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inventory at an exogenously determined cost. Even though the inventory costs occur only at the 
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Moreover, imbalances of buy and sell orders may catalyze hikes and drops in prices, even under 

fixed supply and demand functions. Empirically, we show that these predictions are borne out in 
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1 Introduction

Over the last two decades, high-frequency trading firms (HFTs) have emerged as a new and significant class

of financial intermediaries. While representing only a small fraction of trading fifteen years ago, HFTs now

account for around half of the volume in major equity, Treasury, foreign exchange, and associated futures

markets (see Securities and Exchange Commission (2010), Joint Staff Report (2015), and BIS (2011)).

Furthermore, HFT-driven information flows, as measured by the messages sent to and from exchanges, has

in some venues reached 80 percent of total message traffic in normal times (Joint Staff Report (2015)).

This increased presence of algorithmic and high frequency trading is profoundly impacting various facets

of market quality, which has been the subject of intense research (see Herndeshott et al. (2011), Menkveld

(2013), Brogaard et al. (2014), and Herndeshott and Menkveld (2014)).

One key area in which HFTs affect market quality is through liquidity provision, or market making. Like

traditional dealers, HFTs provide liquidity to the market, in the sense of temporarily warehousing securities

to intermediate buyers and sellers through time and across markets. However, in contrast to traditional

dealers, HFTs perform intermediation services by trading on their own account and hence differ materially

in terms of their funding structures. Thus, without the use of external funding through money markets, debt

markets, and other liabilities, HFT balance sheets tend to be substantially smaller than those of traditional

sell-side market makers. Smaller balance sheets enforce the need to keep positions small and short-lived in

order to limit the amount of capital held in margin accounts (Menkveld (2016)). As a consequence, most of

the trading that HFTs undertake occurs intraday, with positions largely unwound at the end of each trading

day. The practice of ending the day flat is in fact often used as a defining characteristic of market making

HFTs (see Securities and Exchange Commission (2010), Joint Staff Report (2015), Menkveld (2016), SEC

letters (2010)).

This paper studies intraday market making with the added objective of ending the trading day flat.

Specifically, we present a model of a market making HFT who dynamically places bid and ask prices in order

to maximize end-of-day profits, but with the additional goal of unwinding its positions before markets close.

The HFT in this context can be interpreted as having access to unlimited leverage intraday while facing an

exogenously determined cost that is proportional to its end-of-day inventory. We show that even though the

inventory cost is assessed only at the end of the day, the HFT’s intertemporal hedging demand due to the

inventory cost impacts liquidity and trade price dynamics throughout the day. Intuitively, the end of day

constraint induces a nontrivial feedback mechanism between inventory levels and prices. The adjustment of

inventory by the market maker and price changes reinforce each other, putting high pressure on prices when

fast and extreme imbalances in inventory occur. At the same time, the zero intraday trading costs allow the
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HFT to trade aggressively, thus leading to a compression of bid ask spreads on average.

Our model produces a number of insights that extend the intuition from existing inventory control

problems. First, the degree to which ask and bid prices are impacted by the HFT’s inventory in our setup

is primarily determined by the shadow value of the overnight inventory constraint. The shadow value of

the overnight inventory constraint therefore represents a new time-varying component of the bid-ask spread

beyond those previously identified in the literature (see Stoll (1989), Glosten and Harris (1988)). Second,

because the HFT intermediates between randomly arriving investors, the bid-ask spreads in our model also

turn out to be functions of the arrival intensities of buyers and sellers. Narrow bid-ask spreads correspond

to high investor arrival intensities. A liquid market with narrow bid ask spreads is therefore defined as one

where buyers and sellers arrive with high intensity, which allows the HFT to have greater control over its

inventory. Third, and most importantly, a more severe end-of-day inventory constraint will cause prices to

be more sensitive to inventory, which gives rise to an intraday endogenous price impact. As time approaches

the end of the trading day, prices become more sensitive to inventory levels, leading to stronger price impact

and larger bid-ask spreads. When compared to a benchmark model without end-of-day trading costs where

bid-ask spreads are evenly distributed throughout the day, the model with end-of-day trading costs generates

bid-ask spreads and trade prices that are more sensitive to order flow imbalances.

We verify the testable implications of our model using high frequency U.S. Treasury data. The intraday

pattern of bid-ask spreads is strongly supported by the data. We also find a highly significant negative

relationship between inventory and prices, a feature that was especially pronounced on October 15, 2014,

when the so called Flash Rally occurred in the U.S. Treasury market. During such flash events, bid-ask

spreads remain tight despite sharp declines in depth, as trading intensities increase. Moreover, the sensitivity

of prices to the inventory level tends to increase as time approaches the day’s end. Furthermore, the bid-ask

spread trajectory also tends to increase as time approaches the day’s end, reflecting the HFT’s effort to

control the end of day inventory.

To quantify the economic impact of the HFT’s price determination, we perform comparative statics

analyses on two measures of price stability: the largest bid-ask spread throughout the trading day and

the worst case deviation of traded prices from a benchmark equilibrium price. These measures reflect the

disadvantage that end investors accrue through the HFT’s inefficient intermediation activities. We also

consider the maximum drawdown of the midquote price, which captures the stability of the financial market

intermediated by the HFT. Higher arrival rates of buy and sell orders reduce bid-ask spreads and price

deviation from the equilibrium at the expense of increasing price variations. If the end-of-day inventory

cost is very high, the maximum drawdown of the midquote price decreases as the intensity of order arrivals

increases. This is because the HFT puts more effort into controlling its inventory and treats higher arrival
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rates as opportunities for managing inventory. On the other hand, if the end-of-day inventory cost is low, the

maximum drawdown increases with the arrival rates. Under these circumstances, the HFT mainly focuses

on exploiting trading profits when the intensity of order arrivals increase, and is not much concerned with

inventory control.

We also conduct a welfare analysis based on the surplus earned by buy and sell investors, and the

maximized objective function of the HFT. Our analysis suggests that a socially desirable system is obtained

when buyers and sellers arrive with high intensities (i.e. the market is highly liquid) and intermediated by an

HFT with low end of day inventory costs. Higher arrival rates of buy and sell orders result in more trading

opportunities for buyer and seller investors. Moreover, they help the HFT reduce the price impact coming

from overnight inventory costs. On the other hand, a higher penalty for inventory holdings intensifies the

impact of tail risk on welfare, especially if the arrival rates are high.

The rest of the paper is organized as follows. We explain our contribution to the existing literature on

high-frequency trading in Section 2. We discuss the relevant institutional details of HFTs in Section 3. We

introduce the theory of HFT market making in Section 4. Section 5 formulates the decision making problem

of the HFT and the solution for the optimal bid and ask price trajectories. We provide an empirical analysis

testing the implications of our model in Section 6. Section 7 presents an analysis of price stability, and

Section 8 discusses welfare. Section 9 concludes. Proofs are in the appendix.

2 Literature Review

There are several microstructure models that analyze the price impact of trades and the determinants of bid-

ask spreads. The revenues of market makers, who provide liquidity, must offset their incurred costs. These

costs can be inventory costs (e.g. Stoll (1980) and Amihud and Mendelson (1980)) or adverse selection costs

(e.g. Kyle (1985) and Glosten and Milgrom (1985)).

Models with inventory costs predict that dealers set quotes in order to maintain their inventory level

around a target level. The early works by Stoll (1980) assume that the market makers are risk-averse.

Stoll considers a mean-variance market maker wishing to optimize his or her expected profit from bid-ask

spreads, and to quickly find offsetting transactions in order to minimize inventory risk. Thus, large positive

inventories can be reduced by lowering ask prices, and negative inventories can be unwound by setting higher

bids. Stoll’s model predicts a linear relation between prices and inventories. Amihud and Mendelson (1980)

consider a dynamic model in which dealers are risk neutral and have hard constraints on their inventory. In

their model, buy and sell orders arrive according to a Poisson process with price-dependent rates. They find

that inventories have an impact on equilibrium prices, and that trading volume decreases as the inventory
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approaches the long or short limit. Furthermore, they find that the bid-ask spread widens. Recently,

Aı̈t-Sahalia and Saglam (2016) develop a model in which a risk-neutral high frequency trader maximizes

its expected reward minus a penalty cost for holding inventory throughout the trading period. The HFT

decides whether to quote on one side (buy or sell), both sides, or not quote in each point in time, and it

is allowed to cancel orders. Trades are executed at the best bid and ask quotes when market orders arrive,

earning the HFT a fixed spread in each transaction.

While Stoll (1980) presents a static model, we are studying the dynamic implications of end of day

inventory costs. Amihud and Mendelson (1980) also consider a dynamic model, but assume an infinite time

horizon and restrict inventory levels to be inside a prespecified interval throughout the trading day. The

model of Aı̈t-Sahalia and Saglam (2016) contrasts with our approach in that we allow bid and ask quotes to

be endogenously chosen, taking into account demand functions of buy and sell investors, as well as inventory

costs incurred at the end of the day.

The seminal contributions by Kyle (1985) and Glosten and Milgrom (1985) derive the equilibrium prices

in a model with information asymmetries and a monopolistic market maker. The latter must cover losses

from transactions with traders who have access to superior information by charging a spread. In Kyle

(1985)’s model, order flow is driven by uninformed traders, who only trade for liquidity purposes and hence

prices do not reflect full information. His model predicts a linear market depth, i.e. prices vary linearly

with the aggregate order flow. The setting of our model is closely related to another canonical model of

market microstructure proposed by Glosten and Milgrom (1985). Differently from Kyle (1985), in which

the monopolistic market maker fills aggregate order imbalances, in Glosten and Milgrom (1985) the market

maker observes the orders submitted by informed and uninformed traders, who arrive in the market according

to a Poisson process with exogenously specified intensities. Bid and ask quotes are optimally chosen by the

market maker based on the probability that an arrival order is informed.

Admati and Pfleiderer (1988) allow liquidity traders to be strategic on the time of their trades. Their

model includes intraday effects, while earlier literature focused primarily on day to day liquidity dynam-

ics. The model of Admati and Pfleiderer (1988) reproduces certain empirical facts, such as the U-shaped

pattern of trading volume throughout the day. Danilova and Julliard (2015) develop a rational expectation

equilibrium model that explains volatility, liquidity, and trading activity by the degree of asymmetric infor-

mation and trading frictions. Volatility information is released to the market at trading times that, due to

traders’ strategic choices, differ from calendar times. The model makes predictions about volatility, price

quotes, tightness, depth, resilience, and trading activity which are borne out in high frequency trading data.

Foucault et al. (2016) present a model of high frequency trading where dealers receive public high frequency

news about fundamentals, while speculators have private signals about long term fundamental values. They
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show that high frequency trading on the public information only arises when the speculator is fast relative

to the dealer, meaning that he or she can trade on forecasted price movements before the dealer receives

the news. The price process features a volatility component that is driven by the speculator’s instantaneous

forecast of news.

In contrast to Kyle (1985), Glosten and Milgrom (1985), Admati and Pfleiderer (1988), Danilova and

Julliard (2015), and Foucault et al. (2016), we abstract from asymmetric information and strategic behavior

in order to focus on the role of the end of day inventory constraint. In particular, our theory explicitly aims

at capturing the intraday price and liquidity impact of the end of day inventory cost.

Empirical studies have analyzed the relationship between trades, prices and bid-ask spreads using trans-

action data. Glosten and Harris (1988) and Hasbrouck (1988) decompose bid-ask spreads into two compo-

nents, reflecting compensation for inventory costs and adverse selection costs, which arise from the presence

of informed traders. They find that, in contrast to the transitory spread component explained by inven-

tory considerations, the permanent component explained by information asymmetries is significant for large

trades but not for small ones. Hasbrouck and Saar (2013) show that low latency improves market quality by

reducing bid-ask spreads, the total price impact of trades, and short-term volatility. Herndeshott et al. (2011)

also come to similar conclusions and find that for large stocks, algorithmic trading reduces bid-ask spreads

and adverse selection and also improves price discovery. Brogaard et al. (2014) find that algorithmic trading

facilitates price discovery as high frequency traders trade in the direction of permanent price changes and in

the opposite direction of transitory pricing errors. Herndeshott and Menkveld (2014) analyze the transitory

component of price changes, defined as pressures temporarily moving prices away from fundamentals, and

relate them to the HFT’s inventory using data from the New York Stock exchange. In their model, the HFT

trades off revenue loss coming from price pressures with price risk coming from a state of nonzero inventory.

Menkveld (2013) studies the trading strategy of a large high-frequency trader accounting for utility and cost

of holding inventory during periods of pressure. Chaboud et al. (2014) analyze the effects that algorithmic

trading has on the informational efficiency of foreign exchange prices, showing that it speeds up price dis-

covery but at the same time imposes higher adverse selection costs on slower trades. These findings are in

line with Biais et al. (2015) who show that high speed technology enable fast traders to retrieve information

before slow traders, generating adverse selection, and thus negative externalities. We also refer to Jones

(2013) and Menkveld (2016) for reviews of theoretical and empirical research in high-frequency trading.
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3 HFT Inventory Costs

To the best of our knowledge, our study is the first to explicitly consider the impact of an end of day inventory

cost on intraday pricing and liquidity dynamics. The HFT’s desire to end the day with little to no inventory

is the key distinguishing feature of our model relative to the existing literature on market making. This

desire to end the day “flat” appears to be a universally agreed upon characteristic of HFTs. For example,

in their concept release on equity market structure, the Securities and Exchange Commission (2010), p. 45,

defines HFTs as professional traders that engage in a large number of transactions intraday and that possess

common characteristics, which include: “(1) the use of extraordinarily high-speed and sophisticated computer

programs for generating, routing, and executing orders; (2) use of co-location services and individual data

feeds offered by exchanges and others to minimize network and other types of latencies; (3) very short time-

frames for establishing and liquidating positions; (4) the submission of numerous orders that are cancelled

shortly after submission; and (5) ending the trading day in as close to a flat position as possible (that is, not

carrying significant, unhedged positions over-night).” Moreover, the Joint Staff Report (2015) on the U.S.

