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Abstract 

I study how central banks should communicate monetary policy in liquidity trap scenarios in which the 

zero lower bound on nominal interest rates is binding. Using a standard New Keynesian model, I argue 

that the key to preventing self-fulfilling deflationary spirals and anchoring expectations is to promise to 

keep nominal interest rates pegged at zero for a length of time that depends on the state of the economy. I 

derive necessary and sufficient conditions for this type of state contingent forward guidance to implement 

the welfare-maximizing equilibrium as a globally determinate (that is, unique) equilibrium. Even though 

the zero lower bound prevents the Taylor principle from holding, determinacy can be obtained if the 

central bank sufficiently extends the duration of the zero interest rate peg in response to deflationary or 

contractionary changes in expectations or outcomes. Fiscal policy is passive, so it plays no role for 

determinacy. The interest rate rules I consider are easy to communicate, require little institutional change 

and do not entail any unnecessary social welfare losses. 
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1 Introduction

Short-term nominal interest rates in many advanced economies —including Japan, the US

and Europe— have recently spent several years against their zero lower bound (ZLB) or close

to it.1 There is ample awareness by academics and policymakers that visits to the ZLB may

be more frequent in the near future, due in part to persistently low natural rates of interest.2

One tool that central banks have used when constrained by the ZLB is forward guidance,

whereby central banks promise to keep short-term nominal interest rates low for an extended

period of time.3 How should this promise be communicated to the public and how should

the central bank react —or threaten to react— if outcomes turn out to be different from

what it had hoped for? What does it take to “anchor expectations” and prevent self-fulfilling

“deflationary traps”?

In this paper, I answer these questions through the lens of a canonical deterministic New

Keynesian (NK) model in continuous time with a binding ZLB. The model is identical to

that in Werning (2012) and Cochrane (2016). The ZLB binds because the exogenous natural

rate of interest is negative for some finite initial period of time, a situation Werning (2012)

calls a liquidity trap. Eventually, the natural rate becomes positive and the ZLB ceases to

bind, so there is no fundamental reason for inflation to remain below target. However, the

economy is susceptible to “deflationary traps” in which the expectation of low inflation can

be self-fulfilling, pushing the economy into the ZLB irrespective of the level of the natural

rate, a suboptimal outcome for social welfare. Self-fulfilling expectations can also create

macroeconomic instability in the form of other kinds of multiple equilibria, including some

with chaos (Benhabib, Schmitt-Grohé, and Uribe (2001b, 2002); Schmitt-Grohé and Uribe

(2009)).

The main contribution of this paper is to provide necessary and sufficient conditions for

a class of monetary policy rules to implement the socially optimal “forward guidance” equi-

librium characterized by Werning (2012); Eggertsson and Woodford (2003); Jung, Teranishi,

and Watanabe (2005) as a globally determinate (i.e., unique) equilibrium, thereby anchoring

expectations and eliminating self-fulfilling deflationary traps. My goal is not to provide an

alternative to forward guidance, but rather to show how to communicate it properly. The

class of monetary policy rules I consider can be understood in two stages. In the first stage,

the central bank promises to keep short-term nominal interest rates pegged at zero for some

period of time. I refer to the end of this period —when the promise to keep rates at zero

1I use the term ZLB even though the true or “effective” lower bound can certainly be different from zero.
All of my results hold as long as there is some lower bound on interest rates.

2Kiley and Roberts (2017), Del Negro, Giannone, Giannoni, and Tambalotti (2017), Rogoff (2017).
3Forward guidance has been used as a tool to communicate the future path of monetary policy even in

periods away from the ZLB, and does not necessarily need to take the form of a promise to keep interest
rates low.
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ends— as liftoff. The new element I introduce, and the one that is key for determinacy, is

that liftoff can be made state-contingent, so that it can depend on past, present and ex-

pected values of economic variables. The second stage begins after liftoff. In this stage, the

central bank follows a standard Taylor rule that respects the ZLB. Fiscal policy is “passive”

or “Ricardian” and hence plays no role in the determinacy of equilibria.

Without a ZLB on interest rates, there is a unique steady state with zero inflation and the

Taylor principle —that nominal interest rates react more than one-for-one with inflation—

is necessary and sufficient for local determinacy. When the ZLB binds, there can be a second

steady state in which inflation is negative. Although the Taylor principle is still necessary

and sufficient for local determinacy around the zero-inflation steady state, Benhabib et al.

(2001b) show the same is not true for global determinacy by constructing equilibria that

start arbitrarily close to the zero-inflation steady state but eventually exit its vicinity and

converge to the deflationary steady state.

The study of determinacy that I conduct produces several results that can inform central

banks’ communication strategy. First, if the central bank announces that liftoff will occur

at a fixed future date that is not contingent on the state of the economy, usually referred to

as “calendar-based” forward guidance, then depending on its actions after liftoff, the central

bank can either implement the optimal equilibrium or attain global determinacy, but not

both.4

Second, when liftoff does depend on the state of the economy, the optimal equilibrium can

be implemented in a globally determinate way without following the Taylor principle after

liftoff. In fact, under the appropriate state contingent liftoff policy, the optimal equilibrium

is globally determinate even if the central bank pegs interest rates to the optimal path,

such that interest rates after liftoff are completely unresponsive to the state of the economy

(for example, this can done with a Taylor-type rule that has a time-varying intercept and

coefficients of zero on both inflation and the output gap). Together, these first two results

imply that the key to eliminating deflationary trap equilibria lies more in how liftoff is

communicated and less on what the central bank does after liftoff.

Third, while the necessary and sufficient conditions for global determinacy of the optimal

equilibrium that I derive are not as simply stated as the Taylor principle is, a succinct and

easy-to-communicate sufficient condition is to promise to sufficiently delay liftoff in response

to deflationary and/or contractionary private sector expectations and to then not follow

the Taylor principle after liftoff. If central bank policy is restricted to be continuous in the

state of the economy, then this sufficient principle is also necessary. Continuous rules are an

important family not only because they are likely more realistic and easier to communicate,

4There is one exception given by the single combination of parameters of the model for which the optimal
discretionary policy coincides with the optimal forward guidance equilibrium (which requires commitment).
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but also because they are robust to “trembling hand” errors (Loisel (2018)).

Fourth, I show what it takes to “sufficiently delay” liftoff by providing an explicit min-

imum delay to which the central bank must commit. This minimum delay is a non-linear

function of inflation and the output gap. Because any delay in liftoff that is longer than the

minimum delay is just as good, communicating the precise shape of this non-linear function

to the public is not strictly required. I also show what the “deflationary and/or contrac-

tionary private sector expectations” mentioned in the previous paragraph precisely entail.

The conditions for determinacy imply that the main gauge of private sector expectations

are the time t = 0 initial values of inflation and the output gap. To implement the optimal

equilibrium with global determinacy, liftoff must depend on these initial levels of economic

activity. In other words, monetary policy must be backward-looking (history dependent).

This insight is not very surprising, as the optimal equilibrium path is itself history dependent

and Eggertsson and Woodford (2003) show that it can be implemented with local determi-

nacy using a price level targeting regime that is history dependent on and off the equilibrium

path by design. However, I discover that path dependence is a necessary part of rules that

implement the optimal equilibrium with global determinacy. History dependence is not just

one possible way to anchor expectations at the ZLB, it is the only way. Unlike price level

targeting, the rules I consider can be made memoryless after liftoff if desired —so that all

path dependence ends at liftoff— and still implement the optimal equilibrium with global

determinacy. Additionally, I find that when the monetary policy rule is continuous in the

state of the economy, liftoff must be not only backward-looking but also forward-looking, so

it must take into account expectations of future inflation and the output gap.

The class of monetary policy rules I consider closely describe real-world behavior of

central banks, so my results can be immediately applied to assess the appropriateness of

central banks’ communication strategies during the last crisis. For example, in August 2011,

the Federal Open Market Committee (FOMC) of the Federal Reserve announced calendar-

based forward guidance, specifying near zero interest rates “at least through mid-2013.”

My results imply that this type of language is not conducive to implementing the optimal

equilibrium without indeterminacy. In 2012, the FOMC changed its language and promised

to keep the federal funds rate at zero “for [...] at least as long as the unemployment rate

remains above 6-1/2 percent [and] inflation between one and two years ahead is projected

to be no more than a half percentage point above the Committee’s 2 percent longer-run

goal,” a strategy sometimes referred to as threshold-based forward guidance. My results

suggest that the switch from a calendar-based to a state-contingent liftoff announcement is

a large step in the right direction. However, the lack of a backward-looking component in

the conditions for liftoff mean that threshold-based forward guidance cannot implement the

optimal equilibrium without indeterminacy. A practical solution to this problem would have
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been to add a clause that, for example, liftoff will not occur until average inflation over the

last year exceeds 1.5 percent (or some other large enough value).

In this paper, I focus on perfect foresight equilibria only. This equilibrium concept cap-

tures the key type of indeterminacy induced by self-fulfilling deflationary expectations at

the ZLB that has been highlighted by the recent literature without the unneeded burden of

stochasticity.5 With a deterministic economy and perfect foresight, the only type of indeter-

minacy that arises in the model is the one associated with the existence of a continuum of

time t = 0 initial values of inflation and the output gap that are compatible with equilibrium.

Many of my results involve not following the Taylor principle after liftoff, which engenders

local indeterminacy around the zero inflation steady state. If I relaxed the assumption of

perfect foresight and allowed equilibria to be stochastic, then this local indeterminacy would

give rise to sunspot equilibria (see Woodford (1984) and Shigoka (1994) for the continuous

time version). However, it is possible to modify the interest rate rules I consider to rid the

economy of this local indeterminacy by using ideas already present in the literature. For

example, the central bank can announce that once the economy is close enough to the zero

inflation steady state, it will switch to following the Taylor principle as soon as a sunspot

appears. One can also use the idea in Cochrane (2016) that for any given interest rate path,

it is possible to implement any equilibrium consistent with that path in a locally determinate

way by following a Taylor-type rule that obeys the Taylor principle and has an appropriately

chosen time-varying inflation target or intercept. Even though this technique does not work

when interest rates are at the ZLB (since the Taylor principle cannot hold when interest

rates cannot be lowered in response to lower inflation), it does work after liftoff, when the

ZLB is no longer binding. Then, by using Cochrane’s technique right after liftoff, the opti-

mal equilibrium can be made locally determinate around the zero inflation steady state. In

this case, the state contingent liftoff would eliminate the indeterminacy induced by having

a ZLB, and the Taylor rule à la Cochrane would eliminate the more classic indeterminacy

associated with passive monetary policy around a steady state that is bounded away from

the ZLB. Finally, it is important to mention that even when local indeterminacy is avoided,

there may still be other rational expectations equilibria, including sunspot equilibria, that I

do not consider.

