilibrium and results of the model in

the paper carry though, (2) an increase in the likelihood of being ex post cash-poor reduces

the risky investment of all funds, and (3) the effect is stronger for funds with lower fixed

costs of default.

IA.2.2.1 Model and assumptions

Suppose that if πc < 0, with probability θ the fund pays its idiosyncratic fixed cost of

default c, and with probability 1−θ the fund pays the shortfall |πc|. Given a strategy profile

x : [c, c]→ [0, D], the expected payoff of fund c under this specification is

υc(xc, x−c) = γ DE[Rk(πc) + a|πc ≥ 0]P(πc ≥ 0)− {θc+ (1− θ)E [|πc| | πc < 0]}P(πc < 0)

(IA.2.3)

θ represents the probability that the sponsor is ex post cash-poor and unable to subsidize

the fund in case of a loss. For simplicity, I assume that θ does not depend on the extent of

the shortfall and is common to all sponsors. These assumption greatly simplifies the analysis

without affecting the qualitative results and insights of the model, as discussed below.

IA.2.2.2 Shocks to asset returns

The main features of the equilibrium and results of the model in the paper carry through

also under specification (IA.2.3). In fact, the above results for the model with both fixed and

variable costs hold practically unchanged for the model with either fixed or variable costs.32

Proposition 1b. Under model (IA.2.3),

i) Proposition1 and Corollary 1 hold unchanged;

ii) Proposition 2a holds unchanged except that

dx

dc
= − γDf(c) [2q + F (R0(x))]x2

[θc+ γD (a+ F (c))] (Rf − 1)Df(R0(x)) + (1− θ)E [Rf −R | R < R0(x)]F (R0(x))x2
,

32Obviously, the particular algebraic expressions of some sufficient conditions differ in the two extensions.
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and the condition for the existence of the equilibrium (i.e., no-short-selling condition)

becomes E
[

γD

γD [F (c) + a] + c

]
≤

(1−R)(Rf − 1)2f

(2q + FR(1))(Rf −R)2
;

iii) Propositions 3a and 4a hold unchanged except that the condition for the bifurcation

becomes
c

D
+
γa

θ
>

(1− θ)G
θ(Rf − 1)

;

iv) Proposition 5a and Corollary 5a hold unchanged except that the condition in the corol-

lary becomes
c

D
+ γa >

(1− θ)(Rf − 1)(1−R)

θ(Rf −R) [1− J(1−R)]
.

The intuition for these results is the same as before: (1) funds with lower fixed costs are

more sensitive to changes in the risk premium, while funds with higher fixed costs are more

sensitive to changes in default risk; (2) funds with higher fixed costs are more sensitive to

changes in the risk-free rate because they keep their default probability closer to zero, and the

buffer of safe assets necessary to avoid default with certainty increases as the risk-free rate

decreases. As for the model without variable costs, the existence condition of Proposition 1b

(ii) comes from the no-short-sales constraint.

IA.2.2.3 Shocks to the probability of being ex post cash-poor

Here I study how the equilibrium responds to changes in the probability that the sponsor is

ex post cash-poor θ.

Proposition 2b. Suppose
c

D
>

E [Rf −R|R < 1]

Rf − 1

FR(1)

fR(1)
. Then, the equilibrium risky in-

vestment of all funds decreases with θ, and the effect is stronger for funds with lower fixed

costs of default.

Proposition 2b provides a predictable result: if the minimum fixed cost of default in

the fund population is sufficiently high, all funds decrease their risky investment as the

probability of the sponsor being ex post cash-poor increases. The only exception is the fund

with the highest fixed cost c, which always keeps its default probability at zero and is therefore

unaffected by any change in θ. For all other funds, an increase in the probability of being ex

post cash-poor has two competing effects: increasing the expected fixed cost of default, while

decreasing the expected variable one. The first effect decreases the equilibrium marginal risky

investment per unit decrease in fixed cost

∣∣∣∣dxdc
∣∣∣∣, while the second effect increases it. The
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relative weights of these two effects are: the marginal expected fixed cost per unit of risky

investment and the marginal expected shortfall, respectively. If the minimum fixed cost of

default is sufficiently high, the marginal expected fixed cost is greater than the marginal

expected variable cost for all funds c < c, and therefore

∣∣∣∣dxdc
∣∣∣∣ decrease as θ increases for all

c < c. Since c invests x0 in the risky asset regardless of θ, it follows that the risky investment

x(c) of all other funds decreases after an increase in θ. As discussed above, it is realistic

to assume that the fixed costs of default in the MMF industry are large, given the negative

spillovers and reputation damages that sponsors would incur if their funds were to “break

the buck.”

Importantly, Proposition 2b implies that if the probability of being ex post cash-poor

increases, the cross-sectional risky investment differential decreases, as summarized by the

following corollary.

Corollary 2b. Under the condition of Proposition 2b, an increase in θ reduces the cross-

sectional risky investment differential.

The intuition behind this heterogeneous effect is that, even though low-c funds have lower

fixed costs, they have a larger probability of “breaking the buck” in equilibrium. Therefore,

if the fixed costs are sufficiently high compared to the variable ones, low-c funds are more

sensitive to an increase in the probability of being ex post unable to cover the shortfall.

On the contrary, the fund with the highest fixed cost always keeps its equilibrium default

probability at zero and is therefore unaffected by any change in θ.

IA.2.2.4 Discussion of model assumptions

First, the assumption that θ does not depend on the amount of the shortfall is made only

to simplify the derivation of the equilibrium. In principle, the probability of being ex post

unable to cover the loss might increase with the amount of the shortfall. That is, θ should not

only depend on the probability distribution of the sponsor’s ex post cash-on-hand but also

increase with |π| for negative π. However, this generalization would only amplify the effect

of sponsor’s ex post liquidity on funds that ceteris paribus take more risk, i.e., the funds with

lower fixed costs. The model above already shows that an increase in the probability of being
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ex post cash-poor has a stronger effect on funds with lower fixed costs (see Proposition 2b

and Corollary 2b above).

Second, the assumption that θ is common to all funds rules out multiplicity of equilibria.

If θ were fund-specific, there would be a continuum of different equilibrium strategies due to

the presence of an additional dimension of heterogeneity. This continuum of equilibria may

be reduced to a unique equilibrium by assuming a specific functional relation between the

fixed cost of default and the probability of being ex post cash-poor. However, there is no

clear economic rationale for any such relation, and including it would only complicate the

analysis without adding any important insight.

Appendix IA.3 Proofs

Let Ω = (c, c) ⊆ R+ and λ (·) be the measure induced by FC (·). That is, for any C =

(c1, c2) ⊆ Ω, the measure of funds with default cost between c1 and c2 is λ(C) = FC(c2) −

FC(c1). Hereafter, NE stands for Nash equilibrium.

Preliminary general results

Before proving the results in the paper and previous appendices, I prove some general prop-

erties of any NE of the tournament under the following, more general definition of ex post

rank of fund performance:

Rkπ(c) :=

∫
{c′:πc′<πc}

dFC(c′) + δ

∫
{c′:πc′=πc}

dFC(c′), with δ ∈ [0, 1].

Under this more general definition of performance rank, the money flow from outside in-

vestors into a fund at the end of the tournament is equal to the mass of funds with strictly

worse performance plus a term proportional to the mass of funds with equal performance.

The results presented in the body of the paper are for the special case δ = 0. From the

funds’ perspective, we can interpret δ as a “premium” for pooling. In a general equilibrium

setting, we would expect that the more risk-averse the outside investors are, the closer to

zero δ would be. This is because if investors infer managers’ skills from their performance,
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they would penalize the uncertainty coming from a pool of funds having the same ex post

performance. Under the above definition of performance rank, I show that if δ is smaller

than some critical value depending only on the return distribution, the equilibrium risky

investment must be: above x0 and below D for almost every fund, without jump disconti-

nuities, and strictly decreasing with default costs a.e. in the fund population. Moreover, in

the limit of the highest default cost, the equilibrium risky investment is exactly x0.

First, it is easy to show by substitution that for a given strategy profile x : Ω → [0, D],

the objective function of player c is

υc(x) =γD {a+ FR(Rf ) + 2qFX(x)} − {γD [a+ 1− FX(x)] + c}FR (R0(x)) +

+ γD {δ [1− FR (R0(x))]− FR(Rf ) + FR (R0(x))}λ (Cx) ,

where q = 0.5 − FR(Rf ), R0(x) = Rf − (Rf − 1)D
x

and Cx = {c ∈ Ω : x(c) = x}. R0(x) is

continuous, strictly increasing, and R0(x0) = R. Hence, FR(R0(x)) = 0 for all x ≤ x0.

Lemma 2. Suppose there exists a NE x : Ω = (c, c) → [0, D] s.t. x(c) ∈ (x0, D] for all

c ∈ C1, and x(c) ∈ [0, x0] for all c ∈ Ω \ C1. Then, C1 cannot be divided into two disjoint

positive measure closed subsets, inf C1 = c, and x(c) is weakly decreasing a.e. on C1.

Proof. By contradiction, suppose that there exist two positive measure sets Ca ⊆ Ω and

Cb ⊆ C1 s.t. supCa < inf Cb and sup
c∈Ca

x(c) < inf
c∈Cb

x(c). Let xa := x(ca) for any ca ∈ Ca, and

xb := x(cb) for any cb ∈ Cb. Since Ca is assumed to have positive measure, by definition of

NE, there exist some ca ∈ Ca s.t. υca(xa) ≥ υca(x) for all x. Then, for all cb ∈ Cb,

υcb(xa) = υca(xa)− (cb − ca)FR (R0(xa)) ≥ υca(xb)− (cb − ca)FR (R0(xa))

= υcb(xb) + (cb − ca) [FR (R0(xb))− FR (R0(xa))] > υcb(xb),

which contradicts the optimality of the NE for a positive measure set of players.

Proposition 8. Suppose there exists a NE x : Ω = (c, c) → [0, D] s.t. x(c) = D for all

c ∈ C0, x(c) ∈ (x0, D) for all c ∈ C1, and x(c) ∈ [0, x0] for all c ∈ C2 = Ω \ {C0 ∪ C1}.

If δ < 1− FR(Rf ), then
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(i) x(c) ∈ (x0, D] a.e. on Ω (i.e., C2 has measure zero);

(ii) neither C0 nor C1 can be divided into two disjoint positive measure closed subsets,

inf C0 = c, and supC1 = c;

(iii) x(c) is strictly decreasing and equal to a continuous function a.e. on C1;

(iv) lim
c→c

x(c) = x0 if c > γD [δ (1− FR(1))− FR(Rf )− aFR(1)] /FR(1).

If δ <
FR(Rf )−FR(1)

1−FR(1)
(< 1− FR(Rf ) by Assumption 1), then

(v) x(c) ∈ (x0, D) a.e. on Ω (i.e., both C0 and C2 have measure zero);

(vi) x(c) is strictly decreasing and equal to a continuous function a.e. on Ω;

(vii) lim
c→c

x(c) = x0.

Proof. (i) By contradiction, suppose that C2 has positive measure, i.e., λ(C2) > 0. First, let

Ca and Cb be two positive measure subsets of C2 s.t. sup
c∈Ca

x(c) ≤ inf
c∈Cb

x(c). Let xa := x(ca)

and λa := λ ({c : x(c) = xa}) for any ca ∈ Ca. By construction, λ (C2)−Fx(xa) ≥ λ(Cb) > 0

and λ (C2)− Fx(xa)− λa ≥ 0 for all ca ∈ Ca. Second, for sufficiently small ε > 0,

υca(x0 + ε) = γD {a+ FR(Rf ) + 2qλ(C2)} − {γD [a+ 1− λ(C2)] + ca}FR (R0(x0 + ε)) +

+ g(ε)γD [2q + FR (R0(x0 + ε))] ,

where g(ε) = λ ({c ∈ C1 : x(c) < x0 + ε}) ≥ 0. Hence, if δ < 1 − FR(Rf ), for all ca ∈ Ca,

there exists a sufficiently small ε > 0 s.t.

υca(x0 + ε) ≥ υca(xa) + γD{2q [λ (C2)− FX(xa)− λa] + λa [1− FR(Rf )− δ]}+

− {γD [a+ 1− λ (C2)] + ca}FR(R0(x0 + ε)) > υca(xa),

which contradicts the optimality of the NE for a positive measure set of players.

(ii) It follows directly from (i) and Lemma 2.

(iii) Monotonicity. The proof is very similar to that of (i), and the details are thus

omitted. The idea is that if the “premium” for pooling is sufficiently small (δ < 1−FR(Rf )),
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pooling in the region (x0, D) cannot be a best response for a positive measure set of players;

this is because each of the players playing the pooling strategy would be strictly better off

by infinitesimally increasing her risky investment so that her expected performance rank and

therefore payoff increase by a finite amount (proportional to the measure of pooling players),

while her default risk only increases by an infinitesimal amount (because of continuity of the

return distribution).

(iii) Continuity. Since funds can neither no-short-sell nor borrow, the NE can only take

values in [0, D]; hence, proving that it is equal to a continuous function a.e. amounts to prove

that it cannot have jump discontinuities. The proof is similar to that of (i), and the details

are thus omitted. The idea is that for any jump size, there is at least some player on the

left of the jump that would be strictly better off by reducing her risky investment by a finite

amount so that her default risk decreases by a finite amount, while her expected performance

rank does not change since the NE is strictly decreasing a.e. on C1. By continuity of the

payoff function w.r.t. the player type, this is true for a positive measure set of players.

(iv) The exact statement is that on a subset C ⊆ Ω s.t. λ(Ω \C) = 0, lim
c→c, c∈C

x(c) = x0.

The proof is similar to that of (i), and the details are thus omitted. The idea is the following.

First, since the NE is bounded in [0, D] and is weakly decreasing a.e. on Ω, there exists a

subset C with λ(Ω \ C) = 0 s.t. the limit exists. Second, the limit cannot be in (x0, D)

because the NE and hence the expected performance rank are strictly decreasing a.e. on

C1. Therefore, a positive measure set of players in a sufficiently small left-neighborhood of

c would be strictly better off by reducing their risky investment to x0 because the gain from

lowering their default risk to zero strictly offsets the small loss in expected performance rank.

Finally, if the maximum cost of default c is sufficiently high, it cannot be lim
c→c, c∈C

x(c) = D

either. Since the NE is weakly decreasing a.e. on Ω, that limit would imply x(c) = D a.e. on

Ω. If c > γD [δ (1− FR(1))− FR(Rf )− aFR(1)] /FR(1), the gain from lowering the default

risk to zero by investing exactly x0 in the risky asset would strictly offset the loss due to

deviating from the poling strategy for a positive measure set of players on the left of c.