Treasury market flash event on October 15, 2014, goes further by saying that the desire to end the day flat

differentiates HFTs from traditional bank dealers as market makers, who in contrast “routinely end trading

sessions with sizable long or short positions both in the cash and futures markets.” In his recent survey,

Menkveld (2016) corroborates these statements, highlighting that HFTs are best thought of as a new type

of financial intermediary, who trade a lot intraday but avoid carrying a position overnight.

Several empirical studies are strongly supportive of this characterization. Using data on a Dutch equity

trading venue, Jovanovic and Menkveld (2011) are able to identify a participant with a unique broker ID that

trades very frequently, representing roughly every third trade on the venue. They suggest that “What makes

this broker an HFT, though, is that his net position over the trading day is zero almost half of the sample

days.” A figure of this broker’s net inventory was reproduced in the survey by Biais and Woolley (2011),

which shows periods of autocorrelated positive and negative inventory eventually ending at exactly zero at

close. Biais and Woolley (2011) suggest that this behavior is emblematic of HFTs, who are differentiated

from other market participants by their short investment horizons: “The key difference is the holding period

or investing horizon. That of HFT ranges between milliseconds and hours. Their entire positions are closed

at the end of each trading day.” This behavior is supported in a separate study conducted by Benos and

Sagade (2016), who analyze proprietary participant-level data from U.K. equity markets over a four-month

period. Their findings suggest that “HFTs generally end the day with a relatively flat position,” with the

mean HFT having a volume-weighted end-of-day position corresponding to 5% of their total intraday volume.

In the U.S. Treasury market, the Joint Staff Report (2015) found that “. . . a significant share of PTF
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[HFT] activity focuses on the provision of short-term liquidity on both sides of the market, and as such

their high observed trading volume in the Treasury market does not translate into net changes in their

positions across a trading session. An analysis of account-level data in the Treasury futures market over a

number of days that include October 15 shows that more than 80 percent of trading in the 10- and 30-year

contracts represented short-term intraday turnover.” The Joint Staff Report (2015) furthermore shows that

the median HFT ended the trading day with an absolute position of less than 5% of their total intraday

volume. In the Treasury futures market, this figure shrinks to 1%.

The December 2015 Senior Credit Officer Survey on Dealer Financing Terms by the Board of Governors

of the Federal Reserve System (2016) summarizes answers to special questions on intraday and overnight

credit extended to HFTs. Overnight positions of HFTs are reported to be de minimis when compared

to intraday positions. Importantly, intraday exposure management is primarily done via exposure limits,

not margining. In addition to this survey, evidence from the margining documentation by central clearing

platforms and exchanges paints a complementary picture on the limited usage of intraday margin. Central

clearing counterparties tend to compute variation margins at discrete times during the day, or at the end of

the day. This evidence suggests that intraday inventory costs might be close to, or exactly, zero, depending

on where the HFT is trading.

This evidence on the intraday credit risk management of exchanges, central clearing counterparties,

and dealers clearly suggests incentives for HFTs to carry little inventory overnight. The academic literature

discusses a few additional underlying reasons for closing out positions at the end of the trading day. Brogaard

and Garriott (2015) suggest a risk management motive, as HFTs wish to avoid exposure to the risk that

asset values might change overnight. While such a motive may purely be driven by risk aversion, it may

also be driven by the desire to avoid overnight margin requirements or other funding costs. For example,

overnight positions might have to be funded in the repo or securities lending markets, requiring haircuts.

Furthermore, a reduction in inventory results in a reduction of the HFT’s value-at-risk, which in turn reduces

any overnight margining costs. Indeed, brokers typically require additional initial and maintenance margins

for positions held overnight.1 The effect of increased overnight margining costs is a need for the HFT to

deleverage before the end of the trading day.

The main contribution of this paper is to be the first to study the implications of HFTs’ zero-overnight-

inventory motive. We show that an HFT that manages its inventory with an eye towards ending the day flat

behaves differently at all hours of the day compared to a benchmark market maker without such an end-of-

day objective. The intuition follows from a backward induction argument, which implies that a one-time,

end-of-day inventory cost will be factored into trading decisions that recursively trace back to the start of

1See, for example, https://gdcdyn.interactivebrokers.com/en/index.php?f=marginnew&p=overview1
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the trading day. These trading decisions, in turn, have implications for both price and liquidity dynamics

throughout the course of the trading day. In particular, we show that because price impact endogenously

steepens with the strength of the zero-overnight-inventory motive, sudden intraday price moves or flash events

can be amplified by the end-of-day inventory constraint. In markets that are increasingly intermediated by

HFTs, this type of dynamic raises potential financial stability considerations.

4 The Model

We consider a model in which the trading day runs from time zero to T and is divided into T steps. There is

a single asset traded in an electronic limit order book: an HFT sells for buy orders and buys for sell orders.

The HFT is the only counterparty available for trade when an arrival event occurs. Buy and sell orders

arrive in the market according to a Bernoulli process. The staggered arrival of buy and sell orders creates

a supply and demand for immediacy, a concept first introduced in the finite-period model of Grossman and

Miller (1988). Buy orders create selling pressure that pulls prices down and away from the equilibrium. Sell

orders instead create buying pressure to bring prices back up to the equilibrium. Throughout the paper, we

use b̃ to denote the bid price, and ã to denote the ask price.

4.1 Buy and Sell Orders

The arrival of orders is modeled as a Bernoulli process. In each time step s ∈ {0, 1, . . . T}, a trading order

arrives with probability π. We split the arrivals of the Bernoulli process into two new arrival processes. Each

arrival of the original Bernoulli process goes into the first of the two new processes, referred to as the buy

order arrival process and denoted by NBO, with probability πBO

π . It goes into the second of the two new

processes, referred to as the sell order arrival process and denoted by NSO, with probability πSO

π . Therefore,

we have π = πBO + πSO.

We use q̃ to denote the minimum price at which a sell order is placed, and by p̃ the maximum price at

which a buy order is placed. q̃ is the reservation price for sell orders, and can be interpreted as a stop loss.

p̃ can be viewed symmetrically for buy orders.

For a given ask price x, the number of shares demanded by buy investors is given by

QBO(x) = c (p̃− x)
+
. (1)
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Figure 1: Example Demand and Supply Functions of Buy and Sell Investors. This figure illustrates
the supply and demand functions of non-HFT investors. The price (x-axis) is in terms of percentage of par,
and the quantity (y-axis) is measured in lots of $1 million. We set p̃ = 99, q̃ = 98.966 and the slope c = 30
(lots of $1 million per basepoint of par). The quantity supplied by a sell investor (solid) is an increasing
function of price within the stop loss thresholds. Similarly, the quantity demanded by buy investors (dashed)
declines in price within the same thresholds.

For a given bid price x, the number of shares supplied by sell investors is given by

QSO(x) = c (x− q̃)+. (2)

Above, we have assumed that both the demand and supply curve have the same slope c. Such an assumption

is driven by an empirical analysis of the limit order book data in the U.S. Treasury market. Note that the

demand and supply functions QBO and QSO are reduced forms for preferences, beliefs, investment objectives,

and hedging motives of buyers and sellers.

For future reference, we introduce the equilibrium price p̄ defined as the price at which demand and

supply intersect in a frictionless market. A direct calculation shows that this is given by

p̄ =
πBOp̃+ πSO q̃

π
. (3)

This may also be interpreted as the price in a hypothetical market where the market maker minimizes

expected order imbalances. More precisely, it may be easily verified that such a price corresponds to the

solution of the following minimization problem:

min
x

E
[(
QBO(x)NBO

t −QSO(x)NSO
t

)2]
, (4)

where NBO
t and NSO

t denote, respectively, the number of buy and sell orders arrived by time t.
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HFT

In our model of market making, the HFT optimally chooses bid and ask prices through time. The wealth

of the HFT at time t, Wt, is given by the initial cash holdings of the HFT, W0, plus the cumulative gains

from trades with buyers, minus the cumulative expenses from trades with sellers. Specifically, a trade with

a buy investor at time t results in QBO(ãt) shares of the asset sold at price ãt; likewise, a trade with a sell

investor at time t results in QSO(b̃t) shares of the asset bought at price b̃t. The wealth at time t is given by

Wt = W0 +

t∑
s=1

ãsQ
BO(ãs) ∆NBO

s −
t∑

s=1

b̃sQ
SO(b̃s) ∆NSO

s , (5)

where we set ∆NSO
s := NSO

s −NSO
s−1 and ∆NBO

s := NBO
s −NBO

s−1. The HFT’s inventory accumulated in the

interval [0, t] is given by the sum of shares bought from the seller, minus the sum of shares sold to the buyer

until time t. That is,

It =

t∑
s=1

QSO(bs) ∆NSO
s︸ ︷︷ ︸

Shares bought
from sell investors

−
t∑

s=1

QBO(as) ∆NBO
s︸ ︷︷ ︸

Shares sold
to buy investors

. (6)

We model the objective of the HFT in reduced form. The HFT is risk neutral and maximizes its end

of day wealth WT , but is subject to an end of day inventory cost of size λI2
T . Such a cost is the novel

aspect in our study and will play a major role in the forthcoming analysis. As discussed earlier in Section

3, HFTs tend to have de minimus balance sheets, thus making any overnight inventory costly to carry. We

additionally assume that end of day inventory is valued at the equilibrium price p̄. This amounts to assuming

that inventory is marked at p̄IT .2

Altogether, this leads to the following maximization problem for the HFT:

max
(ã·,b̃·)∈(R2

+)T
E
[
WT − λI2

T + p̄IT
]
, (7)

subject to the budget constraint (5).

The HFT’s problem amounts to optimally choosing the ask and bid paths (ã·, b̃·) = (ãt, b̃t)
T
t=1 which

maximize the expected utility from terminal wealth net of overnight inventory costs. The ask ãt and bid b̃t

are decided based on the information available by time t− 1.

The above described model is related to previously proposed market making models of inventory man-

agement. These include the monopolistic market making model proposed by Amihud and Mendelson (1980),

where a specialist has balance sheet costs throughout the trading horizon which is assumed to be infinite. In

2This could also reflect expected prices in an overnight market in which the HFT does not participate.
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their model, the dealer is constrained to hold the inventory within a pre-specified interval at all times, and

optimally chooses the bid-ask prices to maximize the long term growth rate of his or her wealth process. As

in our model, buyer or sellers arrive randomly; however they can only trade one unit of the asset in each

trade. Aı̈t-Sahalia and Saglam (2016) also consider a perpetual decision making problem for an HFT who

incurs intraday costs for holding inventory. In their model, buyers and sellers arrive at random times and

the HFT decides whether to transact with one of them so as to maximize its expected discounted payoff.

In each trade, the HFT earns a fixed bid-ask spread. The strategy of the HFT is time homogeneous and of

threshold type. By contrast, as we demonstrate in the forthcoming sections, the forward looking nature of

the end-of-day constraint has a strong impact on the intraday price and spread dynamics in our model.

5 The Control Problem

This section studies the dynamic optimization problem of the HFT. The primary state variable in our decision

making problem is the inventory level of the HFT. As inventory increases, so does the shadow cost of the

end-of-day inventory constraint. Furthermore, that shadow cost rises throughout the day, and reaches its

highest value just before the day’s end. As a result, the HFT will try to maintain a smaller inventory position

as time progresses to avoid bearing such an increasing cost.

We will first formulate the dynamic programming problem. We then characterize the optimal price

setting behavior. We also present comparative statics in a sequence of propositions, which serve as a basis

for the empirical analysis conducted in the following section.

5.1 Dynamic Programming Formulation

The value function of the control problem, defined as the HFT’s continuation value at time t given its current

level of wealth w and of inventory i, is given by

V (t, w, i) := sup
(ã·,b̃·)∈(R2

+)T
E
[
U
(
W

(ã,b̃)
T , I

(ã,b̃)
T

)
|W (ã,b̃)

t = w, I
(ã,b̃)
t = i

]
, (8)

where the end-of-day utility of the HFT is

U(w, i) = w − λi2 + p̄i.

The state variables (W
(ã,b̃)
t , I

(ã,b̃)
t )T−1

t=0 are given by the wealth and inventory processes of equations (5) and

(6). By virtue of the dynamic programming principle (see Puterman (1994)), for 0 ≤ t ≤ u ≤ T , we have
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that

V (t, w, i) = sup
(ã,b̃)∈R2

+

E
[
V
(
u,W (ã,b̃)

u , I(ã,b̃)
u

)
|W (ã,b̃)

t = w, I
(ã,b̃)
t = i

]
. (9)

Intuitively, the value V (t, w, i) gives the optimal expected utility at a future time instant.

From our pre-specified supply and demand curves, we know that an incoming buy order at time t will

reduce the HFT’s inventory by QBO(ãt), while increasing the wealth of the HFT by ãt×QBO(ãt). Likewise,

an incoming sell order at time t will increase the HFT’s inventory by QSO(b̃t), while reducing the wealth

of the HFT by b̃t ×QSO(b̃t). Therefore, for any (Markov) control on the ask and bid prices (ãt, b̃t)
T
t=1, the

controlled state process (W
(ã,b̃)
t , I

(ã,b̃)
t )Tt=0 constitutes a controlled Markov process. Specifically, given the

state {W (ã,b̃)
t−1 = w, I

(ã,b̃)
t−1 = i} and the control pair (ãt, b̃t), we have the time t transition probability of the

wealth and inventory given by

(W
(ã,b̃)
t , I

(ã,b̃)
t ) =


(w + fBO(ãt), i−QBO(ãt)), with probability πBO,

(w − fSO(b̃t), i+QSO(b̃t)), with probability πSO,

(w, i), with probability 1− πBO − πSO,

(10)

where we have introduced the following notation:

fBO(x) = xQBO(x), fSO(x) =xQSO(x). (11)

Clearly, the time when the Markov process transits is completely determined by the exogenously given arrival

sequences of buy orders and sell orders. Yet, as seen from (10), the control on ask and bid prices influences

the possible states reached after a trade, and hence serves as an effective means of controlling inventory to

the HFT.

