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Abstract 

 

 
We present a parsimonious New Keynesian model that features financial vulnerabilities. The 

vulnerabilities generate time-varying downside risk of GDP growth by driving the dynamics of 

risk premia. Monetary policy affects the output gap directly via the IS curve, and indirectly via its 

impact on financial vulnerabilities. We show that a classic Taylor rule exacerbates downside risk 

of GDP growth relative to an optimal Taylor rule, thus generating welfare losses associated with 

negative skewness of GDP growth. 
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1 Introduction

FOMC statements mention financial stability and financial conditions with increasing

frequency (see Peek, Rosengren, and Tootell (2015)). Additionally, the notion of down-

side risks to growth has become more prevalent. In the academic literature, authors

increasingly consider the roles of financial conditions and vulnerabilities in monetary

policy settings (see Adrian and Shin (2010), Borio and Zhu (2012), Curdia and Wood-

ford (2010), and Gambacorta and Signoretti (2014)).

An important early strand of the literature triggered by Bernanke and Gertler (1989)

and Bernanke and Blinder (1992) argues for the credit channel of monetary policy. In

the credit channel, financial frictions of borrowers or lenders shift credit demand and

supply curves when monetary policy changes, thus giving financial conditions a role in

monetary policy via the “external finance premium.” However, Bernanke and Gertler

(2000) argue that financial vulnerabilities should only impact central banks’ monetary

policy actions only to the extent that vulnerabilities change the forecasts for inflation

and real activity, thus promoting a form of the Taylor (1993) and Taylor (1999) rule

within an inflation targeting framework. Financial vulnerabilities refer to downside risks

to GDP growth caused by risks to asset valuations, the level of leverage in the financial

and nonfinancial sectors, and the degree of maturity transformation (see Adrian, Covitz,

and Liang (2015) for a framework on measuring financial vulnerability).

More recent literature has argued for a Taylor rule with financial variables. In the se-

tups of Curdia and Woodford (2010) and Gambacorta and Signoretti (2014), the optimal

monetary policy rule is augmented to take financial conditions into account. Limited

capital in the financial intermediary sector leads to a distortion in aggregate activity

that optimal monetary policy takes into account. However, just as the literature on

the credit channel focused on financial conditions, and not financial vulnerabilities, the

setups of Curdia and Woodford (2010) and Gambacorta and Signoretti (2014) do not

feature financial vulnerabilities either. While financial conditions refer to the notion that

the pricing of risk impacts aggregate activity, settings with financial vulnerability give

rise to downside risks to growth from financial frictions that impact aggregate economic

welfare.

In a series of influential of papers, Svensson (2016b) and Svensson (2016a) does

explicitly incorporate financial vulnerabilities in the form of financial crises. Svensson

develops a cost benefit framework and argues that financial vulnerabilities should never

enter monetary policy decisions as the costs of doing so always outweigh the benefits. In
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Svensson’s setup, the costs consist of distorting the dual mandate objectives, while the

benefits are measured in terms of the reduction of the likelihood or severity of financial

crises. In contrast, Adrian and Liang (2016) present a comprehensive literature review of

the role of financial conditions and vulnerabilities in monetary policy and argue that there

is compelling empirical evidence that financial vulnerabilities should affect monetary

policy considerations. Adrian and Shin (2010) are early proponents of the risk taking

channel of monetary policy.

In this paper, we present a parsimonious macroeconomic framework for incorporating

financial vulnerabilities in monetary policy. We extend the standard two equation New

Keynesian model (NK model) to incorporate financial vulnerabilities. We model the im-

pact of these underlying vulnerabilities on aggregate macroeconomic activity as a shift

in the Euler equation due to changes in the risk premium that households face. Those

shifts in the risk premium can be viewed as disturbances to financial intermediation and

preference shocks (we present a microfoundation of the reduced form model in a com-

panion paper). As output is a function of the risk premium, and financial vulnerability

is defined in terms of risks to output, vulnerability is endogenous to the model.

Our modeling approach is motivated by the empirical evidence that financial condi-

tions forecast tail risks. Estrella and Hardouvelis (1991) and Estrella and Mishkin (1998)

show that the term spread, an indicator of the pricing of interest rate risk, forecasts re-

cessions. Gilchrist and Zakraǰsek (2012), López-Salido, Stein, and Zakraǰsek (2016), and

Krishnamurthy and Muir (2016) find that credit spreads forecast downside risks to GDP

growth. More generally, Adrian, Boyarchenko, and Giannone (2016) document that fi-

nancial conditions are strong forecasters of downside risks to GDP growth. Deteriorating

financial conditions give rise to an increase in the conditional volatility of GDP and a

decline in the conditional mean of GDP in such a way that upper quantiles of GDP

growth are more or less constant, while lower quantiles are varying sharply. Hence the

unconditional distribution of GDP is highly skewed to the left as a function of financial

conditions.

Motivated by these empirical observations, we present a New Keynesian model aug-

mented with financial vulnerabilities that captures these stylized facts. Financial vul-

nerability is defined as GDP volatility multiplied by an indicator of risk aversion, and

adjusted by expected GDP growth. This can be interpreted as the value-at-risk of GDP.

Because vulnerability depends on the conditional expectation of GDP growth, it is im-

pacted by monetary policy. Furthermore, because the volatility of GDP depends on

financial vulnerability, monetary policy also impacts volatility. Importantly, the setup is
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such that certain parameter restrictions ensure that deteriorating financial conditions are

associated with an increase in GDP volatility and a decline in the conditional mean of

GDP, thus generating the negative correlations between mean and volatility that Adrian,

Boyarchenko, and Giannone (2016) document.

The central bank is assumed to minimize a standard loss function with the squared

output gap and the squared inflation rate entering as arguments. We can solve for the

optimal policy rules in closed form using dynamic programming. We consider optimal

monetary policy rules with flexible prices (no Phillips curve) and sticky prices.

Our optimal monetary policy rule can be cast in the language of a flexible inflation

targeting framework, such as the one in Giannoni and Woodford (2012), Svensson (1999),

Svensson (2002) and Rudebusch and Svensson (1999). Relative to the standard New

Keynesian model, there are two important differences. First, vulnerability becomes

a target variable. Second, the coefficients in the linear optimal targeting criterion rule

that trade off deviations in output, inflation and financial vulnerability from their desired

levels, depend on the parameters that govern GDP vulnerability.

Optimal monetary policy can also be expressed as an augmented Taylor rule. The

nominal interest rate not only depends on inflation and output, but also on financial

vulnerability. The optimal coefficients on output and inflation are taking the parameters

that govern GDP vulnerability into account.

The NKV model (New Keynesian Vulnerability model) is straightforward to cali-

brate from GDP, inflation, and financial conditions data. When we simulate the model

under the optimal monetary policy rule, and the alternative standard New Keynesian

Taylor rule, we find that the latter generates higher equilibrium GDP skewness. There-

fore, policy makers that take vulnerability into account mitigate downside movements of

output.

Our model captures the intuition that in recent years monetary policy has explicitly

taken into account and influenced financial conditions.1 A deterioration of financial

conditions corresponds to an increase in tail risk, as conditional GDP volatility rises,

while the conditional growth forecast deteriorates. As a result of such an increase in

financial vulnerability, i.e. an increase in the downside risk to GDP growth, monetary

policy is relatively easier than under the classic Taylor rule. This results in a lowering

of vulnerability, and hence in less severe left skewness of GDP.

We also study an extension with a zero lower bound on nominal interest rates. The

1Dudley (2015); Yellen (2016).
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zero lower bound implies a flexible inflation targeting rule when interest rates are away

from the bound, and a forward guidance rule when the zero lower bound is reached.

Therefore, the New Keynesian model with financial vulnerability can be extended to

settings with a zero lower bound.

In the setting of our paper, monetary policy always takes GDP vulnerability into ac-

count, even though the policy maker only cares about output and inflation. Incorporating

financial vulnerability in the flexible inflation targeting framework strictly dominates the

standard Taylor rules that condition only on output and inflation. This result is in stark

contrast to Svensson (2016b), Svensson (2016a) who argues that financial stability con-

siderations should never be taken into account. Despite the contrasting conclusions, the

framework of analysis that we are using here is similar to the framework that Svensson

is using. However, while Svensson focuses on tail risks to GDP growth that only occur

very rarely, we focus on vulnerabilities that are present most of the time. Importantly,

tail risks can naturally occur within our setup, due to a particular form of nonlinearity

involving first and second moments. Hence our setting also captures the extreme tail

events that Svensson studies.

An important contribution of our setup is that it is closely motivated by the empirical

facts of Adrian, Boyarchenko, and Giannone (2016) on the evolution of the conditional

GDP distribution. Those authors show that U.S. GDP has strongly time varying down-

side risk as a function of financial conditions, while upside risks are more or less constant.

A parsimonious model that captures these stylized facts is one where financial conditions

impact both the conditional mean and the conditional volatility of output.

The remainder of the paper is organized as follows. Section 2 provides the motivation

for our model from the existing empirical and theoretical literature on financial stability

in a macroeconomic context. Section 3 presents the model together with the optimal

policy rules. The model with flexible prices is presented in Section 4. Section 5 presents

an extension with a zero lower bound constraint. Section 6 concludes.

2 Financial Vulnerability

Financial vulnerability refers to the presence of amplification mechanisms that are caused

by leverage, maturity transformation, or asset valuations. When financial vulnerability

is large, small shocks can have severe aggregate macroeconomic consequences. Adrian,

Covitz, and Liang (2015) present a framework for the monitoring of financial vulner-
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ability. They measure leverage, maturity transformation, and asset valuations across

four sectors: asset markets, the banking system, the market based financial system, and

the nonfinanical system. Aikman, Kiley, Lee, Palumbo, and Warusawitharana (2015)

propose a quantitative indicator for the vulnerabilities in this framework.

In this paper, following Adrian, Boyarchenko, and Giannone (2016), we construct

a measure of financial vulnerability by using the National Financial Conditions Index

(NFCI) of the Federal Reserve Bank of Chicago. That index aggregates 105 financial

market, money market, credit supply, and shadow bank indicators to compute a single

index using the filtering methodology of Stock and Watson (1998). Adrian, Boyarchenko,

and Giannone (2016) show that the conditional GDP distribution features strong down-

side risk as a function of financial conditions. We reproduce the main results of Adrian,

Boyarchenko, and Giannone (2016) here using a conditionally heteroskedastic model to

estimate the conditional first and second moments of GDP growth

yt = γy0 + γy1yt−1 + γy2πt−1 + γy3xt−1 + σyt ε
y
t (1)

ln (σyt ) = δy0 + δy1xt−1 (2)

where εyt ∼ N(0, 1), xt denotes the NFCI financial conditions index, and yt is the quar-

terly growth rate of GDP. Mean GDP also depends on the lagged quarterly core PCE

inflation rate π and on lagged GDP growth. In addition to estimating the conditional

mean and conditional volatility of GDP growth, we also estimate an analogous equation

for the inflation rate:

πt = γπ0 + γπ1yt−1 + γπ2πt−1 + σtε
π
t (3)

ln (σπt ) = δπ0 + δπ1πt−1 (4)

The model is estimated via maximum likelihood.

