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Abstract 

I give necessary and sufficient conditions for a class of interest rate feedback rules to eliminate 

self-fulfilling deflations and all other undesired equilibria in a standard New Keynesian economy 

with a binding zero lower bound. When the interest rate rule is continuous in the state of the 

economy, keeping interest rates pegged at zero for a long enough initial period and then switching 

to a Taylor rule that does not obey the Taylor principle is necessary and sufficient to implement 

the welfare-maximizing equilibrium in a globally determinate (that is, unique) way. When the 

interest rate rule is not continuous, the previous condition is still sufficient but no longer 

necessary. Fiscal policy is passive, so monetary policy anchors expectations on its own. The 

interest rate rules I consider do not require central banks to undergo any institutional change and 

do not rely on the neo-Fisherian mechanism of inducing an increase in inflation by first 

increasing interest rates. 
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1 Introduction

Short-term nominal interest rates in many developed economies —including Japan, the US

and Europe— have by now spent several years against their effective zero lower bound (ZLB)

or close to it. One tool that central banks have used when constrained by the ZLB is forward

guidance, whose main element is a promise to keep short-term nominal interest rates low

for an extended period of time. How should this promise be communicated to the public

and how should the central bank react —or threaten to react— if outcomes turn out to

be different from what it had hoped for? What does it take to “anchor expectations” and

prevent self-fulfilling “deflationary traps”?

In this paper, I answer these questions through the lens of a canonical deterministic New

Keynesian (NK) model in continuous time with a binding ZLB identical to that in Werning

(2012). A binding ZLB arises because the exogenous natural rate of interest is negative for

some finite initial period of time. Eventually, the natural rate becomes positive, so there

is no fundamental reason why nominal interest rates should remain at zero indefinitely.

However, the economy is susceptible to “expectational traps” in which the expectation of

low inflation can be self-fulfilling, pushing the economy into the ZLB irrespective of the

level of the natural rate, a suboptimal outcome. Self-fulfilling expectations can also create

macroeconomic instability in the form of multiple equilibria and chaos (Benhabib, Schmitt-

Grohé, and Uribe (2001b, 2002); Schmitt-Grohé and Uribe (2009)).

The main contribution of this paper is to provide necessary and sufficient conditions for a

class of monetary policy rules to produce the socially optimal “forward guidance” equilibrium

characterized by Werning (2012); Eggertsson and Woodford (2003); Jung, Teranishi, and

Watanabe (2005) as a globally determinate (i.e., unique) equilibrium. My goal is not to

provide an alternative to forward guidance, but rather to show how to properly communicate

it. The class of monetary policy rules I examine is very close to current practice. The central

bank first promises to keep short-term nominal interest rates pegged at zero for a length of

time that can be made contingent on past, present or expected future states of the economy.

I refer to the end of the promise to keep rates at zero as liftoff. After liftoff, the central bank

follows a Taylor rule (that respects the ZLB). Fiscal policy is “passive” or “Ricardian” and

hence plays no role in the determinacy of equilibria: Taxes or spending adjust ex-post to

validate any path of the endogenous variables that may arise. To my knowledge, this paper

is the first to present a monetary policy rule that produces global determinacy in a monetary

economy in which fiscal policy is passive and the ZLB binds.

To understand the conditions for determinacy that I derive, consider a central bank

facing private-sector expectations about the path of the economy. I label these expectations

as strongly deflationary if the private sector forecasts that the economy will never exit the
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ZLB, as weakly deflationary if the private sector forecasts that the economy will be outside

the ZLB at liftoff, and as intermediate in all other cases, which correspond to forecasts that

the economy will be at the ZLB at liftoff but outside the ZLB at some future date.

When deflationary expectations are strong, not following the Taylor principle after liftoff

is necessary and sufficient for determinacy. Following the Taylor principle is detrimental to

determinacy because promising to be tough on inflation outside the ZLB prevents the future

boom in inflation and output necessary to arrest the self-fulfilling deflationary expectations

while at the ZLB. Even though, just as in models without a ZLB, the Taylor principle

does anchor expectations outside the ZLB, the private sector’s expectations of never being

outside the ZLB render this anchoring irrelevant. Delaying liftoff does not help either; it

only confirms the private sector’s strong deflationary expectations.

When deflationary expectations are weak, avoiding one particular (state-contingent)

liftoff date is necessary and sufficient for determinacy, irrespective of whether the Taylor

principle holds outside the ZLB. Since the private sector forecasts that the economy will be

outside the ZLB at liftoff, expectations are already conducive to avoiding the deflationary

trap. To end up with multiple equilibria, the central bank must willfully steer the economy

into the deflationary trap, which can only be done by lifting off at precisely the wrong time.

When deflationary expectations are of intermediate strength, the central bank achieves

global determinacy if and only if it follows one of two strategies. The first strategy is to

postpone the date of liftoff far enough into the future and to then not follow the Taylor

principle. By definition, intermediate deflationary expectations mean that the private sector

expects the economy to exit the ZLB at some future date. Sufficiently delaying liftoff and not

following the Taylor principle induce higher inflation and output, reinforcing the expectations

that the economy will exit the ZLB. The central bank must give the economy enough of an

escape velocity to permanently exit the ZLB and to also avoid other suboptimal equilibria

that approach the optimal steady state but with too little inflation along the way. Once liftoff

is postponed far enough into the future so as to ensure determinacy, postponing it further

for any length of time still provides determinacy. The earliest possible time for liftoff that

guarantees determinacy is a function of private-sector expectations. The more deflationary

the expectations, the longer the minimum time the central bank must wait before it lifts off.

Since this lower bound on the time of liftoff depends on expectations, it changes with the

state of the economy. Determinacy in this case requires a state-dependent liftoff date. A full

description of the state of the economy before liftoff involves not only the levels of inflation

and output that are expected to prevail exactly at liftoff but also their paths before then.

A purely forward-looking rule that gives liftoff only as a function of economic conditions

expected to prevail at the time of liftoff can anchor expectations of inflation and output at

liftoff and later, but not before then, resulting in indeterminacy. To get determinacy, the
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liftoff rule must be a function of the state of the economy during the liquidity trap, before

liftoff.

The second strategy to obtain determinacy when deflationary expectations are of interme-

diate strength is to lift off at any time and to then follow the Taylor principle. This strategy

works because following the Taylor principle outside the ZLB negates the intermediate-

strength deflationary expectations outright. For times in which the private sector forecasts

that the economy will be outside the ZLB, the Taylor principle anchors inflation and the

output gap to their steady-state targets of zero, just as in models without the ZLB. As soon

as the economy is outside the ZLB, both inflation and the output gap must always equal

their steady-state value of zero. This steady state is bounded away from the ZLB, since,

in a small neighborhood around it, the nominal rate is close to the natural rate, which by

then has truned positive. Therefore, an economy that is initially at the ZLB but expected to

be outside of it at some point must jump a discrete amount the instant it exits the ZLB in

order to immediately reach steady state. But predictable discrete jumps in inflation and the

output gap create arbitrage opportunities, which cannot exist in equilibrium. The economy

can therefore never exit the ZLB in the first place, disproving the private sector’s initial

expectations.

In models without a ZLB, the Taylor principle is necessary and sufficient for determinacy.

When the ZLB binds, while the necessary and sufficient conditions for (global) determinacy

are not as simple, a succinct and easy-to-communicate sufficient principle that guarantees

determinacy under any private-sector expectations is to keep interest rates at zero for long

enough and then not follow the Taylor principle. If central bank policy is restricted to be

continuous in the state of the economy —as it is empirically likely to be, at least during

non-crisis periods— then this sufficient principle is also necessary. To see why, first note

that, as a function of the state of the economy, deflationary expectations of the private sec-

tor transition continuously from strong, to intermediate, to weak. A continuous monetary

policy must then also transition continuously across them. It follows that the Taylor princi-

ple holds either for all three types of expectations or for none of them, since otherwise there

would be a discontinuous jump in policy at one of the boundaries between the different ex-

pectation types. As mentioned before, not following the Taylor principle when deflationary

expectations are strong is always necessary for determinacy. Continuity and determinacy

together then imply that the Taylor principle never holds. A similar argument shows that

because liftoff must be state-dependent, not purely forward-looking and far enough in the

future when the Taylor principle does not hold and deflationary expectations are of inter-

mediate strength, the same features must now also be present in all other cases to produce

global determinacy with an interest rate rule that is continuous as a function of the state of

the economy.
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Related literature. While indeterminacy is an important issue in all NK models, it is

especially difficult to eliminate it in the presence of a binding ZLB. Benhabib et al. (2001b)

show that indeterminacy is a robust feature of Taylor-style feedback rules when a ZLB is

introduced. While their results do apply to the framework I use, I am able to eliminate the

kind of indeterminacy they study by considering a broader class of interest rate rules that

allows for a state-contingent liftoff date.

Cochrane (2016b) shows that an economy in a liquidity trap exhibits indeterminacy for

any given (non-state-contingent) path of nominal interest rates. I extend the results in

Cochrane (2016b) by showing that if the date of liftoff is not state-contingent, following a

Taylor rule after liftoff is not enough to eliminate indeterminacy irrespective of the choice

of Taylor rule coefficients. The key source of indeterminacy is a non-state-contingent liftoff;

central bank behavior after it is not as critical. Cochrane (2016b) also shows that for any

given equilibrium there is always a Taylor rule that implements it in a locally determinate

way (around the steady state). I show that there exists an interest rate rule that implements

the optimal equilibrium in a globally determinate way, thus strengthening the point made in

Cochrane (2016b) for at least one particular equilibrium. I do not show whether all equilibria

can be implemented in a globally determinate way, although the techniques of this paper

could be potentially used to address this question.

In the discrete-time version of the model I use, Eggertsson and Woodford (2003) imple-

ment the optimal equilibrium as a locally determinate equilibrium by means of an output-gap

adjusted price-level targeting rule and as a globally determinate equilibrium by adding an

“active” or “non-Ricardian” fiscal policy commitment. My results are different in four ways.

First, and perhaps most important, global determinacy for the rules I consider is achieved

with “passive” or “Ricardian” fiscal policy. There is no need for help from fiscal policy and

no requirement of fiscal insolvency along some off-equilibrium paths. Second, the monetary

policy rule I study requires little change in the institutional arrangements of most central

banks. The policy instrument is the short-term nominal interest rate, already the predom-

inant instrument of choice.1 A switch to a price-level target may entail some initial fixed

costs, such as a temporary loss of credibility, although the size and duration of these costs

are difficult to assess and could be small. Perhaps a more relevant argument is that, rightly

or not, central banks are not currently considering price-level targets.2 Third, informational

1Of course, a price-targeting regime can be implemented and explained by means of an interest rate rule
and, conversely, the interest rate rule I study can be communicated as a price-targeting rule. However, the
essence of the rule in Eggertsson and Woodford (2003) is more naturally explained as a price-level targeting
regime, while the rules I examine are more naturally explained as interest rate rules. Since communication
is a key aspect of policy rules and the focus of this paper, the distinction seems at least worth mentioning.

2Judging from meeting minutes, the Federal Open Market Committee (FOMC) discussed and rejected
nominal GDP targeting in 1982, 1992 and 2011 (Federal Open Market Committee of the Federal Reserve
(2015a), Federal Open Market Committee of the Federal Reserve (2015b), Federal Open Market Committee
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requirements are different. With price-level targeting, the central bank must implement a

specific target, while the interest rate rule in this paper requires only a “long enough” ini-

tial period of zero interest rates. While this makes no difference strictly inside the perfect

information model, in practice it may reduce the need to estimate private-sector expecta-

tions and parameters of the model with high precision. A central bank can judge a certain

set of parameters and expectations to be reasonable ex-ante and then enact a policy that

works for all such parameters by taking the strongest “strong enough” response across them.

Eggertsson and Woodford (2003) consider an economy with shocks and perfect foresight,

while I have a deterministic economy without shocks. This allows Eggertsson and Woodford

(2003) to show that the rule they propose can be implemented without any knowledge of

the statistical process for the natural rate of interest, an important advantage. Since I do

not consider shocks, it is not possible to evaluate whether the same holds for the rules I

study. Fourth, the interest rate rule I consider can be made memoryless after liftoff and

still guarantee global determinacy. All path dependence can end when the promise to keep

interest rates at zero ends. In price-level targeting, the closing of the price gap that opens

while at the ZLB continues after interest rates become positive. This means that the rule

I study in this paper is not the same price-level targeting rule analyzed in Eggertsson and

Woodford (2003) disguised as an interest rate rule.

Schmitt-Grohé and Uribe (2014) propose an interest-rate-based strategy to escape liq-

uidity traps that entails temporarily deviating from a Taylor rule by increasing nominal

interest rates in a deterministic and non-state-contingent way until a pre-specified target is

reached. This strategy succeeds in setting a floor for inflation without a non-Ricardian fiscal

stance but does not lead to globally determinate outcomes. Cochrane (2016a) shows that

NK models in a liquidity trap have equilibria for which an increase in interest rates leads to

higher inflation both in the short and the long run, allowing the economy to escape the ZLB.

He shows how to construct Taylor rules that implement these “neo-Fisherian” equilibria in a

locally determinate way. In this paper, I show one example of a neo-Fisherian rule that can

implement the optimal equilibrium in a globally determinate way by using a state-contingent

liftoff, an ingredient absent in Schmitt-Grohé and Uribe (2014) and Cochrane (2016a). On

the other hand, the necessary and sufficient conditions for determinacy that I obtain —my

main result— apply to a class of interest rate rules that is not neo-Fisherian (because nom-

inal interest rates increase only when the Taylor rule prescribes it). Thus, I show that it is

possible to attain global determinacy with and without a neo-Fisherian strategy.

There are many other proposals on how monetary policy should be conducted in a liquid-

ity trap. Some prominent examples include: Svensson (2004), who advocates an intentional

of the Federal Reserve (2015c)), but not without noting some of its merits. Bernanke (2015b) and Bernanke
(2015a) explain why the FOMC rejected nominal GDP targeting in 2011.
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currency depreciation combined with a calibrated crawling peg; McCallum (2011), Sum-

ner (2014) and Romer (2011), who recommend nominal GDP targeting; and Blanchard,

Dell'Ariccia, and Mauro (2010) and Ball (2013), who promote increasing the inflation tar-

get by contending that the trade-off between higher steady-state inflation and less frequent

visits to the ZLB is worth undertaking. In practice, central banks have advocated and used

large-scale asset purchases and negative interest rates. None of the studies mentioned in this

paragraph explicitly consider the global determinacy properties of their proposals. For the

class of rules I consider, there are no suboptimal trade-offs and there is no need to accom-

modate new monetary or price aggregates, price-level or inflation targets, “shadow” rates,

exchange rates, the central bank’s balance sheet, or the quantity or price of other assets.

2 The Canonical New Keynesian Model with a ZLB

I use the framework of Werning (2012), a standard deterministic New Keynesian model

in continuous time, log-linearized around a zero-inflation steady state.3 The economy is

described by

ẋ(t) = σ−1 (i(t)− r(t)− π(t)) , (1)

π̇(t) = ρπ(t)− κx(t), (2)

i(t) ≥ 0. (3)

The variables x(t) and π(t) are the output gap and the inflation rate, respectively. The

output gap is the log-deviation of actual output from the hypothetical output that would

prevail in the flexible price, efficient allocation. Henceforth, for brevity, I refer to the output

gap simply as output. The central bank’s policy instrument is the path for the nominal

short-term (instantaneous) interest rate i(t), which must remain non-negative at all times.

The variable r(t) is the exogenous natural rate of interest, defined as the real interest rate

that would prevail in the flexible price, efficient economy with x(t) = 0 for all t. The process

for r(t) is

r(t) =

{
rl < 0 , 0 ≤ t < T

rh > 0 , t ≥ T
.

3See Woodford (2003) or Gaĺı (2009) for details. Although most analysis of determinacy in New Key-
nesian models is done in log-linearized models, Braun, Körber, and Waki (2016) contend that conclusions
would differ in the non-linear model. On the other hand, Christiano and Eichenbaum (2012) show that the
additional equilibria that arise from non-linearities in Braun et al. (2016) are not E-learnable. In addition,
Christiano and Eichenbaum (2012) show that the linear approximation is accurate except in extreme cases,
such as when output deviates by more than 20 percent from steady state. While these issues are important,
I do not seek to address them here and simply use the log-linear model (plus the ZLB), the standard practice
in the literature.
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The constants rl < 0, rh > 0 and T > 0 are given. I define a liquidity trap as the period in

which the natural rate is negative, as in Werning (2012). The economy starts in a liquidity

trap and exits it with certainty at time T . None of the results in this paper change if the

path for r(t) is different as long as r(t) < 0 for t < T and r(t) > 0 for t ≥ T .

Equation (1) is the IS curve, the log-linearized Euler equation of the representative con-

sumer. The constant σ−1 > 0 is the elasticity of intertemporal substitution. Equation (2) is

the New Keynesian Phillips curve (NKPC), the log-linear version of firms’ first-order condi-

tions when they maximize profits by picking the price of differentiated consumption goods

under monopolistic competition while subject to consumers’ demand and Calvo pricing. The

constant ρ > 0 is the representative consumer’s discount rate and κ > 0 is related to the

amount of price stickiness in the economy. As κ → ∞, the economy converges to a fully

flexible price economy while prices become completely rigid when κ→ 0. Financial markets

are complete (there is a complete set of tradable Arrow-Debreu securities).

Definition. An equilibrium consists of bounded paths for inflation, output and the nomi-

nal interest rate {π(t), x(t), i(t)}t≥0 that, given a path {r(t)}t≥0 for the natural rate, satisfy

equations (1)-(3).

Three elements in the definition are worth discussing for the purposes of this paper. First,

the requirement that output and inflation remain bounded at all times is equivalent to the

asymptotic conditions
lim
t→∞
|x(t)| < ∞, (4)

lim
t→∞
|π(t)| < ∞. (5)

The role that equation (5) plays for determinacy of equilibria has been examined in the

literature.4 In the specific setup of this paper, inflation is unbounded if and only if output is

unbounded, making it impossible to differentiate between nominal and real unboundedness

of paths. Thus, equation (5) can be omitted from the definition of equilibrium and issues

regarding its applicability can be sidestepped.

Second, paths for π(t) and x(t) that satisfy equations (1) and (2) must be continuous.5

With complete markets, if there were any jumps in x(t) or π(t), the representative consumer’s

4Cochrane (2011) argues that there is no obvious economic reason to exclude paths with unbounded
inflation from the definition of equilibrium. McCallum (2009) and Atkeson, Chari, and Kehoe (2010) agree
and, among others, propose different criteria to eliminate or select equilibria. Woodford (2003), Wren-Lewis
(2013) and others defend the approach of using equation (5).

5A classical solution to the system of ODEs in equations (1)-(2) would also require differentiability of x(t)
and π(t) for all t. But if x(t) and π(t) were differentiable for all t, the central bank’s control problem of
Section 3 would have no solution, since any solution necessarily requires a jump in the control i(t).

I instead use “Filippov solutions,” also called solutions “in the sense of distribution,” a weaker solution
concept that allows for non-differentiability in a set of measure zero (Filippov (2013)). Any other weak notion
of solution (such as viscosity solutions) would preserve all the results of this paper as long as derivatives are
finite everywhere.
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Euler equation would be violated in this deterministic economy owing to the existence of

arbitrage opportunities. On the other hand, there are no smoothness requirements for i(t)

as it is a choice variable for the central bank.

Third, neither the definition of equilibrium nor the dynamics of the economy in equations

(1) and (2) make any explicit reference to fiscal policy, although, as stressed by Woodford

(1995), Sims (1994), Benhabib, Schmitt-Grohé, and Uribe (2001a), Cochrane (2011) and

others, whether determinacy obtains depends on the joint monetary-fiscal regime. The

implicit fiscal behavior I assume is that of a “Ricardian” (in the terminology of Woodford

(2001)) or “passive” (in the terminology of Leeper (1991)) regime: The fiscal authority

always adjusts taxes or spending ex-post to validate any path of the endogenous variables

that may arise.

3 The Optimal Equilibrium

The social welfare loss function for the economy is

V =
1

2

∫ ∞
0

e−ρt
(
x(t)2 + λπ(t)2

)
dt. (6)

The constant λ > 0 is a preference parameter that dictates the relative importance of

deviations of output and inflation from their desired value of zero. This quadratic loss

objective function can be obtained as a second-order approximation around zero inflation

to the economy’s true social welfare function when the flexible price equilibrium is efficient

(Woodford (2003)). An optimal equilibrium is an equilibrium that minimizes (6).

Werning (2012) solves for the optimal equilibrium {π∗(t), x∗(t), i∗(t)}t≥0 when the central

bank has perfect commitment and credibility. He finds that it is unique and that the optimal

path for the nominal interest rate is

i∗(t) =

{
0 , 0 ≤ t < t∗

(1− κσλ) π∗(t) + rh , t ≥ t∗
, (7)

where the optimal liftoff date, t∗, is a constant that can be found as a function of the

parameters of the model. Importantly, t∗ > T . The optimal policy is to commit to zero

nominal interest rates for longer than the natural rate r(t) is negative —one of the main

elements of forward guidance. In addition, i∗(t) > 0 for t ≥ t∗ so interest rates jump from

zero to positive at t∗ and never again hit the ZLB. Equation (7) is not a policy rule. The

optimal path (1− κσλ) π∗(t)+r(t) is a single fixed path, a function of time only. It describes

one particular equilibrium. It is contingent neither on the actual actions of the central bank
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nor on whether realized inflation, output or private-sector expectations happen to take one

value or another (note π(t) and x(t) are endogenous variables, while π∗(t) and x∗(t) are

merely two particular functions of time). As such, it addresses neither the final equilibrium

outcome of the economy nor the off-equilibrium behavior of the central bank. Hence, it says

nothing about implementability or indeterminacy.

Plugging (7) into (1) and (2) gives the optimal paths for inflation and output for t > 0

but not for t = 0. Given π∗(0) and x∗(0), equations (1), (2) and (7) then determine the entire

optimal equilibrium. One way to find π∗(0), x∗(0) and t∗ is to use the maximum principle,

as in Werning (2012).

Figure 1 shows representative optimal paths for three parameter configurations in the

π-x plane. The optimal path is most easily understood in three stages, starting from the

last one and working backward in time. The beginning and end times for each stage are

determined by the discontinuities of r(t) and i∗(t). Because equation (7) is not a policy rule,

in the remainder of this section, I describe only the equilibrium path {π∗(t), x∗(t), i∗(t)}t≥0
but not the off-equilibrium dynamics of the economy, which would require specifying the

central bank’s behavior for all (π(t), x(t)) different from (π∗(t), x∗(t)).

In the third and last stage, defined by t ≥ t∗, the economy has positive natural and

nominal rates. The path for (π∗ (t) , x∗(t)) satisfies

x∗(t) = φπ∗(t), (8)

where

φ =
1

2κ

(
ρ+

√
4λκ2 + ρ2

)
> 0. (9)

If κσλ 6= 1, (π∗(t), x∗(t)) travels along the line defined by equation (8) and converges to the

steady state (πss, xss) = (0, 0) as t→∞. If κσλ = 1, (π∗(t), x∗(t)) reaches (πss, xss) exactly

at t∗. The blue line in Figure 1 shows the optimal path for an example in which κσλ = 1.

The other two cases keep all parameters unchanged except for λ, the relative weight given

to deviations of output and inflation from zero. As can be seen in the figure, the optimal

path with a smaller λ tolerates larger deviations of inflation from zero.

The second stage is given by t ∈ [T, t∗), when the natural rate is positive but the nominal

rate is zero. Starting at a given (π∗(t), x∗(t)) inherited from the first stage, inflation and

output move so as to minimize the time it takes to reach the line x = φπ. This is accomplished

by pegging nominal rates to zero. When x∗(t) and π∗(t) hit the line x = φπ, the third stage

begins.

In the first stage, defined by t ∈ [0, T ), the natural rate is negative and the nominal rate

is at the ZLB. The zero nominal rate in the first two stages produces the lowest real interest

rate that the central bank can achieve, which reduces the incentive to save and increases the

incentive to consume. As a result, inflation and output eventually become positive before
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λ=20
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λ=0.6

π

x

Figure 1: Optimal paths for inflation (horizontal axis) and the output gap (vertical axis)
for three values of λ, the weight that the central bank places on inflation relative to output.
The rest of the parameters used are taken from Werning (2012) (T = 2, σ = 1, κ = 0.5,
ρ = 0.01, rh = 0.04 and rl = −0.04).

T . The initial point (π∗(0), x∗(0)) is determined by optimality conditions that trade off

deviations of inflation and output from zero at each of the three stages.

For more details on the optimal equilibrium, see Werning (2012).