(v) From (i), we know that x(c) ∈ (x0, D] a.e. on Ω. We only need to show that the

pooling strategy x(c) = D cannot be a best response for a positive measure set of players,

i.e., λ(C0) = 0. The proof is very similar to that of monotonicity in (iii) and is thus omitted.
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(vi) It follows directly from (iii) and (v).

(vii) The proof is the same as the first part of the proof of (iv) and thus omitted.

Proofs

Here I derive the unique NE of the tournament under the definition of performance rank used

in the paper (δ = 0). Hereafter I omit the “a.e.” qualification. Statements on properties of

the NE such as monotonicity and differentiability are to be interpreted as valid a.e. in the

fund population.

Proof of Proposition 1. From Proposition 8, it follows that if δ = 0, any NE is strictly

decreasing and has no jumps. Let x : Ω = (c, c) → (x0, D) be a NE, and let x[Ω] ⊆ (x0, D)

be its image. From strict monotonicity, it follows that FX(y) = 1 − FC(x−1(y)) for all

y ∈ x[Ω], where x−1(·) is the inverse of x(·). For any NE, fund c’s payoff for investing

y ∈ x[Ω] can be written as

υ(y, c) = A(x−1(y))−B(x−1(y), c)G(y),

where

A(x−1(y)) = γD
{
a+ FR(Rf ) + [1− 2FR(Rf )]

[
1− FC(x−1(y))

]}
,

B(x−1(y), c) =
{
γD
[
a+ FC(x−1(y))

]
+ c
}
,

G(y) = FR (R0(y)) .

By optimality of the NE, for any ∆c we have:

A(c)−B(c, c)G(x(c)) ≥ A(c+ ∆c)−B(c+ ∆c, c)G(x(c+ ∆c)),

and

A(c+ ∆c)−B(c+ ∆c, c+ ∆c)G(x(c+ ∆c)) ≥ A(c)−B(c, c+ ∆c)G(x(c)).
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Since FR is absolutely continuous by assumption, and R0(·) is continuously differentiable on

(x0, D) with strictly positive first derivative, by using the mean value theorem on G(·) we

can write

[A(c+ ∆c)− A(c)]− [B(c+ ∆c, c)−B(c, c)]G(x(c))

B(c+ ∆c, c)G′(x∗)
≤ x(c+ ∆c)− x(c)

and

[A(c+ ∆c)− A(c)]− [B(c+ ∆c, c+ ∆c)−B(c, c+ ∆c)]G(x(c))

B(c+ ∆c, c+ ∆c)G′(x∗)
≥ x(c+ ∆c)− x(c),

where G′(·) is the strictly positive first derivative of G(·), and x∗ ∈ (x(c), x(c+ ∆c)). Com-

bining the last two inequalities and dividing by ∆c > 0, we obtain

[A(c+ ∆c)− A(c)]− [B(c+ ∆c, c+ ∆c)−B(c, c+ ∆c)]G(x(c))

∆cB(c+ ∆c, c+ ∆c)G′(x∗)
≥ x(c+ ∆c)− x(c)

∆c

≥ [A(c+ ∆c)− A(c)]− [B(c+ ∆c, c)−B(c, c)]G(x(c))

∆cB(c+ ∆c, c)G′(x∗)
.

Since x(c) has no jumps, the left- and right-most terms of this double inequality converge to

A′(c)−B′(c, c)G(x(c))

B(c, c)G′(x(c))

as ∆c → 0, where A′(·) is the first derivative of A(·), and B′(·, ·) is the first derivative of

B(·, ·) with respect to the first argument. By plugging the explicit expressions for A, B, and

G, we obtain

dx

dc
= − γDfC(c) [2q + FR (R0(x(c)))]x(c)2

{γD [a+ FC(c)] + c} fR(R0(x(c)))(Rf − 1)D
< 0 .

Therefore, by continuity of fC and fR, x(c) is continuously differentiable, strictly decreasing

with strictly negative first derivative, and must satisfy the above ODE. The above ODE is

the same ODE one would obtain by taking the first-order condition of the objective function

under the assumption that the NE is continuously differentiable with strictly negative first

derivative so that the objective function is continuously differentiable as well.
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The boundary condition follows from Proposition 8 with δ = 0.

Proof of Proposition 2. From the proof of Proposition 1, we know that any NE is differen-

tiable and must satisfy the following Dirichlet problem


S(x)dx+ Q̃(c)dc = 0 with c ∈ Ω = (c, c) and x ∈ (x0, D),

lim
c→c

x(c) = x0,

where

S(x) =
(Rf − 1)DfR(R0(x))x−2

2q + FR(R0(x))
and Q̃(c) =

γDfC(c)

γD [a+ FC(c)] + c
.

S(x) is integrable on (x0, D), and Q̃(c) is integrable on Ω because a > 0 by assumption.

(Alternatively, for Q̃(c) to be integrable, one can assume c > 0.) By integrating the above

ODE, we obtain

∫ c

Q̃(s)ds = −
∫ x (Rf − 1)DfR(R0(u))u−2

2q + FR(R0(u))
du+K = − log [2q + FR(R0(x))] +K,

from which it follows

x(c) =
(Rf − 1)D

Rf − F−1R

(
exp

(
−
∫ c
c
Q̃(s)ds+K

)
− 2q

) ,
where F−1R is the quantile function of R. By using the boundary condition lim

c→c
x(c) = x0, we

derive K =
∫ c
c
Q̃(s)ds+ log (2q) and obtain the unique solution of the Dirichlet problem

x(c) =
(Rf − 1)D

Rf − F−1R (2qQ(c))
, (IA.3.1)

where Q(c) = exp
(∫ c

c
Q̃(s)ds

)
− 1. Hence, if a NE exists, it is unique and equal to (IA.3.1).

The next step is to check that x(c) ∈ (x0, D) for all c. From the boundary condition and

the fact that x(c) is continuous and strictly decreasing, it follows that x(c) > x0 for all c ∈ Ω.

It is easy to show that x(c) < D for all c ∈ Ω if and only if
c∫
c

Q̃(s)ds = EC
[

γD
γD[a+FC(c)]+c

]
<
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log
(

1 + FR(1)
2q

)
.

The last step is to prove that the solution of the Dirichlet problem is indeed a NE. Under

the strategy profile (IA.3.1), each player’s objective function is continuous everywhere and

continuously differentiable on [0, x0)∪ (x0, x(c))∪ (x(c), D]. It is easy to show that for all c,

∂υc
∂y

(y) =

0 for y ∈ [0, x0),

− [γDa+ c] fR (R0(y)) (Rf − 1)Dy−2 < 0 for y ∈ (x(c), D],

while the first derivative of υc(y) on (x0, x(c)) is

∂υc
∂y

(y) = γD [2q + FR(R0(y))] fC(x−1(y))

(
dx

dc

(
x−1(y)

))−1
−
{
γD
[
a+ FC(x−1(y))

]
+ c
}
fR (R0(y)) (Rf − 1)Dy−2

By substituting the above ODE, we obtain ∂υc
∂y

(y) = (x−1(y)− c) fR (R0(y)) (Rf − 1)Dy−2,

which is: positive for y ∈ (x0, x(c)), negative for y ∈ (x(c), x(c)), and equal to zero for

y = x(c). Since υc(y) is continuous everywhere, x(c) is a global maximum for all c ∈ Ω under

the strategy profile (IA.3.1) and hence is the unique NE of the tournament.

Proof of Proposition 4. Let F (i) be the risky return distribution when the left tail is H(i), and

G(i) = F (i)−1
the corresponding quantile function. Note that by construction, the mass in the

left tail remains the same, i.e., F (1)(1) = F (2)(1). Let R
(i)
0 (c) := G(i)

(
2q(i)Q(c)

)
; in equilib-

rium, fund c breaks the buck if and only if R < R
(i)
0 (c). Since Q(c) ∈ (0, F (i)(1)/2q(i))

is strictly decreasing and lim
c→c

Q(c) = 0, R
(i)
0 (c) ∈ (R, 1) is also strictly decreasing and

lim
c→c

R
(i)
0 (c) = R. Moreover, being F (i) absolutely continuous, R

(i)
0 (c) is continuous. Fi-

nally, let f (i) and h(i) be the densities of F (i) and H(i), respectively, and let x
(i)
c be the NE

under F (i). Obviously, larger R
(i)
0 (c) means larger x

(i)
c . Hereafter, for any functions f and g,

the expression f
g
(x) stands for f(x)/g(x).

(i) For every c, 2q(1)Q(c) = F (1)(R
(1)
0 (c)) = F (1)(1)H(1)(R

(1)
0 (c)) ≥ q(1)

q(2)
F (2)(1)H(2)(R

(1)
0 (c)).

Hence, 2q(2)Q(c) ≥ F (2)(R
(1)
0 (c)), and therefore R

(2)
0 (c) ≥ R

(1)
0 (c) and x

(2)
c ≥ x

(1)
c for all c.

(ii) First, it is easy to prove by contradiction that q(2)

q(1)
< sup H(2)

H(1) implies q(2)

q(1)
< sup h(2)

h(1)
.

Second, H(1) �LRD H(2) implies inf h
(2)

h(1)
< 1. Hence, since q(2)

q(1)
> 1, we have inf h

(2)

h(1)
<
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q(2)

q(1)
< sup h(2)

h(1)
. Since h(2)

h(1)
= f (2)

f (1)
is weakly decreasing by LRD, there exists r∗ ∈ (R, 1) s.t.

f (2)

f (1)
(r) > q(2)

q(1)
for all r ∈ (R, r∗) and f (2)

f (1)
(r) ≤ q(2)

q(1)
for all r ∈ [r∗, 1). Since R

(1)
0 (c) is continuous,

strictly decreasing, and goes to R as c→ c, there exists c∗ ∈ (c, c) s.t. for all c > c∗, by the

mean value theorem, F (2)
(
R

(1)
0 (c)

)
= F (2)

(
G(1)

(
2q(1)Q(c)

))
= f (2)

f (1)
(r̃c)2q

(1)Q(c) for some

r̃c ∈ (R, r∗). Hence, F (2)
(
R

(1)
0 (c)

)
> 2q(2)Q(c) for all c > c∗; therefore, R

(1)
0 (c) > R

(2)
0 (c)

and x
(1)
c > x

(2)
c for all c > c∗.

On the other hand, by the single crossing property of LRD, there exists r∗∗ ∈ (R, 1)

with r∗∗ > r∗ s.t. H(2)

H(1) = F (2)

F (1) is decreasing on (r∗∗, 1). Since q(2)

q(1)
> 1 = F (2)

F (1) (1), there

exists Q(c) sufficiently large s.t. the NE exists but at the same time R
(1)
0 (c) > r∗∗ and

F (2)

F (1) (R
(1)
0 (c)) < q(2)

q(1)
, which implies 2q(2)Q(c) > F (2)

(
R

(1)
0 (c)

)
and hence x(2)(c) > x(1)(c). By

continuity and monotonicity of the NE, for Q(c) sufficiently large there exists c∗ ∈ (c, c∗) s.t.

x(2)(c) < x(1)(c) for all c < c∗.

If H(2)/H(1) is decreasing everywhere on (R, 1), then obviously c∗ = c∗.

Corollary 2. Trivial.

Proof of Proposition 5. By differentiating the NE (3) w.r.t Rf , holding q constant.

Corollary 3. Trivial.

Proof of Proposition 6. Let x(c;Rf ) be the NE (3), where the second argument indicates

the explicit dependence on the risk-free rate, and q(Rf ) = 0.5− FR(Rf ) be the tournament

incentive. Since the density fR is continuous and positive, and FR/fR is weakly increasing

on (R, 1), x(c;Rf ) is continuously differentiable w.r.t. Rf everywhere on (c, c), and

dx(c;Rf )

dRf

=
fR(Rf )(Rf − 1)

q(Rf ) [Rf −R0(c)]
2

[
q(Rf ) (1−R0(c))

fR(Rf )(Rf − 1)
− FR (R0(c))

fR (R0(c))

]
,

where R0(c) = F−1R (2q(Rf )Q(c)) ∈ (R, 1). Since R0(c) is strictly decreasing, and FR/fR is

weakly increasing on (R, 1),
dx(c;Rf )

dRf
is strictly increasing in c. From the weak monotonicity

of FR/fR, it also follows that lim
r→R

FR

fR
(r) = 0. Hence, since lim

c→c
R0(c) = R,

dx(c;Rf )

dRf
is positive

on the left of c by continuity.

22



It is easy to show that if 2q(Rf )EC
[

γD
γD(a+FC(c))+c

]
≤ lim

c→c
log
(

1 + FR

(
1− fR(Rf )(Rf−1)

q(Rf )
FR(R0(c))
fR(R0(c))

))
,

then lim
c→c

FR(R0(c))
fR(R0(c))

≤ lim
c→c

q(Rf )(1−R0(c))

fR(Rf )(Rf−1)
. Since

dx(c;Rf )

dRf
is strictly increasing in c, it follows that

dx(c;Rf )

dRf
> 0 for all c ∈ (c, c).

On the other hand, if 2q(Rf )EC
[

γD
γD(a+FC(c))+c

]
> lim

c→c
log
(

1 + FR

(
1− fR(Rf )(Rf−1)

q(Rf )
FR(R0(c))
fR(R0(c))

))
,

then lim
c→c

FR(Req
0 (c))

fR(Req
0 (c))

> lim
c→c

q(Rf )(1−Req
0 (c))

fR(Rf )(Rf−1)
, and it follows that

dx(c;Rf )

dRf
< 0 in a right-neighborhood

of c. Since
dx(c;Rf )

dRf
is strictly increasing in c, there exists a unique c∗ ∈ (c, c) s.t.

dx(c;Rf )

dRf
< 0

for all c < c∗ and
dx(c;Rf )

dRf
> 0 for all c > c∗.

Proof of Lemma 1. By applying Taylor’s theorem on q(Rf ) = 0.5− FR(Rf ) around µ.

Proof of Corollary 4. By applying Taylor’s theorem on the NE (3) around c for small qQ(c).

Proof of Corollary 5. Trivial.

Proposition 7. If F
(2)
C �LRD F

(1)
C , there exists c∗ ∈ (c, c) s.t. f (2)(c) > f (1)(c) for all c > c∗.

Since F
(2)
C (c) < F

(1)
C (c) for all c,

c∫
c

γDf
(2)
C (u)du

γD
[
F

(2)
C (u) + a

]
+ u

>

c∫
c

γDf
(1)
C (u)du

γD
[
F

(1)
C (u) + a

]
+ u

for all c > c∗.

Hence, Q(2)(c) > Q(1)(c) and therefore x(2)(c) > x(1)(c) for all c > c∗. On the other hand,

using integration by parts,

Q(i)(c) =

c∫
c

γDf
(i)
C (u)du

γD
[
F

(i)
C (u) + a

]
+ u

= log

(
γD(a+ 1) + c

γD a+ c

)
−

c∫
c

du

γD(F
(i)
C (u) + a) + u

.

