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Abstract 

 
The U.S. federal government enacted fuel efficiency standards for medium and heavy trucks for 

the first time in September 2011. Rationales for using this policy tool typically depend upon 

frictions existing in the marketplace or consumers being myopic, such that vehicle purchasers 

undervalue the future fuel savings from increased fuel efficiency. We measure by how much 

long-haul truck owners undervalue future fuel savings by employing recent advances to the 

classic hedonic approach to estimate the distribution of willingness-to-pay for fuel efficiency. 

We find significant heterogeneity in truck owners’ willingness-to-pay for fuel efficiency, with the 

elasticity of fuel efficiency to price ranging from 0.51 at the 10th percentile to 1.33 at the 90th 

percentile, and an average of 0.91. Combining these results with estimates of future fuel savings 

from increases in fuel efficiency, we find that long-haul truck owners’ willingness-to-pay for a 

1 percent increase in fuel efficiency is, on average, just 29.5 percent of the expected future fuel 

savings. These results suggest that introducing fuel efficiency standards for heavy trucks might be 

an effective policy tool to raise medium and heavy trucks’ fuel economy. 
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1 Introduction

In September 2011, the U.S. federal government set fuel efficiency standards for medium and heavy
trucks for the first time, and in June 2015, the National Highway Transportation and Safety Ad-
ministration (NHTSA) and the Environmental Protection Agency (EPA) proposed a second round
of standards.1 The motivation for these policy interventions is to reduce air pollution and other
negative externalities associated with the use of medium and heavy trucks, similar to the arguments
made to set fuel efficiency standards for passenger cars.

The effectiveness of using fuel efficiency standards to reduce negative externalities is an open
question (Parry et al., 2007). In particular, some economists argue that fuel taxes are more effective
at reducing air pollution (e.g., see West and Williams III (2005) and references therein). As a result,
the motivation for mandating fuel efficiency standards often relies upon the existence of marketplace
frictions or consumer myopia, both of which can lead to vehicle purchasers undervaluing future fuel
savings and vehicle producers under-investing in technologies that improve fuel efficiency.

In presenting the new regulations, the NHTSA and the EPA made the case that the current
adoption of fuel savings technologies is inefficiently low by arguing that there are technologies
available for which the cost of adoption is lower than the expected discounted value of future fuel
savings (NHTSA-EPA, 2015). Further, for both the 2011 standards and the proposed 2015 stan-
dards, the agencies emphasized that the anticipated fuel savings from meeting these standards is
(much) greater than the expected costs.2

The NHTSA and the EPA then motivate why there might be inefficienct adoption of fuel savings
technologies by listing a number of potential reasons why medium and heavy truck owners might
undervalue future fuel savings. For example, imperfect information among truck owners about the
effectiveness of potential fuel efficiency technologies could make owners unwilling to purchase
these technologies. Alternatively, truck owners may be myopic with respect to future fuel costs and
therefore unwilling to pay upfront for a technology that delivers fuel savings in the future. Finally,
agency problems may exist whereby the firms that purchase the trucks do not always pay the fuel
costs, and drivers are not rewarded for operating in a fuel-efficient manner (e.g., see Vernon and

1For details on the proposed 2015 rulemaking, see http://www.epa.gov/oms/climate/regs-heavy-duty.htm.
2For example, the NHTSA and the EPA argue that the typical buyer of a new long-haul truck in 2027 (when the

second set of proposed standards are fully phased in) will recoup the extra costs of the fuel efficiency technologies in
under 2 years (see the NHTSA-EPA June 2015 press release at http://www.epa.gov/otaq/climate/documents/
420f15900.pdf).
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Meier (2012)).
As a first step toward understanding whether the new fuel efficiency standards for medium and

heavy trucks might be an effective policy instrument, we look for evidence that truck owners under-
value future fuel savings from increased fuel efficiency. Rather than consider all medium and heavy
trucks, we focus on class 8 long-haul trucks, which are the large truck-tractors used on highways
that specialize in hauling cargo long distances. We do so because fuel efficiency is a main cost for
owners of these vehicles and so should be a characteristic to which they are attuned.3 Consequently,
a long-haul truck’s fuel efficiency should be reflected in its price. Although these trucks are not
representative of medium and heavy trucks, long-haul trucks, which are a major part of the national
transportation system for freight, disproportionately account for fuel consumption in the medium
and heavy truck segment because of their high annual miles traveled and heavy payloads.4 Thus,
the overall effectiveness of fuel economy standards depends, in large part, on the long-haul truck
market. In addition, long-haul trucks are clearly defined in the data and contain a relatively small
number of producers and products, which facilitates our market analysis. Lastly, there exist de-
tailed data on the stock and value of used long-haul trucks that enables us to perform our empirical
analysis.

We use data from two sources. The Census Bureau’s Vehicle Inventory and Use Survey (VIUS)
provides information on the stock and characteristics of all medium and heavy trucks registered in
the United States. These data provide an extraordinary amount of information on trucks, with survey
respondents, i.e. truck owners, answering questions on the physical and operational characteristics
of their truck.5 We use the reported truck characteristics both to identify class 8 long-haul trucks
in the VIUS and to merge information on used truck prices from the Truck Blue Book. The end
result of this merger is a data set on the equilibrium price and quantity for a representative sample
of long-haul trucks registered in the United States. We have merged the VIUS and Truck Blue Book
prices for 1992 and 1997. Our results focus on 1992, although we show the results are robust to
using the 1997 data.

3For example, Torrey IV and Murray (2014) (page 6) report that fuel costs are “one of the top two cost centers for
motor carriers.”

4The NHTSA and the EPA report that class 7 and class 8 trucks account for 65 percent of fuel consumption in the
heavy-duty sector (NHTSA-EPA (2011), page 11).

5These data have been used to study a variety of empirical questions, e.g., productivity (Hubbard, 2003), technology
adoption and governance (Baker and Hubbard, 2004), and merger analysis which takes into account the entry and exit
of products (Wollmann, 2014).
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We use these data to estimate truck owners’ willingness-to-pay for truck characteristics, em-
ploying recent advances to the hedonic approach laid out in Bajari and Benkard (2005). Their ap-
proach allows the econometrician to recover willingness-to-pay in an environment with imperfect
competition and a product characteristic that is unobserved (by the econometrician); both of these
features are present in the heavy truck market. We employ a local quadratic method to infer truck
owners’ willingness-to-pay for four continuous characteristics—miles-per-gallon (MPG), lifetime
miles, engine size, and the truck’s weight when empty—while controlling for a number of fixed
effects. This method allows us to recover nonparametrically the distribution of willingness-to-pay
for each continuous characteristic.

Our estimates of these distributions have the expected signs in that almost all truck owners neg-
atively value lifetime miles and positively value engine size, empty weight, and MPG. In particular,
we find that the mean elasticity of MPG to price is 0.91, or that on average a truck owner is willing
to pay 0.91 percent of his truck’s price for a 1 percent increase in MPG, holding all else equal. The
10th and 90th percentiles of this distribution are 0.51 and 1.33, demonstrating that there is a wide
range of tastes for fuel efficiency among truck owners.

To determine whether long-haul truck owners undervalue expected savings from fuel efficiency,
we need to compute the discounted future savings from a 1 percent increase in MPG. These savings
vary across trucks, depending upon their characteristics (such as current age and fuel efficiency).
We then compare these estimated savings with our estimates of willingness-to-pay by looking at the
ratio of WTP for a 1 percent increase in fuel efficiency over the expected future fuel savings from
a 1 percent increase in fuel efficiency, for each truck owner. We find that the mean of this ratio is
29.5 percent, which means that trucks owners are willing to pay only 29.5 cents today for a dollar
in expected fuel savings (in net present value terms). The average truck owner then, undervalues
the discounted future savings from increased fuel efficiency. There is substantial variation in this
measure across truck owners; the distribution of the ratio of the willingness-to-pay over future
fuel savings ranges from 8.8 percent at the 10th percentile to 54.5 percent at the 90th percentile.
The main result of this paper, then, is that almost all long-haul truck owners undervalue expected
lifetime fuel savings, which in turn suggests that imposing fuel efficiency standards could be an
effective policy tool to raise the fuel economy of long-haul trucks.

