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Abstract 

We show that realized volatility, especially the realized volatility of financial sector stock returns, 

has strong predictive content for the future distribution of market returns. This is a robust feature 

of the last century of U.S. data and, most importantly, can be exploited in real time. Current 

realized volatility has the most information content on the uncertainty of future returns, whereas it 

has only limited content about the location of the future return distribution. When volatility is 

low, the predicted distribution of returns is less dispersed and probabilistic forecasts are sharper. 

Given this finding on the importance of financial sector volatility not just to financial equity 

return uncertainty but to the broader market, we test for changes in the realized volatility of banks 

over a $50 billion threshold associated with more stringent Dodd-Frank Wall Street Reform and 

Consumer Protection Act (Dodd-Frank) requirements. We find that the equity volatility of these 

large banks is differentially lower by 9 percentage points after Dodd-Frank compared to pre-crisis 

levels, controlling for changes over the same period for all banks and all large firms.  
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1 Introduction

Are stock returns predictable? This is a longstanding question in the finance literature. The

dominant focus has been to identify variables, available in real time, which can provide information

about the future conditional mean of stock returns. In an influential paper, Welch and Goyal

(2008) argued that popular predictors in the literature showed limited evidence in out-of-sample

performance relative to the naive model. These variables did not have sufficient strength and

stability to be exploited in real time relative to a benchmark model where the conditional mean of

returns is equal to the unconditional expectation. The literature on prediction has addressed these

issues by modifying the estimation approach such as through model combination or by imposing

economic constraints (as surveyed by Rapach and Zhou (2013)), focussing on other aspects of the

distribution such as predicting tail events or volatility (e.g., Engle et al. (2008), Patton (2011)),

and using information across assets to help inform predictions (e.g., Adrian et al. (2017b)).

In this paper, we evaluate whether the whole distribution of stock returns is predictable. We

assess whether economic and financial variables can provide predictive content about the future

distribution of stock returns. In this context, unpredictability would be concluded if it is impossible

to improve over a benchmark model that forecasts the future distribution to be equal to the un-

conditional density of returns. We use the set of predictors assembled in Welch and Goyal (2008),

adding an additional proxy for the conditions of financial intermediaries available over the entire

time series (the realized volatility in financial sector equity returns), and we allow these predictors

to shape the full conditional distribution as opposed to affecting only the conditional mean.

A natural metric to assess probabilistic forecasts is the average predictive score. According

to which an accurate density forecast is one which assigns high ex-ante probability for events

that are realized ex-post. To estimate the predictive density we use the methodology of Adrian

et al. (2017a). Intuitively, the approach can be characterized as follows: In the first step quantile

predictive regressions are performed for a set of fixed quantiles. In the second step, we fit a

flexible parametric density function by choosing the parameter values to best approximate the

fitted conditional quantiles.

Our main result is that realized volatility, especially the realized volatility of financial sector

stock returns, has strong predictive content for the future distribution of returns. This is a robust

feature of the data and, importantly, can be exploited in real time. Our estimation approach

allows the predictors to affect the location, scale, skewness and kurtosis of the tails in a simple and

flexible way. This allows us to easily construct conditional density forecasts and compare them to

a benchmark of no predictability. This is a different way to judge the accuracy of a stock return

prediction than is commonly used in the literature where the focus is generally on predicting the

conditional mean or variance. This is an important distinction because it suggests that if we shift

the focus away from very specific aspects of the distribution, we see meaningful and substantial

gains in predictability.

We find that current realized volatility has significant information content for the uncertainty or

spread of future returns, whereas it has only limited content about the location of the future return

distribution. When volatility is low, our predictions of returns are sharper—in other words, returns
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are more concentrated around the unconditional mean. Thus, in “normal” times, our predictive

density forecasts will be quite accurate. When volatility is high, then the predictive distribution

becomes flatter i.e., mass is spread over a more dispersed set of outcomes and so larger forecast

errors are less surprising, which is reflected in the predictive score. The benchmark model with

no predictability, which does not allow the variance of the predictive distribution to change with

financial conditions, has a variance that is an average across regimes, and so is too flat in turbulent

times and too large in “normal times”. We also find that the default yield spread between BAA

and AAA rated corporate bonds shows clear improvement over the benchmark model—albeit of a

smaller magnitude and less robust than realized volatility.

After developing and testing our methodology, we then apply our findings to address a pressing

policy (and open research) question. Is the banking system healthier or not today, and have recent

regulatory reforms helped? Analysis addressing this question has, until recently, been limited, and

part of the challenge has been what measure to examine as an indicator of risk or health in the

banking system. Sarin and Summers (2016) look across a variety of measures that could arguably

be relevant and argue the evidence is at best mixed. Chousakos and Gorton (2017) examine

Market-to-Book ratios across advanced economies and find that the low post-crisis valuations of

bank equities has been surprisingly persistent relative to previous financial crises.

Focusing on the volatility of bank equity as a financial condition most relevant to broad market

risk as shown in our preceding analysis, we find that recent regulatory reforms are associated

with an improvement in risk. Pursuing a differences-in-differences-in-differences empirical design,

we compare the changes in market volatility of the largest banks (those over the Dodd-Frank

$50 Billion threshold for designation as a systemically important financial institution) to banks

under the threshold and to other large non-bank firms. We find a material relative reduction in

market volatility for the largest banks (-9%). A significant caveat to interpreting this result is if the

structural relationship between financial conditions (as measured by bank equity volatility) and the

real economy (as indicated by forward-looking aggregate stock market volatility) has changed. For

example, regulations might have have chased financial intermediation to unregulated intermediaries.

We check the underlying predictive relationship–between the volatility of financial sector stock

returns to the dispersion and left tail of market returns established in the long time series of US

data–and find no immediate evidence of a recent break in our predictive relationship.

Our paper is most closely related to Cenesizoglu and Timmermann (2008) who study whether

economic and financial variables can help improve prediction of the quantiles of the return distribu-

tion. Cenesizoglu and Timmermann (2008) also find evidence of predictive power especially in the

upper tail of the return distribution. Our paper is also related to Massacci (2015) who evaluates

the accuracy of density forecasts but restricts the economic and financial variables to predict the lo-

cation of the distribution only. Durham and Geweke (2014) predict higher-frequency, daily returns

allowing for realized intraday volatility and option-implied volatility but restrict these variables to

predict the scale of the distribution only.

Our paper is also related to those papers that investigate interactions between financial crises

(high periods of market volatility) and equity returns. For example, Baron and Xiong (2017) ex-
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amine changes in skew of bank equity returns in response to changes in economic leverage (bank

credit/GDP). Moreira and Muir (2017) look at the returns of a market portfolio managed by lagged

volatility, finding investors are not compensated for risk in periods of lagged high volatility. Sim-

ilarly, when we examine the distribution of aggregate returns conditional on realized volatility we

find no predictability in the average return, but do find predictability in the risk to holding the

market portfolio (either in terms of variance at short horizon, or skew at longer horizons), indi-

cating a breakdown in a risk-return tradeoff. Adrian et al. (2017b) document a strongly nonlinear

dependence of stock and bond returns on past equity market volatility as measured by the VIX

with expected stock returns increasing for stocks when volatility increases from moderate to high

levels.

Our paper is organized as follows. Section 2 provides initial motivating evidence regarding

future stock market returns and current realized volatility and credit spreads. Next, Section 3

describes our estimation approach and provides our main results. It is important to emphasize

that all results in Section 3 are in real time with no look-ahead bias. Section 4 builds off the main

results to assess the impact of post-crisis regulatory reforms in the US. Section 5 concludes.

2 Motivation

To motivate the results in the paper we start with a set of predictive quantile regressions. Let us

denote by rT+h the annualized CRSP value-weighted return between T and T + h and by xT a

vector containing a set of predictors, including a constant. We work with a linear quantile regression

model, i.e., we assume that

QrT+h|xT (p|xT ) = x′Tβp, (1)

where QrT+h|xT (·|xT ) is the quantile function of the distribution of h-period future returns condi-

tional on the variables xT . To develop intuition, consider the simple case when xt = 1. Then, βp

is the unconditional quantile of the distribution of returns, and solving the minimization problem

is equivalent to ordering the data and choosing the value of β̂p so that a fraction p of observations

take on smaller values. Equivalently, βp is the Value-at-Risk for an investor holding the market

portfolio.1 Thus, in the general case we are assuming that the Value-at-Risk is, x′tβp, a linear

function of the variables contained in xt.