From equations (9) and (10), we obtain the following Bellman equation:

V (t− 1, w, i) = V (t, w, i) + sup
(ã·,b̃·)∈(R2

+)T
H(t, ã, b̃), (12)

with terminal condition V (T,w, i) = U(w, i), where H denotes the Hamiltonian given by

H(t, ã, b̃) := πBO[V (t, w+ fBO(ã), i−QBO(ã))−V (t, w, i)] +πSO[V (t, w− fSO(b̃), i+QSO(b̃))−V (t, w, i)].
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The linearity of the value function V in the wealth variable w suggests that we can rewrite

V (t, w, i) = w + F (t, i) (13)

where F (t, i) ≡ V (t, 0, i), is the optimal expected utility of an HFT who possesses zero wealth and an

inventory level i at time t (more precisely, after the trade at time t, if it occurs). At the end of the trading

day, i.e. at t = T , the remaining inventory IT is valued at the price p̄, hence we have that F (T, i) = −λi2+ p̄i.

From (12), we deduce that for 1 ≤ t ≤ T , the function F solves the following nonlinear equation:

F (t− 1, i) = F (t, i) + sup
(ã,b̃)∈R2

+

H̃(t, ã, b̃), (14)

where the new Hamiltonian H̃ is defined as

H̃(t, ã, b̃) := πBO[fBO(ã) + F (t, i−QBO(ã))− F (t, i)] + πSO[−fSO(b̃) + F (t, i+QSO(b̃))− F (t, i)]. (15)

The Hamiltonian H̃(t, ã, b̃) measures the utility of the HFT, as seen from time t− 1, of choosing bid and

ask prices (b̃, ã) at time t and then trading optimally for the remainder of the day. In particular, suppose the

HFT has inventory level i at time t− 1, then an incoming buy order at time t will increase the net wealth of

the HFT by fBO(ãt), and leave the inventory of the HFT at i−QBO(ãt). This is worth F (t, i−QBO(ãt)) in

utility terms. Symmetrically, under the same circumstances, an incoming sell order will reduce the wealth

of the HFT by fSO(b̃t), and leave its inventory at i+QSO(b̃t). This is worth (in utility) F (t, i+QSO(b̃t)).

Consequently,the main objective is to choose the optimal ask ã and bid b̃ so as to best control the inventory

level while at the same time maximizing proceeds from buy and sell trades.

We now make a change of variables

a = cã, b = cb̃, p = cp̃, q = cq̃,

which will be useful for subsequent analyses. Going forward, we will refer to a and b as the scaled ask

and bid prices. Note that they share the same unit as the HFT’s inventory level. With this notation, the

optimization problem in (14) may be written as

F (t− 1, i) = F (t, i) +Ht(i), (16)
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where Ht(i) is the optimized Hamiltonian

Ht(i) :=

sup
(a,b)∈R2

+

{
πBO

[
1

c
a(p− a)+ + F (t, i− (p− a)+)− F (t, i)

]
+ πSO

[
−1

c
b(b− q)+ + F (t, i+ (b− q)+)− F (t, i)

]}
.

(17)

5.2 Optimal Price Policies and their Dependence on Inventory

This section studies the dependence of bid and ask prices on the inventory levels at a specific time. We

determine the bid and ask prices which maximize the expected utility of the HFT by solving the Bellman

equation (16). In terms of our scaled bid and ask variables, note that (b − q)+ is the quantity that the

HFT purchases from sell investors, while (p− a)+ is the quantity that the HFT sells to buy investors. Our

methodology is based on a backward induction algorithm that involves a certain invariant convex property

of the function F (t, i), which we establish. To that end, we assume that for t = 1, 2, . . . , T the function

F (t, i) is strictly concave and continuously differentiable in i with a derivative mapped onto R. Notice that

these properties mean that the function F (t, i) behaves like a quadratic function with a negative leading

coefficient. In particular, when |i| is very large, the optimal expected utility F (t, i) � 0 and the marginal

optimal exepcted utility ∂iF (t, i) > 0 if i < 0 and ∂iF (t, i) < 0 if i > 0, which will translate into reducing

inventory of size |i| through trading.

Using this function F (t, i), we will derive the optimal ask ã∗t and the optimal bid price b̃∗t , as well as their

monotonicity with respect to the inventory level. We then prove that the differential and convex properties

that F (t, i) possesses carry over to F (t − 1, i). Hence, an induction argument will establish the results for

all t (see Proposition 5.3 for the details).

In the remainder of the section, we determine the optimal ask and the optimal bid prices. First, it can be

clearly seen that even though F (t, i) is assumed to be continuously differentiable in i, the objective function

in (16) is not differentiable in a, b. Thus, to apply the first order condition, we will need to consider a

simplified, smoothed version of (16), and then relate the optimum of this simplified optimization problem

to the original problem. Specifically, consider candidate optimal scaled ask and bid prices as follows

a∗t (i) = max{at(i), 0}, (18)

b∗t (i) = max{bt(i), 0}. (19)

Above, the functions at(i), bt(i) are the solutions to the unconstrained version of the dynamic optimization
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problem in equation (16), i.e. without the constraint a, b ≥ 0 and without the plus sign in the demand and

supply functions:

sup
(a,b)∈R2

{
πBO

[
1

c
a(p− a) + F (t, i− (p− a))− F (t, i)

]
+ πSO

[
−1

c
b(b− q) + F (t, i+ (b− q))− F (t, i)

]}
.

(20)

The relaxation in (20) makes the optimization problem analytically tractable: Because the function F (t, i)

is strictly concave in i, we notice that for each fixed i, the mapping a 7→ 1
ca(p−a) +F (t, i− (p−a))−F (t, i)

is strictly concave in a. Likewise, the mapping b 7→ − 1
c b(b− q) + F (t, i+ b− q)− F (t, i) is strictly concave

in b. Hence, for each fixed i, there is a unique optimal pair (at(i), bt(i)) that maximizes the unconstrained

Hamiltonian in (20) (notice that it may still occur that at(i) < bt(i)). In addition, at(i), bt(i) are the solutions

of the decoupled system of first order conditions given by

∂iF (t, i− p+ at(i)) +
1

c
(p− 2at(i)) = 0, (21)

∂iF (t, i+ bt(i)− q) +
1

c
(q − 2bt(i)) = 0. (22)

Equations (21) and (22) capture the key aspects of the HFT’s dynamic optimization problem. If there were

no end of day inventory motives, i.e. no overnight funding costs λi2 and no end-of-day inventory value p̄i,

the HFT would simply solve a myopic optimization problem. To do so, the HFT would set the (scaled) ask

price a so as to equate the marginal benefit of raising a, given by 1
c (p− 2at(i)), to zero. The benefit arises

from higher profits earned by the HFT when it sells. The solution to this static problem would be to simply

set a = 1
2cp̃, where we have used that p = cp̃. Hence, the ask price would be proportional to the upper

reservation price p̃ with proportionality constant equal to the demand slope c. Similarly, the HFT would set

the (scaled) bid price b so as to equate the marginal benefit of raising b, − 1
c (q − 2bt(i)), to 0. This yields

b = 1
2cq̃.

The distinguishing feature of our model is the end-of-day inventory motive, which has implications on

the intraday pricing behavior. This is reflected in the terms ∂iF (t, i − p + at(i)) and ∂iF (t, i + bt(i) − q)

appearing in equations (21) and (22). These terms represent the instantaneous cost of holding inventory

in the dynamic programming problem. These derivative terms therefore drive a wedge between the myopic

and the forward looking dynamic optimization problem. The wedge is graphically illustrated in Figure 2.

The figure compares the ask price in the static, myopic, problem with the corresponding price in dynamic

problem. Setting a higher ask a, relative to the myopic case,3 impacts the shadow value of the end-of-day

3In fact, if setting ask ã = p̃
2

and bid b̃ = q̃
2

, the HFT will mostly likely end up with a large negative inventory, because
sellers will not supply any inventory to it at a price lower than q̃.
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∂iF (t, i− p+ a(i))

0

p̃− 2
c a(i)

a(i)a∗(i)
myopic

a∗(i)
forward looking

Figure 2: Impact of End-of Day Inventory Motives on HFT Intraday First-Order Conditions.
End-of-day considerations drive a wedge between the marginal benefit of a trade occurring at time t versus
the marginal utility at the post-trade inventory level for the remaining period of the day. In the absence of
overnight inventory costs and end-of-day mark-to-market gains, the HFT solves a myopic decision problem
and chooses the ask price a∗(i) so that the marginal cost of increasing the ask, p̃ − 2

c a(i), equals zero.
However, because ask prices also affect the present value of overnight inventory costs and end-of-day mark-
to-market gains through ∂iF (t, i− p+ a(i)), the choice of a∗(i) in the forward looking dynamic optimization
problem differs from the corresponding choice in a myopic decision problem.

inventory motives. An analogous wedge arises for the bid. The ∂iF terms play therefore a crucial role in

determining how end-of-day inventory motives impact intraday bid and ask quoting decisions of the HFT.

We can quantify the sensitivity of F (t, i) with respect to inventory levels. When i is negative and very

small, ∂iF (t, i) > 0; when i is positive and very large, ∂iF (t, i) < 0; and for intermediate levels of inventory

i (either negative or positive), ∂iF (t, i) is strictly decreasing. Hence, the wedge between the myopic and

the dynamic optimization problem will be such that both the ask price a and the bid price b are decreasing

in i. Even though bid and ask prices cannot be explicitly written as a function of the inventory level, we

can characterize the properties of the solution to the first-order conditions (21) and (22) using the above

discussed properties of F (t, i). We will also present a recursive algorithm that allows us to solve for a and b

numerically.

Lemma 5.1. Fix any t = 1, 2, . . . , T, we have

at(i) =G−1
t

(
p− 2i

c

)
− i+ p, (23)

bt(i) =G−1
t

(
q − 2i

c

)
− i+ q, (24)
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Figure 3: The Optimal Price Policy Functions. The optimal policy functions (of the current inventory
level i) for bid and ask prices, b̃∗t (i) and ã∗t (i), at a fixed time t. We take T − t to be equal to one-thousandth
of a time step. When the inventory is low (i.e. i ≤ L2

t ), the ask price is higher than p̃, so that buyers do
not trade with the HFT, but sellers trade with it and sell QSO(ã∗t (i)) shares in each trade (see Figure 1).
When the inventory is high (i.e. i ≥ L1

t ), the bid price is higher than q̃, so that sellers do not trade with
the HFT, but buyers trade with it and purchase QBO(b̃∗t (i)) shares in each trade. When the inventory is in
the active trading region (i.e. L2

t < i < L1
t ), both ask and bid prices are between q̃ and p̃, and the HFT can

trade with both counter-parties and earn a positive bid-ask spread. Moreover, for these moderate inventory
levels, both the ask and bid price functions are roughly linear in the inventory level, hence their slope can
be measured by the reciprocal of the width of the active trading region, L1

t − L2
t . A detailed analysis of the

inventory boundaries is given in the remainder of the section.

where G−1
t is the i-inverse function of a strictly decreasing function defined as

Gt(i) := ∂iF (t, i)− 2

c
i.

The mappings i :7→ at(i) and i : 7→ bt(i) are all strictly decreasing, continuous, and mapping onto R. More-

over, for all λ > 0 we have

1

2
(p− q) < at(i)− bt(i) < p− q. (25)

Lemma 5.1 implies a number of features for the candidate ask and bid quotes given in (18) and (19).

First and the foremost, it shows that both a∗t (i) and b∗t (i) are continuous, non-increasing functions of the

inventory level at time t−1. Intuitively, as the inventory gets larger, the HFT would like to offload inventory

so as to reduce the penalty incurred for a large inventory position. To that end, the HFT wants to sell a

larger number of shares to the buyer, which can be facilitated by setting a low ask a∗t (i). At the same time,

it wants to reduce the bid so that the sell investor is only willing to supply it a small number of shares (or

none) and its inventory thus does not increase much. Secondly, when the reservation prices of the buy and

sell investor, p̃ and q̃, become closer, the bid-ask spread will shrink accordingly.

The candidates a∗t (i) and b∗t (i) are indeed the optimal solution for the problem (17), as formalized in the

next lemma.
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Lemma 5.2. The optimal ask and bid prices are given by ã∗t := a∗t (i)/c and b̃∗t (i) := b∗t (i)/c, where a∗t (i)

and b∗t (i) are given in (18) and (19) (see Figure 3).

5.3 Intertemporal Analysis of Optimal Price Policies

This section investigates the dynamic behavior of the optimal ask and bid price as time moves towards the

end of the day. We know from Lemma 5.1 that both the optimal ask price and the optimal bid price depend

on the HFT’s inventory level. Next, we want to identify the critical inventory thresholds, i.e. the levels at

which the HFT decides to post ask and bid prices equal to p̃ and q̃ respectively, so as to shut down trades

with buy and sell investors. Specifically, we define the critical inventory boundaries L1
t and L2

t as the unique

solutions to the following equations:

b∗t (L
1
t ) = q, a∗t (L

2
t ) = p. (26)

Equivalently, using the system of first-order conditions given by equations (21) and (22), we obtain (recall

that p = c p̃ and q = c q̃) 
∂iF (t, L1

t )− q̃ = 0,

∂iF (t, L2
t )− p̃ = 0.