4 Calendar-Based Forward Guidance Leads to Inde-

terminacy

In this section, I study a central bank that follows interest rate rules in which the time of

liftoff is a constant; that is, liftoff occurs at a date that is pre-determined before t = 0 in a

non-state-contingent way. I refer to this type of liftoff as calendar-based liftoff. The main

result in this section is that when a central bank follows a Taylor rule after a calendar-based

liftoff, irrespective of Taylor rule coefficients, the optimal equilibrium cannot be implemented

without global indeterminacy. Before presenting the main result, I briefly review the relevant

elements in Cochrane (2016b). From now on and for the rest of the paper, the central bank

has perfect commitment and credibility.6

6Without them, the optimal equilibrium cannot be implemented.
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An initial natural candidate rule to implement the optimal equilibrium is:

i(t) =

{
0 , 0 ≤ t < t∗

(1− κσλ) π∗(t) + rh , t ≥ t∗
. (10)

Although equations (7) and (10) look very similar, they are conceptually different. While

equation (7) describes the single optimal path i∗(t), equation (10) is a rule —a policy response

function— by which the central bank commits to setting interest rates in all possible states

of the world. It therefore provides both the on- and off-equilibrium behavior of the central

bank. When combined with the IS and NKPC, they fully specify the dynamic behavior of

the economy in all circumstances. For this particular rule, the behavior of the central bank

is the same for all states of the world. The central bank announces that nominal interest

rates will follow the optimal path described in the last section —which is the same in all

states of the world, since the optimal path is not state-contingent— come what may. If

the central bank follows rule (10), then it can clearly implement the optimal equilibrium

whenever (π(0), x(0)) = (π∗(0), x∗(0)). However, Cochrane (2016b) shows that many other

equilibria are also consistent with this rule, leading to an indeterminate outcome.

The intuition for why indeterminacy arises is as follows. Because the IS and NKPC

equations are forward-looking in nature, i(t) cannot directly affect contemporaneous inflation

and output. However, it can directly affect expectations of future output and inflation, which

in turn affect future actual inflation and output. In equation (1), i(t) can directly control ẋ(t).

In turn, control over ẋ(t) translates, via the NKPC, into control over π̇(t). By integrating

over time, it follows that i(t) has a direct influence on the levels of inflation and output,

(π(t), x(t)), for all t > 0 but not for t = 0. Monetary policy influences the economy through

an intertemporal channel. Initial inflation and output, π(0) and x(0), instead of being

control variables as in the last section, are now non-predetermined or “jump” variables that

are determined in equilibrium. Any (π(0), x(0)) that result in continuous bounded paths

for inflation and output when the economy follows the IS and NKPC are consistent with

an equilibrium in which i(t) is given by equation (10). The only way the central bank

can influence (π(0), x(0)) is by “steering” the paths of inflation and output for t > 0 into

being either bounded or unbounded. If monetary policy can make the path that originates

at some (π(0), x(0)) unbounded, then that particular (π(0), x(0)) is disqualified from being

part of an equilibrium path. Instead, if the path remains bounded, then the path starting at

(π(0), x(0)) is an equilibrium. Since the dynamics of (π(t), x(t)) under rule (10) are saddle-

path stable for t ≥ t∗, there are many initial points (π(0), x(0)) that the central bank can

never steer into being unbounded. The saddle dynamics arise after t ≥ t∗ because the path

for i(t) under rule (10) is completely unresponsive to inflation and output. Without any
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state-contingency, the required asymptotic steering of paths becomes impossible.

To see this, first note that the saddle path is a line through the origin in the π-x plane

given by x = φπ. Pick a point (π̃, x̃) on the saddle path and consider a candidate equilibrium

with (π(t∗), x(t∗)) = (π̃, x̃). For t ≥ t∗, the economy follows the dynamics of the IS equation

and the NKPC with i(t) = (1− κσλ) π∗(t) + rh by moving along the saddle path toward the

steady state (πss, xss) (or, if (π̃, x̃) = (πss, xss), the economy is already in steady state and

stays there). Now trace the dynamics of the IS and the NKPC backward in time with i(t) = 0,

from t = t∗ to t = 0, starting at (π(t∗), x(t∗)) = (π̃, x̃) and ending at some (π(0), x(0)). The

resulting path starting at (π(0), x(0)) is bounded and continuous and obeys the IS equation,

the NKPC, the ZLB and the central bank’s interest rate rule: It is an equilibrium. Because of

the linearity of the system (1)-(2), the saddle path and the set of initial conditions (π(0), x(0))

that put the system on the saddle path at t∗ are both lines in the π-x plane. The multiple

equilibria under rule (10) are thus indexed by points in a line, which can be the saddle path

or the π(0)-x(0) line that gets the economy to the saddle path at t∗. Figure 2 shows these

two lines together with paths for inflation and output from equilibria that start at different

π(0) and x(0). All of these equilibria are obtained using identical parameters and the same

interest rate rule, given by (10). They are different equilibria of the same economy, unlike

those in Figure 1, which show the optimal equilibrium for different parameter configurations.

The green line is the unique optimal equilibrium that starts at (π∗(0), x∗(0)). The purple

line is a suboptimal equilibrium that reaches steady state (πss, xss) = (0, 0) exactly at liftoff.

The yellow line is one of the “local-to-frictionless” equilibria described in Cochrane (2016b)

in which inflation and output do not explode backward in time. The remaining paths have

two arbitrary values for π(0) and illustrate the kinds of behavior that the various equilibria

can exhibit.

Cochrane (2016b) goes further than just using equation (10) and shows that if the central

bank commits to any given non-explosive and non-state-contingent path of nominal rates, the

economy suffers from indeterminacy. More formally, rules with the form i(t) = h(t) that are

explicitly only functions of t, as opposed to functions of x(t) or π(t), produce indeterminacy

for any bounded choice of h.7 These rules can be interpreted as Taylor rules with coefficients

7One of the main points in Cochrane (2016b) is that, given any equilibrium, there is always some interest
rate rule that implements it in a locally determinate way. Although my paper does not address this point
directly, in Sections 5 and 6, I show that there is a rule that implements the optimal equilibrium in a globally
determinate way, thus strengthening the point in Cochrane (2016b) for at least one particular equilibrium
(the optimal one). I do not show whether all equilibria can be implemented in a globally determinate way,
although the techniques I introduce could turn out to be useful in analyzing this question.

I also do not consider rules with a time-varying intercept in all their generality, only one particular
example in Section 5.2. The rules in Cochrane (2016b) are valid in a neighborhood of the steady state
(πss, xss) = (0, 0) but can violate the ZLB far away from it, which is the main reason I do not adopt them.
Furthermore, because one of the main motivations of this paper is to analyze rules that central banks can
easily communicate and readily apply, I stay within the class of classic rules for which the intercept is equal
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Figure 2: Multiple equilibria when the central bank chooses a rule that sets interest rates
equal to the same optimal path in a non-state-contingent way (i.e., the same interest rates
for all realizations of inflation, output and their expectations). Interest rate rules for which
liftoff is not contingent on the state of the economy never anchor expectations (Proposition
1).

of zero on inflation and output and a time-varying intercept equal to h(t).

I now extend the results in Cochrane (2016b) to Taylor rules. Consider a central bank

that commits to keeping interest rates at zero until some fixed liftoff time t and follows a

Taylor rule that respects the ZLB forever after. Because the Taylor rule can prescribe zero

nominal rates immediately after liftoff, liftoff may or may not coincide with the first time

that interest rates become positive after the liquidity trap is over. Liftoff marks the end

of the central bank’s promise to keep interest rates pegged at zero and the beginning of

a promise to follow a Taylor rule, and not necessarily the first time nominal interest rates

become positive.

The next proposition establishes that, just as for rules of the form i(t) = h(t) consid-

ered above, rules that follow a Taylor rule after a calendar-based liftoff cannot implement

the optimal equilibrium in a globally determinate way. This impossibility result applies to

Taylor rules with any coefficients on inflation and output. One direct implication is that,

unlike in models without the ZLB, following the Taylor principle does not guarantee a unique

equilibrium. In the next section, I show that following a non-state-contingent interest rate

path before and after liftoff can produce global determinacy if liftoff occurs in a particular

state-contingent way. Together, these results imply that whether the central bank can elim-

to the natural rate (after liftoff).

13



inate all suboptimal (π(0), x(0)) from being part of an equilibrium by steering paths into

becoming unbounded depends more on the state-contingent form of liftoff and less so on

the form of state contingency when setting the level of i(t). The main obstacle for global

determinacy in the presence of a ZLB is not that interest rates fail to be responsive enough

to inflation and output before or after liftoff. Instead, the key challenge is to conduct liftoff

in an appropriate way.

To further strengthen this intuition, I allow the Taylor rule coefficients to be not just

arbitrary constants, but arbitrary functions of the endogenous realizations of inflation and

output at time zero, R0 = (π(0), x(0)). When, as is the case in this section, the liftoff date

is constant and the economy is deterministic, conditioning on R0 is the same as conditioning

on the entire path {π(t), x(t)}t∈[0,∞). Although not exactly the same as allowing for a

general non-linear rule, being able to have state-dependent Taylor-rule coefficients offers the

central bank significant flexibility. For example, it gives the central bank the freedom to

pick coefficients as if it knew which of the many potential equilibria will be realized. Despite

these faculties, indeterminacy still obtains. Of course, a traditional Taylor rule with constant

coefficients is a special case of the one I consider here.

Proposition 1 (Calendar-based forward guidance leads to indeterminacy). Let t≥ T be a

constant.8 Let ξπ(R0) and ξx(R0) be arbitrary functions of R0 = (π(0), x(0)). If κσλ 6= 1,

the rule

i(t) =

{
0 , 0 ≤ t < t

max {0, ξπ(R0)π(t) + ξx(R0)x(t) + rh} , t ≤ t <∞
(11)

cannot implement the optimal equilibrium as the unique equilibrium of the economy.

Proof. Assume that rule (11) implements the optimal equilibrium. I show that it also im-

plements a different second equilibrium. Let R∗0 = (π∗(0), x∗(0)). Because the rule (11)

implements the optimal equilibrium and max {0, ξπ(R∗0)π
∗(t∗) + ξx(R

∗
0)x
∗(t∗) + rh} > 0, we

have t = t∗.

Consider the path that starts at (π(0), x(0)) and reaches (πss, xss) = (0, 0) at t = t∗ when

following (1), (2) and (11). This path always exists, since we can find it by positioning the

economy on (0, 0) at t = t∗ and running time backward until t = 0 using i(t) = 0 throughout.

Since the point (0, 0) is a steady state after t∗ for any choice of ξπ(R0) and ξx(R0), (π(t), x(t))

remains bounded. If κσλ 6= 1, (x (t) , π (t)) = (π(t∗), x(t∗)) = (0, 0) 6= (π∗(t∗), x∗(t∗)) (see

Werning (2012) for a proof that (0, 0) 6= (π∗(t∗), x∗(t∗)) when κσλ 6= 1). Hence, when

8Throughout the paper, I show results that assume that the liftoff date does not occur before T , as even
without commitment a central bank trying to minimize the social loss function in equation (6) would set
i(t) = 0 for t < T , when the natural rate is negative. However, none of my results depend on this assumption;
extending the results to allow for any liftoff date is straightforward. The key to the relevant proofs is that
the liftoff day is bounded below (which it always is, by t = 0).
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κσλ 6= 1, the path that starts at the (π(0), x(0)) that reaches (0, 0) at t = t∗ when i(t) = 0

between t = 0 and t = t∗ constitutes an equilibrium different from the optimal one for any

choice of functions ξπ(R0) and ξx(R0). When κσλ = 1, the optimal equilibrium happens to

have (x∗(t), π∗(t)) = (0, 0) for all t ≥ t∗ and the optimal equilibrium is indeed implementable

as the unique equilibrium (Appendix A.2 shows how). �

5 Rules with a State-Dependent Liftoff Date

In the last section, I showed that calendar-based forward guidance, in which liftoff is pre-

announced for a particular date without making it contingent on the state of the economy,

can never anchor expectations, even when a Taylor rule —any Taylor rule— is followed after

liftoff. In this section, I introduce interest rate rules that have a state-contingent liftoff.

In the next section, I use these rules to implement the optimal equilibrium in a globally

determinate way.

Unlike the case of a constant liftoff time, when liftoff is state-contingent, initial inflation

and output no longer provide a full description of the state of the economy. With a state-

contingent liftoff, expectations of future inflation and output can be important equilibrium

determinants of when liftoff occurs, even after π(0) and x(0) are realized. In order to study

an economy in which expectations of future inflation and output matter for equilibrium

outcomes even after controlling for π(0) and x(0), I start by defining a rational expectations

equilibrium.

5.1 Rational Expectations Equilibrium

Let t1 be the actual time of liftoff that is realized in the economy. As before, liftoff marks the

end of the central bank’s promise to keep interest rates pegged at zero and not necessarily

the first time interest rates become positive. Let Rs = (π(0), x(0), π(s), x(s)) be the vector

containing realized inflation and output at times 0 and s. Given time-t information, the

private sector has expectations described by a conditional expectations operator Et [·].
Before t = 0, the central bank announces a liftoff rule. The rule is a function f :

R4 → [T,∞) that maps Et [Rt1 ] ∈ R4 to a promised liftoff date f(Et [Rt1 ]) ∈ [T,∞). The

rule for liftoff works as follows. At t = 0, the private sector forms expectations of Rt1 ,

say E0 [Rt1 ] = (π0, x0, π1, x1), which are observed by the central bank. Thus, at t = 0,

the private sector expects liftoff to occur when (π(t1), x(t1)) = (π1, x1). The central bank

then computes the number f(π0, x0, π1, x1). If f(π0, x0, π1, x1) = 0, the central bank lifts

off now (at t = 0) and, by definition, t1 = 0. If f(π0, x0, π1, x1) 6= 0, the central bank

does not lift off and repeats the same procedure in the future. Specifically, for any time s
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such that liftoff has not yet occurred, having observed private-sector expectations Es [Rt1 ]

given by, say, (π̃0, x̃0, π̃1, x̃1), the central bank computes the number f(π̃0, x̃0, π̃1, x̃1). If

f(π̃0, x̃0, π̃1, x̃1) = s, then the central bank lifts off at time s and consequently t1 = s. If

f(Et [Rt1 ]) 6= t for all t, then the central bank never lifts off and i(t) = 0 for all t.

Before t = 0, the bank also announces what rule for interest rates it will follow after

liftoff.

Definition. A rational expectations equilibrium is an equilibrium in which private-

sector expectations are validated, i.e. for all t, s ≥ 0

Es [x(t)] = x(t), (12)

Es [π(t)] = π(t), (13)

Es [f(Rt1)] = f(Rt1), (14)

and central bank announcements are credible, i.e., for all t ≥ 0 nominal interest rates follow

the central bank’s announced rule and

t1 = f(Rt1). (15)

The condition that t1 = f(Rt1) in equation (15) is an equilibrium condition and not a

tautology. Indeed, the central bank can choose a rule f for which there is no t1 such that

t1 = f(Rt1). To drive home this idea, consider the function f(Rt1) = t + 1, which says

that the central bank commits to liftoff one year from the current date, for all future dates.9

Clearly, there is no t1 such that t1 = f(Rt1) = t1 + 1. In this case, liftoff never occurs.10

More generally, the liftoff date t1 in a rational expectations equilibrium is a fixed point of

t1 = f(π(0), x(0), π(t1), x(t1)). (16)

Because, as described earlier, the central bank lifts off at the earliest time for which t1 =

f(Rt1), t1 is actually the smallest fixed point of equation (16).

Since I analyze only rational expectations equilibria, from now on I directly write x(t)

9Although this particular rule is not in the class of rules I consider, it serves as a more clear illustration
of the point that equation (15) is not tautologically satisfied. It is possible to present a similar example for
the rules I consider at the cost of some notational complexity, e.g., f(Rt1) = t̃+ 1, where t̃ = x−1 (x(t)) and
x(t) is the solution (together with some π(t)) of the ODE system in equations (1)-(2).
10One technicality is worth pointing out. If t1, f(Rt1) ∈ R, the definition of rational expectations equilib-

rium does not allow for an equilibrium in which liftoff never occurs, since condition (15) would never hold. Al-
lowing for t1 and f(Rt1) to take on the value t1 = f(Rt1) =∞ restores this possibility. When liftoff never oc-
curs, the economy converges to the non-optimal deflationary steady state (πzlb, xzlb) =

(
−rh,− ρ

κrh
)
6= (0, 0).

In addition, when liftoff never occurs, there is always indeterminacy.
A central bank hoping to avoid non-optimal equilibria and/or indeterminacy will never pick a rule where

this happens, so there is little loss in assuming an equilibrium concept in which liftoff occurs in finite time.
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instead of Es[x(t)] and π(t) instead of Es[π (t)]. However, it is useful to keep in mind for the

interpretation of many of the results below that x(t1) and π(t1) denote the actual realization

of inflation and output at liftoff just as much as they denote the expectations, as of some

time t < t1, of future inflation and output at liftoff.

5.2 A Neo-Fisherian Rule

The smallest necessary deviation from the constant liftoff rule in equation (10) that produces

a globally determinate optimal equilibrium is to change liftoff so that it is equal to t∗, t∗+ 1

or t∗ + 2 depending on the values of Rt1 . More precisely, consider the interest rate rule

i(t) =

{
0 , 0 ≤ t < f(Rt1)

(1− κσλ) π∗(t) + rh , t ≥ f(Rt1)
, (17)

where

f(Rt1) =



t∗ ,
if (π(0), x(0)) = (π∗(0), x∗(0)) or

Ax(0) +Bπ(0) 6= C

t∗ + 1 ,
if (π(0), x(0)) 6= (π∗(0), x∗(0))

and Ax(0) +Bπ(0) = C

and Dx(0) + Eπ(0) 6= F

t∗ + 2 , otherwise.

(18)

for some constants A, B, C, D, E, F given explicitly in Appendix A.3. Equation (17)

says that the central bank commits to zero interest rates until liftoff and to the non-state-

dependent optimal interest rate path after liftoff. Equation (18) says that liftoff itself is

state-dependent and can take one of three different values. This rule shows that a state-

dependent liftoff time is a powerful tool to fight indeterminacy at the ZLB. In fact, the only

state dependence in this rule is in the time of liftoff; no other state dependence is needed

to eliminate indeterminacy. The rule also shows that when a binding ZLB is introduced,

following the Taylor principle is no longer necessary for global determinacy of the optimal

equilibrium.11 The rule in equation (17) can be thought of as a Taylor-type rule that does

not obey the Taylor principle, since it has coefficients of zero on inflation and output and a

time-varying intercept equal to zero (before t1) or r̂(t) = (1− κσλ) π∗(t) + rh > 0 (after t1).

Why does the interest rate rule implement the optimal equilibrium as the unique global

equilibrium? When π(0) = π∗(0) and x(0) = x∗(0), the rule gives f(Rt1) = t∗, i(t) = i∗(t)

and therefore the optimal equilibrium is a rational expectations equilibrium. The choice of

f also ensures there are no other equilibria. Consider a candidate equilibrium with initial

11In the next section, I show the Taylor principle is also not sufficient for determinacy of the optimal
equilibrium.
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conditions π(0) and x(0) different from (π∗(0), x∗(0)). For t ≥ t1, by equation (17), the

economy has the same dynamics as when it follows the rule in equation (10) of Section 4.

In particular, there is a saddle path given by a straight line that goes through the origin in

a π-x plane. Figure 2 is a useful guide.

I consider three cases, defined by the three conditions in equation (18). The first case

states that if the economy is either on its optimal path or expected to not be on the saddle

path at t∗, then liftoff occurs at t∗. The equation Ax(0) + Bπ(0) 6= C in equation (18)

describes the set of points (π(0), x(0)) for which the economy is not expected to be on its

saddle path at t∗. The condition Ax(0)+Bπ(0) 6= C means that (x(0), π(0)) is not on the line

where all the paths in Figure 2 begin. If paths do not start on the line Ax(0) +Bπ(0) = C,

they do not end up on the saddle path at t∗. Because the economy is not on its saddle path

at the time of liftoff, either inflation and output instantaneously jump a discrete amount

to reach the saddle path, or inflation and output become unbounded. In either case, by

definition, an equilibrium cannot form. The second case I consider is given by the second

line of equation (18). It corresponds to the non-optimal points (π(0), x(0)) that take the

economy to the saddle path at t∗ but not at t∗+ 1. The condition Dx(0) +Eπ(0) 6= F gives

the set of points (π(0), x(0)) that do not reach the saddle path at t∗ + 1. For these points,

the rule assigns f(Rt1) = t∗+ 1 and equilibria are precluded by the same argument as in the

first case: Paths either jump to the saddle path or become unbounded because they are not

on the saddle path at t∗+ 1. The points (π(0), x(0)) that are not optimal and hit the saddle

path at t∗ and at t∗+1 define the third case, for which the central bank picks f(Rt1) = t∗+2.

There is at most one point in this category, since it is given by the intersection of two distinct

lines: The line of initial conditions that reach the saddle path at t∗ (excluding (π∗(0), x∗(0)),

already analyzed) and the ones that reach it at t∗+ 1. This point, if it exists, does not reach

the saddle path at t∗ + 2, the time of liftoff, and is therefore not an equilibrium.

The way potential equilibria are precluded can be cast less mechanically and perhaps

more intuitively by looking at rational expectations and agents’ optimality. Optimal paths

are always bounded. If output goes to +∞, the behavior of the representative consumer

is suboptimal, as the consumer can reallocate consumption intertemporally, from the far

future into other periods, and consume more in every period. Similarly, if output tends to

−∞, consumption eventually becomes arbitrarily close to zero, which is suboptimal, since

transferring consumption from today, when marginal utility is finite, to the distant future,

when marginal utility is unbounded, increases utility.

Suppose now that the private sector has expectations of π0 and x0 for inflation and

output at t = 0. If the central bank is credibly committed to rule (18), liftoff will be

rationally expected to be at f(π0, x0).
12 It follows that agents can form expectations for

12For the rule in equation (18), the function f is constant in its last two arguments, so I suppress them to
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x(t1) and π(t1) in two ways. The first is to trace the evolution of x(t) and π(t) using the

IS, the NKPC and i(t) = 0, from t = 0 until t = f(π0, x0) starting at (π0, x0), giving

an expected outcome of, say, (π1, x1). The second is to realize that optimal paths remain

bounded so they must be on the saddle path at t1, giving a second set (π̃1, x̃1) of possible

x(t1) and π(t1). If (π1, x1) is not on the saddle path, there cannot be an equilibrium, since

then (π1, x1) 6= (π̃1, x̃1), which implies that either optimality or rational expectations fail to

hold. By appropriately picking the value of f(π0, x0), the central bank can always create the

rational expectation that liftoff will occur at a time when the economy is not on the saddle

path, thus eliminating any undesired equilibria.

Although instructive and simple in many dimensions, a rule like (18) raises some impor-

tant practical challenges. The rule is similar in spirit to Schmitt-Grohé and Uribe (2014).

It requires the central bank to commit to raising interest rates in many circumstances in

which the economy is in the midst of deflation and a negative output gap. Credibility issues

aside, the rule relies heavily on the neo-Fisherian idea that when the central bank increases

interest rates, inflation immediately follows. While this idea is currently being studied and

taken seriously in the literature, there is no consensus on neo-Fisherianism’s empirical appli-

cability. One of the main motivations of this paper is to put forth a rule that can be readily

applied and that requires as little a deviation from current central bank practice as possible.

A rule like the one in equation (18) seems, at the very least, far from current central bank

orthodoxy. The rule I present next, on the other hand, achieves global determinacy of the

optimal equilibrium with central bank behavior that is closer to the one observed in practice.

5.3 A Rule for Today’s Central Bank

For the rest of the paper, I focus on the class of rules given by

i(t) =

{
0 , 0 ≤ t < f(Rt1)

max {0, ξπ(Rt1)π(t) + ξx(Rt1)x(t) + rh} , f(Rt1) ≤ t <∞
, (19)

where f : R4 → [T,∞), ξπ : R4 → R and ξx : R4 → R are functions chosen by the central

bank. The rule has a forward guidance period from t = 0 to t = f(Rt1), followed by a

standard Taylor rule period for t ≥ f(Rt1). The Taylor rule guarantees that interest rates do

not become positive for “unconventional” states of the economy, precluding the neo-Fisherian

behavior of the rule in equations (17)-(18). In addition to a state-dependent liftoff rule given

by f(Rt1), I allow for Taylor rule coefficients ξπ(Rt1) and ξx(Rt1) that can depend on Rt1 .

Of course, traditional Taylor rules with constant coefficients are just a special case of this.

The goal of this section is to develop the prerequisite mathematical notation and economic

shorten notation.
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intuition to understand, in the next section, the necessary and sufficient conditions for global

determinacy of the optimal equilibrium under the rule in equation (19). As before, this rule

can be understood in three stages.

First stage (0 ≤ t < T ). The dynamics of the economy are exactly as in rule (10), since

i(t) = 0 and there are no other decisions for the central bank to make (recall liftoff occurs

after T by assumption). Each point (π(0), x(0)) maps to one and only one (π(T ), x(T )) and

the mapping is unaffected by expectations or outcomes. Figure 3 shows the phase portrait

that can be used to understand this mapping. Because the natural rate is negative, the

unique steady state for the first-stage dynamics, labeled (πl, xl) in the figure, is in the first

quadrant and given by πl = −rl > 0 and xl = −ρrl/κ > 0. While the dynamics and the

location of the steady state do not change with private-sector expectations or central bank

actions, the specific (π(0), x(0)) that is actually realized in equilibrium —and hence which

path is realized— does depend on them.