As a first step, we examine the realized volatility of financial sector equity returns (volFinancial).

We view volFinancial as a proxy for financial conditions, i.e. on the state of financial intermedia-

tion, available throughout the long history of our sample, as compared to the National Financial

Conditions Index (NFCI) which only starts in 1971.2 In their review of systemic risk measures,

Giglio et al. (2016) find realized financial volatility to be an important predictor, and the mean

equity volatility of the financial sector can be interepreted as an approximation of the financial

1Value-at-Risk is a term commonly used in (bank) risk management to describe the maximum estimated loss of
a portfolio within a given time period at a specified confidence level, or here (1− p).

2NFCI is found by Adrian et al. (2017a) to be an important indicator in predicting shifts the distribution of
aggregate output growth
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fragility or soundness of financial intermediaries in an economy (Chousakos et al., 2016; Atkeson

et al., 2017). We provide a full list of variable names and definitions on page 19, and include further

description in Section 6 of the Appendix.

The top left panel of Figure 1 shows the results of both quantile and conventional OLS re-

gressions of one-period ahead quarterly stock returns on volFinancial. Superimposed over the

scatterplot of the data are four lines corresponding to the OLS fit (blue), median (red), and 5th

(black) and 95th (green) percentiles. The estimated slopes for the median (β.50) and the condi-

tional mean (OLS) are essentially zero, while the extreme quantiles have steep positive and negative

slopes. The flat slopes of the OLS and median lines illustrate the difficulty in predicting returns

found in many studies that focus on point forecasts (e.g., Welch and Goyal (2008)). Essentially,

realized volatility does not have any clear predictive power for the location of the distribution of

future returns.

In contrast, the estimated slopes corresponding to the upper and lower tails are strongly pos-

itive and negative, respectively—as realized volatility rises, the gap between the quantiles grows.

Consequently, when realized volatility is high (low) in the current quarter, then the central mass of

the predicted distribution of returns for next quarter spreads (concentrates) over a wider (narrower)

interval. Thus, although median predicted returns are largely unchanged, risk is higher (lower).

The model captures what we can see in the scatterplot–realized returns are more variable when last

quarter’s realized volatility is higher. The right panel of Figure 1 shows results of the same analysis

for the horizon h = 4. In this case, when realized volatility is high, the predicted distribution of

returns for the subsequent period again spreads over a wider area but does so asymmetrically, with

mass more concentrated on the left side of the distribution. We find the same relationships with

stronger magnitudes when investigating the direct relationship to future financial sector-specific

market returns.3 We next investigate whether these results can be explained by pure statistical

chance.

In the bottom panel of Figure 1 we report the estimated slope coefficients over a range of

values for p. We also include the conditional mean and median estimates we would obtain with

a Gaussian linear model of returns and lagged realized volatility along with confidence intervals

corresponding to nominal coverage rates of 68%, 90%, and 95% for β̂p. The confidence intervals

have been constructed as follows: first, we fit a bivariate vector autoregression (VAR) of returns

and realized volatility with four lags. Second, we simulate datasets based on this model and the

associated in-sample parameter estimates. Finally, for each simulation we run the appropriate

quantile regression for each p. The confidence intervals reflect the distribution of the estimated

slopes across simulations.4 The OLS point estimate provides an appropriate benchmark for judging

the deviation of quantile estimates from the mean relationship in the data, and the Gaussian model

is a suitable benchmark since the quantiles as a function of lagged realized volatility will be parallel

lines, i.e., the slopes are the same across quantiles.

Both charts in the bottom panel of Figure 1 show that, even if the benchmark model were

3For illustrations of the relationship of volFinancial to financial sector stock returns (rFinancial), see Appendix
Figure 16.

4This can be interpreted as a parametric bootstrap exercise.
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correct, there is no statistically significant evidence of predictability for the conditional mean as

the OLS estimates are comfortably within the confidence bounds. This also true for the median

and so, by properties of the Gaussian distribution, for all other quantiles. Notice that as p moves

toward zero or one, sampling uncertainty increases, although not dramatically because the quantile

regression uses all of the data to inform its estimates, not just extreme observations. In sharp

contrast, the left and right tails of the conditional distribution are associated with slope coefficients

that are well outside of our bootstrapped confidence intervals. This provides clear evidence against

the linear model and strongly suggests that the conditional predictive distribution can be modeled

as a function of lagged realized financial-sector volatility. The right column of Figure 1 shows the

analogous results for the h = 4 horizon. In this case we see that realized volatility is strongly

associated with the left tail of the predictive distribution of returns.

In Figure 2 we show the corresponding results using the default yield spread (DFY)–the differ-

ence between BAA and AAA rated yields. In general, the results are similar to that of Figure 1

except that we find some evidence that the location of the predictive distribution moves with DFY.

This can be seen by the fact that zero is outside the confidence bands for h = 1 and especially for

h = 4. Taking all this evidence in concert, we find suggestive evidence that the realized volatil-

ity of the financial sector and the default spread provide useful information about the predictive

distribution of returns and especially about its dispersion.

3 Main Results

In the previous section, we provided preliminary evidence that features of the future distribution

of returns change over time with respect to current values of realized volatility and credit spreads.

In this section, we formally investigate this relationship across a range of variables common to the

literature of return forecasting as tested by Welch and Goyal (2008), and show that our results

provide new insights related to the debate of stock return forecastability.

It is important to emphasize that throughout this section, all results are based on real-time

estimation of the associated model parameters, completely avoiding any look-ahead bias in our

results. The only real-time aspect we do not account for are data revisions, as we use the data as

available today, which might be different from the data available at the time the forecasts would

have been made. That said, the predictors we find which forecast most accurately should be subject

to minimal, if any, revisions.5

3.1 Forecasting Returns: From Quantile Regressions to Density Forecasts

In this subsection we formally describe our approach to producing conditional density forecasts.

Further details may be found in Adrian et al. (2017a). We estimate the quantile of rT+h conditional

5For example, our realized volatility variables are based on data from CRSP which is continually updated to
correct data errors as they are identified on a monthly basis.
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on xT ,

Q̂rT+h|xT (p|xT ) = xT β̂p, (2)

by choosing β̂p to minimize the quantile weighted absolute value of the in-sample errors:

β̂p = arg min
βp∈Rk

T−h∑
t=1

(
p · 1(rT+h≥xtβ) |rT+h − xtβp|+ (1− p) · 1(rT+h<xtβ) |rT+h − xtβp|

)
(3)

where 1(·) denotes the indicator function.

The quantile regression provides us with approximate estimates of the quantile function, or

equivalently, the inverse cumulative distribution function evaluated at a specific value.6 A simple

approach would be to estimate the conditional quantile function on a fine grid of different values

of p and use this to recover the conditional CDF and PDF. In practice this is challenging, however,

as approximation error and estimation noise would require local smoothing in concert with mono-

tonicity restrictions (Cenesizoglu and Timmermann (2008), Schmidt and Zhu (2016)). A simpler

approach is to instead choose a coarse grid and find the best approximation based on a flexible

parametric family of distributions. Following Adrian et al. (2017a) we use the skewed t-distribution

developed by Azzalini and Capitanio (2003) in order to smooth the quantile function and recover

a valid probability density function:

f (y;µ, σ, α, ν) =
2

σ
g

(
y − µ
σ

; ν

)
G

(
α
y − µ
σ

√
ν + 1

ν + y−µ
σ

; ν + 1

)
. (4)

Here g(·) and G(·) denote the PDF and CDF of the Student t-distribution. The skewed-t distribu-

tion has four parameters, (µ, σ, α, ν) which pin down the location µ, scale σ, skewness ν, and shape

α. There are three useful special cases to gain intuition about this distribution:

1. if α = 0 (and σ = 1) then f(·; ν) is the PDF of the noncentral t-distribution with noncentrality

parameter µ;

2. if α = 0 and ν →∞, then we obtain a normal distribution with mean µ and variance σ2;

3. if α 6= 0, and ν →∞ then we obtain the skewed normal distribution.