The estimation results are in Figure 1 and Table 1. In Panel (a) of Figure 1, we

present the conditional mean of GDP growth, actual GDP growth, and the 5th and

95th quantiles. The distribution is left skewed as deteriorating financial conditions are

associated with an increase in conditional volatility, and at the same time a decline in

the conditional mean of GDP growth (see Table 1). Due the negative correlation of

mean and volatility the unconditional distribution is negatively skewed, even though

the conditional distribution is conditionally Gaussian. For inflation, financial conditions

aren’t significant for either the conditional mean equation or the conditional volatility.
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Figure 1: Estimated Conditional Distribution of One Quarter Ahead GDP Growth and
PCE Inflation. The figure reports estimates from equations (1), (2), (3), and (4). Panel (a) shows
the actual GDP growth, the conditional mean of GDP growth, and the 5th and 95th quantile. Panel
(b) shows the actual PCE inflation, the conditional mean of inflation, and the 5th and 95th quantile.
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Table 1: GDP and Inflation Conditional Mean and Volatility Estimates

(1) (2)
VARIABLES GDP HET

Financial Conditions (lag) -1.715*** 0.551***
[-5.096] [3.765]

GDP Growth (lag) -0.000356
[-1.510]

Inflation Rate (lag) 0.00277
[0.0842]

Constant 6.213*** 1.785***
[11.02] [21.69]

Observations 173 173
*** p<0.01, ** p<0.05, * p<0.1

However, the volatility of inflation scales in the level of inflation. Hence the conditional

mean and the conditional volatility are positively correlated. Importantly, financial

conditions play no role for inflation dynamics.

The estimates for GDP have the unusual property that the shift in the conditional

mean and volatility of GDP offset each other in such a way that the 95th quantile is

close to constant. In contrast, the 5th quantile strongly varies as a function of finan-

cial conditions. Importantly, this property only arises when the GDP distribution is

estimated as a function of financial conditions—real economic indicators do not contain
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significant information for the tail of the GDP distribution. This is shown more generally

by Adrian, Boyarchenko, and Giannone (2016).

These results suggest that GDP vulnerability is related to the time varying left tail

of the GDP distribution, as a function of financial conditions. In this paper, we define

GDP vulnerability Vt as

Vt = γV [dyt|Ft]− E [dyt|Ft] (5)

where Ft denotes the filtration generated by the underlying stochastic processes, V de-

notes the volatility operator (the square root of the instantaneous variance of dyt), and E
denotes the expectations operator. In the definition of vulnerability, volatility is multi-

plied by a coefficient of risk aversion γ. That risk aversion times the volatility is adjusted

by the expected value of GDP growth, as a higher expected value can compensate for

higher volatility when assessing the left tail risk of GDP growth. This definition of vul-

nerability is tightly linked to the definition of value-at-risk, as can be seen in the next

lemma.

Lemma 1 For the stochastic process dyt = E [dyt|Ft] dt+V [dyt|Ft] dZt, where Zt denotes

a standard Brownian motion, the value-at-risk for confidence level p is defined as

Pt [dyt ≤ −V aRt] = pdt (6)

Then the value-at-risk V aRt is

V aRtdt = −Φ̃−1 (p)V [dyt|Ft] dt− E [dyt|Ft] dt (7)

where Φ̃−1 (p) = Φ−1 (p) + O
(

(p dt)3/2
)

and Φ−1 (p) denotes the inverse cumulative

normal distribution at confidence level p. The proof is in the appendix.

As vulnerability measures the left tail of the GDP distribution, p is small, and there-

fore Φ̃−1 (p) is negative. For example, Φ̃−1 (5%) = −1.96. Therefore, by comparing (7)

with (5), we can see that if γ = −Φ̃−1 (p), GDP vulnerability Vt is the value at risk of

GDP with confidence level p = Φ̃ (−γ).

We model GDP with the following data generating process

dyt = σ−1 (it − rt − πt) dt+ d(rpt) (8)

d(rpt) = −ρVtdt+ ξ (Vt − xt) dZt (9)

dxt = ρx (µx − xt) dt+ σxdZx,t (10)
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Equation (8) is the Euler equation (or IS curve) of a standard NK model augmented with

a risk premium. Equation (9) is the key contribution of this setup relative to standard

models. It says that the risk premium rpt evolves as a function of GDP vulnerability Vt.

In particular, vulnerability determines the conditional mean −ρVt and the conditional

volatility ξ (Vt − xt) of the risk premium. Importantly, vulnerability is endogenous to

the stochastic evolution of GDP as a function of shocks to the risk premium. The shocks

dZt and dZx,t are uncorrelated standard Brownian motions. We assume that ρ > 0 and

ξ > 0. xt is a shock to volatility that is modeled as a simple mean reverting process.

Replacing (9) in (8) and using (12) gives

dyt =
(
σ−1 (it − rt − πt)− ρVt

)
dt+ ξ (Vt − xt) dZt (11)

Vt =
γξxt + σ−1 (it − rt − πt)

− (1− γξ − ρ)
(12)

dxt = ρx (µx − xt) dt+ σxdZx,t (13)

The standard IS curve of the NK model is thus augmented with an additional term −ρVt
in the drift, and a shock ξ (Vt − xt) dZt, both of which depend on GDP vulnerability Vt.

Vulnerability, in turn, depends on the interest rate it − rt − πt and the process xt. We

can thus interpret xt as a shock to vulnerability.

The sign of the dependence of Vt on the interest rate it depends on the sign of

− (1− γξ − ρ). The empirical results can help us pin down the sign of these parameters.

The mean-variance tradeoff for yt follows by writing E [dyt|Ft] and V [dyt|Ft] as functions

of vulnerability Vt and the shock to vulnerability xt

E [dyt|Ft] = (γξ − 1)Vt − γξxt (14)

V [dyt|Ft] = ξ (Vt − xt) (15)

and then eliminating Vt to get

Vt [dyt] = −
(

ξ

1− γξ

)
Et [dyt]−

(
ξ

1− γξ

)
xt (16)

Empirically, to match the negative slope of the mean-variance tradeoff, we thus must

have 1−γξ
ξ

> 0 which implies, since γ > 0, that ξ > 0 and 1 − γξ > 0. In addition, to

match the positive intercept on average, we must have E [xt] = µx < 0.

We can thus draw conclusions about the dependence of vulnerability on the interest
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rate. As ρ denotes the degree of mean reversion of the risk premium, which is a very

persistent variable, it is likely to be very small. Theoretically, we thus assume

1− γξ − ρ > 0. (17)

This assumption implies GDP vulnerability Vt and interest rates it are negatively corre-

lated. This correlation is consistent with the empirical observation that when financial

conditions deteriorate, GDP vulnerability increases, and short-term interest rates de-

cline. Figure 2 shows a simulated path of (11), (12), (10) setting i − π − r to zero, for

simplicity. The simulation clearly features the stylized facts of Figure 1.

Figure 2: Simulated Conditional Distribution of One Quarter Ahead GDP Growth. The
figure shows simulated conditional mean of GDP, and the 5th and 95th quantile of model (11), (12),
(10) with γ = 2, σ = 1, ξ = 1, and µx = −1.
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The IS curve augmented with the shocks to risk premia that depend on vulnerability

lead to an additional channel for monetary policy. The traditional transmission channel

is via the drift of the IS curve: higher interest rates are associated with a higher growth

rate of output. This is because a higher interest rate shifts consumption from the present

to the future, via increased savings. The additional channel that arises in the current

setup is the impact of monetary policy on vulnerability, and hence on the volatility of the

risk premium. Hence monetary policy impacts total risk in the economy. This channel

is sometimes called the “risk taking channel of monetary policy” (see Adrian and Shin

(2010) and Borio and Zhu (2012)). When we study optimal monetary policy in the next

section, this tradeoff is going to emerge prominently.

The model also features sticky prices, represented by a Phillips curve

dπt = (βπt − κyt) dt. (18)
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Vulnerability does not appear in the Phillips curve, as we did not find any statistical

evidence of financial conditions influencing the mean or volatility of inflation.

3 Monetary Policy

3.1 Optimal Monetary Policy

The central bank is minimizing a quadratic loss function over the output gap and inflation

L (yt, πt) = min
it

Et
∫ ∞
t

e−tβ
(
y2t + π2

t

)
dt. (19)

subject to the dynamics of the economy (11), (12), (10), (18). Minimizing the quadratic

loss function is a standard approach in the NK literature, as Rotemberg and Wood-

ford (1997), Rotemberg and Woodford (1999) and Woodford (2001) have shown that

aggregate welfare can be approximated by such a loss function.

We note that the definition of vulnerability from (5) gives rise to a relationship

between the interest rate i and vulnerability V . As a result, one can view the central

banks optimization problem as minimizing the welfare loss by choosing a certain level of

vulnerability. The central bank’s problem can thus be written as

L (yt, πt, xt) = min
{Vs}∞s=t

Et
∫ ∞
t

e−sβ
(
y2s + λπ2

s

)
ds (20)

s.t.

dyt = ((γξ − 1)Vt − γξxt) dt+ ξ (Vt − xt) dZt (21)

dπt = (βπt − κyt) dt (22)

dxt = −ρx (xt − µx) dt+ σxdZx,t (23)

We also use the restriction β, λ, α, σ, r, κ, ρx, σx, ρ, γ, ξ > 0, µx < 0, and γξ− 1 < 0. The

optimal interest rate path it can the be recovered using equation (12). The Hamilton-

Jacobi-Bellman (HJB) equation for the central banker’s optimization is

0 = min
V

{
y2 + λπ2 − βL+

∂L

∂y
((γξ − 1)V − γξx) +

1

2

∂2L

∂y2
ξ2 (V − x)2 +

+
∂L

∂π
(βπ − κy)− ρx (x− µx)

∂L

∂x
+

1

2

∂2L

∂x2
σ2
x

}
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Intuitively, the HJB takes into account the current value of welfare, as well as the change

in welfare associated with changes in the state variables y, π, and x. The first order

condition is

V =

(
∂2L

∂y2

)−1
∂L

∂y

1− γξ
ξ2

+ x

Hence at the optimum, vulnerability is proportional to x, and depends on the first and

second derivative of welfare with respect to output. It is also noteworthy that 1−γξ
ξ2

,

which defines the slope of output volatility with respect to expected output, appears in

the FOC. The second order condition (SOC) is

∂2L

∂y2
> 0

Plugging the FOC into the HJB, we get the “concentrated HJB”:

0 = y2 + λπ2 − βL− ∂L

∂y
x− 1

2

(
∂2L

∂y2

)−1(
∂L

∂y

)2
(1− γξ)2

ξ2
(24)

+
∂L

∂π
(βπ − κy)− ρx (x− µx)

∂L

∂x
+

1

2

∂2L

∂x2
σ2
x (25)

We look for a quadratic solution of the form

L (y, π, x) = c0 + c1y + c2y
2 + c3x+ c4x

2 + c5yx+ c6π + c7π
2 + c8yπ + c9πx

where c· are constants. It is straightforward to solve for the constants using (25), as

shown in Appendix A, where we also derive the optimal initial conditions. Optimal level

of vulnerability that the central bank picks can be expressed as

Vt =
(1− γξ)

ξ2
yt +

(
(1− γξ)

2ξ2
c8
c2

)
πt +

(
1− (γξ − 1)

2ξ2
c5
c2

)
xt +

(1− γξ)
2ξ2

c1
c2

(26)

This can be viewed as a “flexible inflation targeting rule” (see Svensson (1999), Svensson

(2002) and Rudebusch and Svensson (1999)) or, more generally, as a linear optimal

targeting criterion (Giannoni and Woodford (2012)). Even though vulnerability and its

shocks, Vt and xt, are not target variables, i.e., they do not appear in the loss function

equation (20), they still enter the inflation targeting rule, the first-order condition given

by equation (26). There are no independent target values for Vt and xt that the central

bank hopes to achieve. The reason Vt and xt enter the targeting rule is that they
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forecast the conditional means and variances of yt and πt even after controlling for

the information already contained in yt and πt themselves. This is consistent with the

empirical results in Table 1 and with the findings in Adrian, Boyarchenko, and Giannone

(2016), who show that financial conditions are excellent predictors of the tail of the GDP

distribution in a way that non-financial variables are not. Alternatively, equation (26)

can be interpreted as a traditional flexible inflation targeting rule in which the targets

for inflation and/or output are time-varying and depend on Vt and xt. It also important

to note that even if a central bank decided not to condition its actions on Vt and xt,

the tradeoff between inflation and output –reflected in the coefficients of the rule in

equation (26)– now depends on γ and ξ, the parameters that dictate the strenght of the

mean-variance tradeoff of output.

In the appendix, we show that the optimal monetary policy rule (26) satisfies the

transversality condition. The optimal rule thus satisfies the first and second order condi-

tions of the HJB, and the transversality condition, and is thus a solution to the dynamic

programming problem of the central bank.

We can also express monetary policy as an interest rate rule by writing it in terms

of Vt and yt

it = r + a0 + ayyt + aππt + aV Vt (27)

where ay = 2σγξ(1−γξ)
2ξ2+(1−γξ) c5

c2

, aπ =
2ξ2+

c5
c2

(1−γξ)+σγξ(1−γξ) c8
c2

2ξ2+
c5
c2

(1−γξ) , aV =
σ
(
2ξ2(ρ−1)+(1−γξ)(ρ+γξ−1) c5

c2

)
2ξ2+

c5
c2

(1−γξ) Vt,

and a0 =
σγξ(1−γξ) c1

c2

2ξ2+(1−γξ) c5
c2

. The optimal interest rule can thus be viewed as an augmented

Taylor rule. In addition to the output gap y, the level of inflation π, and the equilibrium

rate of interest r, the level of vulnerability V enters the optimal rule. As before, the

coefficients on y and π depend on the parameters that define vulnerability ξ and γ and

thus monetary policy is different from the typical NK model without vulnerabilities not

only because vulnerability enters the augmented Taylor rule directly, but also because

the presence of vulnerabilities alter the optimal response of interest rates to changes in

output and inflation.
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3.2 Alternative Monetary Policy Rules

In general, the central bank might follow other monetary policy rules. Consider the

following general linear functions

it = ψ0 + ψyyt + ψππt + ψxxt

Vt = φ0 + φyyt + φππt + φxxt

which we will use to analyze non-optimal behavior. By equation (12) we obtain the

following parameter restrictions:

φ0 =
ψ0 − r

σ (γξ − 1 + ρ)
φy =

ψy
σ (γξ − 1 + ρ)

φπ =
ψπ − 1

σ (γξ − 1 + ρ)
φx =

ψx + σγξ

σ (γξ − 1 + ρ)

As a result, we can express the level of vulnerability as

Vt =
ψ0 − r

σ (γξ − 1 + ρ)
+

ψy
σ (γξ − 1 + ρ)

yt +
ψπ − 1

σ (γξ − 1 + ρ)
πt +

ψx + σγξ

σ (γξ − 1 + ρ)
xt

So we can find the process for output by plugging these expressions into equations (21)-

(23) to obtain:

dyt =

(
(γξ − 1) (ψ0 − r)
σ (γξ − 1 + ρ)

+
(γξ − 1)ψy
σ (γξ − 1 + ρ)

yt +

(
(γξ − 1)ψx − σγξρ
σ (γξ − 1 + ρ)

)
xt

)
dt(28)

+

(
ξ (ψ0 − r)

σ (γξ − 1 + ρ)
+

ξψy
σ (γξ − 1 + ρ)

yt + ξ

(
ψx + (1− ρ)σ

σ (γξ − 1 + ρ)

)
xt

)
dZt (29)

13



We can then solve for the probability distribution function for y denoted by pt (y, π, x)

using the Kolmogorov equation:

∂

∂t
pt (y, π, x) =− ∂

∂y
[(D0 +Dyy +Dππ +Dxx) pt (y, π, x)] (30)

+
1

2

∂2

∂y2
[
(S0 + Syy + Sππ + Sxx)2 pt (y, π, x)

]
(31)

− ∂

∂π
[(βπt − κyt) pt (y, π, x)] (32)

− ∂

∂x
[(−ρx (xt − µx)) pt (y, π, x)] (33)

+
1

2

∂2

∂x2
[
σ2
xpt (y, π, x)

]
(34)

where D0 = (γξ−1)(ψ0−r)
σ(γξ−1+ρ) , Dy =

(γξ−1)ψy
σ(γξ−1+ρ) , Dπ = (γξ−1)(ψπ−1)

σ(γξ−1+ρ) , Dx = (γξ−1)ψx−σγξρ
σ(γξ−1+ρ) and

S0 = ξ(ψ0−r)
σ(γξ−1+ρ) , Sy =

ξψy
σ(γξ−1+ρ) , Sπ = ξ(ψπ−1)

σ(γξ−1+ρ) , Sx = ξ
(
ψx+(1−ρ)σ
σ(γξ−1+ρ)

)
. The Kolmogorov

equation can be solved numerically in a straightforward manner, resulting in the proba-

bility distribution function of y conditional on π and x.

Figure 3 shows the PDFs of output y using the optimal policy rule that takes vulnera-

bility into account, and a standard Taylor rule that ignores the presence of vulnerability,

for comparison. Clearly, the optimal policy rule generates less skewness of the uncon-

ditional output distribution. Intuitively, shocks to vulnerability x contain information

about the conditional distribution of the output gap that the policy maker should take

into account in setting optimal policy. For a given level of inflation and output, a higher

vulnerability –a larger VaR of output– calls for higher interest rates. Higher interest

rates induce the private sector to save more and consume less, thus shifting the condi-

tional future distribution of yt upwards by shifting its conditional mean upwards. Given

the link between the expected mean and the expected volatility of output induced by

the presence of vulnerability, a higher conditional mean induces a lower volatility of yt.

Together, higher mean and lower volatility mean lower vulnerability – lower VaR for

output. For the suboptimal Taylor rule that ignores vulnerability, interest rates remain

unchanged when, for a given level of yt and πt, Vt changes. Compared to the optimal

rule, when Vt increases but it remains unchanged, the conditional mean of output is lower

and its conditional volatility is higher. Over time, more frequent visit to states of lower

mean and higher volatility create an unconditional distribution that is more negatively

skewed. When instead Vt decreases, the optimal rule and the suboptimal Taylor rule

produce similar right tails for the unconditional distribution of output. The reason is

14



that lower Vt induces both higher mean and lower volatility of output. Therefore, even

though the changes in mean and volatility of yt are different for the two different rules,

the actual differences in outcomes for yt are small because the lower volatility minimizes

all fluctuations. Indeed, as Vt approaches xt, the stochastic part of dyt vanishes and

output becomes (locally) deterministic, diminishing the effects of any changes in interest

rates, whether optimal or not.

Figure 3: Probability Density Functions of the Output under the Optimal Policy Rule and
a Standard Taylor Rule. The figure shows the PDFs using the Kolmogorov equation (34) using the
optimal policy rule and the standard Taylor rule. The standard Taylor rule coefficients are calculated
for the economy assuming that the policy maker is ignoring the presence of financial vulnerability.
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In order to have an equilibrium, E
[
e−βty2t

]
must be bounded. The next lemma

characterizes when this is the case.

Lemma 2 When it = ψ0 + ψyyt + ψxxt, the loss function L (y0, 0) is bounded for all y0

if and only if

ψ
y
< ψy < ψ̄y

where

ψ̄y = min

{
βσ (γξ − 1 + ρ)

(γξ − 1)
,
σ (ρ+ γξ − 1)

ξ2

(
1− γξ −

√
(1− γξ)2 + βξ2

)}
ψ
y

=
σ (ρ+ γξ − 1)

ξ2

(
1− γξ +

√
(1− γξ)2 + βξ2

)
The proof is in the appendix.
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4 Optimal Monetary Policy with Flexible Prices

In order to gain further understanding of the role of vulnerabilities for monetary policy,

we next turn to a specification with flexible prices. This setup can be alternatively

viewed as a flexible price economy, or as the long run solution to an economy with sticky

prices. As the algebra is simpler than in the previous section, we present it here in more

detail. The central bank’s problem is

L (yt, πt, xt) = min
{is}∞s=t

Et
∫ ∞
t

e−sβy2sds (35)

s.t.

dyt = σ−1 (it − r) dt+ d(rpt) (36)

dxt = −ρx (xt − µx) dt+ σxdZx,t (37)

d(rpt) = −ρVtdt+ ξ (Vt − xt) dZt (38)

Vt ≡ γV [dyt|Ft]− E [dyt|Ft] (39)

dZx,tdZt = 0 (40)

Parameters have the following sign restrictions β, λ, σ, r, κ, ρx, σx, ρ, γ > 0 and no a priori

restrictions on µx, ξ. Re-arranging equations (36)-(39) we get

dyt = ((γξ − 1)Vt − γξxt) dt+ ξ (Vt − xt) dZt (41)

dxt = −ρx (xt − µx) dt+ σxdZx,t (42)

it = σ (γξ − 1 + ρ)Vt − σγξxt + r (43)

