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Abstract 

We study the conditional distribution of GDP growth as a function of economic and financial 

conditions. Deteriorating financial conditions are associated with an increase in the conditional 

volatility and a decline in the conditional mean of GDP growth, leading the lower quantiles of 

GDP growth to vary with financial conditions and the upper quantiles to be stable over time: 

Upside risks to GDP growth are low in most periods while downside risks increase as financial 

conditions become tighter. We argue that amplification mechanisms in the financial sector 

generate the observed growth vulnerability dynamics.  
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1 Introduction

Economic forecasts usually provide point estimates for the conditional mean of GDP growth

and other economic variables. However, such point forecasts ignore risks around the central

forecast and, as such, may paint an overly optimistic picture of the state of the economy.

In fact, policy makers’ focus on downside risk has increased in recent years. In the U.S.,

the Federal Open Market Committee (FOMC) commonly discusses downside risks to growth

in FOMC statements, with the relative prominence of this discussion fluctuating with the

business cycle. Globally, a number of inflation targeting central banks publish GDP growth

and inflation distributions. At the same time, surveys of economists (the Blue Chip Eco-

nomic Survey), market participants (the Federal Reserve Bank of New York’s Primary Dealer

Survey) and professional forecasters (the Federal Reserve Bank of Philadelphia’s Survey of

Professional Forecasters) all collect respondents’ beliefs regarding the probability distribution

around the point forecast.

In this paper, we model empirically the full distribution of future real GDP growth as

a function of current financial and economic conditions. We estimate the distribution semi-

parametrically using quantile regressions. Our main finding is that the estimated lower

quantiles of the distribution of future GDP growth exhibit strong variation as a function of

current financial conditions, while the upper quantiles are stable over time. Moreover, we

show that current economic conditions forecast the median of the distribution, but do not

contain information about the other quantiles of the distribution.

Next, we smooth the estimated quantile distribution every quarter by interpolating be-

tween the estimated quantiles using the skewed t-distribution, a flexible distribution function

with four parameters. This allows us to transform the empirical quantile distribution into

an estimated conditional distribution of GDP growth, plotted in Figure 1. Two features are

striking about the estimated distribution. First, the entire distribution, and not just the

central tendency, evolves over time. For example, recessions are associated with left-skewed
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Figure 1. Distribution of GDP growth over time. One-year-ahead predictive distri-
bution of real GDP growth, based on quantile regressions with current real GDP growth and
NFCI as conditioning variables.

distributions while, during expansions, the conditional distribution is closer to being sym-

metric. Second, the probability distributions inherit the stability of the right tail from the

estimated quantile distribution, while the median and the left tail of the distribution exhibit

strong time series variation. This asymmetry in the evolution of the conditional distribution

of future GDP growth indicates that downside risk to growth varies much more strongly over

time than upside risk.

We summarize the downside and upside risks to the median GDP growth forecast us-

ing two metrics: (1) the upside and downside entropy of the unconditional distribution of

GDP growth relative to the empirical conditional distribution; (2) the expected shortfall

and its upper tail counterpart (“expected longrise”). While downside relative entropy cap-

tures the conditional risks to the downside in excess of the downside risks predicted by the

unconditional distribution, expected shortfall measures the total probability mass that the

conditional distribution assigns to the left tail of the distribution. Similarly, upside relative

entropy captures the conditional risks to the upside in excess of the upside risks predicted
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by the unconditional distribution, and the expected longrise measures the total probability

mass that the conditional distribution assigns to the right tail of the distribution. We find

that both measures of downside risk move with financial conditions, whereas both measures

of upside risk are significantly more stable over time. This asymmetry echoes our finding

that the dependence of future GDP growth on current financial conditions is significantly

stronger for the lower quantiles of the distribution than for the upper quantiles.

We find that the conditional mean of GDP growth is negatively correlated with condi-

tional volatility and measures of downside risk, with changes in conditional volatility leading

changes in conditional mean by at least one quarter. These findings are consistent with the

“volatility paradox” postulated in the recent literature on intermediary asset pricing (see e.g

Brunnermeier and Sannikov, 2014; Adrian and Boyarchenko, 2012): Periods of low volatility

precede negative growth outcomes.

We perform many robustness tests to our findings. First, we show that out-of-sample

estimates of the conditional distribution of future growth are very similar to the in-sample

distribution. This leads the out-of-sample estimates of growth vulnerability to likewise be

similar to the in-sample estimates. Furthermore, we analize predictive scores and probability

integral transforms to document our strong out-of-sample performance. Second, we demon-

strate that the strong time variation of lower quantiles of future GDP growth is not an artifact

of our two-step linear quantile regression estimation procedure, but also arises both when we

estimate the conditional distribution either fully parametrically or fully non-parametrically.

Finally, in the appendix, we present alternative measures of financial conditions, focusing on

specific variables whose predictive power for growth that has been emphasized in the recent

macro finance literature, such as credit spreads, the term spread, and equity volatility. We

find that the conditional quantile function is most sensitive to the overall financial conditions

index, followed by equity volatility, term spread, and credit spread.

Our findings have strong implications for the recent macro-finance literature that empha-

sizes the link between financial stability and macroeconomic performance. We document a
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non-linear relationship between financial conditions and the conditional distribution of GDP

growth, suggesting that DSGE models with frictions in either the supply of or the demand

for credit should allow for non-linear equilibrium relationships. In such models, financial

conditions create downside risk to the economy. For example, the buildup of leverage and

maturity transformation in the financial sector can give rise to financial vulnerability. The

arrival of unexpected productivity or credit demand shocks then causes the financial sector

to disinvest from the real economy, which depresses real economic growth.

The relationship between financial conditions and downside risk to GDP growth could

instead be non-causal, with financial conditions merely providing a better signal of negative

shocks to the economy. In this case, models that focus on the impact of Bayesian learning

on aggregate outcomes (see e.g. Orlik and Veldkamp, 2014; Johannes, Lochstoer, and Mou,

2016) should allow agents to use financial conditions as a signal in forming their beliefs.

Finally, our evidence suggests that GDP vulnerability changes at relatively high frequen-

cies. Such frequent changes in downside risk are in contrast to what would be predicted

by the recent literature on disaster risk and economic growth (see e.g. Barro, 2009; Gabaix,

2012; Wachter, 2013; Barro and Ursúa, 2012; Gourio, 2012), but are consistent with the

evidence from the term structure of asset prices across multiple markets.

A large literature has documented the decline of GDP volatility before the financial crisis

of 2008 (see e.g. Kim and Nelson, 1999; McConnell and Perez-Quiros, 2000; Blanchard and

Simon, 2001; Bernanke, 2004; Giannone, Lenza, and Reichlin, 2008). In contrast to that

influential literature, we focus not just on the second moment of GDP growth, but rather on

the whole conditional distribution of GDP growth. Our striking finding is that GDP growth

volatility is nearly entirely driven by the left side of the conditional distribution. In fact,

we can attribute the decline in volatility during the Great Moderation period prior to the

financial crisis to a decline in the downside risk to GDP growth.

From an econometric point of view, our paper is related to the statistical literature on

estimating and evaluating conditional distributions. We develop a straightforward two-step
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procedure for the estimation of the conditional probability distribution function. In the

first step, we employ the quantile regressions of Koenker and Bassett (1978) to estimate the

conditional quantile function of future GDP growth as a function of current financial and

economic conditioning variables. Ghysels (2014) and Schmidt and Zhu (2016) provide recent

applications of quantile regressions to the estimation of the distribution of stock returns. In

the second step, we fit a parametric inverse cumulative distribution function with a known

density function to the empirical conditional quantile function, for each quarter in the sample.