Throughout, let F (y;µ, σ, α, ν) denote the CDF of the skewed t-distribution and F−1 (y;µ, σ, α, ν)

its associated quantile function.

To implement our approach we choose our grid of quantiles as Sp = {.05, .25, .75, .95}. Adrian

et al. (2017a) find that this choice performs well in practice. Then, for a fixed time period T

we first run four quantile regressions to obtain QrT+h|xT (p) for each p ∈ Sp and then estimate

6Recall that the quantile function Q(·) is defined as Q(p) = inf{x : F (x) ≥ p}. For continuous distributions, we
have that Q(p) = F−1(p).
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(µT , σT , αT , νT ) via

(µ̂T+h, σ̂T+h, α̂T+h, ν̂T+h) = arg min
µ,σ,α,ν

∑
p∈Sp

(
Q̂rT+h|xT (p|xT )− F−1 (p;µ, σ, α, ν)

)2
(5)

where µ̂T+h ∈ R, σ̂T+h ∈ R+, α̂t+h ∈ R, and ν̂T+h ∈ Z+. It is important to emphasize that

these parameter estimates are direct functions of the conditioning variable xT although we drop

the explicit dependence for notational convenience. Conceptually, as the value of xt shifts over time

the conditional distribution will also shift in a nonlinear way through the (µ̂T+h, σ̂T+h, α̂T+h, ν̂T+h).

To obtain the forecast conditional density we can simply evaluate the PDF of the skewed-t

distribution at our estimates: p̂rT+h|xT (y) = f (y; µ̂T , σ̂T , α̂T , ν̂T ). Figures 3 and 4 provide two

examples of the inputs and outputs of this two-step estimation procedure as a forecaster would

have observed near the beginning of the last financial crisis, the fourth quarter of 2008. Figure 3

shows the conditional CDF and PDF based on volFinancial for both of our forecasting horizons.

The charts in the top row show the raw quantile regression outputs (green) along with the fitted

conditional quantile function (blue). For reference the fitted unconditional quantile function is also

shown (red). The charts in the bottom row show the associated conditional and unconditional

PDFs for this date. The conditional distribution is substantially flatter than the unconditional

distribution implying that, conditional on the level of financial-sector volatility, tail outcomes were

considered much more likely. In comparison, Figure 5 illustrates a quiet period at the end of 1993,

where the conditional distribution is tighter than the unconditional.

The density evaluated at the ex-post realization of the return is referred to as the predictive

score: p̂rT+h|xT (rT+h) is the “probability” assigned ex-ante and in real-time by the model to the

ex-post realized value. Using these scores, we can form a simple and intuitive measure of the

out-of-sample accuracy of a model, the average log predictive score,

1

|T|0

∑
T∈T

log p̂rT+h|xT (rT+h),

where T is the sample (set of points in time) at which the forecasts are evaluated and |T|0 is

the size of the evaluation sample. A desirable forecasting model should provide (ex-ante) high

conditional probability to those (ex-post) realizations frequently observed and low probability to

those infrequently observed. More formally, it can be shown that this criterion function is equivalent

to minimizing the Kullback-Leibler loss function of the combined density relative to an unknown

true density function. Clearly, a higher value of the average log predictive scores is preferred.

The right panel of Table 1 reports results for the out-of-sample performance of the density

forecasts. The first row reports the average log predictive scores from the naive model which is

produced by choosing the skewed-t distribution that best approximates the unconditional quantiles

(up to time T ). The subsequent rows show the difference in average log predictive scores relative to

this benchmark; therefore, a positive number represents an improvement in accuracy relative to the

naive model. The overall sample runs from 1926Q4 to 2016Q4. We use 80 observations (the first

20 years of data) as an initial window, then construct recursive forecasts, so that the out-of-sample
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results begin in 1947Q1. Thus, T = {1947Q1, ..., 2016Q4} and |T| = 280.

Table 1 clearly shows that realized volatility–either in the financial sector or the entire market–

and the default yield spread produce consistent outperformance in predicting the distribution of

future stock returns. The average log predictive scores are strongly positive at both the h = 1

and h = 4 horizon. In parentheses we include standard error estimates based on a HAC estimator

as indicative measures of the variability of the scores. Realized volatility based on returns of the

financial sector outperforms total market volatility at both horizons, but by only a modest amount.

Both volatility measures, in turn, outperform the default yield spread especially at the horizon

h = 4. Looking across all of our other candidate predictors, only NTIS at horizon h = 1 has

a higher average log predictive score than the naive model but even there the improvement is

marginal. Realized volatility and the default yield spread stand out sharply against the rest of the

field.

As an additional comparison we also include mean square forecast errors (MSFE) from point

forecasts obtained from OLS regressions in the left panel.7 The first row reports the MSFE from

the naive (constant only) model and the subsequent rows show the difference in MSFE relative to

this benchmark; therefore, a negative number represents an improvement in accuracy relative to the

naive model. The second column reports HAC standard errors for the MSFE differential series. It

is clear from the table that there is little, if any, systematic improvement over the naive estimator

when considering point forecasts based on the set of predictors we consider. Thus, we observe

similar results in the out-of-sample analysis as in the full-sample analysis presented in Section 2.

Table 2 repeats the predictive exercises with a twenty-year fixed window to form forecasts,

rather than estimating the model on an expanding window. We again observe little consistent

predictive gains relative to the naive model in terms of point forecasts. We also again observe

that volFinancial, volMarket, and DFY show strong evidence of density forecast outperformance

relative to our benchmark at the h = 1 horizon. In fact, since the estimation windows are fixed

we can formally test the null of equal predictive ability between the constant-only model and each

univariate model using the test statistic of Diebold and Mariano (2002). For the h = 1 horizon, the

average log predictive scores using either realized volatility measure or the default yield spread are

more than twice their associated standard error. Interestingly, at the h = 4 horizon, this is no longer

the case. It could be that the informational content of a previous financial crisis is required to make

predictive gains on the downside of stock market returns, in the US’ case the only systemic crisis

prior to 2007 was the Great Depression, which occurs at the beginning of our dataset and hence

is picked up with a recursive window formulation that “remembers” any previous crisis episodes in

the time series.

In Figures 6-8, we plot the time series of the predictive scores (without applying the log trans-

formation) for forecasts based on volFinancial, DFY along with the BM ratio relative to the naive

benchmark model. The latter is included to show an example of poor performance in terms of log

predictive scores. For both volFinancial (Figure 6) and DFY (Figure 7) it is clear that the outper-

formance relative to the benchmark model is not concentrated in specific time periods or outliers

7Similar results are obtained using the conditional median to construct point forecasts.
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but is instead consistent over time. Furthermore, the outperformance does not come from better

predictability for the tails of the return distribution (both conditional and unconditional forecasts

are similar for these low probability events). Instead, the advantage comes from the ability to

have sharper predictions in “normal” times. For example, when volatility is low we know that the

probability of a tail event is lower and so we can attribute more mass to returns in the center of the

distribution. Our results highlight an important distinction between point and density forecasts.

We have shown that none of our candidate predictors are systematically informative about the

conditional mean of the distribution or the median. In other words, the location does not change

systematically with our predictors. Instead, what changes systematically is the likelihood that the

model places on the event that future observations will be “close” to the central tendency of the

distribution. The predictive score measures distance by the conditional density.8

To cement ideas, consider a simple case where returns are conditionally Gaussian,

yt+1 = µt+1|xt + σt+1|xtεt+1.

The associated log predictive score is,

log(p̂yT+1|xT (yT+1)) = −1

2
log(2π)− 1

2
log(σT+1|xT )− 1

2

(yT+1 − µT+1|xT )2

σT+1|xT
.

