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Abstract 

 

We study the conditional distribution of GDP growth as a function of economic and financial 

conditions. Deteriorating financial conditions are associated with an increase in conditional 

volatility and a decline in the conditional mean of GDP growth, leading to a highly skewed 

distribution. The lower quantiles of GDP growth exhibit strong variation as a function of financial 

conditions, while the upper quantiles are stable over time. Although measures of financial 

conditions have significant influence in forecasts of downside vulnerability, measures of 

economic conditions have significant predictive power only for the median of the distribution. 

These findings are robust both in and out of sample and to the inclusion of different measures of 

financial conditions. We quantify GDP vulnerability as relative entropy between the empirical 

conditional and unconditional distribution. We show that this measure of vulnerability is highly 

asymmetric: The contribution to the total relative entropy of the probability mass below the 

median of the conditional distribution is larger and more volatile than the contribution of the 

probability mass above the median. The asymmetric response of the distribution of GDP growth 

to financial and economic conditions—with adverse financial conditions increasing downside 

vulnerability of growth but not the median forecast—is challenging for standard models of the 

macroeconomy. We argue that the inclusion of a financial sector is crucial for generating the 

observed dynamics of growth vulnerability. 
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1 Introduction

Economic forecasts usually provide point estimates for the conditional mean of GDP growth

and other economic variables. Such point forecasts, however, ignore risks around the central

forecast and, as such, may paint an overly optimistic picture of the state of the economy. In

fact, policy makers’ focus on downside risk has increased in recent years. In the U. S., the

Federal Open Market Committee (FOMC) commonly discusses downside risks to growth in

FOMC statements, with the relative prominence of this discussion fluctuating with economic

conditions. At the same time, surveys of market participants (the Federal Reserve Bank of

New York’s Primary Dealer Survey), economists (the Blue Chip Economic Survey) and

professional forecasters (the Federal Reserve Bank of Philadelphia’s Survey of Professional

Forecasters) all collect the respondents’ beliefs of the probability distribution around the

point forecast.

In this paper, we model empirically the full distribution of future real GDP growth

as a function of financial and economic conditions. We estimate the distribution non-

parametrically using quantile regressions. The estimated lower quantiles of the distribution

of GDP growth exhibit strong variation as a function of financial conditions, while the upper

quantiles are stable over time. Moreover, we show that economic conditions forecast the

median of the distribution but do not contain information about the other quantiles of the

distribution.

Next, we smooth the estimated quantile distribution every quarter by interpolating be-

tween the estimated quantiles using the skewed t-distribution. This allows us to transform

the empirical quantile distribution into an estimated distribution of GDP growth, plotted in

Figure 1. Two features are striking about the estimated distribution. First, the entire distri-

bution – and not just the first two moments – evolves over time. For example, business cycle

peaks are associated with right-skewed predicted distributions while troughs are associated

with left-skewed distributions. Second, the probability distributions inherit the stability of
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Figure 1. Distribution of GDP growth over time. One-quarter-ahead predicted
distribution of real GDP growth, based on quantile regressions with CFNAI and NFCI as
conditioning variables.

the right tail of the distribution from the estimated quantile distribution, while the median

and the left tail of the distribution exhibit strong time series variation. This asymmetry in

the evolution of the conditional GDP distribution suggests that downside risk to GDP varies

much more strongly over time than upside risk.

We summarize the properties of the upside and downside risks to real GDP growth using

two metrics: the upside and downside entropy of the unconditional distribution of GDP

growth relative to the empirical conditional distribution, and by the expected shortfall and

its upper tail counterpart. While upside entropy comoves with its downside counterpart,

downside entropy is much more volatile. This asymmetry echoes our finding that the elas-

ticity of GDP growth to financial conditions is significantly higher for the lower quantiles of

the distribution than for the upper quantiles.

We perform many robustness tests to our findings. First, we present alternative measures

of financial conditions, focusing on variables that have been emphasized in the recent macro

finance literature such as credit spreads, the term spread, and equity volatility. Second, we
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show that out-of-sample estimates of the conditional GDP distribution are very similar to

the in-sample distribution. This leads the out-of-sample estimates of growth vulnerability

to likewise be similar to the in-sample estimates. Third, we demonstrate that the strongly

skewed conditional distribution of GDP growth is not an artifact of our two-step quantile

regression estimation procedure but also arise when we estimate a simple conditional het-

eroskedasticity model for GDP growth and volatility using maximum likelihood.

A large literature has documented the decline of GDP volatility prior to the financial crisis

of 2008 (see e.g. McConnell and Perez-Quiros, 2000; Blanchard and Simon, 2001; Bernanke,

2004; Giannone, Lenza, and Reichlin, 2008). While McConnell and Perez-Quiros (2000)

argue that a structural break of GDP volatility occurred in 1984, Blanchard and Simon

(2001) show evidence consistent with a slow decline in volatility over the post war period. In

contrast to that influential literature, we focus not just on the second moment of GDP growth,

but rather on the whole conditional distribution of GDP growth. Our striking finding is that

GDP growth volatility is nearly entirely driven by the left side of the conditional distribution,

thus providing testable implications for theoretical research. In fact, we can attribute the

decline of volatility during the Great Moderation period to a decline in the downside risk to

GDP growth.