Related literature. To my knowledge, this paper is the first to present a monetary pol-

icy rule that produces global determinacy in a monetary economy in which fiscal policy is

passive and the ZLB binds. It is also, again to the best of my knowledge, the first to assess

the global determinacy properties of the threshold-based forward guidance pursued by the

5Other papers that focus on perfect foresight equilibria in closely related contexts are Cochrane (2016);
Carlstrom, Fuerst, and Paustian (2015); Del Negro, Giannoni, and Patterson (2015); McKay, Nakamura,
and Steinsson (2016); Farhi and Werning (2017) among many others. See Garćıa-Schmidt and Woodford
(2019) for a critique of using perfect foresight to study some monetary policy questions.
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FOMC.

In the discrete-time version of the model I use, Eggertsson and Woodford (2003) imple-

ment the optimal equilibrium as a locally determinate equilibrium by means of an output-gap

adjusted price-level targeting rule and as a globally determinate equilibrium by adding a non-

Ricardian fiscal policy commitment. My results are different in a few ways and offer some

advantages and disadvantages relative to their contribution. First, and perhaps most im-

portant, global determinacy for the rules I consider is achieved with Ricardian fiscal policy.

However, I only consider a deterministic economy, while they tackle a more general economy

with shocks and sunspots. This allows Eggertsson and Woodford (2003) to show that the

rule they propose can be implemented without knowledge of the statistical process for the

natural rate of interest, a very desirable property for the robustness of the rule. Since I do

not consider shocks, it is not possible to evaluate whether the same would hold in a stochastic

version of the rules I study. Second, the monetary policy rule I study requires little change

in the institutional arrangements of most central banks in advanced economies. Most cen-

tral banks communicate the level and expected path of a short-term nominal interest rate.

Forward guidance, even in its state contingent form, has already been tried before, as men-

tioned above.6 A switch to a price-level target such as the one proposed by Eggertsson and

Woodford (2003) may entail some initial fixed costs, such as a temporary loss of credibility

and central bank resources, although the size and duration of these costs are difficult to

assess and could very well be small. Perhaps a more relevant argument is that, rightly or

not, central banks do not seem to be seriously considering a switch to price-level targeting.7

Third, with price-level targeting, the central bank must implement a specific target, while

the interest rate rule I advocate in this paper requires only a “long enough” initial period

of zero interest rates. While this makes no difference strictly inside the models, in practice

it may reduce the need to estimate private-sector expectations and parameters of the model

with high precision. A central bank can judge a certain set of parameters and expectations

to be reasonable ex-ante and then enact a policy that works for all such parameters by

taking the strongest “strong enough” response across them and without too much fear of

overshooting. Fourth, the interest rate rules I consider can be made memoryless after liftoff

6Of course, a price-targeting regime can be implemented and explained by means of an interest rate
rule and, conversely, the interest rate rule I study can be communicated as a price-targeting rule, or even
an inflation targeting rule. However, the essence of the rule in Eggertsson and Woodford (2003) is more
naturally explained as a price-level targeting regime, while the rules I examine are more naturally explained
as interest rate rules. Since communication is a key aspect of policy rules and the focus of this paper, the
distinction seems at least worth mentioning.

7Judging from meeting minutes, the Federal Open Market Committee (FOMC) discussed and rejected
nominal GDP targeting in 1982, 1992 and 2011 (Federal Open Market Committee of the Federal Reserve
(2015a), Federal Open Market Committee of the Federal Reserve (2015b), Federal Open Market Committee
of the Federal Reserve (2015c)), but not without noting some of its merits. Bernanke (2015b) and Bernanke
(2015a) explain why the FOMC rejected nominal GDP targeting in 2011.
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and still guarantee global determinacy of the optimal equilibrium. In price-level targeting,

the closing of the price gap that opens while at the ZLB continues after interest rates become

positive. This means that the rules I study in this paper are not simply price-level targeting

rules in disguise.8 Finally, the use of continuous versus discrete time is inconsequential for

the economics of the model but by using continuous time, I am able to exploit the Poincaré-

Bendixson theorem, a powerful tool that classifies all possible dynamics of two-dimensional

systems in continuous time.9

Indeterminacy is an important issue in all NK models, but Benhabib et al. (2001b) show

that self-fulfilling deflationary expectations are particularly difficult to arrest in the presence

of a binding ZLB and interest rate feedback rules. While all of the results they obtain also

apply to the framework I use, I am able to eliminate the kind of indeterminacy that arises

from the self-fulfilling deflationary expectations —and all other perfect foresight equilibria

without sunspots, including ones with chaotic trajectories that they study— by considering

a broader class of interest rate rules that allow for history dependence and a state-contingent

liftoff.

Although Cochrane (2016) considers issues around indeterminacy in the same NK model

I use, his focus is neither on how to communicate policy nor on global determinacy.

Schmitt-Grohé and Uribe (2014) propose an interest-rate-based strategy to escape liquid-

ity traps that entails temporarily deviating from a Taylor rule by increasing nominal interest

rates in a deterministic and non-state-contingent way until a pre-specified target is reached.

This strategy succeeds in setting a floor for inflation without a non-Ricardian fiscal stance

but does not lead to globally determinate outcomes.

There are many other proposals on how monetary policy should be conducted in a liquid-

ity trap. Some prominent examples include: Svensson (2004), who advocates an intentional

currency depreciation combined with a calibrated crawling peg; McCallum (2011), Sum-

ner (2014) and Romer (2011), who recommend nominal GDP targeting; and Blanchard,

Dell'Ariccia, and Mauro (2010) and Ball (2013), who promote increasing the inflation target

by contending that the trade-off between higher steady-state inflation and less frequent visits

to the ZLB is worth undertaking. In practice, many central banks have advocated and used

large-scale asset purchases and negative interest rates. None of the studies mentioned in this

paragraph explicitly consider the global determinacy properties of their proposals. For the

class of rules I consider, there are no suboptimal trade-offs and there is no need to accom-

modate new monetary or price aggregates, price-level or inflation targets, “shadow” rates,

exchange rates, the central bank’s balance sheet, or the quantity or price of other assets.

8The version of the rule that becomes memoryless after liftoff more closely resembles the temporary price
level target advocated by Bernanke (2017), although I suggest a different way to communicate it.

9See Appendix C for a precise statement of the Poincaré-Bendixson theorem.
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English, López-Salido, and Tetlow (2015); Florez-Jimenez and Parra-Polania (2016); Co-

enen and Warne (2014) study various aspects of threshold-based forward guidance but not

determinacy. Boneva, Harrison, and Waldron (2018) model threshold-based forward guid-

ance as a regime that the central bank enter and exit and argue that to have a unique

equilibrium, the exit time must be probabilistic. They also conduct numerical experiments

to show that the level of thresholds is important for uniqueness of equilibria.

2 The Canonical New Keynesian Model with a ZLB

I use the framework of Werning (2012), a standard deterministic New Keynesian model

in continuous time that, save for the ZLB, is log-linearized around a zero-inflation steady

state.1011 The economy is described by

ẋ(t) = σ−1 (i(t)− r(t)− π(t)) , (1)

π̇(t) = ρπ(t)− κx(t), (2)

i(t) ≥ 0. (3)

The variables x(t) and π(t) are the output gap and the inflation rate, respectively. The

output gap is the log-deviation of actual output from the hypothetical output that would

prevail in the flexible price, efficient allocation. Henceforth, for brevity, I refer to the output

gap simply as output. The central bank’s policy instrument is the path for the nominal short-

term (instantaneous) interest rate i(t), which must remain non-negative at all times by the

ZLB equation (3). The variable r(t) is the exogenous natural rate of interest, defined as the

real interest rate that would prevail in the flexible price, efficient economy with x(t) = 0 for

all t. The process for r(t) is

r(t) =

{
rl < 0 , 0 ≤ t < T

rh > 0 , t ≥ T
.

10Although most analysis of determinacy in New Keynesian models is done in log-linearized models, Braun,
Körber, and Waki (2016) contend that conclusions would differ in the non-linear model. On the other hand,
Christiano and Eichenbaum (2012) show that the additional equilibria that arise from non-linearities in
Braun et al. (2016) are not E-learnable. In addition, Christiano and Eichenbaum (2012) show that the linear
approximation is accurate except in extreme cases, such as when output deviates by more than 20 percent
from steady state. While these issues are important, I do not seek to address them here and simply use the
log-linear model (plus the ZLB), a standard practice in the literature. As long as the two steady states of
the economy are close to each other, the first-order approximation around one of the steady states should
still provide an accurate approximation in a ball that includes both steady states.
11By “global determinacy”, I do not mean that I consider equilibria in the original non-linear version of the

NK model. I use the word global to refer to equilibria that do not necessarily stay in a small neighborhood
of a steady state. In linear models, the distinction between local and global determinacy is unnecessary. In
the present model, the ZLB introduces a non-linearity that makes global and local determinacy different.

7



The constants rl < 0, rh > 0 and T > 0 are given. I define a liquidity trap as the period in

which the natural rate is negative, as in Werning (2012). The economy starts in a liquidity

trap and exits it with certainty at time T . None of the results in this paper change if the

path for r(t) is different as long as r(t) < 0 for t < T and r(t) > 0 for t > T .

Equation (1) is the IS curve, the log-linearized Euler equation of the representative con-

sumer. The constant σ−1 > 0 is the elasticity of intertemporal substitution. Equation (2) is

the New Keynesian Phillips curve (NKPC), the log-linear version of firms’ first-order condi-

tions when they maximize profits by picking the price of differentiated consumption goods

under monopolistic competition while subject to consumers’ demand and Calvo pricing. The

constant ρ > 0 is the representative consumer’s discount rate and κ > 0 is related to the

amount of price stickiness in the economy. As κ → ∞, the economy converges to a fully

flexible price economy while prices become completely rigid when κ→ 0. Financial markets

are complete (there is a complete set of tradable Arrow-Debreu securities).

Definition. A perfect foresight equilibrium consists of bounded paths for inflation, out-

put and the nominal interest rate {π(t), x(t), i(t)}t≥0 that, given a path {r(t)}t≥0 for the

natural rate, satisfy equations (1)-(3).

Five elements in the definition are worth discussing for the purposes of this paper. First,

the requirement that output and inflation remain bounded at all times is equivalent to the

asymptotic conditions
lim
t→∞
|x(t)| < ∞, (4)

lim
t→∞
|π(t)| < ∞. (5)

The role that equation (5) plays for determinacy of equilibria has been examined in the

literature.12 In the specific setup of this paper, inflation is unbounded if and only if output

is unbounded, making it impossible to differentiate between nominal and real unboundedness

of paths. Thus, equation (5) can be omitted from the definition of equilibrium and issues

regarding its applicability can be sidestepped.

Second, paths for π(t) and x(t) that satisfy equations (1) and (2) must be continuous.13

With complete markets, if there were any jumps in x(t) or π(t), the representative consumer’s

12Cochrane (2011) argues that there is no obvious economic reason to exclude paths with unbounded
inflation from the definition of equilibrium. McCallum (2009) and Atkeson, Chari, and Kehoe (2010) agree
and, among others, propose different criteria to eliminate or select equilibria. Woodford (2003), Wren-Lewis
(2013) and others defend the approach of using equation (5).
13A classical solution to the system of ODEs in equations (1)-(2) would also require differentiability of x(t)

and π(t) for all t. But if x(t) and π(t) were differentiable for all t, the central bank’s control problem of
Section 3 would have no solution, since any solution necessarily requires a jump in the control i(t).