The benchmark case of non-predictability occurs when µT+1|xT and σt+1|xt are constant. Ac-

curate forecasting performance can be achieved by models which result in µT+1|xT near yT+1. This

is the exclusive goal of point forecasting. However, even if a model is uninformative about the

location, i.e., µT+1|xT is constant, accurate predictions can be achieved if xt is informative about

the variance, i.e., σt+1|xt is non-constant and varies with xt. σt+1|xt has two contrasting effects on

the log predictive score. When σt+1|xt rises, predictions become less sharp and hence less informa-

tive. This is reflected in the second term. At the same time, the higher uncertainty means that

the model is less surprised by outcomes which are far from the mean, and so forecast errors are

down-weighted as reflected in the third term. In the general case, predictability of any aspect of the

distribution is exploited. For example, if xt predicts negative skewness for predictions of returns

over the next four quarters, negative errors will be less surprising and then down-weighted in the

calculation of the predictive score.

In light of these examples, one source of outperformance of the conditional model relative to

the unconditional forecast is that larger forecast errors are typically preceded by high realized

volatility or credit spreads, which presage a widening of the return distribution. The conditional

density forecast accommodates this widening and so is less surprised by extreme realized returns.

8Anne et al. (2017) consider a framework where the focus is restricted to particular parts of the distribution to
compare and combine models.
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3.2 Combining density forecasts

A large literature in studies of point forecasting models have found that combining forecasts from

multiple models outperforms that of any individual model (Timmermann (2006)). In a similar vein,

we can also consider combining density forecasts from the individual models presented in Table 1.

Moreover, analyzing the weights assigned to individual models provides an alternative metric to

compare our candidate predictors’ performance.

The problem of optimally combining density forecasts can be formulated as follows. Let us

consider the N density forecasts p̂rT+h|xiT
(y) made by using a set of predictors xit, (i = 1, . . . , N) at

time T over the horizon h. We may write the combined forecast density as

N∑
i=1

wip̂rT+h|xiT
(y). (6)

It is natural to impose that the weights, (w1, . . . , wN ), are nonnegative and sum to one which

ensures that the combined density is itself a probability density function (Hall and Mitchell, 2007;

Geweke and Amisano, 2011). In practice, we will choose the weights at every point T so as to

maximize real-time accuracy of the forecast combination over a given evaluation sample starting

at a date T0 and ending in T ; accordingly, the forecasts are exactly the same as if constructed by

a forecaster in real time.

As before, we measure accuracy by the average log score, and so for the combined forecast we

may choose the optimal weights via:

ŵ1, ..., ŵN = arg max
wi>0;

∑n
i=1 wi=1

1

T − T0 − h+ 1

T−h∑
T =T0

N∑
i=1

wip̂rT+h|xiT
(y), (7)

where p̂rT+h|xiT
(rT+h) is the “probability” assigned ex-ante and in real-time by the model based

on the ith set of predictors to the ex-post realized value. The weights ŵi depend on time T when

they are computed, and are based only on information available up to time T . However, we drop

the dependence on T for notational convenience.

The probability forecast of the optimal combination is given by:

p̂rT+h|x1T ,...,x
N
T

(y) =

N∑
i=1

ŵip̂rT+h|xiT
(y). (8)

Conflitti et al. (2015) show that optimally combining forecasts is a viable strategy even when

the number of forecasts to be combined is large. Indeed, imposing the constraints that the weights

should be nonnegative and sum to one enforces a form of shrinkage on the weights. This ensures

a reasonable out-of-sample performance of the combined forecasts. More precisely, these two con-

straints imply that the sum of the absolute values of the weights sum to one, i.e., wi ≥ 0 and∑
wi = 1 imply

∑n
i=1 |wi| = 1. The Lagrangian dual of this problem is equivalent to the following
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unconstrained optimization problem with a penalized objective:

ŵ1, ..., ŵN = arg max
wi

1

T − T0 − h+ 1

T−h∑
T =T0

N∑
i=1

wip̂rT+h|xiT
(y) + λ

(
n∑
i=1

|wi| − 1

)
(9)

It is important to emphasize the advantages of our approach of combining density forecasts

compared to other popular alternatives such as Bayesian model averaging (BMA) that assign

weights on the sole basis of the performance of each model, ignoring mutual dependence. Instead,

the optimal combination takes into account mutual dependence among the component’s forecasts.

Consequently, predictions that, taken individually, are not accurate might have positive weights

in optimal linear pools since they might tend to be more accurate when other forecasts perform

poorly. Below, we will see that the mutual dependence is exploited in practice.

The solution to the maximization above is not available in closed form, but can be computed

using the iterative algorithms developed by Conflitti et al. (2015), which can handle a large number

of forecasts efficiently. At iteration k + 1, the weights are given by:

w
(k+1)
i = w

(k)
i

1

T − T0 − h+ 1

T−h∑
t=T0

p̂rT+h|xiT
(rT+h)∑N

i=1wip̂rT+h|xiT
(yT+h)

(10)

The non-negativity constraint for the weights is automatically satisfied at each iteration provided

that the algorithm is initialized with positive weights summing to one, i.e. with w
(0)
i = N−1 ∀i. A

primary advantage of this algorithm is that it is very simple to implement and scales well with the

cross-sectional dimension of the problem, and hence we can consider combinations of all 15 models.

The out-of-sample score of the pooled distribution is given by

p̂rT+h|x1T ,...,x
N
T

(rT+h) =

N∑
i=1

ŵip̂rT+h|xiT
(rT+h)

The rows at the bottom of Tables 1 and 2 report the average of the logarithmic score over the

evaluation sample. It is evident that the predictive accuracy of the pooled forecasts at the one

quarter ahead horizon is comparable to the best individual models based on volFinancial, volMarket,

and DFY. At the four-quarter horizon, the combined forecast is superior to these individual models–

especially when the forecasts are formed based on a rolling-window.

We also report the predictive accuracy of the optimal combination of point forecasts. The

weights are computed by minimizing the MSFE of the pooled forecasts, instead of maximizing

its average log predictive score. As for the combination of density forecasts, we impose the two

constraints that the weights should be nonnegative and that they should sum to one. As shown

by Conflitti et al. (2015), this problem displays a strong similarity to the problem of determining

minimum-variance portfolios with short-selling constraints, with the component forecasts being

replaced with the returns of individual assets. Moreover, this problem can also be viewed as
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a special case of a so-called LASSO regression (Tibshirani, 1996) since, as described above, the

constraints imply that the sum of the absolute values of the weights is equal to one. This type of

constraint is known to enforce sparsity, namely the presence of zeros in the weight vector, which

means that only a small number of forecasts will be selected (active) to form the combined forecast.

The algorithm to compute the weights of the point forecasts is the constrained LASSO developed

by Brodie et al. (2009) for portfolio optimization. The bottom row of the left panel of Tables 1

and 2 show that in half of our cases, this optimal combination is clearly preferred to the individual

models whereas in the other half they are inferior to selected individual predictors. Recall that the

optimal combination of weights for density forecasts, in contrast, showed consistent performance

at least on par with the best individual models.

The real-time weights, {ŵi : i = 1, . . . , n}, formed for the optimal combined conditional density

forecast are reported in Figure 9. Strikingly, volFinancial is consistently chosen in the optimal

density forecast at both the h = 1 and h = 4 horizons. Moreover, it is strictly preferred to

volMarket suggesting that although the two series strongly co-move there is additional information

in financial-sector volatility.9 This is a surprising result: for predicting the dispersion or risk in

aggregate market returns, it is information contained in financial intermediary equity returns that

is more important than information from the aggregate market itself. For h = 1, only volFinancial

and DFY contribute consistently to the optimal forecast whereas for h = 4 the log dividend-

price ratio (logDP) also plays a role. We note that logDP demonstrated poor predictive density

forecasting performance when evaluated individually, suggesting that the optimal combination is

exploiting co-movement between the errors from this forecast and the other variables. In contrast

to the density forecasting exercise where the weights are largely concentrated in a few variables, the

optimal weights for the point forecasts are more dispersed–both across predictors and in the time

series. For example, variables may receive a positive weight for short bursts suggesting instability

in the optimal pooling of forecasts. This provides further evidence that the candidate predictors

are more informative about the predictive distribution of returns more generally than about its

central tendency.