From an econometric point of view, our paper is related to the statistical literature on

evaluating conditional distributions. We develop a straightforward two-step procedure for

the estimation of the conditional probability distribution function. In the first step, we em-

ploy quantile regressions of Koenker and Bassett (1978) to estimate the conditional quantile

function of GDP growth as a function of lagged financial and economic conditioning vari-

ables (see Ghysels (2014) for a recent application of quantile regressions to the estimation

of skewness). In the second step, we fit a parametric inverse cumulative distribution func-

tion with a known density function to the empirical conditional quantile function, for each

quarter in the sample. That procedure is computationally straightforward, and allows us

to transform the inverse cumulative distribution function from the quantile regression into
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a density function. We then use an entropy metric to measure deviation of the conditional

GDP distribution from the conditional gaussian distribution. We label the downside entropy

– the contribution to relative entropy of the density below the median of the distribution –

“growth vulnerability”.

Our approach differs from the recent literature that has analyzed GDP uncertainty in

its focus on the preeminent role for downside risk, rather than symmetric measures of risk.

Baker, Bloom, and Davis (2013) propose a measure of political uncertainty based on news

announcements and Jurado, Ludvigson, and Ng (2015) compute conditional volatility from

a large number of macroeconomic variables. Bloom (2009) models uncertainty shocks in

a macroeconomic context. The main difference of that strand of literature to our work

is the emphasis on shocks that move the conditional variance. In contrast, our empirical

distributions allow for differences in upside and downside volatility.

Our findings are closely related to the recent macro-finance literature that emphasizes the

link between financial stability and macroeconomic performance. For example, the buildup

of leverage and maturity transformation can give rise to financial vulnerability that increases

the downside risk to GDP growth. Similarly, external imbalances can make economies more

vulnerable to sudden stops, with potentially adverse consequences to real GDP growth.

Brunnermeier and Sannikov (2014), He and Krishnamurthy (2012) and Adrian and Bo-

yarchenko (2012) present macroeconomic production economies with financial intermedi-

aries that give rise to time variation GDP vulnerability as a function of financial conditions.

Though our baseline results do not distinguish between sources of financial instability, dis-

tributions predicted using equity implied volatility most resemble the baseline, suggesting

that macrofinancial models that feature volatility-linked constraints may be most promising

in generating the empirical link between financial conditions and growth vulnerability.

The rest of the paper is organized as follows. Section 2 presents the measures of economic

and financial conditions, and relates them to GDP growth in a descriptive fashion. Section

3 presents our estimates of the conditional GDP distribution, and introduces the concept of
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GDP vulnerability. Section 4 relates our estimates of vulnerability to alternative financial and

economic indicators. Section 5 discusses out of sample results and alternative econometric

approaches. Section 6 discusses implications of our findings for macroeconomic theories.

Section 7 concludes.

2 Economic and Financial Conditions and GDP Growth

To gauge economic and financial conditions, we use the Chicago Fed National Activity Index

(CFNAI) and the National Financial Conditions Index (NFCI).1 The CFNAI is a monthly

index designed to measure overall economic activity. It is a weighted average of 85 existing

monthly indicators of national economic activity, normalized to have an average value of zero

and a standard deviation of one, with positive realizations corresponding to growth above

trend.2 The economic indicators that are included in the CFNAI are drawn from four broad

categories of data including production and income; employment, unemployment, and hours;

personal consumption and housing; and sales, orders, and inventories. The derived index

provides a single, summary measure of a factor common to these national economic data.

The methodology for the CFNAI was developed by Stock and Watson (1999).

Similarly, the NFCI provides a weekly estimate of U.S. financial conditions in money

markets, debt and equity markets, and the traditional and shadow banking systems. The

index is a weighted average of 105 measures of financial activity, each expressed relative to

their sample averages and scaled by their sample standard deviations.3 The methodology

for the NFCI is described in Brave and Butters (2012). The data for the NFCI starts in

January 1973, which we use as starting point for our empirical investigation.

Figure 2 shows the times series of CFNAI and NFCI, as well as the quantile-quantile

(QQ) plots of CFNAI and NFCI relative to one-step-ahead GDP growth. The QQ-plots
1The CFNAI and the NFCI are computed by the Federal Reserve Bank of Chicago, and available here

and here, respectively.
2The list of 85 indicators is provided here.
3The list of indicators is provided here.

5

https://www.chicagofed.org/publications/cfnai/index
https://www.chicagofed.org/publications/nfci/index
https://www.chicagofed.org/~/media/publications/cfnai/background/cfnai-background-pdf.pdf
https://www.chicagofed.org/~/media/publications/nfci/nfci-indicators-list-pdf.pdf


show the empirical quantiles of GDP growth on the x-axis against the empirical quantiles

of either CFNAI or NFCI on the y-axis. While the relationship of the CFNAI with GDP

growth is largely linear, the relationship of NFCI with GDP growth exhibits very pronounced

nonlinearity. The nonlinearity indicates differences in the conditional distribution functions

and foreshadow our findings that financial conditions are a more important indicator of

growth vulnerability than economic conditions.