Since F
(2)
C (c) < F

(1)
C (c) everywhere by LRD, Q(2)(c) < Q(1)(c). By continuity and monotonic-

ity of the NE, there exists c∗ ∈ (c, c∗) s.t. Q(2)(c) < Q(1)(c) and therefore x(2)(c) < x(1)(c)

for all c < c∗.

Proof of Proposition 1a. Since the additional variable cost of default is continuously differ-

entiable with respect to c and x, Proposition 8 holds also for model (IA.2.1). The only
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difference is that the sufficient condition of part (iv) becomes c+E [Rf −R | R < 1]FR(1) >

γD {δ [1− FR(1)]− F (Rf )− aFR(1)} /FR(1). This condition is even weaker than that for

the model in the paper. Hence, we can conclude that x(c) is decreasing, continuous, and

lim
c→c

x(c) = x0. The rest of the proof is along the same lines as that of Proposition 1 in the

paper. In fact, from optimality of the equilibrium, I can show that:

dx

dc
= − γDf(c) [2q + F (R0(x))]x2

[c+ γD (a+ F (c))] (Rf − 1)Df(R0(x)) + E [Rf −R | R < R0(x)]F (R0(x))x2
< 0.

Therefore, since f(c) and f(R) are positive and continuous by assumption, x(c) is contin-

uously differentiable with negative first derivative. Hence, Proposition 1 holds unchanged.

Corollary 1 holds unchanged because x(c) > x0 for all c ∈ [c, c) and decreases with c.

Proof of Proposition 2a. From the proof of Proposition 1a, we already know that any NE is

differentiable and must satisfy the Dirichlet problem (IA.2.2). It is straightforward to show

that, under the assumption that FC and FR are continuously differentiable with positive

density,
dx

dc
is continuous in c ∈ [c, c] and uniformly Lipschitz continuous in x ∈ [0,∞).

Hence, by the Picard-Lindelöf theorem, there exists a unique solution of (IA.2.2) in [c, c] ×

[x0,∞). The next step is to prove that the unique solution of the Dirichlet problem is indeed

a NE equilibrium. For that, we can check that under the strategy defined by (IA.2.2), x(c)

is a global maximum for every c ∈ [c, c]. The proof is identical to that of Proposition 2 in

the paper (i.e., take
∂υc(y, x−c)

∂y
and by substituting the expression for

dx

dc
show that it is

positive for all y < x(c) and negative for all y > x(c)) and is therefore omitted. The final

step is to provide conditions under which the solution of (IA.2.2) satisfies the no-short-selling

condition x(c) ≤ D. Since

∣∣∣∣dxdc
∣∣∣∣ is smaller for all (c, x) when variable costs of default are

included, while the boundary condition lim
c→c

= x0 does not change, the condition for the

model without variable default costs suffices.

Proof of Proposition 3a.

∣∣∣∣dxdc
∣∣∣∣ strictly increases with q for all x ∈ (x0, D), while x0 does not

depend on q. Hence, since x(c) = x0 +

∫ c

c

∣∣∣∣dxdc
∣∣∣∣ dc for all c ∈ (c, c), x(c) strictly increases

with q for all c, and the effect is stronger for low-c funds. Since the PDF of R is absolutely

continuous by assumption, the same conclusion holds for the equilibrium default probability.
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Proof of Proposition 4a. Part (i): The equilibrium risky investment x(c) satisfies∣∣∣∣dxdc
∣∣∣∣ =

[
1 +

2q

FR(1)H(R0(x))

]
γDf(c)x2

[c+ γD(a+ F (c))]G1(x)(Rf − 1)D +G2(x)x2
. (IA.3.2)

It is easy to show that if
c

D
+ γa >

G

Rf − 1
, the second term on the right-hand side of

(IA.3.2) increases after the LRD shift to the left for all (c, x) ∈ [c, c] × [x0, D]. Hence, if
q(2)

q(1)
≥ sup

H(2)

H(1)
,

∣∣∣∣dxdc
∣∣∣∣ increases for all c. Since x0 is affected neither by the LRD shift nor

by the increase in the premium, it follows that x(2)(c) > x(1)(c) for all c ∈ [c, c).

Part (ii): First, lim
c→c

∣∣∣∣dxdc
∣∣∣∣ =

(
2γDf(c)x20

[c+ γD(a+ 1)] (Rf − 1)D

)
q

f(R)
. Under likelihood ratio

dominance, sup
H(2)

H(1)
=
f (2)(R)

f (1)(R)
. Hence, if

q(2)

q(1)
< sup

H(2)

H(1)
,

∣∣∣∣dxdc
∣∣∣∣ decreases for all funds in a

left-neighborhood of c. Since x0 does not change, there exists c∗ such that x(2)(c) < x(1)(c)

for all c ∈ [c∗, c). Second, from (i), we know that if q(2)/q(1) = supH(2)/H(1), x(2)(c) >

x(1)(c). Hence, by continuity of
dx

dc
with respect to q and c, if q(2)/q(1) is sufficiently close to

supH(2)/H(1), there exists c∗ such that x(2)(c) > x(1)(c) for all c ∈ [c, c∗).

Finally, when q(2)/q(1) = supH(2)/H(1),

∣∣∣∣dx(2)dc

∣∣∣∣ > ∣∣∣∣dx(1)dc

∣∣∣∣ for all c, which implies that the

difference between x(2)(c) and x(1)(c) is maximized at c and monotonically decreases with c.

Therefore, since R0(x(c)) decreases with c, if
H(2)

H(1)
is decreasing, the cutting point between

high-c funds and low-c funds must be unique, i.e., c∗ = c∗.

Proof of Proposition 4a. Obvious from the proof of Proposition 4a.

Proof of Proposition 5a. First, the boundary condition lim
c→c

x(c) = x0 =
Rf − 1

Rf −R
D strictly

decreases after a decrease in Rf , exactly as in the model without variable costs. Second, the

only difference in the marginal risky investment

∣∣∣∣dxdc
∣∣∣∣ between the model with variable costs

and that without variable costs is the presence at the denominator of the marginal expected

shortfall per unit of risky investment, E [Rf −R | R < R0(x;Rf )]F (R0(x;Rf )), which in-

creases as Rf decreases. This means that as Rf decreases,

∣∣∣∣dxdc
∣∣∣∣ increases relatively less (or

decreases relatively more) than in the model without variable costs, for all x and c. Hence,
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since in the model without variable costs x(c) = x0 +
∫ c
c

∣∣dx
dc

∣∣ dc decreases after a decrease in

Rf for all c, it must be the same in the model with variable costs.

Proof of Corollary 5a. It is straightforward to show that under the conditions of the corol-

lary,
∂

∂Rf

∣∣∣∣dxdc
∣∣∣∣ < 0 for all (c, x) ∈ [c, c]× [x0, D].

Proof of Proposition 1b. The proofs are almost identical to those for the model with both

fixed costs and variable costs and are therefore omitted.

Proof of Proposition 2b. Under the payoff function (IA.2.3), the equilibrium risky investment

must satisfy the following Dirichlet problem:

dx

dc
= − γDf(c) [2q + F (R0(x))]x2

[θc+ γD (a+ F (c))] (Rf − 1)Df(R0(x)) + (1− θ)E [Rf −R | R < R0(x)]F (R0(x))x2
,

lim
c→c

x(c) = x0.

First, lim
c→c

∣∣∣∣dxdc
∣∣∣∣ =

γDf(c) [2q + F (R0(x))]x2

[θc+ γD (a+ F (c))] (Rf − 1)Df(R0(x))
, which decreases with θ. Hence,

since x0 does not change with θ, after an increase in the probability of being ex post cash-

poor θ, funds in a left-neighborhood of c (i.e., with relatively high fixed costs of default)

decrease their risky investment.

Second,
∂

∂θ

∣∣∣∣dxdc
∣∣∣∣ < 0 for all (c, x) ∈ [c, c]×[x0, D] if and only if c >

E [Rf −R|R < R0(x)]

Rf − 1

F (R0(x))

f(R0(x))

x2

D
for all (c, x) ∈ [c, c] × [x0, D]. Under Assumption 2 in the paper, this inequality is satisfied

for all (c, x) if
c

D
>

E [Rf −R|R < 1]

Rf − 1

FR(1)

fR(1)
. Hence, when θ increases,

∣∣∣∣dxdc
∣∣∣∣ decreases for

all c. Since x0 does not change with θ, this implies that x(c) decreases for all funds, and the

decrease is stronger for funds with relatively low fixed costs of default.

Proof of Corollary 2b. Obvious from Proposition 2b.

Appendix IA.4

Data Construction

Data on fund characteristics are from iMoneyNet. These data are the most comprehensive

source of information on MMFs for the period considered in the paper and are widely used
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for both academic research and investment decisions. KS check that the iMoneyNet database

covers the universe of U.S.MMFs by comparing it to the list of funds registered at the SEC,

and Chodorow-Reich (2014) shows that the coverage of iMoneyNet data matches that of the

Financial Accounts of the United States.

My whole sample is from January 5, 1999 to August 26, 2008. Data are at the weekly,

share class level. The sample contains a total of 1, 161 share classes. I find that 23 of these

share classes have some missing data for some week. Almost all missing data come from funds

that report monthly for the first few months of their existence and later switch to weekly

reporting. Following KS, I use linear interpolation to generate weekly data for these share

classes. Since my analysis is at the fund level, I aggregate share classes at the fund level. To

identify funds, I use information on the underlying portfolio, which is the same for all share

classes belonging to the same fund. Share classes that have the same portfolio composition in

terms of asset classes and the same weighted average maturity identify a unique fund. Over

my period of analysis, consisting of 504 weeks, I identify 514 prime MMFs. I double-check

the accuracy of my fund identifier by verifying that the assets of all share classes add up to

total fund size (available in the iMoneyNet data). The difference between the two exceeds

$100,000 (data are reported in $100,000 increments) only for 605 fund-week observations out

of 142, 787, i.e., roughly 0.4% of the sample.

To construct fund level characteristics, I follow KS and average share class characteristics

using share class assets as weights. Each fund can have both retail classes, which are available

only to retail investors, and institutional classes, which are available only to institutional

investors. In my empirical analysis, I label a fund as institutional if it has at least one

institutional share class. A fund is labeled as retail if it has no institutional share class;

KS use the same convention. The rationale for this identification is that institutional share

classes are typically much larger than retail share classes. Over the whole period 01/1999–

08/2008, I identify 219 funds as institutional and 237 funds as retail. 58 funds changed

from “institutional” to “retail” or vice versa at some point in the sample. The total number

of institutional fund-week observations is 69, 529, and the total number of retail fund-week

observations is 73, 258. My empirical analysis focuses on institutional funds because it has

been observed that they face a stronger flow-performance relation than retail funds.
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To calculate sponsor reputation concerns as described in Section 5, I merge the iMoneyNet

database with the CRSP Survivorship Bias Free Mutual Fund Database. KS also use CRSP

data. CRSP data are at the quarterly level. Therefore, share classes in the two data sets are

matched at that frequency. (Any within-quarter variation at the sponsor level is assumed

to be constant.) To match funds in the iMoneyNet database with sponsors in the CRSP

database, I proceed as follows. First, I match share classes by using the NASDAQ ticker.

If a share class is matched, I assign to it a sponsor based on the entry mgmt cd in the

corresponding CRSP match. If mgmt cd is not available, I use mgmt name. If there is no

match in CRSP using the NASDAQ ticker, I use the 9-digit CUSIP number. For some share

classes neither NASDAQ nor CUSIP have a match in the CRSP database. In those cases,

I assign a match based on the other share classes in the same fund for which a match is

available. (If share classes from the same fund are assigned to different sponsors in CRSP, I

use the largest share class.) If no other share class in the fund has a valid match in CRSP, I

assign a match based on the other share classes in the same fund complex, as indicated by

MoneyNet. (Again, if share classes from the same complex are assigned to different sponsors

in CRSP, I use the largest share class.) If no other share class in the complex has a valid

match in CRSP, I match share classes by matching the name of the complex as reported by

iMoneyNet with fund names in the CRSP database. With this algorithm, 98 share classes

out of 1, 161 are not matched with a unique sponsor in CRSP, corresponding to 70 funds

out of 514. Most of the unmatched funds operated in the period 1999–2001 and exited

the industry before 2002. Until December 2001, the fraction of MMFs matched with their

sponsor is between 62% and 88% per week. After January 2002, the fraction of matched funds

is always greater than 94% per week. For this reason, when I test my model’s predictions on

the effect of default costs (i.e., sponsor reputation concerns) on MMF risk-taking, I restrict

my analysis to the period January 2002–August 2008. Finally, I manually match 65 of the

98 unmatched share classes with the corresponding fund sponsor in CRSP by using SEC

filings in EDGAR, company sources, and press coverage. After this manual assignment,

from January 2002 onward, at least 98.53% of funds are matched with their sponsors every

week, corresponding to a coverage of at least 99.87% in terms of asset volume.
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Summary statistics and distributional properties of Fund Business

Table IA.4.1 provides summary statistics for all institutional prime MMFs as of January 3,

2006. I choose this date to make my results comparable to those of KS. The sample includes

143 funds and 82 sponsors. Column (1) shows summary statistics for all funds, column (2)

shows summary statistics for funds with Fund Business above the industry median, and

column (3) shows summary statistics for funds with Fund Business below the industry

median. As of January 3, 2006, the industry median Fund Business is 0.82. Results are

discussed in Section 5 of the paper. My findings are close to those of KS, confirming that

my data set is consistent with theirs.

Table IA.4.2 shows summary statistics for both the time-series variation (i.e., within

fund) and the cross-section variation (i.e., within month) of Fund Business at the monthly

frequency. In both cases, the variation is significant, which supports the validity of a

“continuum-of-funds” approach and helps the identification of the effect of default costs

(i.e., sponsor’s reputation concerns) on MMF risk-taking. The left panel of Figure IA.4.1

shows the distribution of Fund Business in the population of MMFs on January 3, 2006.

The distribution is widely spread on the interval [0, 1], suggesting that a binary distribution

would be a poor approximation of the actual one. The distribution shows some degree of

multi-modality, with a small peak around zero (funds belonging to sponsors specialized in

MMFs; e.g., City National Rochdale) and two pronounced peaks around 0.7 and 1 (funds be-

longing to diversified asset managers; e.g., PIMCO). The right panel of Figure IA.4.1 shows

the evolution of the mean and quartiles of Fund Business from January 2002 to August

2008. Even though Fund Business has sizable within-fund variation, its distribution is sta-

ble over the period of analysis. This is important because Section IA.1 shows that stochastic

shocks to the distribution of default costs (i.e., Fund Business) affect MMF risk-taking

and have different effects on funds in different parts of the distribution. Since the empirical

analysis aims to test the model’s predictions on the effect of risk premia and risk-free rates

on MMF risk-taking, it is important that the distribution of default costs remains relatively

stable over the period of the empirical analysis.