A second set of results evaluates the willingness of new truck owners to adopt a suite of tech-
nologies that would dramatically improve fuel efficiency. The NHTSA and the EPA argue that
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technologies exist today that make it feasible for heavy duty engine and truck manufacturers to pro-
duce trucks which meet the fuel efficiency targets mandated in the 2011 final ruling. A concrete
example is provided by the SuperTruck program, a government-sponsored research project whose
goal is to demonstrate that a 50 percent improvement in fuel efficiency for class 8 long-haul trucks
is feasible. The final report of the SuperTruck program provides tables on both the expected fuel
efficiency gains from introducing two different sets of innovations as well as the incremental costs
of both packages of innovations.6 The first set of innovations is predicted to increase MPG of a
current truck-tractor model by 65.3 percent, at the cost of raising the price of the truck by 26.6 per-
cent. The second set of innovations provides better fuel efficiency, increasing MPG by 69.8 percent,
but at a much higher cost of a 51.0 percent increase over the current truck price. Using this infor-
mation and our estimates of willingness to pay, we can calculate the fraction of long-haul truckers
purchasing (almost) new trucks for which the willingness-to-pay for fuel efficiency is higher than
the incremental costs. We find that 93.6 percent of these long-haul truck owners would be willing to
adopt the first set of innovations, and 80.9 percent of owners would be willing to adopt the second
set. These results are encouraging then, in that the model predicts that a strong majority of new long
haul truck owners, despite their undervaluation of future fuel savings, would be willing to bear the
costs of adopting the SuperTruck set of fuel efficiency innovations.

From a policy perspective, a caveat of our results is that our analysis is based on prices and
quantities in 1992 whereas the new fuel efficiency standards are being introduced in 2015, more
than twenty years later. Our results, however, are based on the structural parameters of the truck
owners’ problem, and it is not unusual to assume that deep parameters do not change over periods
of this length. Furthermore, in the robustness section we demonstrate that our results also hold
using 1997 data.7 Nevertheless, if it were the case that there have been substantial changes in the
long-haul trucking industry, our results should be viewed with the appropriate amount of skepticism.

Our contribution to the literature on evaluating the effectiveness of fuel efficiency standards is
twofold. First, we focus on class 8 long-haul trucks whereas previous work analyzed automobiles
and light trucks, as U.S. fuel efficiency standards applied to only this subset of vehicles prior to

6The SuperTruck final report can be found on the Department of Transportation’s website, at http://www.
transportation.anl.gov/pdfs/TA/903.PDF.

7The VIUS was last conducted in 2002. However, as explained in section 3.1, we merge the VIUS data with the
Truck Blue Book prices using a 2-digit VIN. The Census Bureau provided us with a special tabulation of the 2-digit VIN
for each truck in the 1992 and 1997 VIUS, but declined our follow-up request for the same information from the 2002
VIUS.
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2011.8 However, the recent expansion of fuel efficiency standards to medium and heavy trucks
raises similar questions about the effectiveness of this policy. To the best of our knowledge, this pa-
per is the first to formally test whether long-haul truckers undervalue the expected future discounted
gains from increased fuel efficiency. Our main result—that these truckers considerably undervalue
future fuel savings—suggests that fuel efficiency standards could be effective tools when applied to
long-haul trucks.9

The second contribution of our paper is our econometric approach, which has not yet been used
in this literature.10 We use a technique that has the advantage of allowing us to nonparametrically re-
cover the distribution of willingness-to-pay in the population. Specifically, we use a local quadratic
method to estimate long-haul truck owners’ willingness to pay for fuel efficiency (and other char-
acteristics). We then aggregate these estimates across truck owners to arrive at an estimate of the
distribution in the population. Allowing for heterogeniety is recognized as an important feature
when estimating demand for products generally (e.g., see the beginning of section 1 in Ackerberg
et al. (2007)). Further, for the specific case of estimating willingness to pay for fuel efficiency,
Bento et al. (2012) and Grigolon et al. (2014) argue that it is crucial to account for heterogeneity
among consumers.

In the literature focused on fuel efficiency, there are empirical papers that allow for heterogeneity
in consumer tastes; for example, Goldberg (1998) and Grigolon et al. (2014) estimate discrete-
choice models with random coefficients. These approaches, however, require both an assumption
about the distribution of willingness-to-pay and a panel data set.11 With our approach, we can
recover the willingness-to-pay distribution nonparametrically, and we can do so using only a cross-
section of data.

As discussed in more detail in section 2, a main identifying assumption we make is that a
truck’s unobserved characteristic is independent of the truck’s other (observed) characteristics. This
assumption is slightly stronger than the mean independence assumption that is commonly used in

8Parry et al. (2007) and Helfand and Wolverton (2011) provide recent reviews of this literature.
9Leard et al. (2015) also consider how effective are the introduction of medium and heavy truck emissions standards.

But they focus on estimating the rebound effect for these trucks and interpreting how their result changes the estimated
long-run benefits from introducing the emissions standards.

10In a search of the empirical literature, we have found only three instances of published articles that implement this
technique: Bajari and Kahn (2005), Koster et al. (2014), and Thomassen (2014).

11Researchers typically assume that willingness-to-pay, or tastes for characteristics, are drawn from a Gaussian dis-
tribution. These models can also be estimated with data on several markets (e.g. cities) at one point in time.
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the empirical industrial organization literature.12 Nevertheless, we argue later in the paper that this
assumption is reasonable when considering the market for long-haul trucks. Further, we note here
that one of many differences between our approach and some of the reduced form papers in this
literature, is that the latter have been able to estimate consumers’ willingness to pay under weaker
identification assumptions, albeit with greater data demands. (See, in particular, Allcott and Wozny
(2014) and Busse et al. (2013).)

In the next section, we introduce our model, and in section 3 we describe the data. Section 4
presents our empirical approach and the results on truckers’ willingness-to-pay for fuel efficiency
and other characteristics. In section 5, we compare the willingness-to-pay estimates for fuel ef-
ficiency against our measures of the expected discounted lifetime savings from increased fuel ef-
ficiency. This comparison reveals by how much truckers’ undervalue expected discounted fuel
savings. Section 6 concludes.

2 Model

In this section, we present our model of demand for purchasing long-haul trucks.13 A long-haul
truck is described by two types of attributes: physical attributes observed by both truck owners and
the econometrician and a scalar characteristic which is observed only by truck purchasers. The
physical characteristics used in our analysis include four continuous characteristics and a set of
dummy variables that account for the truck manufacturer as well as the truck cab design. The con-
tinuous characteristics are MPG, lifetime miles, engine size (measured by cubic inch displacement),
and empty weight (measured in pounds). By its nature, the unobserved characteristic is difficult to
describe, but likely reflects a hard to measure attribute such as quality.

Following the notation of Bajari and Benkard (2005), let j ∈ J index the trucks and i ∈ I index
truck owners. Suppose x j denotes a 1×K vector of physical characteristics, p j is the price of the
truck, and ξ j is the unobserved characteristic. A truck owner i maximizes utility by selecting a

12For example, Berry et al. (1995) and most models utilizing their estimation method assume that the unobserved
characteristic is mean independent of the observed characteristics. See Bajari and Benkard (2005) for a detailed com-
parison of these two econometric approaches.

13Because we are using a technique from the random utility model literature, we talk about the truck owner’s utility.
However, the truck owner could equivalently be choosing among the many alternatives with the goal of maximizing
profits.
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product j as well as a composite good c ∈R+. Truck owners have income yi. Normalizing the price
of c to 1, the truck owner’s maximization problem is

max
( j,c)

ui(x j,ξ j,c)

subject to p j + c≤ yi.

Under fairly general conditions on ui, Bajari and Benkard (2005) prove there is an equilib-
rium price function p̃(x,ξ j) which maps the set of product characteristics to prices and satisfies
p j = p̃(x j,ξ j) for all j = 1, . . . ,J for a specific market and point in time.14 They also show that
the unobserved characteristics can be be identified using a single cross-section: If (p,x,ξ) are dis-
tributed jointly with cumulative distribution function F(p,x,ξ), then the unobserved characteristics
ξ j are equal to the conditional cumulative distribution function of the prices,

ξ j = Fp|x=xj(p j). (1)

To identify the price function and the unobserved characteristics, we assume ξ is independent of
x. An interpretation of this assumption is that the location of trucks in the observed characteristic
space is exogenous to ξ, or at least determined prior to the revelation of consumers’ willingness-
to-pay for ξ. This assumption is reasonable because truck and engine re-designs, which involve
substantial R&D, are often done every several years whereas ξ can vary on a more frequent basis.15

Because we observe a single cross-section of truck owners, identification requires us to specify
ui; we make the fairly standard assumption that

ui j = βi jx j +βiξξ j + c, (2)

where we use the log of the continuous characteristics: MPG, lifetime miles, engine size, and empty
weight.