Our estimates of the conditional GDP distribution rely on quantile regressions. In a

quantile regression of yt on xt (which includes k − 1 conditioning variables and a constant),

the regression slope βτ is chosen to minimize the quantile weighted absolute value of errors:

βτ = argmin
β∈Rk

T∑
t=1

(
τ · 1(yt≥xtβ) |yt − xtβτ |+ (1− τ) · 1(yt<xtβ) |yt − xtβτ |

)
(1)

where 1(·) denotes the indicator function. The predicted value from that regression is the

quantile of yt conditional on xt

Qyt|xt (τ) = xtβτ . (2)

Koenker and Bassett (1978) show thatQyt|xt (τ) is a consistent linear estimator of the quantile

function of yt conditional on xt. The quantile regression differs from an ordinary least squares

regression in two respects. First, the quantile regression minimizes the sum of absolute

errors, rather than the sum of squared errors. Second, it puts differential weights on the

errors depending on whether an error term is above or below the quantile.

Figure 3 shows the scatter plot of one quarter ahead and four quarters ahead GDP growth

against the NFCI and the CFNAI, together with the quantile regression lines for the 5th, 50th

and 95th quantiles and the OLS regression line. For the NFCI, the slopes differ significantly

across quantiles and from the OLS regression line, indicating that the sensitivity of financial

conditions to economic conditions evolves with the business cycle. Indeed, Figure 4 shows

that, at the lower quantiles, the slope from the quantile regression are significantly different,
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at the 10 percent level, from the OLS slope.4 The regression slopes change dramatically

for NFCI across the quantiles, but are stable for CFNAI. The slopes are most different

from the linear benchmark for the lower quantiles. Importantly, the regression slopes for

NFCI do not change significantly when the CFNAI is included as well in the regression,

indicating that most of the explanatory power of future GDP vulnerability arises from the

information content of financial conditions. For economic conditions, on the other hand, the

quantile regression slopes are barely different from the linear regression slopes, indicating

that economic conditions are less informative for tail risks.

Figure 5 shows one and four quarter GDP growth together with its conditional median

and its conditional 5, 25, 75 and 95 percent quantiles. This figure demonstrates the main

result of the paper: the asymmetry between the upper and lower conditional quantiles. While

the lower quantiles vary significantly over time, the upper quantiles are stable. Figure 6 shows

that the median and interquartile range are strongly negatively correlated. When financial

conditions deteriorate, the interquartile range increases, while the median falls (Figure 6a

and 6b). That implies that the lower quantile falls, as illustrated in Figure 6c and 6d: when

the interquartile range increases, the 5th quantile falls. For upper quantiles, on the other

hand, the movement in the median and the interquartile range are offsetting, thus changes

in financial conditions have relatively little impact on those upper quantiles, as is visible in

Figure 5. This strong asymmetry of the quantiles of GDP growth is striking. We study

the differences between the upper and lower parts of the predicted GDP growth distribution

more formally in the next section.
4The significance is computed using the distribution of coefficients estimated in 1000 bootstrapped samples

generated using a vector autoregression (VAR) with 4 lags and constant fitted to the full-sample evolution
of CFNAI, NFCI and real GDP growth.
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3 Quantifying GDP Vulnerability

3.1 The Conditional GDP Distribution

While the quantile regression (2) provides us with an estimate of the quantile function, an

inverse cumulative distribution function, in practice the estimates from the quantile regres-

sions are noisy. We fit the skewed t-distribution developed by Azzalini and Capitanio (2003)

in order to smooth the quantile function and recover a probability density function:5

f (y;µ, σ, α, ν) =
2

σ
t

(
y − µ
σ

; ν

)
T

(
α
y − µ
σ

√
ν + 1

ν + y−µ
σ

; ν + 1

)
(3)

where t(·) and T (·) respectively denote the PDF and CDF of the skewed t-distribution. The

four parameters of the distribution pin down the location µ, scale σ, skewness ν, and shape

α. Relative to the t-distribution, the skewed t-distribution adds the shape variable which

regulates the impact of degree of magnification of the T distribution on the t distribution.

The skewed t-distribution is part of a general class of mixed distributions proposed by Az-

zalini (1985) and further developed by Azzalini and Dalla Valle (1996). The intuition for

the derivation is that a base probability distribution—in this case t
(
y−µ
σ
; ν
)
—gets shaped

by its cumulative distribution function, and rescaled by shape parameter α. The notable

special case of the skewed t-distribution is the t-distribution when α = 0. In addition to

α = 0, when ν =∞, the distribution reduces to the a Gaussian with mean µ and standard

deviation σ. Relative to the standard t-distribution with skewness parameter ν, the shape

parameter changes the fatness of the distribution.

For each quarter, we choose the four parameters {µt, σt, αt, νt} of the skewed t-distribution

f to minimize the squared distance between the our estimated quantile function Qyt|xt (τ)

from (2) and the quantile function of the cumulative skewed t-distribution Qf (τ ;µt, σt, αt, νt)

5We have also estimated alternative flexible distribution functions, but found that the skewed t-
distribution gave the best fit.
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from (3) to match the 5, 25, 75, and 95 quantiles

{µt, σt, αt, νt} = argmin
µt,σt,αt,νt

∑
τ

(
Qyt|xt (τ)−Qf (τ ;µt, σt, αt, νt)