To check that my results are not driven by the same cross-sectional heterogeneity con-
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Figure IA.4.1: The sample is all U.S. institutional prime MMFs. Left panel: distribution
of Fund Business as of 1/3/2006. The red line represents the density of Fund Business
estimated using a Gaussian kernel. The bandwidth is determined according to Silverman’s
“rule of thumb” (Silverman, 1986). Right panel: time evolution of the mean and quartiles
of Fund Business from 1/1/2002 to 8/31/2008.

sidered by Chodorow-Reich (2014) or Di Maggio and Kacperczyk (2015), I check that

Fund Business does not covary in a statistically significant way with fund incurred ex-

penses or affiliation to a financial conglomerate, respectively. Incurred Cost is the incurred

expense ratio in %, and Conglomerate is a dummy variable equal to 1 if the fund be-

longs to a financial conglomerate and 0 otherwise. Figure IA.4.2 shows the correlation

between Fund Business and Incurred Cost (left panel) and between Fund Business and

Conglomerate (right panel) in the cross-section of institutional prime MMFs at a weekly

frequency, from January 2002 to August 2008. Fund Business and Incurred Cost are

almost never statistically significantly correlated. Fund Business and Conglomerate are

negatively and statistically significantly correlated at the 10% level until December 2003

(and at the 1% level until December 2002) but almost never after then. For robustness, I

estimate the following regression at the weekly frequency:

Fund Businessi,t = αi + µt + βXi,t + εi,t (IA.4.1)
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where X is either Incurred Cost and Conglomerate. αi and µt are fund and week fixed

effects, respectively. Since Conglomerate is constant over time for most funds, I also estimate

regression (IA.4.1) without fund fixed effects, i.e., with only week fixed effects. Results are in

Table IA.4.3. Standard erros are HACSC robust to account for both within- and across-fund

correlation. For both Incurred Cost and Conglomerate, and in all regression specifications,

β is statistically insignificant at the 10% level, and the within R2 is less than 2%.
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Figure IA.4.2: Correlation between Fund Business and Incurred Cost (left panel) and
between Fund Business and Conglomerate (right panel) in the cross-section of U.S. prime
institutional MMFs at a weekly frequency from January 2002 to August 2008. The solid
black line is the Pearson correlation coefficient in each week. Black dashed lines are 10%
confidence intervals, and the dashed red lines are 1% confidence intervals.

Appendix IA.5 Flow-performance: robustness

This appendix contains robustness checks of the analysis of the flow-performance relation in

the MMF industry. Table IA.5.1 shows the results for the estimation of regression (B.1) using

the rank of Fund F low (Fund F lowRank) as dependent variable. The rank is calculated in

percentiles normalized to [0, 1] (e.g., for a given week, a fund in the 98th percentile of that

week’s fund flow distribution has Fund F lowRank = 0.98). Using the rank is an alternative
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to trimming to mitigate the effect of outliers. Results are qualitatively similar to those

obtained using Fund F low trimmed at the 0.5%. When the past Spread Rank is included

on the right-hand side (RHS) of regression (B.1), past Spread loses all its statistical and

economic significance as determinant of current fund flows. On the contrary, Spread Rank

is always statistically and economically significant.

Table IA.5.2 shows the results for the estimation of regression (B.1) using only time fixed

effects. Results are similar to those obtained when also including fund fixed effects. The

effect of past performance rank on fund flows is always both statistically and economically

significant, while the effect of past raw performance loses most of its statistical and economic

significance when the performance rank is included on the RHS of the regression.

All flow-performance regressions in the paper and appendix include time fixed effects to

control for industry-wide time-varying effects. However, to further control for secular “flight-

to-quality” episodes, I run regression (B.1) normalizing fund flows by time-period. That is,

fund-week inflows are normalized by that week’s mean inflow, and fund-week outflows are

normalized by that week’s mean outflows. All other regression variables are defined as above.

Results are in Table IA.5.3 for the specification with both time and fund fixed effects, and

in Table IA.5.4 for the specification with only time fixed effects. In both cases, the results

are very similar to those in the paper, both qualitatively and quantitatively. I also run the

flow-performance regression normalizing fund flows by weekly median flows; results are in

Tables IA.5.5 and IA.5.6 and very similar.

As a further robustness check, I run regression (B.1) using trimming conditions based on

the interquartile range. Results are similar and omitted for brevity. This empirical evidence

confirms that performance rank explains money flows to MMFs better than raw performance,

supporting the choice of a pure tournament model.

IA.5.1 Exogeneity of the flow-performance relation

Here I test the assumption that the flow-performance relation can be taken as exogenous in

the context of my model. That is, I test the hypothesis that the flow-performance relation

is not explicitly affected by sponsor reputation concerns, which proxy for the model’s cost of

default. This characteristic may affect the flow-performance relation if investors anticipate
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the effect of reputation concerns on fund risk-taking. KS have already checked that this is

not the case over the period January 2006–August 2008. Here I extend their analysis to the

period January 2002–August 2008. Following KS, I estimate the flow-performance regression

(B.1) including also the interaction of Fund Business with Spread Rank. To be consistent

with KS, I also consider the interaction of Conglomerate with Spread Rank. Results are in

Table IA.5.7. Standard errors are HAC robust.

I find that the interaction terms are statistically and economically insignificant for both

measures of reputation concern over the whole period. For robustness, I also repeat the same

regression exercise using the normalized flows defined in the previous section as dependent

variable, to further control for secular “flight-to-quality” episodes. The results are quantita-

tively and qualitatively very similar (see Table IA.5.8). I also run the same regression using

Spread instead of Spread Rank as the main explanatory variable, and using the rank of

Fund F low as the dependent variable. Results are always similar and omitted for brevity.

These findings suggest that investors do not risk-adjust fund performance based on sponsor

reputation concerns, supporting the assumption of an exogenous flow-performance relation

in my MMF model.

Appendix IA.6 MMF risk-taking: robustness

This section contains robustness checks of the empirical results on MMF risk-taking that

aim to test my model’s predictions.

IA.6.1 Pre and Post July 2007: Robustness

Since in the model a fund’s risky investment is determined by the rank of its default cost

in the fund population, the rank of Fund Business is a natural explanatory variable in

regression (6). However, for robustness, I also run regression (6) using raw Fund Business

as main explanatory variable. Results are in Table IA.6.1; standard errors are HACSC robust

to account for correlations both within and across funds. Results are similar to those of

Table 2 in the paper, confirming the model’s predictions: funds with lower Fund Business

always take on more risk and do so more when either the risk premium increases or the
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risk-free rate decreases.

Contrary to KS, I find that funds with lower default costs take more risk also in the Pre

period. To check the robustness of my results, I run the same regression specification as KS:

Riski,t+1 =α + µt + β1Reputation Concernsi,2006

+ β2Postt ∗Reputation Concernsi,2006 + γ ·Xi,2006 + εi,t+1 (IA.6.1)

where Reputation Concerns is a generic name for either Fund Business or Conglomerate.

Post and X are defined as in equation (6). Both sponsor’s reputation concern and the

controls are measured as of January 3, 2006 to mitigate possible endogeneity issues. µt are

week fixed effects to account for macroeconomic conditions. To measure MMF risk-taking,

I use Spread, Holdings Risk, and Maturity Risk as KS, but also Holdings Riskdyn and

Safe Holdings. All these risk-taking proxies are defined in Section 5.1 of the paper.

To be consistent with KS (see Table IV therein), Table IA.6.2 shows the results when

both Fund Business and Conglomerate are included on the RHS of (IA.6.1). Reported

standard errors are HACSC robust. My results are qualitatively similar to those of KS.

Sponsor reputation concerns are negatively correlated with fund risk-taking in the Post

period, and their effect is statistically significant at the 1% level for most measures of risk.

In both my regressions and those of KS, sponsor reputation concerns tend to be negatively

correlated with Holdings Risk also in the Pre period, with the effect being statistically

significant at the 1% level in my regression but insignificant in that of KS. For robustness,

I also run regression (IA.6.1) using Safe Holdings (U.S. treasuries + GSE debt + repos)

as dependent variable (see Column 4). In this case, my model predicts β2 > 0 and β1 > 0.

In the data, I find that for Fund Business, both β1 and β2 are positive and statistically

significant at the 1% level, in agreement with the model and empirical results of Section 5.2.

In regression (IA.6.1), the sponsor’s reputation concern is instrumented with its value as

of January 3, 2006. While eliminating possible endogenous correlations between the sponsor’s

reputation concern and the unobserved regression error, this choice also excludes all truly

exogenous variations in sponsor’s reputation concern coming from changes in other parts of

a sponsor’s business (e.g., shocks to the sponsor’s equity mutual fund business). For this
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reason, regression (6) in Section 5.2 extends the analysis of KS by using the lagged value of

sponsor’s reputation concern as the main explanatory variable.

IA.6.2 Risk-taking in the time series

This section presents robustness checks of the results in Table 3, which test the model’s

predictions on the effect of risk premium and risk-free rate on the level of risky investment

in the time series. First, Figure IA.6.1 shows the industry average Holdings Risk, i.e.,

the average percentage of risky assets (bank obligations) net of safe assets (treasuries, GSE

debt, and repos) in MMF portfolios, over the January 2006–August 2008 period. The 1-

month T-bill rate is superimposed (green line). The industry as a whole did not significantly

“reach for yield” in the second half of 2007, when risk-free rates decreased and risk premia

increased. This is consistent with the model’s prediction that when the credit risk and hence

the premium of the risky asset increases, the risk-taking of MMFs with low default costs

and that of MMFs with high default costs go in opposite directions. If any, there was more

“reach for yield” in the Pre period, when risk-free rates were higher and risk premia lower.

To have a quantitative robustness check of the results in Table 3, I estimate regression (7)

using the 3-month T-bill rate as a proxy for the risk-free rate (Table IA.6.3), and lagging all

fund-specific time-varying controls by two lags (Table IA.6.4). Both robustness checks give

results that are qualitatively and quantitatively similar to those in the paper. An increase in

the risk premium generates a bifurcation in the risk-taking of MMFs: funds with low default

costs increase their risk-taking, while funds with low default costs decrease it, as predicted

by the model. On the other hand, a decrease in the 3-month T-bill rate pushes all MMFs to

tilt their portfolios toward safer asset classes. However, MMFs compensate this shift to safer

asset classes by lengthening the maturity of their portfolios, as observed also in Table 3.

As a further robustness check, I estimate regression (7) changing the identification of

high- and low-default-cost funds in several ways. First, I identify as funds with high default

costs those whose sponsor’s reputation concern (Fund Business) is above the industry 40th

percentile in every month. That is, relatively to the specification in the paper, I am changing

the cutoff between high-c and low-c funds from the median to the 40th percentile. In this

way, each group contains roughly the same number of funds: 25 funds with high default
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Figure IA.6.1: Industry average risk-taking over time. The sample is all U.S. institutional
prime MMFs. The black line represents the industry average percentage of assets held in
bank obligations (risky assets) net of U.S. treasuries, GSE debt, and repurchase agreements
(safe assets). The vertical black line separates the sample in two sub-periods: one in which
the risk premia available to MMFs are relatively low (before 08/2007), and one in which the
risk premia available to MMFs are relatively high (after 08/2007). The dashed green line
represents the 1-month T-bill rate. The scale for average net holdings is on the left y-axis.
The scale for the T-bill rate is on the right y-axis.

costs and 21 funds with low default costs. As in the paper, this identification of high-c

and low-c funds does not change over time by construction. For the specification that uses

Spread Index as proxy for the risk premium and the 1-month T-bill rate as proxy for the

risk-free rate, results are in Table IA.6.5 and very similar to those in Table 3 of the paper.

The only interesting difference is that the effect of the risk premium on funds with low default

costs seems to be stronger and is always statistically significant, while that on funds with

high default costs seems to be weaker and is statistically significant only when risk-taking is

measured as Safe Holdings. This is not surprising since I am using a lower, more stringent

cutoff to identify low-c funds. For the specification that uses Gilchrist-Zakrajsek’s excess

bond premium as proxy for the model’s risk premium, results are in Table IA.6.6 and very

similar to those in Table 4 of the paper.
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Second, I use a time-varying identification of high-c and low-c funds. That is, for each

month t, I identify as funds with high default costs those whose Fund Business in month

t − 1 is above the 60th (or 70th) percentile of the cross-section distribution, and as funds

with low default costs those whose Fund Business in month t − 1 is below the 40th (or

30th) percentile. Under this specification, the dummies High FB and Low FB on the

RHS of regression (7) vary over time and are lagged by one month to mitigate endogeneity

issues. When the cutoffs are the 40th and 60th percentiles, results are in Table IA.6.7; when

the cutoffs are the 30th and 70th percentiles, results are in Table IA.6.8. Again, in both

cases, they are qualitatively similar to those in Table 3, confirming the model’s predictions.

The only notable difference is that for the 30th–70th percentile cutoff, the effect of the risk

premium tends to be less statistically and economically significant for both high-c and low-c

funds. This is probably because that identification, although using more extreme percentiles

than the one in the paper, only uses last month’s distribution of Fund Business to identify

high-c and low-c funds in the current month. On the other hand, the identification in the

paper and that in Table IA.6.5 of this appendix use the distribution of Fund Business over

the whole period of analysis and are therefore more robust.

IA.6.2.1 Pre and Post period separately

I also run regression (7) separately on the Pre period (01/2006–07/2007) and Post period

(08/2007–08/2008). Results are in Tables IA.6.9 and IA.6.10, respectively. The risk pre-

mium is proxied by Spread Index, and the risk-free rate is proxied by the 1-month T-bill

rate. All other variables, including the dummies for funds with high default costs (High FB)

and low default costs (Low FB), are defined as in the paper. Overall results are similar to

those for the whole 01/2002–08/2008 period, but there are some important differences.

In the Pre period, the effect of Spread Index on low-c funds is stronger, while that

on high-c funds is weaker and statistically significant only when risk-taking is proxied by

Holdings Riskdyn. This is probably because Spread Index, i.e., the average yield on the

debt of the financial firms borrowing from MMFs, started to rise a few months before July

2007, while the market perception of the riskiness of those firms changed drastically only in

the second half of July 2007, when Bear Stearns disclosed that two of its subprime hedge
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funds had lost nearly all of their value. The early increase in spreads led MMFs with low

default costs to reach for yield and buy more risky debt already in the Pre period, while

MMFs with high default costs started to cut their risky exposures only in the Post period,

after the surge in risk became fully apparent. This interpretation is consistent with Figure 1,

which shows that low-c funds start to increase their net risky investment in the first half of

2007, while high-c funds decrease their risky investment only from August 2007.