It is straightforward to verify that in any equilibrium, irrespective of optimality, there is

a long-run level of vulnerability given by

E [Vt] =
γξµx
γξ − 1

> 0 as t→∞ a.s

which is obtained by noting that for any non-explosive path of yt, E [dyt] = 0. The long-

run mean of vulnerability is positive, a direct implication of having the mean-variance

tradeoff for output observed empirically (γξ − 1 < 0 and µx < 0). There is nothing

the central bank can do to change the existence of this tradeoff or the steady-state level

of vulnerability. What the central bank can do is to pick interest rates to achieve its

desired level of Vt along the path that approaches the exogenous E [Vt]. The steady-state
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volatility of the output gap is also positive, for the same exact reasons that E [Vt] > 0:

V [dyt] =
ξµx
γξ − 1

> 0 as t→∞ a.s

The long-run behavior of Vt and the mean-variance tradeoff imply

E [it] = σρE [Vt] + r > r as t→∞ a.s (44)

E [yt] > 0 as t→∞ a.s (45)

Thus, introducing vulnerability makes the economy sustain a positive output gap in the

long run, supported by average interest rates higher than the natural rate r. The central

bank’s problem is

L (yt, πt, xt) = min
{Vs}∞s=t

Et
∫ ∞
t

e−sβy2sds (46)

s.t.

dyt = ((γξ − 1)Vt − γξxt) dt+ ξ (Vt − xt) dZt (47)

dxt = −ρx (xt − µx) dt+ σxdZx,t (48)

and the optimal it can the be recovered using equation (43). The HJB is

0 = min
V

{
y2 − βL+

∂L

∂y
((γξ − 1)V − γξx) +

1

2

∂2L

∂y2
ξ2 (V − x)2

−ρx (x− µx)
∂L

∂x
+

1

2

∂2L

∂x2
σ2
x

}
The FOC is

(1− γξ) ∂L
∂y

= ξ2 (V − x)
∂2L

∂y2
(49)

When the central bank increases Vt, because of the output mean-variance tradeoff, it

not only lowers the drift of yt, but it also increases its volatility. The FOC equalizes the

marginal losses and gains in the objective function stemming from these two sources.

Another way to see it is to note that

Et
[
dy2t
]

= Et [dyt]
2 + Vt [dyt]

17



Changing Vt always moves Et [dyt] and Vt [dyt] in opposite directions, since

∂

∂Vt
E [dyt|Ft] = γξ − 1 < 0

∂

∂Vt
V [dyt|Ft] = ξ > 0

Thus, minimizing Et [dy2t ] always involves compromising deviations in Et [dyt] and Vt [dyt].

In fact, the FOC can be written as

−
(
∂

∂Vt
Et [dyt]

)
∂L

∂y
=

(
1

2

∂

∂Vt
Vt [dyt]

2

)
∂2L

∂y2

which shows the precise tradeoff of marginal changes of Vt on the drift and volatility of

yt and, in turn, how these translate to losses in the objective function. The SOC is

∂2L

∂y2
> 0

so that increases in y2 are always detrimental for welfare. Plugging the FOC into the

HJB, we get the “concentrated” HJB

0 = y2 − βL− ∂L

∂y
x− 1

2

(
∂2L

∂y2

)−1(
∂L

∂y

)2
(1− γξ)2

ξ2

−ρx (x− µx)
∂L

∂x
+

1

2

∂2L

∂x2
σ2
x

We look for a quadratic solution

L (y, x) = c0 + c1y + c2y
2 + c3x+ c4x

2 + c5yx

Plugging into the HJB, and using ∂L
∂y

= c1 + 2c2y + c5x, ∂2L
∂y2

= 2c2,
∂L
∂x

= c3 + 2c4x +

c5y,
∂2L
∂x2

= 2c4, we get the following system of equations on the coefficients c0, ..., c5
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(const) : 0 = σ2
xc4 − βc0 + µxρxc3 −

(γξ − 1)2

4ξ2
c21
c2

(y) : 0 = µxρxc5 −

(
β +

(γξ − 1)2

ξ2

)
c1

(
y2
)

: 0 = 1−

(
(γξ − 1)2

ξ2
+ β

)
c2

(x) : 0 = c1 + (β + ρx) c3 − 2ρxµxc4 +
(γξ − 1)2

2ξ2
c5c1
c2(

x2
)

: 0 = c5 + (β + 2ρx) c4 +
(γξ − 1)2

4ξ2
c25
c2

(yx) : 0 = 2c2 +

(
β + ρx +

(γξ − 1)2

ξ2

)
c5

The solution (omitting c0) is

c1 = − 2ξ6µxρx(
(γξ − 1)2 + βξ2

)2 (
(γξ − 1)2 + ξ2 (ρx + β)

) > 0

c2 =
ξ2(

(γξ − 1)2 + βξ2
) > 0

c3 =
2ξ4µxρx

(
(γξ − 1)4 + ξ2 (3β + 2ρx)

(
(γξ − 1)2 + ξ2 (β + ρx)

))
(β + ρx) (β + 2ρx)

(
(γξ − 1)2 + βξ2

)2 (
(γξ − 1)2 + ξ2 (β + ρx)

)2 < 0

c4 =
ξ4
(
(γξ − 1)2 + 2ξ2 (β + ρx)

)
(β + 2ρx)

(
(γξ − 1)2 + βξ2

) (
(γξ − 1)2 + ξ2 (ρx + β)

)2 > 0

c5 = − 2ξ4(
(γξ − 1)2 + βξ2

) (
(γξ − 1)2 + ξ2 (ρx + β)

) < 0

To pick the optimal initial conditions, we minimize L with respect to y0 taking x0 as

given

L (y0, π0, x0) = c0 + c1y0 + c2y
2
0 + c3x0 + c4x

2
0 + c5y0x0

FOC :
∂L

∂y0
= 0

SOC :
∂2L

∂y20
> 0
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The FOC and SOC can be solved to get

y∗0 = −
(
c1
2c2

+
c5
2c2

x0

)
=

ξ4µxρx(
(γξ − 1)2 + βξ2

) (
(γξ − 1)2 + ξ2 (ρx + β)

) +
ξ2(

(γξ − 1)2 + ξ2 (ρx + β)
)x0

c2 > 0

The optimal policy in terms of Vt is given by plugging in the optimal solution into

the FOC in equation (49):

Vt =

(
ξ2 (ρx + β)− ξγ (1− γξ)(
(γξ − 1)2 + ξ2 (ρx + β)

))xt +

(
1− γξ
ξ2

)
yt (50)

+
ξ2µxρx (γξ − 1)(

(γξ − 1)2 + βξ2
) (

(γξ − 1)2 + ξ2 (ρx + β)
)

−
(
∂

∂Vt
Et [dyt]

)
∂L

∂y
=

(
1

2

∂

∂Vt
Vt [dyt]

2

)
∂2L

∂y2

0 =
∂

∂Vt

∂

∂y

[
ξ (Vt − xt)

(
1

2

∂L

∂y
+ γL

)
− VtL

]
dyt = ((γξ − 1)Vt − γξxt) dt+ ξ (Vt − xt) dZt
dyt = (γξ (Vt − xt)− Vt) dt+ ξ (Vt − xt) dZt

For a given xt, when the central bank observes an increase in the output gap, it is optimal

to increase vulnerability. Increasing vulnerability is a tool to cool down the economy,

counteracting the increase in yt. Increasing vulnerability to reduce the drift of yt must be

traded off with the resulting increases in the volatility of yt. Equation (50) states that,

in terms of welfare, the decrese in the drift of yt always dominates the corresponding

increase in volatility. The increase in volatility is not immaterial: the denominator ξ2

in the coefficient (1− γξ) /ξ2 in front of yt attenuates the response on the central bank

because of the volatility effect. Why does the drift component always dominate?

The central bank achieves the increase in vulnerability by adjusting interest rates.
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The implied optimal rule for the interest rate is

it = σ (γξ − 1 + ρ)Vt − σγξxt + r

=

(
σ (γξ − 1 + ρ) (1− γξ)

ξ2

)
yt

+

(
σ (γξ − 1 + ρ)

(
ξ2 (ρx + β)− ξγ (1− γξ)

)(
(γξ − 1)2 + ξ2 (ρx + β)

) − σγξ

)
xt

+
σξ2µxρx (γξ − 1 + ρ) (γξ − 1)(

(γξ − 1)2 + βξ2
) (

(γξ − 1)2 + ξ2 (ρx + β)
) + r

Therefore, whether interest rates increase or decrease with yt and Vt depends on the sign

of (γξ − 1 + ρ). Note that the signs of ∂it/∂yt and ∂Vt/∂yt are the same.

If ξ2 (ρx + β)− ξγ (1− γξ) = 0, then Vt does not depend on xt and

Vt =

(
(1− γξ)

ξ2

)
yt −

ξ2µxρx
(γξ − 1)2 + βξ2

it =

(
σ (γξ − 1 + ρ) (1− γξ)

ξ2

)
yt − σγξxt −

σ (γξ − 1 + ρ) ξ2µxρx(
(γξ − 1)2 + βξ2

) + r

If ξ2 (ρx + β)− ξγ (1− γξ) 6= 0 we can substitute xt in the Taylor rule by Vt

it =
σ (γρ (γξ − 1) + ξ (ρ− 1) (β + ρx))

(ξγ − 1) γ + ξ (β + ρx)
Vt

+
σγ

ξ2
(1− γξ)

(
(γξ − 1)2 + ξ2 (β + ρx)

)
(ξγ − 1) γ + ξ (β + ρx)

yt

+
σγξ2µxρx (γξ − 1)

((ξγ − 1) γ + ξ (β + ρx))
(
(γξ − 1)2 + βξ2

) + r

We can define some constants to make notation easier

it = (σ (ρ− 1)− ϕ)Vt + (ϕχ) yt + r − ϕµxρx
χ

ϕ =
σγ (1− γξ)

(ξγ − 1) γ + ξ (β + ρx)

χ =

(
(γξ − 1)2 + ξ2 (β + ρx)

)
ξ2

> 0

Whether interest rates increase or decrease in response to yt when Vt is held constant

depends on the sign of ϕ. On the other hand, how interest rates respond to Vt keeping
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yt constant depends on the sign of (σ (ρ− 1)− ϕ). Together, the empirically observed

signs are

ϕ > 0

σ (ρ− 1)− ϕ < 0

These two inequalities impose the following restrictions on parameters

ρ < 1

ξ (ρx + β) > −γ (γξ − 1)

Now consider the following general linear functions

it = ψ0 + ψyyt + ψxxt

Vt = φ0 + φyyt + φxxt

which we will use to analyze non-optimal behavior. By equation (43)

φ0 =
ψ0 − r

σ (γξ − 1 + ρ)

φy =
ψy

σ (γξ − 1 + ρ)