I instead use “Filippov solutions,” also called solutions “in the sense of distribution,” a weaker solution
concept that allows for non-differentiability in a set of measure zero (Filippov (2013)). Any other weak notion
of solution (such as viscosity solutions) would preserve all the results of this paper as long as derivatives are
finite everywhere.
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Euler equation would be violated in this deterministic economy owing to the existence of

arbitrage opportunities. On the other hand, there are no smoothness requirements for i(t)

as it is a choice variable for the central bank.

Third, neither the definition of equilibrium nor the dynamics of the economy in equations

(1) and (2) make any explicit reference to fiscal policy, although, as stressed by Woodford

(1995), Sims (1994), Benhabib, Schmitt-Grohé, and Uribe (2001a), Cochrane (2011) and

others, whether determinacy obtains depends on the joint monetary-fiscal regime. The

implicit fiscal behavior I assume is that of a “Ricardian” (in the terminology of Woodford

(2001)) or “passive” (in the terminology of Leeper (1991)) regime: The fiscal authority

always adjusts taxes or spending ex-post to validate any path of the endogenous variables

that may arise.

Fourth, the concept of perfect foresight equilibria that I use rules out sunspot equilibria.

I briefly return to sunspot equilibria in a later section. Until then, all equilibria should be

understood to be non-stochastic.

Fifth, to economize on notation, I do not generally differentiate expected values from

realizations, as they are identical when expectations are rational and there is perfect foresight.

However, it is useful to keep in mind for the interpretation of many of the results below that

ẋ(t)dt = xe (t+ dt)− x (t) and π̇(t)dt = πe (t+ dt)− π (t), where xe (t+ dt) and πe (t+ dt)

are the expected values of x (t+ dt) and π (t+ dt) conditional on time-t information, which

makes explicit the role of expectations and the forward-looking nature of equations (1) and

(2). Rational expectations requires that xe (t) = x (t) and πe (t) = π (t) for all t ≥ 0.

3 The Optimal Equilibrium

The social welfare loss function for the economy is

V =
1

2

∫ ∞
0

e−ρt
(
x(t)2 + λπ(t)2

)
dt. (6)

The constant λ > 0 is a preference parameter that dictates the relative importance of

deviations of output and inflation from their desired value of zero. This quadratic loss

objective function can be obtained as a second-order approximation around zero inflation

to the economy’s true social welfare function when the flexible price equilibrium is efficient

(Woodford (2003)). An optimal equilibrium is an equilibrium that minimizes (6).

Werning (2012) solves for the optimal equilibrium {π∗(t), x∗(t), i∗(t)}t≥0 when the central

bank has perfect commitment and credibility. He finds that it is unique and that the optimal
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path for the nominal interest rate is

i∗(t) =

{
0 , 0 ≤ t < t∗

(1− κσλ) π∗(t) + rh , t ≥ t∗
, (7)

where the optimal liftoff date, t∗, is a constant that can be found as a function of the

parameters of the model. Importantly, t∗ > T .14 The optimal policy is to commit to zero

nominal interest rates for longer than the natural rate r(t) is negative —one of the main

elements of forward guidance. In addition, i∗(t) > 0 for t ≥ t∗ so interest rates jump from zero

to positive at t∗ and never again hit the ZLB. Equation (7) is not a policy rule. The optimal

path (1− κσλ) π∗(t) + r(t) is a single fixed path, a function of time only. It describes one

particular equilibrium. It is contingent neither on the actual actions of the central bank nor

on whether realized inflation, output or private-sector expectations happen to take one value

or another (note π(t) and x(t) are endogenous variables, while π∗(t) and x∗(t) are merely

two particular functions of time that are completely pinned down by parameters of the

model). As such, it addresses neither the final equilibrium outcome of the economy nor the

off-equilibrium behavior of the central bank. Hence, it says nothing about implementability

or indeterminacy.

Plugging (7) into (1) and (2) gives the optimal paths for inflation and output for t > 0

but not for t = 0. Given π∗(0) and x∗(0), equations (1), (2) and (7) then determine the entire

optimal equilibrium. One way to find π∗(0), x∗(0) and t∗ is to use the maximum principle,

as in Werning (2012).

Figure 1 shows representative optimal paths for three parameter configurations in the

π-x plane. The optimal path is most easily understood in three stages, starting from the

last one and working backward in time. The beginning and end times for each stage are

determined by the discontinuities of r(t) and i∗(t). Because equation (7) is not a policy rule,

in the remainder of this section, I describe only the equilibrium path {π∗(t), x∗(t), i∗(t)}t≥0
but not the off-equilibrium dynamics of the economy, which would require specifying the

central bank’s behavior for all (π(t), x(t)) different from (π∗(t), x∗(t)).

In the third and last stage, defined by t ≥ t∗, the economy has positive natural and

nominal rates. The path for (π∗ (t) , x∗(t)) satisfies

x∗(t) = φπ∗(t), (8)

where

φ =
1

2κ

(
ρ+

√
ρ2 + 4λκ2

)
> 0. (9)

14The optimal discretionary equilibrium (i.e., without commitment) has i (t) = 0 until T and i (t) = rh
thereafter. Inflation and the output gap are at their steady state values of zero immediately after the liquidity
trap is over. The optimal equilibrium with and without commitment are identical if and only if κσλ = 1.
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If κσλ 6= 1, the economy travels along the line defined by equation (8) and converges to the

steady state (πss, xss) = (0, 0) as t→∞. If κσλ = 1, (π∗(t), x∗(t)) reaches (πss, xss) exactly

at t∗. The blue line in Figure 1 shows the optimal path for an example in which κσλ = 1.

The other two cases keep all parameters unchanged except for λ, the relative weight given

to deviations of output and inflation from zero. As can be seen in the figure, the optimal

path with a smaller λ tolerates larger deviations of inflation from zero.

λ=20

λ=2

λ=0.6

π

x

Figure 1: Optimal paths for inflation (horizontal axis) and the output gap (vertical axis)
for three values of λ, the weight that the central bank places on inflation relative to output.
The rest of the parameters used are taken from Werning (2012) (T = 2, σ = 1, κ = 0.5,
ρ = 0.01, rh = 0.04 and rl = −0.04).

The second stage is given by t ∈ [T, t∗), when the natural rate is positive but the nominal

rate is zero. Starting at a given (π∗(t), x∗(t)) inherited from the first stage, inflation and

output move so as to minimize the time it takes to reach the line x = φπ. This is accomplished

by pegging nominal rates to zero. When x∗(t) and π∗(t) hit the line x = φπ, the third stage

begins.

In the first stage, defined by t ∈ [0, T ), the natural rate is negative and the nominal rate

is at the ZLB. The zero nominal rate in the first two stages produces the lowest real interest

rate that the central bank can achieve, which reduces the incentive to save and increases the

incentive to consume. As a result, inflation and output eventually become positive before

T . The initial point (π∗(0), x∗(0)) is determined by optimality conditions that trade off

deviations of inflation and output from zero at each of the three stages. Depending on

parameters, the optimal equilibrium can have positive, zero, or negative initial inflation,
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but it always has a negative initial output, showing that the presence of the ZLB involves

recessionary welfare losses even under the best possible monetary policy.

For more details on the optimal equilibrium, see Werning (2012).

4 Indeterminacy

4.1 Interest Rate Pegs

Consider a central bank that follows an interest rate rule in which the time of liftoff is a

constant; that is, liftoff occurs at a fixed date that is chosen before t = 0 and does not change

with the state of the economy. I refer to this type of liftoff as calendar-based liftoff. I show

this type of rule can either implement the optimal equilibrium but with indeterminacy or

achieve global determinacy at the cost of accepting a suboptimal equilibrium.

An initial natural candidate rule to implement the optimal equilibrium is:

i(t) =

{
0 , 0 ≤ t < t∗

(1− κσλ) π∗(t) + rh , t ≥ t∗
. (10)

Although equations (7) and (10) look very similar, they are conceptually different. While

equation (7) describes the single optimal path i∗(t), equation (10) is a rule —a policy response

function— by which the central bank commits to setting interest rates in all possible states

of the world according to i(t) = i∗(t). It therefore provides both the on- and off-equilibrium

behavior of the central bank. When combined with the IS and NKPC, they fully specify the

dynamic behavior of the economy in all circumstances. For this particular rule, the behavior

of the central bank is the same for all states of the world. The central bank announces that

nominal interest rates will follow the optimal path described in the last section —which is

the same in all states of the world, since the optimal path is just a fixed path and hence not

state-contingent— come what may. This is the definition of an interest rate peg (note that

a peg does not require interest rates to be constant). If the central bank follows rule (10),

then it can clearly implement the optimal equilibrium whenever (π(0), x(0)) = (π∗(0), x∗(0)).

However, many other equilibria are also consistent with this rule, leading to an indeterminate

outcome.15

The intuition for why indeterminacy arises is as follows. Because the IS and NKPC

equations are forward-looking, i(t) cannot directly affect contemporaneous inflation and

output. However, it can directly affect expectations of future output and inflation (and

hence actual future inflation and output since the economy is deterministic). In equation

15Cochrane (2016) shows a similar result for the optimal discretionary equilibrium.
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(1), i(t) can directly control ẋ(t). In turn, control over ẋ(t) translates, via the NKPC, into

control over π̇(t). By integrating over time, it follows that i(t) has a direct influence on the

levels of inflation and output, (π(t), x(t)), for all t > 0 but not for t = 0. Monetary policy

influences the economy through an intertemporal channel. Initial inflation and output, π(0)

and x(0), instead of being control variables as in the last section, are now non-predetermined

or “jump” variables that are determined in equilibrium. Any (π(0), x(0)) that result in

continuous bounded paths for inflation and output when the economy follows the IS and

NKPC are consistent with an equilibrium in which i(t) is given by equation (10). The

only way the central bank can influence (π(0), x(0)) is indirectly, by “steering” the paths of

inflation and output for t > 0 into being either bounded or unbounded (continuity, which

is the second requirement for paths to be equilibria, cannot be exploited by the central

bank, as it arises from complete markets and absence of arbitrage, which are outside the

control of the central bank). If monetary policy can make the path that originates at some

(π(0), x(0)) unbounded, then that particular (π(0), x(0)) is disqualified from being part of an

equilibrium path. Instead, if the path remains bounded, then the path starting at (π(0), x(0))

is an equilibrium. Since the dynamics of (π(t), x(t)) under rule (10) are saddle-path stable

for t ≥ t∗, there are many initial points (π(0), x(0)) that the central bank can never steer

into being unbounded. The saddle dynamics arise after t ≥ t∗ because the path for i(t)

under rule (10), being a peg, is completely unresponsive to inflation and output. Without

any state-contingency, the required asymptotic steering of paths becomes impossible.