The procedure is computationally straightforward, and allows us to transform the inverse

cumulative distribution function from the quantile regression into a density function. Al-

ternative ways to estimate conditional predictive distributions for GDP growth proposed in

the literature include the two state Markov chain (Hamilton, 1989), the Bayesian vector au-

toregression with stochastic volatility (Cogley, Morozov, and Sargent, 2005; Primiceri, 2005;

Clark, 2012; D’Agostino, Gambetti, and Giannone, 2013), and copula estimates (Smith and

Vahey, 2016). Our approach makes fewer parametric assumptions and is computationally

much less burdensome. Importantly, the two state Markov chain does not feature financial

conditions as state variables, and the Bayesian vector autoregression features exogenous time

variation of risk. Instead, we find that the conditional mean and the conditional volatility

are negatively correlated as a function of current financial conditions.

Our approach differs from the recent literature that has analyzed GDP uncertainty in

its finding of the preeminent role for downside risk, rather than symmetric measures of risk.

Baker, Bloom, and Davis (2016) propose a measure of political uncertainty based on news

announcements. Jurado, Ludvigson, and Ng (2015) and Clark, Carriero, and Massimiliano

(2016) compute conditional volatility from a large number of macroeconomic variables. That

literature also finds the conditional mean and volatility of GDP growth to be negatively

correlated. The main difference to our work is our emphasis on financial conditions as

determinants of the conditional GDP distribution. Intriguingly, our measure of downside

vulnerability correlates with the macroeconomic uncertainty index of Jurado et al. (2015)
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but is more stable during the Great Moderation period.

More closely related to our paper, Giglio, Kelly, and Pruitt (2016) also use a quantile

regression approach to evaluate the ability of various measures of systemic risk proposed in

the literature to predict real activity outcomes. They find that, although some measures of

systemic risk are statistically significant predictors of the left tail of real activity outcomes,

systemic risk measures are unable to predict the right tail of real activity outcomes. Our

approach differs as we focus on the entire GDP distribution.

The rest of the paper is organized as follows. Section 2 presents the measures of eco-

nomic and financial conditions, and relates them to GDP growth in a descriptive fashion.

Section 3 presents our estimates of the conditional GDP distribution, and introduces the

concept of GDP vulnerability. Section 4 discusses out-of-sample results and alternative fully

parametric and nonparametric approaches. Section 5 discusses implications of our findings

for macroeconomic theory. Section 6 concludes.

2 Economic and Financial Conditions and GDP Growth

To gauge economic and financial conditions, we use real GDP growth and the National

Financial Conditions Index (NFCI).1 The NFCI provides a weekly estimate of U.S. financial

conditions in money markets, debt and equity markets, and the traditional and shadow

banking systems. The index is a weighted average of 105 measures of financial activity, each

expressed relative to their sample averages and scaled by their sample standard deviations.2

When the NFCI is positive, financial conditions are tighter than average. The methodology

for the NFCI is described in Brave and Butters (2012) and is based on the quasi maximum

likelihood estimators for large dynamic factor models developed by Doz, Giannone, and

Reichlin (2012). The data for the NFCI starts in January 1973, which we use as starting

point for our empirical investigation. We use real GDP data from the Bureau of Economic
1The NFCI is computed by the Federal Reserve Bank of Chicago, and is available here.
2The list of indicators is provided here.
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Analysis (BEA) to compute real GDP growth.3

Figure 2 shows the times series of real GDP growth and the NFCI.4 The time series plot

is our first indication of a non-linear relationship between future GDP growth and financial

conditions: While GDP growth is, on average, much more volatile than the NFCI, extreme

negative outcomes in GDP growth tend to coincide with extreme positive outcomes of the

NFCI.

To characterize formally the conditional relationship between future GDP growth and

current financial and economic conditions, we rely on quantile regressions. Let us denote

by yt+h the annualized average growth rate of GDP between t and t+ h and by xt a vector

containing the conditioning variables, including a constant. In a quantile regression of yt+h

on xt the regression slope βτ is chosen to minimize the quantile weighted absolute value of

errors:

β̂τ = argmin
βτ∈Rk

T−h∑
t=1

(
τ · 1(yt+h≥xtβ) |yt+h − xtβτ |+ (1− τ) · 1(yt+h<xtβ) |yt+h − xtβτ |

)
(1)

where 1(·) denotes the indicator function. The predicted value from that regression is the

quantile of yt+h conditional on xt

Q̂yt+h|xt (τ |xt) = xtβ̂τ . (2)

Koenker and Bassett (1978) show that Q̂yt+h|xt (τ |xt) is a consistent linear estimator of the

quantile function of yt+h conditional on xt. The quantile regression differs from an ordinary

least squares regression in two respects. First, the quantile regression minimizes the sum of

absolute errors, rather than the sum of squared errors. Second, it puts differential weights
3Downloaded from FRED.
4The NFCI is converted into quarterly frequency by averaging the weekly observations within each quarter.

For the attribution of weeks to overlapping quarters we follow the convention of Federal Reserve Economic
Data (FRED) Economic Data, which is the source of our data. Weeks that start in one quarter and end in
the next one are fully assigned to the latter quarter. For example, a weekly period that starts on Monday
September 28 2015 and ends on Friday October 2 2015 is included in the aggregated value for the fourth
quarter.
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on the errors depending on whether an error term is above or below the quantile.

Figure 3 shows the scatter plot of one quarter ahead and four quarters ahead GDP growth

against the NFCI and the current realization of real GDP growth, as well as the univariate

quantile regression lines for the 5th, 50th and 95th quantiles and the OLS regression line.

For the NFCI, the slopes differ significantly across quantiles and from the OLS regression

line. Indeed, Figure 4 shows that, at both the lower and the upper quantiles, the estimated

slopes are significantly different, at the 10 percent level, from the OLS slope.5 The regression

slopes change dramatically for the NFCI across the quantiles, but are stable for current GDP

growth. Importantly, the regression slopes for the NFCI do not change significantly when

current GDP growth is also included in the regression, indicating that most of the explanatory

power of future GDP vulnerability arises from the information content of financial conditions.

On the other hand, for economic conditions, the quantile regression slopes are not statistically

significantly different from each other nor from the linear regression slopes, suggesting that

economic conditions are uninformative for predicting tail outcomes.

Figure 5 shows one and four quarter GDP growth together with its conditional median

and its conditional 5, 25, 75 and 95 percent quantiles. This figure demonstrates the main

result of the paper: the asymmetry between the upper and lower conditional quantiles. While

the lower quantiles vary significantly over time, the upper quantiles are stable. Figure 6 shows

that the median and interquartile range are strongly negatively correlated. Deteriorations

of financial conditions coincide with increases in the interquartile range and decreases in

the median (Figure 6a and 6b). Thus, the left tail of the distribution shifts to the left,

as illustrated in Figure 6c and 6d: The 5th quantile has a negative relationship with the

interquartile range. On the other hand, for the upper quantiles, the movements in the
5The confidence bounds plotted in Figure 4 are the 95 percent confidence bounds for the null hypothesis

that the true data-generating process is a flexible and general linear model for growth and financial conditions.
In particular, we estimate a vector autoregression (VAR) with four lags, Gaussian innovations and a constant
using the full-sample evolution of the NFCI and real GDP growth, and bootstrap 1000 samples to compute the
bounds at different confidence level for the OLS relationship. Quantile coefficient estimates that fall outside
this confidence bound thus indicate that the relation between GDP growth and the predictive variable is
non-linear.
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median and the interquartile range are offsetting. Thus, changes in financial conditions have

relatively little predictive information for the upper quantiles of future GDP growth, as is

visible in Figure 5. This strong asymmetry of the quantiles of GDP growth is striking. We

study it more extensively in the next section.

3 Quantifying GDP Vulnerability

3.1 The Conditional GDP Distribution

The quantile regression (2) provides us with approximate estimates of the quantile function,

an inverse cumulative distribution function. In practice, these estimates are difficult to map

into a probability distribution function because of approximation error and estimation noise.