We can also visualize the results in Table 1 by showing the realized returns along with the

real-time conditional forecast confidence intervals for different levels of nominal coverage. This is

shown in Figure 11. We first observe that realized returns are almost always contained in the 95%

conditional confidence interval. Since all forecasts are done in a completely real-time manner this

was not guaranteed. Second, we observe that the median of the predictive distribution shows very

little movement whereas the conditional confidence intervals vary substantially over time. Third,

at short forecast horizons, the confidence intervals are approximately symmetric whereas at longer

forecast horizons there is a clear negative skewness in the predictive distribution.

We conclude this section by studying the calibration of the density forecasts. In Figure 13, we

show the conditional and unconditional predictive distributions of the pooled forecast. We plot the

fraction of realizations that are below any given quantile of the real time predictive distribution

9In the figure, black shading denotes a weight of one and white shading a weight of zero. Intermediate values
range from light yellow (closer to zero) to dark red (closer to one).
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as a function of the quantile.10 In a perfectly calibrated model, this percentage would be exactly

equal to the quantile itself and the statistics would be aligned on the 45-degree line. This would

hold exactly if the density forecasts were based on the quantile of the empirical distribution based

on the full sample. The calibration test evaluates whether the out-of-sample density forecasts have

this natural and desirable property. Following Rossi and Sekhposyan (2017), we report confidence

bands around the 45-degree line to account for sampling uncertainty. We observe that the fraction

of ex-post realizations that are below any given quantile of the real time predictive distribution

is not significantly different from the quantile itself. We conclude that the forecasts are not only

sharp, at least sharper than the unconditional forecasts, but are also well calibrated. We report

the PITs for individual components in the Appendix.

4 Case Study: After the Post-Crisis Regulatory Reforms

Our out-of-sample tests find realized volatility, particularly in financial sector returns, to be a

consistent predictor of the risk in market returns, and of downside risk at longer horizons. Given

this consistent relationship of realized volatility to the risk in returns, how does volatility appear to

have changed after recent regulatory reforms? Do reforms appear to have helped reduce risk? To

explore this question, we first examine if the underlying structural relationship of financial sector

volatility to aggregate returns has changed. We then formally test for differential changes amongst

banks most affected by regulatory reforms using less affected banks and large, non-banking firms

as counterfactuals. Specifically, we test for changes associated with the enhanced regulatory and

supervisory requirements of the Dodd-Frank Act passed on July 21 2010, which included stress

testing and associated capital requirements for banks with above $50 billion in assets.11,12

We first examine the structural relationship between volatility and returns. Given the short

time series of observations we have post-crisis for a statistical test of any change, we pursue a simple

qualitative analysis of this relationship. Visually examining the spread graphs of Figure 1 does not

indicate a large deviation from the relationship we found in the longer time series, either at one

or four quarter forecasting horizons. Given the small number of observations in the time series, a

statistical test for any change would be underpowered. Instead, we turn to the cross-section to test

for differential changes associated with firms most impacted by Dodd-Frank regulations.

We next examine realized volatility of the large institutions specifically targeted by the Dodd-

Frank Act, comparing banks with over $50B in assets to smaller banks and to other large, non-

financial, firms. The results of a differences-in-differences-in-differences (DDD) analysis can be

interpreted as a result of new regulations only if changes affecting these large banks are same

10Technically speaking, this fraction is a function of the quantiles of the empirical cumulative distribution of
the Probability Integral Transform (PIT), which in turn is the cumulative predictive distribution evaluated at the
realization.

11This asset cutoff was intended to apply more stringent capital requirements to about 30 bank holding companies
and international holding companies (see Bank Systemic Risk Regulation: The $50 Billion Threshold in the Dodd-
Frank Act

12In addition to firms legally designated as a ‘bank’ and which would have already fallen under a bank regula-
tory umbrella, Dodd-Frank also allowed for the designation of other bank-like or financially important entities as
“Systemically Important Financial Institutions”
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as those experienced by all banks, or all large non-banks over the same period, i.e. the parallel

trend assumption for identification. Even if we cannot interpret the results causally, given our

interpretation of realized volatility as a proxy for financial conditions, it is still informative to

simply find out whether volatility is lower or higher for our largest banks today relative to pre-

crisis levels. We therefore perform a Differences-in-Differences-in-Differences analysis, testing for

changes in quarterly observations of realized volatility. We average realized volatility across firms

from 2000-2016, distinguishing firms by their size (‘large’ indicating assets over $50B as of 2010Q2),

and industry (‘bank’ indicating firms defined as banking firms in their SIC codes using the Fama-

French 48 industry classification.). We use time (quarterly) and industry/size fixed effects to allow

for overall constant differences between “treated” and “untreated” firms, and allow for slopes to

vary intra- and post-crisis as follows:

σist = αt + αi,s + β · 1{t > 2010Q2} · 1{s = large} · 1{i = banking}

+ δ1 · 1{t > 2010Q2} · 1{s = large}

+ δ2 · 1{t > 2010Q2} · 1{i = banking}

+ γ0 · 1{t >= 2008, t <= 2010Q2} · 1{s = large} · 1{i = banking}

+ γ1 · 1{t >= 2008, t <= 2010Q2} · 1{s = large}

+ γ2 · 1{t >= 2008, t <= 2010Q2} · 1{i = banking}+ εist.

(11)

Where “large” is defined as 2010Q2 assets > $50B, and β represents the coefficient of interest: the

marginal estimated change in the volatility of large banks relative to other firms, large firms, and

banks in general.

Table 3 estimates this DDD. The specification in equation (11) allows for constant differences

between types of firms, isolating an average change in volatility for large banks over and above those

for large firms or other banks. The point estimate of the coefficient of interest is -9.1%, indicating

a differentially lower volatility in the post-Dodd Frank period for large banks compared to the

pre-crisis period. At the same time, banks and large non-bank firms have experienced increases

in volatility. After factoring in relevant fixed effects, volatility for large banks is slightly lower (-3

percentage points) in the post-crisis period compared to pre-crisis. The mean annualized volatility

in this sample is 41%, with a standard deviation of 23.5%. Results are of a similar magnitude if

analysis is performed at the individual firm level of observation, and do not appear sensitive to the

exact choice in quarter for crisis start date.

If all of this change in the realized volatility of banks over the Dodd-Frank size threshold

could be ascribed to policy changes, we could interpret the policy as having reduced risk, not

only for banks but for the broader market. A weakness of this evaluation exercise is if there are

other coincident changes in the economy that particularly affect large banks. It could be that

the market’s perceptions of large banking stocks has changed in a way that is not reflected in

the historical relationship inferred from the 1926 onwards time series. For instance, contrary to a

stated intent to make it easier to fail larger firms, recent regulatory reforms may have dampened

volatility for the largest banks through greater too-big-to-fail (TBTF) implicit insurance. So long
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as market perceptions of this TBTF premium have remained steady (Afonso and Santos, 2015),

however, smaller banks should provide a good counterfactual.

Our findings are consistent with a “banks as utilities” hypothesis of the impact of recent regu-

latory reforms, and stand in contrast to the findings of Sarin and Summers (2016). An alternative

hypothesis of the effect of regulation, is that recent reforms have chased financial intermediary risk-

taking activity outside of the publicly traded banking industry to the so-called “shadow banking”

sector. Both of these hypotheses are consistent with the persistently low post-crisis bank Tobin’s Qs

found by Chousakos and Gorton (2017). While we interpret the decline in volatility as beneficial,

this will hold only to the extent that the relationship does not alter going forward and activity does

not shift outside of the traditional publicly traded banking sector, for example into new privately

held financial intermediaries.

Based on a time series relationship that holds out-of-sample across various regulatory regimes

since 1926, we conclude that the financial system looks healthier today. A key historical indicator

of crisis-like events and the left tail of market returns has been volatility in financial sector returns.

Examining the short time series of data we have post-crisis, we find no strong evidence to believe this

relationship has changed. By pursuing cross-sectional analysis, we find that the realized volatility

in the equities of banks most impacted by the signature regulatory reform of the last financial crisis

have fallen when compared to banks in general or large firms in general.

5 Conclusion

Are stock returns predictable? We address this question by modeling the predictive density as a

function of economic and financial variables and assessing the accuracy of the associated forecasts.