▲▲

π

x

Figure 3: Dynamics of the economy for t ∈ [0, T ), when i(t) = 0 for all π(t) and x(t) and
r(t) = rl < 0. The green line is the saddle path and the orange triangle, labeled (πl, xl), is
the steady state.

Second stage (T ≤ t < t1). The central bank is committed to i(t) = 0 between T

and f(Rt1). The dynamics are identical to those in rule (10), with the only difference being

that they are maintained until f(Rt1), which depends on Rt1 , instead of until the constant

liftoff time t∗. In equilibrium, t1 = f(Rt1), so the actual duration of this stage is endogenous

and depends not only on the announced liftoff rule but also on private-sector expectations

and the realizations of inflation and output in the first stage. Given a known liftoff time t1,
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analogous to what happens in the first stage, the dynamics of the economy and the mapping

from (π (T ) , x(T )) to (π(t1), x(t1)) are always unchanged, while the specific (π(T ), x(T )) and

(π(t1), x(t1)) that end up being realized change based on which equilibrium ends up being

realized.

Figure 4 shows the phase portrait of π(t) and x(t), which reveals saddle dynamics. I

denote the stable zlb saddle path by

Υzlb =

{
(π, x) : x =

φ1

κ
π − φ2

κ
rh

}
, (20)

where

φ1 =
1

2
ρ+

1

2

√
ρ2 + 4

κ

σ
> 0, (21)

φ2 =
1

2
ρ− 1

2

√
ρ2 + 4

κ

σ
< 0, (22)

are the two eigenvalues of the system. The unstable zlb saddle path is given by

Ψzlb =

{
(π, x) : x =

φ2

κ
π − φ1

κ
rh

}
, (23)

which is the saddle path that would be stable if the system evolved backward in time.

The zlb saddle path Υzlb, a line with positive slope, intersects the unstable zlb saddle

path Ψzlb, a line with negative slope, at the zlb steady state

(πzlb, xzlb) =
(
−rh,−

ρrh
κ

)
. (24)

The point (πzlb, xzlb) always lies in the third quadrant of the π-x plane. Neither the location

of (πzlb, xzlb) nor the slopes of Υzlb and Ψzlb depend on policy choices of the central bank;

they are fully specified by the parameters κ, ρ, σ and rh. In the literature, the steady

state (πzlb, xzlb) is variously referred to as the “deflationary steady state,” the “liquidity trap

steady state,” the “expectational trap steady state” or the “unintended steady state.”

Two key objects to understanding the behavior of the economy and its determinacy

properties are:

dexit(t) = x(t)− φ1

κ
π(t) +

φ2rh
κ

, (25)

dtrap(t) = x(t)− φ2

κ
π(t) +

φ1rh
κ

. (26)

The value of dexit is a measure of the distance (with sign) to the stable zlb saddle path
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Figure 4: Dynamics of the economy for t ∈ [T, t1), when i(t) = 0 for all π(t) and x(t), and
r(t) = rh > 0. The red line, labeled Υzlb, is the saddle path. If the economy starts on Υzlb,
it converges to the deflationary steady state (πzlb, xzlb). The blue line, labeled Ψzlb, is the
“unstable saddle path.” If the economy starts on Ψzlb, it stays on Ψzlb and moves away from
the deflationary steady state (πzlb, xzlb). Under these dynamics, if the economy is not on
Υzlb, then inflation and output become unbounded.

Υzlb defined in equation (20). Similarly, dtrap gives a measure of distance (with sign) from

(π(t), x(t)) to the unstable saddle path Ψzlb defined in equation (23). A dexit closer to zero

means the economy is closer to Υzlb and hence will behave more similarly to an economy

that is on Υzlb, at least for some initial period of time. A dexit closer to zero also implies that

the economy at some point gets closer to the unintended steady state (πzlb, xzlb). In fact,

dexit(t) = 0 indicates that the economy is exactly on Υzlb at time t and converging toward

(πzlb, xzlb). In contrast, a dtrap closer to zero implies that the dynamics of the economy look

more like those of the unstable saddle path Ψzlb, pushing the economy further away from

(πzlb, xzlb).

The dynamics of the economy are a tug of war between two competing forces: one driving

the economy into the deflationary steady state (πzlb, xzlb) and another pulling the economy

away from it. The strength of these two forces is given by dexit and dtrap. Indeed, inflation

and output can be written as[
x(t)− xzlb
π(t)− πzlb

]
= dexit(t) vexit + dtrap(t) vtrap, (27)
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where

vexit =

[
− φ2
φ1−φ2
− κ
φ1−φ2

]
and vtrap =

[
φ1

φ1−φ2
κ

φ1−φ2

]
, (28)

are the eigenvectors of the system. The eigenvector vexit is associated with the explosive

eigenvalue φ1 > 0 and lies on the unstable saddle path Ψzlb. The eigenvector vtrap is asso-

ciated with the stabilizing eigenvalue φ2 < 0 and lies on the stable saddle path Υzlb. The

eigenvalue vtrap is the “trap factor” that drives the economy into the expectational trap

steady state (πzlb, xzlb), while vexit is the “exit factor” pulling the economy away from it.

After a change of coordinates that makes (πzlb, xzlb) the origin and the eigenvectors of the

system the coordinate basis vectors, the vector (π(t), x(t)) has coordinates (dexit(t), dtrap(t)):[
− φ2
φ1−φ2

φ1
φ1−φ2

− κ
φ1−φ2

κ
φ1−φ2

]−1 [
x(t)− xzlb
π(t)− πzlb

]
=

[
dexit(t)

dtrap(t)

]
(29)

In other words, projecting (π(t), x(t)) onto the eigenvalues gives loadings of (dexit(t), dtrap(t)).

This linear two-factor representation of the economy is exact in the sense that there is no

residual left once x(t) and π(t) are expressed as a linear combination of the factors plus

a constant. As already pointed out through various other arguments by Benhabib et al.

(2001b), Werning (2012) and others, the current levels of inflation and output are, on their

own, not very informative about whether the economy is in a liquidity trap, constrained by

the ZLB, at risk of converging to the unintended steady state, or on a desirable policy path.

For example, Benhabib et al. (2001b) show that an economy can have inflation and output

arbitrarily close to target (in the model I consider here, the target is the intended steady

state (πss, xss)) and yet converge to the unintended steady state (πzlb, xzlb). In contrast,

observing a dexit(t) = 0 immediately reveals that an economy is headed toward (πzlb, xzlb).

In addition, and more important for this paper, the necessary and sufficient conditions for

global determinacy in the next section are most simply expressed as functions of dexit(t)

and dtrap(t), highlighting not just their mathematical convenience but also their economic

importance. When a central bank is trying to assess private-sector expectations in order to

know what is needed to anchor expectations, the results in this paper suggest that it should

focus on the linear combinations of inflation and output given by dexit(t) and dtrap(t) rather

than on the levels of inflation and output by themselves.

Third stage (t ≥ t1). I split the π-x plane into two disjoint regions defined by whether

the ZLB is binding

Ωzlb(Rt1) = {(x, π) : ξπ(Rt1)π + ξx(Rt1)x+ rh ≤ 0} , (30)

Ωss(Rt1) = {(x, π) : ξπ(Rt1)π + ξx(Rt1)x+ rh > 0} , (31)
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where the subscript zlb in Ωzlb stands for zero lower bound and the subscript ss in Ωss

stands for “intended steady state,” as the region Ωss(Rt1) contains (πss, xss) = (0, 0), the

steady state that the central bank would like the economy to converge to in the long run if

the optimal equilibrium is to be achieved. The boundary between the regions Ωzlb(Rt1) and

Ωss(Rt1) is a line

∂Ω(Rt1) = {(x, π) : ξπ(Rt1)π + ξx(Rt1)x+ rh = 0} ⊂ Ωzlb(Rt1). (32)

Henceforth, I suppress the dependence of ξx, ξπ, Ωzlb, Ωss and ∂Ω on Rt1 for ease of notation

whenever it does not create confusion.

The derivatives of inflation and output with respect to time, π̇(t) and ẋ(t), inherit the

properties of i(t) and are therefore not differentiable on ∂Ω as a function of time (i.e., π(t) and

x(t) do not have second derivatives on ∂Ω). However, π̇(t) and ẋ(t) are always continuous

with respect to time, ensuring a continuous path for (π(t), x(t)).13 By the second line in

equation (19), after t1,

i(t) = 0 iff (π(t), x(t)) ∈ Ωzlb, (33)

i(t) = ξππ(t) + ξxx(t) + rh iff (π(t), x(t)) ∈ Ωss. (34)

When equations (33) and (34) are used in the IS equation and the NKPC, the dynamics of

the economy inside each of the two regions Ωzlb and Ωss are separately given by a system

of linear first-order ordinary differential equations (ODEs) in x(t) and π(t), each of which

is easy to analyze inside its respective region with standard methods. However, when the

two regions are analyzed together, the global dynamics are piecewise linear, with a non-

differentiable transition at ∂Ω. The behavior of piecewise linear dynamic systems can, in

general, exhibit a rich variety of non-linear phenomena such as limit cycles, bifurcations

and chaos. The global properties can also be quite different from those of each individual

region. For example, it is possible to construct paths that are globally bounded for systems

in which each separate region has explosive dynamics.14 To tackle the non-linearities of the

New Keynesian economy at hand, I first analyze the properties of each of the two regions

separately and then combine them and analyze the resulting global dynamics. Readers

familiar with New Keynesian models without a ZLB should find the analysis of each of the

separate regions familiar. The new results arise when I look at both regions together.

First, consider the behavior of the economy in the region Ωss. Inside Ωss, there is always a

single steady state, (πss, xss) = (0, 0). The dynamic behavior of the economy depends on the

13In fact, (π̇(t), ẋ(t)) is Lipschitz continuous in (π(t), x(t)) and continuous in t, guaranteeing the global
existence and uniqueness of the continuous solution for t ≥ t1.
14For example, see Bernardo, Budd, Champneys, and Kowalczyk (2008).
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choice of Taylor rule coefficients ξπ and ξx. I focus on Taylor rule coefficients that, absent the

ZLB, give either unstable or saddle dynamics, since the central bank would not pick stable

dynamics that have no explosive paths, as they always lead to indeterminacy.15 The Taylor

principle is the key concept needed to differentiate between unstable and saddle dynamics,

and between locally determinate and indeterminate equilibria. The Taylor principle is said

to hold if and only if

κ (ξπ − 1) + ρξx > 0 and ξx + σρ > 0. (35)

When ξx = 0, the Taylor principle is equivalent to ξπ > 1, one of its most popular forms.

When the Taylor principle holds, if the dynamics of the Ωss region were extended to the

entire plane and nominal interest rates were allowed to be negative, or if I considered a small

enough neighborhood of (πss, xss) that lies entirely inside Ωss, the dynamics of the system

would be unstable. All paths would be unbounded —or exit the small neighborhood— unless

(π(t), x(t)) = (πss, xss) = (0, 0) for all t. Figure 5 shows representative phase portraits of two

such economies. In the diagram on the left, the Taylor rule coefficients satisfy (ξx − σρ)2 −
4κσ (ξπ − 1) < 0 and paths “slowly” spiral outward from the steady state. When the reverse

inequality holds, the steady state is instead a source, shown in the diagram on the right. In

models without a ZLB, the Taylor principle is a necessary and sufficient condition for local

determinacy. When the ZLB is introduced, since there is always a small enough neighborhood

of (πss, xss) that is contained entirely in Ωss, the Taylor principle is still a necessary and

sufficient condition for local determinacy of the equilibrium with (π(t), x(t)) = (πss, xss) for

all t ≥ t1. As I briefly discussed before and will expand on later, the Taylor principle is,

however, neither necessary nor sufficient for global determinacy of the optimal equilibrium.

The Taylor principle is said to not hold if and only if

κ (ξπ − 1) + ρξx < 0. (36)

When the Taylor principle does not hold, if the dynamics of the Ωss region were extended

to the entire plane and interest rates were allowed to be negative, or if I considered a small

enough neighborhood of (πss, xss) that lies entirely in Ωss, the system would have saddle

dynamics. I denote the ss saddle path by Υss. It is a line through the origin whose slope

depends on the Taylor rule coefficients ξπ and ξx.
16 Paths are bounded —or stay in the

small neighborhood of (πss, xss)— if and only if they start on the ss saddle path. Figure 6

displays a typical phase diagram when the Taylor principle does not hold.

15For stable dynamics, it is immediate that there is indeterminacy for any choice of ξπ, ξx and f . I also
exclude the knife-edge case in which the dynamics have a line whose points are all steady states, but the
dynamics are otherwise explosive. See Lemma 3 in Appendix A.9 for a proof that, in this case, there also is
indeterminacy for any choice of ξπ, ξx and f .
16See equation (A.15) in Appendix A.1 for the explicit formula.
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Figure 5: Dynamics of the economy for t ≥ t1 when the Taylor principle holds and there
is no ZLB. The dynamics of the diagram on the left have imaginary eigenvalues, while the
right-hand side have real ones. When there is no ZLB, the Taylor principle is necessary and
sufficient for local determinacy. Unless the economy starts at (0, 0), inflation and output
become unbounded.

Note that because ξπ and ξx depend on Rt1 , whether the Taylor principle holds depends

on Rt1 . Within the same economy, there can be a subset of (off-equilibrium) paths for which

the Taylor principle holds and a different subset for which it does not hold. Instead, when

ξπ and ξx are constant, the Taylor principle must hold either for all paths or for no paths.

In all cases, the Taylor rule coefficients are fully determined by the time the central bank

lifts off and they remain unchanged from then on.

Now consider the behavior in the zlb region, Ωzlb. If the dynamics of the Ωzlb region were

extended to the entire π-x plane, the dynamics would be identical to those of the second

stage analyzed above, with the phase diagram given in Figure 4. Inside Ωzlb, the system

always has saddle dynamics with saddles Υzlb and Ψzlb.

I now put the dynamics of the regions Ωss and Ωzlb together and describe some of the

global properties of the economy. The left panel of Figure 7 shows an example of the global

dynamics in which the Taylor principle holds, while the right panel shows an example in

which the Taylor principle does not hold. When the Taylor principle holds, the dynamics

inside Ωss look like those in Figure 5. When the Taylor principle does not hold, they look

like those in Figure 6. Of course, whether the Taylor principle holds or not, the dynamics

in Ωzlb always look like those in Figure 4, as they are not affected by the choice of ξx or ξπ.

However, the coefficients ξx and ξπ do have a crucial effect on the ZLB, as they determine
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Figure 6: Dynamics of the economy for t ≥ t1 when the Taylor principle does not hold and
there is no ZLB. Unless the economy starts on its saddle path Υss, shown in green, inflation
and output become unbounded.

the location of the boundary ∂Ω and, consequently, whether the undesirable deflationary

steady state can exist in the economy. If the Taylor principle holds, the zlb steady state

(πzlb, xzlb) is in Ωzlb; when the Taylor principle does not hold, it is not. To see this, compute

ξππzlb + ξxxzlb + rh = ξπ (−rh) + ξx

(
−ρrh

κ

)
+ rh, (37)

= −rh
κ

(κ (ξπ − 1) + ρξx) . (38)

By definition, the sign of this expression determines whether the zlb steady state (πzlb, xzlb)

is inside or outside Ωzlb. In turn, the sign of κ (ξπ − 1) + ρξx is determined by whether the

Taylor principle holds. When the Taylor principle holds, (πzlb, xzlb) is a steady state of the

global dynamics. Because of its saddle dynamics, equilibria are locally indeterminate around

(πzlb, xzlb). Together with the intended steady state (πss, xss), they are the two global steady

states of the economy. On the other hand, if the Taylor principle does not hold, (πzlb, xzlb)

is in Ωss. Under the Ωss dynamics, the point (πzlb, xzlb) is not a steady state. In this case,

the only steady state for the global dynamics is the desired one, (πss, xss).

The conclusion that following the Taylor principle outside the ZLB induces the existence

of a deflationary steady state at the ZLB is similar to one of the results in Benhabib et al.

(2001b). They further show that when the Taylor principle holds, the deflationary steady

state engenders an infinite number of suboptimal equilibria. As mentioned before, these
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Figure 7: Non-linear dynamics of the economy after liftoff t1. The central bank follows the
Taylor rule i(t) = max {0, ξππ(t) + ξxx(t) + rh}. When ξππ(t)+ξxx(t)+rh > 0, the economy
is in the region Ωss and follows the solid black flow lines. When ξππ(t) + ξxx(t) + rh ≤ 0,
it is in the region Ωzlb and follows the dashed blue flow lines. The boundary between the
two regions is the line ∂Ω. The point (πss, xss), shown in red, is always a steady state of the
economy. The point (πzlb, xzlb), shown as a black square, is a steady state of the economy if
and only if the Taylor principle holds, as in the left panel. When the Taylor principle does
not hold, as in the right panel, (πzlb, xzlb) is not in Ωzlb and is therefore not a steady state.

equilibria can start arbitrarily close to the intended steady state (πss, xss) and still converge

to (πzlb, xzlb). The same possibility is present in the setup I consider here. To construct

equilibria analogous to those in Benhabib et al. (2001b), I use the dynamics for the three

stages described above. For the next steps, refer to Figure 8. First pick two numbers q and

r such that r, q > T and r− q > T . Let (πb, xb) = ∂Ω ∩Υzlb.
17 Assume the Taylor principle

holds. Using (π(r), x(r)) = (πb, xb) as the starting point, trace the dynamics of (π(t), x(t))

backward in time using the interest rate specified by equation (34) for a length of time q. As

in Benhabib et al. (2001b), these equilibria can get arbitrarily close to the intended steady

state: Because the dynamics of (π(t), x(t)) are unstable when going forward in time, they

are stable backward in time and (π(t), x(t)) converges to (πss, xss) as q → ∞.18 At time

r − q, trace the dynamics of (π(t), x(t)) backward in time using (π(r − q), x(r − q)) as the

17If κξπ + φ1ξx = 0, ∂Ω ∩ Υzlb = ∅. Albeit not a general strategy to eliminate all non-optimal equilibria,
picking ξx, ξπ such that κξπ +φ1ξx = 0 does preclude this particular class of equilibria from forming for any
choice of f . This possibility was not present in Benhabib et al. (2001b), as their model did not have both
inflation and output as state variables of the economy.
18This result is not immediate, since it may be possible that (π(t), x(t)) exits Ωss before getting close to

(πss, xss) and then follows the Ωzlb dynamics for which (πss, xss) is no longer a sink (flowing backward in
time). However, I show in Appendix A.6, Lemma 2, item (d) that this never happens. For all q, the path of
(π(t), x(t)) remains entirely in Ωss.
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starting point and i(t) = 0 throughout, until t = 0, when the path reaches (π(0), x(0)).

Of course, the natural rate is positive after T and negative before T , so the dynamics

change from those of the second stage to those of the first. Note that in Figure 8, the

gray flow lines in the background reflect the dynamics that prevail for t ≥ t1 only. Set

t1 = r − q > T . By construction, the path starting at (π(0), x(0)) reaches (πb, xb) at time r

when following the interest rate rule in equation (19). Now going forward in time, for t ≥ r,

(π(t), x(t)) ∈ Υzlb ⊂ Ωzlb, which means the economy travels on the zlb saddle path toward

the unintended steady state (πzlb, xzlb). The path constructed is continuous and bounded

and has consistent expectations: It is a rational expectations equilibrium. All equilibria in

this class can be obtained by picking different q and r.
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Figure 8: An equilibrium analogous to the one studied by Benhabib et al. (2001b). The flow
lines in the background correspond to the dynamics after liftoff, which occurs at t1. Because
the Taylor principle holds, there is a deflationary steady state (πzlb, xzlb), shown as a black
square. At time t1, even though the economy is outside the ZLB and can get arbitrarily
close to the “desired” steady state (πss, xss) = (0, 0), it still converges to the “unintended”
steady state (πzlb, xzlb). At time r, the economy enters the ZLB and stays there (i(t)=0)
forever after.
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6 How to Implement the Optimal Equilibrium without

Indeterminacy

In this section, I prove the main result of the paper: A central bank following the rule

in equation (19) can implement the optimal equilibrium in a globally determinate way by

appropriately choosing the rule for liftoff, given by f , and the Taylor rule coefficients ξπ and

ξx.

I start by characterizing when paths for (π(t), x(t)) are continuous and bounded, two

necessary requirements to be part of an equilibrium. By exploiting the liftoff equilibrium

condition in equation (15), I then show necessary and sufficient conditions for f , ξπ and

ξx to prevent all suboptimal continuous bounded paths from being a rational expectations

equilibrium. At the end of the section, I show how these necessary and sufficient conditions

change when f , ξπ and ξx are restricted to be continuous.

6.1 Continuous Pasting

In each of the separate time intervals [0, T ), [T, t1) and [t1,∞), any paths that satisfy the

IS, the NKPC and the interest rate rule in equation (19) are automatically continuous with

respect to time because they are solutions to a classical system of linear ODEs in which

π̇(t) and ẋ(t) are appropriately smooth functions of π(t), x(t) and t.19 At t = T , when r(t)

jumps, and perhaps at t = t1, when i(t) may jump, paths are not necessarily continuous. To

have a continuous path for the entire interval t ∈ [0,∞), the solutions to the ODEs have to

agree at T and t1. The continuous pasting conditions for this to happen are

lim
t↑T

(π(t), x(t)) = (π(T ), x(T )) , (39)

lim
t↑t1

(π(t), x(t)) = (π(t1), x(t1)) . (40)

Because the dynamics of the economy before t1 are independent of central bank actions

and private-sector expectations, so is the continuous pasting condition at T given by equation

(39).20 As such, it plays no role in the characterization of the f , ξπ and ξx associated with

determinacy. Hence, from now on, I assume paths are always continuous at T .

Continuity at t1, on the other hand, is tightly connected to central bank actions in

equilibrium. The next proposition gives a useful characterization.

19(π̇(t), ẋ(t)) is Lipschitz continuous in (π(t), x(t)) and continuous in t.
20Equations (A.3) and (A.4) in Appendix 6.1 give the condition explicitly by solving the system of ODEs

given by equations (1), (2) and (19) for t ∈ [0, T ). Setting t = T in those two equations delivers the
continuous pasting condition at T .
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Proposition 2 (Continuity of paths at liftoff). Let t1 be a number greater than or equal to

T and let R = (π0, x0, π1, x1) be a vector of four numbers. Then, a path (π(t), x(t)) with

Rt1 = R and f(Rt1) = t1 is continuous at t1 if and only if

P(R) = 0, (41)

t1 ∈ T (R), (42)

where P is a function and T is a set, both of which are determined by the structure of the

model and parameters, i.e., they depend neither on endogenous variables nor on expectations

or the choice of f , ξπ and ξx by the central bank.

Proof. The proposition follows by explicit computations, shown in detail in Appendix A.4.

�

There are two advantages in splitting the continuous pasting condition (40) into the two

equations (41) and (42). The first is that P and T are independent of central bank policy.

The second is that (41) depends only on R and not on t1. Equation (41) characterizes the

policy-independent requirements for continuous pasting at t1, while equation (42) isolates

the portion that can be exploited by the central bank.

In a rational expectations equilibrium, paths are continuous and thus

0 = P(π(0), x(0), π(t1), x(t1)), (43)

f(π(0), x(0), π(t1), x(t1)) = t1 ∈ T (π(0), x(0), π(t1), x(t1)). (44)

The variables π(0), x(0), π(t1), x(t1) and t1 are endogenously determined, f is chosen by

the central bank, and P and T are given exogenously by the structure and parameters of

the model. In contrast, (41) and (42) are not equilibrium conditions; given some numbers

π0, x0, π1, x1 and t1, they just characterize when a path that goes through (π0, x0) at t = 0

and (π1, x1) at t = t1 is continuous. The distinction is important because it clarifies that the

continuous pasting conditions are not time-varying and that P and T do not depend on the

actual path Rt1 , which is endogenous.

Intuitively, equation (41) says that the set of points (π0, x0, π1, x1) that can be part of a

continuous path that starts at (π0, x0) and reaches (π1, x1) at any time larger than or equal

to T is determined by P(π0, x0, π1, x1) = 0. To understand T (R), let (π̄0, x̄0, π̄1, x̄1) be a

specific point such that P(π̄0, x̄0, π̄1, x̄1) = 0. Then, T (π̄0, x̄0, π̄1, x̄1) is how long it takes to

go from (π̄0, x̄0) to (π̄1, x̄1) through some continuous path. The explicit formulas for P and

T in Appendix A.4 are obtained by analyzing four cases, which I now briefly describe.

Figure 9 shows the first three cases. The solid black and gray lines are Υzlb and Ψzlb.