φx =
ψx + σγξ

σ (γξ − 1 + ρ)

and

Vt =
ψ0 − r

σ (γξ − 1 + ρ)
+

ψy
σ (γξ − 1 + ρ)

yt +
ψx + σγξ

σ (γξ − 1 + ρ)
xt

Plugging into equations (21)-(23) we get

dyt =

(
(γξ − 1) (ψ0 − r)
σ (γξ − 1 + ρ)

+
(γξ − 1)ψy
σ (γξ − 1 + ρ)

yt +

(
(γξ − 1)ψx − σγξρ
σ (γξ − 1 + ρ)

)
xt

)
dt

+

(
ξ (ψ0 − r)

σ (γξ − 1 + ρ)
+

ξψy
σ (γξ − 1 + ρ)

yt + ξ

(
ψx + (1− ρ)σ

σ (γξ − 1 + ρ)

)
xt

)
dZt (51)

dxt = −ρx (xt − µx) dt+ σxdZx,t (52)
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The process for xt can be solved to get

xt = µx + (xs − µx) exp (−ρx (t− s)) + σx

∫ t

s

exp (−θ (t− u)) dZx,u

Es [xt] = µx + (xs − µx) exp (−ρx (t− s))

vars (xt) = σ2
x

∫ t

s

exp (−2θ (t− u)) du =
σ2
x

2θ
(1− exp (−2θ (t− s)))

The pdf for xt is

pt,x (x) =

√
θ√

πσ2
x (1− exp (−2θ (t− s)))

exp

(
−θ [x− µx + (xs − µx) exp (−ρx (t− s))]2

σ2
x (1− exp (−2θ (t− s)))

)

The Kolmogorov equation for the joint distribution pt (y, π, x) is

∂

∂t
pt (y, π, x) = − ∂

∂y
[(D0 +Dyy +Dxx) pt (y, π, x)]

+
1

2

∂2

∂y2
[
(S0 + Syy + Sxx)2 pt (y, π, x)

]
− ∂

∂x
[(−ρx (xt − µx)) pt (y, π, x)] +

1

2

∂2

∂x2
[
σ2
xpt (y, π, x)

]
where

D0 =
(γξ − 1) (ψ0 − r)
σ (γξ − 1 + ρ)

, Dy =
(γξ − 1)ψy
σ (γξ − 1 + ρ)

, Dx =
(γξ − 1)ψx − σγξρ
σ (γξ − 1 + ρ)

S0 =
ξ (ψ0 − r)

σ (γξ − 1 + ρ)
, Sy =

ξψy
σ (γξ − 1 + ρ)

, Sx = ξ

(
ψx + (1− ρ)σ

σ (γξ − 1 + ρ)

)
This is therefore fully characterizing the distribution of output under optimal mon-

etary policy. It is noteworthy that optimal monetary policy features a policy rule that

conditions on the output gap and on vulnerability. Despite the fact that prices are flexi-

ble, monetary policy takes vulnerability and output gap into account. Intuitively, those

correspond to the first two conditional moments of the output gap. Lower interest rates

boost aggregate demand, but they also increase vulnerability. Hence the central bank

faces a tradeoff, even when prices are fully flexible. This tradeoff between growth and

vulnerability is at the heart of our New Keynesian Vulnerability model.
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5 Optimal Monetary Policy with a Zero Lower Bound

In our analysis so far, we have abstracted from a zero lower bound (ZLB) on nominal

interest rates. In this section, we will solve for optimal monetary policy with a zero

lower bound. In order to keep the problem analytically tractable, we study a slightly

simplified problem. We assume that there is only one shock by setting dZx = 0 so that

xt = x. We also assume that prices are flexible, so that the central bank only considers

output deviations in its loss function. The optimal control problem for the central bank

is therefore:

L (yt) = min
{Vs}∞s=t

Et
∫ ∞
t

e−sβy2sds (53)

s.t.

dyt = ((γξ − 1)Vt − γξx) dt+ ξ (Vt − x) dZt (54)

it ≥ 0. (55)

We maintain the same parameter sign restrictions as before: x < 0, γξ − 1 < 0, and

γξ − 1 + ρ < 0. The novelty relative to the earlier analysis is the constraint it ≥ 0.

There is of course a well established literature that studies the existence of the ZLB

in settings without uncertainty or with uncertainty but perfect foresight. Eggertsson and

Woodford (2003), Eggertsson and Woodford (2004), Werning (2012) show that forward

guidance is the optimal policy when the ZLB and study accompanying fiscal policy that

can mitigate the liquidity trap. Correia, Farhi, Nicolini, and Teles (2013) show that tax

policy can solve the ZLB problems in the standard New Keynesian model. Duarte (2016)

analyzes optimal monetary policy rules that implement the optimal forward guidance

equilibrium of Eggertsson and Woodford (2003) and Werning (2012) without the need

for active fiscal policy. We instead find the optimal (constrained) equilibrium with the

added ingredient of vulnerability. In our setup, fiscal policy is passive. We focus on

the optimal path and not on implementation. In addition, we solve for the first time in

closed form a NK model with a ZLB and uncertainty (and no perfect foresight).

We will start by previewing the solution, and then derive it. Using equation (12)

with πt = 0, we can express the ZLB in terms of an upper bound on Vt

it = σ (γξ − 1 + ρ)Vt − σγξx+ r ≥ 0
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Thus, the bound on Vt is

Vt ≤ Vb

where

Vb ≡
σγξx− r

σ (γξ − 1 + ρ)
> 0

and the subscript b stands for “bound”. Therefore, the ZLB implies that vulnerability

cannot be “too high” (since interest rates cannot be “too low”). We assume for technical

reasons that Vb 6= γξ+1
γξ−1x, Vb 6= x, Vb 6= γξx

γξ−1 in order to simplify the analysis (without

these conditions, we would have to keep track of many different cases, which would make

the computations substantially more complicated, without adding economic instight).

The HJB is

0 = min
V≤Vb

{
y2 − βL+

∂L

∂y
((γξ − 1)V − γξx) +

1

2

∂2L

∂y2
ξ2 (V − x)2

}
with solution

L =

{
c0 + c1y + c2y

2 , y < yb

d0 + d1y + d2y
2 + d3 exp (η1y) + d4 exp (η2y) , y ≥ yb

and optimal policy in terms of V

V =

{ (
1−γξ
2c2ξ

2 c1 + x
)

+
(

1−γξ
ξ2

)
y , y < yb

Vb , y ≥ yb

where yb determines the value of y for which the ZLB (and Vb) is hit

yb = ξ2

(
xγξ

(γξ − 1)2 + βξ2
− Vb

(γξ − 1)
+

βξ2x

(γξ − 1)
(
(γξ − 1)2 + βξ2

))

At the ZLB, optimal policy is therefore independent of economic or financial condi-

tions. The level of vulnerability Vb is directly pinned down by the level of the interest

rate i = 0. Outside of the zero lower bound, when y < yb, optimal monetary policy

follows a flexible inflation targeting rule

it = σ (γξ − 1 + ρ)

(
1− γξ
2c2ξ

2 c1 + x+
1− γξ
ξ2

yt

)
− σγξx+ r (56)

where the interest rate depends on the level of the output gap yt. In a more general
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setup with a time varying xt, the flexible inflation targeting rule would of course also

depend on the level of the shock to vulnerability xt.

The optimal behavior of the central bank is different from the one studied by Werning

(2012) (and, in discrete time, Eggertsson and Woodford (2003)), who considers the same

model without vulnerability (dpt=0 for all t) but with a natural rate that switches from

negative to positive, so that the economy starts in a liquidity trap. Without vulnerability,

Eggertsson and Woodford (2003)) shows that the optimal policy with commitment is to

keep nominal interest rates at zero for longer than the natural rate is negative –in other

words, forward guidance. Once the period of zero interest rates is over, optimal policy

is characterized by it = (1 − κσλ)π + r > 0, so that interest rates jump from zero to a

positive value and then react less than one-for-one to inflation, since (1− κσλ) < 1.

The constants for the quadratic part in the solution are given by

c0 =
x2

β

(
(γξ − 1)2

ξ2
+ 2β

)(
(γξ − 1)2

ξ2
+ β

)−3
> 0 (57)

c1 = −2x

(
(γξ − 1)2

ξ2
+ β

)−2
> 0 (58)

c2 =

(
(γξ − 1)2

ξ2
+ β

)−1
> 0 (59)

d0 =
2

β2

(
ξ2 (Vb − x)2

2
+

((γξ − 1)Vb − γξx)2

β

)
> 0 (60)

d1 =
2

β2 ((γξ − 1)Vb − γξx) (61)

d2 =
1

β
> 0 (62)

where the signs for all constants except d1 are indicated since d1 can have any sign. The

constants d4 and d5 are the solution to the following system of two linear equations in

two unknowns[ (
1
η1
− ξ2(Vb−x)

(1−γξ)

)
η21 exp (η1yb)

(
1
η2
− ξ2(Vb−x)

(1−γξ)

)
η22 exp (η2yb)

exp (η1yb) exp (η2yb)

][
K5

K6

]
=

[
M1

M2

]
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where

M1 =
2

β

(
ξ2 (Vb − x)

(1− γξ)
− A1

β
− yb

)
M2 =

(
2x2 (A3 − β)

(2A3 − β)3 β
− 2A2

1

β3 −
2A2

β2

)
−
(

2x

(2A3 − β)2
+

2A1

β2

)
yb

−
(

1

2A3 − β
+

1

β

)
y2b

η1 =
(1− γξ)Vb + γξx

ξ2 (Vb − x)2
−

√
((γξ − 1)Vb − γξx)2 + 2ξ2 (Vb − x)2 β

ξ2 (Vb − x)2

η2 =
(1− γξ)Vb + γξx

ξ2 (Vb − x)2
+

√
((γξ − 1)Vb − γξx)2 + 2ξ2 (Vb − x)2 β

ξ2 (Vb − x)2

This system has a unique solution if and only if equation (5) holds, which is given by

K5 =
exp (−η1yb)

Λ

(
M1 −

(
1

η2
− ξ2 (Vb − x)

(1− γξ)

)
η22M2

)
K6 =

exp (−η2yb)
Λ

((
1

η1
− ξ2 (Vb − x)

(1− γξ)

)
η21M2 −M1

)
where

Λ =

(
1

η1
− ξ2 (Vb − x)

(1− γξ)

)
η21 −

(
1

η2
− ξ2 (Vb − x)

(1− γξ)

)
η22

The solution features a value function L that is continuous. Indeed, L is smooth

everywhere except at yb. At yb, the first and second derivatives do not exist in the

classical sense, so we use the concept of viscosity solution to solve the HJB. Also note

that the solution without a ZLB can be recovered by taking Vb →∞. Equivalently, the

solution without the ZLB is given by

L = c0 + c1y + c2y
2

V =

(
1− γξ
2c2ξ

2 c1 + x

)
+

(
1− γξ
ξ2

)
y

which is exactly the solution in the unconstrained region in the problem with the ZLB,

with the difference that it now applies for all y. The constants c0, c1 and c2 in the case

without the ZLB are still given by equations (57)-(59).
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6 Conclusion

The degree to which financial stability considerations should be incorporated in the

conduct of monetary policy has long been debated Adrian and Shin (2010), Adrian

and Liang (2016). In this paper, we extend the basic, two equation New Keynesian

model to incorporate a notion of financial vulnerability. Shocks to risk premia impact

aggregate demand via the Euler equation. The shocks to risk premia are assumed to

impact the volatility of output, which is motivated from the empirical observation by

Adrian, Boyarchenko, and Giannone (2016) that financial conditions forecast both the

mean and the volatility of output. Importantly, our framework reproduces the stylized

fact that the conditional mean and the conditional volatility of output are strongly

negatively correlated, giving rise to a sharply negatively skewed unconditional output

distribution. Vulnerability thus captures movements in the conditional GDP distribution

that correspond to the downside risk of growth.