(27)

We then have that the optimal bid price b̃∗t (i) is always lower than or equal to q̃ when the inventory level

i ≥ L1
t . Because QSO(x) = 0 for all x ≤ q̃, we deduce that the HFT only trades with buyers, i.e. only sells,

when its inventory is higher than the critical level L1
t . We henceforth refer to all inventory levels i larger than

L1
t as the sell only region. When the HFT’s inventory is in the sell only region, the HFT’s main objective

is to unload its inventory as quickly as possible. To that end, the HFT sets a low ask price to encourage

trading with the buyers, while essentially shutting down bidding by setting the bid lower than or equal to q̃,

the reservation price for sellers. This behavior is consistent with actual inventory risk management strategies

of HFTs in practice, who have been known to suspend trading if an undesirable threshold inventory level is

reached.4

Likewise, the optimal ask price ã∗t (i) is always higher than or equal to p̃ when the inventory level i ≤ L2
t .

Because QBO(x) = 0 for all x ≥ p̃, we deduce that the HFT only trades with sellers, i.e. only buys, when

its inventory is lower than the critical level L2
t . We henceforth refer to all i smaller than L2

t as the buy only

region. In the buy only region, the HFT only trades with sell investors to build up inventory by setting

the ask price higher than p̃ and the bid price to a high level.5 In both the sell only region and the buy

4This behavior is described, for example, in Aı̈t-Sahalia and Saglam (2016), who claim that in the attempt of limiting the
size of the inventory for risk mitigation purposes, the HFT does not necessary quote on both sides of the market.

5One-sided trades also arise in Aı̈t-Sahalia and Saglam (2016), in which a monopolistic HFT with a positive inventory may
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Figure 4: The Critical Inventory Thresholds. When the HFT’s accumulated inventory crosses the
thresholds Lit, i = 1, 2, the HFT’s trading activity will change qualitatively. Inventories are measured in
lots of $1 million. When the HFT’s inventory level is between L1

t and L2
t , it actively trades with both

counter-parties. If the HFT’s inventory level is higher than L1
t , then it only trades with buyers to unload its

inventory. On the other hand, if the HFT’s inventory level is lower than L2
t , then it only trades with sellers

to build up its inventory. As time passes, the active trading region, defined as the inventory levels at which
the HFT both buys and sells, shrinks as the impact of the end-of-day inventory constraint materializes. This
means that the HFT will make more efforts to keep its inventory inside the active trading region, in order
to avoid any one-side trade near the day’s end.

only region, trading activity degenerates to one-sided trades, thus the bid-ask spread no longer acts as an

appropriate measurement of liquidity under these conditions.

The one-sided trading activity is also present in the model of Amihud and Mendelson (1980), in which

the dealer buys only when the inventory reaches the lower extreme of the admissible inventory interval and

sells only when the inventory reaches the upper extreme of such an interval. This differs from our setup

because in which the active trade region shrinks endogenously with time (see Proposition 5.4 below) and is

sensitive to the severity of the end-of-day constraint. In Amihud and Mendelson (1980), by contrast, the

admissible inventory interval is exogenously fixed beforehand.

Recall that Lemma 5.1 asserts that the scaled bid-ask spread a∗t (i)− b∗t (i) stays inside the open interval

(p−q2 , p− q) for all i, and thus at(L
1
t ) < bt(L

1
t ) + p− q = p = at(L

2
t ), so that the boundaries L1

t , L
2
t satisfy

L1
t > L2

t .

When the HFT’s inventory level i is between L2
t and L1

t , it actively trades with both buyers and sellers. We

refer to this range of inventories i as the active trading region (see Figure 4).

The next proposition, proven in the appendix, shows that the value function F (t, i) has certain time-

invariant properties.

stop quoting on one side of the market because of inventory aversion. This may occur if their equilibrium condition, requiring
the arrival probability of buyers and sellers to be the same, is violated so so that the HFT may accumulate inventory over time.
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Figure 5: The Optimal Present Values of Inventory Constraint. The value function F (t, i) measures
the optimal expected utility of the HFT at T , as seen from time t, and given that the level of inventory
at t is i. Suppose the HFT can cash out its inventory immediately in a secondary market at a price p̄ per
share, then the residual P (t, i) = F (t, i)− p̄i gives the optimal present value of the inventory constraint. In
particular, at time T , P (T, i) = −λi2 gives the end-of-day inventory cost. This figure plots P (t, i) for t = 1,
as a function of i. The concavity of P (1, i) in i is smaller than that of P (T, i), −2λ, (see Proposition 5.5 for
more details), because the impact of the end-of-day inventory constraint fades away as the time remaining
till the day’s end increases.

Proposition 5.3. For any t = 1, 2, . . . , T , F (t − 1, i) is strictly i-concave, continuously differentiable, and

with a i-derivative mapping onto R which admits the following recursive representation

∂iF (t− 1, i) = E
[
∂iF (t, I

(ã∗,b̃∗)
t )|I(ã∗,b̃∗)

t−1 = i
]

=


(1− πBO)∂iF (t, i) + πBO∂iF (t, i− p+ a∗t (i)), i ≥ L1

t

(1− πBO − πSO)∂iF (t, i) + πBO∂iF (t, i− p+ a∗t (i)) + πSO∂iF (t, i+ b∗t (i)− q), L1
t > i > L2

t

(1− πSO)∂iF (t, i) + πSO∂iF (t, i+ b∗t (i)− q), L2
t ≥ i

(28)

where a∗t (i) and b∗t (i) be defined as in equation (18) and (19), respectively.

Equation (28) is intuitive. First, the marginal utility at t−1, ∂iF (t−1, i), is the conditional expectation of

the time t marginal utility ∂iF (t, I
(ã∗,b̃∗)
t ), assuming that trading occurs at the optimal ask price ã∗t (i) and at

the optimal bid price b̃∗t (i). Recall that a∗t (i) and b∗t (i) are stationary points of (16), so that we can evaluate

the derivative of F (t− 1, i) with respect to i at that stationary point. Depending on the level of inventory,

the expected marginal utility at t is determined by one-sided trades (only with sellers if the inventory is in

the buy-only region and only with buyers if the inventory is in the sell-only region) or by two-sided trades if

the inventory is in the active trading region. Moreover, consider the time t optimal expected utility of the
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HFT in (16), net of inventory holdings and valued at the equilibrium price, i.e.

P (t, i) := F (t, i)− p̄i. (29)

We can interpret P (t, i) as the optimal present value of the inventory constraint (see Figure 5). Then ∂iP (t, i)

gives the marginal gain for the HFT stemming from an infinitesimal change in inventory. By the i-concavity

of F (t, i), we know that ∂iP (t, i) is continuous, and strictly decreasing. Because p̄ ∈ (q̃, p̃), we know from

(27) that ∂iP (t, i) > 0 if i < L2
t , and ∂iP (t, i) < 0 if i > L1

t . Hence, as argued above, if the inventory is very

large (i > L1
t ), it will be beneficial to reduce the inventory level, while if the inventory is very low (i < L2

t ),

it will be beneficial to increase it. Furthermore, because

∂iP (t− 1, i)− ∂iP (t, i) = ∂iF (t− 1, i)− ∂iF (t, i),

we know from (28) that if the current level of inventory is large, say, i > max{L1
t , L

1
t−1}, we have ∂iP (t, i) <

∂iP (t − 1, i) < 0. That is, the sensitivity of the present value of the inventory constraint with respect to

the inventory level becomes smaller as the time remaining to the day’s end increases. In other words, the

marginal benefit of reducing the inventory materializes as time progresses. Likewise, if the current inventory

level is low, say, i < min{L2
t , L

2
t−1}, we have ∂iP (t, i) > ∂iP (t − 1, i) > 0. Hence, this sensitivity also gets

lower as the time remaining until the day’s end increases. Consequently, the HFT exhibits different trading

behaviors as time progresses. To see this, let us look again at Figure 4 and observe a very interesting feature

of optimal market making: the size of the active trading region increases as the time remaining until the

day’s end increases. Intuitively, this is because the shadow cost of the end of day inventory constraint is

lower given that the HFT has more time to build or offload the inventory, i.e. to execute multiple round-trip

trades, before the day closes. As time approaches the end of the trading day, the HFT may need to shut

down trades either with sell investors if it has an excessively large positive inventory or with buy investors

if it faces a short inventory position of large size. For this reason, we observe that both the sell only region

(L1
t ,∞) and the buy only region (−∞, L2

t ) “grow” as time approaches the day’s end. We formalize these

statements in the following result.

Proposition 5.4. The sequence (L1
t )
T
t=1 is positive, and strictly decreasing, while the sequences (L2

t )
T
t=1 is

negative, and strictly increasing. In particular, L1
T = p̄−q̃

2λ and L2
T = − p̃−p̄2λ (see Figure 4).

The larger the active trading region, the more aggressively the HFT can trade as it is less concerned

about the inventory constraint. By (21) and (22), if the inventory level i ∈ [L2
T , L

1
T ], we have the end of day
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or time-T optimal price policy functions

ã∗T (i) =
1

1 + λc

(
p̃(

1

2
+ λc) +

p̄

2
− λi

)+

, (30)

b̃∗T (i) =
1

1 + λc

(
q̃(

1

2
+ λc) +

p̄

2
− λi

)+

. (31)

Hence, both the ask and the bid prices are linear in the inventory level with slopes − λ
1+λc at day’s end.

When we are sufficiently far from the day’s end, the dependence of the optimal bid and ask profiles on the

inventory level is roughly linear, with the “slope” being inversely proportional to the size of the active trading

region, L1
t − L2

t (see Figure 3 for the illustration). By Proposition 5.4, this region gets larger as more time

is left until the day’s end (see also Figure 4). This implies that the sensitivity of ask and bid prices on the

inventory level, measured by the “slope” of the corresponding price policy functions, becomes weaker as the

time remaining until the day’s end increases. Moreover, as long as both the ask and bid prices are positive,

the bid-ask spread at time T is given by

ã∗T (i)− b̃∗T (i) =
1
2 + λc

1 + λc
(p̃− q̃) =: B(λ), (32)

which is independent of the inventory i. For convenience, we have defined it as a function of λ, and denoted

it by B(λ). When t is far away from T , the “slope” of the price policy functions is smaller in absolute

value, and hence we expect that the bid-ask spread is also smaller earlier in the day. We will explore these

phenomena in depth in the next subsection.

To understand the impact of a severe inventory constraint, we use the explicit formulas in (30), (31) and

(32) to study the ask and bid price policy functions, as well as the bid-ask spread at time T . As the inventory

constraint tightens, i.e. λ gets larger, both ã∗T (i) and b̃∗T (i) become more sensitive to the inventory level i.

In the limiting case λ → ∞, ã∗T (i) → (p̃− 1
c i)

+ and b̃∗T (i) → (q̃ − 1
c i)

+, and the bid-ask spread tends to its

maximum value, p̃− q̃, if both bid and ask prices are strictly positive. Hence, when the inventory constraint

is very severe, the HFT will only perform one-side trades, either with buy or sell investors. Specifically, if

the inventory i at time T − 1 is positive, then ã∗T (i) < p̃ and b̃∗T (i) < q̃. Given the demand function (1) and

the supply function (2), the HFT only trades with buy investors to reduce inventory. If the inventory i at

time T −1 is negative, then ã∗T (i) > p̃ and b̃∗T (i) > q̃, and the HFT only trades with sell investors to increase

inventory. If i = 0, then ã∗T (i) = p̃ and b̃∗T (i) = q̃, i.e. the HFT shuts down trading with both parties at time

T −1 so as to maintain its flat inventory level. This behavior is also consistent with the result in Proposition

5.4, because it can be directly seen that both L1
T and L2

T converge to 0, as λ→∞.
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5.4 Endogenous Price Impact and Widening Bid-Ask Spread

This section highlights the mechanism through which price impact arises endogenously in our model. It also

studies the dependence of the bid-ask spread on the severity of the overnight inventory constraint and the

passage of time. We start with the following result which provides bounds for the bid-ask spread, and also

for its sensitivity to changes in inventory levels.

Proposition 5.5. Let (λ1
t )
T
t=1 and (λ2

t )
T
t=1 be sequences of positive numbers, defined recursively according to



λ1
t−1 = λ1

t

(
1−min{πBO, πSO} λ1

t c

1 + λ1
t c

)
, t = 2, 3, . . . , T,

λ2
t−1 = λ2

t

(
1− (πBO + πSO)

λ2
t c

1 + λ2
t c

)
, t = 2, 3, . . . , T,

λ1
T = λ2

T = λ.

(33)

Suppose that ãT (L1
t0) ≥ 0 for some t0 = 1, 2, . . . , T ,6 then for any t = t0, t0 + 1, . . . , T , the optimal price

policy functions satisfy

− λ1
t

1 + λ1
t c
≤ ã∗t (i1)− ã∗t (i2)

i1 − i2
,
b̃∗t (i1)− b̃∗t (i2)

i1 − i2
≤ − λ2

t

1 + λ2
t c
, for any L1

t ≥ i1 > i2 ≥ L2
t , (34)

and the bid-ask spread satisfies

B(λ2
t ) ≤ ã∗t (i)− b̃∗t (i) ≤ B(λ1

t ), for any L1
t ≥ i ≥ L2

t , (35)

where the function B(·) is defined in (32). Moreover, for any t = t0, t0 + 1, . . . , T , we have

− 2λ1
t ≤

∂iF (t, i1)− ∂iF (t, i2)

i1 − i2
≤ −2λ2

t , for all Lt10 ≥ i1 > i2. (36)

Proposition 5.5 gives a range for the “slopes” of the optimal ask and bid price policy functions with

respect to the inventory level, and for the bid-ask spread, in terms of two positive sequences (λ1
t )
T
t=1 and

(λ2
t )
T
t=1. These two sequences also provide bounds for the i-concavity of the value function F (t, i) (see

Eq. (36)). Differently from the day’s end, in which the i-concavity of F (T, i) is measured by the severity of

the overnight inventory cost λ, the concavity of F (t, i) depends on the optimal trading behavior of the market

maker, which is influenced by time and inventory level. More specifically, the trading activities of the HFT

reduce the concavity of the value function, which mainly comes from the overnight inventory cost. When

6This means that we do not consider extreme inventory levels at which the HFT is even willing to pay a price to buyers
to dump its inventory (i.e. the condition can be dropped if the HFT is allowed to set a negative ask price when necessary).
Because (L1

t )Tt=1 is decreasing in t, this implies that the inequality holds for t, t + 1, . . . , T . Under the set of parameters used
in Figure 4, the condition is satisfied for all t = 1, 2, . . . T .
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the HFT can trade with both counter-parties, the probability of a trade is πBO + πSO, and the concavity is

reduced the most (see (33), (28), and Figure 4).