We fit the skewed t-distribution developed by Azzalini and Capitanio (2003) in order to

smooth the quantile function and recover a probability density function:6

f (y;µ, σ, α, ν) =
2

σ
t

(
y − µ
σ

; ν

)
T

(
α
y − µ
σ

√
ν + 1

ν + y−µ
σ

; ν + 1

)
(3)

where t(·) and T (·) respectively denote the PDF and CDF of the Student t-distribution. The

four parameters of the distribution pin down the location µ, scale σ, fatness ν, and shape

α. Relative to the t-distribution, the skewed t-distribution adds the shape parameter which

regulates the skewing effect of the CDF on the PDF. The skewed t-distribution is part of a

general class of mixed distributions proposed by Azzalini (1985) and further developed by

Azzalini and Dalla Valle (1996). The intuition for the derivation is that a base probability

distribution – in this case t
(
y−µ
σ

; ν
)
– gets shaped by its cumulative distribution function, and

rescaled by a shape parameter α. The notable special case is the traditional t-distribution

when α = 0. In the case of both α = 0 and ν = ∞, the distribution reduces to a Gaussian
6An alternative approach to smoothing the quantile densities is to interpolate the quantile function using

splines. Imposing monotonicity and smoothness requires additional modeling choices, as in for example
Schmidt and Zhu (2016).
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with mean µ and standard deviation σ. When ν =∞ and α 6= 0, the distribution is a skewed

normal.

For each quarter, we choose the four parameters {µt, σt, αt, νt} of the skewed t-distribution

f to minimize the squared distance between our estimated quantile function Qyt+h|xt (τ) from

(2) and the quantile function of the skewed t-distribution F−1 (τ ;µt, σt, αt, νt) from (3) to

match the 5, 25, 75, and 95 percent quantiles

{µ̂t+h, σ̂t+h, α̂t+h, ν̂t+h} = argmin
µ,σ,α,ν

∑
τ

(
Q̂yt+h|xt (τ |xt)− F−1 (τ ;µ, σ, α, ν)

)2
(4)

where µ̂t+h ∈ R, σ̂t+h ∈ R+, α̂t+h ∈ R, and ν̂t+h ∈ Z+.7 This can be viewed as an exactly

identified nonlinear cross sectional regression of the predicted quantiles on the quantiles of

the skewed t-distribution.8

Figure 7 plots the estimated conditional quantile distribution Q̂yt+h|xt (τ |xt) and two

versions of the fitted inverse cumulative skewed t-distribution F−1 (τ ; µ̂t+h, σ̂t+h, α̂t+h, ν̂t+h)

– one conditional on both GDP growth and NFCI and one conditional on GDP growth alone

– for three sample dates at different points of the business cycle: 2006Q2, which represented

the end of the Federal Reserve’s tightening cycle before the financial crisis; 2008Q4, when

the zero lower bound was reached just after the failure of Lehman; and 2014Q4, which is the

last in-sample date of our dataset. In all three cases, the skewed t-distribution is sufficiently

flexible to smooth the estimated quantile function while passing through all four target

quantiles for both the one-quarter-ahead and the four-quarters-ahead forecasts. Figure 7 also

shows that the distribution conditional on both economic and financial conditions can deviate

substantially from the distribution conditional on economic conditions only. While the full

conditional distribution is above the distribution conditional only on economic conditions

during expansions, it is significantly below the distribution the conditional only on economic
7Notice that these parameters are functions of the conditioning variables xt. We drop the explicit depen-

dence for notational convenience.
8An alternative approach would be to use the entire quantile function to pin down the parameters of f ,

and allow the parameters of the skewed t-distribution to be over-identified. We follow the more parsimonious
exactly-identified approach here.

10



conditions during recessions, especially in the left tail.

Figure 8 then plots the two versions of the fitted conditional probability density functions

of GDP growth for the same three quarters. Comparing the conditional density across the

three quarters, we see significant time variation in the density and that this time variation

is primarily due to changes in the lower tail of the distribution. During business cycle up-

swings, such as in 2006Q2 and 2014Q4, the distribution conditional on both GDP growth and

financial conditions has lower variance and greater positive skewness than the distribution

conditional on GDP growth only. During downturns, such as 2008Q4, instead, the distribu-

tion conditional on both GDP growth and financial conditions has higher variance, greater

negative skewness, and a lower mean than the distribution conditional on GDP growth

only. These results might seem to contradict the recent evidence on the unpredictability

of GDP growth during the Great Moderation (see e.g. D’Agostino, Giannone, and Surico,

2006; Rossi and Sekhposyan, 2010) and the weak and unstable predictive power of financial

indicators (Stock and Watson, 2003). However, those studies focused on point forecasts,

while we investigate the ability of current economic and financial conditions to predict the

entire distribution of GDP growth.

In the online appendix, we also show the time series evolution of the fitted parameters

in Figures A.1 and A.2. The time series pattern of the scale parameter σt resembles the

financial conditions index most closely. The parameters α̂t+h, νt+h that govern the shape

and fatness of the distribution exhibit time series patterns that have low correlations with

either the economic or the financial conditions index. This is because our fitting procedure

is very nonlinear, thus giving rise to a time series pattern that would be difficult to detect

using linear regressions or correlations. Furthermore, the αt+h, νt+h parameters are relatively

stable.

The picture that emerges is one where changes in location and scale are the most im-

portant determinants of the shifts in the conditional distribution. The strong time-variation

in the lower quantiles of the distribution reflects the strong negative correlation between
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the location and scale. Deteriorations in financial conditions coincide with declines in the

location and increases in the scale of the distribution, and thus with a leftward shift of the

distribution.

3.2 Measuring Vulnerability

The median of the predicted density provides the modal forecast for GDP growth next

quarter and four quarters ahead. However, policy makers are often concerned with the

downside and upside risks to the forecast or, in other words, how vulnerable the predicted

path of GDP growth is to unexpected shocks. In this paper, we quantify upside and downside

vulnerability of future GDP growth as the “extra” probability mass that the conditional

density assigns to extreme right and left tail outcomes, relative to the probability of these

outcomes under the unconditional density. By comparing the probability assigned to extreme

outcomes by the conditional density to the probability assigned to the same outcomes by the

unconditional density, we evaluate whether the predicted GDP distribution in a given quarter

implies greater vulnerability around the modal forecast than the unconditional distribution.

More formally, we denote by ĝyt+h the unconditional density computed by matching the

unconditional empirical distribution of GDP growth9 and by f̂yt+h|xt(y|xt) = f (y; µ̂t+h, σ̂t+h, α̂t+h, ν̂t+h)

the estimated skewed t-distribution. We define the upside, LUt , and downside, LDt , entropy

of ĝyt+h(y) relative to f̂yt+h|xt(y|xt) as

9The unconditional density is time invariant and can be computed by to performing the two-step procedure
where only the constant term is included in the quantile regression of the first step.
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LDt
(
f̂yt+h|xt ; ĝyt+h

)
= −

∫ F̂−1
yt+h|xt

(0.5|xt)

−∞

(
log ĝyt+h (y)− log f̂yt+h|xt (y|xt)

)
f̂yt+h|xt (y|xt) dy,

(5)

LUt
(
f̂yt+h|xt ; ĝyt+h

)
= −

∫ ∞
F̂−1
yt+h|xt

(0.5|xt)

(
log ĝyt+h (y)− log f̂yt+h|xt (y|xt)

)
f̂yt+h|xt (y|xt) dy,

(6)

where F̂yt+h|xt(y|xt) is the cumulative distribution associated with f̂yt+h|xt(y|xt) and F̂
−1
yt+h|xt(0.5|xt)

is the conditional median. Intuitively, downside entropy measures the divergence between

the unconditional density and the conditional density that occurs below the median of the

conditional density. When downside entropy is high, the conditional density assigns positive

probability to more extreme left tail growth outcomes than the unconditional density. Sim-

ilarly, upside entropy measures the divergence between the unconditional density and the

conditional density that occurs above the median of the conditional density. When upside

entropy is high, the conditional density assigns positive probability to more extreme right

tail growth outcomes than the unconditional density. It is important to note that, unlike the

full relative entropy between two distribution, upside and downside entropy can be negative,

though not at the same time. That is, while the overall divergence between two distributions

is positive, one density can put more mass in one tail of the distribution while the other puts

more mass in another tail.