)2 (4)

where µt ∈ R, σt ∈ R+, αt ∈ R, and νt ∈ Z+. This can be viewed as an exactly identified

nonlinear cross sectional regression of the predicted quantile function Qyt|xt (τ) on the skewed

t-distribution f (yt;µt, σt, αt, νt) across quantiles.6

Figure 7 plots the unconditional quantile distribution, the conditional quantile distribu-

tion Qyt|xt (τ) and the fitted inverse cumulative skewed t-distribution Qf (τ ;µt, σt, αt, νt) for

three sample dates at different points of the business cycle: 2006Q2, which represented the

end of the Federal Reserve’s tightening cycle prior to the financial crisis; 2008Q4 when the

zero lower bound was reached just after the failure of Lehman; and 2014Q4, which is the

last in-sample date of our dataset. In all three cases, the skewed t-distribution is sufficiently

flexible to smooth the estimated quantile function while passing through all four target quan-

tiles for both the one-quarter-ahead and the four-quarters-ahead forecasts. Finally, Figure 7

shows that the conditional distribution can deviate substantially from the unconditional dis-

tribution. While the median of the unconditional and conditional distributions coincides

in 2006Q2, the unconditional distribution exhibits both greater upside and downside risks.

In 2008Q4, the entire conditional distribution is below the unconditional distribution; in

2014Q4, the upper tails of the conditional and unconditional distributions coincide but the

unconditional distribution predicts a lower median growth and has greater downside risks.

3.2 Measuring Vulnerability

We now turn to studying the differences between the conditional and unconditional GDP

growth distributions more formally. Denote by g the unconditional distribution of GDP
6An alternative approach would be to use the entires quantile function to pin down the parameters of f ,

and allow the parameters of the skewed t-distribution to be over-identified. We follow the more parsimonious
exactly-identified approach here.
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growth computed from all available data {y1, y2, ...yT}. We define the upside, LUt , and

downside, LDt , entropy of g relative to the estimated skewed t-distribution ft as

LDt (ft; g) =

∫ F−1(50)

−∞
(log g (y)− log ft (y)) ft (y) dy, (5)

LUt (ft; g) =

∫ ∞
F−1(50)

(log g (y)− log ft (y)) ft (y) dy. (6)

The upside and downside entropies sum to the total relative entropy, Lt = LUt + LDt , which

measures the Kullback-Leibler divergence between two distributions and is the only definition

of difference between distribution that satisfies the canonical extension of the properties

(continuity, symmetry, additivity and maximality) of the Shannon entropy of a distribution

Et (ft) =
∫

R log ft (y) ft (y) dy. Of particular interest to us is the interpretation of entropy as

the summary measure of higher moments of a distribution Et (ft) =
∑+∞

j=1
κj(ft)

j!
, where κj is

the j cumulant of the distribution nt. Relative entropy then measures the difference between

higher order cumulants of the fitted and the benchmark distribution.

Figures 8a and 8b show the evolution of GDP upside and downside entropy, one and four

quarters ahead, respectively. In addition, we plot the 5% expected shortfall and its upper

tail counterpart, which we term the 95% expected longrise (Figures 8c and 8d), defined as

SFt =
1

0.05

∫ 0.05

0

F−1t (τ)dτ ; LRt =
1

0.05

∫ 1

0.95

F−1t (τ)dτ.

The information content of the relative entropy and the expected shortfall measures are

distinct. While expected shortfall integrates the probability density below the 5th quantile,

relative downside entropy measures the divergence of the Gaussian density from the reference

density for realization of the state falling below the median implied by the reference density.

Despite these differences, the two measures exhibit a surprising degree of similarity, indicating

that the main deviation from Gaussianity is due to the behavior in the very far tail of the

distribution. It is also noteworthy that, while the upside and downside entropy measures do
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comove, downside entropy is more volatile and has much more pronounced nonlinearities.

Similarly, the expected shortfall and longrise measures are positively correlated but expected

shorfall is significantly more volatile.

Comparison of the upside and downside entropy metrics in Figures 8 again shows that

variation of the conditional distribution is primarily due to variation in the left half of the

distribution: downside entropy varies widely, while upside entropy is more or less constant.

4 GDP Vulnerability and Other Financial Indicators

Our results so far have relied on the NFCI, a composite financial conditions indicator that

relies on information of 105 measures from money markets, debt and equity markets and

the traditional and shadow banking systems. In order to shed light on the importance of

the contribution of individual series, we now investigate three financial indicators that are

of particular interest: equity market volatility, the credit spread, and the term spread.

Equity market volatility has been shown to be a significant indicator for the price of risk.

Rey (2015) shows that global capital flows, global credit growth, and global asset prices

comove tightly with the VIX. Longstaff, Pan, Pedersen, and Singleton (2011) estimate that

the price of sovereign risk is strongly correlated with the VIX. Furthermore, Adrian, Crump,

and Vogt (2015) show that a nonlinear transformation of the VIX forecasts stock and bond

returns, suggesting that the pricing of risk depends on the VIX. In general equilibrium,

pricing of risk is associated with GDP growth, and risk to GDP growth. Hence we expect

the VIX to be a significant forecasting variable for GDP vulnerability.

A recent literature has linked downside risk to GDP, particularly during financial crises,

to credit conditions as measured by credit spreads. Gilchrist and Zakrajšek (2012) construct

the excess bond premium, a residual credit spread orthogonal to firm specific information

on defaults, and show that that premium has considerable predictive power for future real

activity. Using U.S. data from 1929 to 2013, López-Salido, Stein, and Zakrajšek (2016) show
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that elevated credit-market sentiment is associated with a decline in economic activity two

and three years in the future, driven by mean reversion in credit spreads. Using a long

time series across a panel of countries, Krishnamurthy and Muir (2016) document that the

transition into a crisis occurs when credit spreads increase markedly, indicating that crises

involve a dramatic shift in expectations and are a surprise.