Both sequences (λ1
T−t+1)Tt=1 and (λ2

T−t+1)Tt=1 are strictly decreasing, but at a pace much slower than

an exponential rate,7 since the percentage decay rate decreases as the sequence gets smaller. Because λ
1+λc

and B(λ) are increasing in λ for λ > 0, we deduce from Proposition 5.5 that both the sensitivity of the

optimal ask and bid price policy functions to the inventory level, as well as the bid-ask spread, are lower

when the time-to-close T − t increases. This is consistent with the dynamic behavior of the critical inventory

thresholds reported in Figure 4. Moreover, from Eq. (33), we deduce that the speed of the time decay of the

sequences (λ1
T−t+1)Tt=1 and (λ2

T−t+1)Tt=1 depends on the arrival probabilities πBO and πSO. The larger πBO

and πSO are, the faster these two sequences decrease.

The economic intuition behind the mechanism described above is as follows: as the market becomes more

liquid, i.e. buy and sell orders arrive more frequently, the bid-ask spread at a fixed time before day’s end

declines. Recall that the overnight inventory cost λ only makes the bid-ask spread at T larger, thus a more

liquid market makes the inventory constraint fade away faster as the time until the day’s end increases.

Moreover, as time approaches the end of the day, the growing concern about the inventory constraint

discourages the HFT from trading actively. Hence, it sets a larger spread to reduce the quantity traded in

each time step (see Figure 6), but at the same time, the per-unit trading profit increases from each buy-

and-sell roundtrip. Such a trading behavior reflects the tradeoff faced by the HFT between making trading

profits and holding a non-zero inventory at the end of day. This prediction of our model is well-reflected in

the treasury trading data we study in the forthcoming section (see Figure 11).

As discussed above, the relationship between the optimal ask price/bid price and the inventory level

is neither linear nor time-homogenous. Nonetheless, for a short period of time, we can gain insights into

the short-term dynamics of bid and ask prices by simplifying the optimal price policy functions, making

them depend linearly on inventory levels and ignoring the time-dependence of the function’s coefficients.

We know that a linear relation between prices and inventory levels only holds at the day’s end. If we are

sufficiently far from the day’s end, then we can still use the lower and upper bounds for the slope of ask

and bid price policy functions given in Eq. (34). These two bounds coincide at the day’s end. As argued

in the discussion after Proposition 5.5 (see in particular the corresponding footnote), the lower and upper

bounds behave approximately as the reciprocal of time to maturity and thus are still of the same order. This

implies an approximate linear relation between prices and inventories locally (in time and inventory levels).

7In fact, it can be proved using standard analysis that, both sequences are decreasing polynomially, or more precisely, the
reciprocal sequences (1/λ1T−t+1)∞t=1 and (1/λ2T−t+1)∞t=1 increase linearly as t → ∞. This is in line with Figure 4, where we

have observed that both (L1
T−t+1)Tt=1 and (L2

T−t+1)Tt=1 are roughly linear in t.
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Figure 6: Optimal Bid-Ask Spread at Zero Inventory Level. This figure plots the optimal bid-ask
spread when the inventory level is zero, ã∗t (0) − b̃∗t (0), using the demand and supply functions specified
in Figure 1 and for three different triplets (λ, πBO, πSO). Define λ0 := 0.02 per lot of $100 million and
π0 := 10%. (a) Benchmark case (solid black): λ = λ0 and πBO = πSO = π0; (b) Lower πBO, πSO

case (dashed black): λ = λ0 and πBO = πSO = 0.5π0; (c) Lower λ case (solid gray): λ = 0.1λ0 and
πBO = πSO = π0. The higher are the arrival probabilities (i.e. larger πBO and πSO), the smaller is the
bid-ask spread. For fixed arrival probabilities of market orders, the more severe is the end-of-day inventory
constraint (i.e. larger λ), the wider is the bid-ask spread. When the severity of the end-of-day inventory
constraint is low (i.e. very small λ), the bid-ask spread is nearly flat throughout the whole trading period.
As the time left till the end of the day increases, the bid-ask spread approaches (p̃− q̃)/2 (the spread when
there are no end-of-day inventory constraints) under all parameter settings.

In particular, for the optimal ask price, we have:

ã∗t = β0 − β1It−1,

where β0 and β1 are constants and β1 > 0.8 Taking the difference of the above equation at two consecutive

time points, we have

ã∗t+1 − ã∗t = −β1(It − It−1) = −β1

(
QSO(b̃∗t )∆N

SO
t −QBO(ã∗t )∆N

BO
t

)
.

Thus, if a buy order is executed at time t (i.e. a buyer arrives at t and QBO(ã∗t ) > 0), then the ask price

will increase by β1Q
BO(ã∗t ), which is proportional to the size of the trade taking place at time t, QBO(ã∗t ).

Likewise, if there is a sell order coming at time t, then the ask price will decrease by β1Q
SO(b̃∗t ), in an effort

to invite a larger sized trade with a buyer in the next time step so as to balance the inventory. Hence, price

impact arises endogenously in our model. Furthermore, in conjunction with Proposition 5.5, we also deduce

that the price impact coefficient, β1, tends to be larger as time moves towards the day’s end, which is indeed

well-documented in our empirical analysis (see Section 6).9

8A similar argument can be made for the bid price.
9Admati and Pfleiderer (1988) argue that traders prefer to trade when the market is “thick”, or, when the price impact of

their trades is small. In our model, buyers and sellers arrive according to Bernoulli processes with fixed intensities. Nonetheless,
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Figure 7: Simulated Inventory and Midquote Paths. A simulated inventory path and the corresponding
midquote price process consisting of 1000 time steps. We have used the demand and supply functions given
in Figure 1, arrival probabilities πBO = πSO = 10%, the end-of-day inventory cost λ = 0.02 per lot of $100
million, and a zero initial inventory. Based on a simulated sequence of arrivals of buy and sell orders, the
optimally controlled inventory of the HFT (shown in red), starts at 0 and ends at around 0. The dark blue
line illustrates the midquote price trajectory. As shown in earlier sections, the price trajectory is negatively
correlated with that of the HFT’s inventory level, and this dependence increases as time approaches the
day’s end. Moreover, during the course of the day, the HFT’s inventory has experienced multiple round trips
(excursions) over and below 0.

If a much larger number of buyers, relative to sellers, arrives during a short period of time, then the

price impact generated from trades with buy investors will quickly push ask and bid prices upward, hence

resulting in a flash rally. Likewise, if many more sellers arrive relative to buyers, the price impact resulting

from the asset sales will quickly drive the price down, hence resulting in a flash crash.

The time varying and endogenous nature of the price-impact and bid-ask spreads are distinguishing

features of our model and are generated by the forward looking nature of the inventory constraint. By

contrast, in the model of Amihud and Mendelson (1980), the price policy functions are time homogeneous

because both bid and ask are independent of time due to the perpetual nature of the dealer’s decision making

problem. In the model proposed by Aı̈t-Sahalia and Saglam (2016), both prices and spreads are independent

of inventory levels and time, again due to the perpetual setting of their problem. In both of these models, a

unit trading size is considered, hence price impact is not endogenous.

5.5 The Zero Inventory Constraint

We consider the limiting case of our model in which the HFT does not have any end-of-day constraint. If

λ = 0, then we have F (T, i) = p̄i, and can recovery the optimal ask and bid price policy function at time T

our model predictions can be reconciled with those of Admati and Pfleiderer (1988). This is because both the price impact
and the bid-ask spread increase as time approaches the day’s end, and under these market conditions buyers and sellers would
arrive less often according to Admati and Pfleiderer (1988).
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by taking limits of (30) and (31) as λ→ 0:

ã∗T (i) =
1

2
(p̃+ p̄), (37)

b̃∗T (i) =
1

2
(q̃ + p̄). (38)

Clearly, q̃ < b̃∗T (i) < ã∗T (i) < p̃ for all i, and the bid-ask spread at time T is given by B(0) = 1
2 (p̃ − q̃).

Furthermore, using mathematical induction, we can show that ∂iF (t, i) = p̄ for all t = 1, . . . , T . Hence,

(37) and (38) give the optimal ask and bid price policy functions for all t. Therefore, in the absence of

the end-of-day constraint, prices are independent of inventory levels (unless the buyer/seller’s preference,

i.e. the supply/demand curve changes) throughout the whole trading period, and consequently there will

be no price impact. These strikingly different qualitative features highlight the significant role played by

the end-of-day inventory constraint in determining the intraday price dynamics, which will be tested via an

empirical analysis in the next section.

6 Empirical Analysis and Testable Implications

The U.S. Treasury market is one of the most liquid and largest security market globally, and HFTs represent

a significant proportion of trading activity in the Treasury market (see Joint Staff Report (2015)). This

suggests that the Treasury market provides an appropriate testing ground for our model. We examine the

following Testable Implications from our model:

(TI-1) There is a significant positive relationship between both bid and ask prices (and hence midquotes)

and the negative of the HFT’s inventory (see Lemma 5.1 and Lemma 5.2). Thus, bid and ask prices

negatively co-move with the HFT’s inventory.

(TI-2) The dependence of bid and ask prices on HFT’s inventory becomes stronger as time approaches the

day’s end (see Proposition 5.5). Because of the HFT’s inventory management motives, each trade

of the HFT generates price impact. Moreover, the price impact is the largest at the day’s end (see

Proposition 5.5 and discussions following it).

(TI-3) Due to the endogenous price impact, flash events can occur if significant trading in one direction is

followed by significant trading in the opposite direction during a short time interval (this follows from

Lemma 5.1, and Lemma 5.2 applied to short time intervals).

(TI-4) The bid-ask spread tends to increase as time approaches the day’s end (see Proposition 5.5).
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Figure 8: 10-Year Treasury Prices and Cumulative Net Volume. This figure scatters daily cumu-
lative net volume against daily 10-year Treasury midnight-to-close price changes. Cumulative net volume
is measured in 100 lots of $1 million and represent the cumulative sum of intraday tick-by-tick net dollar
volumes on BrokerTecfrom midnight until close at 17:30. The red line is the OLS projection of daily price
changes on cumulative net volume, with slope coefficient, Newey-West t-statistic, and R-squared reported in
the top left corner. The daily correlation between cumulative net volumes and returns is 41%. The sample
consists of daily observations from 4/2/2012 to 10/30/2015.

We examine each of these Testable Implications (TI-1 through TI-4) in turn, using high-frequency intraday

data from BrokerTec, a major U.S. Treasury ECN (electronic communications network) that accounts for

about 60% of electronic trading activity in the cash market for U.S. Treasury securities. The availability of

detailed trade and limit order book data time-stamped to the millisecond make this data ideally suited to

examine intraday trading and liquidity patterns.10

To test (TI-1), we construct a proxy for HFT inventory as the negative cumulative net volume (buy minus

sell). As Brogaard et al. (2014) point out, “if HFTs’ inventory positions are close to zero overnight, then their

inventories can be measured by accumulating their buying and selling activity in each stock from opening

to each point in time.” While our data does not provide participant-level information, in markets where a

large share of transactions are through an intermediate HFT (as the Joint Staff Report (2015) suggests), the

cumulative net volume can be considered as a proxy for the negative of the HFT’s inventory, because each

buy order reduces the inventory of the HFT by the same amount, and each sell order increases the inventory

of the HFT by an equal amount. With this measure in hand, (TI-1) implies that bid and ask prices (and

hence midquotes) should be negatively correlated with HFT inventory and hence positively correlated with

cumulative net volume, which is indeed what we find. Figure 8 shows that a regression of price changes on

cumulative net volume changes yields a statistically strong relationship between this inventory measure and

10A detailed overview of the microstructure of the BrokerTec ECN is provided by Fleming et al. (2014).
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Figure 9: Inventories and 10-Year Treasury Prices by Hour. This figure plots intercepts (left panel)
and slopes (right panel) of regressions of 10-year Treasury price changes on changes in market maker inven-
tory, as proxied by cumulative net volume (sell minus buy). For a fixed hour of each day in the sample (say
9:00-10:00am), we obtain the midquote price change over that hour, as well as the inventory change over the
same hour. This results in 858 price and inventory changes that are used in the 9:00-10:00am regression.
The process is repeated for each hour of the day, resulting in price and inventory changes by hour. Since
the market closes at 17:30, the last regression uses price and inventory changes from 17:00-17:30. Coefficient
estimates and 99% Newey-West confidence intervals are plotted in the figure. Prices are measured in percent
of par, and inventories are measured in 100 lots of $1 million. The underlying data use intraday orderbook
observations from 4/2/2012 to 10/30/2015.

midquotes, with a Newey-West t-statistic of more than 12. In terms of magnitudes, the regression shows

that an intraday cumulative net dollar volume change of about $1 billion in notional par value corresponds

to an increase in 10-year Treasury prices of about 0.01 percent of par.

Table 1: Price Changes and Inventories: Tests of Equal Slopes on Intraday vs Close

This table tests the null hypothesis that the relationship between price changes and inventories is the same
intraday and near the close of the trading day. That is, we run regressions of 10-year Treasury price changes
on changes in market maker inventory, as proxied by cumulative net sell minus buy volume. For a fixed hour of
each day in the sample (say 9:00-10:00am), we obtain the midquote price change over that hour, as well as the
inventory change over the same hour. This results in 858 price and inventory changes that are used in the 9:00-
10:00am regression. The process is repeated for each hour of the day, resulting in price and inventory changes
by hour. Since the market closes at 17:30, the last regression uses price and inventory changes from 17:00-17:30.
The difference between the slope coefficient from the 17:00 - 17:30 regression and the slope coefficients from
each prior hour is reported, along with the associate t-statistic and p-value.