A final assumption is that the choice set is continuous. Then, given an interior solution, the first

14The conditions are that (a) ui is continuously differentiable in c and strictly increasing in c with du
dc > ε for some

ε > 0 and all c ∈ (0,yi); (b) ui is Lipschitz continuous in (x j,ξ j); (c) ui is strictly increasing in ξ j.
15The unobserved characteristic may be influenced by marketing campaigns, for example.
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order conditions imply

βik = x jk
d p̃

dx jk
, (3)

where k indexes the four continuous characteristics. As detailed in section 4, the empirical chal-
lenge is to obtain estimates of βik, the random coefficients, by estimating the derivative of the price
function. According to our model, βik represent truck owners’ willingness-to-pay for a MPG, life-
time miles, engine size, and empty weight. The estimates of willingness-to-pay for MPG is a key
component of our answer to whether truck owners undervalue the expected discounted gains from
fuel efficiency.

3 Data

With the model and its assumptions in mind, in this section we describe the data. We first explain
how we construct the data and then present summary statistics.

3.1 Origin of the data

The data we use is a compilation of two datasets, the Census Bureau’s VIUS and the Truck Blue
Book.16 The VIUS was a survey conducted every five years in order to track the stock of trucks
operating in the United States. (The survey was discontinued after 2002.) The Census Bureau
surveyed the owners of a random sample of trucks registered or licensed in the United States as
of July 1st of the survey year and recorded both physical and operational characteristics of the
sampled truck. A few of the many characteristics in the VIUS are make and model-year of the
truck, the vehicle identification number (VIN), fuel mileage, and lifetime miles. This survey, then,
provides a detailed look at the stock of trucks every five years.

From the VIUS data on the stock of all trucks in 1992, we extracted a subset that fit our defini-
tion of long-haul trucks, or trucks designed for long-distance hauling. Based on conversations with
industry analysts and a review of the trade press, we developed a list of criteria that trucks would

16Prior to 1997, the Census survey was known as the Truck Inventory and Use Survey. See https://www.census.
gov/svsd/www/vius/products.html for more information. The Truck Blue Book is currently published by Primedia.
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need to satisfy in order to be classified as a long-haul truck. First, we eliminated any truck that
is not a truck-tractor. Truck-tractors are trucks designed to pull trailers, a necessary requirement
for long-distance hauling. This restriction reduced the size of the sample from 123,641 observa-
tions to 42,108, as observations on pickup trucks and other medium trucks (e.g., straight trucks or
‘box’ trucks) were eliminated. This subset, however, still contained trucks that clearly were not
used to haul goods over highways. For example, trucks that were extensively used off-road or had
a body type incompatible with long-distance hauling (e.g., utility truck) remained in the sample.
Consequently, we further refined the set of truck-tractors by only including those that satisfied the
following criteria:

1. Have three axles

2. Have either a conventional or cabin-over-engine design

3. Have a diesel engine and air brakes

4. Do not spend most of their time off-road

5. Fit a list of body types17

The first restriction mainly eliminated truck-tractors with two axles; these trucks are limited by
how much cargo they can pull, and they serve a niche market by hauling light loads. Similarly,
this restriction ruled out trucks with four or more axles, which are a subset of trucks catering to a
extremely small niche of firms typically engaged in ‘severe service’ activities. After conditioning
on three axled truck-tractors, almost all trucks fulfilled criteria two and three. These constraints
eliminated a few unusual trucks that are built to serve very particular demands. The fourth require-
ment was a check to make sure that the truck was operated in a manner consistent with long-haul
trucks, whereas the last constraint ensured that the truck in question had a body type consistent
with long-distance hauling. These restrictions slimmed down the dataset, decreasing the number of
observations from 42,108 to 26,668.18 We believe the resulting sample of observations is represen-
tative of the stock of class 8 long-haul trucks in the United States for the 1992 census year.

17The list of body types that were excluded from our refined sample were: pickup, panel or van, multistop or step van,
garbage hauler, concrete mixer, yard tractor, sport utility, station wagon, minivan, and beverage, public utility, winch or
crane, wrecker, service, oilfield and dump trucks.

18A summary of how we filtered the data is provided in table A1 in the appendix.
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Although the VIUS provides a detailed accounting of the stock of long-haul trucks in the U.S.,
it does not provide the prices of these trucks. For this missing information, we turned to the Truck
Blue Book, a comprehensive listing of used truck prices based on their characteristics. From the
publisher, we obtained the October issues of the Truck Blue Book for 1992. We then assigned prices
to trucks in the VIUS based on their recorded characteristics.

A difficulty in merging these two datasets is that the Truck Blue Book uses a different set of
characteristics to describe a truck compared to the VIUS. Beyond more general characteristics such
as make and model-year, it becomes difficult to distinguish trucks with different trim lines (e.g.,
differing engines or gross vehicle weight ratings). A solution to this problem is to use sections of
the truck’s vehicle identification number (VIN) as a link between the two data sources. The Truck
Blue Book provides a portion of each truck’s VIN. The VIUS collects, but does not publish the
VIN. However, we were able to obtain a portion of the VINs for 1992 from the Census Bureau that
revealed no confidential information.

The 1992 price data covers used trucks up to 8 years of age, which left us without prices for the
oldest long-haul trucks. Using the sample weights, these older trucks accounted for 29 percent of
the stock of long-haul trucks. Due to the lack of price data, we dropped these older trucks from our
analysis. To merge the newer trucks with prices, we first aggregated the VIUS data to the make,
model year, cabin type, and 2-digit VIN level. We then merged these data with the price data at this
level of detail, resulting in a 75 percent match rate. For the trucks for which we could not find a
match, we further aggregated up these observations to the make, model year, cabin type, and 1-digit
VIN level, and matched them against our price data. This resulted in an additional 16 percent trucks
being matched. The remainder of trucks were aggregated up to the make, model year, and cabin
type level and matched to prices. In the end, the final dataset used for analysis has 629 observations.

Although we focus on 1992, we also merged the 1997 VIUS with the Truck Blue Book for
October 1997 and used these data to check the robustness of our results. We merged these datasets
using the method described above, in particular relying upon a 2-digit VIN acquired as a special
tabulation from the Census Bureau.19 The percent of observations matched using 2, 1 or no VIN
digits for the 1997 data closely mimics what we observed for the 1992 data. The final 1997 dataset
used for our robustness check has 510 observations.

19Details of the how the various filters reduced the size of the 1997 VIUS data are provided in table A1 in the
Appendix.
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3.2 Data description

This work focuses on seven truck characteristics: make, model-year, cabin type (i.e., conventional
or cab-over-engine), engine size, weight when empty (a.k.a. empty weight), lifetime miles, and
MPG. Using the VIUS, we identified the major brands that produce trucks-tractors in the United
States, and we used industry information to consolidate brands that belonged to the same firm. In
the end, we used six brands in our analysis: International, Kenworth, Mack, Peterbilt, Freightliner,
and Ford. Freightliner is an agglomeration of brands including Freightliner, GMC/Chevy, White,
and White GMC. Ford is also an agglomeration, including Ford, Autocar, Marmon, Scania, Volvo,
and Western Star.

In the United States, conventional cabins are the dominant design, making up 74 percent of our
sample. The cab-over-engine design was more popular in the past, and in our sample the fraction of
cab-over-engine trucks increases with vintage; e.g., conventional trucks make up only 52 percent of
vintage 8 trucks.20

Statistics describing the distribution of the 4 continuous characteristics are reported in table 1.
Engine size is measured by the displacement of the engine in cubic inches, and survey respondents
pick a rating bin which covers a range of 100 cubic inches. A rating of 18 corresponds to a dis-
placement of 700 to 800 cubic inches, and the top range is 1001 cubic inches and above. (For
comparison, the 2004 Honda Odyssey EX minivan had a displacement of just under 212 cubic
inches.) The empty weight of a truck is measured in pounds, lifetime mileage is in miles, and MPG
is the miles per gallon that the truck averaged in the survey year. As table 1 demonstrates, there is
substantial variation across trucks in these four characteristics.