The dashed black line is the set of points (π0, x0) such that a continuous path starting at
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(π0, x0) ends up on Υzlb at time T , and similarly for the gray dashed line and Ψzlb. The

first case considers continuous pasting when (π0, x0) is at the intersection of the two dashed

lines. If the economy follows a continuous path, it reaches the zlb steady state (πzlb, xzlb)

at t = T , as in the green path in the figure. Since between T and t1 the point (πzlb, xzlb)

is a steady state, the economy just sits there between T and t1. For the particular (π0, x0)

under consideration, P (π0, x0, π1, x1) = 0 if and only if (π1, x1) = (πzlb, xzlb). Graphically,

the set of R such that P(R) = 0 is the set of two points in Figure 9 where the lines intersect

—equivalently, the two points where the green path begins and ends. Varying t1 can change

neither the time of first arrival to (πzlb, xzlb), which is equal to T , nor the actual set of points

in the π-x plane visited by the economy from t = 0 to t1. A larger t1 only guarantees that the

economy stays at (πzlb, xzlb) longer. It follows that any t1 ≥ T is consistent with continuous

pasting and thus

T (R) = [T,∞). (45)

Because the above condition does not introduce any new restrictions on t1, there is no f that

can prevent paths starting at the intersection of the two dashed lines and hitting (πzlb, xzlb)

at T from being continuous. Precluding this path from becoming an equilibrium requires an

appropriate choice of ξπ and ξx, which I formally show in Section 6.4.

The second case corresponds to the (π0, x0) that lie somewhere on the black dashed

line, excluding the point at the intersection of the dashed lines already analyzed. When

the economy follows a continuous path, it first reaches Υzlb at T . Between T and t1 the

dynamics dictate that the economy must travel along Υzlb, so the economy remains on Υzlb

for all t ∈ [T, t1]. In Figure 9, an example is shown in red. All (π0, x0) on the dashed black

line can paste continuously to some point in the solid black line after traveling some amount

of time greater than or equal to T . Conversely, any point in Υzlb can be reached by starting

on the dashed black line after traveling through a continuous path for some amount of time

greater than or equal to T . Hence, for this case, the set of points R such that P(R) = 0 is

the union of the solid and dashed black lines.21 To deduce T (R), pick some specific point

(π̄0, x̄0, π̄1, x̄1) that can be part of a continuous path —that satisfies P(π̄0, x̄0, π̄1, x̄1) = 0.

The amount of time it takes to go from (π̄0, x̄0) to (π̄1, x̄1) via a continuous path is unique.

Unlike the case in equation (45), T (π̄0, x̄0, π̄1, x̄1) has a single element. Using the IS and

NKPC equations with i(t) = 0, I find that

T (π̄0, x̄0, π̄1, x̄1) =
1

φ2

log

(
x̄1 − φ2

κ
π̄1 + φ1rh

κ

x̄0 − φ2
κ
π̄0 + φ1rh

κ
+ φ1

κ
(rh − rl) (e−Tφ2 − 1)

)
.

21More precisely, it is the set of points (π0, x0, π1, x1) such that (π0, x0) is on the dashed black line and
(π1, x1) is on the solid black line.
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Figure 9: Continuous pasting conditions when (π1, x1) is on Υzlb or Ψzlb. Continuous past-
ing requires that paths that are on the zlb saddle path (the black solid line) at times
T and t1, such as the red one, are on the black dashed line, given by dexit (π0, x0) =
φ2
κ

(rh − rl)
(
1− e−Tφ1

)
, at time t = 0. For these paths, expectations of falling into

the deflationary equilibrium (πzlb, xzlb) are self-fulfilling. To be continuous, paths like
the blue one that start at t = 0 on the the gray dashed line given by dtrap (π0, x0) =
φ1
κ

(rh − rl)
(
1− e−Tφ2

)
, must be on Ψzlb at times T and t1. These paths escape the deflation-

ary trap. The green path originates at the intersection of the two dashed lines. Continuous
pasting requires that it reach the deflationary steady state exactly at T .

In equilibrium, the last equation gives

T (Rt1) =
1

φ2

log

(
dtrap(t1)

dtrap(0) + φ1
κ

(rh − rl) (e−Tφ2 − 1)

)

which shows how dtrap enters the continuous pasting conditions.

The third case analyzes the set of points (π0, x0) that lie on the dashed gray line, but not

on the intersection of the two dashed lines. The analysis for this case is analogous to that of

the second case so I skip it. Figure 9 shows a typical path in blue. The main point to notice

is that continuous paths move away from (πzlb, xzlb) after T , instead of toward (πzlb, xzlb) as

in the previous case.

The fourth and last case corresponds to all remaining choices for R that have not yet
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been considered. Figure 10 is helpful in gaining some intuition. The black and gray lines are

the same as in Figure 9. The solid lines intersect at (πzlb, xzlb) and split the π-x plane into

four sections. The dashed lines also split the plane into four sections. Points starting above

both of the dashed lines are in the “north” region. They always paste continuously to points

(πT , xT ) and (π1, x1) in the corresponding north region that is above both of the solid lines.

The same is true for each of the remaining three regions. For example, the red path in Figure

10 has (π0, x0) in the north region of the dashed lines, so (πT , xT ) and (π1, x1) must be in

the corresponding north region of the solid lines if the economy follows continuous paths.
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Figure 10: Continuous pasting conditions when (π1, x1) is neither on Υzlb (the solid black
line) nor on Ψzlb (the solid gray line). The solid and dashed black and gray lines are the
same as in Figure 9. The black square at the intersection of the two solid lines is (πzlb, xzlb),
the deflationary steady state. For a given (π0, x0), the set of points (π1, x1) that can be part
of a continuous path are those reachable by following the gray flow line with arrows after
hitting (πT , xT ). The time of liftoff then determines which point in this set is realized in the
economy.

To understand what P(R) = 0 implies in this case, look at the blue path in Figure 10.

When the economy starts at the blue dot labeled (π0, x0), continuous paths must go through

the blue dot labeled (πT , xT ). Between T and t1, the economy follows its second stage

dynamics with r(t) = rh > 0 and i(t) = 0, represented by the gray flow line that goes through

(πT , xT ) and (π1, x1). Continuous paths have (π1, x1) on the same flow line as (πT , xT ). For
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the (π0, x0) under consideration, the set of (π1, x1) such that P (π0, x0, π1, x1) = 0 is the

section of the flow line to the southeast of (πT , xT ), comprising the section between (πT , xT )

and (π1, x1) together with the remaining section shown as a blue dashed line. For some

(π̄0, x̄0, π̄1, x̄1) such that P(π̄0, x̄0, π̄1, x̄1) = 0, the amount of time it takes to go from (π̄0, x̄0)

to (π̄1, x̄1) is unique and given by

T (R) =
1

φ1

log

(
x̄1 − φ1

κ
π̄1 + φ2rh

κ

x̄0 − φ1
κ
π̄0 + φ2rh

κ
+ φ2

κ
(rh − rl) (e−Tφ1 − 1)

)
,

so that in equlibrium

T (Rt1) =
1

φ1

log

(
dexit(t1)

dexit(0) + φ2
κ

(rh − rl) (e−Tφ1 − 1)

)
. (46)

As t1 grows larger, the economy spends more time traveling on the flow line. As t1 → ∞,

the economy approaches the unstable saddle, Ψzlb, and dtrap(t1) → 0 while dexit(t1) → ∞.

This aspect is crucial for the analysis of determinacy. Delaying the time of liftoff steers

expectations away from the trap factor and into the exit factor.

6.2 Boundedness of Continuous Paths

Because of the non-linear dynamics of the economy after t1, characterizing boundedness of

continuous paths is the most technically demanding step toward proving that a rule gives

global determinacy. When the Taylor principle does not hold, the results needed can be

obtained by straightforward computations. On the other hand, when the Taylor principle

holds, the results in this section rely on the Poincaré-Bendixson theorem, a powerful tool

that classifies all possible dynamics of two-dimensional systems in continuous time.22

Before I state the propositions of this section, recall that whether the Taylor principle

holds depends on Rt1 . In addition, when paths are continuous, Rt1 defines the entire path.

The first two elements of Rt1 determine (π(0), x(0)) and the last two give (π(t1), x(t1));

equation (44) then gives t1. Let Ωss = Ωss ∪ ∂Ω be the closure of Ωss.

Proposition 3 (Continuous bounded paths when the Taylor principle does not hold). For

a continuous path defined by Rt1, if the Taylor principle does not hold, the path is bounded

if and only if there exists r ≥ t1 such that (π(r), x(r)) ∈ Υss ∩ Ωss.

Proof. Appendix A.5. �

22See Appendix B for a precise statement of the Poincaré-Bendixson theorem.
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When the Taylor principle does not hold, continuous paths are bounded if and only if

they reach the ss saddle path outside (or on the boundary of) the ZLB region at t1 or later.

This can happen in one of two ways, depicted in Figure 11. The flow lines in the background

show the dynamics after t1. The green path shows the first case. The economy finds itself

outside the ZLB at t1. If it is on the saddle path Υss, then it stays on it and travels toward

(πss, xss), remaining bounded as in the figure. If the economy is not on the saddle path

Υss, paths for (π(t), x(t)) can either become unbounded or eventually enter the region Ωzlb.

Because the Taylor principle does not hold, the zlb steady state is not inside Ωzlb. Thus,

when the economy enters Ωzlb, paths can either become unbounded (when they stay inside

Ωzlb) or eventually exit the ZLB and return to Ωss. Proposition 3 states that the process

of transitioning from one region to the other has to stop at some point —there are no limit

cycles. The proof in the appendix reveals that, in fact, there can be at most one transition;

once the economy leaves Ωss and enters Ωzlb, it remains there.

The red path in Figure 11 shows the second way in which the economy can reach Υss.

At t1, the economy is inside the ZLB region Ωzlb. As it follows the dynamics induced by

i(t) = 0, it eventually hits the boundary ∂Ω at some time r > t1 exactly where ∂Ω intersects

Υss. From there on, the analysis is identical to that of the first case.

Proposition 3 reveals some of the advantages and disadvantages of not following the

Taylor principle. On the one hand, continuous bounded paths always exit the ZLB. On the

other hand, the saddle dynamics outside the ZLB are conducive to (both local and global)

indeterminacy, since being on any point of the saddle Υss at t1, or on any point of the path

inside Ωzlb that eventually reaches the saddle, gives continuous bounded paths and hence

potential equilibria.

In contrast, when the Taylor principle holds, the benefit is to have no saddle path equi-

libria outside the ZLB, but at the cost of introducing them inside the ZLB, as I show next.

Proposition 4 (Continuous bounded paths when the Taylor principle holds). For a con-

tinuous path defined by Rt1, if the Taylor principle holds, the path is bounded if and only if

either (π(t1), x(t1)) = (πss, xss) or there exists r ≥ t1 such that (π(r), x(r)) ∈ Υzlb ∩ Ωzlb.

Proof. Appendix A.6. �

When the Taylor principle holds, Proposition 4 states that continuous paths are bounded

if and only if they either reach the intended steady state (πss, xss) exactly at t1, or if they

eventually reach the zlb saddle path Υzlb inside the ZLB region Ωzlb. If (π(t1), x(t1)) =

(πss, xss), then paths are clearly bounded since (πss, xss) is a steady state. If (π(t1), x(t1)) is

in Ωss but is not equal to (πss, xss), the only way for continuous paths to remain bounded is to

eventually enter Ωzlb, since the dynamics in Ωss are otherwise explosive. Once the paths are

in Ωzlb, boundedness requires that the economy follow the saddle path toward the zlb steady
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Figure 11: When the Taylor principle does not hold, there are only two kinds of continuous
bounded paths, shown in the figure. The flow lines in the background are for the dynamics
after liftoff, which occurs at t1.

state (πzlb, xzlb). The red path in Figure 12 illustrates this case. Because the Taylor principle

holds, (πzlb, xzlb) is inside Ωzlb and is therefore a steady state of the system, as discussed first

in Section 5.3. The economy converges to (πzlb, xzlb) as t→∞. This is the type of equilibrium

in Benhabib et al. (2001b), also shown in Figure 8. The closer (π(t1), x(t1)) gets to (πss, xss),

the longer it will take the economy to reach Ωzlb. Although listed separately in Proposition

4 and at first sight different, the case for which (π(t1), x(t1)) = (πss, xss) can be seen as the

limit of this type of equilibrium when the time to reach Ωzlb goes to infinity.

Proposition 4 reveals another type of potential equilibrium that converges to the unin-

tended steady state (πzlb, xzlb), shown in green in Figure 12. The economy is always at the

ZLB. At T , the economy is already on Υzlb. It stays there for all t ≥ T , traveling toward

(πzlb, xzlb). At t1, even though liftoff occurs, the Taylor rule prescribes i(t1) = 0, since the

economy is in Ωzlb and the economy remains on Υzlb.

Proposition 4 also proves that there are no continuous bounded paths other than the

ones I have described. In particular, there are no closed loops, no limit cycles and no chaotic

paths, unlike the setup in Benhabib et al. (2002), in which the Taylor principle gives rise to

chaotic trajectories. One direct implication is that whether following the Taylor principle
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leads to chaotic interest rate rules depends on the specific setup.23 Without a ZLB, a positive

divergence is equivalent to the Taylor principle and to explosive dynamics. Proposition 4

shows that having a ZLB does not break this link. Thus, even though the system includes

a binding ZLB, the Taylor principle is still the right concept to assess the tendency of the

system to move away from the intended steady state.
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Figure 12: When the Taylor principle holds, there are three types of continuous bounded
paths. Two of them are shown in the figure in red and green. The flow lines in the background
are for the dynamics after liftoff, which occurs at t1. In the third kind of continuous bounded
path, the economy reaches the steady state (πss, xss) = (0, 0) at t1 and stays there forever
after.

6.3 Implementing the Optimal Equilibrium

Even though the optimal equilibrium is unique, I now show that, under the rule in equation

(19), there are many ways to implement it. Let R∗ = (π∗(0), x∗(0), π∗(t∗), x∗(t∗)) be the

vector Rt1 evaluated at the optimal equilibrium.

23For this economy, the Taylor principle is actually the exact condition needed to make the divergence of
(π̇(t), ẋ(t)) positive everywhere. By Green’s theorem, a positive divergence automatically eliminates bounded
orbits, since the line integral around a closed loop is positive. The proof of item (f) in Lemma 2 of Appendix
A.6 has more details.
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Proposition 5 (Implementation of the optimal equilibrium). If κσλ 6= 1, the rule in equa-

tion (19) implements the optimal equilibrium if and only if

f(R∗) = t∗, (47)

ξπ(R∗) + φξx(R
∗) = 1− κσλ. (48)

If κσλ = 1, the rule implements the optimal equilibrium if and only if equation (47) holds

(i.e. equation (48) is no longer needed and any value for ξπ(R∗), ξx(R
∗) implement the

optimal equilibrium).

Proof. Appendix A.7. �

The proposition states through equation (47) that to implement the optimal equilibrium,

liftoff has to occur at t∗ when Rt1 = R∗. Since the optimal equilibrium features i∗(t) > 0 for

t ≥ t∗, liftoff after t∗ would imply i(t) = 0 when i∗(t) > 0. Conversely, liftoff before t∗ would

imply i(s) > 0 for all s < t∗ such that ξππ(s) + ξxx(s) + rh > 0, while i∗(s) = 0. Such an

s always exists because the optimal equilibrium features forward guidance. Werning (2012)

shows that the optimal equilibrium involves a promise to maintain zero interest rates when

(1− κσλ)π∗(t) + r(t) > 0 for at least some t ∈ (T, t∗).

When κσλ 6= 1, the Taylor rule coefficients have to be picked according to equation (48),

where φ is the slope of the optimal saddle path defined in equation (8) and 1 − κσλ is the

coefficient in front of π∗(t) in the optimal interest rate path in equation (7). Thus, equation

(48) says that picking any ξπ(R∗) and ξx(R
∗) that generate the slope for the optimal saddle

path is all that is required to implement the optimal equilibrium. Because there are two

coefficients to be chosen and a single slope to match, there is one degree of freedom in the

choice of rule for the path defined by R∗.

When κσλ = 1, the optimal equilibrium never travels along the saddle path, as the

economy reaches the steady state exactly at t∗. In this case, the slope of the saddle path,

or even whether a saddle path exists at all, is not important for the implementation of the

optimal equilibrium. All that is required is that the economy reach (πss, xss) at t∗. Because

the optimal equilibrium when κσλ = 1 is implementable with any Taylor rule coefficients it

can, in particular, be implemented while following the Taylor principle. The case κσλ = 1

is the only case for which this happens.

When κσλ 6= 1, even though there is one degree of freedom in picking ξπ(R∗) and ξx(R
∗),

condition (48) implies that the Taylor principle does not hold. Thus, any implementation

of the optimal equilibrium with κσλ 6= 1 necessarily requires local indeterminacy around

(πss, xss). However, local indeterminacy in this context says nothing about the uniqueness

of equilibria. In fact, the Taylor principle not holding is neither necessary nor sufficient for
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the global uniqueness of equilibria, as the next section shows. Suppose the economy at time

t ≥ t1 finds itself close enough to (πss, xss) and traveling on the optimal saddle path. Locally,

the economy looks like an economy without a binding ZLB in which the Taylor principle

does not hold. Standard analysis may then seem to suggest that there are multiple equilibria

in the economy. However, unlike in the standard analysis, π(t) and x(t) are not jump (or

non-predetermined) variables. Actually, π(t) and x(t) are predetermined variables for all

t > 0. The only jump variables are π(0) and x(0). After the initial instant, inflation and

output are both predetermined by the history of the economy. Of course, if at some time

t > 0 the central bank reneged on its commitment and announced a new rule that does not

satisfy the Taylor principle, or if anything else suddenly changed in the economy, then it

is possible that new expectations can form in which local indeterminacy actually translates

into a multiplicity of equilibria. But this is strictly outside the model; if anything unexpected

can happen after (π(0), x(0)) or if equilibria are required to be robust to other perturbations

after t1, then the analysis must be performed in a different setting from the one I consider

in this paper.

6.4 Eliminating Non-Optimal Equilibria

What should the central bank do for Rt1 6= R∗? What should its off-equilibrium threats be

if it wants to eliminate indeterminacy? The first proposition in this section answers these

questions by providing necessary and sufficient conditions to rule out non-optimal equilibria,

the main contribution of this paper.

As discussed in Section 6.1, paths for which P(Rt1) 6= 0 are not continuous and hence

not equilibria. Because P is policy independent, no central bank action can make any such

path an equilibrium. A central bank can take any actions along paths with P(Rt1) 6= 0 and

still be certain that no suboptimal equilibria will emerge because of them.

Therefore, the only non-trivial case is P(Rt1) = 0, which I henceforth assume. Eliminat-

ing suboptimal equilibria in this case does require appropriate policy.

Proposition 6 (Eliminating non-optimal equilibria). The rule in equation (19) implements

no suboptimal equilibria (i.e., those with Rt1 6= R∗) if and only if the following three items

are true:

(a) The Taylor principle does not hold when (π(t1), x(t1)) ∈ Ωzlb ∩Υzlb.

(b) The liftoff rule satisfies

f(Rt1) 6= T (Rt1) (49)

for any Rt1 6= R∗ fulfilling one of the three conditions below:
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(i) The Taylor principle holds and there exists r ∈ (t1,∞) such that (π(r), x(r)) ∈
∂Ω ∩Υzlb;

(ii) The Taylor principle does not hold and (π(t1), x(t1)) ∈ Ωss ∩Υss;

(iii) The Taylor principle holds and (π(t1), x(t1)) = (πss, xss).

(c) The liftoff rule satisfies

f(Rt1) >
1

φ1

log

(
dexit(r)

dexit(t1)

)
(50)

for any Rt1 6= R∗ such that, first, the Taylor principle does not hold and, second, there

exists r ∈ (t1,∞) such that (π(r), x(r)) ∈ ∂Ω ∩Υss.

Proof. I present a sketch of the proof. The full one is in Appendix A.8. Consider all Rt1 6= R∗

such that P(Rt1) = 0. Items (a), (b)(i), (b)(ii), (b)(iii) and (c) classify these Rt1 into five

disjoint sets. The main strategy in this proof is to use Propositions 3 and 4 to show that

the conditions in items (a)-(c) guarantee that continuous paths are unbounded and that

bounded paths are discontinuous.

Item (a): If the Taylor principle holds and (π(t1), x(t1)) ∈ Ωzlb ∩ Υzlb, paths are al-

ways continuous and bounded. This case corresponds to the green paths in Figure 12 and

Figure 9. Different liftoff times while inside Ωzlb cannot change paths in any way since

max {0, ξππ(t) + ξxx(t) + rh} = 0. When the Taylor principle holds, (π(t), x(t)) remains in

Ωzlb ∩ Υzlb for all t ≥ t1. Thus, picking a different f cannot eliminate these equilibria. The

only option is to have the Taylor principle not hold so that (πzlb, xzlb) /∈ Ωzlb and (π(t), x(t))

eventually exits Ωzlb and becomes unbounded.

Item (b): By Propositions 3 and 4, paths are continuous and bounded if and only if

equation (49) does not hold. The case in item (i) corresponds to the red path in Figure 12,

while the case in item (ii) corresponds to the green path in Figure 11.

Item (c): This case corresponds to the red path in Figure 11. Liftoff occurs inside Ωzlb if

and only if inequality (50) does not hold (note r > t1). When inequality (50) does not hold,

paths are continuous without further conditions on f since max {0, ξππ(t) + ξxx (t) + rh} = 0

and Proposition 3 shows that such paths are bounded. �

The proposition offers a taxonomy of potential equilibria and how to avoid them by

appropriately choosing the rule for liftoff and the coefficients of the Taylor rule. It can be seen

as a menu for central banks that prescribes different communication strategies for different

private-sector expectations. I define deflationary expectations as strong if the private sector

forecasts that the economy will never exit the ZLB, as weak if the private sector forecasts

the economy to be outside the ZLB at liftoff24 and as intermediate in all other cases (which

24Technically, weak expectations also include the case when the economy is outside the ZLB an instant dt
after liftoff to take into account item (b)(ii) in Proposition 6.
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correspond to the private sector forecasting that the economy will be at the ZLB at liftoff

but outside the ZLB at some future time). In Proposition 6, items (a), (b) and (c) each

address one of these three types of expectations.

The first menu item, described in item (a), is that of strong deflationary expectations.

It is defined by paths with (π(t1), x(t1)) ∈ Ωzlb ∩ Υzlb. The economy is against the ZLB

at all times. The economy is governed exclusively by the trap factor vtrap since dexit = 0

for all t ≥ T . Expectations that the economy will fall into the deflationary trap are the

strongest they can be —for all other cases considered in Proposition 6, dexit 6= 0 for at least

some of the time. Following the Taylor principle is counterproductive because promising

to be tough on inflation outside the ZLB prevents the future boom in inflation and output

necessary to arrest the deflationary expectations while at the ZLB. Delaying liftoff, even in

a state-contingent way, does not help either; it only confirms the already strong deflationary

private-sector expectations. The only way to avoid the deflationary trap is to eliminate it

outright by not following the Taylor principle. Not following the Taylor principle implies

(πzlb, xzlb) /∈ Ωzlb, which prevents (πzlb, xzlb) from being a steady state after t1.

The second item on the menu of private-sector expectations, described in item (b), is

that of weak deflationary expectations. Subitem (i) corresponds to the Benhabib et al.

(2001b) equilibria discussed in Section 5.3. Although the economy ends up converging to

(πzlb, xzlb) and dexit = 0 for t ≥ r, the loading between T and t1 on the exit factor dexit is

non-zero and large enough to allow the economy to be outside the ZLB between t1 and r.

Expectations of falling into and escaping the trap are both present, and the former end up

dominating. Because there is at least some tension between the trap and exit factors, this

class of equilibria is not as severe as the one in item (a) in terms of avoiding (πzlb, xzlb). It

is possible to preclude it without having to abandon the Taylor principle if f is chosen so

as to satisfy equation (49). This result is different from those in Benhabib et al. (2001b).

In Benhabib et al. (2001b), the Taylor principle necessarily implies that these paths always

constitute rational expectations equilibria. The difference in results arises because I consider

a broader set of rules that the central bank can follow by allowing a state-dependent liftoff.25

Why does equation (49) preclude equilibria for subitem (i)? For each Rt1 6= R∗, by

Proposition 4 and the continuous pasting condition in equation (46), there is a single value

of f(Rt1) that leads to continuous bounded paths. Liftoff at any other time prevents these

paths from becoming equilibria; a well-timed liftoff by the central bank avoids validating ex-

pectations of a suboptimal path. When f(Rt1) < T (Rt1), the economy undershoots ∂Ω∩Υzlb

at r, while when f(Rt1) > T (Rt1), the economy overshoots it. Both under- and overshooting

25Despite this difference, the requirements of item (a) in Proposition 6 do support the conclusion in Ben-
habib et al. (2001b) that it is not possible to have determinacy while always (i.e., along every path) following
the Taylor principle.
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∂Ω ∩ Υzlb lead to a non-zero loading on the exit factor at time r, which is enough to stop

the economy from falling into (πzlb, xzlb). Alternatively, the central bank can preclude the

equilibria in subitem (i) by not following the Taylor principle, a result also consistent with

those in Benhabib et al. (2001b). Unlike in Benhabib et al. (2001b), however, not following

the Taylor principle does not necessarily introduce other suboptimal equilibria.