In Appendix A.1, we illustrate the properties of downside and upside entropies using two

examples: one where GDP growth evolves according to a first-order autoregressive (AR(1))

process with normal innovations and the second in which GDP growth evolves according to

an AR(1) process with innovations drawn from a mixture of normal distributions. When

both the conditional and unconditional distributions of GDP growth are Gaussian, downside

entropy is high when the median of the conditional distribution is lower than the median of

the unconditional distribution. If the conditional and unconditional medians coincide, down-
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side entropy equals upside entropy. Instead, when innovations to the conditional distribution

are drawn from a mixture of truncated normals, the volatility conditional on GDP growth

falling below the median is higher than the volatility conditional on GDP growth falling

above the median, and upside entropy exceeds downside entropy even when the conditional

and unconditional median of the GDP growth distribution coincide.

An alternative way of characterizing downside and upside risks to GDP growth is in terms

of expected shortfall and its upper tail counterpart, which we term the expected longrise.

For a chosen target probability π, the shortfall and longrise are defined, respectively, as

SFt+h =
1

π

∫ π

0

F̂−1yt+h|xt(τ |xt)dτ ; LRt+h =
1

π

∫ 1

1−π
F̂−1yt+h|xt(τ |xt)dτ.

The information content of the relative entropy and the expected shortfall measures is dis-

tinct. While shortfall and longrise summarize the tail behavior of the conditional distribution

in absolute terms, downside and upside entropy measure the tail behavior of the conditional

distribution in excess of the tail behavior exhibited by the unconditional distribution. Thus,

if both the unconditional and conditional distributions are negatively skewed, downside en-

tropy will be low while expected shortfall will be high.

Figures 9a and 9b show the evolution of GDP upside and downside entropy one and

four quarters ahead. Figures 9c and 9d plot the 5% expected shorfall and the 95% expected

longrise. Despite differences in the information content of the two measures, they exhibit a

surprising degree of similarity, indicating that the non-Gaussian features of the conditional

distribution are largely absent from the unconditional distribution. It is also noteworthy

that, while the upside and downside entropy measures do comove, downside entropy is more

volatile and has much more pronounced nonlinearities. Similarly, the expected shortfall

and longrise measures are positively correlated but expected shortfall is significantly more

volatile.
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4 Out-of-sample Evidence and Alternative Approaches

4.1 Out of Sample Evidence

In this section, we evaluate the out-of-sample performances of the methods. We backtest the

model by replicating the analysis that an economist would have done by using the proposed

methodology in real time, with the caveat that we use final revised data only.10

We produce predictive distributions recursively for two horizons (1 and 4 quarters), start-

ing with the estimation sample that ranges from 1973Q1 to 1992Q4. More precisely, using

data from 1973Q1 to 1992Q4, we estimate the predictive distribution for 1993Q1 (one quar-

ter ahead) and 1993Q4 (one year ahead). We then iterate the same procedure, expanding

the estimation sample, one quarter at a time, until the end of the sample (2015Q4). At each

iteration, we repeat the estimation steps of Sections 2 and 3, estimating quantile regressions,

matching the skewed t-distribution, and computing downside and upside entropy. The out-

come of this procedure is a 20 year time-series of out-of-sample density forecasts for each of

the two forecast horizons.

We perform two types of out-of-sample analyses. First, we study the robustness of the

results shown so far by comparing the in-sample measures of vulnerability with their realtime

counterparts. Second, we evaluate the out-of-sample accuracy and calibration of the density

forecasts by analyzing the predictive score and the probability integral transform (PIT), that

is, the predictive density and cumulative distribution evaluated at the outturn, respectively.

Results for the first exercise are presented in Figure 10. We report selected quantiles

and downside entropy computed using the full sample (in-sample) and recursively (out-

of-sample). The figure illustrates that the in-sample and out-of-sample estimates of the

quantiles are virtually indistinguishable. The similarities are more striking as the financial

crisis of 2007-09 is a significant tail event that is not in the data when estimating the
10Real-time data for the NFCI are only available for the recent past.
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out-of-sample quantiles. The stability of the recursive estimates thus shows that downside

vulnerability can be detected in real time.

To assess the reliability of the predictive distribution, we measure the accuracy of a

density forecast using the predictive score, computed as the predictive distribution generated

by a model and evaluated at the realized value of the time series. Higher predictive scores

indicate more accurate predictions because they show that outcomes that the model considers

more likely are closer to the ex-post realization. Figures 11a and 11b plot the scores of the

predictive distribution conditional on both financial and economic conditions together with

the scores of the predictive distribution conditional on economic conditions alone. The

predictive score for the distribution conditional on both financial and economic conditions is

frequently above that of the distribution conditional economic conditions only. Thus, the full

conditional distribution is often more accurate – and rarely less accurate – than the one that

conditions on economic conditions only, and the information contained in the conditioning

variables is a robust and genuine feature of the data.

We conclude the out-of-sample evaluation by analyzing the calibration of the predictive

distribution. We compute the empirical cumulative distribution of the PITs, which measures

the percentage of observations that are below any given quantile. The model is better

calibrated the closer the empirical cumulative distribution of the PITs is to the 45 degrees

line. In a perfectly calibrated model, the cumulative distribution of the PITs is a 45-degree

line, so that the fraction of realizations below any given quantile Qyt+h|xt
(τ) of the predictive

distribution is exactly equal to τ . Results are presented in Figures 11c and 11d for both

the conditional and unconditional distribution. Following Rossi and Sekhposyan (2017),

we report confidence bands around the 45-degree line to account for sample uncertainty.11

For both the full conditional predictive distribution and the predictive distribution that
11The confidence bands should be taken as general guidance since they are derived for forecasts computed

using a rolling scheme, i.e. with a constant length of the estimation sample, while we use an expanding
estimation window. For the one-quarter-ahead, the bands are based on the critical values derived under the
null of uniformity and independence of the PIT. For the PITs of the one-year-ahead predictive distributions,
bands are computed by bootstrapping under the assumption of uniformity only.
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conditions on economic conditions only, the empirical distribution of the PITs is well within

the confidence bands for the lower quantiles, though the empirical distribution falls outside

the confidence band in the center of the distribution. Overall, Figure 11 illustrates that the

quantile regression approach generates robust predictive distributions, and is able to capture

downside vulnerabilities particularly well.

4.2 Alternative Econometric Approaches

We view our two-step estimation procedure of fitting quantile regressions in the time series,

and then the distribution across quantiles, as a methodological contribution of the paper.

Our two step procedure is straightforward to estimate both in- and out-of-sample and is

very flexible. In the online appendix, we further show that the procedure is robust to

including alternative measures of financial conditions. In this subsection, we investigate

two alternative econometric approaches: a fully parametric approach that estimates the

conditional distribution of GDP growth via maximum likelihood and a fully non-parametric

approach.

We begin with the fully parametric approach. Consider the following model

yt+1 = γ0 + γ1xt + σtεt+1; ln
(
σ2
t

)
= δ0 + δ1xt, (7)

where εt+1 ∼ N(0, 1) and xt are conditioning variables. The model is estimated via maximum

likelihood.12 Figure 12a plots the conditional mean and the conditional lower and upper

5th quantiles for one-quarter-ahead GDP growth implied by the model in equation (7).

The simple conditionally heteroskedastic model is able to reproduce the strongly skewed

conditional GDP distribution by simply shifting the mean and volatility of GDP as a function

of economic and financial conditions.