A central assumption of our model is that the product space is approximately continuous in the
variables of interest, which are the four continuous characteristics. To provide a measure of how
close trucks are in terms of their characteristics, we compute a nearest neighbor statistic. We then
plot this statistic in figures 1 through 4 for each of the continuous characteristics. For MPG, the
nearest neighbor is, on average, 0.0008 miles-per-gallon away. There are, of course, trucks on the
edge of the product space that do not have close neighbors. For example, there were three trucks

20Cabin-over-engine designs were popular in the past because there existed regulations that restricted the length
of the truck, where length was measured from the front bumper of the truck-tractor to back bumper of the trailer.
By construction, the cabin-over-engine truck-tractors are shorter than the conventional cabins. In 1982, the federal
government changed the regulation, and the length measurement focused on the trailer (and so excluded the truck-
tractor).
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Table 1: Long-haul truck characteristics
Percentiles

Mean SD 10th 25th 50th 75th 90th
MPG 5.69 4.46 5.00 5.30 5.63 5.97 6.32
Lifetime miles 393,332 174,846 120,000 223,931 366,873 507,375 609,519
Engine size 18.0 1.3 13.4 16.6 18.1 18.9 19
Empty weight 29,417 2,713 24,063 27,161 29,320 31,269 34,000

Note: MPG is miles per gallon and SD is standard deviation. The mean and standard deviation statistics were computed
using the VIUS sample weights. Engine size is a displacement of the engine in cubic inches and is a categorical variable.
A rating of 18 corresponds to a displacement of 700 to 800 cubic inches, and the top range is 1001 cubic inches and
above. Empty weight is measured in pounds, and lifetime miles is in miles.

with less than 4 MPG, and a handful above 8 MPG. But these products are a tiny part of the sample
and do not meaningfully affect our empirical results.

For lifetime miles, the median distance of the nearest-neighbor is 337 miles and for empty
weight this statistic is 5 pounds. Both of these results suggest that the product space is approximately
continuous in these characteristics. Of the four characteristics, engine size is potentially the most
problematic because it is a categorical variable. The discrete nature of this variable is smoothed
out, however, when aggregating trucks in the VIUS in order to be able to merge the price data
(as described in section 3.1). Although there are bunching of trucks in the highest engine size,
figure 3 displays what looks to be sufficient continuity along this characteristic. Indeed, the median
nearest-neighbor statistic for engine size is 0.0008.

Turning to prices, we find substantial variation in prices across trucks. Indeed, there is a large
decline in prices across vintages; vintage 0 long-haul trucks (i.e., trucks less than 1 year old) have
a median price of $48,875 and vintage 8 trucks (i.e., trucks that are 8 years old) have a price of
$8,412 (see figure 5). Further, within each vintage there is a wide range of prices, as illustrated by
the large inter-quartile ranges displayed in figure 5. For example, the inter-quartile range is greater
than $5,000 for vintage 0 trucks, which is greater than 10 percent of the median price.

Finally, to provide an overview of how these characteristics and price are related, we compute
the correlations in the data among our continuous truck characteristics and price (see table 2). We
find the correlations between price and each continuous variable are statistically significant. The
lifetime miles and MPG are negatively correlated most likely because of technological progress; in
our sample, average MPG increases as vintage decreases (i.e. as trucks get newer). The negative
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Figure 1: Miles per gallon
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Figure 2: Lifetime miles
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Figure 3: Engine size
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Figure 4: Empty weight
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Note: For each truck, the distance to the nearest neighbor is computed for the four continuous characteristics. For each
of these characteristics, this nearest-neighbor statistic is then plotted for each truck on a log-scale.

correlation between empty weight and MPG is likely driven by the fact making a truck lighter will
increase its MPG, all else equal.

4 Empirics

4.1 Estimation

In order to recover truck owners’ willingness to pay, we need to estimate the price hedonic and,
more importantly, its derivatives (see equation 3). We accomplish this by using the data on truck
prices and characteristics to estimate the conditional density of the price function, denoted g(p|x j),
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Figure 5: Price distribution by vintage
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Note: A box-and-whiskers chart is displayed for each vintage. The upper, middle, and lower horizontal lines of the box
portion correspond to the 75th, 50th, and 25th percentiles, respectively, of the price distribution of a given vintage. Let
q1 and q3 denote the 25th and 75th quartile values, respectively. Then the upper most horizontal line, or whisker, is
equal to q3 + 1.5(q3− q1) and the lower most horizontal line is equal to q1− 1.5(q3− q1). Finally, the plus symbols
denote outliers, or are all points which lie above the upper whisker or below the lower whisker.

Table 2: Correlations between variables
Price MPG Lifetime miles Engine Size Empty weight

Price 1.00
MPG 0.17∗∗∗ 1.00
Lifetime miles −0.70∗∗∗ −0.16∗∗∗ 1.00
Engine size −0.08∗ 0.038 0.07 1.00
Empty weight 0.11∗∗ −0.13∗∗∗ −0.005 0.003 1.00

Note: MPG is miles per gallon. Reported are Pearson correlation coefficients. The superscripts ***, **, * denote
statistical significance at the 99, 95, and 90 percent confidence levels.
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and its derivatives for every truck j in our sample. (Recall that p is price and x j is a K× 1 vector
of characteristics.) To see the connection between the derivatives of the price hedonic and of the
conditional density, note that

p(x j,ξ j) =
∫

pg(p|x j)d p.

Then taking advantage of linearity, we have

∂p j(xj,ξ j)

∂x j,k
=

∂

∂x j,k

∫
p ·g(p|x j)d p,=

∫
p ·

∂g(p|x j)

∂x j,k
d p, (4)

where k denotes an element (a specific characteristic) in x j.
To impose as little parametric structure as possible, we estimate the conditional density of the

price function and its derivatives using the local quadratic methods detailed in Fan and Gijbels
(1996) and Fan et al. (1996). We can estimate g(p|x j) using a nonparameteric regression technique,
because as h→ 0,

E
[

Kh(p j− p)|x j

]
≈ g(p|x j), (5)

where K is a kernel density function, h is the bandwidth, and we define the scaled kernel Kh(x) ≡
1
hK(x/h). Using Taylor’s expansion, we know that for an x0 in the neighborhood of x j

E
[

Kh(p j− p)|x j

]
≈ g(p|x j)+

dg(p|x j)

dx j

T

(x0−x j)+
1
2
(x0−x j)

T H(x0−x j), (6)

where H is the Hessian matrix of g(p|x j) with respect to x j, and the superscript T denotes the
transpose. Fan et al. (1996) redefine the right hand side as

α j +λ
T
j (x0−x j)+ γ

T
j vech

(
(x0−x j)(x0−x j)

T) , (7)

where vech(X) is the vectorization of the lower triangular portion of X and α j ∈ R,λ j ∈ RK,γ j ∈
RK(K+1)/2. They then show that (α j,λ j,γ j) can be estimated for every truck j by solving the
weighted least squares problem

min
α j,λ j,γ j

J

∑
n=1

{
Kh(pn− p)−α j−λ

T
j (xn−x j)− γ

T
j vech

(
(x0−x j)(x0−x j)

T)}2
KB(xn−x j), (8)
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where KB is a multivariate kernel weighting function with bandwidth matrix B such that KB(u) =
(1/|B|)K(||B−1u||).21 Our focus is on the price derivatives and so on the estimate of λ j. Never-
theless, we include the higher-order terms in the minimization problem to reduce the bias of the
estimator.22 Further, if we wanted to recover estimates of the unobservable characteristics ξ j for
each truck, we could do so by computing the sample analog to equation (1), or

ξ̂ j =
∫

p<p j

g(p|x j)d p =
∫

p<p j

α j(p)d p. (9)

In our application, we use the univariate Gaussian kernel K(x) = 1√
2π

e−x2/2 to construct Kh

and KB, and take the bandwidth matrix to be of the form B = hI. Since it is a scalar multiple of
the identity matrix, this means that the smoothing is done along the coordinate axes, and that our
estimator smooths by the same amount in every dimension. To ensure the variables are all on the
same scale, we normalize each of them by its standard deviation for the purposes of computing the
kernel weights.

The selection of the bandwidth parameter is a critical input of our chosen approach. We use
least-squares cross-validation, a data-driven method where we choose a bandwidth that minimizes
the out of sample prediction error over the sample space by estimating the model over sub-samples
that leave out a single observation. Under this approach, the optimal bandwidth parameter is 2.48.
More details on least-squares cross-validation can be found in appendix E.

Because the asymptotic properties of this price estimator do not depend on observing the indi-
vidual firms in anything other than the cross section, we are able to recover estimates of the random
coefficients from a single cross-sectional data set. Moreover, this estimator allows us to flexibly
estimate the price hedonic and its derivatives without specifying a particular functional form. Given
our focus on estimating the derivatives of the price hedonic at the observed prices, our method of
estimating the conditional densities and integrating to recover the price hedonic is computationally
equivalent to estimating the price hedonic directly. In appendix D, we provide more details on this
point.