Subitem (ii) describes an economy that converges to the desired steady state (πss, xss)

after having successfully escaped Ωzlb by time t1. Expectations of escaping (πzlb, xzlb), cap-

tured by the value of the loading dexit on the exit factor, are always strong enough to take

the economy far from Υzlb during t ∈ [T, t1), allowing it to escape the expectational trap.

Even though the economy converges to the intended steady state, it does so by following a

suboptimal path. These equilibria can be precluded by either following the Taylor principle

or choosing f(Rt1) 6= T (Rt1). Just as for subitem (i), f < T and f > T correspond to

under- and overshooting the trajectories that result in continuous bounded paths.

Subitem (iii) considers equilibria in which the Taylor principle holds and the economy

is on (πss, xss) exactly at liftoff. The intuition for why equilibria are eliminated by using

equation (49) is analogous to that for the other cases in item (b). As pointed out in Section

6.2, the equilibria in subitem (iii) can be thought of as a limiting case of equilibria described

in (i).

The case described in item (c) corresponds to intermediate deflationary expectations.

For each Rt1 that satisfies the assumptions in item (c), any low enough value of t1 gives

a continuous bounded path and hence an equilibrium. When the economy is inside Ωzlb,

pegging interest rates at zero or following i(t) = max {0, ξππ(t) + ξxx(t) + rh} induces the

same outcome. Liftoff while ξππ(t) + ξxx(t) + rh < 0 produces the same path as lifting off

exactly at time r, when ξππ(r)+ξxx(r)+rh = 0. At time r, the economy is on ∂Ω∩Υss. For

all liftoff times t1 ≤ r, the economy ends up following the stable saddle path toward (πss, xss),

staying bounded and continuous. To stop this equilibrium from forming, the central bank

first computes how long it takes to reach ∂Ω ∩ Υss starting at the (π(0), x(0)) given by the

first two components of Rt1 . It then picks a liftoff that exceeds that time. Equation (50)

expresses exactly this strategy. Alternatively, the central bank can prevent the expectations

in item (iii) from even appearing by following the Taylor principle.

Even though Proposition 6 gives exact ways in which to eliminate each type of potential

equilibria, it also offers broader, more conceptual lessons that apply along all paths. It gives

general properties that any interest rate rule must have and can have in order to produce a

determinate optimal outcome. When I combine Propositions 5 and 6, I obtain the following

results.
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Proposition 7 (General properties for global determinacy of the optimal equilibrium). If

κσλ 6= 1, when the optimal equilibrium is the unique equilibrium:

(a) The liftoff rule cannot be purely forward-looking, i.e., f cannot be constant in its first

two arguments (which correspond to (π(0), x(0)) in equilibrium).

(b) The interest rate rule can be purely backward-looking, i.e., ξπ, ξx and f can all be

constant in their last two arguments (which correspond to (π(t1), x(t1)) in equilibrium).

(c) The interest rate rule can be memoryless after liftoff, i.e., the Taylor rule coefficients

ξπ and ξx can both be constant (and hence state and path independent).

Proof. Appendix A.9. �

Proposition 8 (Global determinacy with continuous policy rules). If the interest rate rule

is continuous with respect to the state of the economy, i.e., if ξπ, ξx and f are continuous:

(a) Proposition 6 holds by replacing equation (49) with

f(Rt1) > T (Rt1). (51)

If κσλ 6= 1 and the optimal equilibrium is the unique equilibrium, then, in addition:

(b) The Taylor principle never holds.

(c) The interest rate rule must be forward- and backward-looking, i.e., at least one of the

three functions ξπ, ξx and f must be not constant in the first two arguments, and at

least one of the three functions must be not constant in the last two arguments.

Proof. Appendix A.10. �

The first two items in Proposition 7 state that an interest rate rule that brings about

global determinacy of the optimal equilibrium must be path dependent but need not be

forward-looking. Why must the liftoff rule have a backward-looking component? A purely

forward-looking rule specifies the length of time for which the central bank promises to

keep interest rates at zero for each possible combination of inflation and output expected to

prevail at the time of liftoff without referencing how the economy gets there. This strategy

anchors expectations at liftoff and onward but not before then. Expectations for (π(0), x(0))

can freely adjust to make expectations of t1 and (π(t1), x(t1)) consistent with a rational

expectations equilibrium. For example, assume that the rule for liftoff is purely forward-

looking and that the private sector expects liftoff to occur when the economy hits the steady
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state (πss, xss). Consider the value of f(a, b, πss, xss), which will be the same for all a and

b since the rule is purely forward-looking. Using the continuous pasting conditions, it is

always possible to find (π̂0, x̂0) such that when (π(0), x(0)) = (π̂0, x̂0), the economy follows

a continuous path that reaches (πss, xss) at t = f(a, b, πss, xss). Indeed, all it takes is

to trace the IS and NKPC backward in time starting at (πss, xss) for a period of time

f(a, b, πss, xss) while setting i(t) = 0 throughout. Setting t1 = f(a, b, πss, xss) produces

a rational expectations equilibrium. But when κσλ 6= 1, this equilibrium is suboptimal,

contradicting the assumption that the optimal equilibrium is the unique equilibrium.

In contrast, if the rule has a backward-looking component, finding the path by traveling

backward in time from liftoff until t = 0 is a fixed-point problem, since the amount of time

elapsed before reaching (π(0), x(0)) depends on (π(0), x(0)) itself. If the central bank picks

an appropriate rule, the fixed-point problem can be guaranteed to have no solution. For

the example above, in economic terms, no solution to the fixed-point problem means that,

given the central bank’s behavior, there exist no rational expectations for (π(0), x(0)) that

get the economy to (πss, xss) at time f (π(0), x(0), πss, xss). This type of logic implies that if

f(Rt1), instead of being a function of Rt1 , were a function of (π(s), x(s), π(t1), x(t1)) for some

s ∈ (0, t1), Propositions 6 and 7 would still apply with only minor modifications. Moreover,

if the central bank is willing to accept an indeterminate path between t = 0 and s, it can

even wait until time s to announce its rule.

It is thus not necessary for the central bank to make its policy contingent exactly on

(π(0), x(0)). It can make it contingent on inflation and output for any s < T . This idea may

be important for the practical implementation of the rule, as it provides more options to

communicate the backward-looking nature of the rule to the public. For example, instead of

having to refer to inflation and output that prevail at the single exact moment in time when

the economy enters the liquidity trap, the central bank can make liftoff contingent on the

average inflation rate before T . Of course, there is no benefit from doing so in the model,

but it is easy to imagine situations in which this can be beneficial. For example, if inflation

has measurement error, a rule involving averages may be more desirable than one that uses

a single inflation observation.

Communication involving past averages of inflation is reminiscent of price-level targeting

rules. However, the rule in equation (19) is not, in general, equivalent to price targeting rules

like the one studied in Eggertsson and Woodford (2003). Because price-level targeting rules

are path dependent for all periods after their inception, an easy way to see that equation

(19) is indeed different is to invoke item (c) of Proposition 7.

Item (c) of Proposition 7 shows that monetary policy after liftoff can be made indepen-

dent of all outcomes and actions before liftoff, yet still provide determinacy. The proof in

Appendix A.9 makes clear that making the Taylor rule coefficients constant does not intro-
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duce any new constraints or complications. Determinacy of the optimal equilibrium can be

obtained with any combination of constant Taylor rule coefficients that implement the op-

timal equilibrium (characterized by Proposition 5). Lastly, constant Taylor rule coefficients

may also be desirable from a communications standpoint, as the complexity of the rule is

reduced.

Another way to simplify communication is to have a rule that is continuous with respect

to the state of the economy. Empirically, at least during non-crisis times, small changes

in economic conditions generally lead to changes in monetary policy of commensurate size.

One concrete instance of a discontinuous rule is in equation (18), for which f can jump,

for example, from t∗ to t∗ + 1 when (π(0), x(0)) deviates from (π∗(0), x∗(0)) by only small

amount.

When f , ξx and ξπ are assumed to be continuous, Proposition 8 shows that optimal

monetary policy that brings about determinacy becomes more dovish. Items (a) and (b) of

Proposition 8 state that continuous rules produce determinacy by promising a long enough

period of zero interest rates together with a commitment to never following the Taylor

principle once the promise of zero rates expires. The precise meaning of “long enough”

is given by equations (50) and (51). Even though these two lower bounds for liftoff are

relatively simple functions of current and future expected states of the economy, the freedom

to overshoot the lower bound and still get determinacy further reduces the informational

requirements of the central bank. It is not necessary to know the precise parameters of the

model or the exact functional form of T to implement a “long enough” period of zero interest

rates.

Why does continuity change equation (49) into equation (51)? For paths that fulfill

one of the three conditions in subitems (i), (ii) and (iii) of item (b) in Proposition 6, the

central bank must avoid lifting off at the critical time T ; otherwise, it enables a suboptimal

equilibrium. By continuity, having f < T for one path and f > T for some other path

inevitably implies f = T for some third path. Therefore, if liftoff occurs before the critical

time for any one path, it must occur before the critical time for all paths. But this strategy

unravels because there are continuous bounded paths with T = T so that f < T implies

that f < T = T , contradicting the notion that liftoff never occurs before the natural rate

turns positive.26 One simple example of a bounded continuous path with T = T is when

liftoff occurs at T and (π(T ), x (T )) = (πss, xss).

A similar argument explains why the Taylor principle can never hold when the policy rule

is continuous. If the Taylor principle holds for some paths and does not hold for other paths,

continuity implies that at least one path satisfies the intermediate case κ (ξπ − 1) + ρξx = 0.

For that path, the deflationary steady state (πzlb, xzlb) is exactly on the boundary ∂Ω. A

26If f is allowed to occur before T , an analogous argument applies because f is still bounded below by zero.
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suboptimal equilibrium arises in which the economy travels inside Ωzlb along Υzlb and toward

(πzlb, xzlb).
27 Increasing the time of liftoff in an attempt to escape the ZLB fails: To exit

the ZLB, the economy must go across the boundary ∂Ω before entering Ωss, but when the

economy reaches ∂Ω, it is in steady state and hence remains there forever after. It follows

that to avoid κ (ξπ − 1)+ρξx = 0, either all paths obey the Taylor principle, or none of them

do. By item (a) of Proposition 6, a unique optimal equilibrium requires some paths to not

follow the Taylor principle, irrespective of f , and hence the Taylor principle never holds.

Lastly, item (c) of Proposition 8 states that a continuous rule consistent with global

determinacy of the optimal equilibrium is necessarily both forward- and backward-looking.

By item (a) of Proposition 7, we already know the rule cannot be purely forward-looking.

The reason it can no longer be purely backward-looking is that suboptimal equilibria would

emerge in a neighborhood of the optimal equilibrium. Because the optimal equilibrium (with

κσλ 6= 1) must be implemented without following the Taylor principle, it always induces

saddle dynamics outside the ZLB. First imagine that Taylor rule coefficients are constant, so

that all paths have saddle dynamics in Ωss and the same slope for the saddle path. With a

continuous and purely backward-looking f , points (π(0), x(0)) around (π∗(0), x∗(0)) always

take the economy close to (π∗(t∗), x∗ (t∗)) at time f(π(0), x (0)). For a small enough ε > 0,

there always is a point (π(t1), x(t1)) ∈ Υss that is close enough to (π∗(t∗), x∗(t∗)) and can

be reached at time t∗ ± ε. This situation is similar to that in Figure 2, only that instead

of a constant liftoff time, liftoff times change a small amount as the economy approaches

R∗. The small change is not enough to overcome the indeterminacy. The presence of a

saddle path breeds indeterminacy; liftoff slightly earlier or later simply puts the economy on

different nearby points on the saddle path. This is one of the reasons why the discontinuous

neo-Fisherian rule in equation (18) has discrete jumps (t∗, t∗ + 1 and t∗ + 2) for the liftoff

times: Jumps can put (π(t1), x(t1)) far from (π∗(t∗), x∗(t∗)) even when (π(0), x(0)) is close to

(π∗(0), x∗(0)). When the Taylor rule coefficients are not constant but are instead continuous

functions of (π(0), x(0)), by item (b) in Proposition 8, they still fail to satisfy the Taylor

principle. The only change is that now the saddle path associated with starting at (π(0), x(0))

is slightly different from the one associated with starting at (π∗(0), x∗(0)). This change is

still not enough to eliminate equilibria close to the optimal one. Points near R∗ can still

be part of an equilibrium with liftoff arbitrarily close to t∗ and a saddle path arbitrarily

close to the optimal one. Introducing a forward-looking component eliminates this kind of

equilibrium not because (π(t1), x(t1)) is suddenly far from (π∗(t∗), x∗ (t∗)), but because f

can be chosen so as to always violate the rational expectations condition in equation (16), a

situation analogous to the one previously discussed for item (a) of Proposition 7.

27A formal proof is in Lemma 3 of Appendix A.9
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7 Conclusion

I have presented necessary and sufficient conditions for global determinacy of the optimal

equilibrium in a standard New Keynesian (NK) economy with a binding ZLB and passive

fiscal policy. The model I have used is one of the simplest models in which NK forces and

rational expectations are present. The relative simplicity makes it possible to write down

the solution of the model in closed form and fully characterize global determinacy. On the

other hand, the literature examines a myriad of important ways in which this baseline model

can be extended, refined and modified.28 Nevertheless, the “three-equation” NK model is a

natural place to start, a necessary step toward deeper analysis. The mechanisms presented in

this paper are likely at play in any model with a NK core. A future necessary step before the

rules I propose can be used by a real-world central bank is to investigate their performance

in different versions of the NK model —and in other models as well.

While keeping all of these limitations in mind, my results do immediately inform practical

policy questions of current relevance. One example is the ongoing discussion about how the

monetary policy toolkit of central banks should evolve in light of the ZLB.29 My results

suggest that forward guidance, when properly communicated, is a more powerful monetary

policy tool than previously recognized by the literature. If fiscal policy is constrained —for

political reasons or otherwise— to be passive or Ricardian, the extant literature30 argues

that interest rate rules cannot achieve global determinacy when the ZLB binds. In contrast,

the interest rate rules I consider do achieve global determinacy in that same environment.

Another straightforward application of my results is to assess whether, according to the

model, central banks have in practice communicated forward guidance in ways that anchor

expectations. In December 2008, the Federal Open Market Committee (FOMC) of the

Federal Reserve engaged in explicit calendar-based forward guidance by stating that it would

likely be appropriate for the federal funds rate to remain near zero for “some time,” later

strengthening the language to “an extended period.” In August 2011, the FOMC introduced

a specific date into its guidance, specifying that economic conditions would warrant near

zero interest rates “at least through mid-2013.” This type of communication does not make

liftoff contingent on the state of the economy and thus, according to Proposition 1, does

not succeed in anchoring expectations. In December 2012, forward guidance became state-

contingent, promising to keep the federal funds rate at its ZLB “for [...] at least as long

28A partial list includes: Investment dynamics, trade and capital flows, coordination with fiscal policy,
limited commitment, imperfect credibility, heterogeneous agents, financial intermediation, financial stability
concerns, informational frictions, learning, and non-rational expectations are some of the realistic components
that can change the optimality and determinacy properties of equilibria.
29The 2016 Jackson Hole symposium organized by the Federal Reserve is perhaps the most prominent

recent example of such a discussion. See Yellen et al. (2016).
30The starting point in this literature is the influential work by Benhabib et al. (2001b).
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as the unemployment rate remains above 6-1/2 percent [and] inflation between one and two

years ahead is projected to be no more than a half percentage point above the Committee’s 2

percent longer-run goal.” While introducing state contingency is a step in the right direction,

Proposition 7 shows that the announced strategy also delivers multiple equilibria in the

standard NK model I examine, as it is purely forward-looking. To my knowledge, this is

the first analysis of determinacy of the FOMC’s calendar-based and threshold-based forward

guidance.
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A Proofs of Propositions

A.1 Preliminaries

Transition times. Let τ (t) be the largest of t1 and the last time (π(t), x(t)) entered the

region Ωzlb from Ωss before or at time t. More formally,31

τ(t) = max {t1, τ zlb(t)} ,

τ zlb(t) = sup {s ≤ t : (π(s), x (s)) ∈ ∂Ω and ∃ε > 0 s.t. (π (s+ ε) , x (s+ ε)) ∈ Ωzlb} .

Let η(t) be the largest of t1 and the last time (π(t), x(t)) enters the region Ωss from Ωzlb

before or at time t, i.e.,

η(t) = max {t1, ηss(t)} ,

ηss(t) = sup {s ≤ t : (π(s), x (s)) ∈ ∂Ω and ∃ε > 0 s.t. (π (s+ ε) , x (s+ ε)) ∈ Ωss} .

Note that τ(t) and η(t) are piece-wise constant and thus for all t 6= τ(t) we have τ̇(t) = 0

and for all t 6= η(t) we have η̇(t) = 0.

Solution to IS and NKPC. Let

Azlb =

[
0 − 1

σ

−κ ρ

]
,

Ass =

[
1
σ
ξx

1
σ

(ξπ − 1)

−κ ρ

]
.

The matrix Azlb gives the dynamics of the system of ODEs (1)-(2) when i(t) = 0 while

the matrix Ass gives the dynamics when i(t) = rh + ξππ (t) + ξxx(t). The matrix Azlb has

eigenvalues φ1 and φ2 defined in equations (21)-(22). The eigenvalues of Ass are

α1 =
1

2σ

(
ξx + σρ+

√
(ξx − σρ)2 − 4κσ (ξπ − 1)

)
, (A.1)

α2 =
1

2σ

(
ξx + σρ−

√
(ξx − σρ)2 − 4κσ (ξπ − 1)

)
. (A.2)

Because stable dynamics always produce indeterminacy (see Lemma 3 in Appendix A.9 for

a proof), I restrict all analysis to cases in which either detAss > 0 and traceAss > 0, or

detAss < 0. Below, I use dexit and dtrap defined in equations (25) and (26).

31Recall that the supremum of the empty set is −∞. If there is no s such that (x (s) , π(s)) ∈ ∂Ω or @ε >
0 s.t. (x (s+ ε) , π (s+ ε)) ∈ Ωzlb, then τzlb(t) = −∞ and τ (t) = t1.
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For t ∈ [0, T ) the solution to (1)-(2) under the interest rate rule in equation (19) is

x(t) = − φ2

(φ1 − φ2)

(
dexit(0)− φ2

κ
(rh − rl)

)
eφ1t

+
φ1

(φ1 − φ2)

(
dtrap (0)− φ1

κ
(rh − rl)

)
eφ2t − ρ

κ
rl, (A.3)

π(t) = − κ

(φ1 − φ2)

(
dexit(0)− φ2

κ
(rh − rl)

)
eφ1t

+
κ

(φ1 − φ2)

(
dtrap (0)− φ1

κ
(rh − rl)

)
eφ2t − rl. (A.4)

For t ∈ [T, t1) the solution is

x(t) = −φ2dexit(t)

(φ1 − φ2)
eφ1(t−T ) +

φ1dtrap(t)

(φ1 − φ2)
eφ2(t−T ) − ρ

κ
rh (A.5)

π(t) = − κdexit(t)

(φ1 − φ2)
eφ1(t−T ) +

κdtrap(t)

(φ1 − φ2)
eφ2(t−T ) − rh (A.6)

For t ∈ [t1,∞), when (π(t), x (t)) ∈ Ωzlb, the solution is

x(t) = −φ2dexit (τ(t))

(φ1 − φ2)
eφ1(t−τ(t)) +

φ1dtrap (τ(t))

(φ1 − φ2)
eφ2(t−τ(t)) − ρ

κ
rh, (A.7)

π(t) = −κdexit (τ(t))

(φ1 − φ2)
eφ1(t−τ(t)) +

κdtrap (τ(t))

(φ1 − φ2)
eφ2(t−τ(t)) − rh. (A.8)

For t ∈ [t1,∞), when (π(t), x (t)) ∈ Ωss, I distinguish three cases:

Case I: ξπ 6= 1 and 4κσ (ξπ − 1) 6= (ξx − σρ)2 ;

Case II: ξπ = 1 and 4κσ (ξπ − 1) 6= (ξx − σρ)2 ;

Case III: 4κσ (ξπ − 1) = (ξx − σρ)2 .

For Case I, the solution is

x(t) = −(1− ξπ) π(η(t)) + (σα2 − ξx)x(η(t))

σ (α1 − α2)
eα1(t−η(t))

+
(1− ξπ) π(η(t)) + (σα1 − ξx)x(η(t))

σ (α1 − α2)
eα2(t−η(t)), (A.9)

π(t) =
(1− ξπ) π(η(t)) + (σα2 − ξx)x(η(t))

σ (ξπ − 1) (α1 − α2)
(ξx − σα1) e

α1(t−η(t))

−(1− ξπ) π(η(t)) + (σα1 − ξx)x(η(t))

σ (ξπ − 1) (α1 − α2)
(ξx − σα2) e

α2(t−η(t)). (A.10)
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For Case II, the solution is

x(t) = x(η(t))e
1
σ
ξx(t−η(t)), (A.11)

π(t) =
π(η(t)) (ξx − σρ) + κσx(η(t))

ξx − σρ
eρ(t−η(t)) − κσx(η(t))

ξx − σρ
e

1
σ
ξx(t−η(t)). (A.12)

For Case III, the solution is

x(t) =

(
1 +

1

2σ
(ξx − σρ) (t− t1)

)
x(η(t))e

1
2(ρ+ 1

σ
ξx)(t−η(t))

+
1

κ

(
1

2σ
(σρ− ξx)

)2

(t− t1)π(η(t))e
1
2(ρ+ 1

σ
ξx)(t−η(t)), (A.13)

π(t) = −κ (t− t1)x(η(t))e
1
2(ρ+ 1

σ
ξx)(t−η(t))

+

(
1− 1

2σ
(ξx − σρ) (t− t1)

)
π(η(t))e

1
2(ρ+ 1

σ
ξx)(t−η(t)). (A.14)

Saddle path in Ωss. The saddle path Υss is the set of points (π, x) such that

π =


(ξx−σα2)
(1−ξπ)

x , if detAss < 0 and ξπ 6= 1
κσ

(σρ−ξx)
x , if detAss < 0 and ξπ = 1

κ
ρ
x , if detAss = 0 and traceAss ≥ 0

∅ , otherwise

. (A.15)

A.2 Case κσλ = 1 in Proposition 1

The next example shows that when κσλ = 1, it is indeed possible to implement the optimal

equilibrium uniquely with a constant liftoff time. Let t= t∗ and κσλ = 1. Pick

(ξπ(R0), ξx(R0)) =

{
(0, 0) , if R0 is such that (π (t) , x (t)) = (0, 0) or ρπ (t) 6= κx (t)(

1,− ρ
κ

)
, otherwise

(A.16)

Note that when the time of liftoff is constant, it is equivalent to write ξπ and ξx as a function

of R0 or as a function of (π (s) , x (s)) for any s > 0. Hence, equation (A.16) can be written

as

(ξπ, ξx) =

{
(0, 0) , if (x (t) , π (t)) = (0, 0) or ρπ (t) 6= κx (t)(

1,− ρ
κ

)
, otherwise

. (A.17)

I now show that the rule

i(t) =

{
0 , 0 ≤ t < t

max {0, ξππ(t) + ξxx(t) + r(t)} , t ≤ t <∞
(A.18)
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implements the optimal equilibrium as the unique equilibrium of the economy.

When (π(t), x(t)) = (0, 0), the rule implements the optimal path. Werning (2012)

shows that when κσλ = 1, (π∗(t∗), x∗(t∗)) = (0, 0). Since t= t∗ and (π (t) , x (t)) =

(π∗(t∗), x∗ (t∗)) = (0, 0), (π(t), x(t)) = (π∗(t), x∗(t)) for t < t∗. By equation (A.17), ξx = ξπ =

0 and thus i(t) = i∗(t) = rh > 0 for t ≥ t1. As (0, 0) is a steady state, (π(t), x(t)) = (0, 0)

for all t ≥ t1, which shows that (π(t), x (t)) = (π∗(t), x∗ (t)) for t ≥ t1.

No other equilibrium exists since, for all R0 6= (π∗(0), x∗(0)), continuous paths are un-

bounded. If ρπ (t) 6= κx (t), equation (A.17) gives (ξx, ξπ) = (0, 0) and, by equation (A.15),

the saddle path is ρπ = κx. It follows that (π (t) , x (t)) /∈ Υss. In addition, i(t) = rh > 0

for t ≥t and thus (π(t), x(t)) ∈ Ωss for all t ≥t since Ωzlb is empty. The global saddle path

dynamics and (π (t) , x (t)) /∈ Υss imply that (π(t), x(t)) explodes as t→∞.