We further assume that the central bank minimizes the expected discounted sum of

squared output gaps and squared inflation, which is standard in the literature. This

is therefore a central bank that is subject to a dual mandate, without an independent

financial stability objective. Despite that narrow objective function, the optimal flexible

inflation targeting rule conditions on the level of vulnerability. Intuitively, all variables

that provide information about the conditional distribution of GDP should be taken into

account in setting optimal monetary policy. This translates into an augmented Taylor

rule, where financial vulnerability—as measured by output gap tailrisk as a function of

financial variables—is an input into the Taylor rule. Furthermore, the magnitude of

the Taylor rule coefficients on output gap and inflation depend on the parameters that

determine vulnerability.

The striking result from our setup is that the central bank should always condition

monetary policy on financial vulnerability. Relative to earlier literature that has made

similar arguments (e.g. Curdia and Woodford (2010) and Gambacorta and Signoretti

(2014), our modeling approach is deeply rooted in empirical observations which capture

macoreconomic shocks of the 2008 crisis very well. Through the negative correlation

between conditional mean and conditional variance, our setup captures nonlinearity in

macro dynamics in a tractable linear-quadratic setting. The implications of our results

for the conduct of monetary policy are in line with the arguments or Adrian and Shin

(2010) and Adrian and Liang (2016).
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López-Salido, D., J. C. Stein, and E. Zakrajšek (2016): “Credit-Market Sentiment and the
Business Cycle,” National Bureau of Economic Research, 21879.

Peek, J., E. S. Rosengren, and G. M. Tootell (2015): “Should US Monetary Policy Have a
Ternary Mandate?,” Federal Reserve Bank of Boston 59 th Economic Conference, Macroprudential
and Monetary Policy.

Rotemberg, J., and M. Woodford (1997): “An Optimization-Based Econometric Framework for
the Evaluation of Monetary Policy,” NBER Macroeconomics Annual 1997, Volume 12, pp. 297–361.

Rotemberg, J. J., and M. Woodford (1999): “Interest Rate Rules in an Estimated Sticky Price
Model,” Monetary Policy Rules, pp. 57–126.

Rudebusch, G., and L. E. Svensson (1999): “Policy Rules for Inflation Targeting,” Monetary Policy
Rules, pp. 203–262.

Stock, J. H., and M. W. Watson (1998): “Diffusion Indexes,” National Bureau of Economic
Research, 6702.

Svensson, L. E. (1999): “Inflation Targeting as a Monetary Policy Rule,” Journal of Monetary Eco-
nomics, 43(3), 607–654.

(2002): “Inflation Targeting: Should It be Modeled as an Instrument Rule or a Targeting
Rule?,” European Economic Review, 46(4), 771–780.

(2016a): “Cost-Benefit Analysis of Leaning Against the Wind: Are Costs Larger Also with Less
Effective Macroprudential Policy?,” National Bureau of Economic Research Working Paper, 21902.

(2016b): “Inflation Targeting and “Leaning Against the Wind”,” Israel Economic Review,
13(1).

Taylor, J. B. (1993): “Discretion Versus Policy Rules in Practice,” Carnegie-Rochester Conference
Series on Public Policy, 39, 195–214.

(1999): “A Historical Analysis of Monetary Policy Rules,” Monetary Policy Rules, pp. 319–348.

Werning, I. (2012): “Managing a liquidity trap: Monetary and fiscal policy,” Discussion paper, Na-
tional Bureau of Economic Research.

Yellen, J. (2016): “The Federal Reserve’s Monetary Policy Toolkit: Past, Present, and Future, speech
at “Designing Resilient Monetary Policy Frameworks for the Future,” a symposium sponsored by the
Federal Reserve Bank of Kansas City, Jackson Hole, Wyoming,” https://www.federalreserve.

gov/newsevents/speech/yellen20160826a.htm. [Accessed: December 20, 2016].

30



A Appendix: Solution to the New Keynesian Model

with Vulnerabilities

A.1 The coefficients of the Welfare Function

Plugging into the concentrated HJB (25) we find:

∂L

∂y
= c1 + 2c2y + c5x+ c8π

∂2L

∂y2
= 2c2

∂L

∂π
= c6 + 2c7π + c8y + c9x

∂L

∂x
= c3 + 2c4x+ c5y + c9π

∂2L

∂x2
= 2c4
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and setting the coefficients in front of combinations of the state variables to zero, we get
the following system of equations in c0, ..., c9:

(const) : 0 = −βc0 + µxρxc3 + σ2
xc4 −

(1− γξ)2

4ξ2
c21
c2

(y) : 0 =

(
−

(
β +

(1− γξ)2

ξ2

)
c1 + µxρxc5 − κc6

)
(
y2
)

: 0 =

(
1−

(
β +

(1− γξ)2

ξ2

)
c2 − κc8

)

(x) : 0 =

(
−c1 − (β + ρx) c3 + 2ρxµxc4 −

(1− γξ)2

2ξ2
c1c5
c2

)
(
x2
)

: 0 =

(
− (β + 2ρx) c4 − c5 −

1

4

(1− γξ)2

ξ2
c25
c2

)

(yx) : 0 =

(
−2c2 −

(
β +

(1− γξ)2

ξ2
+ ρx

)
c5 − κc9

)

(π) : 0 =

(
µxρxc9 −

(1− γξ)2

2ξ2
c1c8
c2

)
(
π2
)

: 0 =

(
λ+ βc7 −

(1− γξ)2

4ξ2
c28
c2

)

(yπ) : 0 =

(
−2κc7 −

(1− γξ)2

ξ2
c8

)

(xπ) : 0 =

(
−c8 − ρxc9 −

1

2

(1− γξ)2

ξ2
c5c8
c2

)

If (1− γξ)2 − βξ2 6= 0, there are two solutions for c2:

c2 =
1(

(1−γξ)2

ξ2

)2
− β2

(
2ξ2κ2λ

(1− γξ)2
+

(1− γξ)2

ξ2
±

√
4κ2λ

(
ξ4κ2λ

(γξ − 1)4
+ 1

)
+ β2

)

If (1− γξ)2 − βξ2 = 0 then there is a unique solution for c2:

c2 =

(
4λξ2κ2

(1− γξ)2
+

2 (1− γξ)2

ξ2

)−1
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Given c2, the other coefficients are determined uniquely:

c5 =

(
−2

κ
c2 +

1

ρx

(
1

κ
− 1

κ

(
β +

(1− γξ)2

ξ2

)
c2

))
×

×

(
−(1− γξ)2

2ρxξ
2

(
1

κc2
− 1

κ

(
β +

(1− γξ)2

ξ2

))
+

1

κ

(
β + ρx +

(1− γξ)2

ξ2

))−1

c7 = −(1− γξ)2

2ξ2κ

(
1

κ
− 1

κ

(
β +

(1− γξ)2

ξ2

)
c2

)

c8 =

(
1

κ
− 1

κ

(
β +

(1− γξ)2

ξ2

)
c2

)

c9 = −2

κ
c2 −

1

κ

(
β +

(1− γξ)2

ξ2
+ ρx

)
c5

c4 = − 1

(β + 2ρx)
c5 −

(1− γξ)2

4 (β + 2ρx) ξ
2

c25
c2

c1 =
2ξ2µxρx

(1− γξ)2
c2c9
c8

c6 = −1

κ

(
β +

(1− γξ)2

ξ2

)
c1 +

µxρx
κ

c5

c3 = − 1

β + ρx
c1 +

2ρxµx
β + ρx

c4 −
(1− γξ)2

2 (β + ρx) ξ
2

c1c5
c2

c0 =
µxρx
β

c3 +
σ2
x

β
c4 −

(1− γξ)2

4βξ2
c21
c2

where I have arranged the coefficients in “triangular” form so that they can be solved
sequentially from c5 to c0 in the order in which they are listed.
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A.2 The Optimal Initial Conditions

To pick the optimal initial conditions, we minimize L with respect to y0, π0 taking x0 as
given

L (y0, π0, x0) = c0 + c1y0 + c2y
2
0 + c3x0 + c4x

2
0 + c5y0x0 + c6π0

+c7π
2
0 + c8y0π0 + c9π0x0

FOC :
∂L

∂y0
= 0

FOC :
∂L

∂π0

= 0

SOC :
∂2L

∂y20

∂2L

∂π2
0

− ∂2L

∂y0∂π0

> 0

SOC :
∂2L

∂y20
> 0

The FOC and SOC are

0 = c1 + 2c2y0 + c5x0 + c8π0

0 = c6 + 2c7π0 + c8y0 + c9x0

4c7c2 − c8 > 0

c2 > 0

The last SOC determines the sign of c2 and hence which of the two solutions to pick (if
(1− γξ)2 − βξ2 6= 0).