As for the effect of the risk-free rate in the Pre period, it is consistent with the model’s

predictions for both low-c and high-c funds; moreover, contrary to the empirical results for the

whole period, it is consistent also when risk-taking is measured in terms of portfolio maturity.

However, for low-c funds, the effect of the risk-free rate is never statistically significant, and

its magnitude is smaller than over the whole period. This is probably because the risk-free

rate does not vary much over the Pre period (except for a steady but slight increase in the

first five months), which greatly weakens the identification.

In the Post period, when risk-taking is proxied by Holdings Riskdyn, the effect of

Spread Index on low-c funds seems to be weaker than for the whole period, and that on

high-c funds becomes statistically insignificant. As for the risk-free rate, its effect on high-c

funds is consistent with the model’s predictions for all risk-taking proxies (except portfolio

maturity, exactly as for the whole period). However, when risk-taking is measured in terms

of Safe Holdings, its effect of low-c funds seems to be weaker than for the whole period,

and when risk-taking is proxied by either Holdings Risk or Holdings Riskdyn, its effect

of low-c funds becomes statistically insignificant. These results probably occur because the

sample is much smaller (only T = 13 points in the time series), and the risk premium and

risk-free rate are strongly negatively correlated, so that the effects of independent changes

in both variables are less precisely estimated.

I also repeat the same regression exercise using the excess bond premium for financial

firms from Gilchrist and Zakrajsek (2012) as proxy for the model’s risk premium. Results

are qualitatively similar to those in the paper for the whole 2002–2008 period but face the

same problems discussed above about estimating regression (7) separately on the Pre and

Post period (i.e., smaller samples, little variation in risk-free rates during the Pre period,

slight asynchronicity between surge in yields and realization of risk across Pre and Post
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period, and co-movement of risk premia and risk-free rates during the Post period).

IA.6.3 Cross-sectional risk-taking differential

I perform several robustness checks of the results in Table 5, which test the model’s predic-

tions on the different effects of risk premia and risk-free rates on the cross-sectional risk-taking

differential. In my first robustness check, I estimate regression (8) using Fund Business

rather than its rank as the main explanatory variable. Results are in Table IA.6.11 and

are qualitatively and quantitatively similar to those of Table 5, confirming the predictions

of the model. The effect of the risk premium is statistically significant at the 1% level for

all measures of fund risk-taking. The effect of the risk-free rate is statistically significant at

the 5% level for all measures of fund risk-taking except Spread. Moreover, both effects are

economically important.

As further robustness checks, I estimate regression (8) using the GZ Premium as a proxy

for the risk premium (Table IA.6.12), using the 3-month T-bill rate as a proxy for the risk-free

rate (Table IA.6.13), and lagging all fund-specific RHS variables by two lags (Table IA.6.14).

Again, the results are qualitatively and quantitatively close to those of Table 5, confirming

the model’s predictions. The effect of the risk premium is statistically significant at the 5%

level for all measures of risk-taking, and in most cases at the 1% level. The effect of the

risk-free rate is statistically significant at the 1% level for the measures of risk-taking based

on portfolio composition, while it is insignificant but consistent with the model’s predictions

for the measures of risk-taking based on portfolio maturity and spread. As in Table 5, all

these effects are also economically important. The only noteworthy difference with respect to

the main regression specification is that when the risk premium is proxied by the Gilchrist–

Zakrajsek excess bond premium, the magnitude of the effect of the risk-free rate diminishes.

Appendix IA.7 Microfoundation of the tournament

This appendix presents a random utility model of fund investors that rationalizes the rank-

based payoff function of the MMF tournament. The standard theoretical justification for

the empirically observed positive relation between fund flows and past performance is that
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investors assume that fund managers have idiosyncratic, unobservable skills, which investors

try to infer from historical data. Higher past performance is perceived as a signal of higher

ability and generates money inflows.

Suppose there is a continuum of investors. Each investor is associated with a single fund

and endowed with a wealth D > 0. I refer to the investor associated with fund c as “investor

c.” I assume that investor c has only two options: she can either put her money into her

idiosyncratic fund c or invest in an alternative technology outside the MMF industry. The

investor demand for delegated management satisfies the following random utility model:

investor c invests in

fund c with probability p = Rkπ(c)

alternative technology with probability 1− p

This model can be motivated by arguing that investors have limited information, or limited

capacity of processing information, on the management industry and market structure. Each

investor has accumulated some information on a given fund, which she prefers to the others

for some idiosyncratic reason. Investor c uses the ex post rank of fund c’s performance as

an indication of the manager’s skill. The acquisition of ex post information on other funds

is too costly. Hence, each investor only decides whether to invest in the idiosyncratic fund

or in the alternative technology.

There are other, more formal ways to endogeneize the rank-based flow-performance re-

lation observed in the data as the outcome of an optimal investment strategy of rational

investors. Huang, Wei, and Yan (2007) formally show that rank-based reward functions

arise in equilibrium due to information acquisition and participation costs faced by retail

investors. Matejka and McKay (2015) show that the logit model (closely related to the

above random utility model) is the optimal decision rule for a rationally inattentive agent

who is uncertain on the fundamental value of her investment possibilities but faces a cost

of acquiring information. In the context of my model, the unobservable fundamental value

of the agent’s investment opportunities would be a fund’s underlying quality, and the logit

model would represent the endogenous rank-based flow-performance relation. Frankel (2014)

shows that ranking is the optimal delegated alignment contract when a principal delegates
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multiple decisions to an agent, who has private information relevant to each decision, but

the principal is uncertain about the agent’s preferences. In the case of the mutual fund

industry, we can think of the principal as the investor and the agent as a financial adviser.

Finally, the normative literature on tournament theory (Lazaer and Rosen, 1981) shows that

a tournament reward structure is optimal for a principal-agent problem in presence of moral

hazard.
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Kacperczyk & Schnabl (2013)
(1) (2) (3) (4) (5) (6)
All High FB Low FB All High FB Low FB

Fund Characteristics
Spread (bp) 7.54 7.27 7.70 6.93 6.60 7.28

(6.46) (6.22) (6.64) (6.44) (7.54) (5.00)
Expense Ratio (bp) 35.90 34.89 36.53 31.64 32.40 30.81

(21.79) (22.81) (21.23) (19.10) (18.43) (19.90)
Fund Size ($mil) 6,318 4,195 7,645** 4,886 2,981 6,951***

(10,793) (8,413) (11,899) (8,685) (4,833) (11,169)
Maturity (days) 33.27 33.93 32.85 34.32 35.12 33.45

(10.65) (10.90) (10.54) (11.02) (12.48) (9.17)
Age (years) 11.20 11.12 11.25 10.61 10.43 10.81

(6.84) (7.36) (6.53) (4.75) (5.53) (3.75)
Family Size ($bil) 73.3 99.1 47.5* 72.8 97.5 45.9**

(157.1) (211.7) (61.8) (149.1) (200.9) (39.2)
Fund Business 0.745 0.929 0.562*** 0.764 0.897 0.619***

(0.248) (0.051) (0.230) (0.198) (0.064) (0.192)
Conglomerate 0.566 0.418 0.659*** 0.601 0.558 0.648

(0.497) (0.498) (0.477) (0.491) (0.500) (0.481)
Portfolio Holdings
U.S. treasuries & agency 0.059 0.065 0.055 0.060 0.072 0.048

(0.096) (0.092) (0.099) (0.109) (0.120) (0.095)
Repurchase Agreements 0.134 0.128 0.138 0.135 0.142 0.126

(0.151) (0.169) (0.139) (0.150) (0.169) (0.128)
Bank Deposits 0.034 0.016 0.045*** 0.032 0.021 0.044**

(0.058) (0.034) (0.067) (0.057) (0.039) (0.069)
Bank Obligations 0.124 0.112 0.132 0.122 0.111 0.135

(0.127) (0.116) (0.133) (0.126) (0.120) (0.132)
Floating-Rate Notes 0.199 0.225 0.183 0.198 0.192 0.204

(0.164) (0.184) (0.149) (0.162) (0.168) (0.156)
Commercial Paper 0.314 0.305 0.319 0.320 0.356 0.280**

(0.216) (0.226) (0.212) (0.224) (0.252) (0.182)
Asset-Backed CP 0.136 0.149 0.128 0.134 0.106 0.164**

(0.154) (0.180) (0.136) (0.155) (0.151) (0.154)
Funds 143 55 88 148 77 71
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.4.1: Summary statistics for all U.S. institutional prime MMFs as of 1/3/2006.
Fund Business is the share of mutual fund assets other than institutional prime MMFs
in the sponsor’s total mutual fund assets. High (Low) FB includes all funds with
Fund Business above (below) the median Fund Business in the sponsor population (i.e.,
0.82). Fund characteristics are spread, expense ratio, fund size, average portfolio maturity,
age, family size, and whether the fund sponsor is part of a financial conglomerate. Hold-
ings are the share of assets invested in Treasuries and agency debt, repurchase agreements,
bank deposits, bank obligations, floating-rate notes, commercial paper, and asset-backed
commercial paper. Cross-sectional standard deviations of the given characteristics are in
parentheses. ***, **, * represent 1%, 5%, and 10% statistical significance, respectively.
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sd(Fund Business)/mean(Fund Business) (in %)
Min 1st Qu. Median Mean 3rd Qu. Max.

Time-Series Variation 0.1 3.1 8.7 14.9 15.0 187.8
Cross-Section Variation 30.1 31.8 32.6 33.1 34.0 41.5

sd(FB Rank) (in percentiles)
Min 1st Qu. Median Mean 3rd Qu. Max.

Time-Series Variation 0.6 4.5 9.4 11.9 17.4 46.7
Cross-Section Variation 27.3 28.3 28.7 28.7 29.1 30.0

Table IA.4.2: Top panel: coefficient of variation of Fund Business in the time series (i.e.,
within fund) and in the cross-section (i.e., within month). Bottom panel: variation of the
percentile rank of Fund Business in the time series (i.e., within fund) and in the cross-
section (i.e., within month). The sample is all U.S. institutional prime MMFs active from
1/1/2002 to 8/31/2008. Data are monthly. The rank is already a relative measure and
therefore does not need to be normalized. Also, note that in each cross-section, FB Rank
in percentiles is uniformly distributed over [1, 100] by construction. Hence, its cross-section
standard deviation is 99/

√
12 ≈ 28.6.

Fund Businessi,t (decimals)
(1) (2) (3) (4)

Incurred Costi,t (%) 0.015 −0.145
(0.058) (0.093)

Conglomeratei,t −0.060 −0.007
(0.038) (0.014)

Time Fixed Effects Y Y Y Y
Fund Fixed Effects N Y N Y
Adj. R2 (within) 0.000 0.014 0.018 0.000
R2 (overall) 0.006 0.839 0.023 0.836
Observations 49,133 49,133 49,133 49,133
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.4.3: Fund Business vs. Incurred Cost and Conglomerate. The sample is all U.S.
institutional prime MMFs from 1/1/2002 to 8/31/2008. Data are weekly. Fund Business
is the share of mutual fund assets other than institutional prime MMFs in the sponsor’s
total mutual fund assets. Incurred Cost is the incurred expense ratio in percentage points.
Conglomerate is a dummy equal to 1 if the fund is affiliated with a financial conglomerate
and 0 otherwise. Standard errors are HACSC robust from Driscoll and Kraay (1998) with
36-week lag. ***, **, * represent 1%, 5%, and 10% statistical significance, respectively.
The corresponding critical values from fixed-b asymptotics are roughly 3.05, 2.25, and 1.86,
respectively.
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Fund F low Ranki,t+1

(1) (2) (3) (4) (5)
Spread Ranki,t 0.064∗∗∗ 0.058∗∗∗ 0.056∗∗∗

(0.008) (0.009) (0.009)
Spreadi,t (%) 0.097∗∗ 0.025 0.092∗∗∗ 0.024

(0.039) (0.019) (0.028) (0.015)
Spread2i,t 0.017∗∗ 0.008

(0.009) (0.005)
Log(Fund Size)i,t −0.059∗∗∗ −0.061∗∗∗ −0.061∗∗∗ −0.059∗∗∗ −0.061∗∗∗

(0.009) (0.009) (0.009) (0.009) (0.009)
Expense Ratioi,t 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)
Agei,t −0.006∗∗ −0.006∗∗ −0.006∗∗ −0.006∗∗ −0.006∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)
Flow V olatilityi,t −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.003∗∗∗ −0.002∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Log(Family Size)i,t 0.000 0.000 0.000 0.000 0.000

(0.003) (0.003) (0.003) (0.003) (0.003)
Week fixed effect Y Y Y Y Y
Fund fixed effect Y Y Y Y Y
Observations 47,268 47,268 47,268 47,268 47,268
Adj. R2 (within) 0.006 0.008 0.008 0.007 0.008
R2 (overall) 0.014 0.015 0.015 0.014 0.015
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.5.1: Flow-performance relation. The sample is all U.S. institutional prime MMFs
from 1/1/2002 to 8/31/2008. The dependent variable is Fund F low Rank, i.e., the rank of
Fund F low. Fund F low is the percentage change in total net assets from week t to week
t+ 1, adjusted for earned interest. The rank is computed in percentiles normalized to [0, 1].
Using the rank of Fund F low mitigates the effect of possible outliers in the distribution of
fund flows. Independent variables are: the weekly annualized fund spread from t− 1 to t in
percentage points, its rank in percentiles normalized to [0, 1], log of fund size in millions of
dollars, fund expense ratio in basis points, fund age in years, volatility of fund flows based
on past 12-week fund flows, and log of fund family size in billions of dollars. All regressions
are at the weekly frequency and include week and fund fixed effects. Standard errors are
HAC robust. ***, **, * represent 1%, 5%, and 10% statistical significance, respectively.
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Fund F lowi,t+1

(1) (2) (3) (4) (5)
Spread Ranki,t 0.743∗∗∗ 0.640∗∗∗ 0.623∗∗∗

(0.098) (0.108) (0.109)
Spreadi,t (%) 1.019∗∗ 0.335∗ 1.102∗∗∗ 0.400∗∗

(0.427) (0.199) (0.238) (0.193)
Spread2i,t 0.266∗∗∗ 0.085

(0.098) (0.080)
Log(Fund Size)i,t −0.065∗∗∗ −0.074∗∗∗ −0.076∗∗∗ −0.068∗∗∗ −0.076∗∗∗

