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Abstract 
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1 Introduction

Equity volatility term premia represent the cost of insuring against realized and implied
volatility shocks over different horizons. As evidenced by their rapid growth since the finan-
cial crisis, investors care about equity volatility markets. One motivation for trading volatility
is its negative correlation with the stock market known as the leverage effect (Black 1976).
Investors can hedge stock market exposures by paying fixed in variance swaps or by going
long VIX futures. The payoff to these products is the difference between the variance swap
rate (VIX futures price) and realized variance (implied volatility as measured by the VIX).
Equity volatility term premia measure the cost of this insurance.

There is a vast literature on estimating term premia in fixed income and credit markets.
Studies decompose yield curves into expected paths for interest rates and term premia com-
ponents, while seeking to determine the number of factors that drive the yield curve (see
Dai and Singleton (2003) and Cohen et al. (2018) for surveys). A more recent literature
focuses on variance swap term-structures in equity markets, estimating affine and quadratic
models that are adapted from the fixed income literature (Egloff et al. 2010; Filipović et al.
2016; Amengual and Xiu 2018; Aït-Sahalia et al. 2020) . These studies aim to price variance
swaps and explain the joint dynamics of variance swaps and realized variance over time. The
models are also applied to study optimal portfolio choice problems and to estimate expected
variance swap returns, providing new empirical facts for the literature on asset pricing and
the variance risk premium (Bollerslev et al. 2009; Drechsler and Yaron 2011; Dew-Becker
et al. 2017).

This paper develops a new term-structure model for estimating equity volatility term
premia. In the model, realized variance (implied volatility) term premia are the expected
holding period returns from receiving fixed in variance swaps (selling VIX futures). The
paper obtains closed-form solutions for term premia and for pricing variance swaps and VIX
futures by modeling the logarithm of realized variance in discrete time. Existing affine and
quadratic models deliver closed form solutions for the prices of variance swaps but not VIX
futures. In addition, the log transformation guarantees that variance swap rates and realized
variance forecasts are non-negative, unlike affine models. This restriction is important in low
volatility environments because negative variance swap rates are arbitrage opportunities,
similar to zero lower bound violations in fixed income settings.

Figures 1 and 2 plot the term premia estimates for realized variance and implied volatility.
The model is estimated with synthetic variance swap and realized variance data from January
1996 to June 2020. The synthetic variance swap rates are derived from S&P 500 index options
by applying a well-known no-arbitrage relationship that serves as the basis for the VIX index

1



(Carr andWu 2009).1 Realized variance is estimated from one-minute high frequency data for
the S&P 500 index using the two-scale approach from Zhang et al. (2005) and is interpreted as
the observable payoff to the floating leg of a variance swap. The estimation approach for the
term-structure model is fast and tractable. The first step estimates the physical parameters
by ordinary least squares from a vector autoregression of the state variables. The second
step estimates the risk-neutral parameters by nonlinear least squares to minimize variance
swap pricing errors. The approach exploits the full information in daily data rather than
using only sparse month-end data. Robustness checks confirm that maximum likelihood and
Bayesian methods with latent factors deliver similar term premia estimates.

The paper finds that a three-factor logarithmic model performs well in terms of its ability
to price variance swaps and forecast variance swap returns. Compared to competing models
of different sizes and reduced form linear forecasts for variance swap returns, a three-factor
model delivers small pricing errors and significant return predictability both in-sample and
out-of-sample. The three factors are the logarithm of realized variance and the first two
principal components from the logarithm of variance swap rates. The approach is similar
to fixed income models that use the short rate, level, and slope of the yield curve as factors
with the difference that the variance swap factors are in logs, not levels.

The paper then documents several results for the realized variance term premia (RVTP)
and implied volatility term premia (IVTP) estimates from the three-factor model. First,
RVTP increase during periods of financial distress and decrease during expansions, varying
significantly over time. This business cycle variation drives the model’s return predictabil-
ity with RVTP predicting the returns from receiving fixed in variance swaps for different
maturities, horizons, and sample periods.2 Second, RVTP respond to changes in each of
the state variables. RVTP are increasing in the level of variance swaps for all maturities,
decreasing in realized variance for short maturities, and have opposite loadings on the slope
factor for short versus long maturities. A variance decomposition reveals that term premia
dominate the movements in longer-maturity variance swap rates, accounting for around 75%
of the variation for one- to two-year maturities. For IVTP, the estimates are predominantly
positive but also take on negative values. When risk increases, IVTP initially decline or have
an insignificant response, but then increase at a lag as measured by impulse response func-
tions to a VIX shock. IVTP are relatively insensitive to realized variance and have opposite