In this application, we use a log transformation of the price in order to estimate the price hedonic,
and report willingness-to-pay as elasticities.

21Note that if u ∈ R1, then this reduces to the scaled kernel Kh since B has only one entry.
22See Racine (2008) for a discussion of bias and nonparametric estimators. See Fan and Gijbels (1996) for a detailed

discussion of bias and local polynominal estimators.
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4.2 Results

We are able to recover the estimates of the willingness-to-pay for each truck owner in our sample
for each of the continuous characteristics: MPG, lifetime miles, engine size, and empty weight.
To generate an estimate of the distribution of willingness-to-pay in the population, we aggregate
across truck owners using the sample weights in the VIUS. The kernel-smoothed distribution of
willingness-to-pay for fuel efficiency, our main object of interest, is plotted in figure 6.23 Our
willingness-to-pay estimates are in terms of elasticities, so a coefficient of 0.6 for MPG means that
a truck owner is willing to pay 0.6 percent of his truck’s price for a 1 percent increase in MPG.
Our estimates have the correct sign in that all, or almost all, truck owners value increases in MPG,
engine size, and weight. Increasing MPG, or fuel efficiency, helps decrease the cost of operating a
truck, and larger engine sizes make it easier to pull heavy loads. All else equal, heavier trucks are
preferred because they are more comfortable to operate as, for example they typically vibrate and
shake less. Further, almost all owners dislike lifetime miles, which provides us with the expected
result that older trucks fetch lower prices.24

The distribution of tastes for fuel efficiency is quite wide, with the 10th and 90th percentiles
of the distribution equal to 0.51 and 1.33 respectively (see table 3 and note that standard errors are
bootstrapped, see appendix E for details). There is also substantial variety in tastes for lifetime
mileage, as the 10th and 90th percentiles are -1.17 and -0.37, respectively.

Turning to engine size, we find that owners are quite sensitive to this measure, as they are willing
to pay, on average, 1.39 percent of their truck’s price for a 1 percent increase in engine size (i.e.
cubic inch displacement). Further, there is wide dispersion in tastes among owners, with those in
the left tail of the distribution hardly willing to pay for increased engine size (at the 10th percentile,
our elasticity estimate is 0.14) whereas those in the right tail have elasticities greater than 2 (at the
90th percentile, our elasticity estimate is 2.72). In contrast, truck owners tastes for empty weight
are more narrowly distributed, with an average elasticity of 0.45.

Returning to the fuel-efficiency estimates, we find that owners of newer vintage trucks have
higher levels of willingness-to-pay for MPG. We illustrate this in figure 7, where we plot the cdf of

23For each graph involving a kernel-smoothed distribution, we computed the optimal bandwidth for the kernel-
smoothing procedure using leave-one-out cross-validation to minimize the mean squared integrated error of the distri-
bution (see appendix E for details).

24In appendix B are the figures illustrating the distribution of willingness-to-pay for lifetime miles, engine size, and
empty weight.
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Figure 6: Distribution of willingness-to-pay for miles per gallon
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Table 3: Willingness-to-pay for truck characteristics (elasticities)

truck mean standard Percentiles
characteristic deviation 10th 25th 50th 75th 90th

Miles per Gallon 0.91 0.39 0.51 0.71 0.95 1.12 1.33
(0.22) (0.09) (0.30) (0.26) (0.24) (0.22) (0.24)

Lifetime Miles -0.85 0.30 -1.17 -1.06 -0.93 -0.68 -0.37
(0.06) (0.06) (0.15) (0.10) (0.06) (0.06) (0.04)

Engine Size 1.39 1.05 0.14 0.82 1.45 2.04 2.72
(0.46) (0.26) (0.27) (0.37) (0.54) (0.66) (0.73)

Empty Weight 0.45 0.25 0.24 0.34 0.49 0.60 0.69
(0.14) (0.06) (0.18) (0.16) (0.15) (0.15) (0.17)

Note: Standard errors are in parenthesis and are computed by bootstrapping.
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Figure 7: Distribution of willingness-to-pay for miles per gallon conditional on vintage purchased
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willingness to pay for MPG conditional on owners having purchased a vintage 0 truck and a vintage
8 truck. From vintage 0 to vintage 8, there is a leftward shift in truckers’ willingness to pay for
MPG, evidenced by the median shifting from being greater than 1 for vintage 0 truck owners to less
than 1 for vintage 8 truck owners.

5 Analysis

In this section, we compare our estimates of willingness to pay for MPG to the expected lifetime
savings of an increase in fuel efficiency. For each truck j in our sample, we compute the expected
discounted fuel savings associated with a 1 percent increase in MPG. These savings vary across
trucks, because they are function of the truck’s characteristics. Formally, we first define expected
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future fuel costs for a truck with mpg j as

FC(mpg j) =
L

∑
v=ν j

δ
(v−ν j)h(ν j,v)

(
m(v,x j)

mpg j

)
d(v−ν j)

where L is the maximum possible lifetime of a truck and δ is the discount rate. The function h(ν j,v)
is the probability that a truck of vintage ν j survives to age v, m(v,x j) is the expected annual mileage
of a truck of vintage v with characteristics x j, and d(x) is the expected price of diesel x years in the
future from 1992. Expected fuel savings from a 1 percent increase in MPG is then just

FS(mpg j) = FC(1.01 ·mpg j)−FC(mpg j). (10)

To compute FS(mpg j) for every truck j, we need to determine (i) trucks’ survival rates, (ii) expected
annual mileage, (iii) the discount rate, and (iv) expected diesel prices.

5.1 Survival rates

We use the Transportation Energy Data Book (Davis et al., 2014) for the survival rates of heavy
trucks and, based on this schedule, set the maximum age of a truck, L, to 30 years.25 These sur-
vival rates are estimated using registration data on heavy trucks following the method outlined in
Greenspan and Cohen (1996).

5.2 Expected annual mileage

To forecast trucks’ expected mileage, we use the detailed VIUS data on class 8 long-haul trucks,
which includes a variable recording annual mileage. This subset of the VIUS contains 26,668 obser-
vations and allows for a detailed analysis of how annual mileage varies with a truck’s characteristics.
In these data, truck age is recorded up to vintage 9; all trucks of vintage 10 and older are recorded
with the same catch-all vintage 10. Further, we find that the annual mileage of the newest trucks,
vintage 0, is unreliable. Annual mileage decreases with vintage except when comparing vintage 0

25The survival rates we use are reported in the Appendix, in table C2.

20



to vintage 1 trucks.26 This unusual feature probably reflects the fact that vintage 0 truck owners
are more likely to own (and so drive) their trucks for less than a year, which makes them more
likely to understate their annual mileage. As such, in our analysis we drop vintage 0 and vintage 10
observations.

We use a regression to estimate how annual mileage varies with truck characteristics. In ad-
dition to fitting the data well, a goal of this approach is to forecast annual mileage out of sample,
because our expected fuel savings measure takes into account the potential for a truck to be oper-
ated for 30 years. We found that a log-log specification performed best. In contrast, the linear and
quadratic specifications we tried, while providing better in-sample fits, consistently predicted nega-
tive annual mileage out-of-sample. Formally, we estimate the following regression using weighted
least-squares:

log(miles j) = θ0 +θ1ν j +θ2 log(mpg j)

+θ3 log(engsize j)+θ4 log(empwt j)+θ5cabtype j +
5

∑
k=1

κk1make j=k + ε j, (11)

where miles j is annual miles, engsize j is engine size, empwt j is empty weight, cabtype j is a dummy
variable equal to 1 for trucks with a conventional cabin type, make j is the brand of truck j, and ε j

is an error term. The variable 1x=y is an indicator function equal to 1 when x = y, and so controls
for brand differences in the above regression. The weights used when estimating the regression are
the VIUS sample weights.

We find the expected result that vintage has a negative impact on annual mileage (see table 4).
Further, there are large differences across brands in terms of mileage. More surprisingly, we find that
the effect of MPG on miles driven, although estimated to be a small positive number, is statistically
insignificant.