If (π (t) , x (t)) 6= (0, 0) and ρπ (t) = κx (t), (ξx, ξπ) =
(
1,− ρ

κ

)
implies that the Taylor

principle does not hold, since κ (ξπ − 1) + ρξx = −κ < 0. In addition, (π (t) , x (t)) ∈ Ωss

since ξππ (t) + ξxx (t) + r (t) = rh > 0 and (π (t) , x (t)) /∈ Υss by equation (A.15). Because

the dynamics are saddle path stable and (π (t) , x (t)) is not on the saddle path, (π (t) , x(t))

either explodes or enters Ωzlb in finite time. By item (c) in Lemma 1 of Appendix A.5, if

(π(t), x(t)) enters Ωzlb it also explodes.

A.3 Constants in the Neo-Fisherian Rule of Section 5.2

To be on the saddle path at time t1, π(t1) = φx (t1). Using the continuous pasting conditions

in equation (A.21) to express π(t1) = φx (t1) in terms of x(0) and π(0) gives

p(t1)x(0) + q(t1)π (0) = v(t1),

where

p(t1) = κσ
(
(φ1 − κφ) e−φ1t1 − (φ2 − κφ) e−φ2t1

)
,

q(t1) = κ
(
(σφφ2 + 1) e−φ1t1 − (σφφ1 + 1) e−φ2t1

)
,

v(t1) = −
(

(κ+ σφ1 (ρ− κφ)) rl +
(rh − rl)φ1

φ1 − φ2

(
κ+ σφ2

1 − κσφ (φ1 − φ2)
)
e−Tφ2

)
e−φ1t1

+

(
(κ+ σφ2 (ρ− κφ)) rl −

(rh − rl)φ2

φ1 − φ2

(
κ+ σφ2

2 + κσφ (φ1 − φ2)
)
e−Tφ1

)
e−φ2t1

+
(σρ2 + 4κ) (ρ− κφ) rh

(φ1 − φ2)
e−φ1t1e−φ2t1 .

Evaluating these functions at t1 = t∗ and t1 = t∗ + 1 determines the constants A, B, C and

D, E, F , respectively.
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A.4 Proof of Proposition 2

By using the explicit solutions in Appendix A.1, the continuous pasting conditions for a path

(π(t), x(t)) with Rt1 = R and f(Rt1) = t1 imply

x0 =
φ1e

−φ2t1 − φ2e
−φ1t1

φ1 − φ2

x1 −
1

σ

e−φ1t1 − e−φ2t1
φ1 − φ2

π1

+
rh
κ

φ2
1e
−φ2t1 − φ2

2e
−φ1t1

φ1 − φ2

+

(
rh − rl
κ

)
φ2
2e
−Tφ1 − φ2

1e
−Tφ2

φ1 − φ2

− rlρ

κ
, (A.19)

π0 = −κe
−φ1t1 − e−φ2t1
φ1 − φ2

x1 +
φ1e

−φ1t1 − φ2e
−φ2t1

φ1 − φ2

π1

+rh
φ1e

−φ2t1 − φ2e
−φ1t1

φ1 − φ2

+ (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl. (A.20)

Equations (A.19) and (A.20) are equivalent to continuous pasting at t1 if there already is

continuous pasting at T . Solving for (π1, x1) in equations (A.19) and (A.20) gives, in matrix

notation,[
x1

π1

]
=
e(φ1+φ2)t1

φ1 − φ2

 φ1e
−φ1t1 − φ2e

−φ2t1 1
σ

(
e−φ1t1 − e−φ2t1

)
κ
(
e−φ1t1 − e−φ2t1

)
φ1e

−φ2t1 − φ2e
−φ1t1

[ x(0)− h
(
t1
)

π(0)−m
(
t1
) ] ,

(A.21)

where

h
(
t1
)

= rh
φ2
1e
−φ2t1 − φ2

2e
−φ1t1

κ (φ1 − φ2)
+ (rh − rl)

φ2
2e
−Tφ1 − φ2

1e
−Tφ2

κ (φ1 − φ2)
− rlρ

κ
,

m
(
t1
)

= rh
φ1e

−φ2t1 − φ2e
−φ1t1

(φ1 − φ2)
+ (rh − rl)

φ2e
−Tφ1 − φ1e

−Tφ2

(φ1 − φ2)
− rl.

Solving for e−φ1t1 and e−φ2t1 in equation (A.21) and then eliminating t1 from one of the

equations gives that paths that are already continuous at T are also continuous at t1 if and

only if

0 = P
(
R
)
, (A.22)

t1 = T
(
R
)
, (A.23)
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where

P(R) =



1
{
dexit

(
t1
)
6= 0 or dtrap

(
t1
)
6= 0
}

, if dexit(0) = φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap(0) = φ1

κ
(rh − rl)

(
1− e−Tφ2

)
dexit

(
t1
)

+ 1
{
dtrap

(
t1
)

= 0
}

, if dexit(0) = φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap(0) 6= φ1

κ
(rh − rl)

(
1− e−Tφ2

)
dtrap

(
t1
)

+ 1
{
dexit

(
t1
)

= 0
}

, if dexit(0) 6= φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap(0) = φ1

κ
(rh − rl)

(
1− e−Tφ2

)
(

dexit(t1)
dexit(0)+

φ2
κ
(rh−rl)(e−Tφ1−1)

)φ2
,

if dexit(0) 6= φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap(0) 6= φ1

κ
(rh − rl)

(
1− e−Tφ2

)
−
(

dtrap(t1)
dtrap(0)+

φ1
κ
(rh−rl)(e−Tφ2−1)

)φ1

,

(A.24)

and

T (R) =



[T,∞) , if dexit(0) = φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap(0) = φ1

κ
(rh − rl)

(
1− e−Tφ2

)
1
φ2

log
dtrap(t1)

dtrap(0)+
φ1
κ
(rh−rl)(e−Tφ2−1)

, if dexit(0) = φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap(0) 6= φ1

κ
(rh − rl)

(
1− e−Tφ2

)
1
φ1

log
dexit(t1)

dexit(0)+
φ2
κ
(rh−rl)(e−Tφ2−1)

, otherwise

,

(A.25)

thereby proving Proposition 2. In the expression for P
(
R
)
, I have used the indicator function

1 {E}, which is equal to 1 if E is true and zero otherwise.

To derive equations (A.22) and (A.23), which correspond to equations (41) and (42) in

the main body of the paper, and to find the explicit expressions for P and T shown in

equations (A.24)-(A.25), I consider four cases separately.

The first case corresponds to the economy reaching (πzlb, xzlb) at t1; the second and

third, to the economy reaching, respectively, Υzlb and Ψzlb at t1; the fourth case considers

all remaining R.
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The first case, shown in green in Figure 9, is defined by (π0, x0) such that32

dexit (π0, x0) = [x0 − xzlb]−
φ1

κ
[π0 − πzlb] =

φ2

κ
(rh − rl)

(
1− e−Tφ1

)
, (A.26)

dtrap (π0, x0) = [x0 − xzlb]−
φ2

κ
[π0 − πzlb] =

φ1

κ
(rh − rl)

(
1− e−Tφ2

)
. (A.27)

In the figure, the line defined by equation (A.26) is the black dashed line while the line

defined by equation (A.27) is the dashed gray line. This first case corresponds to (π0, x0) at

the intersection of these two lines. The economy reaches the zlb steady-state (πzlb, xzlb) at

t = T . Since between T and t1 the point (πzlb, xzlb) is a steady-state, the economy just sits

there for all t ∈ [T, t1). The continuous pasting conditions are

dexit (π(t), x(t)) = dtrap (π(t), x(t)) = 0, (A.28)

dexit (π1, x1) = dtrap (π1, x1) = 0, (A.29)

i.e., (π(t), x(t)) = (π1, x1) = (πzlb, xzlb). In Figure 9, the lines described in equations (A.28)

and (A.29) are shown in the solid black and gray lines, and correspond to Υzlb and Ψzlb.

Equations (A.28) and (A.29) define the function P for this case

P(R) = 1 {dexit (π1, x1) 6= 0 or dtrap (π1, x1) 6= 0} ,

We then have P
(
R
)

= 0 if and only if dtrap (π1, x1) and dtrap (π1, x1) are both zero. Graphi-

cally, the set of R such that P(R) = 0 are the two points in Figure 9 where the lines intersect,

that is, where the green path begins and ends. Once (A.28) and (A.29) hold, any t1 ≥ T is

consistent with continuous pasting and thus

T (R) = [T,∞).

In the three remaining cases, T (R) is single-valued and depends on R.

The second case is defined by the economy reaching some point in the zlb saddle path

Υzlb at t1, except for (πzlb, xzlb), which was already analyzed. This case, shown in red in

Figure 9, occurs when

dexit (π0, x0) = [x0 − xzlb]−
φ1

κ
[π0 − πzlb] =

φ2

κ
(rh − rl)

(
1− e−Tφ1

)
, (A.30)

dtrap (π0, x0) = [x0 − xzlb]−
φ2

κ
[π0 − πzlb] 6=

φ1

κ
(rh − rl)

(
1− e−Tφ2

)
. (A.31)

32With slight abuse of notation, in this section I write dexit (π0, x0) instead of dexit(t) to emphasize that
dexit (π0, x0) is not a function of time since (π0, x0) is a vector of two numbers, as opposed to (π(0), x(0)),
which is a function of time evaluated at t = 0. The same notation applies to dtrap and to πT , xT , π1, x1.
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Continuous pasting at T requires

dexit (π(t), x(t)) = [x(t)− xzlb]−
φ1

κ
[π(t)− πzlb] = 0, (A.32)

T =
1

φ2

log

(
dtrap (πT , x(t))

dtrap (π0, x0) + φ1
κ

(rh − rl) (e−Tφ2 − 1)

)
. (A.33)

Continuous pasting at t1 requires

dexit (π1, x1) = [x1 − xzlb]−
φ1

κ
[π1 − πzlb] = 0, (A.34)

t1 = T +
1

φ2

log

(
dtrap (π1, x1)

dtrap (π(t), x(t))

)
. (A.35)

Equations (A.30), (A.31), (A.32) and (A.34) describe the continuous pasting constraints on

(π0, x0) without any reference to t1. Combinations (π0, x0) that satisfy these equations can

be part of a continuous path for some t1. Equations (A.33) and (A.35) then show which

particular point is reachable with a specific t1. Any continuous path in this case must start

in the black dashed line of Figure 9 and be on the solid black line at times T and t1. For a

specific t1, or for a specific point in one of the two lines, only one path is continuous.

Combining equations (A.30)-(A.35) gives

P(R) = dexit (π1, x1) + 1 {dtrap (π1, x1) = 0} ,

T (R) =
1

φ2

log

(
dtrap (π1, x1)

dtrap (π0, x0) + φ1
κ

(rh − rl) (e−Tφ2 − 1)

)
.

The indicator 1 {dtrap (π1, x1) = 0} in the equation for P is there to guarantee that equation

(A.30) holds. In Figure 9, the points R such that P(R) = 0 are given by the dashed and

solid black lines, with the exception of the points where the black lines intersect the gray

lines.

The third case is similar to the second and is represented by the blue line in Figure 9.

Instead of reaching Υzlb at t1, the economy reaches the unstable zlb saddle path Ψzlb at t1,

with the exception of (πzlb, xzlb), which was already studied. This case is defined by

dexit (π0, x0) = [x0 − xzlb]−
φ1

κ
[π0 − πzlb] 6=

φ2

κ
(rh − rl)

(
1− e−Tφ1

)
, (A.36)

dtrap (π0, x0) = [x0 − xzlb]−
φ2

κ
[π0 − πzlb] =

φ1

κ
(rh − rl)

(
1− e−Tφ2

)
. (A.37)
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Continuous pasting at T occurs if and only if

dtrap (π(t), x(t)) = [x(t)− xzlb]−
φ2

κ
[π(t)− πzlb] = 0, (A.38)

T =
1

φ1

log

(
dexit (πT , x(t))

dexit (π0, x0) + φ2
κ

(rh − rl) (e−Tφ2 − 1)

)
, (A.39)

while continuous pasting at t1 occurs if and only if

dtrap (π1, x1) = [x1 − xzlb]−
φ2

κ
[π1 − πzlb] = 0, (A.40)

t1 = T +
1

φ1

log

(
dexit (π1, x1)

dexit (π(t), x(t))

)
. (A.41)

It follows that

P(R) = dtrap (π1, x1) + 1 {dexit (π1, x1) = 0} ,

T (R) =
1

φ1

log

(
dexit (π1, x1)

dexit (π0, x0) + φ2
κ

(rh − rl) (e−Tφ2 − 1)

)
.

The fourth and last case corresponds to all remaining choices for R that can be part of

a continuous path. The continuous pasting conditions are(
dtrap (π0, x0) + φ1

κ
(rh − rl)

(
e−Tφ2 − 1

)
dtrap (π(t), x(t))

)φ1

=

(
dexit (π0, x0) + φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)
dexit (π(t), x(t))

)φ2

, (A.42)

T =
1

φ2

log
dtrap (π(t), x(t))

dtrap (π0, x0) + φ1
κ

(rh − rl) (e−Tφ2 − 1)
, (A.43)

for T and (
dtrap (π1, x1)

dtrap (πT , x(t))

)φ1
=

(
dexit (π1, x1)

dexit (π(t), x(t))

)φ2
, (A.44)

t1 = T +
1

φ2

log

(
dtrap (π1, x1)

dtrap (π(t), x(t))

)
, (A.45)

for t1.

Assuming continuous pasting at T , equations (A.42)-(A.44) reveal the set of points
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(π0, x0, π1, x1) that can be reached through continuous paths for some t1, which give

P(R) =

(
dexit (π1, x1)

dexit (π0, x0) + φ2
κ

(rh − rl) (e−Tφ1 − 1)

)φ2

−

(
dtrap (π1, x1)

dtrap (π0, x0) + φ1
κ

(rh − rl) (e−Tφ2 − 1)

)φ1

+ 1 {dexit (π1, x1) = 0 or dtrap (π1, x1) = 0} .

Finally, equations (A.43) and (A.45) give

T
(
R
)

=
1

φ1

log
dexit

(
t1
)

dexit (0) + φ2
κ

(rh − rl) (e−Tφ2 − 1)
.

A.5 Proof of Proposition 3

I first prove a lemma and then proceed to the proof of Proposition 3.

Lemma 1. When the Taylor principle does not hold, the following are true:

(a) (πzlb, xzlb) /∈ Ωzlb.

(b) If (π(q), x(q)) ∈ Ωzlb for some q ≥ t1, (π(t), x(t)) either explodes as t → ∞ or exits

Ωzlb in finite time.

(c) If (π(s), x(s)) ∈ Ωss for some s ≥ t1 and (π(q), x(q)) ∈ Ωzlb for some q > s, then

(π(t), x(t)) explodes as t→∞.

(d) If (π(q), x(q)) ∈ Ωzlb for some q ≥ t1 and there exist no r ≥ q such that (π(r), x(r)) ∈
∂Ω ∩Υss, then (π(t), x(t)) explodes as t→∞.

(e) If (π(q), x(q)) ∈ Ωzlb for some q ≥ t1 and there exist r > q such that (π(r), x(r)) ∈
∂Ω ∩Υss, then there exist no t ∈ [q, r) such that (π(t), x(t)) ∈ Υss.

Proof of Lemma 1. (a) Plugging the steady-state from equation (24) into the Taylor rule

gives

ξππzlb + ξxxzlb + rh = ξπ (−rh) + ξx

(
−ρ
κ
rh

)
+ rh,

= −rh
κ

(κ (ξπ − 1) + ρξx) ,

= −rhσ
κ

detAss,

> 0.
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where detAss < 0 because the Taylor principle does not hold.

(b) The saddle path stable dynamics in Ωzlb and (πzlb, xzlb) /∈ Ωzlb immediately imply that

paths starting in Ωzlb either explode or exit Ωzlb in finite time.

(c) Let n̂ be a unit vector normal to ∂Ω pointing towards Ωss. Because (π(t), x(t)) tran-

sitions from Ωss to Ωzlb and its path is continuous, there exist ω ∈ (s, q] such that

ξππ(ω) + ξxx(ω) + rh = 0, (A.46)

n̂ · (π̇(ω), ẋ(ω)) ≤ 0. (A.47)

Equation (A.46) says that (π(ω), x(ω)) ∈ ∂Ω. The non-positive dot product in equation

(A.47) says that (π(ω), x(ω)) is not moving towards Ωss (and moving towards Ωzlb when

the dot product is negative). Writing out the dot product gives

 ξx√
ξ2π+ξ

2
x

ξπ√
ξ2π+ξ

2
x

T [ − 1
σ

(π(ω) + rh)

ρπ(ω)− κx(ω)

]
= −π(ω) (ξx − σρξπ) + ξxrh + κσξπx(ω)

σ
√
ξ2π + ξ2x

≤ 0,

or, simplifying,

π(ω) (ξx − σρξπ) + ξxrh + κσξπx(ω) ≥ 0. (A.48)

The Taylor principle (TP) not holding, equation (A.46), equation (A.48) and φ1, rh > 0

imply that

− rh (κ (ξπ − 1) + ρξx)︸ ︷︷ ︸
<0 as TP does not hold

−κ (rh + ξππ(ω) + ξxx(ω))︸ ︷︷ ︸
=0 by eq. (A.46)

+ φ1 (π(ω) (ξx − σρξπ) + ξxrh + κσξπx(ω))︸ ︷︷ ︸
≥0 by eq. (A.48)

> 0. (A.49)

Equation (A.49) is a sufficient condition for
(
π(t), x(t)

)
to be in Ωzlb for all t ≥ ω. To

see this, use the dynamics in equations (A.7) and (A.8) to write

ξππ(t) + ξxx(t) + rh = W (t− ω) ,
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where

W (t) = Aeφ1(t−ω) +Beφ2(t−ω) + C,

A = − (φ1π(ω)− κx(ω)− φ2rh)
ξx − σφ1ξπ
σφ1 (φ1 − φ2)

,

B = (φ2π(ω)− κx(ω)− φ1rh)
ξx − σφ2ξπ
σφ2 (φ1 − φ2)

,

C =
rh
κ

(κ (1− ξπ)− ρξx) .

By definition, (π(t), x(t)) ∈ Ωzlb iff W (t) ≤ 0. Therefore, if W (t) has no zeros for

t > ω, (π(t), x(t)) remains in Ωzlb forever. Since φ2 < 0 < φ1 and W (ω) = 0 by (A.46)

and W ′(ω) ≤ 0 by (A.47), a sufficient condition for W (u) to have no zeros for u > ω

is that A < 0. After some manipulations, it can be seen that (A.49) is equivalent to

A < 0.

By (b), since (π(t), x(t)) never transitions to Ωss after ω, it follows that (π(t), x(t))

explodes as t→∞.

(d) By (b), if (π(t), x(t)) does not exit Ωzlb, it explodes. If (π(t), x(t)) exits Ωzlb at some

time η and (π(η), x(η)) is not on the ss saddle path, due to the saddle path dynamics

inside Ωss, (π(t), x(t)) either explodes or returns to Ωzlb in finite time. If (π(t), x(t))

returns to Ωzlb, by item (c), it explodes.

(e) By equation (A.15), Υss is a line through the origin, which can be written as Aπ−x = 0

with A 6= 0. If ξπ 6= 1 then A = (1− ξπ) / (ξx − σα2) and if ξπ = 1 then A =

(σρ− ξx) /κσ. Let

F (t) = Aπ(t)− x(t). (A.50)

The path of (π(t), x(t)) intersects Υss at some time t̄ iff F (t̄) = 0.

Plugging ξππ(t) + ξxx(t) + rh = 0 in the IS and NKPC after t1, it can be seen that

(π̇(t), ẋ(t)) is continuous on ∂Ω for all t ≥ t1. It follows that the right and left deriva-

tives of F (t) are equal at t = r. By equations (A.9)-(A.14) and (A.15), (π(t), x(t))

remains on Υss after intersecting it at t = r. Hence, the right derivative of F (t) at

t = r is zero.

Now I find the left derivative. If (π(t), x(t)) exits Ωzlb without intersecting ∂Ω ∩ Υss,

by uniqueness inside Ωss, it won’t intersect Υss ∩ Ωss. If (π(t), x(t)) re-enters Ωzlb

after being in Ωss \ Υss, by item (c), it explodes. Hence, between times q and r,

(π(t), x(t)) ∈ Ωzlb and its dynamics are given by equations (A.7) and (A.8).
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Using these dynamics in equation (A.50) gives

F (t) = Peφ1(t−τ(t)) +Qeφ2(t−τ(t)) +R, (A.51)

where

P =
φ2 − Aκ
κ (φ1 − φ2)

(φ2rh − φ1π(τ(t)) + κx(τ(t))) ,

Q = − φ1 − Aκ
κ (φ1 − φ2)

(φ1rh − φ2π(τ(t)) + κx(τ(t))) ,

R =
rh (ρ− Aκ)

κ
.

Note that P and Q cannot both be zero. Indeed, P = Q = 0 implies R = 0, since

F (r) = 0. But R = 0 implies A = ρ/κ, which in turn implies (x(τ(t)), π(τ(t))) =

(πzlb, xzlb) = (x(q), π(q)) ∈ Ωzlb, contradicting item (a). Thus, P and Q cannot both

be zero.

Using equation (A.51) to compute the left derivative of F (t) at t = r and setting it

equal to the value of the right derivative, which is zero as shown above, gives

F ′(r) = 0 = φ1Pe
φ1(r−τ(r)) + φ2Qe

φ2(r−τ(r)). (A.52)

In other words, the path for (π(t), x(t)) must be tangent to the ss saddle path Υss at

t = r. Since φ2 < 0 < φ1, equation (A.52) implies that P and Q have the same sign

(and the sign is not zero since P and Q cannot both be zero). In turn, P and Q having

the same (non-zero) sign implies that

F ′′(t) = φ2
1Pe

φ1(t−τ(t)) + φ2
2Qe

φ2(t−τ(t)) (A.53)

has the same (non-zero) sign for all t ∈ [q, r], so F ′(t) is strictly monotonic. A contin-

uous and strictly monotonic F ′(t) in t ∈ [q, r], together with F (r) = F ′(r) = 0, imply

that the only solution to F (t) = 0 for t ∈ [q, r] is r. �

Proof of Proposition 3. Consider the following condition:

(π(t1), x(t1)) ∈ Ωss ∩Υss,

or

(π(t1), x(t1)) ∈ Ωzlb and (π(r), x(r)) ∈ ∂Ω ∩Υss for some r ∈ [t1,∞).

(A.54)

I first show that condition (A.54) implies paths are not explosive. If (π(t1), x(t1)) ∈ Ωss∩
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Υss, then (π(t), x(t)) ∈ Υss for all t ≥ t1. If (x(t1), π(t1)) ∈ Ωzlb and (x(r), π(r)) ∈ ∂Ω ∩Υss

for some r ∈ [t1,∞), (π(t), x(t)) ∈ Υss for all t ≥ r. In either case, the path converges to

(0, 0) and therefore does not explode.

To prove the converse, I prove the contrapositive. There are two cases to consider.

Case 1: If (π(t1), x(t1)) /∈ Ωss and there exist no r ∈ [t1,∞) such that (π(r), x(r)) ∈
∂Ω ∩Υss, then (π(t), x(t)) explodes by item (e) of Lemma 1.

Case 2: If (π(t1), x(t1)) /∈ Υss and (π(t1), x(t1)) /∈ Ωzlb, (π(t), x(t)) either explodes or

enters Ωzlb. If it enters Ωzlb, it explodes by item (c) of Lemma 1.

Note that cases 1 and 2 above also cover the case in which (π(t1), x(t1)) /∈ Υss and there

exists no r ∈ [t1,∞) such that (xr, πr) ∈ ∂Ω ∩ Υss. Indeed, if (π(t1), x(t1)) /∈ Ωss, case 1

applies. And if (π(t1), x(t1)) /∈ Ωzlb, case 2 applies. �

A.6 Proof of Proposition 4

I first prove a lemma and then proceed to the proof of Proposition 4.

Lemma 2. When the Taylor principle holds, the following are true:

(a) (πzlb, xzlb) ∈ Ωzlb.

(b) If (π(m), x(m)) ∈ Ωzlb ∩Υzlb with m ≥ T , then (π(t), x(t)) ∈ Ωzlb ∩Υzlb for all t ≥ m.

(c) There exist (π(0), x(0)) such that (π(T ), x(T )) ∈ Ωzlb ∩Υzlb.

(d) If (π(s), x(s)) ∈ ∂Ω for some s ≥ t1, there is no p > 0 such that (π(t), x(t)) ∈ Ωss for

t ∈ (s, s+ p) and (π(s+ p), x(s+ p)) ∈ Υzlb ∩ ∂Ω.

(e) If (π(q), x(q)) ∈ Ωss for q ≥ t1 with (π(q), x(q)) 6= (πss, xss) and there is no p >

0 such that [(π(t), x(t)) ∈ Ωss for t ∈ (q, q + p) and (π(q + p), x(q + p)) ∈ Υzlb ∩ ∂Ω],

then (π(t), x(t)) explodes as t→∞.