1The Appendix shows that the estimated synthetic rates closely track alternative data sources including
the volatility indexes from the Chicago Board Options Exchange (CBOE) and synthetic variance swap rates
from Bloomberg. The paper’s estimated rates are available from January 1996 to June 2020 for a wide range
of maturities whereas the CBOE indexes are only available for 1-, 3-, and 6-month maturities and Bloomberg
data is only available starting in November 2008.

2The Appendix shows that RVTP also predict the returns of delta-hedged index option straddles, so the
return predictability is not driven by the estimation or interpolation of synthetic variance swap rates.
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loadings on the level and slope factors.
The last section of the paper investigates the relative pricing of variance swaps and VIX

futures. Given that VIX futures are not used in the estimation approach, the model prices
VIX futures remarkably well. At the same time, there are periods with large pricing errors
that indicate dislocations between the index options and VIX futures markets. On average,
VIX futures are .40% lower than the model prices with a standard deviation of around 1%.
This bias and variability are large compared to the typical .05% bid-ask spread for VIX
futures during recent years. Despite these differences, the IVTP estimates deliver significant
forecasts for VIX futures returns, indicating that the model is capturing the implied volatility
risk premium.

The literature on variance swap pricing and equity volatility term premia have received
significant attention in recent years. From a historical time-series perspective, modeling
the logarithm of realized variance is motivated by numerous studies including French et al.
(1987) who show that the log-transformation reduces skewness, Nelson (1991) who devel-
ops an exponential ARCH model, and Andersen et al. (2003) and Andersen et al. (2007)
who forecast volatility using nonlinear transformations of realized variance including the log
transformation. Empirically, the logarithm of realized variance tends to be approximately
unconditionally normally distributed across asset classes. While Box-Cox transformations
can further reduce the skewness of realized variance in finite samples (Gonçalves and Med-
dahi 2011), this paper focuses on the log transform as a special case because it allows for
closed-form pricing of variance swaps and VIX futures.

Among existing variance swap models, Egloff et al. (2010), Dew-Becker et al. (2017), and
Aït-Sahalia et al. (2020) estimate two-factor affine models with spot- and long-run volatility
factors to match variance swap rates and a time-series factor that is either realized variance
or stock market returns. Giglio and Kelly (2017) estimate a two-factor affine model to price
variance swaps, but do not target realized variance dynamics. Filipović et al. (2016) develop
a class of quadratic variance swap models and find evidence in favor of a bivariate model
without volatility jumps. Closer to this paper, Fusari and Gonzalez-Perez (2013) model spot
variance in a two-factor log-affine specification that outperforms affine models. Amengual
and Xiu (2018) estimate a two-factor non-affine model with double-sided volatility jumps,
finding evidence of negative volatility jumps in a log-specification for spot variance. Since
spot variance drives the continuous component of realized variance, these approaches are
similar but distinct from modeling realized variance as log-affine, as realized variance reflects
the continuous and jump components of the price process. In addition, since these models
are set in continuous time with latent volatility factors, rolling estimation for out-of-sample
analysis is more challenging and pricing of VIX futures is less tractable because variance
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swaps are only available in (quasi) closed-form.3

The discrete-time model and estimation approach in this paper are well-suited for em-
pirical applications and are motivated by Adrian et al. (2013). The model prices realized
variance exactly and is estimated to match the dynamics of variance swap rates and realized
variance under the physical and risk-neutral measures. The selection of a three-factor model
is based on pricing performance, an interest in parsimony, and the existing models in the
literature which tend to have two-factors. While one could argue in favor of a larger model
with four or five factors based on the model selection results, it can be challenging to precisely
identify the number of factors in term-structure settings in general (Crump and Gospodinov
2019). Beyond model size, the paper highlights the outperformance of the logarithmic model
at out-of-sample return predictability and its accurate pricing of variance swaps. For nearly
all combinations of model sizes and horizons, the three-factor logarithmic model outperforms
reduced form linear models at forecasting variance swap returns, often by as much as 5% to
15%.