An extensive literature has shown the forecasting power of the term spread for recession

(see Estrella and Hardouvelis, 1991, and the subsequent literature). The term spread is

shown to predict recessions 12-18 months in advance, both in sample and out of sample,

and is generally a more powerful predictor of recessions than other variables. The term

spread generally works best as individual predictor (see Estrella and Mishkin, 1998). Harvey

(1988) shows that a consumption Euler equation naturally gives rise to forecasting of the

term spread for real activity.

Figure 9 shows the quantile coefficients for equity market option-implied volatility, the

BAA-AAA credit spread, and the 10-year/3-month term spread.7 Comparing the loadings on

NFCI to the loading on these three individual components, we see that the conditional quan-

tile function is most sensitive to the NFCI, followed by option-implied volatility, term spread

and the credit spread. The term spread has the curious property of having a non-monotonic

relationship with respect to the upper quantiles for the four quarter ahead prediction. At

intermediate quantiles, the conditional quantile function has almost constant loadings on

volatility. At very low quantiles, however, the quantile function has a significant negative

relationship with volatility: high option-implied volatility is associated with large downside

risks to GDP growth at both one and four quarter horizons. The credit spread carries sur-

prisingly little information, as indicated by a very flat quantile coefficient curve, which is

close to zero. In sum, these findings suggest that the NFCI financial conditions index is a

robust proxy for how financial conditions affect the predicted distribution for GDP growth.
7We use the VXO instead of the VIX as it has a slightly longer time series, and we backfill the data to

1973 using realized equity market volatility (see Bloom, 2009).
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5 Out-of-sample Evidence and Alternative Econometrics

5.1 Out of Sample Evidence

In this section we evaluate the out-of-sample performances of the methods. We backtest

the model by replicating the analysis that an economist would have obtained by using the

proposed methodology in real time, with the caveat that we use final revised data only.8

We produce predictive distributions recursively for two horizons (1 and 4 quarters), start-

ing with the estimation sample that ranges from 1973Q1 to 1992Q4. More precisely, using

data from 1973Q1 to 1992Q4, we estimate the predictive distribution for 1993Q1 (one quar-

ter ahead) and 1993Q4 (one year ahead). We then iterate the same procedure updating the

estimation sample, one quarter at a time, until the end of the sample (2015Q4). At each it-

eration, we repeat the estimation steps of Sections 2 and 3, and estimate quantile regression,

match the skewed t-distribution, and compute downside and upside entropy. The outcome

of this procedure is a time-series of 20 years of density forecasts for each of the two forecast

horizons.

We perform two types of out-of-sample analyses. First, we study the robustness of the

results shown so far by comparing the in-sample measures of vulnerability with their realtime

counterparts. Second, we evaluate the out-of-sample accuracy and calibration of the density

forecasts by analyzing the predictive score and the probability integral transform (PIT), that

is, the predictive density and cumulative distribution evaluated at the outturn, respectively.

Results for the first exercise are presented in Figure 10. We report selected quintiles

and downside entropy computed using the full sample (in-sample) and recursively (out-

of-sample). The figure illustrates that the in-sample and out-of-sample estimates of the

quantiles are virtually indistinguishable. The similarities are more striking as the financial

crisis of 2007-09 is a significant tail event that is not in the data when estimating the
8Real time data for CFNAI and NFCI are only available for the recent past.
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out-of-sample quantiles. The stability of the recursive estimates thus shows that downside

vulnerability can be detected in real time.

Turning to the evaluation of the reliability of the predictive distribution, we measure the

accuracy of a density forecast using the predictive score. This is the predictive distribution

generated by a model, evaluated at the realized value of the time series. Higher predictive

scores indicate more accurate predictions as they show that outcomes that the model con-

siders more likely are closer to the ex-post realization. Figures 11a and 11b plot the scores

of the conditional predictive distribution together with the scores of the unconditional dis-

tribution.9 The predictive score for the conditional distribution is frequently above that of

the unconditional distribution. Thus, the conditional distribution is often more accurate –

and rarely less accurate – than the unconditional one, and the information contained in the

conditioning variables (metrics of financial and economic conditions) is a robust and genuine

feature of the data.

We conclude the out-of-sample evaluation by analyzing the calibration of the predictive

distribution. We compute the empirical cumulative distribution of the PITs, which measures

the percentage of observations that are below any given quantile. The model is better

calibrated the closer empirical cumulative distribution of the PITs is to the 45 degrees line.

In a perfectly calibrated model the cumulative distribution of the PITs is a 45-degree line,

so that the fraction of realizations below any given quantile Qyt+h|xt
(τ) of the predictive

distribution is exactly equal to τ . Results a presented in Figures 11c and 11d for both

the conditional and unconditional distribution. Following Rossi and Sekhposyan (2015), we

report confidence bands around the 45-degree line to account for sample uncertainty.1011 For

both the conditional and unconditional predictive distribution, the empirical distribution of
9Recall that the unconditional distribution only uses a constant as the explanatory variable.

10The confidence bands should be taken as a general guidance since they are derived for forecasts computed
using a rolling scheme, i.e. with a constant length of the estimation sample, while we use a rolling scheme,
with an expanding estimation window.