To see this, first note that the saddle path is a line through the origin in the π-x plane

given by x = φπ. Pick a point (π̃, x̃) on the saddle path and consider a candidate equilibrium

with (π(t∗), x(t∗)) = (π̃, x̃). For t ≥ t∗, the economy follows the dynamics of the IS equation

and the NKPC with i(t) = (1− κσλ) π∗(t) + rh by moving along the saddle path toward

the steady state (πss, xss) (or, if (π̃, x̃) = (πss, xss), the economy is already in steady state

and stays there). Now trace the dynamics of the IS and the NKPC backward in time with

i(t) = 0, from t = t∗ to t = 0, starting at (π(t∗), x(t∗)) = (π̃, x̃) and ending at some

(π(0), x(0)). The resulting path starting at this (π(0), x(0)) is bounded, continuous and

obeys the IS equation, the NKPC, the ZLB and the central bank’s interest rate rule: It is an

equilibrium. Because of the linearity of the system (1)-(2), the saddle path and the set of

initial conditions (π(0), x(0)) that put the system on the saddle path at t∗ are both lines in

the π-x plane. The multiple equilibria under rule (10) are thus indexed by points in a line,

which can be taken to be the saddle path or the π(0)-x(0) line that gets the economy to the

saddle path at t∗.

Figure 2 shows these two lines together with paths for inflation and output from equilibria

that start at different π(0) and x(0). All of these equilibria are obtained using identical

parameters and the same interest rate rule, given by (10). They are different equilibria
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Optimal path

Steady-state on exit of ZLB

No explosion backward in time

Low π0

High π0

π

x

Figure 2: Multiple equilibria when the central bank chooses a rule that sets interest rates
equal to the same optimal path in a non-state-contingent way (i.e., the same interest rates
for all realizations of inflation, output and their expectations). Interest rate rules for which
liftoff is not contingent on the state of the economy never anchor expectations (Proposition
1).

of the same economy, unlike those in Figure 1, which show the optimal equilibrium for

different parameter configurations. The green line is the unique optimal equilibrium that

starts at (π∗(0), x∗(0)). The purple line is a suboptimal equilibrium that reaches steady

state (πss, xss) = (0, 0) exactly at liftoff (this is the best possible discretionary equilibrium).

The yellow line is one of the “local-to-frictionless” equilibria described in Cochrane (2016)

in which inflation and output do not explode backward in time. The remaining paths have

two arbitrary values for π(0) and illustrate the kinds of behavior that the various equilibria

can exhibit.

4.2 Taylor Rules

I now extend these results to Taylor rules. Consider a central bank that commits to keeping

interest rates at zero until some fixed liftoff time t and follows a Taylor rule that respects

the ZLB thereafter. Because the Taylor rule can prescribe zero nominal rates immediately

after liftoff, liftoff may or may not coincide with the first time that interest rates become

positive after the liquidity trap is over. Liftoff marks the end of the central bank’s promise

to keep interest rates pegged at zero and the beginning of a promise to follow a Taylor rule,

and not necessarily the first time nominal interest rates become positive, since the interest
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rate rule that the central bank follows after liftoff may very well prescribe zero interest rates

for a while longer.

The next proposition establishes that, just as for rules with an interest rate peg considered

above, rules that follow a Taylor rule after a calendar-based liftoff cannot implement the

optimal equilibrium in a globally determinate way. This impossibility result applies to Taylor

rules with any coefficients on inflation and output. To further strengthen this intuition, I

allow the Taylor rule coefficients to be not just arbitrary constants, but arbitrary functions

of the endogenous realizations of inflation and output at time zero, R0 = (π(0), x(0)). When,

as is the case in this section, the liftoff date is constant and the economy is deterministic,

conditioning onR0 is the same as conditioning on the entire path {π(t), x(t)}t∈[0,∞). Although

not exactly the same as allowing for a general non-linear rule, being able to have state-

dependent Taylor-rule coefficients offers the central bank significant flexibility. For example,

it gives the central bank the freedom to pick coefficients as if it knew in advance which of

the many potential equilibria will be realized. Despite these faculties, it is still impossible to

implement the optimal equilibrium without indeterminacy. Of course, a traditional Taylor

rule with constant coefficients is a special case of the one I consider here.

Proposition 1 (Calendar-based forward guidance cannot implement the optimal equilib-

rium without indeterminacy). Let t≥ T be a constant. Let ξπ(R0) and ξx(R0) be arbitrary

functions of R0 = (π(0), x(0)). If κσλ 6= 1, the rule

i(t) =

{
0 , 0 ≤ t < t

max {0, ξπ(R0)π(t) + ξx(R0)x(t) + rh} , t ≤ t <∞
(11)

cannot implement the optimal equilibrium as the unique equilibrium of the economy.

Proof. Appendix B.1 �

A corollary of Proposition 1 is that if the central bank uses calendar-based forward

guidance, it can either implement the optimal equilibrium with indeterminacy, or a globally

determinate equilibrium that is suboptimal (except for the case κσλ = 1). Thus, the central

bank faces a tradeoff between determinacy and optimality.

The Taylor principle is said to hold if and only if

κ (ξπ − 1) + ρξx > 0 and ξx + σρ > 0.

When ξx = 0, the Taylor principle is equivalent to ξπ > 1, one of its most popular forms.

The Taylor principle is said to not hold if and only if

κ (ξπ − 1) + ρξx < 0.
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When the Taylor principle holds, the economy has explosive dynamics outside the ZLB,

while it has a single stable saddle when the Taylor principle does not hold. It is well known

that the Taylor principle is necessary and sufficient for local determinacy around the steady

state (xss, πss) = (0, 0).

Under rule (11), the Taylor principle is also necessary and sufficient for global deter-

minacy. According to Proposition 1, this means that the Taylor principle always produces

a suboptimal equilibrium (unless κσλ = 1). This globally unique suboptimal equilibrium

requires that the economy reaches steady state (xss, πss) right after liftoff, at t = t, since

otherwise (4) and (5) would be violated by virtue of the explosive dynamics induced by

the Taylor principle. This Taylor principle equilibrium is reminiscent of the no-commitment

equilibrium, in which the economy must be at the steady state (xss, πss) at t = T (in fact,

the two coincide if t = T ).

In sharp contrast to models without a binding ZLB in which the Taylor principle can reap

the benefits of commitment, the ZLB can make the Taylor principle produce suboptimality

akin to that emerging from lack of commitment. Figure 3 displays the optimal equilibrium,

the Taylor principle equilibrium with t = t∗ and the no-commitment equilibrium for two

parameter configurations. On the left panel κσλ is close to 0, while in the right panel it

is close to 1. When κσλ is close to zero, inflation and output can deviate substantially

from their optimal levels in the Taylor principle equilibrium. As κσλ → 0, the Taylor

principle equilibrium approaches the no-commitment equilibrium, as the left panel of Figure

3 illustrates. On the other hand, the right panel shows that when κσλ is close to 1, the

Taylor principle equilibrium implies small welfare losses compared with the optimal path,

with the Taylor principle equilibria approaching the optimal one as κσλ → 1. Standard

calibrations anchored in empirically plausible levels of nominal rigidities tend to give κσλ

close to 0, which produce large welfare losses for the Taylor principle equilibrium.16

5 Rules with a State-Dependent Liftoff Date

In the last section, I showed that calendar-based forward guidance, in which liftoff is pre-

announced for a particular date without making it contingent on the state of the economy,

cannot implement the optimal equilibrium without global indeterminacy, even when a Taylor

rule —with any choice of coefficients— is used after liftoff. In this section, I introduce inter-

est rate rules that have a state-contingent liftoff but follow a non-state-contingent interest

16For example, Woodford (2003) calibrates the slope of the NKPC to κ = 0.024, which combined with the
frequently assumed σ = 1 (log utility) and λ = 1 (equal weight on the welfare loss function for inflation and
output), gives a κσλ that is even smaller to the one used in the left panel of Figure 3. On the other hand, if
λ is large (such as when the central bank does not care about output), κσλ can turn out to be closer to 1.
Values of κσλ above 1 are also suboptimal, with welfare decreasing as the distance of κσλ from 1 increases.
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Optimal but Indeterminate

Suboptimal but Determinate

No Commitment
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(a) κσλ = 0.05

Optimal but Indeterminate

Suboptimal but Determinate

No Commitment

π

x

(b) κσλ = 0.95

Figure 3: Comparison between the optimal path, the path without central bank commitment
and the path when the central bank satisfies the Taylor principle after t∗. We use T = 2,
σ = 1, κ = 0.5, ρ = 0.01, rh = 0.04 and rl = −0.04 for both panels. For the left and right
panels, we choose λ = 0.1 and λ = 1.9, respectively.

rate peg before and after liftoff. When the dependence of liftoff on the state of the economy

is designed correctly, these rules do implement the optimal equilibrium in a globally deter-

minate way. It follows that whether the central bank can implement the optimal equilibrium

with global determinacy depends more on the state-contingent form of liftoff and less on

the form of state contingency when setting the level of interest rates after liftoff. The main

obstacle for global determinacy in the presence of a ZLB is not that interest rates fail to be

responsive enough to inflation and output during or after the ZLB binds. Instead, the key

challenge is to communicate liftoff in an appropriate way.

Unlike the case of a constant liftoff time, when liftoff is state-contingent, initial inflation

and output no longer provide a full description of the state of the economy. With a state-

contingent liftoff, expectations of future inflation and output can be important equilibrium

determinants of when liftoff occurs, even after π(0) and x(0) are realized. I now formalize the

the idea of a state-dependent liftoff rule in a mathematically precise way. Let t1 be the actual

endogenous time of liftoff that is realized in the economy. Let Rt1 = (π(0), x(0), π(t1), x(t1))

be the vector containing realized inflation and output at times 0 and t1, which fully de-

scribes the state of the economy, and let Re
t be the expectation of Rt1 conditional on time-t

information.

Before t = 0, the central bank announces a liftoff rule and a rule for how it will set interest
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rates after liftoff. The liftoff rule is a function f : R4 → [0,∞) that maps expectations, Re
t ,

to a promised liftoff date f(Re
t ). The central bank uses the rule f as follows. At t = 0, the

private sector forms expectations Re
0 of Rt1 . These expectations are observed by the central

bank. The central bank then computes the number f(Re
0). If f(Re

0) = 0 the central bank

lifts off now (at t = 0) and, by definition, t1 = 0. If f(Re
0) 6= 0, the central bank does not lift

off and repeats the same procedure in the future. Specifically, for any time s such that liftoff

has not yet occurred, the central bank observes time-s private-sector expectations Re
s of Rt1

and computes the number f(Re
s). If f(Re

s) = s, then the central bank lifts off at time s and

consequently t1 = s. If f(Re
t ) 6= t for all t, then the central bank never lifts off and i(t) = 0

for all t. In brief, the function f describes when the central bank will lift off for each possible

state at each point time – a complete description of the central bank’s liftoff plan under any

circumstances. The behavior of the private sector and the central bank together determine

the actual equilibrium path of the economy, including the endogenous date t1 when liftoff

actually occurs. Along the equilibrium path, by rational expectations and perfect foresight,

we must have that Rt1 = Re
s for all s and consequently

t1 = f(Rt1). (12)

In addition, Rt1 = Re
s means that the mapping f can be equivalently interpreted as a mapping

from states of the economy (instead of expectations) to the liftoff time.