Both the quantile regression and the conditionally heteroskedastic model are linear in
12We have also estimated the model with ARCH and GARCH components of Engle (1982), but it turns

out that in quarterly data, the conditioning variables drive out those effects.
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the conditioning variables, a condition which might seem restrictive. We obtain the same

qualitative results more directly—less parametrically—allowing for general dependence of

the quantiles on the conditioning variables. In particular, following Li, Lin, and Racine

(2013) we estimate the conditional cumulative density function of one-quarter-ahead GDP

growth yt+1 as a function of current quarter conditioning variables xt = (x1,t, ..., xn,t)
′ as

F̂yt+1|xt (y|x) =

1
T−1

∑T−1
t=1 Φ

(
y−yt+1

ω0

)
Kω (xt, x)

1
T−1

∑T−1
t=1 Kω (xt, x)

, (8)

where

Kω (xt, x) =
n∏
i=1

1

ωi
φ

(
xi − xi,t
ωi

)
,

and φ (·) and Φ (·) are the standard normal pdf and cdf, respectively; T is the number of

observations; and ω0, ω1, . . . , ωn are bandwidths chosen by cross-validation, as described in

Li et al. (2013).13

Figure 12b plots the conditional mean and the conditional lower and upper 5th quantiles

for one-quarter-ahead GDP growth implied by the model in equation (8). As with the ML

estimates, the conditional quantiles obtained using the less parametric estimation procedure

produce the general feature that the right tail of the distribution is stable while the left tail

moves with financial conditions. However, the fluctuations of the left tail are smoother, due

to a conservative bandwidth selection that is necessary to counteract the tendency of the

very flexible model to overfit the data.14

Overall, the results for both the fully parametric and the fully non-parametric models
13The authors establish optimality of this data-driven selection method under the assumption of inde-

pendence. Although serial dependence might be a concern in our application, recent work by Li, Ouyang,
and Racine (2009) on nonparametric regression with weakly dependent data suggests that these optimality
results may still be valid.

14In Figure A.8 in the Online Appendix, we further show that both the ML approach and the non-
parametric approach perform well out-of-sample, though slightly less so than the semi-parametric conditional
quantile approach. Indeed, the scores of the predictive distributions are somewhat smaller.
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confirm that our main findings are not an artifact of the two-step quantile regression proce-

dure but reflect a robust property of the distribution of GDP growth conditional on financial

conditions.

Alternative ways to estimate conditional GDP distributions have been proposed in the

literature, such as the two state Markov chain of Hamilton (1989). Hamilton’s model could

be augmented to include financial conditioning variables that shift the transition probabilities

between the two states using the estimation method of Filardo (1994). More generally, Chen,

Fan, and Tsyrennikov (2006) present a semi-parametric estimator of multivariate copula

models that would allow the mixing between distributions as a function of financial condition

variables (see Smith and Vahey, 2016 for an application to modeling GDP growth). Another

strand of the macroeconomic literature introduces time varying volatility into macroeconomic

dynamics following the Bayesian vector autoregression of Primiceri (2005). For example,

Clark (2012) features an exogenously time varying stochastic volatility process in a Bayesian

vector autoregression. The incorporation of financial conditions in the volatility process in

such Bayesian vector autoregressions might give rise to conditional density forecasts similar

to the ones we obtain. Finally, alternative semi-parametric and non-parametric methods

could be used, including the sieve regressions of Chen, Liao, and Sun (2014) or the efficient

non-parametric methods of Li and Racine (2007) and Norets and Pati (2017).

5 Implications for Theories of Macroeconomic Dynamics

Our main finding is that, while economic conditions forecast median GDP growth, downside

risks to GDP growth are predicted by financial conditions and upside risks are stable over

time. This finding presents challenges to traditional macroeconomic modeling because it

points to the importance of financial conditions above economic conditions in predicting the

future evolution of GDP growth. Measures of financial conditions may help forecast downside

risks to GDP growth because they capture frictions in either the supply of or the demand
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for credit in the economy, or because financial conditions represent a more informative signal

about potential future risks. In this section, we discuss these theoretical alternatives.

We begin with the literature on the credit channel of monetary policy (see the overviews

by Bernanke and Gertler, 1995, Boivin, Kiley, Mishkin et al., 2010, and Brunnermeier,

Eisenbach, and Sannikov, 2013), which emphasizes the role that frictions play in the demand

for credit. In these models, which rely on asymmetric information between lenders and

borrowers and moral hazard on the part of borrowers, a tightening in the stance of monetary

policy leads to a decrease in the net worth of productive firms, causing adverse selection

and moral hazard problems to worsen. This generates an asymmetry in the business cycle,

with tighter financial conditions preceding economic downturns. However, this literature

has the drawback that, in the most common DSGE implementations of the credit channel,

models are only solved up to first order, so that financial vulnerability does not play a role

in equilibrium (see, in particular, Bernanke, Gertler, and Gilchrist, 1999 and Del Negro,

Eusepi, Giannoni, Sbordone, Tambalotti, Cocci, Hasegawa, and Linder, 2013). In contrast,

we find that financial conditions are particularly correlated with the higher moments of GDP

growth, suggesting that non-linear approximations to the solutions of such models may be

more appropriate for capturing the empirical distribution of GDP growth.

The Great Recession prompted the literature on credit frictions to also consider the

role that financial conditions play in the supply of credit in the economy. Brunnermeier

and Sannikov (2014), He and Krishnamurthy (2012) and Adrian and Boyarchenko (2012)

consider production economies where the productive sector relies on a financial sector for

the supply of credit. In these models, changes in the vulnerability of the financial sector

lead to decreases in the supply of credit to the economy, potentially causing a downturn

in GDP growth. The simplicity of the production sector considered allows these models to

be solved analytically without relying on (log-)linearization and to instead emphasize the

non-linear amplification channel created by constraints on the intermediary sector. This

literature also shows that, in the presence of leverage constraints on intermediary capital,
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a volatility paradox arises, in which times of low volatility of output growth coincide with

high average output growth and foreshadow times of low average output growth.

The conditional distribution of GDP growth we construct is consistent with these predic-

tions. Figure 13 shows that, contemporaneously, high realizations of the conditional mean of

GDP growth are associated with both low volatility and low downside entropy. This negative

relationship between the conditional mean and measures of growth vulnerability is present

at both the one quarter and four quarter horizons. These two effects combined generate a

negatively skewed unconditional distribution, as downward shifts in the growth outlook are

associated with an increase in risk.

Figure 14 further shows that the negative relationship between the conditional mean and

measures of vulnerability is present at multiple leads and lags of the vulnerability measures.

In particular, the negative correlation between the conditional mean and volatility is sta-

tistically significant for two years leads and two years lags of volatility. Thus, the negative

association between risk and return is a robust feature at multiple horizons. At the one

quarter horizon, a one-standard-deviation increase in the conditional volatility is associated

with a 0.8-standard-deviation decrease in the next quarter’s predicted conditional mean of

GDP growth.

Finally, financial conditions may predict downside risk to GDP growth because financial

conditions may provide a better signal of non-normal shocks to the economy. Models of

the impact of Bayesian learning on aggregate outcomes (see e.g. Orlik and Veldkamp, 2014

and Johannes et al., 2016) do have the potential to generate a negative correlation between

the conditional mean and the conditional volatility of GDP growth. However, our results

emphasize the importance of allowing agents to use financial conditions as a signal in forming

their beliefs, as we find conditional volatility to be predicted by financial, not economic,

conditions.