11The confidence bands for one year ahead are in principle different for the conditional and unconditional
distribution since they are based on a HAC estimator to account for serial correlation. However, with our
data they are undistinguishable.
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the PITs is well within the confidence bands for the lower quantiles and the upper quantiles,

though the empirical distribution falls outside the confidence bounds in the center of the

distribution. Overall, Figure 11 illustrates that the quantile regression approach generates

robust predictive distributions, and is able to capture downside vulnerabilities particularly

well.

5.2 Alternative Econometric Approaches

We view our two-step estimation procedure of fitting quantile regressions in the time series,

and then the distribution across quantiles, as a methodological contribution of the paper.

However, the main results of the paper can also be estimated using more traditional maxi-

mum likelihood based approaches. Consider the following model

yt = γ0 + γ1xt−1 + β1yt−1 + σtεt; σ2
t = exp (δ0 + δ1xt−1) + δ3ε

2
t−1, (7)

where εt ∼ N(0, 1) and xt is the realization of NFCI. The model is an ARCH(1) that features

financial and economic conditions xt as conditioning variables for both the time varying mean

and time varying volatility (the ARCH model was introduced by Engle, 1982). The model

is straightforward to estimate via maximum likelihood.

Figure 12 plots the conditional mean and the conditional lower and upper 5th quantiles

for one-quarter-ahead GDP growth (Figure 12a) and one-quarter S&P 500 stock market

index return (Figure 12b) implied by the model in equation (7). The simple conditional het-

eroskedasticity model is able to reproduce the strongly skewed conditional GDP distribution

by simply shifting the mean and volatility of GDP as a function of economic and financial

conditions. Thus, our main results are not an artifact of our two-step quantile regression

estimation procedure but reflect rather a robust property of the conditional distribution of

GDP growth.

In contrast, the one quarter ahead S&P 500 return distribution features very little skew-
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ness and is surprisingly symmetric. The symmetry of the equity return conditional distribu-

tion varies, however, with horizon. Ghysels (2014) computes the four quarter ahead S&P500

return distribution and uncovers more negative skewness. In fact, four quarters ahead, the

S&P500 return distribution looks strikingly similar to the one quarter ahead GDP distribu-

tion. Schmidt and Zhu (2016) develop an alternative methodology to smooth across quantiles

and report a conditional S&P500 return distribution at a daily frequency that looks similar

to our Figure 12.

6 The Economics of GDP Vulnerability

6.1 Mean, Volatility, and Vulnerability

We turn now to the relationship between the mean of the forecasted distribution of GDP

growth and the volatility and vulnerability of GDP growth. Figure 13 shows that, contempo-

raneously, high realizations of the conditional mean of GDP growth are associated with both

low volatility and low downside entropy. This negative relationship between the conditional

mean and measures of growth vulnerability is present at both the one quarter and four quar-

ter horizons. Economically, this finding implies that deteriorating financial conditions lead

to lower average growth and an increase in volatility. Combined, these two effects generate a

negatively skewed unconditional distribution, as downward shifts in the growth outlook are

associated with an increase in risk.

Figure 14 shows that the negative relationship between the conditional mean and mea-

sures of vulnerability is present at multiple leads and lags of the vulnerability measures. In

particular, the correlation between the conditional mean and volatility is statistically signif-

icantly negative for lags (-6, +4) of volatility and becomes statistically significantly positive

only at lags beyond 12 quarters. Thus, while there is a positive risk-return tradeoff for GDP

growth at low frequencies, the negative association between risk and return is a robust fea-

ture at higher frequencies. Figure 14 also shows that volatility leads the conditional mean by
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one quarter, with a one standard deviation increase in the conditional volatility associated

with a .8 standard deviations decrease in the next quarter’s predicted conditional mean of

GDP growth.

The result that the negative association between the conditional mean and the conditional

variance generates the highly asymmetric shape of the conditional GDP distribution is also

confirmed by our alternative econometric procedure using the ARCH model (see equation

(7) and Figure 12). In that approach, shocks are Gaussian with a time varying mean and

time varying variance, both of which are functions of economic and financial conditions.

Despite the conditional Gaussian shocks, the model generates a highly skewed GDP growth

distribution, as deteriorating financial conditions are associated with larger variance and

lower growth. This finding therefore does not rely on our usage of quantile regressions and

the fitting of the skewed t-distribution.

The negative association between the conditional mean of GDP growth and the con-

ditional variance of GDP already appear in the VARs of Jurado et al. (2015) and Bloom

(2009) who model macroeconomic uncertainty. Our contribution relative to that literature

is our emphasis on the entire conditional distribution of GDP growth, which shows that the

negative association of location and scale of the GDP distribution generates a highly skewed

distribution. Furthermore, we emphasize the role of financial conditions in modeling tail

risk, while Jurado et al. (2015) use metrics of macroeconomic uncertainty, Bloom (2009)

uses equity market volatility, and Baker et al. (2013) construct political uncertainty.

6.2 Implications for Theories of Macroeconomic Dynamics

Our main finding is that downside risk to GDP growth is forecast by financial conditions,

while upside risk remains more or less constant. These findings present challenges for macroe-

conomic modeling. On the one hand, they point to the importance of financial conditions

over and above economic conditions: We do not uncover any evidence of economic con-

ditions forecasting GDP vulnerability. This points towards an independent role of the fi-
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nancial sector, over and above the impact of financial conditions on the dynamics of real

variables. Brunnermeier and Sannikov (2014), He and Krishnamurthy (2012) and Adrian

and Boyarchenko (2012) present macroeconomic production economies with financial inter-

mediaries whose vulnerability gives rise to time variation in GDP vulnerability as a function

of financial conditions. These approaches also emphasize the link between financial stability

and macroeconomic performance.