(0.022) (0.023) (0.024) (0.022) (0.024)
Expense Ratioi,t −0.005∗∗∗ −0.005∗∗∗ −0.005∗∗∗ −0.005∗∗∗ −0.005∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Agei,t −0.019∗∗∗ −0.019∗∗∗ −0.019∗∗∗ −0.019∗∗∗ −0.019∗∗∗

(0.004) (0.005) (0.005) (0.004) (0.005)
Flow V olatilityi,t −0.022∗∗ −0.017∗∗∗ −0.023∗∗∗ −0.038∗∗ −0.025∗∗

(0.010) (0.006) (0.009) (0.015) (0.010)
Log(Family Size)i,t 0.053∗∗∗ 0.042∗∗ 0.045∗∗ 0.050∗∗ 0.043∗∗

(0.020) (0.021) (0.022) (0.020) (0.021)
Week fixed effect Y Y Y Y Y
Fund fixed effect N N N N N
Observations 47,268 47,268 47,268 47,268 47,268
Adj. R2 (within) 0.002 0.003 0.003 0.002 0.003
R2 (overall) 0.031 0.031 0.032 0.031 0.032
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.5.2: Flow-performance relation. The sample is all U.S. institutional prime MMFs
from 1/1/2002 to 8/31/2008. The dependent variable is Fund F low, computed as the
percentage change in total net assets from week t to week t+ 1, adjusted for earned interest
and trimmed at the 0.5%. Independent variables are: the weekly annualized fund spread
from t− 1 to t in percentage points, its percentile rank normalized to [0, 1], log of fund size
in millions of dollars, fund expense ratio in basis points, fund age in years, volatility of fund
flows based on past 12-week fund flows, and log of fund family size in billions of dollars. All
regressions are at the weekly frequency and include week fixed effects. Standard errors are
HAC robust. ***, **, * represent 1%, 5%, and 10% statistical significance, respectively.
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Normalized Fund F lowi,t+1

(1) (2) (3) (4) (5)
Spread Ranki,t 0.303∗∗∗ 0.286∗∗∗ 0.277∗∗∗

(0.042) (0.045) (0.043)
Spreadi,t (%) 0.424∗∗ 0.066 0.406∗∗∗ 0.070

(0.201) (0.097) (0.146) (0.078)
Spread2i,t 0.081∗ 0.030

(0.049) (0.033)
Log(Fund Size)i,t −0.326∗∗∗ −0.338∗∗∗ −0.338∗∗∗ −0.328∗∗∗ −0.338∗∗∗

(0.050) (0.050) (0.050) (0.050) (0.050)
Expense Ratioi,t −0.001 −0.000 −0.001 −0.001 −0.001

(0.002) (0.002) (0.002) (0.002) (0.002)
Agei,t −0.035∗∗∗ −0.035∗∗ −0.035∗∗ −0.035∗∗ −0.035∗∗

(0.013) (0.014) (0.014) (0.014) (0.014)
Flow V olatilityi,t −0.006∗∗ −0.004∗∗ −0.004∗∗ −0.010∗∗ −0.006∗

(0.003) (0.002) (0.002) (0.005) (0.003)
Log(Family Size)i,t −0.016 −0.014 −0.014 −0.016 −0.015

(0.018) (0.018) (0.018) (0.018) (0.018)
Week fixed effect Y Y Y Y Y
Fund fixed effect Y Y Y Y Y
Observations 47,268 47,268 47,268 47,268 47,268
Adj. R2 (within) 0.007 0.008 0.008 0.007 0.008
R2 (overall) 0.027 0.028 0.028 0.027 0.028
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.5.3: Flow-performance relation. The sample is all U.S. institutional prime MMFs
from 1/1/2002 to 8/31/2008. The dependent variable is Normalized Fund F low, i.e., the
percentage change in total net assets from week t to week t+ 1, adjusted for earned interest,
trimmed at the 0.5%, and normalized by that week’s industry-average inflow if positive and
by that week’s industry-average outflow if negative. Independent variables are: the weekly
annualized fund spread from t−1 to t in percentage points, its rank in percentiles normalized
to [0, 1], log of fund size in millions of dollars, fund expense ratio in basis points, fund age
in years, volatility of fund flows based on past 12-week fund flows, and log of fund family
size in billions of dollars. All regressions are at the weekly frequency and include week and
fund fixed effects. Standard errors are HAC robust. ***, **, * represent 1%, 5%, and 10%
statistical significance, respectively.
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Normalized Fund F lowi,t+1

(1) (2) (3) (4) (5)
Spread Ranki,t 0.203∗∗∗ 0.177∗∗∗ 0.160∗∗∗

(0.026) (0.030) (0.031)
Spreadi,t (%) 0.272∗∗ 0.093 0.299∗∗∗ 0.122∗∗

(0.129) (0.061) (0.068) (0.052)
Spread2i,t 0.086∗∗∗ 0.038

(0.028) (0.025)
Log(Fund Size)i,t −0.015∗∗∗ −0.018∗∗∗ −0.018∗∗∗ −0.016∗∗∗ −0.018∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)
Expense Ratioi,t −0.001∗ −0.001∗ −0.001∗ −0.001∗∗ −0.001∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Agei,t −0.005∗∗∗ −0.005∗∗∗ −0.005∗∗∗ −0.005∗∗∗ −0.005∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Flow V olatilityi,t −0.006∗∗∗ −0.005∗∗∗ −0.006∗∗∗ −0.011∗∗∗ −0.008∗∗∗

(0.002) (0.001) (0.001) (0.003) (0.002)
Log(Family Size)i,t 0.019∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.018∗∗∗ 0.016∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)
Week fixed effect Y Y Y Y Y
Fund fixed effect N N N N N
Observations 47,268 47,268 47,268 47,268 47,268
Adj. R2 (within) 0.002 0.003 0.003 0.002 0.003
R2 (overall) 0.016 0.017 0.017 0.017 0.017
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.5.4: Flow-performance relation. The sample is all U.S. institutional prime MMFs
from 1/1/2002 to 8/31/2008. The dependent variable is Normalized Fund F low, i.e., the
percentage change in total net assets from week t to week t+ 1, adjusted for earned interest,
trimmed at the 0.5%, and normalized by that week’s industry-average inflow if positive and
by that week’s industry-average outflow if negative. Independent variables are: the weekly
annualized fund spread from t − 1 to t in percentage points, its percentile rank normalized
to [0, 1], log of fund size in millions of dollars, fund expense ratio in basis points, fund age
in years, volatility of fund flows based on past 12-week fund flows, and log of fund family
size in billions of dollars. All regressions are at the weekly frequency and include week fixed
effects. Standard errors are HAC robust. ***, **, * represent 1%, 5%, and 10% statistical
significance, respectively.
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Median-Normalized Fund F lowi,t+1

(1) (2) (3) (4) (5)
Spread Ranki,t 0.496∗∗∗ 0.467∗∗∗ 0.451∗∗∗

(0.071) (0.077) (0.073)
Spreadi,t (%) 0.695∗∗ 0.110 0.664∗∗∗ 0.117

(0.333) (0.163) (0.241) (0.127)
Spread2i,t 0.135∗ 0.053

(0.076) (0.050)
Log(Fund Size)i,t −0.544∗∗∗ −0.563∗∗∗ −0.563∗∗∗ −0.548∗∗∗ −0.564∗∗∗

(0.084) (0.084) (0.084) (0.085) (0.084)
Expense Ratioi,t −0.001 −0.001 −0.001 −0.001 −0.001

(0.003) (0.003) (0.003) (0.003) (0.003)
Agei,t −0.060∗∗∗ −0.060∗∗ −0.060∗∗ −0.060∗∗∗ −0.059∗∗

(0.023) (0.023) (0.023) (0.023) (0.024)
Flow V olatilityi,t −0.009∗ −0.005 −0.006 −0.016∗ −0.008

(0.006) (0.004) (0.004) (0.008) (0.005)
Log(Family Size)i,t −0.025 −0.023 −0.023 −0.026 −0.024

(0.030) (0.030) (0.030) (0.030) (0.030)
Week fixed effect Y Y Y Y Y
Fund fixed effect Y Y Y Y Y
Observations 47,268 47,268 47,268 47,268 47,268
Adj. R2 (within) 0.006 0.008 0.008 0.007 0.008
R2 (overall) 0.026 0.027 0.027 0.026 0.027
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.5.5: Flow-performance relation. The sample is all U.S. institutional prime MMFs
from 1/1/2002 to 8/31/2008. The dependent variable is Median-Normalized Fund F low,
i.e., the percentage change in total net assets from week t to week t+ 1, adjusted for earned
interest, trimmed at the 0.5%, and normalized by that week’s industry-median inflow if
positive and by that week’s industry-median outflow if negative. Independent variables are:
the weekly annualized fund spread from t−1 to t in percentage points, its rank in percentiles
normalized to [0, 1], log of fund size in millions of dollars, fund expense ratio in basis points,
fund age in years, volatility of fund flows based on past 12-week fund flows, and log of fund
family size in billions of dollars. All regressions are at the weekly frequency and include week
and fund fixed effects. Standard errors are HAC robust. ***, **, * represent 1%, 5%, and
10% statistical significance, respectively.
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Median-Normalized Fund F lowi,t+1

(1) (2) (3) (4) (5)
Spread Ranki,t 0.329∗∗∗ 0.284∗∗∗ 0.256∗∗∗

(0.045) (0.052) (0.052)
Spreadi,t (%) 0.447∗∗ 0.160 0.491∗∗∗ 0.208∗∗

(0.211) (0.101) (0.111) (0.083)
Spread2i,t 0.140∗∗∗ 0.063∗

(0.043) (0.038)
Log(Fund Size)i,t −0.027∗∗∗ −0.031∗∗∗ −0.031∗∗∗ −0.029∗∗∗ −0.031∗∗∗

(0.009) (0.010) (0.010) (0.009) (0.010)
Expense Ratioi,t −0.001∗∗ −0.001∗∗ −0.001∗∗ −0.001∗∗ −0.001∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Agei,t −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
Flow V olatilityi,t −0.010∗∗∗ −0.008∗∗∗ −0.009∗∗∗ −0.018∗∗∗ −0.013∗∗∗

(0.003) (0.002) (0.002) (0.006) (0.004)
Log(Family Size)i,t 0.032∗∗∗ 0.027∗∗∗ 0.027∗∗∗ 0.030∗∗∗ 0.027∗∗∗

(0.010) (0.010) (0.010) (0.010) (0.010)
Week fixed effect Y Y Y Y Y
Fund fixed effect N N N N N
Observations 47,268 47,268 47,268 47,268 47,268
Adj. R2 (within) 0.002 0.003 0.003 0.002 0.003
R2 (overall) 0.016 0.017 0.017 0.016 0.017
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.5.6: Flow-performance relation. The sample is all U.S. institutional prime MMFs
from 1/1/2002 to 8/31/2008. The dependent variable is Median-Normalized Fund F low,
i.e., the percentage change in total net assets from week t to week t+ 1, adjusted for earned
interest, trimmed at the 0.5%, and normalized by that week’s industry-median inflow if
positive and by that week’s industry-median outflow if negative. Independent variables are:
the weekly annualized fund spread from t − 1 to t in percentage points, its percentile rank
normalized to [0, 1], log of fund size in millions of dollars, fund expense ratio in basis points,
fund age in years, volatility of fund flows based on past 12-week fund flows, and log of fund
family size in billions of dollars. All regressions are at the weekly frequency and include
week fixed effects. Standard errors are HAC robust. ***, **, * represent 1%, 5%, and 10%
statistical significance, respectively.
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Fund F lowi,t+1

(1) (2) (3)
Spread Ranki,t 1.544∗∗∗ 1.180∗∗∗ 1.648∗∗∗

(0.361) (0.239) (0.455)
Fund Businessi,t ∗ Spread Ranki,t −0.608 −0.631

(0.482) (0.490)
Conglomeratei,t ∗ Spread Ranki,t −0.131 −0.158

(0.272) (0.274)
Log(Fund Size)i,t −1.261∗∗∗ −1.239∗∗∗ −1.261∗∗∗

(0.186) (0.180) (0.187)
Expense Ratioi,t −0.001 −0.001 −0.001

(0.006) (0.006) (0.006)
Agei,t −0.118∗∗ −0.121∗∗ −0.118∗∗

(0.048) (0.049) (0.049)
Flow V olatilityi,t −0.012 −0.011 −0.012

(0.008) (0.008) (0.008)
Log(Family Size)i,t −0.013 −0.046 −0.011

(0.068) (0.061) (0.068)
Week fixed effect Y Y Y
Fund fixed effect Y Y Y
Observations 47,268 47,268 47,268
Adj. R2 (within) 0.009 0.009 0.009
R2 (overall) 0.043 0.043 0.043
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.5.7: Flow-performance relation. The sample is all U.S. institutional prime MMFs
from 1/1/2002 to 8/31/2008. The dependent variable is Fund F low, computed as the per-
centage change in total net assets from week t to week t+1, adjusted for earned interest and
trimmed at the 0.5%. Independent variables are: the rank of weekly annualized fund spread
from t− 1 to t, log of fund size in millions of dollars, fund expense ratio in basis points, fund
age in years, volatility of fund flows based on past 12-week flows, and log of fund family
size in billions of dollars. The rank is computed in percentiles normalized to [0, 1]. Addi-
tional independent variables are the interactions of Spread Rank with Fund Business and
Conglomerate. Fund Business is the share of mutual fund assets other than institutional
prime MMFs in the sponsor’s total mutual fund assets. Conglomerate is a dummy equal to
1 if the fund is affiliated with a financial conglomerate and 0 otherwise. All regressions are
at the weekly frequency and include week and fund fixed effects. Standard errors are HAC
robust. ***, **, * represent 1%, 5%, and 10% statistical significance, respectively.
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Normalized Fund F lowi,t+1