(f) There is no chaos (in the sense of R. Devaney33).

Proof of Lemma 2. (a) Plugging the steady-state (24) into the Taylor rule gives

ξππzlb + ξxxzlb + rh = ξπ (−rh) + ξx

(
−ρ
κ
rh

)
+ rh,

= −1

κ
rh (κ (ξπ − 1) + ρξx) ,

= −rhσ
κ

detAss,

< 0.

33See Banks, Brooks, Cairns, Davis, and Stacey (1992) for a definition.
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where detAss > 0 because the Taylor principle holds.

(b) Let (x, π) be a point in the line segment with endpoints (π(m), x(m)) and (πzlb, xzlb),

i.e. (x, π) is in the portion of the zlb saddle path between (π(m), x(m)) and (πzlb, xzlb).

Then

(x, π) = a(π(m), x(m)) + (1− a) (πzlb, xzlb) ,

for some a ∈ [0, 1]. It follows that

ξππ + ξxx+ rh = ξπ (aπ(m) + (1− a) πzlb) + ξx (ax(m) + (1− a)xzlb) + rh,

= a (ξππ(m) + ξxx(m) + rh) + (1− a) (ξππzlb + ξxxzlb + rh) ,

< 0, (A.55)

where the last line uses that (π(m), x(m)) and (πzlb, xzlb) are both in Ωzlb. The line seg-

ment with endpoints (π(m), x(m)) and (πzlb, xzlb) is thus entirely in Ωzlb. For t ∈ [T, t1),

the dynamics of (π(t), x(t)) are given by (A.5)-(A.6) and thus (π(t), x(t)) travels along

the zlb saddle path. For t ≥ t1, equation (A.55) implies that max {0, ξππ(t) + ξxx(t) + rh} =

0 so that (π(t), x(t)) follows the same dynamics given by (A.7)-(A.8), which means

(π(t), x(t)) stays on the zlb saddle path and travels on it towards (πzlb, xzlb).

(c) Because (π(T ), x(T )) is in Ωzlb and in Υzlb, it satisfies

0 ≥ ξππ(t) + ξxx(t) + rh,

x(t) =
φ1

κ
π(t)− φ2

κ
rh,

which is equivalent to

x(t) =
φ1

κ
π(t)− φ2

κ
rh, (A.56)

(κξπ + ξxφ1) π(t) ≤ rh (φ2ξx − κ) . (A.57)

If κξπ + ξxφ1 6= 0, it is easy to find (π(t), x(t)) that satisfies (A.56) and (A.57). If

κξπ + ξxφ1 = 0, equation (A.57) holds because the Taylor principle holds. Any pair

(π(t), x(t)) that satisfies equation (A.56) will be in Ωzlb and in Υzlb. To find the

corresponding (π(0), x(0)), use the dynamics of (π(t), x(t)) for t ∈ [0, T ) given by

(A.3)-(A.4).

67



(d) By direct computation, the set of points (x, π) ∈ Υzlb ∩ ∂Ω are

(x, π) =

{ (
−rh φ1+φ2ξπ

κξπ+φ1ξx
,−rh κ−φ2ξx

κξπ+φ1ξx

)
if κξπ + φ1ξx 6= 0

∅ if κξπ + φ1ξx = 0
. (A.58)

If κξπ + φ1ξx = 0, there is clearly no p > 0 such that (π(s+ p), x(s+ p)) ∈ Υzlb ∩ ∂Ω.

If κξπ + φ1ξx 6= 0, I analyze three cases according to the three different dynamics that

(π(t), x(t)) can follow in Ωss given in Section A.1.

Case I. Let t = s+ p. Then η(t) = s and (π(s+ p), x(s+ p)) ∈ Υzlb ∩ ∂Ω gives

x(s+ p) = −rh
φ1 + φ2ξπ
κξπ + φ1ξx

= −(1− ξπ) π(s) + (σα2 − ξx)x(s)

σ (α1 − α2)
eα1p

+
(1− ξπ) π(s) + (σα1 − ξx)x(s)

σ (α1 − α2)
eα2p,

π(s+ p) = −rh
κ− φ2ξx
κξπ + φ1ξx

=
(1− ξπ) π(s) + (σα2 − ξx)x(s)

σ (ξπ − 1) (α1 − α2)
(ξx − σα1) e

α1p

− (1− ξπ) π(s) + (σα1 − ξx)x(s)

σ (ξπ − 1) (α1 − α2)
(ξx − σα2) e

α2p.

Solving for (π(s), x(s)) as a function of p gives

x(s) (p) = −rh
σ

(−κ+ κξπ + φ1ξx + φ2ξx − σα2φ1 − σα2φ2ξπ)

(κξπ + φ1ξx) (α1 − α2)
e−pα1

− rh
σ

(κ− κξπ − φ1ξx − φ2ξx + σα1φ1 + σα1φ2ξπ)

(κξπ + φ1ξx) (α1 − α2)
e−pα2 ,

π(s) (p) =
rh
σ

(ξx − σα1) (−κ+ κξπ + φ1ξx + φ2ξx − σα2φ1 − σα2φ2ξπ)

(ξπ − 1) (κξπ + φ1ξx) (α1 − α2)
e−pα1

+
rh
σ

(−ξx + σα2) (−κ+ κξπ + φ1ξx + φ2ξx − σα1φ1 − σα1φ2ξπ)

(ξπ − 1) (κξπ + φ1ξx) (α1 − α2)
e−pα2 .
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Let

F (p) = −rh (−ξx + σα1ξπ) (−κ+ κξπ + φ1ξx + φ2ξx − σα2φ1 − σα2φ2ξπ)

σ (ξπ − 1) (κξπ + φ1ξx) (α1 − α2)
e−pα1

− rh (ξx − σα2ξπ) (−κ+ κξπ + φ1ξx + φ2ξx − σα1φ1 − σα1φ2ξπ)

σ (ξπ − 1) (κξπ + φ1ξx) (α1 − α2)
e−pα2

+
rhσ (ξπ − 1) (α1 − α2) (κξπ + φ1ξx)

σ (ξπ − 1) (κξπ + φ1ξx) (α1 − α2)
.

Then,

F (p) = ξππ(s) (p) + ξxx(s) (p) + rh,

and since (π(s), x(s)) ∈ ∂Ω, it follows that ξππ(s)(0) + ξxx(s)(0) + rh = 0 = F (0). I

show there is no p > 0 that satisfies F (p) = 0.

First, note that π(s) and x(s) are always real, even when α1 and α2 are complex. By

direct computation, I find that

F (0) = 0. (A.59)

F ′(p) = 0 has at most one solution for p > 0, (A.60)

F ′(0) =
rh
σφ1

(κ (ξπ − 1) + ρξx) > 0, (A.61)

lim
p→∞

F (p) = rh > 0. (A.62)

F ′(0) > 0 because the Taylor principle holds. Together, equations (A.59)-(A.62) and

continuity of F (p) show that there is no solution to F (p) = 0 for p > 0.

Case II. Let t = s+ p. Then η(t) = s and

−rh
ρ

κ+ φ1ξx
= x(s)e

1
σ
ξxp, (A.63)

−rh
κ− φ2ξx
κ+ φ1ξx

=
π(s) (ξx − σρ) + κσx(s)

ξx − σρ
eρp − κσx(s)

ξx − σρ
e

1
σ
ξxp. (A.64)

Using equation (A.58) and that ξππ(s) + ξxx(s) + rh = 0, equation (A.64) becomes

−rh
κ− φ2ξx
κ+ φ1ξx

=

(
(ξx − σρ) ξx − κσ

(ξx − σρ) (κ+ φ1ξx)
rhρe

− 1
σ
ξxp − rh

)
eρp

+
rhκσρ

(ξx − σρ) (κ+ φ1ξx)
. (A.65)

Solving for x(s) in equation (A.63) and plugging it into equation (A.65) gives

x(s) = ξx (κ− φ2ξx + σρφ2) , (A.66)
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and

ξx (κ− φ2ξx + σρφ2) = epρ (ξx − σρ) (κ+ φ1ξx)

+e
p
σ
(σρ−ξx)ρ

(
−ξ2x + κσ + σρξx

)
. (A.67)

I now show that there is no p > 0 such that equations (A.66)-(A.67) hold. If ξx = σφ1,

then −ξ2x + κσ + σρξx = 0 and equations (A.66)-(A.67) become

x(s) = −ρrh
e−pφ1

σφ2
1 + κ

,

1 = epρ.

The last equation has no solution for p > 0. If ξx 6= σφ1, and recalling that ξx 6= σφ2

so that Υzlb∩∂Ω is non-empty, then −ξ2x+κσ+σρξx 6= 0, and equations (A.66)-(A.67)

become

x(s) = − rhρ

κ+ φ1ξx
e−

1
σ
ξxp,

0 =
φ2ξx

ξx − σφ1

(epρ − 1) + ρepρ
(
e−

ξx
σ
p − 1

)
.

Let

F (p) =
φ2ξx

ξx − σφ1

(epρ − 1) + ρepρ
(
e−

ξx
σ
p − 1

)
.

Compute

F ′(p) =
ρξx
σ

(
e−

p
σ
ξx − σφ2

(ξx − σφ1)
e−pρ

)
,

F ′′(p) = −ρξx
σ2

(
ξxe
− p
σ
ξx − σ2ρφ2

(ξx − σφ1)
e−pρ

)
,

and

F (0) = 0, (A.68)

F ′(0) =
ρξx (ξx − σρ)

σ (ξx − σφ1)
, (A.69)

F ′(p) = 0⇒ e(ρ−
ξx
σ )p =

σφ2

(ξx − σφ1)
, (A.70)

lim
p→∞

F (p) = φ1

ξx − σρ
ξx − σφ1

, (A.71)

lim
p→∞

F ′(p) = 0. (A.72)
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If ξx − σφ1 > 0, F (p) is monotonic, which combined with F (0) = 0 gives no solutions

to F (p) = 0 for p > 0. If ξx−σφ1 < 0 and ξx−σρ < 0, then the unique local maximum

occurs for some p > 0 and F is positive at that maximum. Using (A.71) and (A.72)

then shows that there is no solution to F (p) = 0 for p > 0. If ξx − σφ1 < 0 and

ξx − σρ > 0, an analogous argument applies but instead of a unique maximum, there

is a unique minimum.

Case III. Let t = s+ p. Then η(t) = s and

x(p) =

((
1 +

1

2σ
(ξx − σρ) p

)
x(s) +

1

κ

(
1

2σ
(σρ− ξx)

)2

pπ(s)

)
e

1
2(ρ+ 1

σ
ξx)p,

(A.73)

π(p) =

(
−κpx(s) +

(
1− 1

2σ
(ξx − σρ) p

)
π(s)

)
e

1
2(ρ+ 1

σ
ξx)p. (A.74)

Using equation (A.58) and that ξππ(s) + ξxx(s) + rh = 0, equations (A.73)-(A.74)

become

− rh
φ1 + φ2ξπ
κξπ + φ1ξx

=

(
1 +

1

2σ
(ξx − σρ) p

)
x(s)e

1
2(ρ+ 1

σ
ξx)p

+
1

κ

(
1

2σ
(σρ− ξx)

)2

p

(
−(ξxx(s) + rh)

ξπ

)
e

1
2(ρ+ 1

σ
ξx)p, (A.75)

− rh
κ− φ2ξx
κξπ + φ1ξx

= −κpx(s)e
1
2(ρ+ 1

σ
ξx)p

+

(
1− 1

2σ
(ξx − σρ) p

)(
−(ξxx(s) + rh)

ξπ

)
e

1
2(ρ+ 1

σ
ξx)p. (A.76)

Combining equations (A.75)-(A.76), I solve for x(s) as a function of p

x(s) =
A0 + A1p

B0 +B1p
, (A.77)

where

A0 = −4σrh
(
φ2ξ

2
x + σ2ρ2φ2 + 4κσρ− 2σρφ2ξx

)
,

A1 = 2rh
(
ξ2x − σ2ρ2

)
(2κ− φ2ξx + σρφ2) ,

B0 = 4κσ
(
ξ2x + σ2ρ2 + 4κσ − 2σρξx + 4σφ1ξx

)
,

B1 = (ξx + σρ) (2κ− φ2ξx + σρφ2)
(
σ2ρ2 + 4κσ − ξ2x

)
.
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Plugging equation (A.77) into equation (A.75), I get

F (p) = 0,

where

F (p) = e
1
2(ρ+ 1

σ
ξx)p − 1 +

(ξx + σρ) (2κ− φ2ξx + σρφ2)

4κσ

(
ξx − σ (φ1 − φ2)

ξx + σ (φ1 − φ2)

)
p.

Since

F (0) = 0,

F ′(0) = − φ2

4κσ
(ξx + σρ)2 > 0,

F ′′(p) =
1

4

(
ρ+

1

σ
ξx

)2

e
1
2(ρ+ 1

σ
ξx)p > 0,

the equation F (p) = 0 has no solution for p > 0.

(e) The assumptions required for Theorem 3 in Appendix B, the Poincaré-Bendixson The-

orem, hold. Indeed, because

ẋ(t) = σ−1 (max {0, ξxx(t) + ξππ(t) + r(t)} − r(t)− π(t)) , (A.78)

π̇(t) = ρπ(t)− κx(t), (A.79)

are, as functions of π(t) and x(t), continuous and differentiable almost everywhere,

they are Lipschitz. The rest of the conditions are easy to check.

I show that the ω-limit set34 of (π(q), x(q)) contains no steady-states and is not a

periodic orbit. By Theorem 3, (π(t), x(t)) then explodes.

Because (πss, xss) is a locally unstable steady-state (by the Taylor principle) and

(π(q), x(q)) 6= (πss, xss), the ω-limit set of (π(q), x(q)) does not contain (πss, xss), as

(π(t), x(t)) is bounded away from (πss, xss) for all t ≥ q. Because (πzlb, xzlb) is locally

a saddle-path steady-state, the only paths converging to (πzlb, xzlb) as t → ∞ must

eventually be in Υzlb ∩Ωzlb. By hypothesis, (π(τ(t)), x(τ(t))) /∈ Υzlb ∩ ∂Ω, where recall

τ(t) is the time of first entry into Ωzlb after t. By item (d), if (π(t), x(t)) enters Ωzlb a

second time after τ(t) (of course, by first visiting Ωss) it is not through Υzlb ∩ ∂Ω. It

follows that the ω-limit set of (π(q), x(q)) does not contain (πzlb, xzlb), as the orbit of

(π(q), x(q)) never intersects Υzlb ∩ Ωzlb.

34See Appendix B for definitions of ω-limit sets and other concepts needed to state the Poincaré-Bendixson
Theorem.
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I now show that there are no closed orbits. The divergence of (π̇(t), ẋ(t)) computed in

the distribution sense is

div(π̇(t), ẋ(t)) =
∂ẋ

∂x
+
∂π̇

∂π
=


ρ , if (π(t), x(t)) ∈ Ωzlb \ ∂Ω

ξx
2σ

+ ρ , if (π(t), x(t)) ∈ ∂Ω
1
σ
ξx + ρ , if (π(t), x(t)) ∈ Ωss

,

where Ωzlb \ ∂Ω denotes the interior of Ωzlb.

The Taylor principle and ρ > 0 imply that div(π(t), x(t)) > 0 for all (π(t), x(t)). By

Theorem 2, there are no closed orbits35.

(f) The result that there is no chaos is a direct consequence of Theorem 3, which tightly

restricts the behavior of bounded solutions to two cases, none of which is chaotic. For

continuous systems, strange attractors and other chaotic behavior can only emerge

when the dimension of the phase space is three or more. Note that the concept of

chaos I consider here is different from chaos in the sense of Li and Yorke (1975) used

in Benhabib et al. (2002), which is more appropriate for a discrete time setting.

�

Proof of Proposition 4. Consider the following condition:

(π(t1), x(t1)) = (πss, xss) ,

or

(π(t1), x(t1)) ∈ Ωzlb ∩Υzlb, (A.80)

or

(π(t1), x(t1)) ∈ Ωss and (π(r), x(r)) ∈ ∂Ω ∩Υzlb for some r ∈ (t1,∞).

I first prove that if condition (A.80) holds, then (π(t), x(t)) is bounded. I consider three

cases.

Case 1: If (π(t1), x(t1)) = (πss, xss), then (π(t), x(t)) is bounded because (πss, xss) is a

steady-state.

35The version of the Poincaré-Bendixson theorem I have used is stronger than needed since our vector field
is continuous (but non-differentiable) in ∂Ω while the theorem allows for discontinuities across the boundary
between regions.

In addition, I have used one particular generalized derivative, the “derivative in the distribution sense.”
However, since the vector field under consideration is continuous, any generalized derivative (such as viscosity
solutions) would still give a finite value for (π̇(t), ẋ(t)). When the value of (π̇(t), ẋt) is finite along ∂Ω,
because ∂Ω has measure zero, its value does not contribute to the line integral along a closed loop. By
Green’s theorem, it then does not matter which concept of generalized derivative I use for this particular
purpose.

73



Case 2: If (π(t1), x(t1)) ∈ Ωzlb∩Υzlb, then item (b) of Lemma 2 shows, by picking m = t1,

that (π(t), x(t)) ∈ Ωzlb ∩ Υzlb for all t ≥ t1. The dynamics in equations (A.7)-(A.8) then

show (π(t), x(t))→ (πzlb, xzlb).

Case 3: If (π(t1), x(t1)) ∈ Ωss and (π(r), x(r)) ∈ ∂Ω ∩ Υzlb for some r ∈ (t1,∞), item

(b) of Lemma 2 shows, by picking m = r, that (π(t), x(t)) ∈ Ωzlb ∩ Υzlb for all t ≥ r. The

dynamics in equations (A.7)-(A.8) then show (π(t), x(t))→ (πzlb, xzlb).

To prove the converse, I prove the contrapositive. Assume (π(t1), x(t1)) 6= (πss, xss) and

(π(t1), x(t1)) /∈ Ωzlb ∩Υzlb. I consider two cases.

Case 1: (π(t1), x(t1)) /∈ Ωss. Because of the saddle path dynamics in Ωzlb, if (π(t1), x(t1)) /∈
Υzlb, then (π(t), x(t)) either explodes or enters Ωss in finite time. If it enters Ωss by inter-

secting ∂Ω at some time r > t1, item (d) of Lemma 2 shows that there is no p > 0 such that

(π(t), x(t)) ∈ Ωss for t ∈ (r, r + p) and (π(r + p), x(r + p)) ∈ Υzlb ∩ ∂Ω. Then item (e) of

Lemma 2 shows that (π(t), x(t)) explodes.

Case 2: There is no r ∈ (t1,∞) such that (π(r), x(r)) ∈ ∂Ω∩Υzlb. If (π(t1), x(t1)) /∈ Ωss,

case 1 shows (π(t), x(t)) explodes. If (π(t1), x(t1)) ∈ Ωss, given that (π(t1), x(t1)) 6= (πss, xss),

(π(t), x(t)) either explodes or enters Ωzlb. By assumption, if it enters Ωzlb, it does not intersect

Υzlb. This means (π(t), x(t)) is eventually in the interior of Ωzlb but not in Υzlb. The same

logic applied in case 1 shows that (π(t), x(t)) explodes. �

A.7 Proof of Proposition 5

Assume the rule implements the optimal equilibrium, i.e. {x(t), πt, it} = {x∗(t), π∗(t), i∗(t)}
when the central bank follows the rule in equation (19). Werning (2012) shows that i∗(t) =

(1− κσλ)π∗(t) + r(t) > 0 for t ≥ t∗. It follows that f(R∗) ≤ t∗. In addition, f (R∗) ≥ s for

all s ≤ t∗ such that (1− κσλ) π∗(t) + r(t) > 0, since otherwise the rule (19) would prescribe

it > 0 while i∗(t) = 0. Pick s = t∗ to get f(R∗) ≥ t∗ since (1− κσλ) π∗t∗ + rt∗ > 0. Because

f(R∗) ≤ t∗ and f (R∗) ≥ t∗, it follows that f(R∗) = t∗, and equation (47) holds.

To prove (48), I use f(R∗) = t∗ to get that for all t ≥ t∗

max {0, ξπ(R∗)π∗(t) + ξx(R
∗)x∗(t) + r(t)} = ξπ(R∗)π∗(t) + ξx(R

∗)x∗(t) + rh,

= (1− κσλ) π∗(t) + rh, (A.81)

since otherwise it = i∗(t) would not hold. If κσλ 6= 1, use x∗(t) = φπ∗(t) in equation

(A.81) and then equation (48) follows immediately, as π∗(t) 6= 0 for t ∈ [t∗,∞). If κσλ =

1, any ξπ(R∗), ξx(R
∗) implement the optimal equilibrium as (0, 0) is a steady-state for all

ξπ(R∗), ξx(R
∗).

Now assume that equations (47)-(48) hold. I show rule (19) implements the optimal
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equilibrium. When (π0, x0) = (x∗0, π
∗
0), clearly it = i∗(t) = 0 and (π(t), x(t)) = (x∗(t), π∗(t))

for t < t∗. Because (πt, x(t)) and (x∗(t), π∗(t)) are continuous as a function of time and their

paths coincide in [t∗−ε, t∗) for any ε > 0, (x(t∗), π(t∗)) = (x∗(t∗), π∗(t∗)). As x∗(t∗) = φπ∗(t∗)

for t = t∗,

x(t∗) = φπ(t∗). (A.82)

If κσλ = 1, (x(t∗), π(t∗)) = (x∗(t∗), π∗(t∗)) = (0, 0), because (0, 0) is a steady-state,

(πt, x(t)) = (x∗(t), π∗(t)) = (0, 0) for all t ≥ t∗ and any ξπ(R∗), ξx(R
∗). In addition, if

(πt, x(t)) = (0, 0),

it = max {0, ξπ(R∗)π(t) + ξx(R
∗)x(t) + r(t)} = rh = i∗(t)

for all t ≥ t∗.

When κσλ 6= 1, using equations (A.9)-(A.14), it can be checked by direct computation

that (π(t), x(t)) = (x∗(t), π∗(t)) for all t ≥ t∗ where (x∗(t), π∗(t)) is given by

x∗(t) = x∗1 exp

(
−κλ
φ

(t− t1)
)
, (A.83)

π∗(t) = π∗1 exp

(
−κλ
φ

(t− t1)
)
. (A.84)

The following relations may be helpful for the computations: If ξπ(R∗) < κσλ + σφρ + 1,

then

α1 = ρ+
1− ξπ(R∗)

σφ
, (A.85)

α2 = −κλ
φ
. (A.86)

If ξπ(R∗) > κσλ+ σφρ+ 1, then

α1 = −κλ
φ
, (A.87)

α2 = ρ+
1− ξπ(R∗)

σφ
. (A.88)

If ξπ(R∗) = κσλ+ σφρ+ 1

α1 = α2 = −κλ
φ
. (A.89)

A.8 Proof of Proposition 6

I first assume the rule implements no equilibrium with R 6= R∗ and prove items (a)-(c) hold.
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Item (a): By Proposition 4, if the Taylor principle holds, there exist continuous bounded

paths with (π(t1), x(t1)) ∈ Ωzlb ∩ Υzlb. Since for these paths (π(t), x(t)) → (πzlb, xzlb), they

constitute non-optimal equilibria. By item (b) of Lemma 2, (π(t), x(t)) ∈ Ωzlb ∩ Υzlb for all

t ≥ t1, irrespective of the choice of t1. It follows that the only way to preclude these type of

equilibria is to have the Taylor principle not hold for (π(t1), x(t1)) ∈ Ωzlb ∩Υzlb.

Item (b): If there are continuous paths that satisfy the hypotheses of items (i), (ii) or

(iii), they are bounded by Propositions 3 and 4 and constitute non-optimal equilibria. Thus,

all paths that satsify the hypothesis in items (i), (ii) and (iii) must be discontinuous, which

implies equation (49) holds.

Item (c): If ∂Ω∩Υss = ∅, then the item is vacuously true. If ∂Ω∩Υss is non-empty then

(π(r), x(r)) =


(
rh

(ξπ−1)
ξx−σα2ξπ

,−rh (ξx−σα2)
ξx−σα2ξπ

)
, if detAss < 0 and ξπ = 1(

−rh (ξx−σρ)
ξ2x−κσ−σρξx

, κσ rh
ξ2x−σρξx−κσ

)
, if detAss < 0 and ξπ 6= 1

(A.90)

Assume that the Taylor principle does not hold for (x(t1), πt1) ∈ Ωzlb and that there exist

some r ∈ (t1,∞) such that (π(r), x(r)) ∈ ∂Ωzlb ∩ Υss. I show that if equation (49) does

not hold, then there exist a non-optimal equilibrium. By assumption, t1 ∈ [T, r). Let P be

the set of points in the continuous path between (π(T ), x(T )) and (π(r), x(r)), which can

be obtained by running the system dynamics backward in time while respecting continuous

pasting. By the dynamics in equations (A.7)-(A.8) and equation (A.90), the time q at which

(π(t1), x(t1)) ∈ Ωzlb reaches (π(r), x(r)) while following a continuous path is

q =
1

φ1

log

(
dexit(r)

dexit(t1)

)
(A.91)

Note that q is not necessarily equal to r since the hypotheses of item (c) do not require

that paths are continuous. Because equation (50) does not hold, T ≤ t1 ≤ q and thus

(π(t1), x(t1)) ∈ P . By Theorem 3, the continuous path going through (π(t1), x(t1)) and

(π(r), x(r)) is bounded for t ≥ t1. Using the continuous pasting conditions in Section 6.1,

the path can be continuously extended from (π(t1), x(t1)) to (π(0), x(0)) to get a continuous

bounded path for all t ≥ 0. This equilibrium is non-optimal since no optimal path has

(π(t1), x(t1)) ∈ Ωzlb \ ∂Ω.