5.1 A Neo-Fisherian Rule

The interest rate rule that I study in this section is

i(t) =

{
0 , 0 ≤ t < f(Rt)

(1− κσλ) π∗(t) + rh , t ≥ f(Rt)
, (13)

where the state contingent liftoff is given by

f(Rt) =



t∗ ,
if (π(0), x(0)) = (π∗(0), x∗(0)) or

Ax(0) +Bπ(0) = C

t∗ + 1 ,
if (π(0), x(0)) 6= (π∗(0), x∗(0))

and Ax(0) +Bπ(0) 6= C

and Dx(0) + Eπ(0) 6= F

t∗ + 2 , otherwise.

(14)

for constants A, B, C, D, E, F given explicitly in Appendix B.3. Equation (13) says that

the central bank commits to zero interest rates until liftoff and to the non-state-contingent
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interest rate peg i (t) = i∗ (t) after liftoff. Equation (14) says that, in contrast, liftoff itself

is state-dependent and can take one of three different values: t∗, t∗ + 1 and t∗ + 2. This

rule shows that a state-dependent liftoff time is a powerful tool to fight indeterminacy at

the ZLB. In fact, the only state dependence in this rule is in the time of liftoff; no other

state dependence is needed to eliminate indeterminacy. The rule also shows that when a

binding ZLB is introduced, following the Taylor principle is no longer necessary for global

determinacy of the optimal equilibrium.17 The rule in equation (13) can be thought of as

a Taylor-type rule that does not obey the Taylor principle, since it has coefficients of zero

on inflation and output and a time-varying intercept (that is equal to zero before t1 and

r̂(t) = (1− κσλ) π∗(t) + rh > 0 after t1).

Why does this interest rate rule implement the optimal equilibrium as the unique global

equilibrium? When π(0) = π∗(0) and x(0) = x∗(0), the rule gives f(Rt1) = t∗, i(t) = i∗(t)

and therefore the optimal equilibrium is implemented. The choice of f also ensures there

are no other equilibria. Consider a candidate equilibrium with initial conditions π(0) and

x(0) different from (π∗(0), x∗(0)). For t ≥ t1, by equation (13), the economy has the same

dynamics as when it follows the rule in equation (10) of Section 4. In particular, there is a

saddle path given by a straight line that goes through the origin in a π-x plane. Figure 2 is

a useful guide.

I consider three cases, defined by the three conditions in equation (14). The first case

states that if the economy is either on its optimal path or expected to not be on the saddle

path at t∗, then liftoff occurs at t∗. The equation Ax(0) + Bπ(0) 6= C in equation (14)

describes the set of points (π(0), x(0)) for which the economy is not expected to be on its

saddle path at t∗. The condition Ax(0)+Bπ(0) 6= C means that (x(0), π(0)) is not on the line

where all the paths in Figure 2 begin. If paths do not start on the line Ax(0) +Bπ(0) = C,

they do not end up on the saddle path at t∗. Because the economy is not on its saddle path

at the time of liftoff, either inflation and output instantaneously jump a discrete amount

to reach the saddle path, or inflation and output become unbounded. In either case, by

definition, an equilibrium cannot form. The second case I consider is given by the second

line of equation (14). It corresponds to the non-optimal points (π(0), x(0)) that take the

economy to the saddle path at t∗ but not at t∗+ 1. The condition Dx(0) +Eπ(0) 6= F gives

the set of points (π(0), x(0)) that do not reach the saddle path at t∗ + 1. For these points,

the rule assigns f(Rt1) = t∗+ 1 and equilibria are precluded by the same argument as in the

first case: Paths either jump to the saddle path or become unbounded because they are not

on the saddle path at t∗+ 1. The points (π(0), x(0)) that are not optimal and hit the saddle

path at t∗ and at t∗+1 define the third case, for which the central bank picks f(Rt1) = t∗+2.

17In the next section, I show the Taylor principle is also not sufficient for determinacy of the optimal
equilibrium.
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There is at most one point in this category, since it is given by the intersection of two distinct

lines: The line of initial conditions that reach the saddle path at t∗ (excluding (π∗(0), x∗(0)),

already analyzed) and the ones that reach it at t∗+ 1. This point, if it exists, does not reach

the saddle path at t∗ + 2, the time of liftoff, and is therefore not an equilibrium.

The liftoff rule in equation (14) is useful because it showcases the power of a state con-

tingent liftoff in a stark way, especially when compared against the pure peg rule in equation

(10). However, it does not readily lend itself to a straightforward intuitive interpretation

and comes short in terms real-world applicability. For example, clearly communicating the

constants A, B, ..., F and the rationale behind the form of the liftoff rule to the public

seems, at least to me, rather quixotic. That the potential liftoff dates t∗ + 1 and t∗ + 2 are

arbitrary, in the sense that picking any two other numbers that are distinct and larger than

t∗ will result in the same equilibrium, also appears challenging to explain to the public.

There is one more aspect of the rule is that may complicate its real-world applicability.

Along some off-equilibrium paths, the central bank must commit to raising interest rates

in many circumstances in which the economy is in the midst of recessions or deflations, an

element reminiscent of the proposal in Schmitt-Grohé and Uribe (2014), who exploit the neo-

Fisherian effect of NK models that a very persistent increase in interest rates leads to higher

inflation not only in the long run, as in the more classical Fisher effect, but also immediately

after the interest rates change. While this idea is currently being studied and taken seriously

in the literature, there is no consensus on neo-Fisherianism’s empirical applicability.A rule

like the one in equation (14) seems, at the very least, far from current central bank orthodoxy.

Having used rule (14) to make the theoretical point that a state contingent forward

guidance is a powerful tool to fight indeterminacy, I turn next to rules that not only imple-

ment the optimal equilibrium in a globally determinate way, but also closely resemble actual

central bank behavior and should therefore be of more practical relevance.

5.2 A Practical Rule

For the rest of the paper, I focus on the class of rules given by

i(t) =

{
0 , 0 ≤ t < f(Rt1)

max {0, ξπ(Rt1)π(t) + ξx(Rt1)x(t) + rh} , f(Rt1) ≤ t <∞
, (15)
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where18 f : R4 → [T,∞) , ξπ : R4 → R and ξx : R4 → R are functions chosen by the

central bank. The rule has a forward guidance period from t = 0 to t = f(Rt1), followed

by a standard Taylor rule period for t ≥ f(Rt1). The Taylor rule guarantees that interest

rates do not become positive for “unconventional” states of the economy, precluding the neo-

Fisherian behavior of the rule in equations (13)-(14). In addition to a state-dependent liftoff

rule given by f(Rt1), I allow for Taylor rule coefficients ξπ(Rt1) and ξx(Rt1) that can depend

on Rt1 . Of course, traditional Taylor rules with constant coefficients are just a special case

of this.

The goal of this section is to develop the prerequisite mathematical notation and economic

intuition to understand, in the next section, the necessary and sufficient conditions for global

determinacy of the optimal equilibrium under the rule in equation (15). As before, this rule

can be understood in three stages.

First stage (0 ≤ t < T ). Figure 11 shows the phase portrait for this stage. Because

the natural rate is negative, the unique steady state for the first-stage dynamics, the triangle

labeled (πl, xl) in the figure, is in the first quadrant and given by πl = −rl > 0 and xl =

−ρrl/κ > 0. Since interest rates are pegged at zero, the Taylor principle does not hold and

the dynamics have a stable saddle path, the green line in the figure.

Second stage (T ≤ t < t1). The central bank is committed to i(t) = 0 between T and

f(Rt1). Unlike the first stage, the duration of this stage is endogenous. Figure 12 shows

the phase portrait, which reveals saddle dynamics since the Taylor principle does not hold,

just as in the first stage. Since the natural rate is now positive, the unique steady state

(πzlb, xzlb), shown as a black square in the figure, lies in the third quadrant of the π-x plane.

In the literature, the steady state (πzlb, xzlb) is variously referred to as the “deflationary

steady state,” the “liquidity trap steady state,” the “expectational trap steady state” or the

“unintended steady state.” Last, just as in the first stage, there is a single stable saddle path

(the red line in figure), which I denote by Υzlb.

Third stage (t ≥ t1). The central bank follows the Taylor rule

i (t) = max {0, ξπ(Rt1)π(t) + ξx(Rt1)x(t) + rh}. I split the π-x plane into two disjoint regions

defined by whether the ZLB is binding

Ωzlb(Rt1) = {(x, π) : ξπ(Rt1)π + ξx(Rt1)x+ rh ≤ 0} , (16)

Ωss(Rt1) = {(x, π) : ξπ(Rt1)π + ξx(Rt1)x+ rh > 0} , (17)

18Throughout the paper, I show results that assume that the liftoff date does not occur before T , as even
without commitment a central bank trying to minimize the social loss function in equation (6) would pick
a liftoff rule f such that i(t) = 0 for t < T , when the natural rate is negative. However, none of my results
depend on this assumption; extending the results to allow for any liftoff date is straightforward. The key to
the relevant proofs is that the liftoff day is bounded below (which it always is, by t = 0).
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Figure 4: Dynamics of the economy for t ∈ [0, T ), when i(t) = 0 for all π(t) and x(t) and
r(t) = rl < 0. The green line is the saddle path and the orange triangle, labeled (πl, xl), is
the steady state.

The boundary between the regions Ωzlb(Rt1) and Ωss(Rt1) is a line

∂Ω(Rt1) = {(x, π) : ξπ(Rt1)π + ξx(Rt1)x+ rh = 0} . (18)

Henceforth, I suppress the dependence of ξx, ξπ, Ωzlb, Ωss and ∂Ω on Rt1 for ease of notation

whenever it does not create confusion.

The dynamics of the economy inside each of the two regions Ωzlb and Ωss are separately

given by a system of linear first-order ordinary differential equations (ODEs) in x(t) and

π(t), each of which is easy to analyze inside its respective region with standard methods.

However, when the two regions are analyzed together, the global dynamics are piecewise

linear, with a non-differentiable transition at ∂Ω. The behavior of piecewise linear dynamic

systems can exhibit a rich variety of non-linear phenomena such as limit cycles, bifurcations

and chaos. I first analyze the properties of each of the two regions separately and then

combine them and analyze the resulting global dynamics. Readers familiar with NK models

without a ZLB should find the analysis of each of the separate regions familiar. The new

results arise when I look at both regions together.

Inside Ωss, there is a single steady state, (πss, xss) = (0, 0). The dynamic behavior of the

economy depends on the choice of Taylor rule coefficients. The Taylor principle is the key

concept needed to differentiate between unstable and saddle dynamics, and between locally

determinate and indeterminate equilibria.When the Taylor principle holds, if the dynamics
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Figure 5: Dynamics of the economy for t ∈ [T, t1), when i(t) = 0 for all π(t) and x(t), and
r(t) = rh > 0. The red line, labeled Υzlb, is the saddle path. If the economy starts on Υzlb,
it converges to the deflationary steady state (πzlb, xzlb). The blue line, labeled Ψzlb, is the
“unstable saddle path.” If the economy starts on Ψzlb, it stays on Ψzlb and moves away from
the deflationary steady state (πzlb, xzlb). Under these dynamics, if the economy is not on
Υzlb, then inflation and output become unbounded.

of the Ωss region were extended to the entire plane and nominal interest rates were allowed

to be negative, or if I considered a small enough neighborhood of (πss, xss) that lies entirely

inside Ωss, the dynamics of the system would be unstable. All paths would be unbounded

—or exit the small neighborhood— except for the path with (π(t), x(t)) = (πss, xss) = (0, 0)

for all t. Figure 13 shows two representative phase portraits, one in which the dynamics

“slowly” spiral outward from the steady state and one in which the steady-state is a source.