(1) (2) (3)
Spread Ranki,t 0.398∗∗∗ 0.325∗∗∗ 0.428∗∗∗

(0.100) (0.068) (0.128)
Fund Businessi,t ∗ Spread Ranki,t −0.131 −0.138

(0.135) (0.137)
Conglomeratei,t ∗ Spread Ranki,t −0.039 −0.045

(0.078) (0.079)
Log(Fund Size)i,t −0.342∗∗∗ −0.337∗∗∗ −0.342∗∗∗

(0.051) (0.050) (0.052)
Expense Ratioi,t −0.000 −0.000 −0.000

(0.002) (0.002) (0.002)
Agei,t −0.034∗∗ −0.035∗∗ −0.034∗∗

(0.014) (0.014) (0.014)
Flow V olatilityi,t −0.004∗∗ −0.004∗∗ −0.004∗∗

(0.002) (0.002) (0.002)
Log(Family Size)i,t −0.007 −0.014 −0.007

(0.020) (0.018) (0.020)
Week fixed effect Y Y Y
Fund fixed effect Y Y Y
Observations 47,268 47,268 47,268
Adj. R2 (within) 0.008 0.008 0.008
R2 (overall) 0.028 0.028 0.028
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.5.8: Flow-performance relation. The sample is all U.S. institutional prime MMFs
from 1/1/2002 to 8/31/2008. The dependent variable is Normalized Fund F low, i.e., the
percentage change in total net assets from week t to week t+ 1, adjusted for earned interest,
trimmed at the 0.5%, and normalized by that week’s industry-average inflow if positive and
by that week’s industry-average outflow if negative. Independent variables are: the rank
of weekly annualized fund spread from t − 1 to t, log of fund size in millions of dollars,
fund expense ratio in basis points, fund age in years, volatility of fund flows based on past
12-week flows, and log of fund family size in billions of dollars. The rank is computed
in percentiles normalized to [0, 1]. Additional independent variables are the interactions
of Spread Rank with Fund Business and Conglomerate. Fund Business is the share
of mutual fund assets other than institutional prime MMFs in the sponsor’s total mutual
fund assets. Conglomerate is a dummy equal to 1 if the fund is affiliated with a financial
conglomerate and 0 otherwise. All regressions are at the weekly frequency and include week
and fund fixed effects. Standard errors are HAC robust. ***, **, * represent 1%, 5%, and
10% statistical significance, respectively.
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(1) (2) (3) (4)

Holdings Riski,t Holdings Risk
dyn
i,t Maturity Riski,t Safe Holdingsi,t

rpt −0.275 −1.166 −0.786 0.160
(0.835) (1.415) (1.282) (1.110)

rpt ∗ Low FBi 2.246∗ 6.336∗∗∗ 5.169∗∗∗ −0.561
(1.152) (1.643) (0.958) (0.475)

rpt ∗High FBi −3.701∗∗ −2.257∗ −2.615∗∗ 2.075∗∗∗

(1.309) (1.006) (1.028) (0.661)
rft 19.210∗∗ 26.507∗∗∗ −18.783∗∗∗ −17.193∗∗∗

(6.955) (5.982) (4.614) (3.747)
rft ∗ Low FBi −3.075 11.354 −9.861∗ 0.576

(3.290) (7.738) (4.858) (2.845)
rft ∗High FBi 2.815 8.776∗ 0.053 −4.836

(4.918) (4.410) (5.379) (3.929)
Fund Businessi,t−1 −10.061 −17.794∗∗ 2.106 3.458

(6.202) (6.884) (4.583) (1.799)
Controlsi,t−1 Y Y Y Y
Fund Fixed Effects Y Y Y Y
Observations 6,715 6,715 6,715 6,715
Adj. R2 (within) 0.083 0.071 0.173 0.091
R2 (overall) 0.652 0.426 0.442 0.653
βrp + βLrp 1.971 5.170∗ 4.383∗ −0.401
βrp + βHrp −3.976∗∗∗ −3.423∗∗ −3.401 2.235∗∗

βrf + βLrf 16.135∗ 37.861∗∗∗ −28.644∗∗∗ −16.617∗∗∗

βrf + βHrf 22.025∗∗∗ 35.283∗∗∗ −18.730∗ −22.029∗∗∗

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.6.3: Reach for yield: risk premium vs. risk-free rate. The sample is all U.S.
institutional prime MMFs continuously active from 1/1/2002 to 8/31/2008 (n = 85). Data
are monthly (T = 80). The dependent variables are: the percentage of bank obligations
(i.e., the riskiest asset class over the whole period) net of safe assets (i.e., U.S. treasuries,
GSE debt, and repos) in a fund’s portfolio (Holdings Risk) in column (1); the percentage of
each month’s riskiest asset class net of safe assets in a fund’s portfolio (Holdings Riskdyn)
in column (2); average portfolio maturity (Maturity Risk) in days in column (3); and the
percentage of safe assets in a fund’s portfolio (Safe Holdings) in column (4). For a detailed
discussion of Holdings Riskdyn, see Section 5.1 and Appendix C. The risk premium rp is
the index of spreads available to MMFs defined by equation (5) in percentage points. The
risk-free rate rft is the return on 3-month T-bills. High (Low) FBi is a dummy equal to
1 if fund i’s FundBusiness is always above (below) the cross-sectional median throughout
the period, and 0 otherwise. Fund Business is the share of mutual fund assets other than
institutional prime MMFs in the sponsor’s total mutual fund assets. Controls are: fund
size, expense ratio, fund age, fund family size, and Fund Business. All regressions include
fund fixed effects. Standard errors are HACSC robust from Driscoll and Kraay (1998) with
8-month lag. ***, **, * represent 1%, 5%, and 10% statistical significance, respectively. The
corresponding critical values from fixed-b asymptotics for the t-statistics are roughly 3.03,
2.24, and 1.85. For the Wald statistics they are roughly 9.31, 4.94, and 3.35.
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(1) (2) (3) (4)

Holdings Riski,t Holdings Risk
dyn
i,t Maturity Riski,t Safe Holdingsi,t

rpt −0.329 0.682 −0.967 −0.924
(0.874) (1.199) (1.275) (1.051)

rpt ∗ Low FBi 3.254∗∗ 6.493∗∗∗ 4.932∗∗∗ 0.324
(1.156) (2.015) (0.887) (0.479)

rpt ∗High FBi −3.343∗∗ −2.584∗∗ −2.660∗∗ 1.802∗∗

(1.308) (1.020) (0.963) (0.620)
rft 24.819∗∗∗ 33.630∗∗∗ −21.926∗∗∗ −21.298∗∗∗

(6.122) (5.092) (5.490) (3.087)
rft ∗ Low FBi −3.286 13.686 −11.190∗ 0.980

(3.534) (7.429) (5.387) (3.134)
rft ∗High FBi 1.473 8.573∗ −1.294 −4.948

(4.799) (4.529) (6.256) (4.291)
Fund Businessi,t−2 −9.859∗ −16.833∗∗ 1.293 3.476

(5.244) (6.862) (4.991) (1.176)
Controlsi,t−2 Y Y Y Y
Fund Fixed Effects Y Y Y Y
Observations 6,630 6,630 6,630 6,630
Adj. R2 (within) 0.088 0.078 0.180 0.099
R2 (overall) 0.654 0.430 0.447 0.657
βrp + βLrp 2.925∗ 7.175∗∗ 3.965∗ −0.600
βrp + βHrp −3.672∗∗∗ −1.902∗ −3.627 0.878
βrf + βLrf 21.533∗∗ 47.316∗∗∗ −33.116∗∗∗ −20.318∗∗∗

βrf + βHrf 26.292∗∗∗ 42.203∗∗∗ −23.220∗∗ −26.246∗∗∗

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.6.4: Reach for yield: risk premium vs. risk-free rate. The sample is all U.S.
institutional prime MMFs continuously active from 1/1/2002 to 8/31/2008 (n = 85). Data
are monthly (T = 80). The dependent variables are: the percentage of bank obligations
(i.e., the riskiest asset class over the whole period) net of safe assets (i.e., U.S. treasuries,
GSE debt, and repos) in a fund’s portfolio (Holdings Risk) in column (1); the percentage of
each month’s riskiest asset class net of safe assets in a fund’s portfolio (Holdings Riskdyn)
in column (2); average portfolio maturity (Maturity Risk) in days in column (3); and the
percentage of safe assets in a fund’s portfolio (Safe Holdings) in column (4). For a detailed
discussion of Holdings Riskdyn, see Section 5.1 and Appendix C. The risk premium rp is
the index of spreads available to MMFs defined by equation (5) in percentage points. The
risk-free rate rft is the 1-month T-bill rate in percentage points. High (Low) FBi is a
dummy equal to 1 if fund i’s FundBusiness is always above (below) the cross-sectional
median throughout the period, and 0 otherwise. Fund Business is the share of mutual
fund assets other than institutional prime MMFs in the sponsor’s total mutual fund assets.
Controls are: fund size, expense ratio, fund age, fund family size, and Fund Business. All
regressions include fund fixed effects. Standard errors are HACSC robust from Driscoll and
Kraay (1998) with 8-month lag. ***, **, * represent 1%, 5%, and 10% statistical significance,
respectively. The corresponding critical values from fixed-b asymptotics for the t-statistics
are roughly 3.03, 2.24, and 1.85. For the Wald statistics they are roughly 9.31, 4.94, and
3.35.
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(1) (2) (3) (4)

Holdings Riski,t Holdings Risk
dyn
i,t Maturity Riski,t Safe Holdingsi,t

rpt 4.013∗ 4.316∗ −0.961 −2.417∗

(2.143) (2.192) (1.535) (1.125)
rpt ∗ Low FBi 1.771∗∗ 0.863 4.127∗∗∗ −1.389∗∗

(0.652) (1.030) (0.799) (0.583)
rpt ∗High FBi −5.819∗∗∗ −6.624∗∗∗ 0.735 3.905∗∗∗

(1.454) (1.589) (0.663) (0.806)
rft 22.112∗∗∗ 32.021∗∗∗ −22.366∗∗∗ −20.584∗∗∗

(6.339) (5.989) (6.811) (3.208)
rft ∗ Low FBi −6.311 13.694 −12.950∗∗ 3.712

(5.102) (8.109) (4.525) (3.669)
rft ∗High FBi 10.364∗ 14.756∗∗∗ −3.667 −7.506

(4.933) (4.394) (2.624) (4.490)
Fund Businessi,t−1 −10.282 −14.639∗ 1.784 2.144

(7.221) (6.939) (4.730) (3.703)
Controlsi,t−1 Y Y Y Y
Fund Fixed Effects Y Y Y Y
Observations 6,715 6,715 6,715 6,715
Adj. R2 (within) 0.094 0.080 0.176 0.104
R2 (overall) 0.656 0.431 0.446 0.658
βrp + βLrp 5.784∗∗ 5.179∗ 3.166∗ −3.806∗∗∗

βrp + βHrp −1.806 −2.308 −0.226 1.488∗

βrf + βLrf 15.801∗ 45.715∗∗∗ −35.316∗∗∗ −16.872∗∗∗

βrf + βHrf 32.476∗∗∗ 46.777∗∗∗ −26.033∗∗∗ −28.090∗∗∗

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.6.5: Reach for yield: risk premium vs. risk-free rate. The sample is all U.S.
institutional prime MMFs continuously active from 1/1/2002 to 8/31/2008 (n = 85). Data
are monthly (T = 80). The dependent variables are: the percentage of bank obligations
(i.e., the riskiest asset class over the whole period) net of safe assets (i.e., U.S. treasuries,
GSE debt, and repos) in a fund’s portfolio (Holdings Risk) in column (1); the percentage of
each month’s riskiest asset class net of safe assets in a fund’s portfolio (Holdings Riskdyn)
in column (2); average portfolio maturity (Maturity Risk) in days in column (3); and the
percentage of safe assets in a fund’s portfolio (Safe Holdings) in column (4). For a detailed
discussion of Holdings Riskdyn, see Section 5.1 and Appendix C. The risk premium rp
is the index of spreads available to MMFs defined by equation (5) in percentage points.
The risk-free rate rft is the 1-month T-bill rate in percentage points. High (Low) FBi is a
dummy equal to 1 if fund i’s FundBusiness is always above (below) the cross-sectional 40th
percentile throughout the period, and 0 otherwise. Fund Business is the share of mutual
fund assets other than institutional prime MMFs in the sponsor’s total mutual fund assets.
Controls are: fund size, expense ratio, fund age, fund family size, and Fund Business. All
regressions include fund fixed effects. Standard errors are HACSC robust from Driscoll and
Kraay (1998) with 8-month lag. ***, **, * represent 1%, 5%, and 10% statistical significance,
respectively. The corresponding critical values from fixed-b asymptotics for the t-statistics
are roughly 3.03, 2.24, and 1.85. For the Wald statistics they are roughly 9.31, 4.94, and
3.35.
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(1) (2) (3) (4)

Holdings Riski,t Holdings Risk
dyn
i,t Maturity Riski,t Safe Holdingsi,t

rpt 5.522∗∗∗ 5.636∗∗∗ 0.327 −3.022∗∗∗

(0.674) (0.774) (1.903) (0.517)
rpt ∗ Low FBi 0.614 1.772∗∗ 3.910∗∗∗ 0.891

(1.022) (0.718) (0.751) (0.727)
rpt ∗High FBi −3.450∗ −5.123∗∗∗ 0.999 2.708∗∗∗

(1.661) (1.223) (0.786) (0.878)
rft 30.117∗∗∗ 40.725∗∗∗ −21.490∗∗ −25.254∗∗∗

(3.434) (5.700) (8.752) (2.485)
rft ∗ Low FBi −8.377 −9.433 −8.237∗ 7.061

(5.495) (5.482) (4.233) (4.310)
rft ∗High FBi 5.924 3.840 −1.852 −4.189

(5.757) (4.911) (2.227) (4.522)
Fund Businessi,t−1 −5.607 −9.548 3.516 −0.379

(6.633) (6.491) (3.334) (3.735)
Controlsi,t−1 Y Y Y Y
Fund Fixed Effects Y Y Y Y
Observations 6,715 6,715 6,715 6,715
Adj. R2 (within) 0.106 0.088 0.183 0.107
R2 (overall) 0.660 0.436 0.449 0.659
βrp + βLrp 6.136∗∗∗ 7.408∗∗∗ 4.237∗ −2.131∗∗

βrp + βHrp 2.072 0.513 1.326 −0.314
βrf + βLrf 21.740∗∗∗ 31.292∗∗∗ −29.727∗∗ −18.193∗∗∗

βrf + βHrf 36.041∗∗∗ 44.565∗∗∗ −23.342∗∗ −29.443∗∗∗

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.6.6: Reach for yield: risk premium vs. risk-free rate. The sample is all U.S.
institutional prime MMFs continuously active from 1/1/2002 to 8/31/2008 (n = 85). Data
are monthly (T = 80). The dependent variables are: the percentage of bank obligations
(i.e., the riskiest asset class over the whole period) net of safe assets (i.e., U.S. treasuries,
GSE debt, and repos) in a fund’s portfolio (Holdings Risk) in column (1); the percentage of
each month’s riskiest asset class net of safe assets in a fund’s portfolio (Holdings Riskdyn)
in column (2); average portfolio maturity (Maturity Risk) in days in column (3); and
the percentage of safe assets in a fund’s portfolio (Safe Holdings) in column (4). For a
detailed discussion of Holdings Riskdyn, see Section 5.1 and Appendix C. The risk premium
rp is the excess bond premium for financial firms from Gilchrist and Zakrajsek (2012) in
percentage points. The risk-free rate rft is the 1-month T-bill rate in percentage points.
High (Low) FBi is a dummy equal to 1 if fund i’s FundBusiness is always above (below)
the cross-sectional 40th percentile throughout the period, and 0 otherwise. Fund Business
is the share of mutual fund assets other than institutional prime MMFs in the sponsor’s
total mutual fund assets. Controls are: fund size, expense ratio, fund age, fund family size,
and Fund Business. All regressions include fund fixed effects. Standard errors are HACSC
robust from Driscoll and Kraay (1998) with 8-month lag. ***, **, * represent 1%, 5%,
and 10% statistical significance, respectively. The corresponding critical values from fixed-b
asymptotics for the t-statistics are roughly 3.03, 2.24, and 1.85. For the Wald statistics they
are roughly 9.31, 4.94, and 3.35.
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(1) (2) (3) (4)