We compare these forecasts in pure out-of-sample exercises relative to a naive benchmark of no

predictability according to which the predictive distribution is equal to the historical unconditional

distribution. Results show that stock returns are predictable because some financial variables

provide useful information, especially about the uncertainty surrounding future returns.

The most informative variable we find is realized volatility, especially realized volatility of

financial sector stock returns, followed by the default yield spread. This is a robust feature of the last

century of US data and, importantly, can be exploited in real time. Realized volatility has the most

information content for the uncertainty in future returns, whereas it has only limited information

content about the location of the future return distribution. When volatility is low, the predicted

distribution of returns is less disperse and probabilistic forecasts become sharper. That we find a

proxy for financial conditions–the realized volatility of financial equity returns–consistently adds

precision to forecasts of the distribution of aggregate market returns, mirrors recently documented

relationships between financial conditions and the distribution of macroeconomic growth outcomes

(Giglio et al., 2016; Adrian et al., 2017a).

Given this predictive relationship, we test for changes in the realized volatility of bank equities

above and below a $50B threshold introduced by Dodd-Frank as a threshold for more stringent

regulatory requirements. We find that the equity volatility of these large banks is differentially lower
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by 9 percentage points after Dodd-Frank compared to pre-crisis levels (and compared to changes

over the same period for smaller banks, or large non-bank firms). These findings are relevant to

a current policy debate, suggesting that the more stringent requirements of Dodd-Frank may be

associated with a reduction in a variable relevant to systemic market risk.
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Variable Names and Definitions

All variable names, definitions and data are from Welch and Goyal (2008) other than realized volatilities (volFinancial
and volMarket), which are constructed from CRSP data. For completeness we include primary details below (further
information may be found in Welch and Goyal (2008)).

volFinancial Financial sector realized volatility is calculated as the standard deviation of CRSP value-weighted
return daily returns for the financial sector within a quarter.

volMarket Market realized volatility is calculated using the same method as volFinancial. Note that this series
is very similar to the volatility series, SVAR, used in Welch and Goyal (2008).

logDP The log dividend price ratio is the log-ratio of the 12-month moving sum of dividends paid on the S&P
500 index and the level of the index.

logDY The log dividend yield is the log-ratio of the 12-month moving sum of dividends paid on the S&P 500
index and the lagged level of the index.

logEP The log earnings price ratio is the log-ratio of the 12-month moving sum of earnings on the S&P 500 index
and the level of the index.

logDE The log dividend earnings ratio is the log-ratio of the 12-month moving sum of dividends paid on the S&P
500 index and the 12-month moving sum of earnings on the index.

BM The book-to-market ratio is the ratio of book value to market value for the Dow Jones Industrial Average.

NTIS Net equity expansion is the ratio of a 12-month moving sum of net equity issues by New York Stock
Exchange-listed (NYSE) stocks to the total end-of-year market capitalization of NYSE-listed stocks.

TBL The Treasury bill rate is the secondary-market interest rate on a three-month Treasury.

LTY The long-term government bond yield.

LTR The return on a long-term government bond.

TMS The term spread is the difference between the yields of the long-term government bond (LTY) and the
three-month Treasury bill rate (TBL).

DFY The default yield spread is the difference between the yields of BAA and AAA-rated corporate bonds.

DFR The default return spread is the difference between returns on long-term corporate bonds and long-term
government bonds.

INFL Inflation is calculated from the Consumer Price Index (CPI) for urban consumers. We use the one-period
lag of inflation to account for the delay in CPI releases.
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Table 1: Diebold-Mariano Test: rMarket recursive

The table below compares the out-of-sample market return performance of each predictor for point forecasts (left
panel) and density forecasts (right panel) estimated with a recursive (expanding) window. In the left panel, the first

row shows the mean-squared forecast error for the naive, or unconditional, model. The following rows show the
MSFE differential over the naive model of conditioning on that predictor, with HAC standard errors shown in

parentheses. In the right panel, the first row shows the sum of log scores for the naive, or unconditonal forecast.
The following rows show the log score gain (or loss) from conditioning on that predictor, with HAC standard errors
shown in parentheses. Note that for point forecasts, a negative differential indicates a more accurate forecast, while

for density forecasts, a positive differential indicates a more accurate forecast.

Point Density
h = 1 h = 4 h = 1 h = 4

Naive 1027.340 267.688 -4.937 -4.286
volFinancial 29.027 (18.409) 14.738 (6.090) 0.089 (0.024) 0.070 (0.031)
volMarket 20.677 (7.345) 0.133 (2.173) 0.085 (0.018) 0.066 (0.024)
logDP -6.948 (12.367) -4.501 (21.850) -1.020 (0.857) -1.818 (1.238)
logDY -13.872 (12.495) -3.437 (23.681) -0.396 (0.316) -0.210 (0.155)
logEP -4.782 (18.684) 0.798 (19.453) -0.026 (0.024) -0.163 (0.156)
logDE 99.862 (47.888) 11.920 (7.050) -0.321 (0.270) -1.074 (0.641)
BM -4.196 (8.708) 22.188 (24.093) -0.040 (0.034) -0.049 (0.066)
NTIS 23.591 (18.907) 29.088 (31.353) 0.008 (0.019) -0.067 (0.098)
TBL 15.055 (9.369) 20.070 (13.461) -0.165 (0.125) -0.271 (0.236)
LTY 26.378 (18.776) 33.346 (14.139) -0.041 (0.016) -0.508 (0.325)
LTR 25.410 (37.005) 7.795 (9.025) -0.025 (0.020) -0.066 (0.065)
TMS 16.970 (7.648) 11.734 (11.428) -0.006 (0.012) -0.134 (0.124)
DFY 21.412 (9.562) 2.533 (5.346) 0.076 (0.032) 0.047 (0.036)
DFR 33.348 (9.267) 10.032 (6.764) -0.029 (0.007) -0.223 (0.197)
INFL -0.120 (1.710) -3.253 (4.985) -0.004 (0.015) -0.008 (0.014)
Aggregation 1.628 (2.952) -19.731 (14.193) 0.075 (0.020) 0.075 (0.030)
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Table 2: Diebold-Mariano Test: rMarket rolling

The table below compares the out-of-sample market return performance of each predictor for point forecasts (left
panel) and density forecasts (right panel) estimated with a recursive (expanding) window. In the left panel, the first

row shows the mean-squared forecast error for the naive, or unconditional, model. The following rows show the
MSFE differential over the naive model of conditioning on that predictor, with HAC standard errors shown in

parentheses. In the right panel, the first row shows the sum of log scores for the naive, or unconditonal forecast.
The following rows show the log score gain (or loss) from conditioning on that predictor, with HAC standard errors
shown in parentheses. Note that for point forecasts, a negative differential indicates a more accurate forecast, while

for density forecasts, a positive differential indicates a more accurate forecast.

Point Density
h = 1 h = 4 h = 1 h = 4

Naive 1042.598 280.792 -4.922 -4.272
volFinancial 13.769 (21.513) 1.634 (7.695) 0.074 (0.026) 0.055 (0.052)
volMarket 5.419 (11.930) -12.971 (4.697) 0.069 (0.023) 0.052 (0.040)
logDP -22.206 (13.184) -17.606 (25.077) -1.035 (0.861) -1.832 (1.232)
logDY -29.130 (13.108) -16.541 (26.746) -0.411 (0.323) -0.224 (0.169)
logEP -20.040 (21.064) -12.306 (21.601) -0.041 (0.041) -0.177 (0.163)
logDE 84.604 (48.854) -1.184 (5.624) -0.336 (0.251) -1.088 (0.606)
BM -19.454 (10.433) 9.084 (27.086) -0.055 (0.048) -0.064 (0.094)
NTIS 8.333 (24.316) 15.983 (31.242) -0.007 (0.031) -0.082 (0.096)
TBL -0.203 (11.768) 6.966 (15.165) -0.180 (0.128) -0.285 (0.236)
LTY 11.120 (18.985) 20.242 (14.256) -0.056 (0.034) -0.523 (0.294)
LTR 10.152 (40.029) -5.309 (10.860) -0.040 (0.037) -0.081 (0.079)
TMS 1.712 (13.080) -1.370 (12.984) -0.021 (0.026) -0.148 (0.119)
DFY 6.153 (13.206) -10.572 (6.216) 0.061 (0.027) 0.032 (0.053)
DFR 18.090 (13.335) -3.073 (8.686) -0.044 (0.033) -0.237 (0.188)
INFL -15.378 (9.368) -16.357 (6.758) -0.020 (0.023) -0.023 (0.046)
Aggregation -51.671 (31.894) -4.528 (25.534) 0.056 (0.039) 0.118 (0.071)
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Figure 1: rMarket vs. volFinancial