The log-log specification provides a reasonable forecast of annual mileage out-of-sample, for
vintages 10 through 30. As a rough check on these predictions, we compare them against the
annual mileage reported by the old trucks in the our data (those trucks for which we only know
that the vintage is greater than 9). Specifically, for these trucks we compute the 10th, 25th, 50th,
75th, and 90th percentiles of the distribution of annual miles. We then predict annual miles out-

26Vintage 0 are 1993 and 1992 model year trucks. Vintage 1 are 1991 model year trucks. This same odd increase in
annual mileage from vintage 0 to vintage 1 is observed in the 1997 VIUS.
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Table 4: Predicting annual mileage, estimated coefficients

Independent Variable Coefficient
Estimate SE

Intercept 10.56 0.17
vintage -0.10 0.00
log(mpg) 0.04 0.03
log(engsize) 0.23 0.05
log(empwt) 0.07 0.02
cabtype -0.11 0.01
International brand 0.23 0.02
Kenworth brand 0.37 0.02
Mack brand 0.02 0.03
Peterbuilt brand 0.39 0.03
Freightliner brand 0.26 0.02

Note: Reported are the estimated coefficients of a regression where the dependent variable is the log of annual mileage.
SE is standard error and Ford is the reference brand. There are 16,864 observations and the R-squared is 0.13.

of-sample for all (the young) trucks in the data used to estimate the regression, supposing these
trucks’ vintage is equal to 10, 11, ... , and 30. We then compute the percentiles of the resulting
distribution of predicted annual miles.27 We emphasize this is a rough check of our out-of-sample
predictions, because truck characteristics are likely to be different across the sets of young and old
trucks. Reassuringly, the distribution of predicted miles is somewhat close to the distribution of
actual miles, at least for the 25th, 50th and 75th percentiles (see table 5). We have confidence then,
that our prediction of annual mileage out-of-sample are reasonable.

5.3 Discount rate

We assume that truck owners’ discount rate is 6 percent. We arrive at this rate by first taking
Moody’s BAA rate as indicative of the rates that owner’s receive when seeking to finance the pur-
chase a truck.28 In 1992, the average nominal rate for a BAA corporate bond was 8.98 percent. This

27To account for the fact that trucks might be scrapped before reaching vintage 30 we use the survival rates described
earlier in this section as weights.

28BAA indicates there is moderate credit risk.
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Table 5: Out-of-sample check on predicted annual mileage (vintages 10+)

Percentiles
10th 25th 50th 75th 90th

Data 3,000 8,000 27,417 52,503 80,000
Predicted 9,755 15,150 24,506 34,832 43,375

Note: Data are trucks with a vintage greater than 9 in the detailed VIUS data set of long-haul trucks. The percentiles
for these trucks’ annual mileage are computed using VIUS sample weights. Predicted are an out-of-sample forecast of
annual miles, given vintages equal to 10, 11, ... , 30. The percentiles of the predicted annual miles are computed using
weights equal to the product of the VIUS sample weights and survival rates.

rate seems reasonable given the average rate in 1992 on 48 month new car loans to households was
9.3 percent.29 Rounding to 9 percent and accounting for the 3 percent rate of inflation in 1992, we
end up with discount rate of 6 percent.30

5.4 Expected diesel prices

Finally, we assume that truck owners view diesel prices as a random walk, and therefore expect
future prices to be equal to the current price.31 Based on a combination of World Bank and Energy
Information Administration (EIA) data on prices, we compute that the average price of diesel per
gallon in the U.S. in 1992 is $1.084.32 In the robustness section, we re-do our analysis assuming that
truck owners have perfect foresight over diesel prices and find that our main results do not change.

5.5 Expected fuel savings

From these data, we compute the expected fuel savings corresponding to a 1 percent increase in fuel
efficiency. In our sample, the expected fuel savings vary considerably, from a minimum of $225 to

29This rate is published by the Board of Governors in their G.19 Consumer Credit report.
30We use the Bureau of Labor Statistics consumer price index for all urban wage earners to calculate the rate of

inflation in 1992.
31Busse et al. (2013) model consumers’ expectations of gasoline prices as following a random walk, based on evi-

dence presented in Anderson et al. (2011).
32The World Bank publishes U.S.diesel prices per liter, which we converted to gallons. The (converted) prices are

$1.060 and $1.022 for 1992 and 1998 respectively. The EIA’s published price in 1998 is $1.044. Applying the percent
change in World Bank prices to the EIA price, we arrive at a diesel price of $1.084 in 1992.
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Table 6: Expected future fuel savings by vintage and MPG (dollars)

Vintage 5 MPG 6 MPG 7 MPG 8 MPG
0 1,341 1,125 970 853
1 1,193 1,001 863 759
2 1,058 888 766 673
3 934 784 676 594
4 820 688 593 522
5 728 611 526 463
6 646 542 467 411
7 574 481 415 365
8 510 428 369 324

Note: MPG is miles per gallon. This table reports the expected future fuel savings of a 1 percent increase in MPG for a
given pair of vintage and MPG, holding all other truck characteristics fixed at their mean values.

a maximum of $1,522. However, 80 percent of truck owners fall between $489 and $1,121, the 10th
and 90th percentiles respectively. To provide a sense of how these savings depend on the MPG and
age of each truck, in table 6 we report our calculations of the expected lifetime savings for specific
vintage and MPG pairs, holding fixed all other truck characteristics at their mean values.

Owners of lower MPG trucks gain the most from an increase in fuel efficiency, because their
total fuel costs are appreciably higher. Similarly, owners of younger trucks can expect higher fuel
savings because they can expect more years of usage over which to accumulate the savings.33

We now combine our calculations of net present value of future fuel savings with our estimates
of willingness to pay. We do this by constructing a ratio were the numerator is a truck owner j’s
WTP for a 1 percent increase in MPG and the denominator is the associated net present value of
future fuel savings for a 1 percent increase in MPG. If this ratio is equal to 1, then a truck owner’s
WTP for future fuel savings is equal to the expected benefits, whereas if this ratio is less than 1,
the truck owner undervalues future fuel savings. We convert this measure into a percent, aggregate
across truck owners using the VIUS sample weights, and graph its (kernel-smoothed) distribution
in figure 8.

33In our analysis, we abstract away from tax considerations. This is because trucking corporations can treat both
fuel costs and fuel-efficiency investments as expenses when calculating their net income for tax purposes. Similarly
owner-operators can deduct both fuel costs and fuel-efficiency investments from their taxes.
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Figure 8: Distribution of truck owners’ valuation of lifetime fuel savings
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Table 7: Summary statistics on truck owners’ valuation of lifetime fuel savings (percent)

mean standard Percentiles
deviation 10th 25th 50th 75th 90th

29.5 19.3 8.8 15.8 27.1 41.9 54.5
(0.1) (0.1) (0.2) (0.2) (0.1) (0.1) (0.2)

Note: Standard errors are in parenthesis and are computed using bootstrapping.

As illustrated in figure 8, truck owners considerably undervalue lifetime fuel efficiency savings.
On average, owners are willing to pay for only 29.5 percent of the lifetime fuel cost savings that
accrue from a 1 percent increase in MPG. At the 90th percentile, owners are willing to pay for 54.5
percent of the lifetime fuel savings and those at the 10th percentile are willing to pay for only 8.8
percent the savings (see table 7).

Another way to view these results is to compute the discount rate at which a truck owner’s
willingness to pay for a 1 percent increase in MPG is equal to the associated lifetime fuel efficiency
savings. We calculate these discount rates across all long-haul truck owners and find that it ranges
from 0.31 to 0.82 (the 10th and 90th percentile, respectively) with a median value of 0.64, which is
markedly higher than the 0.06 that we assumed in section 5.3.

The heterogeneity among truck owners with regard to their willingness to pay for fuel efficiency
is related to their truck’s vintage. In particular, owners of newer trucks have a higher valuation of
future fuel savings than owners of older trucks. We illustrate this point by plotting the cdf of the
distribution of owner’s valuation of future fuel savings conditional on the owners truck being of
vintage 0 and vintage 8 (figure 9).

In comparing these two cdfs, we see that the median vintage 0 truck owner is willing to pay
for about 53 percent of future fuel savings, whereas the median vintage 8 owners is willing to pay
about 9.7 percent. This pattern is reported in Allcott and Wozny (2014) for light vehicles, and
likely reflects usage, in that the average annual mileage of long-haul trucks steadily decreases by
vintage. Whereas vintage 0 trucks are driven more than 100,000 miles in a year, vintage 8 trucks
are driven about 63,000 miles. Because of the difference in willingness-to-pay, the model predicts
that technologies that improve fuel efficiency will be disproportionately incorporated on the newest
trucks.

Another difference across truck owners is that those which own more fuel-efficient trucks have a
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Figure 9: Cdf of vintage 0 and vintage 8 truck owners’ valuation of future fuel savings
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Figure 10: Truck owners’ valuation of future fuel savings by MPG quartile
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higher valuation of future fuel savings. To demonstrate this feature of our results, we divide the set
of truck owners into quartiles, based on the MPG of their truck-tractor. We then plot the distribution
of truckers’ fuel savings valuation for each quartile in figure 10.34 As illustrated in the figure, long-
haul truckers who purchased high MPG trucks have fuel savings valuation closer to 100 percent
relative to those which purchased low MPG trucks.