Holdings Riski,t Holdings Risk
dyn
i,t Maturity Riski,t Safe Holdingsi,t

rpt 1.129 4.131∗ −0.253 −0.843
(1.816) (2.148) (1.827) (1.104)

rpt ∗ Low FBi,t−1 5.874∗∗∗ 3.878∗∗ 2.996∗∗ −1.500
(1.229) (1.673) (1.253) (0.998)

rpt ∗High FBi,t−1 −1.778 −7.294∗∗∗ −0.248 2.457∗∗∗

(1.183) (1.775) (0.407) (0.518)
rft 16.982∗∗ 36.046∗∗∗ −30.896∗∗∗ −18.298∗∗∗

(6.559) (7.406) (8.725) (3.116)
rft ∗ Low FBi,t−1 −6.386 −3.443 2.883 8.557

(8.191) (10.964) (4.654) (6.301)
rft ∗High FBi,t−1 19.850∗∗∗ 10.829∗∗ 9.844∗∗∗ −13.671∗∗∗

(3.458) (4.787) (2.965) (3.438)
Fund Businessi,t−1 −10.445∗ −14.202∗∗ 2.740 4.844∗

(5.198) (5.811) (5.099) (2.316)
Controlsi,t−1 Y Y Y Y
Fund Fixed Effects Y Y Y Y
Observations 6,715 6,715 6,715 6,715
Adj. R2 (within) 0.101 0.084 0.179 0.109
R2 (overall) 0.659 0.434 0.447 0.660
βrp + βLrp 7.003∗ 8.009∗∗ 2.743∗ −2.343∗

βrp + βHrp −0.649 −3.163∗ −0.501∗ 1.614∗

βrf + βLrf 10.596 32.603∗∗ −28.013∗∗∗ −9.741
βrf + βHrf 36.832∗∗∗ 46.875∗∗∗ −21.052∗∗ −31.969∗∗∗

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.6.7: Reach for yield: risk premium vs. risk-free rate. The sample is all U.S.
institutional prime MMFs continuously active from 1/1/2002 to 8/31/2008 (n = 85). Data
are monthly (T = 80). The dependent variables are: the percentage of bank obligations
(i.e., the riskiest asset class over the whole period) net of safe assets (i.e., U.S. treasuries,
GSE debt, and repos) in a fund’s portfolio (Holdings Risk) in column (1); the percentage of
each month’s riskiest asset class net of safe assets in a fund’s portfolio (Holdings Riskdyn)
in column (2); average portfolio maturity (Maturity Risk) in days in column (3); and the
percentage of safe assets in a fund’s portfolio (Safe Holdings) in column (4). For a detailed
discussion of Holdings Riskdyn, see Section 5.1 and Appendix C. The risk premium rp is
the index of spreads available to MMFs defined by equation (5) in percentage points. The
risk-free rate rft is the 1-month T-bill rate in percentage points. High (Low) FBi,t is a
dummy equal to 1 if fund i’s FundBusiness is above (below) the 60th (40th) percentile in
month t, and 0 otherwise. Fund Business is the share of mutual fund assets other than
institutional prime MMFs in the sponsor’s total mutual fund assets. Controls are: fund
size, expense ratio, fund age, fund family size, and Fund Business. All regressions include
fund fixed effects. Standard errors are HACSC robust from Driscoll and Kraay (1998) with
8-month lag. ***, **, * represent 1%, 5%, and 10% statistical significance, respectively. The
corresponding critical values from fixed-b asymptotics for the t-statistics are roughly 3.03,
2.24, and 1.85. For the Wald statistics they are roughly 9.31, 4.94, and 3.35.
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(1) (2) (3) (4)

Holdings Riski,t Holdings Risk
dyn
i,t Maturity Riski,t Safe Holdingsi,t

rpt 1.446 3.713 −0.425 −0.788
(2.049) (2.334) (1.477) (1.120)

rpt ∗ Low FBi,t−1 2.496∗∗∗ 0.292 1.902∗∗ −0.020
(0.597) (0.828) (0.716) (0.583)

rpt ∗High FBi,t−1 −1.641 −2.855∗ −1.667 1.496∗∗

(1.098) (1.526) (1.134) (0.594)
rft 21.619∗∗∗ 35.944∗∗∗ −26.865∗∗∗ −19.929∗∗∗

(6.297) (6.993) (6.614) (3.665)
rft ∗ Low FBi,t−1 −8.154∗∗ −2.227 −5.995 6.296∗∗

(3.164) (3.827) (3.365) (2.214)
rft ∗High FBi,t−1 16.625∗∗∗ 18.916∗∗ 8.728∗∗ −14.286∗∗∗

(3.540) (7.501) (3.133) (3.908)
Fund Businessi,t−1 −12.130 −17.306∗∗ −0.085 4.719

(7.245) (7.364) (4.912) (3.444)
Controlsi,t−1 Y Y Y Y
Fund Fixed Effects Y Y Y Y
Observations 6,715 6,715 6,715 6,715
Adj. R2 (within) 0.096 0.135 0.179 0.108
R2 (overall) 0.657 0.664 0.447 0.659
βrp + βLrp 3.942∗ 4.005∗ 1.477 −0.808
βrp + βHrp −0.195 0.858 −2.092 0.708
βrf + βLrf 13.465 33.717∗∗∗ −32.860∗∗∗ −13.633∗∗∗

βrf + βHrf 38.244∗∗∗ 54.860∗∗∗ −18.137∗ −34.215∗∗∗

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.6.8: Reach for yield: risk premium vs. risk-free rate. The sample is all U.S.
institutional prime MMFs continuously active from 1/1/2002 to 8/31/2008 (n = 85). Data
are monthly (T = 80). The dependent variables are: the percentage of bank obligations
(i.e., the riskiest asset class over the whole period) net of safe assets (i.e., U.S. treasuries,
GSE debt, and repos) in a fund’s portfolio (Holdings Risk) in column (1); the percentage of
each month’s riskiest asset class net of safe assets in a fund’s portfolio (Holdings Riskdyn)
in column (2); average portfolio maturity (Maturity Risk) in days in column (3); and the
percentage of safe assets in a fund’s portfolio (Safe Holdings) in column (4). For a detailed
discussion of Holdings Riskdyn, see Section 5.1 and Appendix C. The risk premium rp is
the index of spreads available to MMFs defined by equation (5) in percentage points. The
risk-free rate rft is the 1-month T-bill rate in percentage points. High (Low) FBi,t is a
dummy equal to 1 if fund i’s FundBusiness is above (below) the 70th (30th) percentile in
month t, and 0 otherwise. Fund Business is the share of mutual fund assets other than
institutional prime MMFs in the sponsor’s total mutual fund assets. Controls are: fund
size, expense ratio, fund age, fund family size, and Fund Business. All regressions include
fund fixed effects. Standard errors are HACSC robust from Driscoll and Kraay (1998) with
8-month lag. ***, **, * represent 1%, 5%, and 10% statistical significance, respectively. The
corresponding critical values from fixed-b asymptotics for the t-statistics are roughly 3.03,
2.24, and 1.85. For the Wald statistics they are roughly 9.31, 4.94, and 3.35.
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(1) (2) (3) (4)

Holdings Riski,t Holdings Risk
dyn
i,t Maturity Riski,t Safe Holdingsi,t

rpt 4.315∗∗∗ 2.500∗ −3.805∗∗∗ −3.580∗∗∗

(0.837) (0.800) (0.548) (0.708)
rpt ∗ Low FBi 3.919∗ 6.227 4.978∗ 1.352

(1.309) (2.835) (1.618) (0.842)
rpt ∗High FBi −5.414∗∗∗ −4.375∗∗∗ 2.063 3.854∗

(0.581) (0.799) (1.596) (1.238)
rft 15.333 7.070 −28.260∗ −12.750

(13.241) (15.083) (10.203) (8.115)
rft ∗ Low FBi −3.968 8.727 32.235 21.246

(7.359) (20.549) (13.742) (9.197)
rft ∗High FBi 30.898∗∗ 36.489∗∗∗ 52.512∗∗ −22.509∗∗

(6.738) (6.420) (13.715) (6.659)
Fund Businessi,t−1 −20.420∗∗ −9.299 −12.755 9.242∗

(5.833) (10.492) (6.701) (3.140)
Controlsi,t−1 Y Y Y Y
Fund Fixed Effects Y Y Y Y
Observations 1,530 1,530 1,530 1,530
Adj. R2 (within) 0.078 0.069 0.102 0.093
R2 (overall) 0.822 0.838 0.648 0.822
βrp + βLrp 8.234∗∗∗ 8.727∗∗ 1.173 −2.228∗

βrp + βHrp −1.099 −1.875∗ −1.742 0.274
βrf + βLrf 11.365 15.797 3.975 8.496
βrf + βHrf 46.231∗∗∗ 43.559∗ 24.252∗∗ −35.259∗∗∗

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.6.9: Reach for yield: risk premium vs. risk-free rate. The sample is all U.S.
institutional prime MMFs continuously active from 1/1/2002 to 8/31/2008 (n = 85). The
regression is run over the Pre period (01/2006–07/2007), and data are monthly (T = 19).
The dependent variables are: the percentage of bank obligations (i.e., the riskiest asset class
over the whole period) net of safe assets (i.e., U.S. treasuries, GSE debt, and repos) in a fund’s
portfolio (Holdings Risk) in column (1); the percentage of each month’s riskiest asset class
net of safe assets in a fund’s portfolio (Holdings Riskdyn) in column (2); average portfolio
maturity (Maturity Risk) in days in column (3); and the percentage of safe assets in a fund’s
portfolio (Safe Holdings) in column (4). For a detailed discussion of Holdings Riskdyn, see
Section 5.1 and Appendix C. The risk premium rp is the index of spreads available to MMFs
defined by equation (5) in percentage points. The risk-free rate rft is the 1-month T-bill rate
in percentage points. High (Low) FBi is a dummy equal to 1 if fund i’s FundBusiness
is always above (below) the cross-sectional median throughout the period, and 0 otherwise.
Fund Business is the share of mutual fund assets other than institutional prime MMFs in
the sponsor’s total mutual fund assets. Controls are: fund size, expense ratio, fund age,
fund family size, and Fund Business. All regressions include fund fixed effects. Standard
errors are HACSC robust from Driscoll and Kraay (1998) with 8-month lag. ***, **, *
represent 1%, 5%, and 10% statistical significance, respectively. The corresponding critical
values from fixed-b asymptotics for the t-statistics are roughly 4.62, 3.29, and 2.66. For the
Wald statistics they are roughly 20.61, 9.90, and 6.39.
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(1) (2) (3) (4)

Holdings Riski,t Holdings Risk
dyn
i,t Maturity Riski,t Safe Holdingsi,t

rpt −2.411∗ −2.723 −0.684 2.244∗

(0.651) (1.041) (0.989) (0.611)
rpt ∗ Low FBi 4.598∗ 6.325 2.756 −3.401∗∗

(1.237) (2.202) (1.145) (0.832)
rpt ∗High FBi −0.145 1.617 −2.444∗ −0.628

(0.562) (0.794) (0.691) (0.686)
rft 5.175 7.551 −19.386∗∗∗ −2.890

(2.334) (5.930) (3.041) (2.457)
rft ∗ Low FBi −11.545 −9.936 −1.442 −1.963

(3.528) (3.435) (3.352) (1.809)
rft ∗High FBi 22.239∗∗∗ 17.508∗ 12.802 −18.165∗∗∗

(3.301) (5.058) (4.599) (1.293)
Fund Businessi,t−1 −5.215 −6.382 −16.497 2.457

(10.100) (8.638) (7.889) (5.334)
Controlsi,t−1 Y Y Y Y
Fund Fixed Effects Y Y Y Y
Observations 1,020 1,020 1,020 1,020
Adj. R2 (within) 0.071 0.067 0.068 0.075
R2 (overall) 0.793 0.807 0.685 0.796
βrp + βLrp 2.187∗ 3.602∗ 2.072 −1.157∗

βrp + βHrp −2.556∗ −1.106 −3.128∗∗ 1.616
βrf + βLrf −6.370 −2.385 −20.828∗∗∗ −4.853∗∗

βrf + βHrf 27.414∗∗∗ 25.059∗∗ −6.584 −21.055∗∗∗

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IA.6.10: Reach for yield: risk premium vs. risk-free rate. The sample is all U.S.
institutional prime MMFs continuously active from 1/1/2002 to 8/31/2008 (n = 85). The
regression is run over the Post period (08/2007–08/2008), and data are monthly (T = 13).
The dependent variables are: the percentage of bank obligations (i.e., the riskiest asset class
over the whole period) net of safe assets (i.e., U.S. treasuries, GSE debt, and repos) in a fund’s
portfolio (Holdings Risk) in column (1); the percentage of each month’s riskiest asset class
net of safe assets in a fund’s portfolio (Holdings Riskdyn) in column (2); average portfolio
maturity (Maturity Risk) in days in column (3); and the percentage of safe assets in a fund’s
portfolio (Safe Holdings) in column (4). For a detailed discussion of Holdings Riskdyn, see
Section 5.1 and Appendix C. The risk premium rp is the index of spreads available to MMFs
defined by equation (5) in percentage points. The risk-free rate rft is the 1-month T-bill rate
in percentage points. High (Low) FBi is a dummy equal to 1 if fund i’s FundBusiness
is always above (below) the cross-sectional median throughout the period, and 0 otherwise.
Fund Business is the share of mutual fund assets other than institutional prime MMFs in
the sponsor’s total mutual fund assets. Controls are: fund size, expense ratio, fund age,
fund family size, and Fund Business. All regressions include fund fixed effects. Standard
errors are HACSC robust from Driscoll and Kraay (1998) with 8-month lag. ***, **, *
represent 1%, 5%, and 10% statistical significance, respectively. The corresponding critical
values from fixed-b asymptotics for the t-statistics are roughly 5.25, 3.94, and 3.28. For the
Wald statistics they are roughly 23.09, 12.24, and 8.30.
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