An earlier literature emphasizes the credit channel of monetary policy (see the overviews

by Bernanke and Gertler, 1995, Boivin, Kiley, Mishkin et al., 2010, and Brunnermeier,

Eisenbach, and Sannikov, 2013). While the intermediary asset pricing approach features

financial frictions in the supply of credit, the credit channel of monetary policy emphasizes

primarily frictions in the demand for credit. The credit channel does generate asymmetries

in the business cycle. However, in the most common DSGE implementations of the credit

channel, models are only solved up to first order, so that financial vulnerability does not play

a role in equilibrium (see, in particular, Bernanke, Gertler, and Gilchrist, 1999 and Del Negro,

Eusepi, Giannoni, Sbordone, Tambalotti, Cocci, Hasegawa, and Linder, 2013). In contrast,

the intermediary asset pricing literature emphasizes the nonlinearities in volatility dynamics

that arise as financial intermediaries become more constrained. Since financial intermediaries

are the providers of credit in these models, nonlinearities in volatility dynamics feed through

to investment decisions of the productive and household sectors of the economy, generating

an asymmetric propagation of shocks at different points of the business cycle even if the

fundamental shocks in the economy are normally distributed.

In addition to the independent role of financial relative to economic conditions, we focus

on the evolution of the shape of the conditional GDP distribution. This is in contrast to the

recent literature that emphasizes economic risk or uncertainty. Baker et al. (2013) propose

a measure of uncertainty based on political news announcements and Jurado et al. (2015)

compute conditional volatility from a large number of macroeconomic variables. Bloom

(2009) models uncertainty shocks in a macroeconomic context. However, that strand of
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work primarily focuses on the second moment, not on the whole shape of the conditional

GDP distribution. Our key finding is that moments beyond the first two significantly vary

over time, giving rise to a pronounced skew in the conditional GDP growth. Hence our

empirical results strongly point towards downside risk, rather than standard deviation, as

the relevant metric.

A recent literature that does generate asymmetry in the conditional distribution is focused

on the role of disaster risk for macroeconomic performance and asset prices (see the overview

by Barro and Ursúa, 2012). Catastrophic tail events, such as the Great Depression or the

2008 financial crises can be used to generate a large equity risk premium (see e.g. Barro, 2009;

Gabaix, 2012; Wachter, 2013). The pricing of disaster risk in turn impacts macroeconomic

dynamics in equilibrium (Gourio, 2012). In contrast to that literature, our evidence suggests

that GDP vulnerability changes at relatively high frequencies that are unlikely to be driven

by changes in disaster risk, and are more closely associated with amplification mechanisms

emphasized in macro-finance models. This finding is in-line with the more recent evidence

from the term structure of asset prices: the slope of term structures of risk premia across

multiple asset classes suggests that the equilibrium pricing kernel reflects nonlinear shocks

occurring at intermediate frequencies (see e.g. Van Binsbergen, Hueskes, Koijen, and Vrugt,

2013; Backus, Boyarchenko, and Chernov, 2016).

Our findings are closely related to the literature on the Great Moderation, which doc-

uments a decline of GDP volatility prior to the financial crisis of 2008 (see McConnell and

Perez-Quiros, 2000; Blanchard and Simon, 2001; Bernanke, 2004; Giannone et al., 2008).

In contrast to that influential literature, we focus not just on the second moment of GDP

growth, but rather on the whole conditional distribution of GDP growth. Indeed, we find

that GDP volatility is nearly entirely driven by the left side of the conditional distribution,

thus providing strong implications for research. In fact, we can attribute the decline of

volatility during the Great Moderation period to a decline in the downside risk to GDP

growth.
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The strong relationship between GDP vulnerability and financial conditions rationalizes

the FOMC’s increased emphasis on the notion of financial conditions. Peek, Rosengren, and

Tootell (2015) document the increased frequency of the mention of financial conditions in the

FOMC statement, and show that financial conditions are a significant explanatory variable

in augmented Taylor rules. Monetary policy models that feature frictions in the financial

intermediary sector rationalize these findings, as optimal Taylor rules are augmented by

financial variables that can be interpreted as measures of GDP vulnerability (see Curdia and

Woodford, 2010; Gambacorta and Signoretti, 2014). Adrian and Liang (2016) point out that

monetary policy impacts financial conditions as well as vulnerabilities, thus producing an

intertemporal tradeoff for monetary policy between present macroeconomic objectives and

risks to objectives in the future. Downside growth vulnerability presents a tool to quantify

that tradeoff.

7 Conclusion

The financial crisis of 2007–2009 and the ensuing Great Recession reignited academic interest

in the volatility of GDP growth. In this paper, we argue that the entire distribution of GDP

growth evolves over time as a function of financial and economic conditions. We measure the

vulnerability of GDP growth to downside risks as the downside entropy of a conditional mean,

constant variance Gaussian distribution relative to the empirical conditional distribution, and

show that growth vulnerability is linked to financial conditions, while economic conditions

forecast the center of the GDP distribution.