When the Taylor principle does not hold, if the dynamics of the Ωss region were extended

to the entire plane and interest rates were allowed to be negative, or if I considered a small

enough neighborhood of (πss, xss) that lies entirely in Ωss, the system would have saddle

dynamics. Figure 14 displays a typical phase diagram. The stable saddle is the green line

through the origin, which I denote by Υss. Its slope depends on the Taylor rule coefficients

ξπ and ξx.
19 Paths are bounded —or stay in the small neighborhood of (πss, xss)— if and

only if they start on the ss saddle path.

Note that because ξπ and ξx can depend on Rt1 , whether the Taylor principle holds can

depend on Rt1 . Within the same economy, there can be a subset of (off-equilibrium) paths for

which the Taylor principle holds and a different subset for which it does not hold. Instead,

19See equation (A.15) in Appendix A.1 for the explicit formula.
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Figure 6: Dynamics of the economy for t ≥ t1 when the Taylor principle holds and there
is no ZLB. The dynamics of the diagram on the left have imaginary eigenvalues, while the
right-hand side have real ones. When there is no ZLB, the Taylor principle is necessary and
sufficient for local determinacy. Unless the economy starts at (0, 0), inflation and output
become unbounded.

when ξπ and ξx are constant, the Taylor principle must hold either for all paths or for no

paths. In all cases, the Taylor rule coefficients are fully determined by the time the central

bank lifts off and they remain unchanged from then on.

The ZLB region Ωzlb has dynamics identical to those of the second stage analyzed above,

with the phase diagram given in Figure 12, with the exception that these dynamics only

hold on a half-plane instead of the whole plane.

I now put the dynamics of the regions Ωss and Ωzlb together and describe some of the

global dynamics of the economy. The left panel of Figure 15 shows an example in which the

Taylor principle holds, while the right panel shows an example in which the Taylor principle

does not hold. Irrespective of whether the Taylor principle holds, the dynamics inside Ωzlb

always look like those in Figure 12, as they are not affected by the choice of ξx or ξπ. However,

the coefficients ξx and ξπ do have a crucial effect on the ZLB, as they determine the location

of the boundary ∂Ω and, consequently, whether a deflationary steady state can exist in the

economy. If the Taylor principle holds, the boundary ∂Ω is such that the deflationary steady

state (πzlb, xzlb) is inside Ωzlb, so (πzlb, xzlb) is indeed a steady state of the global dynamics.

On the other hand, if the Taylor principle does not hold, (πzlb, xzlb) is in Ωss. Under the Ωss

dynamics, the point (πzlb, xzlb) is not a steady state. In this case, the only steady state for

the global dynamics is the desired one, (πss, xss). The conclusion that following the Taylor
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Figure 7: Dynamics of the economy for t ≥ t1 when the Taylor principle does not hold and
there is no ZLB. Unless the economy starts on its saddle path Υss, shown in green, inflation
and output become unbounded.

principle outside the ZLB induces the existence of a deflationary steady state at the ZLB

is similar to one of the results in Benhabib et al. (2001b). Note that in this case, there are

saddle dynamics around (πzlb, xzlb), so the deflationary steady state is locally indeterminate.

6 How to Implement the Optimal Equilibrium without

Indeterminacy

In this section, I prove the main result of the paper: A central bank following the rule

in equation (15) can implement the optimal equilibrium in a globally determinate way by

appropriately choosing the rule for liftoff, given by f , and the Taylor rule coefficients ξπ and

ξx.

6.1 Boundedness of Continuous Paths

In this section, I characterize all bounded continuous paths that follow the dynamics given

by the IS curve, the NKPC and the ZLB, which constitute the set of paths that are can-

didate equilibria. It turns out that all candidate equilibria can be classified into four types

determined by whether they (a) converge to the zero inflation steady state (πss,xss) or the

deflationary steady state (πzlb, xzlb) and (b) are inside or outside the ZLB at liftoff (i.e., are
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Figure 8: Non-linear dynamics of the economy after liftoff t1. The central bank follows the
Taylor rule i(t) = max {0, ξππ(t) + ξxx(t) + rh}. When ξππ(t)+ξxx(t)+rh > 0, the economy
is in the region Ωss and follows the solid black flow lines. When ξππ(t) + ξxx(t) + rh ≤ 0,
it is in the region Ωzlb and follows the dashed blue flow lines. The boundary between the
two regions is the line ∂Ω. The point (πss, xss), shown in red, is always a steady state of the
economy. The point (πzlb, xzlb), shown as a black square, is a steady state of the economy if
and only if the Taylor principle holds, as in the left panel. When the Taylor principle does
not hold, as in the right panel, (πzlb, xzlb) is not in Ωzlb and is therefore not a steady state.

in Ωss or Ωzlb at t1).

Proposition 2 (Continuous bounded paths when the Taylor principle does not hold). For

a continuous path, if the Taylor principle does not hold, the path is bounded if and only if

there exists r ≥ t1 such that (π(r), x(r)) ∈ Υss ∩ Ωss.
20

Proof. Appendix B.4. �

When the Taylor principle does not hold, continuous paths are bounded if and only if

they reach the ss saddle path outside (or on the boundary of) the ZLB region at t1 or later.

This can happen in one of two ways, depicted in Figure 9. The flow lines in the background

show the dynamics after t1. The green path shows the first case. The economy finds itself

outside the ZLB at t1. If it is on the saddle path Υss, then it stays on it and travels toward

(πss, xss), remaining bounded as in the figure. If the economy is not on the saddle path

Υss, paths for (π(t), x(t)) can either become unbounded or eventually enter the region Ωzlb.

Because the Taylor principle does not hold, the zlb steady state is not inside Ωzlb. Thus,

when the economy enters Ωzlb, paths can either become unbounded (when they stay inside

20Ωss = Ωss ∪ ∂Ω is the closure of Ωss.
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Ωzlb) or eventually exit the ZLB and return to Ωss. Proposition 2 states that the process

of transitioning from one region to the other has to stop at some point —there are no limit

cycles. The proof in the appendix reveals that, in fact, there can be at most one transition;

once the economy leaves Ωss and enters Ωzlb, it remains there.

The red path in Figure 9 shows the second way in which the economy can reach Υss.

At t1, the economy is inside the ZLB region Ωzlb. As it follows the dynamics induced by

i(t) = 0, it eventually hits the boundary ∂Ω at some time r > t1 exactly where ∂Ω intersects

Υss. From there on, the analysis is identical to that of the first case.

Proposition 2 reveals some of the advantages and disadvantages of not following the

Taylor principle. On the one hand, continuous bounded paths always exit the ZLB. On the

other hand, the saddle dynamics outside the ZLB are conducive to (both local and global)

indeterminacy, since being on any point of the saddle Υss at t1, or on any point of the path

inside Ωzlb that eventually reaches the saddle, gives continuous bounded paths and hence

potential equilibria.
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Figure 9: When the Taylor principle does not hold, there are only two kinds of continuous
bounded paths, shown in the figure. The flow lines in the background are for the dynamics
after liftoff, which occurs at t1.

In contrast, when the Taylor principle holds, the benefit is to have no saddle path equi-

libria outside the ZLB, but at the cost of introducing them inside the ZLB, as I show next.
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Proposition 3 (Continuous bounded paths when the Taylor principle holds). For a continu-

ous path, if the Taylor principle holds, the path is bounded if and only if either (π(t1), x(t1)) =

(πss, xss) or there exists r ≥ t1 such that (π(r), x(r)) ∈ Υzlb ∩ Ωzlb.

Proof. Appendix B.5. �

When the Taylor principle holds, Proposition 3 states that continuous paths are bounded

if and only if they either reach the intended steady state (πss, xss) exactly at t1, or if they

eventually reach the zlb saddle path Υzlb inside the ZLB region Ωzlb. If (π(t1), x(t1)) =

(πss, xss), then paths are clearly bounded since (πss, xss) is a steady state. If (π(t1), x(t1)) is

in Ωss but is not equal to (πss, xss), the only way for continuous paths to remain bounded

is to eventually enter Ωzlb, since the dynamics in Ωss are otherwise explosive. Once the

paths are in Ωzlb, boundedness requires that the economy follow the saddle path toward

the zlb steady state (πzlb, xzlb). The red path in Figure 10 illustrates this case. Because

the Taylor principle holds, (πzlb, xzlb) is inside Ωzlb and is therefore a steady state of the

system, as discussed first in Section 5.2. The economy converges to (πzlb, xzlb) as t → ∞.

This is the type of equilibrium in Benhabib et al. (2001b), also shown in Figure 16. The

closer (π(t1), x(t1)) gets to (πss, xss), the longer it will take the economy to reach Ωzlb.

Although listed separately in Proposition 3 and at first sight different, the case for which

(π(t1), x(t1)) = (πss, xss) can be seen as the limit of this type of equilibrium when the time

to reach Ωzlb goes to infinity.

Proposition 3 reveals another type of potential equilibrium that converges to the unin-

tended steady state (πzlb, xzlb), shown in green in Figure 10. The economy is always at the

ZLB. At T , the economy is already on Υzlb. It stays there for all t ≥ T , traveling toward

(πzlb, xzlb). At t1, even though liftoff occurs, the Taylor rule prescribes i(t1) = 0, since the

economy is in Ωzlb and the economy remains on Υzlb.

Proposition 3 also proves that there are no continuous bounded paths other than the

ones I have described. In particular, there are no closed loops, no limit cycles and no chaotic

paths, unlike the setup in Benhabib et al. (2002), in which the Taylor principle gives rise to

chaotic trajectories. One direct implication is that whether following the Taylor principle

leads to chaotic interest rate rules depends on the specific setup.21 Without a ZLB, a positive

divergence is equivalent to the Taylor principle and to explosive dynamics. Proposition 3

shows that having a ZLB does not break this link. Thus, even though the system includes

a binding ZLB, the Taylor principle is still the right concept to assess the tendency of the

system to move away from the intended steady state.

21For this economy, the Taylor principle is actually the exact condition needed to make the divergence of
(π̇(t), ẋ(t)) positive everywhere. By Green’s theorem, a positive divergence automatically eliminates bounded
orbits, since the line integral around a closed loop is positive. The proof of item (f) in Lemma 2 of Appendix
B.5 has more details.
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Figure 10: When the Taylor principle holds, there are two types of continuous bounded paths.
Two of them are shown in the figure in red and green. The flow lines in the background are
for the dynamics after liftoff, which occurs at t1. The continuous bounded path in which the
economy reaches the steady state (πss, xss) = (0, 0) at t1 and stays there forever after is a
limiting case of the equilibrium shown in red.