The top panels in this figure show the univariate quantile regressions of one quarter ahead (left) and four quarter
ahead (right) market returns on financial sector realized volatility. Four quarter ahead returns are an average of

four quarterly observations. Data before 2010Q3 are shown as open blue circles; data after this date are shown as
closed and red. The bottom panels show the estimated coefficients of these quantile regressions. We report

confidence bounds for the null hypothesis that the true data-generating process is a VAR with 4 lags; bounds are
computed using 1000 bootstrapped samples.
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Figure 2: rMarket vs. DFY

The top panels in this figure show the univariate quantile regressions of one quarter ahead (left) and four quarter
ahead (right) market returns on the default yield spread. Data before 2010Q3 are shown as open blue circles; data
after this date are shown as closed and red. The bottom panels show the estimated coefficients of these quantile
regressions. We report confidence bounds for the null hypothesis that the true data-generating process is a VAR

with 4 lags; bounds are computed using 1000 bootstrapped samples.
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Figure 3: Example of Fitted Distributions on 2008Q4: volFinancial

The top panels in this figure show the conditional quantiles and fitted skewed t-inverse cumulative distribution
functions of one quarter ahead (left) and four quarter ahead (right) market returns predicted by realized financial

volatility in 2008Q4. The bottom panels show the corresponding density functions.
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Figure 4: Example of Fitted Distributions on 2008Q4: DFY

The top panels in this figure show the conditional quantiles and fitted skewed t-inverse cumulative distribution
functions of one quarter ahead (left) and four quarter ahead (right) market returns predicted by the default yield

spread in 2008Q4. The bottom panels show the corresponding density functions.
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Figure 5: Example of Fitted Distributions on 1993Q4: volFinancial

The top panels in this figure show the conditional quantiles and fitted skewed t-inverse cumulative distribution
functions of one quarter ahead (left) and four quarter ahead (right) market returns predicted by realized financial

volatility in 1993Q4. The bottom panels show the corresponding density functions.
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Figure 6: Out-of-sample Scores, volFinancial

The figure compares the out-of-sample predictive scores of the predicted distribution conditional on realized financial
sector volatility (volFinancial) with the unconditional distribution. Scores are shown before log-transformation
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Figure 7: Out-of-sample Scores, DFY

The figure compares the out-of-sample predictive scores of the predicted distribution conditional on the default
yield spread (DFY) with the unconditional distribution. Scores are shown before log-transformation
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Figure 8: Out-of-sample Scores, BM

The figure compares the out-of-sample predictive scores of the predicted distribution conditional on the aggregate
boolk-to-market ratio (BM) with the unconditional distribution. Scores are shown before log-transformation

(a) One quarter ahead

1950 1960 1970 1980 1990 2000 2010

#10-3

2

4

6

8

10

12

14

Conditional
Unconditional

(b) Four quarters ahead

1950 1960 1970 1980 1990 2000 2010

0.005

0.01

0.015

0.02

0.025 Conditional
Unconditional

29



Figure 9: Aggregation Weights

The top panels of the figure show the weights, in time series, assigned to each of the forecasting variables when
computing the optimal combination of forecasting densities. The bottom panels show the weights assigned when

computing the optimal combination of point forecasts.
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Figure 10: Example of Fitted Distributions on 2008Q4: Optimal Forecast

The top panels in this figure show the conditional quantiles and fitted skewed t-inverse cumulative distribution
functions of one quarter ahead (left) and four quarter ahead (right) market returns predicted by the optimal

combination of forecasting variables in 2008Q4. The bottom panels show the corresponding density functions.
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Figure 11: Predicted Distributions

The figure shows the time series of the predicted distribution of one quarter ahead (top) and four quarter ahead
(bottom) market retuns using the optimal combination of forecasting variables. The conditional 5, 25, 75, and 95

percent quantiles are shaded in gray.
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Figure 12: Out-of-sample Scores, Aggregate Forecast

The figure compares the out-of-sample predictive scores of the predicted distribution conditional on the optimal
combination of predictors with the unconditional distribution.
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Figure 13: PIT, Aggregate Forecast

The figure compares the empirical cumulative distribution of the probability integral transform (PIT) for the
optimal combination of predictors with the unconditional distribution.
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Table 3: Realised Volatility - a Differences-in-Differences-in-Differences Analysis

This table estimates equation 11. Observations are at the quarterly, industry x size level. “realised
volatility” is quarterly realised volatility times 4. ‘Large’ indicates firms with assets greater than
$50B as of 2010Q2. ‘Bank’ is a binary indicator for firms belonging to industry 44 in the Fama-
French 48 industry definitions. Standard errors are clustered by industry x size.

(1)
realised volatility

PostDodd-Frank x Large x Bank -9.10∗∗∗

(0.00)

PostDodd-Frank x Large 5.86∗∗∗

(0.00)

PostDodd-Frank x Bank 16.35∗∗∗

(0.00)

Crisis x Large x Bank 6.91∗∗∗

(0.00)

Crisis x Large 9.90∗∗∗

(0.00)

Crisis x Bank 32.92∗∗∗

(0.00)

Year-quarter FEs Y
Industry x Size FEs Y

N 272
R2 0.929
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Supplementary Appendix for “Changing Risk-Return Profiles”

Richard K. Crump Domenico Giannone Sean Hundtofte

(Federal Reserve Bank of New York)

6 Data Illustrations

The data for many of our time series of candidate predictors begins in 1926 owing to stock market
data availability. A full list of variable names and definitions we use, mostly but not entirely, from
Welch and Goyal (2008) is available on page 19.

Figure 14 shows the times series of four important variables: realized volatility amongst financial
stocks (volFinancial) and the aggregate market (volMarket), BBB-AAA credit spreads (DFY), and
log dividend price-ratios (logDP). Figure 15 provides the quantile-quantile (QQ) plots of these
predictors relative to market returns over the next year. The definition for the finance industry is
taken from the Fama-French 12 industry definitions and refers to stocks associated with the SIC
codes between 6000 and 6999.

The QQ-plots of Figure 15 show the empirical quantiles of aggregate stock market returns on the
y-axis against the empirical quantiles of a sample of predictor variables on the x-axis. Examining
these plots for deviations from linear relationships, volatility and DFY exhibit very pronounced
nonlinearity with market returns compared to logDP. A nonlinearity, or systematic departure from
the 45-degree line, indicates a difference in the conditional distribution function and foreshadows
the findings of which variables are most useful indicators of stock market vulnerability. The highest
realized stock market returns in the sample occur during the recovery from the Great Depression
(1933) - if these quarters are excluded, the positive return outliers to the top right of each QQ-plot
disappear.