B Appendix: The New Keynesian Model wit a ZLB

Constraint

In this Appendix, we derive the solution to the ZLB problem. If ∂2L/∂y2 < 0, the
problem is not well defined since the minimum is achieved by V = −∞ and the value
function is undefined. Thus, we must have that

∂2L

∂y2
< 0

Similarly, if ∂2L/∂y2 = 0 and ∂L/∂y > 0, the minimum is achieved by V = −∞ and
the value function is undefined, so we also exclude this case.
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The FOC for V in the HJB is

V =



[−∞, Vb] , if ∂2L
∂y2

= 0 and ∂L
∂y

= 0

Vb , if ∂2L
∂y2

= 0 and ∂L
∂y
> 0(

∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x , if ∂2L
∂y2

> 0 and
(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x < Vb

Vb , if ∂2L
∂y2

> 0 and
(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x ≥ Vb

The concentrated HJB is thus

0 =



y2 − βL , if ∂2L
∂y2

= 0 and ∂L
∂y

= 0

y2 − βL+ ((γξ − 1)Vb − γξx) ∂L
∂y

, if ∂2L
∂y2

= 0 and ∂L
∂y
> 0

y2 − βL− x∂L
∂y
− (γξ−1)2

2ξ2

(
∂L
∂y

)2 (
∂2L
∂y2

)−1
,

if ∂2L
∂y2

> 0 and(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x < Vb

y2 − βL+ ((γξ − 1)Vb − γξx) ∂L
∂y

+

+1
2
ξ2 (Vb − x)2 ∂2L

∂y2
,

if ∂2L
∂y2

> 0 and(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x ≥ Vb

Conjecture that

L =



y2

β
, if ∂2L

∂y2
= 0 and ∂L

∂y
= 0

y2

β
,

if ∂2L
∂y2

= 0 and ∂L
∂y
> 0

and (γξ − 1)Vb − γξx = 0

2
β3A2

1 + 2
β2A1y + 1

β
y2 +K1 exp

(
β
A1
y
)

,
if ∂2L

∂y2
= 0 and ∂L

∂y
> 0

and (γξ − 1)Vb − γξx 6= 0

2x2(A3−β)
(2A3−β)3β

− 2x
(2A3−β)2

y +
(
− 1

2A3−β

)
y2 ,

if ∂2L
∂y2

> 0 and(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x < Vb

2A2

β2 + y2

β
+K2 exp

(√
β
A2
y
)

+

+K3 exp
(
−
√

β
A2
y
) ,

if ∂2L
∂y2

> 0 and(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x ≥ Vb

and Vb − x 6= 0 and
(γξ − 1)Vb − γξx = 0

2A2
1

β3 + 2A1

β2 y + 1
β
y2 +K4 exp

(
β
A1
y
)

,

if ∂2L
∂y2

> 0 and(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x ≥ Vb

and Vb − x = 0 and
(γξ − 1)Vb − γξx 6= 0

2A2
1

β3 + 2A2

β2 + 2A1

β2 y + 1
β
y2+

+K5 exp (η1y) +K6 exp (η2y)
,

if ∂2L
∂y2

> 0 and(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x ≥ Vb and

Vb − x 6= 0 and
(γξ − 1)Vb − γξx 6= 0
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where
K1, K2, K3, K4, K5, K6

are constants of integration and

A1 = (γξ − 1)Vb − γξx

A2 =
1

2
ξ2 (Vb − x)2 > 0

A3 = −(γξ − 1)2

2ξ2
< 0

η1 = −1

2

(
A1

A2

+

√
A2

1 + 4A2β

A2

)

= −(γξ − 1)Vb − γξx
ξ2 (Vb − x)2

−

√
((γξ − 1)Vb − γξx)2 + 41

2
ξ2 (Vb − x)2 β

ξ2 (Vb − x)2

η2 = −1

2

(
A1

A2

−
√
A2

1 + 4A2β

A2

)

= −(γξ − 1)Vb − γξx
ξ2 (Vb − x)2

+

√(
(γξ − 1)2 + 2βξ2

)
V 2
b − 2xξ (2βξ + γ (γξ − 1))Vb + x2ξ2 (2β + γ2)

ξ2 (Vb − x)2

Note that the case

Vb − x = 0

(γξ − 1)Vb − γξx = 0

cannot happen since x 6= 0. In addition, η1 and η2 are always real since

A2
1 + 4A2β =

(
(γξ − 1)2 + 2βξ2

)
V 2
b − 2xξ (2βξ + γ (γξ − 1))Vb + x2ξ2

(
2β + γ2

)
and the roots of

0 =
(
(γξ − 1)2 + 2βξ2

)
V 2
b − 2xξ (2βξ + γ (γξ − 1))Vb + x2ξ2

(
2β + γ2

)
are {

xξ
2βξ + (γξ − 1) γ +

√
−2β

(γξ − 1)2 + 2βξ2
, xξ

2βξ + (γξ − 1) γ −
√
−2β

(γξ − 1)2 + 2βξ2

}
which are always complex, imply A2

1 + 4A2β > 0.
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Differentiating, we get

L′ =



2
β
y , if ∂2L

∂y2
= 0 and ∂L

∂y
= 0

2
β
y ,

if ∂2L
∂y2

= 0 and ∂L
∂y
> 0

and (γξ − 1)Vb − γξx = 0

2
β2A1 + 2

β
y + β

A1
K1 exp

(
β
A1
y
)

,
if ∂2L

∂y2
= 0 and ∂L

∂y
> 0

and (γξ − 1)Vb − γξx 6= 0

− 2x
(2A3−β)2

+
(
− 2

2A3−β

)
y ,

if ∂2L
∂y2

> 0 and(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x < Vb

2
β
y +

√
β
A2
K2 exp

(√
β
A2
y
)
−

−
√

β
A2
K3 exp

(
−
√

β
A2
y
) ,

if ∂2L
∂y2

> 0 and(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x ≥ Vb and

Vb − x 6= 0 and
(γξ − 1)Vb − γξx = 0

2A1

β2 + 2
β
y + β

A1
K4 exp

(
β
A1
y
)

,

if ∂2L
∂y2

> 0 and(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x ≥ Vb and

Vb − x = 0 and
(γξ − 1)Vb − γξx 6= 0

2A1

β2 + 2
β
y + η1K5 exp (η1y) + η2K6 exp (η2y) ,

if ∂2L
∂y2

> 0 and(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x ≥ Vb and

Vb − x 6= 0 and (γξ − 1)Vb − γξx 6= 0
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and

L′′ =



2
β

, if ∂2L
∂y2

= 0 and ∂L
∂y

= 0

2
β

,
if ∂2L

∂y2
= 0 and

∂L
∂y
> 0 and (γξ − 1)Vb − γξx = 0

2
β

+
(
β
A1

)2
K1 exp

(
β
A1
y
)

,
if ∂2L

∂y2
= 0 and

∂L
∂y
> 0 and (γξ − 1)Vb − γξx 6= 0(

− 2
2A3−β

)
,

if ∂2L
∂y2

> 0 and(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x < Vb

2
β

+ β
A2
K2 exp

(√
β
A2
y
)

+

+ β
A2
K3 exp

(
−
√

β
A2
y
) ,

if ∂2L
∂y2

> 0 and(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x ≥ Vb

and Vb − x 6= 0 and
(γξ − 1)Vb − γξx = 0

2
β

+
(
β
A1

)2
K4 exp

(
β
A1
y
)

,

if ∂2L
∂y2

> 0 and(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x ≥ Vb

and Vb − x = 0 and
(γξ − 1)Vb − γξx 6= 0

2
β

+ η21K5 exp (η1y) +

+η22K6 exp (η2y)
,

if ∂2L
∂y2

> 0 and(
∂2L
∂y2

)−1
∂L
∂y

(1−γξ)
ξ2

+ x ≥ Vb

and Vb − x 6= 0 and
(γξ − 1)Vb − γξx 6= 0

The first two cases, given by

∂2L

∂y2
= 0 and

∂L

∂y
= 0

∂2L

∂y2
= 0 and

∂L

∂y
> 0 and (γξ − 1)Vb − γξx = 0

can never occur, since L′′ = 2/β > 0. Using the computations above, we can solve for
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the conditions that define the rest of the cases. For the case listed third

∂2L

∂y2
= 0 and

∂L

∂y
> 0 and (γξ − 1)Vb − γξx 6= 0

⇐⇒
K1 < 0

y =
A1

β
log

(
− 2

K1

A2
1

β3

)
0 <

A1

β
log

(
− 2

K1

A2
1

β3

)
0 6= (γξ − 1)Vb − γξx (63)

For the case listed fourth,

∂2L

∂y2
> 0 and

(
∂2L

∂y2

)−1
∂L

∂y

(1− γξ)
ξ2

+ x < Vb

⇐⇒

y < ξ2

(
xγξ

(γξ − 1)2 + βξ2
− Vb

(γξ − 1)
+

βξ2x

(γξ − 1)
(
(γξ − 1)2 + βξ2

)) (64)

For the case listed fifth

∂2L

∂y2
> 0 and

(
∂2L

∂y2

)−1
∂L

∂y

(1− γξ)
ξ2

+ x ≥ Vb

and Vb − x 6= 0 and (γξ − 1)Vb − γξx = 0

⇐⇒

−
(

ξx

(γξ − 1) β

)2

< K2 exp

(√
2β (γξ − 1)

ξx
y

)
+K3 exp

(
−
√

2β (γξ − 1)

ξx
y

)
(65)

−2x

β
y − 2β

(
ξx

(γξ − 1) β

)2

≥ (x+ 2β)K2 exp

(√
2β (γξ − 1)

ξx
y

)
+((

1− γξ
ξ

)√
2β + 2β

)
K3 exp

(
−
√

2β (γξ − 1)

ξx
y

)
0 6= Vb − x

Vb =
γξx

γξ − 1
(66)
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For the case listed sixth

∂2L

∂y2
> 0 and

(
∂2L

∂y2

)−1
∂L

∂y

(1− γξ)
ξ2

+ x ≥ Vb

and Vb − x = 0 and (γξ − 1)Vb − γξx 6= 0

⇐⇒

0 <
2

β
+

(
β

A1

)2

K4 exp

(
β

A1

y

)
0 ≤ 2A1

β2 +
2

β
y +

βK4

A1

exp

(
β

A1

y

)
0 = Vb − x
0 6= (γξ − 1)Vb − γξx (67)

For the case listed seventh

∂2L

∂y2
> 0 and

(
∂2L

∂y2

)−1
∂L

∂y

(1− γξ)
ξ2

+ x ≥ Vb

and Vb − x 6= 0 and (γξ − 1)Vb − γξx 6= 0

⇐⇒
0 <

2

β
+ η21K5 exp (η1y) + η22K6 exp (η2y)

0 ≤ 2

β

(
A1

β
− ξ2 (Vb − x)

(1− γξ)

)
+

2

β
y

+

(
1− ξ2 (Vb − x)

(1− γξ)
η1

)
η1K5 exp (η1y)

+

(
1− ξ2 (Vb − x)

(1− γξ)
η2

)
η2K6 exp (η2y)

0 6= Vb − x
0 6= (γξ − 1)Vb − γξx (68)

We invoke equation (5) to discard the cases in equations (66) and (67). We look for a
solution using the cases in equations (64) and (68), and show at the end that the case
in equation (63) does not apply in this case.

