
 

 

  

Changing Risk-Return 
Profiles 

Richard K. Crump | Miro Everaert | Domenico Giannone | 
Sean Hundtofte 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NO.  85 0  

J UNE 20 18  

 

REVI SED 

AUG UST 2 02 3  



Changing Risk-Return Profiles 

Richard K. Crump, Miro Everaert, Domenico Giannone, and Sean Hundtofte 

Federal Reserve Bank of New York Staff Reports, no. 850 

June 2018; revised August 2023 

JEL classification: C22, G17, G18 

 

 

 

 

 

 

 
Abstract 

We show that realized volatility in market returns and financial sector stock returns have strong predictive 

content for the future distribution of market returns. This is a robust feature of the last century of U.S. 

data and, most importantly, can be exploited in real time. Current realized volatility has the most 

information content on the uncertainty of future returns, whereas it has only limited content about the 

location of the future return distribution. When volatility is low, the predicted distribution of returns is 

less dispersed and probabilistic forecasts are sharper. 
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1 Introduction

Are stock returns predictable? This is a longstanding question in the finance literature. The

dominant focus has been to identify variables, available in real time, which can provide information

about the future conditional mean of stock returns. In an influential paper, Welch and Goyal

(2008) argued that popular predictors in the literature showed limited evidence in out-of-sample

performance relative to the naive model. These variables did not have sufficient strength and

stability to be exploited in real time relative to a benchmark model where the conditional mean of

returns is equal to the unconditional expectation. The literature on prediction has addressed these

issues by modifying the estimation approach such as through model combination or by imposing

economic constraints (as surveyed by Rapach and Zhou (2013)), focusing on other aspects of the

distribution such as predicting tail events or volatility (e.g., Engle et al. (2008), Patton (2011)), and

using information across assets to help inform predictions (e.g., Adrian, Crump, and Vogt (2019b)).

In this paper, we evaluate whether the whole distribution of stock returns is predictable. We

assess whether economic and financial variables can provide predictive content about the future

distribution of stock returns. In this context, unpredictability would be concluded if it is impossible

to improve over a benchmark model that forecasts the future distribution to be equal to the un-

conditional density of returns. We use the set of predictors assembled in Welch and Goyal (2008),

adding an additional proxy for the conditions of financial intermediaries available over the entire

time series (the realized volatility in financial sector equity returns). Furthermore, we allow these

predictors to shape the full conditional distribution as opposed to affecting only the conditional

mean.

A natural metric to assess probabilistic forecasts is the average predictive score. According

to which an accurate density forecast is one which assigns a high ex-ante probability for events

that are realized ex-post. To estimate the predictive density, we use the methodology of Adrian,

Boyarchenko, and Giannone (2019a). Intuitively, the approach can be characterized as follows:

In the first step, quantile predictive regressions are performed for a set of fixed quantiles. In the

second step, we fit a flexible parametric density function by choosing the parameter values to best

approximate the fitted conditional quantiles.

Our main result is that realized volatility in overall market returns and financial sector stock

returns have strong predictive content for the future distribution of returns. This is a robust

feature of the data and, importantly, can be exploited in real time. Our estimation approach allows

the predictors to affect the location, scale, skewness, and kurtosis of the tails in a simple and

flexible way. This allows us to easily construct conditional density forecasts and compare them to

a benchmark of no predictability. This is a different way of judging the accuracy of a stock return

prediction than is commonly used in the literature, where the focus is generally on predicting the

conditional mean or variance. This is an important distinction because it suggests that if we shift

the focus away from very specific aspects of the distribution, we see meaningful and substantial

gains in predictability.

We find that current realized volatility has significant information content for the uncertainty or

spread of future returns, whereas it has only limited informational content about the location of the
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future return distribution. When volatility is low, our predictions of returns are sharper - in other

words, returns are more concentrated around the unconditional mean. Thus, in “normal” times,

our predictive density forecasts will be quite accurate. When volatility is high, then the predictive

distribution becomes flatter i.e., mass is spread over a more dispersed set of outcomes and so larger

forecast errors are less surprising, which is reflected in the predictive score. The benchmark model

with no predictability, which does not allow the variance of the predictive distribution to change

with financial conditions, has a variance that is an average across regimes, and so it is too flat in

turbulent times and too large in “normal times.” We also find that the default yield spread between

BAA and AAA-rated corporate bonds shows clear improvement over the benchmark model – albeit

of a smaller magnitude and less robust than realized volatility.

We also investigate the performance of optimal-weighted density forecasts based on a linear

combination of density forecasts based on individual predictors. We find that the optimal combi-

nation is only modestly worse than the best individual models based on realized volatility or the

default yield spread and comfortably outperform the vast majority of the candidate predictors.

Furthermore, we show that the pooled density forecast based on optimal weights strongly outper-

forms an equal-weighted alternative. This stands in contrast to the point forecasting literature that

generally finds that equal weighting is a challenging benchmark to beat. To our knowledge, we are

the first to introduce such a result.

Our paper is most closely related to Cenesizoglu and Timmermann (2008), who study whether

economic and financial variables can help improve prediction of the quantiles of the return distribu-

tion. Cenesizoglu and Timmermann (2008) also find evidence of predictive power, especially in the

upper tail of the return distribution. Our paper is also related to Massacci (2015) who evaluates

the accuracy of density forecasts but restricts the economic and financial variables to predict the lo-

cation of the distribution only. Durham and Geweke (2014) predict higher-frequency, daily returns

allowing for realized intraday volatility and option-implied volatility but restrict these variables to

predict the scale of the distribution only.

Finally, our paper is related to the literature on the econometrics of high-dimensional data and

its use in forecasting. Stock and Watson (2002), Forni, Hallin, Lippi, and Reichlin (2005) and

Doz, Giannone, and Reichlin (2012) focused on compressing predictors. Here instead, we focus on

compressing predictions. We also depart from standard forecasting exercises that focus on point

(return) forecasts and also predict the risk.