We estimate our measure of GDP growth vulnerability in two steps. First, we use quan-

tile regressions to estimate the quantile function of GDP growth, with each quantile mod-

eled as a linear function of indicators of financial and economic conditions. In the second

step, we smooth the estimated quantile function by using a skewed student t-distribution to

interpolate between quantiles. This smoothing step allows us to compute analytically the
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Kullback-Leibler divergence of the conditional mean, constant variance Gaussian distribution

from the fitted skewed student t-distribution every quarter, and to split the total divergence

between the downside and the upside components.

We document that the conditional GDP growth evolution is highly asymmetric, with

downside entropy much more volatile than upside entropy. The significant relationship be-

tween financial conditions and downside entropy, together with the weak link between both

financial and economic conditions and upside entropy, strongly suggests that financial fric-

tions are necessary in modeling the dynamics of the conditional GDP distribution. Recent

macro-finance models with a financial sector appear promising in that regard.
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Figure 2. Raw Data. The top two figures show the time series of the CFNAI and NFCI.
The lower two panels show the sample quantile-quantile relationship between one quarter
ahead real GDP growth and CFNAI and NFCI.
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Figure 3. Quantile Regressions. The figure shows the quantile regressions of one quarter
ahead (left column) and four quarter ahead (right column) real GDP growth on CFNAI and
NFCI.
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Figure 4. Estimated Quantile Regression Coefficients. The figure shows the esti-
mated coefficients in quantile regressions of one quarter ahead (left column) and four quarter
ahead (right column) real GDP growth on CFNAI and NFCI. Confidence bounds computed
using VAR with 4 lags and 1000 simulation samples.
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Figure 5. Predicted Distributions. The figure shows the time series evolution of the
predicted distribution of one quarter ahead (panel a) and four quarter ahead (panel b) real
GDP growth.
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Figure 6. Median, Interquartile Range, and 5 Percent Quantile. The figure shows
scatter plots of the median versus the interquartile range (6a and 6b) and the 5th percent
quantile versus the interquartile range (6c and 6d).
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Figure 7. The Conditional Quantiles and the Skewed t-Distribution. The panels
in this figure show the conditional GDP quantiles together with the estimated skewed t-
inverse cumulative distribution functions for one quarter and four quarter ahead GDP. For
comparison, we also report the skewed t-inverse cumulative distribution functions obtained
by fitting the unconditional empirical distribution.
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Figure 8. GDP Entropy and Expected Shortfall over Time. The figure shows the
time series evolution of relative downside and upside entropy LDt and LUt together with the
5% expected shortfall ESt. The one quarter ahead series are on the left, the four quarter
ahead series are on the right.
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Figure 9. GDP Growth and Other Predictors. The figure shows the estimated
coefficients in quantile regressions of one quarter ahead (left column) and four quarter ahead
(right column) real GDP growth on CFNAI and VXO; CFNAI and the Baa-Aaa spread;
CFNAI and the term spread.
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Figure 10. Out of Sample Predictions. The figure compares out-of-sample and in-
sample predictive density one and four quarter ahead. Figures 10a and 10b show the 5, 50,
and 95 percent quantiles. Figures 10c and 10d show downside entropy.
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Figure 11. Out of Sample Accuracy. The figure reports the predictive scores and the
cumulative distribution of the probability integral transform. Figures 11a and 11b compare
the out- of-sample predictive scores of the conditional and unconditional predictive distri-
bution. Figures 11a and 11b report the empirical cumulative distribution of the probability
integral transform (PITs).
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Figure 12. ARCH Estimation of GDP Growth and Stock Return Conditional
Distributions. The figure shows the conditional mean, and the 95 percent and 5 percent
standard error bands for one quarter GDP growth and one quarter S&P500 returns. The
distributions are estimated with a ARCH(1) model with the NFCI as conditioning variable
in the mean equation and the volatility equations.
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Figure 13. Mean, Volatility, and Entropy. The figure shows scatter plots of the mean
versus the volatility (13a and 13b) and downside entropy versus the mean (13a and 13b) for
one and four-quarters-ahead distribution of GDP growth.
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Figure 14. Median, Interquartile Range, and 5 Percent Quantile. The figure shows
the cross correlograms between the mean and volatility, and mean and downside entropy.
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Internet Appendix

Figure A.1. GDP Location and Scale Parameters over Time. The figure shows the
time series evolution of location µt and scale σt. The one quarter ahead parameters are in
the left column, the four quarter ahead parameters are in the right column.
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Figure A.2. GDP Shape and Degrees of Freedom over Time. The figure shows
the time series evolution of location shape αt and degrees of freedom νt. The one quarter
ahead parameters are in the left column, the four quarter ahead parameters are in the right
column.
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Figure A.3. GDP Moments over Time. The figure shows the time series evolution
of the conditional mean and variance. The one quarter ahead parameters are in the left
column, the four quarter ahead parameters are in the right column.
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Figure A.4. GDP Moments over Time. The figure shows the time series evolution of
the conditional skewness, and kurtosis. The one quarter ahead parameters are in the left
column, the four quarter ahead parameters are in the right column.
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Figure A.5. Probability Densities. The panels in this figure show the estimated skewed
t-density functions for one quarter and four quarter ahead GDP. For comparison, we also
report the skewed t-density functions obtained by fitting the unconditional empirical distri-
bution.
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