6.2 Implementing the Optimal Equilibrium

I now show that, under the rule in equation (15), there are many ways to implement it. Let

R∗ = (π∗(0), x∗(0), π∗(t∗), x∗(t∗)) be the vector Rt1 evaluated at the optimal equilibrium.

Proposition 4 (Implementation of the optimal equilibrium). If κσλ 6= 1, the rule in equa-

tion (15) implements the optimal equilibrium if and only if

f(R∗) = t∗, (19)

ξπ(R∗) + φξx(R
∗) = 1− κσλ. (20)

If κσλ = 1, the rule implements the optimal equilibrium if and only if equation (19) holds

(i.e. equation (20) is no longer needed and any values for ξπ(R∗), ξx(R
∗) implement the

optimal equilibrium).

Proof. Appendix B.6. �

Equation (19) states the rather obvious condition that to implement the optimal equi-
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librium, the central bank must have a liftoff rule that lifts off at optimal time t∗ along the

optimal path.

Equation (20) shows how the Taylor rule coefficients have to be picked to implement the

optimal equilibrium when κσλ 6= 1, where we recall that φ is the slope of the optimal saddle

path defined in equation (8) and 1 − κσλ is the coefficient in front of π∗(t) in the optimal

interest rate path in equation (7). Thus, equation (20) says that picking any ξπ(R∗) and

ξx(R
∗) that generate the slope for the optimal saddle path is all that is required to implement

the optimal equilibrium. Because there are two coefficients to be chosen and a single slope

to match, there is one degree of freedom in the choice of coefficients.

When κσλ = 1, the optimal equilibrium never travels along the saddle path, as the

economy reaches the steady state exactly at t∗. In this case, the slope of the saddle path,

or even whether a saddle path exists at all, is not important for the implementation of the

optimal equilibrium. All that is required is that the economy reach (πss, xss) at t∗. Because

the optimal equilibrium when κσλ = 1 is implementable with any Taylor rule coefficients it

can, in particular, be implemented while following the Taylor principle. The case κσλ = 1

is the only case for which this happens.

6.3 Eliminating Non-Optimal Equilibria

What should the central bank do for Rt1 6= R∗? What should its off-equilibrium threats be

if it wants to eliminate indeterminacy? The first proposition in this section answers these

questions by providing necessary and sufficient conditions to rule out non-optimal equilibria,

the main contribution of this paper.

Proposition 5 (Eliminating non-optimal equilibria). The rule in equation (15) implements

no suboptimal equilibria (i.e., those with Rt1 6= R∗) if and only if the following three state-

ments are true:

(a) [Strong deflationary expectations]. The Taylor principle does not hold when (π(t1), x(t1))

∈ Ωzlb ∩Υzlb.

(b) [Weak deflationary expectations]. The liftoff rule satisfies

f(Rt1) 6= T (Rt1) (21)

for any bounded continuous path that fulfills one of the three conditions below:

i. The Taylor principle holds and there exists r ∈ (t1,∞) such that (π(r), x(r)) ∈
∂Ω ∩Υzlb;
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ii. The Taylor principle does not hold and (π(t1), x(t1)) ∈ Ωss ∩Υss;

iii. The Taylor principle holds and (π(t1), x(t1)) = (πss, xss).

(c) [Intermediate deflationary expectations]. The liftoff rule satisfies

f(Rt1) >
1

φ1

log

(
(x (r)− xzlb)− φ1

κ
(π (r)− πzlb)

(x (t1)− xzlb)− φ1
κ

(π (t1)− πzlb)

)
(22)

for any Rt1 6= R∗ such that, first, the Taylor principle does not hold and, second, there

exists r ∈ (t1,∞) such that (π(r), x(r)) ∈ ∂Ω ∩Υss.

Proof. Appendix B.7. �

To understand Proposition 5, consider a central bank facing private-sector expectations

about the path of the economy. I define deflationary expectations as strong if the private

sector forecasts that the economy will never exit the ZLB, as weak if the private sector

forecasts the economy to be outside the ZLB at liftoff22 and as intermediate in all other

cases (which correspond to the private sector forecasting that the economy will be at the

ZLB at liftoff but outside the ZLB at some future time). In Proposition 5, items (a), (b)

and (c) each address one of these three types of expectations.

When deflationary expectations are strong, items (a) states that not following the Taylor

principle after liftoff is necessary and sufficient for determinacy. Following the Taylor princi-

ple counterproductive because promising to be tough on inflation outside the ZLB prevents

the future boom in inflation and output necessary to arrest the self-fulfilling deflationary

expectations while at the ZLB. Even though, just as in models without a ZLB, the Tay-

lor principle does anchor expectations outside the ZLB, the private sector’s expectations of

never being outside the ZLB render this anchoring irrelevant. Delaying liftoff does not help

either; it only confirms the private sector’s strong deflationary expectations. The only way

to avoid the deflationary trap is to eliminate it outright by not following the Taylor principle.

Not following the Taylor principle implies (πzlb, xzlb) /∈ Ωzlb, which prevents (πzlb, xzlb) from

being a steady state after t1.

When deflationary expectations are weak, item (b) states that avoiding liftoff at the one

particular (state-contingent) liftoff date T (Rt1) is necessary and sufficient for determinacy,

irrespective of whether the Taylor principle holds outside the ZLB. The exact functional

form of T (Rt1) is in the Appendix. Since the private sector forecasts that the economy will

be outside the ZLB at liftoff, expectations are already conducive to avoiding the deflationary

22Technically, weak expectations also include the case when the economy is outside the ZLB an instant dt
after liftoff to take into account item (b)ii. in Proposition 5.
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trap. To end up with multiple equilibria, the central bank must willfully steer the economy

into the deflationary trap, which can only be done by lifting off at precisely the wrong time.

Subitem i. corresponds to the deflationary trap equilibria discussed in Benhabib et al.

(2001b) in which the economy can initially be arbitrarily close to the desired steady state

yet still converge to the deflationary steady state. In the present context, these paths can

get arbitrarily close to the zero inflation steady state (πss, xss) not at t = 0, but at t1,

although they are still conceptually completely analogous. Precluding these paths from

being an equilibrium can be done it without having to abandon the Taylor principle if f

is chosen so as to satisfy equation (21). This result is different from those in Benhabib

et al. (2001b). In Benhabib et al. (2001b), the Taylor principle necessarily implies that

these paths always constitute perfect foresight equilibria. The difference in results arises

because I consider a broader set of rules that the central bank can follow by allowing a state-

dependent liftoff.23 Subitem ii. describes an economy that converges to the desired steady

state (πss, xss) after having successfully escaped the ZLB region Ωzlb by time t1. Even though

the economy converges to the intended steady state, it does so by following a suboptimal

path. These equilibria can be precluded by either following the Taylor principle or choosing

f(Rt1) 6= T (Rt1). Subitem iii. considers equilibria in which the Taylor principle holds and

the economy is on (πss, xss) exactly at liftoff.

The case described in item (c) corresponds to intermediate deflationary expectations.

In this case, the central bank produces global determinacy if and only if it follows one

of two strategies. The first strategy is to postpone the date of liftoff far enough into the

future and, after that, to not follow the Taylor principle. For each Rt1 that satisfies the

assumptions in item (c), any low enough value of t1 gives a continuous bounded path and

hence an equilibrium. When the economy is inside Ωzlb, pegging interest rates at zero

or following i(t) = max {0, ξππ(t) + ξxx(t) + rh} induces the same outcome. Liftoff while

ξππ(t) + ξxx(t) + rh < 0 produces the same path as lifting off exactly at time r, when the

economy is at the boundary of the ZLB region and also on the stable saddle leading to

(πss, xss), that is, (π(r), x(r)) ∈ ∂Ω ∩ Υss. For all liftoff times t1 ≤ r, the economy ends up

following the stable saddle path toward (πss, xss), staying bounded and continuous and hence

generating a suboptimal equilibrium. To stop this equilibrium from forming, the central bank

first computes how long it takes to reach ∂Ω ∩ Υss starting at the (π(0), x(0)) given by the

first two components of Rt1 . It then picks a liftoff that exceeds that time. Equation (22)

expresses exactly this strategy. More intuitively, sufficiently delaying liftoff and not following

the Taylor principle induce higher inflation and output, reinforcing the expectations that the

23Despite this difference, the requirements of item (a) in Proposition 5 do support the conclusion in Ben-
habib et al. (2001b) that it is not possible to have determinacy while always (i.e., along every path) following
the Taylor principle.
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economy will exit the ZLB. The central bank must give the economy enough of an escape

velocity to permanently exit the ZLB region and to also avoid other suboptimal equilibria

that approach the optimal steady state but with too little inflation along the way. The

earliest possible time for liftoff that guarantees determinacy is a function of private-sector

expectations. The more deflationary the expectations, the longer the minimum time the

central bank must wait before it lifts off. Since this lower bound on the time of liftoff

depends on expectations, it changes with the state of the economy. Determinacy in this

case requires a state-dependent liftoff date. A full description of the state of the economy

before liftoff involves not only the levels of inflation and output that are expected to prevail

exactly at liftoff but also their paths before then. A purely forward-looking rule that gives

liftoff only as a function of economic conditions expected to prevail at the time of liftoff can

anchor expectations of inflation and output at liftoff and later, but not before then, resulting

in indeterminacy. To get determinacy, the liftoff rule must be a function of the state of the

economy during the liquidity trap, before liftoff.

The second strategy to obtain determinacy when deflationary expectations are of interme-

diate strength is to lift off at any time and to then follow the Taylor principle. This strategy

works because following the Taylor principle outside the ZLB negates the intermediate-

strength deflationary expectations outright. For times in which the private sector forecasts

that the economy will be outside the ZLB, the Taylor principle anchors inflation and the

output gap to their steady-state targets of zero, just as in models without the ZLB. As soon

as the economy is outside the ZLB, both inflation and the output gap must always equal

their steady-state value of zero. This steady state is bounded away from the ZLB, since,

in a small neighborhood around it, the nominal rate is close to the natural rate, which by

then has turned positive. Therefore, an economy that is initially at the ZLB but expected to

be outside of it at some point must jump a discrete amount the instant it exits the ZLB in

order to immediately reach steady state. But predictable discrete jumps in inflation and the

output gap create arbitrage opportunities, which cannot exist in equilibrium. The economy

can therefore never exit the ZLB in the first place, disproving the private sector’s initial

expectations.

Even though Proposition 5 gives exact ways in which to eliminate each type of potential

equilibria, it also offers broader, more conceptual lessons that apply along all paths. It gives

general properties that any interest rate rule must have and can have in order to produce a

determinate optimal outcome. When I combine Propositions 4 and 5, I obtain the following

results.
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Proposition 6 (General properties for global determinacy of the optimal equilibrium). If

κσλ 6= 1, when the optimal equilibrium is the unique equilibrium:

(a) The liftoff rule cannot be purely forward-looking, i.e., f cannot be constant in its first

two arguments (which correspond to (π(0), x(0)) in equilibrium).