Our paper is organized as follows. Section 2 provides initial motivating evidence regarding future

stock market returns and current realized volatility and credit spreads. Next, Section 3 describes

our estimation approach and provides our main results. It is important to emphasize that all results

in Section 3 are in real time with no look-ahead bias. Section 4 concludes. Additional results are

available in an online Supplementary Appendix (hereafter, “SA”).
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2 Motivation

To motivate the results in the paper we start with a set of predictive quantile regressions. Let us

denote rT+h the annualized CRSP value-weighted return between T and T + h and by xT a vector

containing a set of predictors, including a constant. We work with a linear quantile regression

model, i.e., we assume that

QrT+h|xT (p|xT ) = x′Tβp, (1)

where QrT+h|xT (·|xT ) is the quantile function of the distribution of h-period future returns condi-

tional on the variable xT . To develop intuition, consider the simple case when xt = 1. Then, βp

is the unconditional quantile of the distribution of returns, and solving the minimization problem

is equivalent to ordering the data and choosing the value of β̂p so that a fraction p of observations

take on smaller values. Equivalently, βp is the Value-at-Risk for an investor holding the market

portfolio.1 Thus, in the general case we are assuming that the Value-at-Risk is, x′tβp, a linear

function of the variables contained in xt.

As a first step, we examine the realized volatility of financial sector equity returns (volFinan-

cial).2 We view volFinancial as a proxy for financial conditions, i.e. on the state of financial

intermediation, available throughout the long history of our sample, as compared to, for example,

the National Financial Conditions Index (NFCI) which only starts in 1971.3 In their review of

systemic risk measures, Giglio et al. (2016) find realized financial volatility to be an important pre-

dictor, and the mean equity volatility of the financial sector can be interpreted as an approximation

of the financial fragility or soundness of financial intermediaries in an economy (Chousakos et al.,

2018; Atkeson et al., 2017).

The top left panel of Figure 1 shows the results of both quantile and conventional OLS re-

gressions of one-period ahead quarterly stock returns on volFinancial. Superimposed over the

scatterplot of the data are four lines corresponding to the OLS fit (blue), median (red), and 5th

(black) and 95th (green) percentiles. The estimated slopes for the median (β.50) and the condi-

tional mean (OLS) are essentially zero, while the extreme quantiles have steep positive and negative

slopes. The flat slopes of the OLS and median lines illustrate the difficulty in predicting returns

found in many studies that focus on point forecasts (e.g., Welch and Goyal (2008)). Essentially,

realized volatility does not have any clear predictive power for the location of the distribution of

future returns.

In contrast, the estimated slopes corresponding to the upper and lower tails are strongly pos-

itive and negative, respectively: as realized volatility rises, the gap between the quantiles grows.

Consequently, when realized volatility is high (low) in the current quarter, then the central mass of

1Value-at-Risk is a term commonly used in (bank) risk management to describe the maximum estimated loss of
a portfolio within a given time period at a specified confidence level, or here (1 − p).

2Section SA.1 in the SA provides a full list of variable names and definitions along with key properties of volFi-
nancial and the other three variables which play a prominent role in our results: realized volatility of the aggregate
market (volMarket), BBB-AAA credit spreads (DFY), and log dividend price-ratios (logDP).

3NFCI is found by Adrian et al. (2019a) to be an important indicator in predicting shifts in the distribution of
aggregate output growth
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the predicted distribution of returns for next quarter spreads (concentrates) over a wider (narrower)

interval. Thus, although median predicted returns are largely unchanged, risk is higher (lower).

The model captures what we can see in the scatterplot: realized returns are more variable when last

quarter’s realized volatility is higher. The right panel of Figure 1 shows results of the same analysis

for the horizon h = 4. In this case, when realized volatility is high, the predicted distribution of

returns for the subsequent period again spreads over a wider area but does so asymmetrically, with

mass more concentrated on the left side of the distribution. We find the same relationships with

stronger magnitudes when investigating the direct relationship to future financial sector-specific

market returns (see Figure SA-3 in the SA). We next investigate whether these results can be

explained by pure statistical chance.

In the bottom panel of Figure 1 we report the estimated slope coefficients over a range of

values for p. We also include the conditional mean and median estimates we would obtain with

a Gaussian linear model of returns and lagged realized volatility along with confidence intervals

corresponding to nominal coverage rates of 68%, 90%, and 95% for β̂p. The confidence intervals

have been constructed as follows: first, we fit a bivariate vector autoregression (VAR) of returns

and realized volatility with four lags. Second, we simulate datasets based on this model and the

associated in-sample parameter estimates. Finally, for each simulation we run the appropriate

quantile regression for each p. The confidence intervals reflect the distribution of the estimated

slopes across simulations.4 The OLS point estimate provides an appropriate benchmark for judging

the deviation of quantile estimates from the mean relationship in the data, and the Gaussian model

is a suitable benchmark since the quantiles as a function of lagged realized volatility will be parallel

lines, i.e., the slopes are the same across quantiles.

Both charts in the bottom panel of Figure 1 show that, even if the benchmark model were

correct, there is no statistically significant evidence of predictability for the conditional mean as

the OLS estimates are comfortably within the confidence bounds. This also true for the median

and so, by properties of the Gaussian distribution, for all other quantiles. Notice that as p moves

toward zero or one, sampling uncertainty increases, although not dramatically because the quantile

regression uses all of the data to inform its estimates, not just extreme observations. In sharp

contrast, the left and right tails of the conditional distribution are associated with slope coefficients

that are well outside of our bootstrapped confidence intervals. This provides clear evidence against

the linear model and strongly suggests that the conditional predictive distribution can be modeled

as a function of lagged realized financial-sector volatility. The right column of Figure 1 shows the

analogous results for the h = 4 horizon. In this case we see that realized volatility is strongly

associated with the left tail of the predictive distribution of returns.