5.6 Robustness

In this section, we consider the robustness of our main result along two dimensions. We first repeat
our analysis using the 1997 VIUS and October 1997 Truck Blue Book price data. As described at
the end of section 3, we are able to merge these two data sets using the same approach taken for the

34 Rather than showing a strict decomposition of the probability distribution of the valuation ratio, we explicitly re-
estimate the distribution of the valuation ratio for each quartile. As a result, the optimal bandwidths may differ from the
bandwidth chosen for the whole population. This explains why we observe nonzero mass above 80% in the distribution
of some of the quartiles, but not in the distribution for the whole population.
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Table 8: Distribution of undervaluation using different assumptions

Percentiles Mean SD
10th 25th 50th 75th 90th

1992 VIUS 8.8 15.8 27.1 41.9 54.5 29.5 19.3
Benchmark (0.2) (0.2) (0.1) (0.1) (0.2) (0.1) (0.1)
1997 VIUS 2.4 7.5 10.8 15.8 22.9 11.8 8.5

(0.2) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)
Perfect foresight 8.4 15.0 25.6 39.2 51.1 27.7 18.0

(0.2) (0.2) (0.1) (0.1) (0.2) (0.1) (0.1)

Note: Benchmark results are the same as those reported in table 7. 1997 VIUS are the results when using the 1997
VIUS and October 1997 Truck Blue Book prices. Perfect foresight are the results when using realized real diesel prices
from 1992 onward. SD is standard deviation. Standard errors are in parenthesis and are computed using bootstrapping.

1992 data. In repeating our work on the 1997 data sets, we find that long-haul truckers substantially
undervalue future fuel savings, confirming the benchmark 1992 results. In fact, the undervaluation
is larger in 1997, with the average long-haul trucker willing to pay for only 11.8 percent of the
expected future fuel savings associated with a 1 percent increase in MPG (see the second row of
table 8).

We then checked the robustness of the assumption that truckers’ view diesel prices as a ran-
dom walk by recomputing the expected future fuel savings using actual diesel prices. Annual on-
highway diesel prices are published by the Energy Information Administration from 1995 onward
(see table C3 in the appendix). We linearly interpolate prices for 1993 and 1994 and assume a ran-
dom walk for diesel prices after 2014.35 Under this assumption, our main undervalution result still
holds, with the average long-haul trucker willing-to-pay for only 27.7 percent of the expected future
fuel savings from a 1 percent increase in MPG.

5.7 SuperTruck analysis

In the 2011 final ruling announcing the fuel efficiency regulations, the NHTSA and the EPA empha-
sized that heavy truck manufacturers should be able to meet the new fuel efficiency requirements
using already existing technologies. Innovations such as low-resistence tires, better aerodynam-

35Because of discounting, how diesel prices are extrapolated beyond 2014 has little effect on our results.
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ics, and incremental improvements in heavy duty engines can all be used, these agencies argue, to
dramatically improve fuel efficiency.36

The SuperTruck program aptly makes this argument. This research program was funded by the
Argonne National Laboratory and the Department of Energy with the goal of demonstrating the
feasibilty of a 50 percent improvement in fuel efficiency for class 8 long-haul trucks compared with
current models.37 As part of this research program, four teams headed by different truck manufac-
turers modified a long-haul truck with the goal of dramatically increasing its fuel efficiency. The
result from this work are summarized with the presentation of two different technology platforms.
The first increases the truck’s MPG by 65.3 percent for a cost equal to 26.6 percent of the price of a
new truck. The second modification increases MPG by 69.8 percent for a cost equal to 51 percent
of a new truck. The report than makes predictions about truck owners’ willingness to adopt these
new technologies over time.

Given the fuel efficiency benefits and costs of the two SuperTruck technology platforms, our es-
timates of willingness-to-pay provide insight on whether truck owners would adopt either platform.
In particular, using our estimated elasticities, we can compute the fraction of vintage 0 truck owners
that would be willing to pay these costs in order to benefit from the higher fuel efficiency. For the
first SuperTruck platform, a truck owner with an elasticity of 0.407=26.6/65.3 would be indifferent
between adopting or not adopting the technological improvements. For the second modification, the
indifferent truck owner has an elasticity of 0.731. Based on our estimated distribution of willing-
ness to pay for fuel efficiency for vintage 0 truck owners (see figure 7), we find that 93.6 percent of
new heavy truck owners would be willing to pay the costs of the first modification for the increase
fuel efficiency. The second modification would be slightly less popular, with 80.9 percent of new
heavy truck owners willing to pay for the costs associated with the increase in fuel efficiency. Fur-
ther, using a compensating variation approach, we find that all truck owners strictly prefer the first
modification over the second.

Our results are encouraging in that the model predicts that a strong majority of new truck owners
are willing to bear the costs of adopting the fuel-saving innovations proposed by the SuperTruck
program. A caveat with our analysis is our estimates are based on observations recorded in 1992,
more than twenty years ago. Although we do not expect these deep parameters of the truck owner’s

36For detailed arguments, see the Regulatory Impact Analysis report on these regulations jointly published by the EPA
and the NHTSA at http://www.nhtsa.gov/staticfiles/rulemaking/pdf/cafe/Truck_CAFE-GHG_RIA.pdf.

37The final report of this program can be found at http://www.transportation.anl.gov/pdfs/TA/903.PDF.
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problem to vary much with time, it is not unreasonable to worry that these elasticities may have
changed over twenty years.

6 Conclusion

In this paper, we estimate that truck owners of long-haul trucks willingness-to-pay for MPG. We find
there is a wide range in willingness-to-pay across truck owners, with the elasticity of fuel efficiency
to price ranging from 0.51 (10th percentile) to 1.33 (90th percentile). On average, trucks owners
are willing to pay 0.91 percent of their truck price for a one percent increase in MPG. We then
compute the expected lifetime savings from a 1 percent increase in MPG and compare this measure
against truck owners’ willingness-to-pay. Overall, we find that truck owners undervalue future fuel
savings from increased fuel efficiency; on average, owners are willing to pay for only 29.5 percent
of the expected lifetime savings associated with a 1 percent increase in MPG. This low valuation of
fuel efficiency suggests that the federal government’s policy of setting fuel efficiency standards for
medium and heavy trucks could be an effective policy tool to raise fuel economy.

Looking ahead, a substantial amount of research still needs to be done analyzing the effective-
ness of fuel standards on medium and heavy trucks. We are interested to see whether subsequent
studies on long-haul truck-tractors, which presumably will find and use different datasets and tech-
niques, will support our main results. Furthermore, more work needs to be done determining why
truck owners’ undervalue future fuel savings (e.g., Vernon and Meier (2012) explore how principal-
agent problems can lead to under-investment in fuel efficiency technologies). Finally, the overall
effectiveness of fuel efficiency standards depends upon their effects on more than the subset of
medium and heavy trucks that we considered in our analysis.
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Table A1: Filtering of the 1992 and 1997 VIUS data

Observations Sample weights
number percent sum percent

1992
VIUS data set 123,641 100.0 5,920,075,519 100.00
Only truck-tractors 42,108 34.1 116,817,124 1.97
Have three axles 32,240 26.1 83,909,899 1.42
Have a conventional or cabin-over-engine design 31,335 25.3 81,696,386 1.38
Have diesel engine and air brakes 30,591 24.7 79,208,583 1.34
Do not spend most of their time off-road 29,588 23.9 77,244,933 1.30
Has the correct body type 26,668 21.6 70,086,661 1.18
1997
VIUS data set 104,545 100.0 72,800,251,891 100.00
Only truck-tractors 27,956 26.7 1,543,752,184 2.12
Have three axles 21,749 20.8 1,140,559,205 1.57
Have a conventional or cabin-over-engine design 20,611 19.7 1,074,940,667 1.48
Have diesel engine and air brakes 19,867 19.0 1,030,056,985 1.41
Do not spend most of their time off-road 19,292 18.5 1,005,571,131 1.38
Has the correct body type 17,385 16.6 919,831,799 1.26

A Filtering of the VIUS data

In table A1 we report how the different filters we used to identify class 8 long-haul trucks in the
VIUS reduced the size of the sample, both in terms of the number of actual observations and the
implied aggregate number of trucks based upon the survey’s sample weights.
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Figure B1: Distribution of willingness-to-pay for lifetime miles
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B Willingness-to-pay figures