(b) The interest rate rule can be purely backward-looking, i.e., ξπ, ξx and f can all be

constant in their last two arguments (which correspond to (π(t1), x(t1)) in equilibrium).

(c) The interest rate rule can be memoryless after liftoff, i.e., the Taylor rule coefficients

ξπ and ξx can both be constant (and hence state and path independent).

Proof. Appendix B.8. �

Proposition 7 (Continuous policy rules). If the interest rate rule is continuous with respect

to the state of the economy, i.e., if ξπ, ξx and f are continuous:

(a) Proposition 5 holds by replacing equation (21) with

f(Rt1) > T (Rt1). (23)

If κσλ 6= 1 and the optimal equilibrium is the unique equilibrium, then, in addition:

(b) The Taylor principle never holds.

(c) The interest rate rule must be forward- and backward-looking, i.e., at least one of the

three functions ξπ, ξx and f must be not constant in the first two arguments, and at

least one of the three functions must be not constant in the last two arguments.

Proof. Appendix B.9. �

The first two items in Proposition 6 state that an interest rate rule that brings about

global determinacy of the optimal equilibrium must be path dependent but need not be

forward-looking. Why must the liftoff rule have a backward-looking component? A purely

forward-looking rule specifies the length of time for which the central bank promises to

keep interest rates at zero for each possible combination of inflation and output expected to

prevail at the time of liftoff without referencing how the economy gets there. This strategy

anchors expectations at liftoff and onward but not before then. Expectations for (π(0), x(0))

can freely adjust to make expectations of t1 and (π(t1), x(t1)) consistent with a rational

expectations equilibrium. For example, assume that the rule for liftoff is purely forward-

looking and that the private sector expects liftoff to occur when the economy hits the steady
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state (πss, xss). Consider the value of f(a, b, πss, xss), which will be the same for all a and

b since the rule is purely forward-looking. Using the continuous pasting conditions, it is

always possible to find (π̂0, x̂0) such that when (π(0), x(0)) = (π̂0, x̂0), the economy follows

a continuous path that reaches (πss, xss) at t = f(a, b, πss, xss). Indeed, all it takes is

to trace the IS and NKPC backward in time starting at (πss, xss) for a period of time

f(a, b, πss, xss) while setting i(t) = 0 throughout. Setting t1 = f(a, b, πss, xss) produces

a rational expectations equilibrium. But when κσλ 6= 1, this equilibrium is suboptimal,

contradicting the assumption that the optimal equilibrium is the unique equilibrium.

In contrast, if the rule has a backward-looking component, finding the path by traveling

backward in time from liftoff until t = 0 is a fixed-point problem, since the amount of time

elapsed before reaching (π(0), x(0)) depends on (π(0), x(0)) itself. If the central bank picks

an appropriate rule, the fixed-point problem can be guaranteed to have no solution. For

the example above, in economic terms, no solution to the fixed-point problem means that,

given the central bank’s behavior, there exist no rational expectations for (π(0), x(0)) that

get the economy to (πss, xss) at time f (π(0), x(0), πss, xss). This type of logic implies that if

f(Rt1), instead of being a function of Rt1 , were a function of (π(s), x(s), π(t1), x(t1)) for some

s ∈ (0, t1), Propositions 5 and 6 would still apply with only minor modifications. Moreover,

if the central bank is willing to accept an indeterminate path between t = 0 and s, it can

even wait until time s to announce its rule.

It is thus not necessary for the central bank to make its policy contingent exactly on

(π(0), x(0)). It can make it contingent on inflation and output for any s < T . This idea may

be important for the practical implementation of the rule, as it provides more options to

communicate the backward-looking nature of the rule to the public. For example, instead of

having to refer to inflation and output that prevail at the single exact moment in time when

the economy enters the liquidity trap, the central bank can make liftoff contingent on the

average inflation rate before T . Of course, there is no benefit from doing so in the model,

but it is easy to imagine situations in which this can be beneficial. For example, if inflation

has measurement error, a rule involving averages may be more desirable than one that uses

a single inflation observation.

Communication involving past averages of inflation is reminiscent of price-level targeting

rules. However, the rule in equation (15) is not, in general, equivalent to price targeting rules

like the one studied in Eggertsson and Woodford (2003). Because price-level targeting rules

are path dependent for all periods after their inception, an easy way to see that equation

(15) is indeed different is to invoke item (c) of Proposition 6.

Item (c) of Proposition 6 shows that monetary policy after liftoff can be made indepen-

dent of all outcomes and actions before liftoff, yet still provide determinacy. The proof in

Appendix B.8 makes clear that making the Taylor rule coefficients constant does not intro-
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duce any new constraints or complications. Determinacy of the optimal equilibrium can be

obtained with any combination of constant Taylor rule coefficients that implement the op-

timal equilibrium (characterized by Proposition 4). Lastly, constant Taylor rule coefficients

may also be desirable from a communications standpoint, as the complexity of the rule is

reduced.

Another way to simplify communication is to have a rule that is continuous with respect

to the state of the economy. Empirically, at least during non-crisis times, small changes

in economic conditions generally lead to changes in monetary policy of commensurate size.

One concrete instance of a discontinuous rule is in equation (14), for which f can jump,

for example, from t∗ to t∗ + 1 when (π(0), x(0)) deviates from (π∗(0), x∗(0)) by only small

amount.

When f , ξx and ξπ are assumed to be continuous, Proposition 7 shows that optimal

monetary policy that brings about determinacy becomes more dovish. Items (a) and (b) of

Proposition 7 state that continuous rules produce determinacy by promising a long enough

period of zero interest rates together with a commitment to never following the Taylor

principle once the promise of zero rates expires. The precise meaning of “long enough”

is given by equations (22) and (23). Even though these two lower bounds for liftoff are

relatively simple functions of current and future expected states of the economy, the freedom

to overshoot the lower bound and still get determinacy further reduces the informational

requirements of the central bank. It is not necessary to know the precise parameters of the

model or the exact functional form of T to implement a “long enough” period of zero interest

rates.

Why does continuity change equation (21) into equation (23)? For paths that fulfill one of

the three conditions in subitems i., ii. and iii. of item (b) in Proposition 5, the central bank

must avoid lifting off at the critical time T ; otherwise, it enables a suboptimal equilibrium.

By continuity, having f < T for one path and f > T for some other path inevitably implies

f = T for some third path. Therefore, if liftoff occurs before the critical time for any one

path, it must occur before the critical time for all paths. But this strategy unravels because

there are continuous bounded paths with T = T so that f < T implies that f < T = T ,

contradicting the notion that liftoff never occurs before the natural rate turns positive.24

One simple example of a bounded continuous path with T = T is when liftoff occurs at T

and (π(T ), x (T )) = (πss, xss).

A similar argument explains why the Taylor principle can never hold when the policy rule

is continuous. If the Taylor principle holds for some paths and does not hold for other paths,

continuity implies that at least one path satisfies the intermediate case κ (ξπ − 1) + ρξx = 0.

For that path, the deflationary steady state (πzlb, xzlb) is exactly on the boundary ∂Ω. A

24If f is allowed to occur before T , an analogous argument applies because f is still bounded below by zero.
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suboptimal equilibrium arises in which the economy travels inside Ωzlb along Υzlb and toward

(πzlb, xzlb).
25 Increasing the time of liftoff in an attempt to escape the ZLB fails: To exit

the ZLB, the economy must go across the boundary ∂Ω before entering Ωss, but when the

economy reaches ∂Ω, it is in steady state and hence remains there forever after. It follows

that to avoid κ (ξπ − 1)+ρξx = 0, either all paths obey the Taylor principle, or none of them

do. By item (a) of Proposition 5, a unique optimal equilibrium requires some paths to not

follow the Taylor principle, irrespective of f , and hence the Taylor principle never holds.

Lastly, item (c) of Proposition 7 states that a continuous rule consistent with global

determinacy of the optimal equilibrium is necessarily both forward- and backward-looking.

By item (a) of Proposition 6, we already know the rule cannot be purely forward-looking.

The reason it can no longer be purely backward-looking is that suboptimal equilibria would

emerge in a neighborhood of the optimal equilibrium. Because the optimal equilibrium (with

κσλ 6= 1) must be implemented without following the Taylor principle, it always induces

saddle dynamics outside the ZLB. First imagine that Taylor rule coefficients are constant, so

that all paths have saddle dynamics in Ωss and the same slope for the saddle path. With a

continuous and purely backward-looking f , points (π(0), x(0)) around (π∗(0), x∗(0)) always

take the economy close to (π∗(t∗), x∗ (t∗)) at time f(π(0), x (0)). For a small enough ε > 0,

there always is a point (π(t1), x(t1)) ∈ Υss that is close enough to (π∗(t∗), x∗(t∗)) and can

be reached at time t∗ ± ε. This situation is similar to that in Figure 2, only that instead

of a constant liftoff time, liftoff times change a small amount as the economy approaches

R∗. The small change is not enough to overcome the indeterminacy. The presence of a

saddle path breeds indeterminacy; liftoff slightly earlier or later simply puts the economy on

different nearby points on the saddle path. This is one of the reasons why the discontinuous

neo-Fisherian rule in equation (14) has discrete jumps (t∗, t∗ + 1 and t∗ + 2) for the liftoff

times: Jumps can put (π(t1), x(t1)) far from (π∗(t∗), x∗(t∗)) even when (π(0), x(0)) is close to

(π∗(0), x∗(0)). When the Taylor rule coefficients are not constant but are instead continuous

functions of (π(0), x(0)), by item (b) in Proposition 7, they still fail to satisfy the Taylor

principle. The only change is that now the saddle path associated with starting at (π(0), x(0))

is slightly different from the one associated with starting at (π∗(0), x∗(0)). This change is

still not enough to eliminate equilibria close to the optimal one. Points near R∗ can still

be part of an equilibrium with liftoff arbitrarily close to t∗ and a saddle path arbitrarily

close to the optimal one. Introducing a forward-looking component eliminates this kind of

equilibrium not because (π(t1), x(t1)) is suddenly far from (π∗(t∗), x∗ (t∗)), but because f

can be chosen so as to always violate the condition in equation (12), a situation analogous

to the one previously discussed for item (a) of Proposition 6.

25A formal proof is in Lemma 3 of Appendix B.8
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7 Conclusion

I have presented necessary and sufficient conditions for global determinacy of the optimal

equilibrium in a New Keynesian (NK) economy with a binding ZLB and passive fiscal policy.

By using the most basic version of the NK model, I am able to write down the solution of

the model in closed form and fully characterize global determinacy. On the other hand,

the literature examines a myriad of important ways in which this baseline model can be

extended, refined and modified.26 Nevertheless, this basic version of the model is a natural

place to start. The forces highlighted in this paper are likely at play in any model with a

NK core. A future necessary step before the rules I propose can be used by a real-world

central bank is to investigate their performance in different versions of the NK model —and

in other models as well.

26A partial list includes: Investment dynamics, trade and capital flows, coordination with fiscal policy,
limited commitment, imperfect credibility, heterogeneous agents, financial intermediation, financial stability
concerns, informational frictions, learning, and non-rational expectations are some of the realistic components
that can change the optimality and determinacy properties of equilibria.
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