In Figure SA-4 in the SA we show the corresponding results using the default yield spread

(DFY). In general, the results are similar to that of Figure 1 except that we find some evidence

that the location of the predictive distribution moves with DFY. This can be seen by the fact that

zero is outside the confidence bands for h = 1 and especially for h = 4. Taking all this evidence

in concert, we find suggestive evidence that the realized volatility of both the overall market and

4This can be interpreted as a parametric bootstrap exercise.
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the financial sector, along with the default yield spread, provides useful information about the

predictive distribution of returns and especially about its dispersion.

3 Main Results

In the previous section, we provided preliminary evidence that features of the future distribution

of returns change over time with respect to current values of realized volatility and credit spreads.

In this section, we formally investigate this relationship across a range of variables common to the

literature of return forecasting as tested by Welch and Goyal (2008), and show that our results

provide new insights related to the debate of stock return forecastability.

It is important to emphasize that throughout this section, all results are based on real-time

estimation of the associated model parameters, completely avoiding any look-ahead bias in our

results. The only real-time aspect we do not account for is data revisions, as we use the data as

available today, which might be different from the data available at the time the forecasts would

have been made. That said, the predictors we identify as providing the most accurate forecasts

should be subject to minimal, if any, revisions.5

3.1 Forecasting Returns: From Quantile Regressions to Density Forecasts

In this subsection we formally describe our approach to producing conditional density forecasts.

Further details may be found in Adrian et al. (2019a). We estimate the quantile of rT+h conditional

on xT ,

Q̂rT+h|xT (p|xT ) = x′T β̂p, (2)

by choosing β̂p to minimize the quantile weighted absolute value of the in-sample errors:

β̂p = arg min
βp∈Rk

T−h∑
t=1

(
p · 1(rT+h≥x′tβ)

∣∣rT+h − x′tβp∣∣+ (1− p) · 1(rT+h<x
′
tβ)

∣∣rT+h − x′tβp∣∣) (3)

where 1(·) denotes the indicator function.

The quantile regression provides us with approximate estimates of the quantile function, or

equivalently, the inverse cumulative distribution function evaluated at a specific value. A simple

approach would be to estimate the conditional quantile function on a fine grid of different values

of p and use this to recover the conditional CDF and PDF. In practice this is challenging, however,

as approximation error and estimation noise would require local smoothing in concert with mono-

tonicity restrictions (Cenesizoglu and Timmermann (2008), Schmidt and Zhu (2016)). A simpler

approach is to instead choose a coarse grid and find the best approximation based on a flexible

parametric family of distributions. Following Adrian et al. (2019a) we use the skewed t-distribution

developed by Azzalini and Capitanio (2003) in order to smooth the quantile function and recover

5For example, our realized volatility variables are based on data from CRSP, which is continually updated to
correct data errors as they are identified on a monthly basis.
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a valid probability density function:

f (y;µ, σ, α, ν) =
2

σ
g

(
y − µ
σ

; ν

)
G

(
α
y − µ
σ

√
ν + 1

ν + y−µ
σ

; ν + 1

)
. (4)

Here g(·) and G(·) denote the PDF and CDF of the Student t-distribution. The skewed-t distribu-

tion has four parameters, (µ, σ, α, ν) which pin down the location µ, scale σ, skewness ν, and shape

α. There are three useful special cases to gain intuition about this distribution:

1. if α = 0 (and σ = 1) then f(·; ν) is the PDF of the noncentral t-distribution with noncentrality

parameter µ;

2. if α = 0 and ν →∞, then we obtain a normal distribution with mean µ and variance σ2;

3. if α 6= 0, and ν →∞ then we obtain the skewed normal distribution.

Throughout, let F (y;µ, σ, α, ν) denote the CDF of the skewed t-distribution and F−1 (y;µ, σ, α, ν)

its associated quantile function. To implement our approach we choose our grid of quantiles as

Sp = {.05, .25, .75, .95}. Adrian et al. (2019a) find that this choice performs well in practice. In

our implementation we also restrict µ to the interval [−20, 20]. Then, for a fixed time period T

we first run four quantile regressions to obtain QrT+h|xT (p) for each p ∈ Sp and then estimate

(µT , σT , αT , νT ) via

(µ̂T+h, σ̂T+h, α̂T+h, ν̂T+h) = arg min
µ,σ,α,ν

∑
p∈Sp

(
Q̂rT+h|xT (p|xT )− F−1 (p;µ, σ, α, ν)

)2
(5)

where µ̂T+h ∈ R, σ̂T+h ∈ R+, α̂t+h ∈ R, and ν̂T+h ∈ Z+. It is important to emphasize that

these parameter estimates are direct functions of the conditioning variable xT although we drop

the explicit dependence for notational convenience. Conceptually, as the value of xt shifts over time

the conditional distribution will also shift in a nonlinear way through the (µ̂T+h, σ̂T+h, α̂T+h, ν̂T+h).

To obtain the forecast conditional density we can simply evaluate the PDF of the skewed-t

distribution at our estimates: p̂rT+h|xT (y) = f (y; µ̂T , σ̂T , α̂T , ν̂T ). Figure SA-5 in the SA provides

two examples of the inputs and outputs of this two-step estimation procedure as a forecaster would

have observed in an environment with mild financial conditions (1993Q4) and one with tight fi-

nancial conditions (2008Q4). The charts in the top row show the raw quantile regression outputs

(green) along with the fitted conditional quantile function (blue). For reference the fitted uncon-

ditional quantile function is also shown (red). The charts in the bottom row show the associated

conditional and unconditional PDFs for the corresponding date. In the bottom left chart, the

conditional distribution as of 2008Q4 is substantially flatter than the unconditional distribution

implying that, conditional on the level of financial-sector volatility, tail outcomes were considered

much more likely. In comparison, the bottom right chart illustrates a “quiet” period at the end of

1993, where the conditional distribution is more concentrated than the unconditional distribution.