One possible source of non-normal shocks that could be captured by financial rather

than economic conditions is disaster risk. Catastrophic tail events, such as the Great De-
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pression or the 2008 financial crisis, can be used to generate a large equity risk premium (see

e.g. Barro, 2009; Gabaix, 2012; Wachter, 2013 and Barro and Ursúa, 2012). In turn, risk

and uncertainty aversion to extreme tail events impact macroeconomic dynamics in equi-

librium (see e.g. Gourio, 2012). In contrast, our evidence suggests that GDP vulnerability

changes at relatively high frequencies and is thus unlikely to be driven by changes in the

exposure to disaster risk. However, higher frequency changes in downside GDP vulnerability

are consistent with the more recent evidence from the term structure of asset prices: The

slopes of term structures of risk premia across multiple asset classes suggest that the equi-

librium pricing kernel reflects nonlinear shocks occurring at intermediate frequencies (see

e.g. Van Binsbergen, Hueskes, Koijen, and Vrugt, 2013; Backus, Boyarchenko, and Chernov,

Forthcoming).

6 Conclusion

The financial crisis of 2007–2009 and the ensuing Great Recession reignited academic interest

in the volatility of GDP growth. In this paper, we argue that the entire distribution of GDP

growth evolves over time, with the left tail of the distribution positively correlated with slack

in financial conditions. We measure the vulnerability of GDP growth to downside risks as

relative entropy of the unconditional relative to conditional predictive distribution, and show

that growth vulnerability is correlated with financial conditions.

The strong relationship between GDP vulnerability and financial conditions rationalizes

the FOMC’s increased emphasis on the notion of financial conditions. Peek, Rosengren, and

Tootell (2015) document the increased frequency of the mention of financial conditions in

FOMC statements, and show that financial conditions are a significant explanatory variable

in augmented Taylor rules. Caldara and Herbst (2016) argue that monetary policy can be

characterized by a direct and economically significant reaction to changes in credit spreads.

Monetary policy models that feature frictions in the financial intermediary sector rationalize
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these findings, as optimal Taylor rules are augmented by financial variables that can be inter-

preted as measures of GDP vulnerability (see Curdia and Woodford, 2010; Gambacorta and

Signoretti, 2014). Adrian and Liang (2016) point out that monetary policy impacts financial

conditions as well as vulnerabilities, thus producing an intertemporal tradeoff for mone-

tary policy between present macroeconomic objectives and risks to objectives in the future.

Measuring downside growth vulnerability helps quantify the cost side of that tradeoff.
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Figure 2. Raw Data. The figure shows the time series of the quarterly growth rate of
real GDP growth and the NFCI.
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Figure 3. Quantile Regressions. The figure shows the univariate quantile regressions of
one quarter ahead (left column) and four quarter ahead (right column) real GDP growth on
current real GDP growth and the NFCI.
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(b) One year ahead: GDP
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(c) One quarter ahead: NFCI
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(d) One year ahead: NFCI
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Figure 4. Estimated Quantile Regression Coefficients. The figure shows the esti-
mated coefficients in quantile regressions of one quarter ahead (left column) and one year
ahead (right column) real GDP growth on current real GDP growth and NFCI. We report
confidence bounds for the null hypothesis that the true data-generating process is a gen-
eral, flexible linear model for growth and financial conditions (VAR with 4 lags); bounds are
computed using 1000 bootstrapped samples.
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Figure 5. Predicted Distributions. The figure shows the time series evolution of the
predicted distribution of one quarter ahead (panel a) and four quarter ahead (panel b) real
GDP growth.
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Figure 6. Median, Interquartile Range, and 5 Percent Quantile of the Predicted
Distribution. The figure shows scatter plots of the median versus the interquartile range
(6a and 6b) and the 5 percent quantile versus the interquartile range (6c and 6d).
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Figure 7. The Conditional Quantiles and the Skewed t-Distribution. The panels
in this figure show the conditional quantiles together with the estimated skewed t-inverse
cumulative distribution functions for one quarter and one year ahead GDP growth. For
comparison, we also report the skewed t-inverse cumulative distribution functions obtained
by fitting the quantiles obtained by conditioning only on current real GDP growth.
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(c) One quarter ahead: Q4 2008
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(d) One year ahead: Q4 2008
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(e) One quarter ahead: Q4 2014
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Figure 8. Probability Densities. The panels in this figure show the estimated skewed
t-density functions for one quarter and one year ahead real GDP growth, with the density
estimated conditional on current real GDP growth and NFCI. For comparison, we also report
the skewed t-density functions obtained by conditioning on current real GDP growth only.
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Figure 9. Growth Entropy and Expected Shortfall over Time. The figure shows
the time series evolution of relative downside and upside entropy LDt and LUt together with
the 5% expected shortfall ESt.
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(c) 5% Expected Shortfall, ESt, and Lon-
grise, ELt: One quarter ahead
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Figure 10. Out-of-Sample Predictions. The figure compares out-of-sample and in-
sample predictive densities for GDP growth one and four quarter ahead. Figures 10a and 10b
show the 5, 50, and 95 percent quantiles. Figures 10c and 10d show downside entropy.
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Figure 11. Out-of-Sample Accuracy. The figure reports the predictive scores and the
cumulative distribution of the probability integral transform. Figures 11a and 11b compare
the out- of-sample predictive scores of the predictive distribution conditional on both NFCI
and real GDP growth, and the predictive distribution conditional on real GDP growth only.
Figures 11c and 11d report the empirical cumulative distribution of the probability integral
transform (PITs). Critical values are obtained as in Rossi and Sekhposyan (2017)
.
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(d) PITs: One year ahead
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Figure 12. Alternative Econometric Approaches: Predicted Distributions. The
figure shows the conditional mean, and the 95 percent and 5 percent standard error bands
for GDP growth one-quarter-ahead. In the top panel, the distributions are estimated with
a conditionally Gaussian model with conditioning variables in the mean equation and the
volatility equations. In the bottom panel, the distributions are estimated non-parametrically.
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Figure 13. Mean, Volatility, and Entropy. The figure shows scatter plots of the mean
versus the volatility (13a and 13b) and downside entropy versus the mean (13a and 13b) of
the one-quarter-ahead and the one-year-ahead distributions of real GDP growth.
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(b) Mean and Volatility: One year ahead
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(c) Mean and Entropy: One quarter ahead
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(d) Mean and Entropy: One year ahead
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Figure 14. Median, Interquartile Range, and 5 Percent Quantile. The figure shows
the cross correlograms between the mean and volatility, and mean and downside entropy.
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A Internet Appendix

A.1 Downside and Upside Entropy

In this section, we illustrate the properties of downside and upside entropy using two ex-
amples: one where GDP growth evolves according to a first-order autoregressive (AR(1))
process with normal innovations and one where GDP growth evolves according to an AR(1)
process with non-normal innovations. These examples illustrate that downside entropy de-
pends on the moments of the distribution of GDP growth conditional on the realization of
GDP growth being below the median, and upside entropy depends on the moments of the
distribution of GDP growth conditional on the realization of GDP growth being above the
median.

Example 1. Assume that GDP growth evolves as an AR(1) process with normal innovations,
so that

yt+1 = µg + ϕgyt + εt+1, ε ∼ N
(
0, σ2

ε

)
,

where yt+1 is the one quarter annualized average growth rate of GDP and ϕg < 1 is the
speed of mean-reversion of GDP growth to the unconditional growth rate (1− ϕg)−1 µg. In
this case, the (one-step-ahead) conditional distribution of GDP growth is

ft (y) =
(
2πσ2

ε

)− 1
2 exp

(
− 1

2σ2
ε

(y − µg − ϕgyt)2
)
,

and the unconditional distribution is

g (y) =
√

1− ϕ2
g

(
2πσ2

ε

)− 1
2 exp

(
−

1− ϕ2
g

2σ2
ε

(
y − µg

1− ϕg

)2
)
.