Time of Day i βclose − βi t-stat p-value

9:00 - 10:00 -0.01 [-6.43] (0.000)
10:00 - 11:00 -0.01 [-6.43] (0.000)
11:00 - 12:00 -0.01 [-6.67] (0.000)
12:00 - 13:00 -0.01 [-6.34] (0.000)
13:00 - 14:00 -0.01 [-4.76] (0.000)
14:00 - 15:00 -0.01 [-5.76] (0.000)
15:00 - 16:00 -0.01 [-7.40] (0.000)
16:00 - 17:00 -0.01 [-6.81] (0.000)
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(TI-2) suggests intraday variation in the relationship between midquote prices and HFT inventory. In

particular, the HFT’s desire to end the day flat causes the relationship between quoted prices and inventory

to steepen near the close of trading. To test this implication, we ran the same regression as in (TI-1),

restricted to each hour of the active trading day.11 Figure 9 confirms that the negative relationship between

prices and HFT inventory holds intraday, and is statistically significant. Most importantly, the figure shows

a strong steepening of the relationship between our measure of HFT inventory and prices near close. Table 1

confirms through a two-sample test that the steepening of the relationship near close is statistically significant

relative to any prior hour in the trading day.

To examine (TI-3), we note that flash events are characterized by a rapid and large fall or rise in prices

followed by a reversal in a short window of time. In our model, a large price increase can occur during a short

time window if an intense buying, relative to selling, pressure is realized. The reversal in prices would then

be accompanied by intense selling, relative to buying, pressure. The run-up in prices and the reversal can be

explained by the same mechanism described in (TI-1), but applied to a short window of time so that it can

be interpreted as a flash event. That is, during a period of intense buying pressure, cumulative net volumes

rise, which means the HFT is shedding its inventory quickly. This increases price impact because the HFT

revises its quotes upward in the attempt of discouraging further declines in inventory. A sudden reversal in

order flow would then generate the opposite price impact. For prices to return to the same levels as those

observed before the flash event, the volume of reversal trading would have to be of similar magnitude as

the price run-up volume. When we plot the relationship between quoted prices and cumulative net volume

during the October 15, 2014, flash event, we see that this is indeed the case. Figure 10 shows that the

price run-up was accompanied by high buy volume relative to sell volume – a difference of about 800 lots

of $1 million from 9:30 to 9:38am. Conversely, the subsequent reversal in prices from 9:38 to 9:44am was

accompanied by about 900 lots sold relative to those bought. Importantly, we note that at least for this

particular flash event, there were no discontinuities in the price path, in the sense of small volumes causing

large price changes.

Finally, (TI-4) has implications for bid-ask spreads, which are expected to increase towards the close of

trading. Indeed, the left panel of Figure 11 shows that, on average, across our full sample of trading days,

bid-ask spreads are low from 9:00am onwards and rise sharply heading into close. Moreover, the right panel

of Figure 11 shows that this is an empirical regularity that is maintained on almost all of the trading days

in in our sample.

11As Fleming et al. (2014) show, trading activity rises sharply in this market at 8:00am ET. However, due to the prevalence
of pre-announced, liquidity-distorting 8:30am news releases, we focus on the hours of 9:00 to closing at 17:30 ET.
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Figure 10: Cumulative Net Volume and Prices during a Flash Event. This figure plots cumulative
net volume (buy minus sell) and mid-quote prices during the flash event on October 15, 2014.
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Figure 11: Bid-Ask Spreads Intraday and over Time. The left panel plots intraday bid-ask spreads
for 10-year Treasuries. Using tick-by-tick order book data, bid-ask spreads are aggregated to 5-minute
frequencies and then averaged across days. The spike at 8:30am coincides with major economic releases in
the U.S. The right panel plots bid-ask spreads for 10-year Treasuries as recorded near the start of active
trading 9:00 and near close at 17:25. The sample constists of high-frequency intraday observations from
4/2/2012 to 10/30/2015.

7 Price Stability

The overnight inventory constraint steepens the price impact function. We therefore expect more volatile

price paths as a function of the tightness of the inventory constraint. To investigate the impact of the

constraint on measures of price stability, we perform comparative statics with respect to the two key param-

eters: the overnight funding cost λ, and the arrival probabilities πBO, πSO. We compute and analyze three

measures of price stability: the maximum deviation of a traded price from the long-run equilibrium price p̄,
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the maximum drawdown of the mid-price, and the maximum bid-ask spread during trading.

The maximum price deviation from the equilibrium price p̄ is defined as

max{p̄− minimum traded bid price, maximum traded ask price − p̄}.

The maximum drawdown of the mid-price is defined by

max
1≤t≤T

(
max

1≤s≤t
Ss − St

)
,

where St = 1
2 (ã∗t + b̃∗t ) is the mid-price. Moreover, we measure the maximum bid-ask spread at trading times,

i.e., the spread whenever a trade occurs either with a buy or sell investor. Throughout the section, we use

the demand and supply functions given as in Figure 1.

For each (λ, πBO, πSO) triplet, we run ten-thousand simulations starting with a zero initial inventory.

On each path, we compute all three of these measures. The three panels of Table 2 present sample mean

estimates for the expected maximum deviation of a traded price from the equilibrium price, the expected

maximum bid-ask spread, and the maximum drawdown. The numbers in parenthesis are estimates for the

standard deviation of sample means.

Table 2 shows that the maximum bid-ask spread is increasing in the overnight inventory cost λ (Panel A).

This suggests that the higher overnight inventory cost is passed on to the end investors in the form of more

extreme spikes in bid-ask spreads. Furthermore, Table 2 shows that prices are less stable when overnight

inventory costs λ are high. This result holds for both measures of price stability (Panels B and C). This

finding reflects the fact that price impact is an increasing function of the overnight inventory cost.

Panel A of Table 2 also shows that bid-ask spreads are declining in the arrival probabilities πBO, πSO,

which would be expected from more and more liquid markets. High arrival probabilities induce more trading

activities and opportunities, and hence the maximum deviation from the equilibrium value is also large when

arrival probabilities are larger (Panel B). However, high arrival probabilities can induce larger drawdowns or

reduce them, depending on the level of overnight inventory cost (see Panel C). Specifically, for smaller λ, the

expected maximum drawdown is increasing with arrival probabilities; for larger λ, the expected maximum

drawdown is decreasing with arrival probabilities. This means that, whether a highly liquid market will

alleviate or aggravate maximum drawdowns, depends on whether the overnight inventory cost is high or low.

The plots in Figure 12 indicate that the distribution of the maximum bid-ask spread is heavily skewed

to the left, with a mode at the largest value. As the arrival probabilities increase, the maximum bid-ask

spread is more concentrated at this mode. This is expected because the maximum bid-ask spread along any
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Figure 12: Distribution of Maximum Bid-Ask Spread. This figure plots the simulated distribution of
the maximum bid-ask spread for four different triplets (λ, πBO, πSO). Recall that λ measures the severity of
the overnight inventory cost (per lot of $100 million), and πBO and πSO measure the arrival probabilities of
buy and sell investors, respectively. Panel (a): λ = 0.002 and πBO = πSO = 5%; Panel (b): λ = 0.002 and
πBO = πSO = 30%; Panel (c): λ = 0.08 and πBO = πSO = 5%; Panel (d): λ = 0.08 and πBO = πSO = 30%.

arrival sequence of buy and sell orders tends to be realized at the end of the trading day. At that time, it is

explicitly given by the equation B(λ) given in Lemma 5.5.

Figure 13 indicates that the distribution of the maximum deviation from the equilibrium price is skewed to

the right. Higher arrival probabilities induces more trading activity and hence a larger maximum deviation.

As the overnight inventory cost λ becomes larger, the maximum deviation is highly concentrated to the left,

but has a very long tail to the right. This means that the HFT’s motive to avoid a high overnight inventory

cost can create larger price distortions in the market.

Figure 14 suggests that the distribution of the maximum drawdown is most skewed to the right. Higher

λ means higher price impact and hence more price fluctuation leading to higher drawdown. Moreover, for a
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Figure 13: Distribution of Maximum Deviation from Equilibrium. This figure plots the simu-
lated distribution of the maximum deviation of traded prices from the equilibrium value p̄ for four triplets
(λ, πBO, πSO). Recall that λ measures the severity of the overnight inventory cost (per lot of $100 mil-
lion), and πBO and πSO measure the arrival probabilities of buy and sell investors, respectively. Panel (a):
λ = 0.002 and πBO = πSO = 5%; Panel (b): λ = 0.002 and πBO = πSO = 30%; Panel (c): λ = 0.08 and
πBO = πSO = 5%; Panel (d): λ = 0.08 and πBO = πSO = 30%.

small λ, larger arrival probabilities result in more trading and profit opportunities for the HFT, and hence

a larger maximum drawdown; for a large λ, larger arrival probabilities give more opportunities to manage

inventory, and hence the HFT will exert higher effort to control its inventory, which results in a smaller

maximum drawdown.

The above analysis was conducted by taking averages across sample paths. Next, we examine a specific

sample path in which sellers arrive at higher intensity than buyers. As we have argued before, asymmetric

arrival intensities are a typical feature of flash events. We simulate buy and sell order arrivals, and then

analyze the impact of three different end of day inventory cost: λ = 0.002; λ = 0.02; and λ = 0.08. As it

appears from the simulated trajectories of the mid-price reported in Figure 15, higher end of day inventory
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Figure 14: Distribution of Maximum Price Drawdown. This figure plots simulated distributions of the
maximum drawdown of the midquote price for four different triplets (λ, πBO, πSO). Recall that λ measures
the severity of the overnight inventory cost (per lot of $1 million), and πBO and πSO measure the arrival
probabilities of buy and sell investors, respectively. Panel (a): λ = 0.002 and πBO = πSO = 5%; Panel (b):
λ = 0.002 and πBO = πSO = 30%; Panel (c): λ = 0.08 and πBO = πSO = 5%; Panel (d): λ = 0.08 and
πBO = πSO = 30%.

costs amplify the downward pressure on prices caused by the arrival imbalance.

8 Welfare

This section conducts a welfare analysis. The demand and supply functions (1), (2) are reduced form

specifications for the optimal trading strategy of end investors that we do not explicitly model. In order to

compute a welfare measure for those end investors, we use the notion of consumer surplus. More specifically,

if there is a buy order arriving at time s, then we measure the surplus for this order as the area between the
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Figure 15: Simulated Price Trajectories for Different Overnight Inventory Costs. This figure
plots simulated trajectories of the midquote price under the demand and supply functions specified as in
Figure 1. We choose symmetric arrival probabilities πBO = πSO = 10%. We consider three different values
of λ: λ = 0.002 (per lot of $100 million) for the red line; λ = 0.02 (per lot of $100 million) for the dark blue
line; and λ = 0.08 (per lot of $100 million) for the light blue line. For each choice of λ, we consider the same
arrival sequence of buy and sell orders. Evidently, the larger λ, and the more volatile the price, especially
near the day’s end.

traded quantity QBO(ã∗s) and the demand curve QBO(x):

∫ p̃

ã∗s

[QBO(ã∗s)−QBO(x)]dx =
c

2
(p̃− ã∗s)2.

The cumulative surplus for all buy orders is then defined as the sum of all such areas when buyers arrive.

The surplus for sellers is defined following the same logic. We can thus define the buy and the sell investor

surplus respectively as

SurplusBO =
c

2

T∑
s=1

(p̃− ã∗s)2∆NBO
s , (39)

SurplusSO =
c

2

T∑
s=1

(b̃∗s − q̃)2∆NSO
s , (40)

Figures 16 and 17 show that the surpluses for buyers and sellers are slightly higher when λ is small, but as

πBO, πSO become larger, the surpluses are increased for all λ-values, and λ appears to play a smaller role for

the surpluses’ median, lower and upper 25% quantiles. However, when λ larger, there are more outliers, and

the distribution of the surpluses becomes strongly positive skewed, especially when πBO, πSO are large. As

λ measures the severity of the overnight funding costs, these results suggest that the HFT passes those costs

onto the end investor, especially when the market is less liquid (lower πBO, πSO). Hence smaller overnight

funding costs and a liquid market environment are both beneficial for end investors, as one might expect.

For the HFT, we use the objective function of which it is maximizing the expectation, (7), as a measure
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Figure 16: Box plots of the buyer’s surplus for ten triplets (λ, πBO, πSO). (Certain outliers have been
truncated to show at a higher resolution the distribution around the middle 50% quartile.) Panel (a):
πBO = πSO = 5%; Panel (b): πBO = πSO = 30%.

2

3

4

5

6

7

8

9

10

0.002 0.01 0.02 0.04 0.08

λ (per lot of $100 million)

S
e
lle

r 
s
u
rp

lu
s
 (

lo
ts

 o
f 
$
1
 m

ill
io

n
)

(a)

25

30

35

40

45

0.002 0.01 0.02 0.04 0.08

λ (per lot of $100 million)

S
e
lle

r 
s
u
rp

lu
s
 (

lo
ts

 o
f 
$
1
 m

ill
io

n
)

(b)

Figure 17: Box plots of the seller’s surplus for ten different triplets (λ, πBO, πSO). (Certain outliers have
been truncated to show details of the middle 50% quartile.) Panel (a): πBO = πSO = 5%; Panel (b):
πBO = πSO = 30%.

of welfare.

WT − λI2
T + p̄IT

This corresponds to the optimal achievable wealth, as it depends on the optimally chosen bid and ask prices,

and is netted of the end-of-day inventory cost.