The density evaluated at the ex-post realization of the return is referred to as the predictive

score: p̂rT+h|xT (rT+h) is the “probability” assigned ex-ante and in real-time by the model to the
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ex-post realized value. Using these scores, we can form a simple and intuitive measure of the

out-of-sample accuracy of a model, the average log predictive score,

1

|T|0

∑
T∈T

log p̂rT+h|xT (rT+h),

where T is the sample (set of points in time) at which the forecasts are evaluated and |T|0 is

the size of the evaluation sample. A desirable forecasting model should provide (ex-ante) high

conditional probability to those (ex-post) realizations frequently observed and low probability to

those infrequently observed. Clearly, a higher value of the average log predictive scores is preferred.

The right panel of Table 1 reports results for the out-of-sample performance of the density

forecasts. The first row reports the average log predictive scores from the naive model, which is

produced by choosing the skewed-t distribution that best approximates the unconditional quantiles

(up to time T ). The subsequent rows show the difference in average log predictive scores relative to

this benchmark; therefore, a positive number represents an improvement in accuracy relative to the

naive model. The overall sample runs from 1926Q4 to 2021Q4. We use 80 observations (the first

20 years of data) as an initial window, then construct recursive forecasts, so that the out-of-sample

results begin in 1947Q1. Thus, T = {1947Q1, ..., 2021Q4} and |T| = 300.

Table 1 clearly shows that realized volatility–either in the financial sector or the entire market–

and the default yield spread produce consistent outperformance in predicting the distribution of

future stock returns. For market and financial sector volatility and the default yield spread, the

average log predictive scores are strongly positive at both the h = 1 and h = 4 horizon. In

parentheses we include standard error estimates based on a HAC estimator as indicative measures

of the variability of the scores. Both volatility measures outperform the default yield spread at

both horizons. Between the two volatility measures, we prefer volFinancial for its more consistent

performance. Looking across all of our other candidate predictors, only NTIS at horizon h = 1

has a higher average log predictive score than the naive model but even there the improvement is

marginal. Realized volatility and the default yield spread stand out sharply against the rest of the

field.

As an additional comparison, we also include mean square forecast errors (MSFE) from point

forecasts obtained from OLS regressions in the left panel. The first row reports the MSFE from the

naive (constant only) model and the subsequent rows show the difference in MSFE relative to this

benchmark; therefore, a negative number represents an improvement in accuracy relative to the

naive model. The second column reports HAC standard errors for the MSFE differential series. It

is clear from the table that there is little, if any, systematic improvement over the naive estimator

when considering point forecasts based on the set of predictors we consider. Thus, we observe

similar results in the out-of-sample analysis as in the full-sample analysis presented in Section 2.

We repeat the predictive exercises with a twenty-year fixed window to form forecasts, rather

than estimating the model on an expanding window. We observe that the fixed window specification

does not appear to significantly improve point or density forecasts relative to the recursive window

specification. It could be that the informational content of a previous financial crisis is required to
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make predictive gains on the downside of stock market returns. In the US case the only systemic

crisis prior to 2007 was the Great Depression, which occurs at the beginning of our dataset and

hence is accommodated by a recursive window formulation that “remembers” any previous crisis

episodes in the historical time series. This result provides suggestive evidence that for density

forecasts the dominant concern is the paucity of extreme events rather than changing features such

as structural breaks. This stands in contrast to empirical findings when the focus is the conditional

mean of future stock returns (e.g., Rapach et al. (2010)).

In Figures 2 and SA-6 in the SA we plot the time series of the predictive scores (without

applying the log transformation) for forecasts based on volFinancial and DFY relative to the naive

benchmark model, respectively. For both volFinancial and DFY it is clear that the outperformance

relative to the benchmark model is not concentrated in specific time periods or outliers but is instead

consistent over time. Furthermore, the outperformance does not come from better predictability

for the tails of the return distribution (both conditional and unconditional forecasts are similar

for these low-probability events). Instead, the advantage comes from the ability to have sharper

predictions in “normal” times. For example, when volatility is low we know that the probability of

a tail event is lower and so we can attribute more mass to returns in the center of the distribution.

Our results highlight an important distinction between point and density forecasts. We have shown

that none of our candidate predictors are systematically informative about the conditional mean of

the distribution or the median. In other words, the location does not change systematically with

our predictors. Instead, what changes systematically is the likelihood that the model places on

the event that future observations will be “close” to the central tendency of the distribution. The

predictive score measures distance by the conditional density.6

To cement ideas, consider a simple case where returns are conditionally Gaussian,

yt+1 = µt+1|xt + σt+1|xtεt+1.

The associated log predictive score is,

log(p̂yT+1|xT (yT+1)) = −1

2
log(2π)− 1

2
log(σT+1|xT )− 1

2

(yT+1 − µT+1|xT )2

σT+1|xT
.

The benchmark case of non-predictability occurs when µT+1|xT and σt+1|xt are constant. Ac-

curate forecasting performance can be achieved by models which result in µT+1|xT near yT+1. This

is the exclusive goal of point forecasting. However, even if a model is uninformative about the

location, i.e., µT+1|xT is constant, accurate predictions can be achieved if xt is informative about

the variance, i.e., σt+1|xt is non-constant and varies with xt. σt+1|xt has two contrasting effects

on the log predictive score. When σt+1|xt rises, predictions become less sharp and hence less in-

formative. This is reflected in the second term. At the same time, the higher uncertainty means

that the model is less surprised by outcomes that are far from the mean, and so forecast errors are

down-weighted, as reflected in the third term. In the general case, the predictability of any aspect

6Anne et al. (2017) consider a framework where the focus is restricted to particular parts of the distribution to
compare and combine models.
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of the distribution is exploited. For example, if xt predicts negative skewness for predictions of

returns over the next four quarters, negative errors will be less surprising and then down-weighted

in the calculation of the predictive score.

In light of these examples, one source of outperformance of the conditional model relative to the

unconditional forecast is that larger forecast errors are typically preceded by high realized volatility

or credit spreads, which presage a widening of the return distribution. The conditional density

forecast accommodates this widening and so is less surprised by extreme realized returns. As both

higher realized volatility and higher credit spreads tend to occur during economic downturns, this

suggests there is an underlying business-cycle component which relates to the density forecasting

results we present; likewise, this has been shown to be an important feature for the equity risk

premium (e.g., Rapach et al. (2010)).