The downside and upside entropy in this case is given by

LDt (ft; g) = −
∫ µt

−∞

(
log
√

1− ϕ2
g −

1− ϕ2
g

2σ2
ε

(
y − µg

1− ϕg

)2

+
1

2σ2
ε

(y − µt)2
)
ft(y)dy

= −

(
log
√

1− ϕ2
g −

1− ϕ2
g

2σ2
ε

(
m−,t −

µg
1− ϕg

)2

+
(m−,t − µt)2

2σ2
ε

)∫ µt

−∞
ft(y)dy

− 1

σ2
ε

(
m−,t − µt −

(
1− ϕ2

g

)(
m−,t −

µg
1− ϕg

))∫ µt

−∞
(y −m−,t) ft(y)dy

+
ϕ2
g

2σ2
ε

∫ µt

−∞
(y −m−,t)2 ft (y) dy

= −1

2

(
log
√

1− ϕ2
g −

1− ϕ2
g

2σ2
ε

(
m−,t −

µg
1− ϕg

)2

+
1

π

)
+
ϕ2
g

4

(
1− 2

π

)
;
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LUt (ft; g) = −
∫ ∞
µt

(
log
√

1− ϕ2
g −

1− ϕ2
g

2σ2
ε

(
y − µg

1− ϕg

)2

+
1

2σ2
ε

(y − µt)2
)
ft(y)dy

= −

(
log
√

1− ϕ2
g −

1− ϕ2
g

2σ2
ε

(
m+,t −

µg
1− ϕg

)2

+
(m+,t − µt)2

2σ2
ε

)∫ +∞

µt

ft(y)dy

− 1

σ2
ε

(
m+,t − µt −

(
1− ϕ2

g

)(
m+,t −

µg
1− ϕg

))∫ +∞

µt

(y −m+,t) ft(y)dy

+
ϕ2
g

2σ2
ε

∫ +∞

µt

(y −m+,t)
2 ft (y) dy

= −1

2

(
log
√

1− ϕ2
g −

1− ϕ2
g

2σ2
ε

(
m+,t −

µg
1− ϕg

)2

+
1

π

)
+
ϕ2
g

4

(
1− 2

π

)
,

where µt = µg+ϕgyt is the conditional median of the distribution,m+,t ≡ Et [yt+1| yt+1 ≥ µt] =

µt + σε

√
2
π
is the mean of GDP growth conditional on being above the conditional median,

and m−,t ≡ Et [yt+1| yt+1 < µt] = µt−σε
√

2
π
is the mean of GDP growth conditional on being

below the conditional median.
Thus, when both the unconditional and conditional distributions are Gaussian, downside

(upside) entropy is expressed in terms of the square difference between the mean conditional
on the realization of GDP growth falling below (above) the mean and the unconditional mean
and the variance conditional on the realization of GDP growth falling below (above) the
mean. When the conditional mean µt coincides with the unconditional mean (1− ϕg)−1 µg,
so that the only difference between the conditional and the unconditional distribution is
in the variance, downside entropy equals the upside entropy, and risks to the upside and
downside are balanced. When the conditional mean is higher than the unconditional mean,
downside entropy is higher than upside entropy, and downside risk exceeds upside risk. This
property of upside and downside entropy is illustrated in Figure A.5c.

Example 2. Assume now that GDP growth evolves as an AR(1) process with a mixture of
normal innovations, so that

yt+1 = µg + ϕgyt + εt+1, ε ∼ p+N+

(
0, σ2

ε,+

)
+ p−N−

(
0, σ2

ε,−
)
,

where p+ is the probability of a positive innovation, and N+ (N−) denotes normal distri-
butions truncated from below (above) at 0. That is, we allow for negative shocks to GDP
growth to have a different variance than positive shocks to GDP growth, so that σε,− > σε,+.
In this case, the (one-step-ahead) conditional distribution of GDP growth is

ft (y) = p+

√
2

πσ2
ε,+

exp

(
− 1

2σ2
ε,+

(y − µg − ϕgyt)2
)
1y≥µg+ϕgyt

+ (1− p+)

√
2

πσ2
ε,−

exp

(
− 1

2σ2
ε,−

(y − µg − ϕgyt)2
)
1y<µg+ϕgyt .
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Assume further that the unconditional distribution is

g (y) =
√

1− ϕ2
g

(
2πσ2

ε

)− 1
2 exp

(
−

1− ϕ2
g

2σ2
ε

(
y − µg

1− ϕg

)2
)
.

For simplicity, we will focus on the case p+ = 1/2, so that there is an equal probability
of positive and negative innovations to GDP growth. In this case, the conditional median is
the same as in the conditionally Gaussian case, so that µt = µg + ϕgyt. The downside and
upside entropy are then given by

LDt (ft; g) = −
∫ µt

−∞

(
log
√

1− ϕ2
g + log

σε,−
σε
−

1− ϕ2
g

2σ2
ε

(
y − µg

1− ϕg

)2

+
1

2σ2
ε,−

(y − µt)2
)
ft(y)dy

= −

(
log
√

1− ϕ2
g + log
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−

1− ϕ2
g

2σ2
ε

(
m−,t −

µg
1− ϕg

)2

+
(m−,t − µt)2

2σ2
ε,−

)∫ µt

−∞
ft(y)dy

−

(
m−,t − µt
σ2
ε,−

−
(
1− ϕ2

g

)
σ2
ε

(
m−,t −

µg
1− ϕg

))∫ µt

−∞
(y −m−,t) ft(y)dy

−
(

1− ϕ2
g

2σ2
ε

− 1

2σ2
ε,−

)∫ µt

−∞
(y −m−,t)2 ft (y) dy

= −1

2

(
log
√

1− ϕ2
g + log
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σε
−

1− ϕ2
g

2σ2
ε

(
m−,t −

µg
1− ϕg

)2

+
1

π

)

+
1

4

(
1−

(
1− ϕ2

g

) σ2
ε,−

σ2
ε

)(
1− 2

π

)
;

LUt (ft; g) = −
∫ ∞
µt

(
log
√

1− ϕ2
g + log

σε,+
σε
−

1− ϕ2
g

2σ2
ε

(
y − µg

1− ϕg

)2

+
1

2σ2
ε,+

(y − µt)2
)
ft(y)dy

= −

(
log
√

1− ϕ2
g + log

σε,+
σε
−

1− ϕ2
g

2σ2
ε

(
m+,t −

µg
1− ϕg

)2

+
(m+,t − µt)2

2σ2
ε,+

)∫ +∞

µt

ft(y)dy

−

(
m+,t − µt
σ2
ε,+

−
(
1− ϕ2

g

)
σ2
ε

(
m+,t −

µg
1− ϕg

))∫ +∞

µt

(y −m+,t) ft(y)dy

−
(

1− ϕ2
g

2σ2
ε

− 1

2σ2
ε,+

)∫ +∞

µt

(y −m+,t)
2 ft (y) dy

= −1

2

(
log
√

1− ϕ2
g + log

σε,+
σε
−

1− ϕ2
g

2σ2
ε

(
m+,t −

µg
1− ϕg

)2

+
1

π

)

+
1

4

(
1−

(
1− ϕ2

g

) σ2
ε,+

σ2
ε

)(
1− 2

π

)
,

where m+,t ≡ Et [yt+1| yt+1 ≥ µt] = µt + σε,+

√
2
π
is the mean of GDP growth conditional on
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being above the conditional median, and m−,t ≡ Et [yt+1| yt+1 < µt] = µt − σε,−
√

2
π
is the

mean of GDP growth conditional on being below the conditional median.
Thus, in this case as well, downside (upside) entropy is expressed in terms of the square

difference between the mean conditional on the realization of GDP growth falling below
(above) the median and the unconditional mean and the variance conditional on the real-
ization of GDP growth falling below (above) the median. Unlike the fully Gaussian case
described below, however, the conditional variance used is different for the upside and down-
side entropy. Hence, when the conditional median µt coincides with the unconditional median
(1− ϕg)−1 µg, downside entropy is lower than the upside entropy. Instead, to make the risks
to the upside and downside balance, the conditional median of GDP growth has to be below
the unconditional median, as can be seen in the numerical example in Figure A.5d.