Using the cases in equations (64) and (68), we get

L =



2x2(A3−β)
(2A3−β)3β

− 2x
(2A3−β)2

y +
(
− 1

2A3−β

)
y2 , y < yb

2A2
1

β3 + 2A2

β2 + 2A1

β2 y + 1
β
y2

+K5 exp (η1y) +K6 exp (η2y)
,

2
β

(
A1

β
− ξ2(Vb−x)

(1−γξ)

)
+ 2

β
y

+
(

1
η1
− ξ2(Vb−x)

(1−γξ)

)
η21K5 exp (η1y)

+
(

1
η2
− ξ2(Vb−x)

(1−γξ)

)
η22K6 exp (η2y) ≥ 0
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where

yb = ξ2

(
xγξ

(γξ − 1)2 + βξ2
− Vb

(γξ − 1)
+

βξ2x

(γξ − 1)
(
(γξ − 1)2 + βξ2

))

We now pick K5 and K6 to make the boundaries of the two regions coincide and to make
L continuous there. The boundaries coincide iff

0 =
2

β

(
A1

β
− ξ2 (Vb − x)

(1− γξ)

)
+

2

β
yb +

(
1

η1
− ξ2 (Vb − x)

(1− γξ)

)
η21K5 exp (η1yb)

+

(
1

η2
− ξ2 (Vb − x)

(1− γξ)

)
η22K6 exp (η2yb)

Continuity at the boundary requires

2x2 (A3 − β)

(2A3 − β)3 β
− 2x

(2A3 − β)2
yb +

(
− 1

2A3 − β

)
y2b =

2A2
1

β3 +
2A2

β2 +
2A1

β2 yb

+
1

β
y2b +K5 exp (η1yb) +K6 exp (η2yb)

We can write these two equations in matrix form[ (
1
η1
− ξ2(Vb−x)

(1−γξ)

)
η21 exp (η1yb)

(
1
η2
− ξ2(Vb−x)

(1−γξ)

)
η22 exp (η2yb)

exp (η1yb) exp (η2yb)

] [
K5

K6

]
=

[
M1

M2

]
where

M1 =
2

β

(
ξ2 (Vb − x)

(1− γξ)
− A1

β
− yb

)
M2 =

(
2x2 (A3 − β)

(2A3 − β)3 β
− 2A2

1

β3 −
2A2

β2

)
−
(

2x

(2A3 − β)2
+

2A1

β2

)
yb

−
(

1

2A3 − β
+

1

β

)
y2b

The first line in equation (5) guarantees a unique solution to this sytem, given by

K5

K6
=

[ (
1
η1
− ξ2(Vb−x)

(1−γξ)

)
η21 exp (η1yb)

(
1
η2
− ξ2(Vb−x)

(1−γξ)

)
η22 exp (η2yb)

exp (η1yb) exp (η2yb)

]−1 [
M1

M2

]

=
1

Λ

 exp (−η1yb) −
(

1
η2
− ξ2(Vb−x)

(1−γξ)

)
η22 exp (−η1yb)

− exp (−η2yb)
(

1
η1
− ξ2(Vb−x)

(1−γξ)

)
η21 exp (−η2yb)

[ M1

M2

]
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where

Λ =

(
1

η1
− ξ2 (Vb − x)

(1− γξ)

)
η21 −

(
1

η2
− ξ2 (Vb − x)

(1− γξ)

)
η22

It can be checked that the first and second derivatives in the viscosity sense statisfy the
viscosity solution conditions at yb.

C Appendix: Proofs

Lemma 3 When it = ψ0 + ψyyt + ψxxt, the loss function L (y0, 0) is bounded for all y0
if and only if

ψ
y
< ψy < ψ̄y

where

ψ̄y = min

{
βσ (γξ − 1 + ρ)

(γξ − 1)
,
σ (ρ+ γξ − 1)

ξ2

(
1− γξ −

√
(1− γξ)2 + βξ2

)}
ψ
y

=
σ (ρ+ γξ − 1)

ξ2

(
1− γξ +

√
(1− γξ)2 + βξ2

)
Proof. Consider the following system of SDE for yt and xt

dyt = (A0 + Ayyt + Axxt) dt+ (B0 +Byyt +Bxxt) dZy,t

dxt = −κx (xt − µx) dt+ σxdZx,t

dZy,tdZx,t = 0

x0 = 0

y0 ∈ R

where A0, Ay, Ax, B0, By, Bx, κx, µx > 0, σx > 0 are constants and dZy,t, dZx,t are stan-
dard brownian motions. The process for xt is an Ornstein-Uhlenbeck process with stan-
dard solution

xt = x0e
−κxt + µx(1− e−κxt) + σx

∫ t

0

e−κx(t−s)dZx,s

= µx(1− e−κxt) + σx

∫ t

0

e−κx(t−s)dZx,s

Let

φt = exp

((
Ay −

B2
y

2

)
t+ByZy,t

)
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be the solution to the homogenous SDE

dφt
φt

= Aydt+BydZy,t

φ0 = 1

Then

yt = φty0 + φt

∫ t

0

φ−1s [(A0 + Axxs)−By (B0 +Bxxs)] ds (69)

+φt

∫ t

0

φ−1s (B0 +Bxxs) dZy,s

Using that

E [φt] = exp (Ayt) (70)

E
[
φ2
t

]
= exp

((
B2
y + 2Ay

)
t
)

(71)

E
[
φtφ

−1
s

]
= exp (Ay (t− s)) (72)

E
[
φ2
tφ
−1
s

]
= exp

((
B2
y + 2Ay

)
t
)

exp
((
−B2

y − Ay
)
s
)

(73)

E
[
φ2
tφ
−2
s

]
= exp

((
B2
y + 2Ay

)
t
)

exp
(
−
(
B2
y + 2Ay

)
s
)

(74)

E
[
(B0 +Bxxs)

2] =
B2
xσ

2
x

2ρx
+B2

xµ
2
x + 2B0Bxµx +B2

0 −
B2
xσ

2
x

2ρx
exp (−2ρxs) (75)

E [xsxu] =
σ2
x

2ρx
exp (−ρx (s+ u)) (exp (2ρx min (s, u))− 1) + µ2

x (76)

we can compute

E [yt] =


(
y0 + (Ax−BxBy)µx+(A0−B0By)

Ay

)
exp (Ayt)

− (Ax−BxBy)µx+(A0−B0By)

Ay

, if Ay 6= 0

E [yt] = y0
+ ((Ax −BxBy)µx + (A0 −B0By)) t

, if Ay = 0

(77)
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In addition, using equations (70)-(76),

E

[(∫ t

0

φtφ
−1
s ((Ax −BxBy)xs + (A0 −B0By)) ds

)2
]

= E

 (∫ t0 φtφ−1s ((Ax −BxBy)xs + (A0 −B0By)) ds
)
×

×
(∫ t

0
φtφ

−1
u ((Ax −BxBy)xu + (A0 −B0By)) du

) 
=

∫ t

0

∫ t

0

E
[
φtφ

−1
s ((Ax −BxBy)xs + (A0 −B0By))φt×
×φ−1u ((Ax −BxBy)xu + (A0 −B0By))

]
duds

and

y2t =

(
φty0 +

∫ t

0

φtφ
−1
s ((Ax −BxBy)xs + (A0 −B0By)) ds+

∫ t

0

φtφ
−1
s (B0 +Bxxs) dZy,s

)2

= (φty0)
2 +

(∫ t

0

φtφ
−1
s ((Ax −BxBy)xs + (A0 −B0By)) ds

)2

+2 (φty0)

(∫ t

0

φtφ
−1
s ((Ax −BxBy)xs + (A0 −B0By)) ds

)
+2 (φty0)

(∫ t

0

φtφ
−1
s (B0 +Bxxs) dZy,s

)
+2

(∫ t

0

φtφ
−1
s ((Ax −BxBy)xs + (A0 −B0By)) ds

)(∫ t

0

φtφ
−1
s (B0 +Bxxs) dZy,s

)
+

(∫ t

0

φtφ
−1
s (B0 +Bxxs) dZy,s

)2
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we get

E
[
y2t
]

= −(Ax −BxBy)
2 σ2

x

2Ayρx (ρx − Ay)
− 1(

B2
y + 2Ay

) (B2
xσ

2
x

2ρx
+B2

xµ
2
x + 2B0Bxµx +B2

0

)
+

(Ax −BxBy)
2 µ2

x + (A0 −B0By) (Ax −BxBy)µx
A2
y

+
(A0 −B0By) (Ax −BxBy)µx + (A0 −B0By)

2

A2
y

+
2σ2

x (Ax −BxBy)
2

(ρx + Ay)
2 (ρx − Ay)

exp (− (ρx − Ay) t) (78)

+


1
2
σ2
x

Ay

(Ax−BxBy)2

(ρx+Ay)
2

+ (Ax−BxBy)2µ2x+(A0−B0By)(Ax−BxBy)µx
A2
y

+ (A0−B0By)(Ax−BxBy)µx+(A0−B0By)
2

A2
y

 exp (2Ayt) (79)

+

(
−(Ax −BxBy)

2 σ2
x

2ρx (ρx + Ay)
2 +

1(
2ρx + 2Ay +B2

y

)B2
xσ

2
x

2ρx

)
exp (−2ρxt)

+


(
− 2
B2
y+Ay

(A0 −B0By + µx (Ax −BxBy))
)
y0

−2 (A0 + µxAx −B0By − µxBxBy)×
×(A0B2

y−B0B3
y+A0Ay+µxAxB

2
y−µxBxB3

y+µxAxAy−B0AyBy−µxAyBxBy)
A2
y(B2

y+Ay)

 exp (Ayt)

+


y20 + 2

B2
y+Ay

(A0 −B0By + µx (Ax −BxBy)) y0

+ 1
B2
y+2Ay

(
B2

0 + µ2
xB

2
x + 1

2
σ2
x

ρx
B2
x + 2µxB0Bx

)
−1

2
σ2
x

ρx

B2
x

B2
y+2ρx+2Ay

 exp
((
B2
y + 2Ay

)
t
)

(80)

It follows that
lim
t→∞

E
[
e−tβy2t

]
= 0

for all y0 if and only if

− (ρx − Ay)− β < 0 (81)

Ay − β < 0 (82)

−2ρx − β < 0 (83)(
B2
y + 2Ay

)
− β < 0 (84)
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Using equation (28), we identify

A0 =
(γξ − 1) (ψ0 − r)
σ (γξ − 1 + ρ)

(85)

Ay =
(γξ − 1)ψy
σ (γξ − 1 + ρ)

(86)

Ax =

(
(γξ − 1)ψx − σγξρ
σ (γξ − 1 + ρ)

)
(87)

B0 =
ξ (ψ0 − r)

σ (γξ − 1 + ρ)
(88)

By =
ξψy

σ (γξ − 1 + ρ)
(89)

Bx = ξ

(
ψx + (1− ρ)σ

σ (γξ − 1 + ρ)

)
(90)

Using that (ρ+ γξ − 1) < 0, inequalities (81)-(84) can then be solved for ψy to get

ψy >
σ (ρ+ γξ − 1)

ξ2

(
1− γξ +

√
(1− γξ)2 + βξ2

)
(91)

ψy < min

{
βσ (γξ − 1 + ρ)

(γξ − 1)
,
σ (ρ+ γξ − 1)

ξ2

(
1− γξ −

√
(1− γξ)2 + βξ2

)}
(92)
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