3.2 Combining Density Forecasts

A large literature in studies of point forecasting models have found that combining forecasts from

multiple models outperforms that of any individual model (e.g., Timmermann (2006), Rapach et al.

(2010)). In a similar vein, we can also consider combining density forecasts from the individual mod-

els presented in Table 1. Moreover, analyzing the weights assigned to individual models provides

an alternative metric to compare our candidate predictors’ performance.

The problem of optimally combining density forecasts can be formulated as follows. Let us

consider the N density forecasts p̂rT+h|xiT
(y) made by using a set of predictors xit, (i = 1, . . . , N) at

time T over the horizon h. We may write the combined forecast density as

N∑
i=1

wip̂rT+h|xiT
(y). (6)

It is natural to impose that the weights, (w1, . . . , wN ), are nonnegative and sum to one, which

ensures that the combined density is itself a probability density function (Hall and Mitchell, 2007;

Geweke and Amisano, 2011). In practice, we will choose the weights at every point T so as to

maximize the real-time accuracy of the forecast combination over a given evaluation sample starting

at a date T0 and ending in T ; accordingly, the forecasts are exactly the same as if constructed by

a forecaster in real time.

As before, we measure accuracy by the average log score, and so for the combined forecast we

may choose the optimal weights via:

ŵ1, ..., ŵN = arg max
wi>0;

∑n
i=1 wi=1

1

T − T0 − h+ 1

T−h∑
T =T0

N∑
i=1

wip̂rT+h|xiT
(y), (7)

where p̂rT+h|xiT
(rT+h) is the “probability” assigned ex-ante and in real-time by the model based on

the ith set of predictors to the ex-post realized value. The weights ŵi depend on time T when they

are computed, and are based only on information available up to time T . However, we drop the

dependence on T for notational convenience.
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The probability forecast of the optimal combination is given by:

p̂rT+h|x1T ,...,x
N
T

(y) =

N∑
i=1

ŵip̂rT+h|xiT
(y). (8)

Conflitti et al. (2015) show that optimally combining forecasts is a viable strategy even when the

number of forecasts to be combined is large. Indeed, imposing the constraints that the weights

should be nonnegative and sum to one enforces a form of shrinkage on the weights. This ensures a

reasonable out-of-sample performance of the combined forecasts.

It is important to emphasize the advantages of our approach of combining density forecasts

compared to other popular alternatives, such as Bayesian model averaging (BMA) that assign

weights on the sole basis of the performance of each model, ignoring mutual dependence. Instead,

the optimal combination takes into account mutual dependence among the component’s forecasts.

Consequently, predictions that taken individually are not accurate might have positive weights in

optimal linear pools since they might tend to be more accurate when other forecasts perform poorly.

Below, we will see that mutual dependence is exploited in practice.

The solution to the maximization above is not available in closed form but can be computed

using the iterative algorithms developed by Conflitti et al. (2015), which can handle a large number

of forecasts efficiently. At iteration k + 1, the weights are given by:

w
(k+1)
i = w

(k)
i

1

T − T0 − h+ 1

T−h∑
t=T0

p̂rT+h|xiT
(rT+h)∑N

i=1w
(k)
i p̂rT+h|xiT

(yT+h)
(9)

De Mol (2023) derives the convergence properties of this iterative algorithm. Note that the non-

negativity and sum-to-one constraints for the weights are automatically satisfied at each iteration

provided that the algorithm is initialized with positive weights summing to one, i.e. with w
(0)
i =

N−1 ∀i. A primary advantage of this algorithm is that it is very simple to implement and scales

well with the cross-sectional dimension of the problem, and hence we can consider combinations of

all 15 models.

The out-of-sample score of the pooled distribution is given by p̂rT+h|x1T ,...,x
N
T

(rT+h). The row

at the bottom of Table 1 reports the average of the logarithmic score over the evaluation sample.

It is evident that the predictive accuracy of the pooled forecasts are modestly worse than the

best individual models based on volFinancial, volMarket, and DFY. However, the pooled forecasts

comfortably outperform the vast majority of the candidate predictors. Figure SA-7 in the SA

provides an example of the fitted distribution based on the pooled forecasts for the end of 2008 and

Figure SA-8 in the SA shows the out-of-sample predictive scores.

Table 1 also reports the results from an equal weighting of the density forecasts based on each

individual predictor. The broad consensus from the literature on point estimation is that equal

weighting is a challenging benchmark to outperform (e.g., DeMiguel et al. (2009)). However, it

does not appear that this result transfers to the case of density forecasting. Instead, the predictor
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using optimal weights strongly outperforms the equal weighted benchmark (see also Figure SA-9

in the SA). To our knowledge, we are the first to introduce such a result.

We also report the predictive accuracy of the optimal combination of point forecasts. The

weights are computed by minimizing the MSFE of the pooled forecasts, instead of maximizing

its average log predictive score. As for the combination of density forecasts, we impose the two

constraints that the weights should be nonnegative and that they should sum to one. As shown

by Conflitti et al. (2015), this problem displays a strong similarity to the problem of determining

minimum-variance portfolios with short-selling constraints, with the component forecasts being

replaced with the returns of individual assets. Moreover, this problem can also be viewed as

a special case of a so-called LASSO regression (Tibshirani, 1996) since, as described above, the

constraints imply that the sum of the absolute values of the weights is equal to one. This type of

constraint is known to enforce sparsity, namely the presence of zeros in the weight vector, which

means that only a small number of forecasts will be selected (active) to form the combined forecast.

The algorithm to compute the weights of the point forecasts is the constrained LASSO developed

by Brodie et al. (2009) for portfolio optimization. The bottom row of the left panel of Table 1

shows that this optimal combination is clearly preferred to the individual models when h = 4 but

is middle of the pack for h = 1. We also report the results for the equal weighted combination.

Consistent with existing results in the literature, this equal-weighted approach outperforms most

individual predictors and the optimally-weighted combination. Recall that the optimal combination

of weights for density forecasts, in contrast, showed consistent performance only modestly worse

than the best individual models and far better than the equal-weighted alternative.