A.2 GDP Vulnerability and Other Financial Indicators

The results in the main body of the paper relied on the NFCI, a composite financial con-
ditions indicator that relies on information of 105 measures from money markets, debt and
equity markets and the traditional and shadow banking systems. In order to shed light on
the importance of the contribution of individual series, we now investigate three financial
indicators that are of particular interest: equity market volatility, the credit spread, and the
term spread.

Equity market volatility has been used as indicator for the price of risk. Rey (2015)
shows that global capital flows, global credit growth, and global asset prices comove tightly
with the VIX. Longstaff, Pan, Pedersen, and Singleton (2011) estimate that the price of
sovereign risk is strongly correlated with the VIX. Furthermore, Adrian, Crump, and Vogt
(2015) show that a nonlinear transformation of the VIX forecasts stock and bond returns,
suggesting that the pricing of risk depends on the VIX. In general equilibrium, pricing of
risk is associated with GDP growth, and risk to GDP growth. Hence we expect the VIX to
be a significant forecasting variable for GDP vulnerability.

A recent literature has linked downside risk to GDP, particularly during financial crises,
to credit conditions as measured by credit spreads. Gilchrist and Zakrajšek (2012) construct
the excess bond premium, a residual credit spread orthogonal to firm specific information
on defaults, and show that that premium has considerable predictive power for future real
activity. Using U.S. data from 1929 to 2013, López-Salido, Stein, and Zakrajšek (2017)
demonstrate that elevated credit-market sentiment is associated with a decline in economic
activity two and three years in the future, driven by mean reversion in credit spreads. Using
a long time series across a panel of countries, Krishnamurthy and Muir (2016) document
that the transition into a crisis occurs when credit spreads increase markedly, indicating
that crises involve a dramatic shift in expectations and are a surprise.

Finally, an extensive literature has shown the forecasting power of the term spread for
recession (see Estrella and Hardouvelis, 1991, and the subsequent literature). The term
spread is shown to predict recessions 12-18 months in advance, both in sample and out of
sample, and is generally a more powerful predictor of recessions than other variables. The
term spread generally works best as individual predictor (see Estrella and Mishkin, 1998).
Harvey (1988) shows that a consumption Euler equation naturally gives rise to forecasting
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of the term spread for real activity.
Figure A.6 shows the quantile coefficients for equity market option-implied volatility, the

BAA-AAA credit spread, and the 10-year/3-month term spread.15 Comparing the loadings
on NFCI to the loading on these three individual components, we see that the conditional
quantile function is most sensitive to the NFCI, followed by option-implied volatility, term
spread and the credit spread. The term spread has the curious property of having a non-
monotonic relationship with respect to the upper quantiles for the four quarter ahead pre-
diction. At intermediate quantiles, the conditional quantile function has almost constant
loadings on volatility. At very low quantiles, however, the quantile function has a significant
negative relationship with volatility: high option-implied volatility is associated with large
downside risks to GDP growth at both one and four quarter horizons. The credit spread
carries surprisingly little information, as indicated by a very flat quantile coefficient curve,
which is close to zero. In sum, these findings suggest that the NFCI financial conditions in-
dex is a robust proxy for how financial conditions affect the predicted distribution for GDP
growth.

Figure A.7 reports the coefficients obtained by replacing the NFCI with its risk, credit
and leverage subindexes. Results broadly confirm the stronger relationship of the predictive
distribution of real GDP growth with financial conditions at the lower quantiles.

15We use the VXO instead of the VIX as it has a slightly longer time series, and we backfill the data to
1973 using realized equity market volatility (see Bloom, 2009).
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Figure A.1. Predictive Distribution of GDP Growth: Location and Scale Pa-
rameters over Time. The figure shows the time series evolution of location µt and scale
σt.

(a) Location µt: One quarter ahead
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(b) Location µt: One year ahead
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(c) Scale σt: One quarter ahead

1975 1980 1985 1990 1995 2000 2005 2010 2015
1

2

3

4

5

6

7

8

9

Sc
al

e

(d) Scale σt: One year ahead
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Figure A.2. Predictive Distribution of GDP Growth: Shape and Degrees of
Freedom over Time. The figure shows the time series evolution of location shape αt and
degrees of freedom νt.

(a) Shape αt One quarter ahead
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(b) Shape αt One year ahead
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(c) Degrees of Freedom νt One quarter ahead
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(d) Degrees of Freedom νt One year ahead

1975 1980 1985 1990 1995 2000 2005 2010 2015
8

10

12

14

16

18

20

22

24

26

28

D
eg

re
es

 o
f 

Fr
ee

do
m

8



Figure A.3. Predictive Distribution of GDP Growth: Moments over Time. The
figure shows the time series evolution of the conditional mean and variance.

(a) Mean: One quarter ahead
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(b) Mean: One year ahead
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(c) Variance: One quarter ahead
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(d) Variance: One year ahead
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Figure A.4. Predictive Distribution of GDP Growth: Moments over Time. The
figure shows the time series evolution of the conditional skewness, and kurtosis.

(a) Skewness: One quarter ahead
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(b) Skewness: One year ahead
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(c) Kurtosis: One quarter ahead
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(d) Kurtosis: One year ahead
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Figure A.5. Upside and Downside Entropy. The left column shows the conditional and
unconditional distribution of GDP growth for the autoregressive GDP growth process with
normal innovations in Example 1, and the corresponding downside and upside entropy as a
function of the current realization of GDP growth. The right column shows the conditional
and unconditional distribution of GDP growth for the autoregressive GDP growth process
with truncated normal innovations in Example 2, and the corresponding downside and upside
entropy as a function of the current realization of GDP growth. Parameters: µg = 0.2,
σε = 3.5, φg = 0.4, σε,+ = 3.3, σε,− = 4.9

(a) Distribution: Gaussian innovations
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(b) Distribution: Truncated innovations
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(c) Entropy: Gaussian innovations
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(d) Entropy: Truncated innovations
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Figure A.6. GDP Growth and Other Predictors. The figure shows the estimated
coefficients in quantile regressions of one quarter ahead (left column) and four quarter ahead
(right column) real GDP growth on current real GDP growth and VXO; current real GDP
growth and the Baa-Aaa spread; current real GDP growth and the term spread.

(a) Equity Volatility: One quarter ahead
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(b) Equity Volatility: One year ahead
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(c) Credit Spread: One quarter ahead
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(d) Credit Spread: One year ahead
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(e) Term Spread: One quarter ahead
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(f) Term Spread: One year ahead
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Figure A.7. GDP Growth and Subcomponents of NFCI. The figure shows the
estimated coefficients in quantile regressions of one quarter ahead (left column) and four
quarter ahead (right column) real GDP growth on current real GDP growth and the risk
subindex of the NFCI; current real GDP growth and the credit subindex of the NFCI; current
real GDP growth and the leverage subindex of the NFCI.
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(b) Risk: One year ahead
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(c) Credit: One quarter ahead
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(d) Credit: One year ahead
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(e) Leverage: One quarter ahead
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(f) Leverage: One year ahead
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Figure A.8. Out-of-Sample Performance of Alternative Approaches. The figure
reports the out-of-sample predictive density, the predictive scores and the cumulative distri-
bution of the probability integral transform, generated with a conditionally Gaussian model
(left column) and with a non-parametric model (right column). Figures A.8a and A.8b show
the 5, 50, and 95 percent quantiles. Figures A.8c and A.8d compare the out- of-sample pre-
dictive scores of the predictive distribution conditional on both NFCI and real GDP growth,
and the (semi-parametric) predictive distribution conditional on real GDP growth only. Fig-
ures A.8e and A.8f report the empirical cumulative distribution of the probability integral
transform (PITs). Critical values are obtained as in Rossi and Sekhposyan (2017).
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(d) Scores: Non-parametric
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(e) PITs: MLE
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(f) PITs: Non-parametric
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