Figure 14: Raw Data

These figures show the time series of realized volatility of banking stocks (“volFinancial”), of the aggregate market
(“volMarket”), the BBB-AAA credit spread (“DFY”), and the log of the dividend-price ratio (“logDP”)
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Figure 15: Quantile-Quantile Plots

These panels show the sample quantile-quantile relationship between 4 quarter horizon returns and various
candidate predictors for the time series 1926-2017
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Figure 16: rFinancial vs. volFinancial

These panels show the estimated coefficients of quantile regressions with equity returns of the financial industry (as
defined by Fama-French 11 industry definitions using SIC codes) as the outcome variable. We report confidence
bounds for the null hypothesis that the true data-generating process is a VAR with 4 lags; bounds are computed

using 1000 bootstrapped samples.
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Figure 17: Out-of-sample results: volMarket

The top panels show the univariate quantile regressions of one quarter ahead (left) and four quarter ahead (right)
market returns on volMarket. Data before 2010Q3 are shown as open blue circles; data after this date are shown as

closed and red. The bottom panels show the estimated coefficients of these quantile regressions. We report
confidence bounds for the null hypothesis that the true data-generating process is a VAR with 4 lags; bounds are

computed using 1000 bootstrapped samples.
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Figure 18: Out-of-sample results: logDP

The top panels show the univariate quantile regressions of one quarter ahead (left) and four quarter ahead (right)
market returns on logDP. Data before 2010Q3 are shown as open blue circles; data after this date are shown as

closed and red. The bottom panels show the estimated coefficients of these quantile regressions. We report
confidence bounds for the null hypothesis that the true data-generating process is a VAR with 4 lags; bounds are

computed using 1000 bootstrapped samples.
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Figure 19: Out-of-sample results: logDY

The top panels show the univariate quantile regressions of one quarter ahead (left) and four quarter ahead (right)
market returns on logDY. Data before 2010Q3 are shown as open blue circles; data after this date are shown as

closed and red. The bottom panels show the estimated coefficients of these quantile regressions. We report
confidence bounds for the null hypothesis that the true data-generating process is a VAR with 4 lags; bounds are

computed using 1000 bootstrapped samples.
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Figure 20: Out-of-sample results: logEP

The top panels show the univariate quantile regressions of one quarter ahead (left) and four quarter ahead (right)
market returns on logEP. Data before 2010Q3 are shown as open blue circles; data after this date are shown as

closed and red. The bottom panels show the estimated coefficients of these quantile regressions. We report
confidence bounds for the null hypothesis that the true data-generating process is a VAR with 4 lags; bounds are

computed using 1000 bootstrapped samples.
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Figure 21: Out-of-sample results: logDE

The top panels show the univariate quantile regressions of one quarter ahead (left) and four quarter ahead (right)
market returns on logDE. Data before 2010Q3 are shown as open blue circles; data after this date are shown as

closed and red. The bottom panels show the estimated coefficients of these quantile regressions. We report
confidence bounds for the null hypothesis that the true data-generating process is a VAR with 4 lags; bounds are

computed using 1000 bootstrapped samples.
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Figure 22: Out-of-sample results: BM

The top panels show the univariate quantile regressions of one quarter ahead (left) and four quarter ahead (right)
market returns on BM. Data before 2010Q3 are shown as open blue circles; data after this date are shown as closed

and red. The bottom panels show the estimated coefficients of these quantile regressions. We report confidence
bounds for the null hypothesis that the true data-generating process is a VAR with 4 lags; bounds are computed

using 1000 bootstrapped samples.
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Figure 23: Out-of-sample results: NTIS

The top panels show the univariate quantile regressions of one quarter ahead (left) and four quarter ahead (right)
market returns on NTIS. Data before 2010Q3 are shown as open blue circles; data after this date are shown as

closed and red. The bottom panels show the estimated coefficients of these quantile regressions. We report
confidence bounds for the null hypothesis that the true data-generating process is a VAR with 4 lags; bounds are

computed using 1000 bootstrapped samples.
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Figure 24: Out-of-sample results: TBL

The top panels show the univariate quantile regressions of one quarter ahead (left) and four quarter ahead (right)
market returns on TBL. Data before 2010Q3 are shown as open blue circles; data after this date are shown as

closed and red. The bottom panels show the estimated coefficients of these quantile regressions. We report
confidence bounds for the null hypothesis that the true data-generating process is a VAR with 4 lags; bounds are

computed using 1000 bootstrapped samples.
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Figure 25: Out-of-sample results: LTY

The top panels show the univariate quantile regressions of one quarter ahead (left) and four quarter ahead (right)
market returns on LTY. Data before 2010Q3 are shown as open blue circles; data after this date are shown as closed

and red. The bottom panels show the estimated coefficients of these quantile regressions. We report confidence
bounds for the null hypothesis that the true data-generating process is a VAR with 4 lags; bounds are computed

using 1000 bootstrapped samples.
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Figure 26: Out-of-sample results: LTR

The top panels show the univariate quantile regressions of one quarter ahead (left) and four quarter ahead (right)
market returns on LTR. Data before 2010Q3 are shown as open blue circles; data after this date are shown as closed

and red. The bottom panels show the estimated coefficients of these quantile regressions. We report confidence
bounds for the null hypothesis that the true data-generating process is a VAR with 4 lags; bounds are computed

using 1000 bootstrapped samples.
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Figure 27: Out-of-sample results: TMS

The top panels show the univariate quantile regressions of one quarter ahead (left) and four quarter ahead (right)
market returns on TMS. Data before 2010Q3 are shown as open blue circles; data after this date are shown as

closed and red. The bottom panels show the estimated coefficients of these quantile regressions. We report
confidence bounds for the null hypothesis that the true data-generating process is a VAR with 4 lags; bounds are

computed using 1000 bootstrapped samples.
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Figure 28: Out-of-sample results: DFR

The top panels show the univariate quantile regressions of one quarter ahead (left) and four quarter ahead (right)
market returns on DFR. Data before 2010Q3 are shown as open blue circles; data after this date are shown as

closed and red. The bottom panels show the estimated coefficients of these quantile regressions. We report
confidence bounds for the null hypothesis that the true data-generating process is a VAR with 4 lags; bounds are

computed using 1000 bootstrapped samples.
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Figure 29: Out-of-sample results: INFL

The top panels show the univariate quantile regressions of one quarter ahead (left) and four quarter ahead (right)
market returns on INFL. Data before 2010Q3 are shown as open blue circles; data after this date are shown as

closed and red. The bottom panels show the estimated coefficients of these quantile regressions. We report
confidence bounds for the null hypothesis that the true data-generating process is a VAR with 4 lags; bounds are

computed using 1000 bootstrapped samples.
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Figure 30: Out-of-sample results: volMarket

The top panels compare the out-of-sample scores of the predicted distribution conditional on volMarket with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the volMarket predictor with the unconditional distribution.
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Figure 31: Out-of-sample results: logDP

The top panels compare the out-of-sample scores of the predicted distribution conditional on logDP with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the logDP predictor with the unconditional distribution.
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Figure 32: Out-of-sample results: logDY

The top panels compare the out-of-sample scores of the predicted distribution conditional on logDY with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the logDY predictor with the unconditional distribution.
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Figure 33: Out-of-sample results: logEP

The top panels compare the out-of-sample scores of the predicted distribution conditional on logEP with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the logEP predictor with the unconditional distribution.
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Figure 34: Out-of-sample results: logDE

The top panels compare the out-of-sample scores of the predicted distribution conditional on logDE with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the logDE predictor with the unconditional distribution.
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Figure 35: Out-of-sample results: BM

The top panels compare the out-of-sample scores of the predicted distribution conditional on BM with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the BM predictor with the unconditional distribution.
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Figure 36: Out-of-sample results: NTIS

The top panels compare the out-of-sample scores of the predicted distribution conditional on NTIS with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the NTIS predictor with the unconditional distribution.
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Figure 37: Out-of-sample results: TBL

The top panels compare the out-of-sample scores of the predicted distribution conditional on TBL with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the TBL predictor with the unconditional distribution.
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Figure 38: Out-of-sample results: LTY

The top panels compare the out-of-sample scores of the predicted distribution conditional on LTY with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the LTY predictor with the unconditional distribution.
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Figure 39: Out-of-sample results: LTR

The top panels compare the out-of-sample scores of the predicted distribution conditional on LTR with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the LTR predictor with the unconditional distribution.
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Figure 40: Out-of-sample results: TMS

The top panels compare the out-of-sample scores of the predicted distribution conditional on TMS with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the TMS predictor with the unconditional distribution.
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Figure 41: Out-of-sample results: DFR

The top panels compare the out-of-sample scores of the predicted distribution conditional on DFR with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the DFR predictor with the unconditional distribution.
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Figure 42: Out-of-sample results: INFL

The top panels compare the out-of-sample scores of the predicted distribution conditional on INFL with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the INFL predictor with the unconditional distribution.
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