The real-time weights, {ŵi : i = 1, . . . , n}, formed for the optimal combined conditional density

forecast are reported in Figure 3. Strikingly, volFinancial is consistently chosen in the optimal

density forecast at both the h = 1 and h = 4 horizons. Moreover, it is strictly preferred to

volMarket suggesting that although the two series strongly co-move there is additional information

in financial-sector volatility. For h = 1, only volFinancial and DFY contribute consistently to

the optimal forecast whereas for h = 4 the log dividend-price ratio (logDP) also plays a role.

The optimal weighting places zero weight on the majority of the predictors and yet still performs

competitively with the best individual density forecasting models. This stands in stark contrast

to the results in the point forecasting literature which find that (approximately) equal-weighted

forecasts have superior out-of-sample performance (Rapach et al. (2010)). We can also see this in

the bottom charts as the the optimal weights for the point forecasts are more dispersed–both across

predictors and in the time series. For example, variables may receive a positive weight for short

bursts suggesting instability in the optimal pooling of forecasts. This provides further evidence

that the candidate predictors are more informative about the predictive distribution of returns

more generally than about its central tendency.

We can also visualize the results in Table 1 by showing the realized returns along with the

real-time conditional forecast confidence intervals for different levels of nominal coverage. This is

shown in Figure 4. We first observe that realized returns are almost always contained in the 95%

conditional confidence interval. Since all forecasts are done in a completely real-time manner this

11



was not guaranteed. Second, we observe that the median of the predictive distribution shows very

little movement whereas the conditional confidence intervals vary substantially over time. Third,

at short forecast horizons, the confidence intervals are approximately symmetric whereas at longer

forecast horizons there is a clear negative skewness in the predictive distribution.

We conclude this section by studying the calibration of the density forecasts. In Figure 5, we

show the conditional and unconditional predictive distributions of the pooled forecast. We plot the

fraction of realizations that are below any given quantile of the real time predictive distribution

as a function of the quantile.7 In a perfectly calibrated model, this percentage would be exactly

equal to the quantile itself and the statistics would be aligned on the 45-degree line. This would

hold exactly if the density forecasts were based on the quantile of the empirical distribution based

on the full sample. The calibration test evaluates whether the out-of-sample density forecasts have

this natural and desirable property. Following Rossi and Sekhposyan (2019), we report confidence

bands around the 45-degree line to account for sampling uncertainty. We observe that the fraction

of ex-post realizations that are below any given quantile of the real time predictive distribution

is not significantly different from the quantile itself. We conclude that the forecasts are not only

sharp, at least sharper than the unconditional forecasts, but are also well calibrated. We report

the PITs for individual components in the Online Appendix.

4 Conclusion

Are stock returns predictable? We address this question by modeling the predictive density as a

function of economic and financial variables and assessing the accuracy of the associated forecasts.

Our results show that stock returns are predictable because some financial variables provide useful

information, especially about the uncertainty surrounding future returns. The most informative

variable we find is realized volatility, both of financial sector stock returns and market returns,

followed by the default yield spread. This is a robust feature of the last century of US data and,

importantly, can be exploited in real time. That we find a proxy for financial conditions–the realized

volatility of financial equity returns–consistently adds precision to forecasts of the distribution of

aggregate market returns, mirrors recently documented relationships between financial conditions

and the distribution of macroeconomic growth outcomes (e.g., Giglio, Kelly, and Pruitt 2016;

Adrian, Boyarchenko, and Giannone 2019a).

We also investigate the performance of optimal-weighted density forecasts and find that the

optimal combination is only modestly worse than the best individual models based on realized

volatility or the default yield spread. Furthermore, we show that the pooled density forecast

based on optimal weights strongly outperforms an equal-weighted alternative. This suggests that

existing results for point forecasting may not transfer directly to density forecasting. Further work

is warranted to better understand the commonalities and differences between forecast performance

in these two different settings.

7Technically speaking, this fraction is a function of the quantiles of the empirical cumulative distribution of
the Probability Integral Transform (PIT), which in turn is the cumulative predictive distribution evaluated at the
realization.
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In this paper, we have focused on the prediction of a single outcome, the market return. A

natural extension is to study the joint predictions of several outcomes, for example, equity returns

across different industries or countries. This would be useful for studying the risks of different

portfolios and identifying the locations of the strongest co-dependencies.
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Table 1: Diebold-Mariano Test: rMarket recursive The table below compares the
out-of-sample market return performance of each predictor for point forecasts (left panel) and

density forecasts (right panel) estimated with a recursive (expanding) window. In the left panel,
the first row shows the mean-squared forecast error for the naive, or unconditional, model. The

following rows show the MSFE differential over the naive model of conditioning on that predictor,
with HAC standard errors shown in parentheses. In the right panel, the first row shows the sum
of log scores for the naive, or unconditional forecast. The following rows show the log score gain
(or loss) from conditioning on that predictor, with HAC standard errors shown in parentheses.

Note that for point forecasts, a negative differential indicates a more accurate forecast, while for
density forecasts, a positive differential indicates a more accurate forecast. “Equal-Weighted”
refers to the forecast combination based on equal weights across all predictors. “Aggregation”
refers to the forecast combination based on the optimal weights as described in Section 3.2.