Figure 18 suggests that the median welfare of the HFT increases as the buy and sell order arrival

probabilities (πBO, πSO) become larger, and decreases as the end-of-day costs λ increases. When πBO and

πSO are at 30% (very liquid market), λ no longer plays a major role in determining the median, the lower

and the upper 25% quantiles of the HFT’s welfare. However, a larger λ always causes more outliers and
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tail risks. It is also noteworthy that the HFT’s welfare is strongly negatively skewed when λ is large. This

reflects the increased challenge for the HFT to control its inventory in order to avoid the overnight funding

cost.
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Figure 18: Box plots of the HFT’s wealth minus overnight inventory cost for ten different triplets
(λ, πBO, πSO). (Certain outliers have been truncated to show details of the middle 50% quartile.) Panel (a):
πBO = πSO = 5%; Panel (b): πBO = πSO = 30%.

9 Conclusion

The HFT sector has grown rapidly in recent years. High frequency, automated, and algorithmic trading now

account for the majority of volume in U.S. Treasury, global equity, and foreign exchange markets. While a

number of researchers have investigated the HFT sector from an empirical angle, there is little theory that

explores conceptual differences between dealer models of market making and HFT models of market making.

Our paper is an attempt to fill this gap along one dimension, namely, by studying the importance of the

overnight inventory cost for the determination of price and liquidity dynamics. The distinguishing feature of

our approach is to assume that the HFT does not face any constraints during the day, but faces an inventory

cost at the end of the day. The HFT thus has a strong incentive to end the day with little to no inventory,

which is a hallmark of their short investment horizons.

We characterize the optimal market making behavior of such an HFT and conduct comparative statics

relative to the magnitude of end of day costs, as well as the degree of competition. The optimal price setting

strategy of the HFT gives rise to bid-ask spreads and price impact metrics that tend to rise towards the end

of the day, even though arrival rates of buyers and sellers are constant, a feature that is present in intraday

U.S. Treasury data. Importantly, both bid-ask spread and price impact arise endogenously as functions of
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inventory, time of day, and the magnitude of the overnight inventory cost. Even though trading is costless

intraday, and the HFT only faces the inventory cost at the end of the day, equilibrium bid-ask spreads and

price impact depend on the overnight inventory cost at all times during the day. The steepening of price

impact due to the end of day constraint leads to more volatile price paths intraday.

Appendix

A Algorithm

In this section, we show that, if the i-derivative of value function F (t, i) is piecewise linear, then so are
a∗t (i) and b∗t (i). As a consequence, by Proposition 5.3 we deduce that ∂iF (t − 1, i) is also piecewise linear.
Since piecewise linear functions are computationally tractable (through their slopes and kinks), we obtain an
efficient and semi-analytical backward algorithm that computes ∂iF (t, i), the optimal ask a∗t (i) and optimal
bid b∗t (t) from the i-derivative of F (T, i) = −λi2 + p̄i.

To begin, notice that a piece-wise linear function f(x) can be uniquely identified by specifying the left
slope (left derivative) at the first kink, the right slope (right derivative) at the last kink, and the value of
the function at all intermediate kinks. In the sequel, we will use extensively the following representation

{s−∞, (x1, f(x1)), (x2, f(x2)), . . . , (xk, f(yk)), s∞} ,

where s−∞ denotes the left derivative at the first kink, s∞ denotes the right derivative at the last kink, and
(x1, f(x1)), . . . (xk, f(xk)) are the x-y pairs of the function at the intermediate kinks such that x1 < x2 <
. . . < xk. The above representation is equivalent to

f(x) = [s−∞(x− x1) + f(x1)]1{x≤x1} + [s∞(x− xk) + f(xk)]1{x>xk}

+

k−1∑
m=1

(
x− xm

xm+1 − xm
f(xm+1) +

xm+1 − x
xm+1 − xm

f(xm)

)
1{x∈(xm,xm+1]}.

Let us assume that ∂iF (t, i) is piece-wise linear with k kinks. Then, it can be fully determined by the
following:

{s−∞, (i1, ∂iF (t, i1)), . . . , (ik, ∂iF (t, ik)), s∞}

where s±∞ < 0 stand for the slope of ∂iF (t, i) for sufficiently large or small x. Recall the function Gt(i) in
Eq. (5.1) Then Gt(i) admits a similar representation{

s−∞ −
2

c
, (i1, ∂iF (t, i1)− 2

c
i1), . . . , (ik, ∂iF (t, ik)− 2

c
ik), s∞ −

2

c

}
Using the above representation, we can determine the inverse G−1

t using its representation (the x-coordinates
are reversed because Gt is decreasing):{

1

s∞ − 2
c

, (∂iF (t, ik)− 2

c
ik, ik), . . . , (∂iF (t, i1)− 2

c
i1, i1),

1

s−∞ − 2
c

}
As a result, G−1

t

(
p−2i
c

)
has representation{

1

1− s−∞c
2

,
(p

2
− c

2
∂iF (t, i1) + i1, i1

)
, . . . ,

(p
2
− c

2
∂iF (t, ik) + ik, ik

)
,

1

1− s∞c
2

}
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Using the linear relation between G−1
t and at(i) given in equation (23), we obtain that at(i) is also piecewise

linear and admits the representation{
1

2
s−∞c

− 1
,
(p

2
− c

2
∂iF (t, i1) + i1,

p

2
+
c

2
∂iF (t, i1)

)
,

. . . ,
(p

2
− c

2
∂iF (t, ik) + ik,

p

2
+
c

2
∂iF (t, ik)

)
,

1
2

s∞c
− 1

}
For the bid price, we use (23) and (24) to obtain that

bt(i) = at(i+
p− q

2
)− p− q

2
. (41)

Hence, the optimal scaled bid function bt(i) is piecewise linear with representation{
1

2
s−∞c

− 1
,
(q

2
− c

2
∂iF (t, i1) + i1,

q

2
+
c

2
∂iF (t, i1)

)
,

. . . ,
(q

2
− c

2
∂iF (t, ik) + ik,

c

2
∂iF (t, ik)

)
,

1
2

s∞c
− 1

}
.

We then use the expression for the derivative of the value function with respect to inventory given in
equation (28). In fact, from the proof of Proposition 5.3, we know that (28) can be equivalently expressed
as

∂iF (t− 1, i) =



(1− πBO)∂iF (t, i) + πBO∂iF (t, i− p), i ≥ L0
t

(1− πBO)∂iF (t, i) +
πBO

c
(2at(i)− p), L0

t > i ≥ L1
t

(1− πBO − πSO)∂iF (t, i) +
πBO

c
(2at(i)− p) +

πSO

c
(2bt(i)− q), L1

t > i > L2
t

(1− πSO)∂iF (t, i) +
πSO

c
(2bt(i)− q), L2

t > i,

. (42)

where L0
t is the inventory level such that at(L

0
t ) = 0, i.e. it solves

∂iF (t, L0
t − p) + p̃ = 0. (43)

Given piecewise linear functions ∂iF (t, i), a∗t (i) and b∗t (t), we can conveniently use the above expression to
obtain a representation for function ∂iF (t − 1, i), which is necessarily also piecewise linear. Iterating this
step, we can obtain the optimal ask a∗t (i), the optimal bid b∗t and ∂iF (t, i) for all i = 1, 2, . . . , T .

It is worth remarking that, as more recursive steps are taken, the structure of ∂iF (t, i) can become quite
complex. This is because more and more kinks will arise because of horizontal translations, or additions
between piecewise linear functions. One way to improve the efficiency of the algorithm and memory manage-
ment is to work with a finite domain for the inventory, by only storing kinks within a pre-specified inventory
interval, if we are only interested to know the optimal price policy functions when the inventory level is
within this interval. We refer to the proof of Proposition 5.5 below for why this is legitimate.

B Proofs

Proof that (3) solves the minimization problem (4). We only consider x ∈ [q̃, p̃], because the price outside of
this interval will result in a one-sided market. Conditioning on NBO

t +NSO
t = n, we know that NBO

t follows
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a Binomial distribution with parameter (n, π
BO

π ). Therefore,

E
[(
QBO(x)NBO

t −QSO(x)NSO
t

)2 |NBO
t +NSO

t = n
]

=E
[(
QBO(x)NBO

t +QSO(x)NBO
t −QSO(x)n

)2 |NBO
t +NSO

t = n
]

=c2E
[(

(p̃− q̃)NBO
t − (x− q̃)n

)2 |NBO
t +NSO

t = n
]
.

It follows that the optimal x that minimize the above quantity must solve the first-order condition:

(p̃− q̃)E[NBO
t |NBO

t +NSO
t = n]− (x− q̃)n = 0,

which is equivalent to

(p̃− q̃)nπ
BO

π
− (x− q̃)n = 0,

leading to (3).

Proof of Lemma 5.1. For fixed t and all i ∈ R, because F (t, i) is assumed to be strictly concave in i (its
derivative is decreasing), we know that Gt(i) is strictly decreasing in i. Furthermore, we have assumed that
∂iF (t, i) is increasing in i and maps onto R, thus we know that Gt(−∞) =∞ = −Gt(∞).

After algebraic manipulations, we deduce that the following relations hold:

0 = ∂iF (t, i− p+ at(i)) +
1

c
(p− 2at(i)) = Gt(i− p+ at(i))−

1

c
(p− 2i)

Using the definition of inverse functions, we obtain

i− p+ at(i) = G−1
t

(
p− 2i

c

)
leading to (23). Similarly, from

0 = ∂iF (t, i+ bt(i)− q) +
1

c
(q − 2bt(i)) = Gt(i+ bt(i)− q)−

q − 2i

c
,

we obtain (24).
To show that the mapping i : 7→ at(i) is strictly decreasing, we consider i1 < i2, then we have

∂iF (t, i2 − p+ at(i1)) +
1

c
(p− 2at(i1)) < ∂iF (t, i1 − p+ at(i1)) +

1

c
(p− 2at(i1)) = 0,

where we used the fact that ∂iF (t, i) is strictly decreasing in order to get the first inequality. On the other
hand, the mapping a :7→ ∂iF (t, i2 − p+ a) + 1

c (p− 2a) is clearly strictly decreasing, and at(i2) is the zero of
this mapping. So we must have

at(i2) < at(i1).

Applying the same argument to equation ∂iF (t, i+ b− q)− 2b
c = 0, we obtain the same result for bt(i).

Finally, notice that
p− 2i

c
=
q − 2i

c
+
p− q
c

>
q − 2i

c
.

By (23), (24) and monotonicity of G−1
t , we have

at(i)− bt(i) = G−1
t

(
q − 2i

c
+
p− q
c

)
−G−1

t

(
q − 2i

c

)
+ p− q < p− q. (44)
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On the other hand, using (41) we have

at(i)− bt(i) =
p− q

2
+ at(i)− at(i+

p− q
2

) >
p− q

2
,

where the inequality follows because at(i) is strictly decreasing in i. This completes the proof.

Proof of Lemma 5.2. The functions at(i) and bt(i) in Lemma 5.1 give the optimal scaled “ask” and “bid”
which solve the optimization problem

sup
a,b
{πBO[

1

c
a(p− a) + F (t, i− p+ a)− F (t, i)] + πSO[−1

c
b(b− q) + F (t, i+ b− q)− F (t, i)]}.

From the fact that the objective function in this unconstrained problem is concave in a and b, we deduce
that, for each fixed i ∈ R, the optimal scaled ask and bid price should be given by at(i) and bt(i) as long as
0 ≤ at(i) < p and bt(i) > q. Using again the strict i-concavity of F (t, i), we know that, for an i such that
at(i) ≥ p, there cannot be any a such that 0 < a < p that maximizes the Hamiltonian in (16), instead, any
a ≥ p, such as at(i) itself, is a maximizer of this Hamiltonian. Therefore, the optimal scaled ask and bid
prices are given by the expressions in equations (18) and (19).

Proof of Proposition 5.3. As seen in Lemma 5.1, we always have at(i) > bt(i) for at(i) and bt(i) in (23) and
(24), respectively. Let L0

t be the inventory level where at(i) = 0, i.e. (43) holds. Then for all i ≥ L0
t , we

have at(i) ≤ 0, and hence b∗t (i) = a∗t (i) = 0.
We use the optimal bid and ask prices determined above to show that the optimized Hamiltonian Ht(i)

in (17) is smooth in i (this requires verifying the smooth fit at the boundary points L0
t , L

1
t , L

2
t ). In the sequel

we discuss the form of the optimized Hamiltonian, Ht(i), in four different regions of the inventory.

1. For i ≥ L0
t , we have a∗t (i) = b∗t (i) = 0. This means that the inventory of the HFT is so large that it

sells to buyers for free in the attempt of reducing inventory, so

Ht(i) = sup
(a,b)∈(R+)2

{
πBO[

a(p− a)+

c
+ F (t, i− (p− a)+)] + πSO[−b(b− q)

+

c
+ F (t, i+ (b− q)+)]

}
− (πBO + πSO)F (t, i)

=πBO[F (t, i− p)− F (t, i)].

It follows that

H ′t(i) = πBO[∂iF (t, i− p)− ∂iF (t, i)], (45)

which is positive because ∂iF (t, i) is decreasing in i.

2. For L0
t > i ≥ L1

t , we have b∗t (i) < q and p > a∗t (i) = at(i) > 0, thus the HFT only trades with buy
investors and

Ht(i) =πBO
[

1

c
at(i)(p− at(i)) + F (t, i− p+ at(i))− F (t, i)

]
.