[[Propositions 2 and 3, along with items 2a-2c guarantees that a continuous path will

be bounded. How does this show that equilibria does not exist?: Rui]] Conversely, I now

assume items (a)-(c) hold and prove that the rule implements no equilibria with Rt1 6= R∗.

By Proposition 4 and item (a), there are no equilibria with (x(t1), π(t1)) ∈ Ωzlb ∩ Υzlb. By

Propositions 3 and 4, items (i)-(iii) and the continuous pasting conditions in Section 6.1, there
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are no equilibria when: The Taylor principle holds for (π(t1), x(t1)) ∈ Ωss and there exist

some r ∈ (t1,∞) such that (xr, πr) ∈ ∂Ω∩Υzlb, the Taylor principle holds for (π(t1), x(t1)) =

(πss, xss), or the Taylor principle does not hold for (x(t1), π(t1)) ∈ Ωss ∩ Υss. Item (e) of

Proposition 3 and item (c) imply that there is no continuous path from (π(t1), x(t1)) ∈ Ωzlb to

(π(r), x(r)) ∈ ∂Ω∩Υss that remains bounded after r, and thus there are no equilibria when

the Taylor principle does not hold for (π(t1), x(t1)) ∈ Ωzlb and there exist some r ∈ (t1,∞)

such that (π(r), x(r)) ∈ ∂Ωzlb ∩ Υss. By Propositions 3 and 4, all other cases lead to paths

that are discontinuous or unbounded.

A.9 Proof of Proposition 7

Item (a). Assume f(Rt1) is constant in its first two arguments. I show there always exist a

non-optimal equilibrium. Denote the value of f(·, ·, 0, 0) by t̂ (because f is constant in its

first two arguments, f(a, b, 0, 0) = t̂ for all a, b). Define (π̂0, x̂0) by

x̂0 =
rh
κ

φ2
1e
−φ2 t̂ − φ2

2e
−φ1 t̂

φ1 − φ2

+

(
rh − rl
κ

)
φ2
2e
−Tφ1 − φ2

1e
−Tφ2

φ1 − φ2

− rlρ

κ
, (A.92)

π̂0 = rh
φ1e

−φ2 t̂ − φ2e
−φ1 t̂

φ1 − φ2

+ (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl. (A.93)

The continuous path starting at (π̂0, x̂0) reaches (0, 0) at time t̂ by equations (A.19) and

(A.20). Since (0, 0) is a steady-state, (π(t), x(t)) = (0, 0) for all t ≥ t̂. The path for

(π(t), x(t)) is continuous, bounded and follows the IS, the NKPC and the interest rate rule:

It is an equilibrium. If κσλ 6= 1, the equilibrium is not optimal.

Item (b). Consider a rule with

ξπ(Rt1) = 1− κσλ

ξx(Rt1) = 0

f(R∗) = t∗

f(Rt1) = τ(π(0), x(0))

for some function τ : R2 → R. I use Proposition 6 to show that there exists a choice of τ

compatible with the optimal equilibrium being a unique equilibrium.
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The choice of ξx, ξπ implies

α1 =
1

2

(
ρ+

√
ρ2 + 4κ2λ

)
= κφ > 0 (A.94)

α2 =
1

2

(
ρ−

√
ρ2 + 4κ2λ

)
< 0 (A.95)

α1α2 = −κ2λ < 0 (A.96)

α1 + α2 = ρ (A.97)

The Taylor principle never holds, as κ (ξπ − 1) + ρξx = −κ2σλ < 0.

Item (a) of Proposition 6 is true because the Taylor principle does not hold. Subitems

(b)(i) and (b)(iii) of Proposition 6 do not apply, since the Taylor principle does not hold.

I now analyze subitem (b)(ii) and item (c) of Proposition 6, and show they can be satisfied

with an appropriate choice of τ .

First, consider item (b)(ii). Because (π(t1), x(t1)) ∈ Υss,

π(t1) =
1

φ
x(t1) (A.98)

and because (π(t1), x(t1)) ∈ Ωss

(1− κσλ) π(t1) + rh ≥ 0.

Consider the four cases of the continuous pasting condition in equation A.22 given by equa-

tion (A.24).

Case 1 : If dexit(t1) = 0 and dtrap (t1) = 0, x(t1) = xzlb = − 1
κ
rhρ and π(t1) = πzlb = −rh,

which contradicts equation (A.98) and hence there is no equilibrium for this case.

Case 2 : If dexit(t1) = 0 and dtrap (t1) 6= 0,

x(t1) =
φ1

κ
π(t1)−

rhφ2

κ
. (A.99)

If σλκ = 1, there is no (π(t1), x(t1)) that satisfies equations (A.99) and (A.98) simultaneously.

If σλκ 6= 1, equations (A.99) and (A.98) imply

x(t1) = rh
φ− σλφ2

(κσλ− 1)
,

π(t1) =
rh
φ

φ− σλφ2

(κσλ− 1)
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But then, since φ2 < 0,

ξxx(t1) + ξππ(t1) + rh = (1− κσλ) π(t1) + rh =
λσφ2rh
φ

< 0

contradicts that (π(t1), x(t1)) ∈ Ωss and thus there is no equilibrium for this case.

Case 3 : If dexit(t1) 6= 0 and dtrap (t1) = 0,

x(t1) =
φ2

κ
π(t1)−

rhφ1

κ
. (A.100)

If σλκ = 1, there is no (π(t1), x(t1)) that satisfies equations (A.99) and (A.98) simultaneously.

If σλκ 6= 1, equations (A.99) and (A.98) imply

x(t1) = rh
φ− σλφ1

(κσλ− 1)
, (A.101)

π(t1) =
rh

κσλ− 1

(φ− σλφ1)

φ
. (A.102)

The pasting condition in equations (A.23) and (A.25), and equation (A.102), give

T (Rt1) = − 1

φ1

log
π(0) +

(
rl + (rh − rl) φ1e

−Tφ2−φ2e−Tφ1
φ1−φ2

)
(π(t1) + rh)

(A.103)

= − 1

φ1

log
π(0) +

(
rl + (rh − rl) φ1e

−Tφ2−φ2e−Tφ1
φ1−φ2

)
(

rh
κσλ−1

(φ−σλφ1)
φ

+ rh

) (A.104)

= T (π(0), x(0)) (A.105)

Setting

τ(π(0), x(0)) 6= T (π(0), x(0))

precludes any equilibrium for this case.

Case 4 : If dexit(t1) 6= 0 and dtrap (t1) 6= 0, using equation (A.98), the continuous pasting

condition in equations (A.22) and (A.24) is

− 1

φ1

log
x(0)− φ1

κ
π(0) + φ2rh

κ
+ φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)(
φ− φ1

κ

)
π(t1) + φ2rh

κ

= − 1

φ2

log
x(0)− φ2

κ
π(0) + φ1rh

κ
+ φ1

κ
(rh − rl)

(
e−Tφ2 − 1

)(
φ− φ2

κ

)
+ φ1rh

κ

(A.106)
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Let

H(π(t1), π(0), x(0)) = − 1

φ1

log
x(0)− φ1

κ
π(0) + φ2rh

κ
+ φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)(
φ− φ1

κ

)
π(t1) + φ2rh

κ

+
1

φ2

log
x(0)− φ2

κ
π(0) + φ1rh

κ
+ φ1

κ
(rh − rl)

(
e−Tφ2 − 1

)(
φ− φ2

κ

)
π(t1) + φ1rh

κ

Then G(π(t1), π(0), x(0)) = 0 iff equation (A.106) holds. Since

∂H(π(t1), π(0), x(0))

∂π(t1)
= 0 ⇐⇒ rh = (κσλ− 1)π(t1)

the implicit function theorem implies that we can write H(π(t1), π(0), x(0)) = 0 as

π(t1) = G(π(0), x(0))

for some function G, except when

κσλ− 1 6= 0 and π(t1) =
rh

(κσλ− 1)
(A.107)

If equation (A.107) does not hold, then the continuous pasting conditions are given by

π(t1) = G(π(0), x(0))

T (Rt1) = − 1

φ1

log
x(0)− φ1

κ
π(0) + φ2rh

κ
+ φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)(
φ− φ1

κ

)
π(t1) + φ2rh

κ

= − 1

φ1

log
x(0)− φ1

κ
π(0) + φ2rh

κ
+ φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)(
φ− φ1

κ

)
g(π0, x0) + φ2rh

κ

= T (π(0), x(0))

If equation (A.107) holds, H(π(t1), π(0), x(0)) = H
(

rh
κσλ−1 , π(0), x(0)

)
. If there is no (π(0), x(0))

so that H
(

rh
(κσλ−1) , π(0), x(0)

)
= 0, then there are no equilibria since no path is continuous.

If there exists (π(0), x(0)) such that H
(

rh
(κσλ−1) , π(0), x(0)

)
= 0, continuous pasting gives

T (Rt1) = − 1

φ1

log
x(0)− φ1

κ
π(0) + φ2rh

κ
+ φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)(
φ− φ1

κ

)
rh

(κσλ−1) + φ2rh
κ

= T (π(0), x(0))
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In either case (when equation (A.107) holds and when it does not hold), setting

τ(π(0), x(0)) 6= T (π(0), x(0))

precludes any equilibrium for case 4. This concludes the analysis of item (b)(ii) of Proposition

6.

Now consider item (c) of Proposition 6. If κσλ = 1, Υss ∩ ∂Ωzlb = ∅ and thus there are

no equilibria. If κσλ 6= 1, (π(r), x(r)) ∈ Υss ∩ ∂Ωzlb implies

x(r) =
1

2κ

rh
κσλ− 1

(
ρ+

√
4λκ2 + ρ2

)
(A.108)

π(r) =
rh

κσλ− 1
(A.109)

Using (A.108)-(A.109) and that (π(t), x(t)) ∈ Ωzlb for t ∈ [t1, r], the continuous pasting

equations (A.19) and (A.20) imply that

x(0) =
φ1e

−φ2r − φ2e
−φ1r

φ1 − φ2

(
1

2κ

rh
κσλ− 1

(
ρ+

√
4λκ2 + ρ2

))
− 1

σ

e−φ1r − e−φ2r

φ1 − φ2

rh
κσλ− 1

+
rh
κ

φ2
1e
−φ2r − φ2

2e
−φ1r

φ1 − φ2

+

(
rh − rl
κ

)
φ2
2e
−Tφ1 − φ2

1e
−Tφ2

φ1 − φ2

− rlρ

κ
,

π(0) = −κe
−φ1r − e−φ2r

φ1 − φ2

(
1

2κ

rh
κσλ− 1

(
ρ+

√
4λκ2 + ρ2

))
+
φ1e

−φ1r − φ2e
−φ2r

φ1 − φ2

rh
κσλ− 1

+ rh
φ1e

−φ2r − φ2e
−φ1r

φ1 − φ2

+ (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl.

Solving for r gives

r = ν(π(0), x(0))

where

A =
1

κ
ρrl +

1

κ
(rh − rl)

φ2
1e
−Tφ2 − φ2

2e
−Tφ1

φ1 − φ2

B = rl + (rh − rl)
φ1e

−Tφ2 − φ2e
−Tφ1

φ1 − φ2
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are two constants and

ν(π(0), x(0)) = − 1

φ2

log

(
κ
σφφ2 + 1

rh (ρ− κφ)
(x(0) + A)− φ2 + κφ+ σρφφ2

rh (ρ− κφ)
(π(0) +B)

)
is a function of x(0) and π(0) only (not of x(t1), π(t1) or t1). Setting

τ(π(0), x(0)) > ν(π(0), x(0))

precludes all equilibria for the case in which (c) of Proposition 6 applies.

Item (c). The rule in the last item has constant Taylor rule coefficients.

A.10 Proof of Proposition 8

I start with a Lemma.

Lemma 3. If detAss(r) = 0 for some R = (π0, x0), then there exist a non-optimal equilib-

rium.

Proof of Lemma 3. When detAss(r) = 0, (πzlb, xzlb) ∈ ∂Ω. A continuous path with (π(t), x(t)) ∈
Υzlb ∩ Ωzlb is bounded for any choice of f , since (π(t), x(t)) ∈ Ωzlb for all t and it converges

to (πzlb, xzlb), which is a steady-state of the economy. �

Now I prove Proposition 8. Item (a). By Proposition 6, if items (a)-(c) hold but with

equation (49) replaced with (51), then there is no equilibrium with R 6= R∗, since (51) implies

(49).

Conversely, assume there is no equilibrium with R 6= R∗. I show equation (51) holds.

To do so, I first show that the Intermediate Value Theorem is applicable and then use it to

show equation (51) holds. Let

Θ =
{
R ∈ R4 : P(r) = 0 and R 6= R∗

}
Because f , ξx and ξπ are continuous, their restriction to Θ are also continuous. In addition,

Θ is path-connected because the solution to the ODE (1)-(2) is continuous with respect to

time, the mapping from (π(0), x(0)) to (π(t1), x(t1)) is a continuous bijection for a fixed t1,

f(Rt1) = t1 is continuous in Rt1 , and the exclusion of R∗ from Θ does not destroy path-

connectedness because it is a zero-dimensional set while the dimension of Θ is 3. Because

f , ξx and ξπ are continuous in Θ and Θ is path-connected, we can apply the Intermediate

Value Theorem.
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Assume, for the sake of contradiction, that there exists Rlow ∈ Θ with f(Rlow) < T (Rlow).

The inequality f(Rlow) < T (Rlow) implies f(r) < T (r) for all R ∈ Θ since otherwise, by the

Intermediate Value Theorem, there would be some R0 ∈ Θ with f(R0) = T (R0), contra-

dicting that there is no equilibrium with R 6= R∗. Consider the point RT = (π̂0, x̂0, π̂1, x̂1)

defined by

x̂0 =
rh
κ

φ2
1e
−φ2T − φ2

2e
−φ1T

φ1 − φ2

+

(
rh − rl
κ

)
φ2
2e
−Tφ1 − φ2

1e
−Tφ2

φ1 − φ2

− rlρ

κ
,

π̂0 = rh
φ1e

−φ2T − φ2e
−φ1T

φ1 − φ2

+ (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl,

x̂1 = 0,

π̂1 = 0.

By the continuous pasting conditions in equations (A.19)-(A.20), RT ∈ Θ and f(RT ) = T =

T (RT ), contradicting that f(r) < T (r) for all R ∈ Θ.

Item (b). Since ξπ(Rt1) and ξx(Rt1) are continuous, then either the Taylor principle holds for

all Rt1 , or the Taylor principle does not hold for all Rt1 . To see this, assume for the sake of

contradiction that there exists RTP that satisfies the Taylor principle and Rno-TP that does

not. Then

detAss(RTP ) = κ (ξπ(RTP )− 1) + ρξx(RTP ) > 0,

detAss(Rno-TP ) = κ (ξπ(Rno-TP )− 1) + ρξx(Rno-TP ) < 0.

By the Intermediate Value Theorem, there exist anR0 such that detAss(R0) = κ (ξπ(R0)− 1)+

ρξx(R0) = 0. By Lemma 3, there exist a non-optimal equilibrium.

By Proposition 5, when κσλ 6= 1, the Taylor principle does not hold for R∗. Because the

Taylor principle does not hold for one R, then it does not hold for all R.

Item (c). By item (a) of Proposition 7, the rule cannot be purely forward-looking.

I show that if the rule is purely backward-looking, that is, if f , ξx and ξπ are all constant

in their last two arguments, then there exists an equilibrium with R 6= R∗. By item (b) of

Proposition 8 just proved above, the Taylor principle never holds. I look for an equilibrium

with

π(t1) = c(Rt1)x(t1) (A.110)

with the function c(Rt1) > 0 defined by equation (A.15). Because ξx and ξπ are continuous
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in Rt1 and constant in x(t1), π(t1), so is c. To see that c is continuous when ξπ = 1, compute

lim
ξπ→1

c(Rt1) = lim
ξπ→1

(ξx − σα2)

(1− ξπ)

= lim
ξπ→1
− 1

2 (ξπ − 1)

(
ξx − σρ+

√
ξ2x + σ2ρ2 + 4κσ − 4κσξπ − 2σρξx

)
= lim

ξπ→1
κσ
(
ξ2x + σ2ρ2 + 4κσ − 4κσξπ − 2σρξx

)− 1
2

=
κσ

|ξx − σρ|
=

κσ

σρ− ξx

The third line follows by L’Hospital’s Rule; in a small enough neighborhood of ξπ = 1, the

Taylor principle not holding implies ξx < 0 and thus both numerator and denominator in

the second line go to zero as ξπ → 1. The last line follows because ξx < 0 when ξπ = 1,

again because the Taylor principle does not hold. When ξπ 6= 1, c is continuous by equation

(A.15).

Let

M (π(0), x(0)) =
φ1e

−φ2f − φ2e
−φ1f

φ1 − φ2

c− 1

σ

e−φ1f − e−φ2f

φ1 − φ2

N (π(0), x(0)) = −κe
−φ1f − e−φ2f

φ1 − φ2

c+
φ1e

−φ1f − φ2e
−φ2f

φ1 − φ2

P (π(0), x(0)) =
rh
κ

φ2
1e
−φ2f − φ2

2e
−φ1f

φ1 − φ2

Q (π(0), x(0)) = rh
φ1e

−φ2f − φ2e
−φ1f

φ1 − φ2

A =

(
rh − rl
κ

)
φ2
2e
−Tφ1 − φ2

1e
−Tφ2

φ1 − φ2

− rlρ

κ

B = (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl

The functions M , N , P and Q are continuous and depend only on x(0), π(0) (and not on

x(t1), π(t1)) because f and c are continuous and constant in π(t1), x(t1). The continuous

pasting conditions in equations (A.19)-(A.20) give

x(0) = Mπ(t1) + P + A (A.111)

π(0) = Nπ(t1) +Q+B (A.112)
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If M 6= 0 and N 6= 0, the last two equations give

π(t1) =
x(0)− P − A

M
(A.113)

π(0) =
N

M
(x(0)− P − A) +Q+B (A.114)

Fix x(0) to x̂0 = x∗(0) + ε with ε > 0. The right hand-side of equation (A.114) is a function

of π(0) only. It is bounded above and below, as f ∈ [T,∞) and

lim
f→∞

N

M
(x̂0 − P − A) +Q+B,

=
κσ (ρ− 2φ1) (A− x̂0) +B (2κ+ σρφ1)

φ1 − φ2

lim
f→∞

c

(cσφ1 + 1)

−(2κ+ σρφ2) (A− x̂0) +B (ρ− 2φ1)

(φ1 − φ2)
lim
f→∞

1

(cσφ1 + 1)
,

is finite since c > 0. The left-hand side of equation (A.114), on the other hand, tends to

±∞ as π(0) → ±∞. This means, since N , M , Q and B are continuous in π(0), that there

is at least one π(0), say π̂0, that satisfies equation (A.114). Plugging (π̂0, x̂0) into equations

(A.110) and (A.113) give values for (π(t1), x(t1)), say (π̂1, x̂1). By construction, the path

defined by (π̂0, x̂0) is continuous. Picking ε small enough guarantees that (π̂1, x̂1) ∈ Ωss, since

(π∗(t∗), x∗ (t∗)) ∈ Ωss is bounded away from ∂Ω. Equation (A.110) implies (π̂1, x̂1) ∈ Υss.

Proposition 3 then shows the path defined by (π̂0, x̂0) is bounded and hence an equilibrium.

Because ε 6= 0, the equilibrium is not the optimal equilibrium.

If M = 0 and N 6= 0, the continuous pasting conditions (A.19)-(A.20) give

x(0) = P + A (A.115)

π(t1) =
π(0)− (Q+B)

N
(A.116)

But M = 0 implies

e−fφ2 =
cσφ2 + 1

cσφ1 + 1
e−fφ1

and thus

lim
f→∞

P + A = lim
f→∞

rh
κ

φ2
1e
−φ2f − φ2

2e
−φ1f

φ1 − φ2

+ A

= lim
f→∞

rh (ρ− cκ)

κ+ cκσφ1

e−fφ1 + A

= A

85



is finite. An argument analogous to the one used for the case in which M 6= 0 and N 6= 0

shows the existence of a non-optimal equilibrium. The case M 6= 0 and N = 0 can be treated

the same way and M = N = 0 cannot happen.

B Non-Linear dynamics – Poincaré-Bendixson Theo-

rem

Assume f : R2 → R2. Consider the two-dimensional system

ẋ(t) = f (x(t)) . (B.1)

Let φt (p) be a solution to (B.1) for t ≥ 0 with initial condition x0 = p. We assume that for

each p, there is a unique solution φ (t, p). This is the case, for example, if f is Lipschitz.

The positive semi-orbit of f through p is defined as

γ+ (p) =
{
x ∈ R2 : x = φt (p) for some t ∈ [0,∞)

}
.

Similarly, the negative semi-orbit though p is

γ− (p) =
{
x ∈ R2 : x = φt (p) for some t ∈ (−∞, 0]

}
.

The orbit of f through p is the union

γ (p) = γ+ (p) ∪ γ− (p) .

A periodic solution is one for which φt+T (p) = φt (p) for some T > 0 and all t ∈ R. A

periodic orbit is the orbit γ (p) of periodic solution φt (p).

The ω-limit set of p, denoted by ω (p), is the set

ω (p) =
{
x ∈ R2 : ∃ {tk}∞k=0 , tk ∈ R with tk →∞ such that φtk (p)→ x as k →∞

}
.

Consider the following four assumptions:

(a) Ω is an open domain in R2, divided into a finite number of open sub-domains Ωi such

that
⋃

Ωi = Ω.

(b) If Ωi and Ωj are not disjoint and i 6= j, then Ωi∩Ωj = Γij, where Γij (joint boundaries)

are piecewise smooth.
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(c) f is Lipschitz in all sub-domains Ωi and possibly discontinuous along Γij.

(d) The vector field f defines a direction at each point in Ω. In particular, at every point

of Γij the vector field f (x) specifies into which Ωi the flow is directed.

Theorem 1 (Extension of the Poincaré-Bendixson theorem). Consider the planar autonomous

system (B.1). Let the conditions 1-4 be satisfied and let f be bounded in Ω. Suppose that K

is a compact region in Ω, containing no fixed points of (B.1). If the solution of (B.1) is in

K for all t ≥ t0, then (B.1) has a closed orbit in K.

Theorem 2 (Extension of the Bendixson criterion). Consider the planar autonomous system

(B.1). Let the conditions 1-4 be satisfied and let f be bounded in the simply connected region

Ω and C1 in each Ωi. If div f (the divergence of f calculated in the distribution sense) is of

the same sign and is not identically zero in Ω, then (B.1) has no closed orbit in Ω.

Remark The requirement that f is bounded is too strong; it suffices that∫∫
D

div f and

∫
C

f · n ds

are well-defined (in the distribution sense) for all smooth closed curves C, where D is the

region enclosed by C and n is a unit vector normal to C.

A proof of both theorems can be found in Melin (2005). Compared to the classical

Poincaré-Bendixson theorem, Melin (2005) allows for some discontinuities in f .

We have cited the theorems exactly as they appear in Melin (2005). However, in this

context, it is perhaps more familiar for economists to refer to points for which f = 0 as

steady-states instead of fixed points and to periodic orbits instead of closed orbits.

We now prove an immediate consequence of this “extended” Poincaré-Bendixson theorem.

Theorem 3. Assume Theorem 1 holds. If a solution ϕt is bounded for all t ≥ 0, then either

(a) ω (ϕ) contains a steady-state

or

(b) ω (ϕ) is a periodic orbit

Proof. First, note that because ϕ is bounded, ω (ϕ) is non-empty. Indeed, consider a sequence

xi = ϕti (x) for some x. The sequence {xi} is bounded and infinite, so there exist a convergent

subsequence. If such convergent subsequence converges to p, then p ∈ ω (ϕ) and thus ω (ϕ)

is non-empty.
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If ω (ϕ) contains a steady-state, item (a) obtains. If ω (ϕ) contains no steady-states (no

fixed points), then Theorem 1 implies that ω (ϕ) is a periodic orbit, corresponding to item

(b) (note that because ϕ is bounded we can always find a compact set K that contains

it). �
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