Point Density
h = 1 h = 4 h = 1 h = 4

Naive 1065.072 268.049 -4.955 -4.294
volFinancial 31.317 (20.163) 10.699 (6.054) 0.079 (0.024) 0.075 (0.030)
volMarket 4.762 (10.131) 5.310 (5.076) 0.081 (0.024) 0.060 (0.022)
logDP -5.826 (12.132) -2.902 (21.071) -1.315 (1.116) -2.329 (1.456)
logDY -7.057 (11.978) -0.045 (22.934) -0.469 (0.366) -0.282 (0.173)
logEP -5.586 (17.754) 5.572 (18.995) -0.032 (0.024) -0.197 (0.175)
logDE 92.327 (44.746) 12.320 (7.121) -0.481 (0.347) -1.512 (0.913)
BM -0.372 (6.579) 25.598 (23.005) -0.044 (0.033) -0.078 (0.069)
NTIS 20.322 (18.860) 29.355 (29.961) 0.002 (0.018) -0.076 (0.111)
TBL 11.013 (8.307) 19.076 (13.262) -0.124 (0.079) -0.428 (0.372)
LTY 23.767 (16.969) 35.205 (13.789) -0.042 (0.015) -0.638 (0.412)
LTR 20.948 (36.753) 8.203 (10.000) -0.029 (0.019) -0.294 (0.283)
TMS 14.281 (6.210) 12.816 (11.182) -0.014 (0.012) -0.332 (0.302)
DFY 18.285 (7.816) 2.610 (5.061) 0.073 (0.031) 0.058 (0.034)
DFR 27.567 (7.742) 9.750 (6.740) -0.299 (0.263) -0.266 (0.243)
INFLlag -0.508 (0.989) -3.448 (4.896) -0.004 (0.016) -0.012 (0.013)
Equal-Weighted -1.433 (5.124) -12.216 (6.449) 0.026 (0.007) 0.026 (0.015)
Aggregation 14.274 (13.167) -4.813 (8.879) 0.054 (0.018) 0.055 (0.029)
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Figure 2: Out-of-sample Scores, volFinancial

The figure compares the out-of-sample predictive scores of the predicted distribution conditional on realized financial
sector volatility (volFinancial) with the unconditional distribution. Scores are shown before log-transformation
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Figure 3: Aggregation Weights

The top panels of the figure show the weights, in time series, assigned to each of the forecasting variables when
computing the optimal combination of forecasting densities. The bottom panels show the weights assigned when

computing the optimal combination of point forecasts. Black shading denotes a weight of one and white shading a
weight of zero. Intermediate values range from light yellow (closer to zero) to dark red (closer to one).
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Figure 5: PIT, Aggregate Forecast

The figure compares the empirical cumulative distribution of the probability integral transform (PIT) for the
optimal combination of predictors with the unconditional distribution.
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This Supplemental Appendix provides additional supporting results for the main paper. Section

SA.1 summarizes the data used and discusses some key features. Section SA.2 provides figures

highlighted in the main text whereas Section SA.3 provides additional figures as a reference.

SA.1 Data

The data for many of our time series of candidate predictors begins in 1926 owing to stock market

data availability. A full list of variable names and definitions we use, mostly but not entirely, from

Welch and Goyal (2008) is available in the next subsection.

Figure SA-1 shows the times series of four important variables: realized volatility amongst

financial stocks (volFinancial) and the aggregate market (volMarket), BBB-AAA credit spreads

(DFY), and log dividend price-ratios (logDP). Figure SA-2 provides the quantile-quantile (QQ)

plots of these predictors relative to market returns over the next year. The definition for the finance

industry is taken from the Fama-French 12 industry definitions and refers to stocks associated with

the SIC codes between 6000 and 6999.

The QQ-plots of Figure SA-2 show the empirical quantiles of aggregate stock market returns on

the y-axis against the empirical quantiles of a sample of predictor variables on the x-axis. Examining

these plots for deviations from linear relationships, volatility and DFY exhibit very pronounced

nonlinearity with market returns compared to logDP. A nonlinearity, or systematic departure from

the 45-degree line, indicates a difference in the conditional distribution function and foreshadows

the findings of which variables are most useful indicators of stock market vulnerability. The highest

realized stock market returns in the sample occur during the recovery from the Great Depression

(1933); if these quarters are excluded, the positive return outliers to the top right of each QQ-plot

disappear.
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SA.1.1 Variable Names and Definitions

All variable names, definitions and data are from Welch and Goyal (2008) other than realized
volatilities (volFinancial and volMarket), which are constructed from CRSP data. For completeness
we include primary details below (further information may be found in Welch and Goyal (2008)).

volFinancial Financial sector realized volatility is calculated as the standard deviation of CRSP
value-weighted return daily returns for the financial sector within a quarter.

volMarket Market realized volatility is calculated using the same method as volFinancial. Note
that this series is very similar to the volatility series, SVAR, used in Welch and Goyal (2008).

logDP The log dividend price ratio is the log-ratio of the 12-month moving sum of dividends
paid on the S&P 500 index and the level of the index.

logDY The log dividend yield is the log-ratio of the 12-month moving sum of dividends paid on
the S&P 500 index and the lagged level of the index.

logEP The log earnings price ratio is the log-ratio of the 12-month moving sum of earnings on
the S&P 500 index and the level of the index.

logDE The log dividend earnings ratio is the log-ratio of the 12-month moving sum of dividends
paid on the S&P 500 index and the 12-month moving sum of earnings on the index.

BM The book-to-market ratio is the ratio of book value to market value for the Dow Jones
Industrial Average.

NTIS Net equity expansion is the ratio of a 12-month moving sum of net equity issues by New
York Stock Exchange-listed (NYSE) stocks to the total end-of-year market capitalization of NYSE-
listed stocks.

TBL The Treasury bill rate is the secondary-market interest rate on a three-month Treasury.

LTY The long-term government bond yield.

LTR The return on a long-term government bond.

TMS The term spread is the difference between the yields of the long-term government bond
(LTY) and the three-month Treasury bill rate (TBL).

DFY The default yield spread is the difference between the yields of BAA and AAA-rated cor-
porate bonds.

DFR The default return spread is the difference between returns on long-term corporate bonds
and long-term government bonds.

INFL Inflation is calculated from the Consumer Price Index (CPI) for urban consumers. We use
the one-period lag of inflation to account for the delay in CPI releases.