Recall that at(i) is strictly decreasing in i, so that we can take the differential of Ht with respect to i:

dHt(i) =πBO
[

1

c
(p− 2at(i))dat(i) + ∂iF (t, i− p+ at(i))(di+ dat(i))− ∂tF (t, i)di

]
=πBO[

1

c
(p− 2at(i)) + ∂iF (t, i− p+ at(i))dat(i) + πBO[∂iF (t, i− p+ at(i))− ∂iF (t, i)]di

=πBO[∂iF (t, i− p+ at(i))− ∂iF (t, i)]di

43



where the last step follows from the first-order condition that at(i) satisfies (see Eq. (21)). Hence,
Ht(i) is also differentiable, with

H ′t(i) = πBO[
1

c
(2at(i)− p)− ∂iF (t, i)] = πBO[∂iF (t, i− p+ at(i))− ∂iF (t, i)], (46)

which is positive because ∂iF (t, i) is decreasing in i. By evaluating (45) and (46) at i = L0
t , we notice

that H ′t(i) is continuous at i = L0
t .

3. For L1
t > i > L2

t , we have q < b∗t (i) = bt(i) < a∗t (i) = at(i) < p, and the HFT actively trade with both
buyers and sellers, so

Ht(i) =πBO[
1

c
at(i)(p− at(i)) + F (t, i− p+ at(i))] + πSO[−1

c
bt(i)(bt(i)− q) + F (t, i+ bt(i)− q)]

− (πBO + πSO)F (t, i).

It follows that (by the definitions of at(i) and bt(i))

H ′t(i) =πBO[∂iF (t, i− p+ a∗t (i))− ∂iF (t, i)] + πSO[∂iF (t, i+ b∗t (i)− q)− ∂iF (t, i)]

=πBO[
1

c
(2a∗t (i)− p)− ∂iF (t, i)] + πSO[

1

c
(2b∗t (i)− q)− ∂iF (t, i)]. (47)

By evaluating (46) and (47) at i = L1
t , we notice that H ′t(i) is continuous at i = L1

t .

4. For i ≤ L2
t , we have a∗t (i) = at(i) ≥ p and b∗t (i) = bt(i) > q. So the HFT only trades with sell investors

to increase its inventory, and

Ht(i) =πSO[−1

c
bt(i)(bt(i)− q) + F (t, i+ bt(i)− q)− F (t, i)]. (48)

Recall that bt(i) is strictly decreasing in i, we can take the differential of Ht with respect to i and
obtain:

dHt(i) =πSO
[

1

c
(q − 2bt(i))dbt(i) + ∂iF (t, i+ bt(i)− q)(di+ dbt(i))− ∂tF (t, i)di

]
=πSO[

1

c
(q − 2bt(i)) + ∂iF (t, i+ bt(i)− q)dbt(i) + πSO[∂iF (t, i+ bt(i)− q)− ∂iF (t, i)]di

=πSO[∂iF (t, i+ bt(i)− q)− ∂iF (t, i)]di, (49)

where in the last equality we have used the first order condition satisfied by bt(i) (see Eq. (22)). Thus

H ′t(i) =πSO[
1

c
(2bt(i)− q)− ∂iF (t, i)] = πSO[∂iF (t, i+ bt(i)− q)− ∂iF (t, i)], (50)

which is negative because ∂iF (t, i) is decreasing in i. By evaluating (47) and (50) at i = L2
t , we notice

that H ′t(i) is also continuous at i = L2
t .

From (16) we know that F (t− 1, i) is also continuously differentiable in i, and

∂iF (t− 1, i) = ∂iF (t, i) +H ′t(i).

From the above analysis we deduce that ∂iF (t−1, i) is C1, and that its derivative with respect to the inventory
level is given by equation (28). The expression in (28) can be equivalently written more explicitly as (42).
As both at(i) and bt(i) are strictly decreasing in i, we deduce immediately from (42) that ∂iF (t−1, i) is also
strictly decreasing, hence F (t − 1, i) is strictly concave. Moreover, it is clear that limi→∞ ∂iF (t, i) = −∞.
As bt(i) > q for all i < L2

t and using the expression in the last line of (42) we have

∂iF (t− 1, i) = (1− πSO)∂iF (t, i) + πSO
1

c
(2bt(i)− q),

44



we know that
lim

i→−∞
∂iF (t− 1, i) =∞.

This completes the proof.

Proof of Proposition 5.4. To prove the monotonicity of the sequences at hand, we notice that for any t =
2, . . . , T 

H ′t(i) > 0, ∀i ≥ L1
t (see, in the proof of Proposition 5.3)

H ′t(i) < 0, ∀i ≤ L2
t (see, in the proof of Proposition 5.3)

∂iF (t− 1, i) = ∂iF (t, i) +H ′t(i).

It follows that (using (27) at time t and t− 1),

∂iF (t− 1, L1
t ) = ∂iF (t, L1

t ) +H ′t(L
1
t ) > q̃ = ∂iF (t− 1, L1

t−1),

∂iF (t− 1, L2
t ) = ∂iF (t, L2

t ) +H ′t(L
2
t ) < p̃ = ∂iF (t− 1, L2

t−1).

Because ∂iF (t − 1, i) is strictly decreasing in i, we know that L1
t−1 > L1

t and L2
t−1 < L2

t .
12 Finally, a

straightforward calculation using (30) and (31) yields

L1
T =

p̄− q̃
2λ

> 0, L2
T = − p̃− p̄

2λ
< 0.

Hence, the sequence (L1
t )
T
t=1 is positive and (L2

t )
T
t=1 is negative.

Lemma B.1. For any t, the mappings i :7→ i+ at(i) and i : 7→ i+ bt(i) are strictly increasing.

Proof. Recall that at(i) solves

∂iF (t, i− p+ at(i)) +
p− 2at(i)

c
= 0. (51)

For i1 > i2, at(i1) < at(i2), so by the monotonicity of ∂iF (t, i) in i, we have

i1 − p+ at(i1) > i2 − p+ at(i2), (52)

thus we have i1 + at(i1) > i2 + at(i2). The claim about i+ bt(i) can be obtained directly using (41).

Proof of Proposition 5.5. Let us first allow for a negative ask price. Then the recursive equation that ∂iF (t, i)
satisfies, (42), needs a slight modification. Specifically,

∂iF (t− 1, i) =



(1− πBO)∂iF (t, i) +
πBO

c
(2at(i)− p), i ≥ L1

t

(1− πBO − πSO)∂iF (t, i) +
πBO

c
(2at(i)− p) +

πSO

c
(2bt(i)− q), L1

t > i > L2
t

(1− πSO)∂iF (t, i) +
πSO

c
(2bt(i)− q), L2

t > i,

. (53)

Essentially, this allows the HFT to unload its inventory by even paying a price to the buyer, if the inventory
level is extremely high. While this change affects the HFT’s trading behavior in this extremely adverse
scenario, it dose not alter the optimal strategy when the inventory level is moderate, as discussed later in
the proof.

For any i1 > i2, using the first-order condition (21), we have

∂iF (t, i1 − p+ at(i1))− ∂iF (t, i2 − p+ at(i2)) =
2

c
[at(i1)− at(i2)]. (54)

12It is worth mentioning that the same argument can be applied to establish that the sequence (lxt )Tt=1 is strictly decreasing,
where lxt is the unique root to ∂iF (t, lxt ) = x for a fixed x < q̃. On the other hand, if x > p̃, then the sequence (lxt )Tt=1 is strictly
increasing.
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Dividing both sides of (54) by (i1− p+ at(i1))− (i2− p+ at(i2)) = i1− i2 + at(i1)− at(i2), which is positive
by Lemma B.1 above, we obtain

∂iF (t, i1 − p+ at(i1))− ∂iF (t, i2 − p+ at(i2))

(i1 − p+ at(i1))− (i2 − p+ at(i2))
=

2

c

at(i1)−at(i2)
i1−i2

at(i1)−at(i2)
i1−i2 + 1

. (55)

We suppose that, for fixed t = 2, . . . , T , there are positive constants λ1
t > λ2

t > 0 such that, for all j1 > j2

− 2λ1
t ≤

∂iF (t, j1)− ∂iF (t, j2)

j1 − j2
≤ −2λ2

t . (56)

Using (55) and (56) we obtain that

− λ1
t c

1 + λ1
t c
≤ at(i1)− at(i2)

i1 − i2
≤ − λ2

t c

1 + λ2
t c
, so − 2λ1

t

1 + λ1
t c
≤ 2

c

at(i1)− at(i2)

i1 − i2
≤ − 2λ2

t

1 + λ2
t c
. (57)

Likewise, for any i1 > i2, we have

− λ1
t c

1 + λ1
t c
≤ bt(i1)− bt(i2)

i1 − i2
≤ − λ2

t c

1 + λ2
t c
, so − 2λ1

t

1 + λ1
t c
≤ 2

c

bt(i1)− bt(i2)

i1 − i2
≤ − 2λ2

t

1 + λ2
t c
. (58)

In other words, the graphs of 2
cat(i) and 2

c bt(i) are less steep than that of ∂iF (t, i) in absolute value. Using
(53), (57) and (58), we deduce that

− 2λ1
t

(
1−min{πBO, πSO} λ1

t c

1 + λ1
t c

)
≤ ∂iF (t, i1)− ∂iF (t, i2)

i1 − i2
≤ −2λ2

t

(
1− πλ2

t c

1 + λ2
t c

)
, (59)

where π = πBO + πSO. Because λ1
T = λ2

T = λ, from (56) and (59) we deduce that we can choose
λ1
t−1 = λ1

t

(
1−min{πBO, πSO} λ1

t c

1 + λ1
t c

)
, t = 2, 3, . . . , T,

λ2
t−1 = λ2

t

(
1− π λ2

t c

1 + λ2
t c

)
, t = 2, 3, . . . , T,

λ1
T = λ2

T = λ,

(60)

such that (56), (57) and (58) hold for all t = 1, 2, . . . , T . Furthermore, from (21) and (22) we have

∂iF (t, i− p+ at(i))− ∂iF (t, i+ bt(i)− q) =
2

c
[at(i)− bt(i)] + q̃ − p̃.

Using the same analysis as above, we deduce that

B(λ1
t ) > (p̃− q̃)

1
2 + λ2

t c

1 + λ2
t c

>
at(i)− bt(i)

c
> (p̃− q̃)

1
2 + λ2

t c

1 + λ2
t c

= B(λ2
t ). (61)

We now prove that the simplification of allowing for a negative ask price does not impact the optimal
price policy functions in the active trading region. Indeed, the optimal bid and ask price functions are
computed using data on the i-derivative of the value function, ∂iF (t, i), which is a local property of F (t, i).
Therefore, as long as the information needed to get the correct price policy functions over the active trading
region is not altered when we allow for a negative ask price, we can still use the conclusions drawn from the
above analysis. We exploit this intuition formally below.

First, to get the ask price at time t0 in the active trading region [L2
t0 , L

1
t0 ], we will need data on ∂iF (t0, i−

p+at0(i)) for all i in this region. Because at0(i) ≤ p in this domain, it suffices to know data on ∂iF (t0, i) for
all i ≤ L1

t0 . On the other hand, for the scaled bid price, only values higher than q are relevant (to determine
trading quotes and updating ∂iF (t0 − 1, i)), i.e. we only need to know data on ∂iF (t0, i− q + bt0(i)) for all
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i ≤ L1
t0 . But by Lemma B.1, we know that i :7→ i+ bt0(i) is strictly increasing, so again, it suffices to know

data on ∂iF (t0, i) for all i ≤ L1
t0 .

Second, to get ∂iF (t0, i) for all i ≤ L1
t0 , we use (42) to reduce it to data at time t0 + 1. We now need

to guarantee that we are indifferent to the decision of allowing or not for a negative ask price when the
inventory i ≥ L0

t0+1, where L0
t0+1 is defined in (43) as the critical inventory level at which the optimal ask

price equals 0 at time t0 + 1. To this end, we follow the proof of Proposition 5.4 and the footnote therein
to prove that the sequence (L0

t )
T
t=1 is strictly decreasing. On the other hand, a straightforward calculation

yields that L0
T = p̃+p̄

2λ + p, so we deduce that L1
t0 ≤ L0

t for all t = t0, t0 + 1, . . . , T . Hence the first line in
(42) is not invoked for the recursion from time t0 to t0 + 1. Thus, we will need data on ∂iF (t0 + 1, i) for all
i ≤ L1

t0 , data on at0+1(i) for all L2
t0+1 ≤ i ≤ L1

t0 , and those on bt0+1(i) for all i ≤ L1
t0+1 < L1

t0 .
Similar as above, information on at0+1(i) for all L2

t0+1 ≤ i ≤ L1
t0 can be inferred from that of ∂iF (t0 +

1, i−p+at0+1(i)) for all i ≤ L1
t0 , or that about ∂iF (t0 +1, i) for all i ≤ L1

t0 , thanks to Lemma B.1. Likewise,
information on bt0+1(i) for all i ≤ L1

t0+1 can be inferred from data on ∂iF (t0 + 1, i) for i ≤ L1
t0 .

Thirdly, to get ∂iF (t0 + 1, i) for i ≤ L1
t0 , we use (42) again, and the first line in (42) is not invoked

because we know L1
t0 < L0

t0+2, etc. Iterating this argument until we hit time T , we conclude that to make
these recursive arguments work, the initial data needed is information on ∂iF (T, i) for all i ≤ L1

t0 . At T , we
know that

∂iF (T, i) = −2λi+ p̄.

Regressing backward, we notice that in each step needed to retrieve information about ∂iF (t, i), t = t0, t0 +
1, . . . , T , we never used the first line in Eq. (42). In other words, for our objective at hand, we can legitimately
draw the same conclusions by just considering the simplified version (53).

The above argument can be developed further to improve the efficiency of the algorithm introduced in
Appendix A. In fact, in the analysis above we only need to know the information about ∂iF (t, i) for all
L2
t0 ≤ i ≤ L1

t0 and t = t0, t0 + 1, . . . , T , if our objective is to know the optimal price policy function at
time t0 for the active trading region. In the actual implementation of the algorithm, we have exploited this
observation and only stored the kinks of ∂iF (t, i) whose x-coordinates are in a pre-specified, sufficiently large
interval [A,B] (i.e. A� L1

2 and p̃+p̄
2λ + p� B � L1

1).
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