Figures B1 to B3 illustrate the kernel-smoothed distribution of long-haul truckers willingness-to-
pay for lifetime miles, engine size, and empty weight, respectively. As noted in the paper, for each
graph, we computed the optimal bandwidth for the kernel-smoothing procedure using leave-one-out
cross-validation to minimize the mean squared integrated error of the distribution (see appendix E
for details).
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Figure B2: Distribution of willingness-to-pay for engine size
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Figure B3: Distribution of willingness-to-pay for empty weight
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Table C2: Survival rates by vintage
Vintage 1 2 3 4 5 6 7 8 9 10

Survival Rate 100 100 100 98.5 96.7 94.5 92.0 89.1 86.0 82.7
Vintage 11 12 13 14 15 16 17 18 19 20

Survival Rate 79.1 75.4 71.6 67.7 63.7 59.7 55.7 51.8 47.9 44.2
Vintage 21 22 23 24 25 26 27 28 29 30

Survival Rate 40.6 37.1 33.7 30.6 27.6 24.8 22.2 19.8 17.6 15.5

The scrappage rates are taken from table 3.14 of the Transportation Energy Data Book (Davis et al., 2014) published
by the Department of Energy. Vintage 0 trucks (not shown) survive with 100 percent probability.

C Details on the expected fuel savings calculations

In table C2 we report the survival rates used to compute lifetime fuel savings for trucks.
The scrappage rates are estimated using registration data on heavy trucks (i.e., trucks with a

gross vehicle weight over 26,000 pounds), following the method described in Greenspan and Cohen
(1996). We use the scrappage rates estimated for a 1980 model-year heavy truck.38

In table C3 we report nominal and real diesel prices. Nominal prices were downloaded from the
Energy Information Administration and deflated using the personal consumption expenditure price
index published by Bureau of Economic Analysis.

38In the same table are the estimated scrappage rates for a 1990 model year heavy truck. But the estimates for the
1980 model year seem more reasonable to us. This is because the median life of a 1990 model year heavy truck is
estimated to be 28.0 years, a dramatic increase over the estimated life of 1970 and 1980 model year trucks, which are
20 and 18.5 years, respectively. Using the 1990 model year scrappage estimates would increase our estimated fuel
savings from an increase in MPG, reinforcing our main result that trucks undervalue expected discounted savings from
increased fuel efficiency.
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Table C3: On-highway diesel fuel prices
Year Nominal price Real price
1992 1.084 1.084
1993 1.092 1.066
1994 1.101 1.052
1995 1.109 1.038
1996 1.235 1.132
1997 1.198 1.080
1998 1.044 0.934
1999 1.121 0.988
2000 1.491 1.282
2001 1.401 1.182
2002 1.319 1.098
2003 1.509 1.232
2004 1.810 1.443
2005 2.402 1.861
2006 2.705 2.042
2007 2.885 2.124
2008 3.803 2.717
2009 2.467 1.764
2010 2.992 2.104
2011 3.840 2.636
2012 3.968 2.675
2013 3.922 2.612
2014 3.825 2.514

Note: 1995 to 2015 nominal prices are published by the Energy Information Administration (EIA). The 1992 nominal
price is derived from World Bank and EIA data on diesel prices. Specifically, the World Bank publishes U.S.diesel prices
per liter, which we converted to gallons. The (converted) prices are $1.060 and $1.022 for 1992 and 1998 respectively.
The EIA’s published price in 1998 is $1.044. Applying the percent change in World Bank prices to the EIA price, we
arrive at a diesel price of $1.084 in 1992. To arrive at 1993 and 1994 prices, we use a linear interpolation between 1992
and 1995. To arrive at real prices, nominal prices are deflated by the personal consumption expenditure price index,
published by the Bureau of Economic Analysis.
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D Estimation details

The solution to the weighted least squares problem (see equation 8) is given by

ω̂ j(p) = (XT
DWXD)

−1XT
DW

[
J

∑
k=1

ekKh(pk− p)

]
, (D1)

where ω j(p) is the vector
(
α j(p),λ j(p),γ j(p)

)
, W = diag{KB(xj−x)}, ek is the kth unit vector, and

XD is the design matrix of equation (8) given by

XD =


1 (x1−x)T vech((x1−x)(x1−x)T )T

1 (x2−x)T vech((x2−x)(x2−x)T )T

...
...

...
1 (xJ−x)T vech((xJ−x)(xJ−x)T )T

 (D2)

In particular, the notation vech(A) denotes the half-vectorization of the symmetric matrix A. I.e.,
if A is an l × l matrix, then vech(A) is the vector in Rl(l+1)/2 whose first l entries are the first
column of A, whose subsequent l−1 entries are the second column of A below the diagonal, etc...
From this solution, our estimate of the conditional density function follows immediately. It is just

ĝ j(p|x j) = α j(p), and its derivatives are ∂̂

∂xk
g j(p|x j) = λ̂ j,k(p).

We can also note the expected value of the bracketed sum in equation (D1) is mechanically just
the vector of observed prices. To see this, observe that the projection matrix (XT

DWXD)
−1XT

DW does
not depend on the price. Moreover, since Kh(pk− p) is just a symmetric pdf centered at pk, it must
be the case that for any values of h and pk, we have E(Kh(pk− p)) = pk. So, taking expected value
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of equation (D1),

E(ω̂ j(p)) = (XT
DWXD)

−1XT
DW E

[
J

∑
k=1

ekKh(pk− p)

]

= (XT
DWXD)

−1XT
DW

[
J

∑
k=1

ekE{Kh(pk− p)}

]

= (XT
DWXD)

−1XT
DW

[
J

∑
k=1

ek pk

]
= (XT

DWXD)
−1XT

DWp

In other words, this conditional density estimator agrees with the more simple local quadratic esti-
mator on the expected value of the price hedonic and its derivatives. However, the advantage of this
more general framework is that it allows us to actually recover estimates of the unobserved charac-
teristic. Obtaining estimates of the unobserved characteristic has proven essential when recovering
the full utility function of each firm, including their willingness to pay for the discrete characteristics
(Bajari and Benkard, 2005).

E Bandwidth selection and standard errors

In order to compute the optimal bandwidth h for the bandwidth matrix B = hI, we use least squares
cross-validation technique, as described in Fan and Gijbels (1996). Let p̂h(x) denote the conditional
estimate of the price hedonic at a point x, using the bandwidth h. For each truck j, construct the
leave-one-out estimate p̂h,− j(x) by estimating the model on the subsample {pi,xi}i6= j. We then
examine and attempt to minimize the prediction error p j− p̂h,− j(x j). So we choose the bandwidth
that minimizes the cross-validation function

CV =
1
n

n

∑
j=1

[
pi− p̂h,− j(x j)

]2 w(xi), (E3)

where the function w(·) is a weighting function that corresponds to the (scaled) inverse of the sample
weights.

In our application, we select the optimal value of h numerically, by computing the cross-
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validation score for every bandwidth value between 0 and 10, at intervals of 0.01, and selecting
the value of h which produces the minimum value. For our sample in 1992, this value is 2.48.

In order to compute the standard errors for the estimates of the distribution of taste parameters,
we constructed bootstrap estimates by re-estimating the model on 10,000 random re-samplings of
the data (sampled with replacement).

To compute the kernel smoothed distributions, we use N-fold (leave one out) cross-validation to
select the bandwidth that minimizes the mean squared integrated error of our estimated distribution
function. Formally, if f̂h is the estimated distribution for a given bandwidth h, and data {Xi}n

i=1, we
partition the data into N equally sized sub-samples (consisting of a single observation) by assigning
to each observation a sample s(i). We then minimize the cross-validation function

CV (h) =
∫

f̂ 2
h (x)dx− 2

n

n

∑
i=1

f̂h,−s(i)(Xi), (E4)

where f̂h,−s(i) is the density function estimated using all of the data except the sub-sample to which
observation i belongs.

42


	FINALEDIT_StaffReport_756_Copeland_July 2016 Revised
	trucks_fuel_efficiency_Copeland_756 Revised
	Introduction
	Model
	Data
	Origin of the data
	Data description

	Empirics
	Estimation
	Results

	Analysis
	Survival rates
	Expected annual mileage
	Discount rate
	Expected diesel prices
	Expected fuel savings
	Robustness
	SuperTruck analysis

	Conclusion
	Filtering of the VIUS data
	Willingness-to-pay figures
	Details on the expected fuel savings calculations
	Estimation details
	Bandwidth selection and standard errors