2



Figure SA-1: Raw Data

These figures show the time series of realized volatility of banking stocks (“volFinancial”), of the aggregate market
(“volMarket”), the BBB-AAA credit spread (“DFY”), and the log of the dividend-price ratio (“logDP”)
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Figure SA-2: Quantile-Quantile Plots

These panels show the sample quantile-quantile relationship between 4 quarter horizon returns and various
candidate predictors for the time series 1926-2017
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(c) Market returns - DFY (4Q)
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SA.2 Additional Figures for Main Results
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Figure SA-5: Example of Fitted Distributions: volFinancial

The top panels in this figure show the conditional quantiles and fitted skewed t-inverse cumulative distribution
functions of four quarter ahead market returns predicted by realized financial volatility in 2008Q4 (left) and 1993Q4

(right). The bottom panels show the corresponding density functions.
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Figure SA-6: Out-of-sample Scores, DFY

The figure compares the out-of-sample predictive scores of the predicted distribution conditional on the default
yield spread (DFY) with the unconditional distribution.
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Figure SA-7: Example of Fitted Distributions on 2008Q4: Optimal Forecast

The top panels in this figure show the conditional quantiles and fitted skewed t-inverse cumulative distribution
functions of one quarter ahead (left) and four quarter ahead (right) market returns predicted by the optimal

combination of forecasting variables in 2008Q4. The bottom panels show the corresponding density functions.
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Figure SA-8: Out-of-sample Scores, Aggregate Forecast

The figure compares the out-of-sample predictive scores of the predicted distribution conditional on the optimal
combination of predictors with the unconditional distribution.
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Figure SA-9: Out-of-sample Scores, Equal-Weighted

The figure compares the out-of-sample predictive scores of the predicted distribution conditional on the
equal-weighted combination of predictors with both the unconditional distribution and the optimal combination of

predictors.

(a) One quarter ahead:
Equal-Weighted vs. Unconditional

1970
1975

1980
1985

1990
1995

2000
2005

2010
2015

2020

2

4

6

8

10

12

14

10 -3

Equal-Weighted
Unconditional

(b) Four quarters ahead:
Equal-Weighted vs. Unconditional

1970
1975

1980
1985

1990
1995

2000
2005

2010
2015

2020

0.005

0.01

0.015

0.02

Equal-Weighted
Unconditional

(c) One quarter ahead:
Equal-Weighted vs. Optimally-Weighted

1970
1975

1980
1985

1990
1995

2000
2005

2010
2015

2020

2

4

6

8

10

12

14

10 -3

Equal-Weighted
Optimally-Weighted

(d) Four quarters ahead:
Equal-Weighted vs. Optimally-Weighted

1970
1975

1980
1985

1990
1995

2000
2005

2010
2015

2020

0.005

0.01

0.015

0.02

0.025

0.03

Equal-Weighted
Optimally-Weighted

12



SA.3 Additional Figures
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Figure SA-23: Out-of-sample results: volMarket

The top panels compare the out-of-sample scores of the predicted distribution conditional on volMarket with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the volMarket predictor with the unconditional distribution.
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Figure SA-24: Out-of-sample results: logDP

The top panels compare the out-of-sample scores of the predicted distribution conditional on logDP with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the logDP predictor with the unconditional distribution.
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Figure SA-25: Out-of-sample results: logDY

The top panels compare the out-of-sample scores of the predicted distribution conditional on logDY with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the logDY predictor with the unconditional distribution.
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Figure SA-26: Out-of-sample results: logEP

The top panels compare the out-of-sample scores of the predicted distribution conditional on logEP with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the logEP predictor with the unconditional distribution.
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Figure SA-27: Out-of-sample results: logDE

The top panels compare the out-of-sample scores of the predicted distribution conditional on logDE with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the logDE predictor with the unconditional distribution.
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Figure SA-28: Out-of-sample results: BM

The top panels compare the out-of-sample scores of the predicted distribution conditional on BM with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the BM predictor with the unconditional distribution.
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Figure SA-29: Out-of-sample results: NTIS

The top panels compare the out-of-sample scores of the predicted distribution conditional on NTIS with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the NTIS predictor with the unconditional distribution.
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Figure SA-30: Out-of-sample results: TBL

The top panels compare the out-of-sample scores of the predicted distribution conditional on TBL with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the TBL predictor with the unconditional distribution.
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Figure SA-31: Out-of-sample results: LTY

The top panels compare the out-of-sample scores of the predicted distribution conditional on LTY with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the LTY predictor with the unconditional distribution.
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Figure SA-32: Out-of-sample results: LTR

The top panels compare the out-of-sample scores of the predicted distribution conditional on LTR with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the LTR predictor with the unconditional distribution.

(a) One quarter ahead:
Out-of-sample scores

1950 1960 1970 1980 1990 2000 2010 2020

2

4

6

8

10

12

10 -3

Conditional
Unconditional

(b) Four quarters ahead:
Out-of-sample scores

1950 1960 1970 1980 1990 2000 2010 2020

0.005

0.01

0.015

0.02

0.025

0.03
Conditional
Unconditional

(c) One quarter ahead:
Probability Integral Transform

0 0.2 0.4 0.6 0.8 1

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

pi
ric

al
 C

D
F

Conditional
Unconditional
Theoretical and 5% Critical Values

(d) Four quarters ahead:
Probability Integral Transform

0 0.2 0.4 0.6 0.8 1

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

pi
ric

al
 C

D
F

Conditional
Unconditional
Theoretical and 5% Critical Values

36



Figure SA-33: Out-of-sample results: TMS

The top panels compare the out-of-sample scores of the predicted distribution conditional on TMS with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the TMS predictor with the unconditional distribution.
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Figure SA-34: Out-of-sample results: DFY

The top panels compare the out-of-sample scores of the predicted distribution conditional on DFY with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the DFY predictor with the unconditional distribution.
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Figure SA-35: Out-of-sample results: DFR

The top panels compare the out-of-sample scores of the predicted distribution conditional on DFR with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the DFR predictor with the unconditional distribution.
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Figure SA-36: Out-of-sample results: INFL

The top panels compare the out-of-sample scores of the predicted distribution conditional on INFL with the
unconditional distribution. The bottom panels compare the empirical cumulative distribution of the probability

integral transform (PIT) for the INFL predictor with the unconditional distribution.
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