The paper’s analysis of variance swap return predictability relates to recent studies which
emphasize the predictive content of the slope of implied volatility term-structures. In partic-
ular, Johnson (2017) finds that the slope of the variance swap curve predicts the returns from
selling volatility through variance swaps, VIX futures, and index option straddles. Vasquez
(2017) ranks firms based on the slope of their implied volatility term-structure and finds
that slope predicts the returns of straddle portfolios. By estimating a no-arbitrage model,
this paper provides an alternative perspective, finding that the slope factor contributes to
the time variation in expected returns alongside the realized variance and level factors.

The paper also contributes to the asset pricing literature on the variance risk premium.
Consistent with the prior literature, the paper’s variance swap and straddle returns have a
downward sloping term-structure of unconditional Sharpe Ratios (Dew-Becker et al. 2017;
Andries et al. 2015). During periods of increased risk, the estimates of implied volatility
term premia decrease but then increase at a lag. This is similar to Cheng (2018)’s statistical
study of the VIX premium but surprising from the perspective of equilibrium models. In
consumption-based asset pricing models, volatility term premia are increasing in volatility-
of-volatility and jump risk (Bollerslev et al. 2009; Drechsler and Yaron 2011; Eraker and
Wu 2017). The IVTP estimates in this paper are driven by the model’s estimated prices of
risk, which are not constrained by equilibrium effects beyond no-arbitrage. In addition, the
IVTP estimates are not directly affected by VIX futures demand, as VIX futures prices are

3As is typical in affine option pricing models, variance swap rates in Amengual and Xiu (2018) are
computed numerically by integrating over the solutions of ordinary differential equations. Pricing VIX
futures by applying Zhu and Lian (2012) requires further integrating over the moment-generating function
of variance swap rates.
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not used in the estimation procedure. The estimates thus provide a new perspective to the
literature on the implied volatility risk premium. Finally, the results on the relative pricing
of variance swaps and VIX futures contribute to the limits-of-arbitrage literature (i.e. see
Gromb and Vayanos (2010) for a survey) and are further analyzed in Van Tassel (2020).

2 Pricing Variance Swaps and VIX Futures

2.1 Variance Swaps

Variance swaps are over-the-counter derivatives that allow investors to hedge and speculate
on volatility over different horizons. The only cashflow occurs at maturity and is equal to the
difference between the fixed variance swap rate and the floating amount of realized variance
that the underlying asset exhibits over the life of the swap. The fixed rate is priced to make
the swap costless to enter at the time of trade. Variance swaps can be interpreted as a form
of volatility insurance, with the fixed rate and maturity representing the insurance premium
and length of coverage. By trading variance swaps of different maturities, investors give rise
to a term structure of market implied volatility that embeds information about volatility
expectations and risk premia over different horizons.

This paper constructs a detailed dataset of synthetic variance swap rates for the S&P
500 index on a monthly grid from one-month to two-years. The estimated synthetic rates
are computed from index option prices using OptionMetrics data at a daily frequency from
January 4, 1996 to June 30, 2020. This approach exploits the well-known no-arbitrage
relationship for pricing variance swaps from option portfolios (Carr and Wu 2009).4 The
Appendix includes a detailed description of the estimation procedure and a comparison of
the estimated synthetic variance swap rates to the CBOE volatility indices and Bloomberg
synthetic rates. The estimated synthetic rates closely align with the alternative datasets
both in their time-series variation and levels. The advantage of the estimated rates relative
to the alternatives is their availability for multiple maturities over the full sample period.

4The paper focuses on traditional variance swaps rather than simple variance swaps from Martin (2017)
for two reasons. First, traditional variance swaps can be decomposed into variance swap forwards. For
example, a one-year variance swap is the sum of a six-month variance swap and a six-month forward six-
month variance swap. These properties are convenient for deriving prices in dynamic term-structure settings
and they do not hold for simple variance swaps. Second, VIX futures are based on the CBOE definition for
the VIX. The squared-VIX index estimates a one-month traditional variance swap from index option prices
as in this paper (Carr and Wu 2006; CBOE 2019). Simple variance swaps from Martin (2017) have the
advantage that their replicating portfolio is robust to jumps in the underlying asset. Jumps induce a third
order approximation error in traditional variance swap pricing.
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2.2 Realized Variance

The floating leg of a variance swap pays the realized variance of the underlying asset from
the trade date until the maturity of the swap. In practice, variance swap contracts can differ
in their definitions for computing realized variance. For example, contracts must specify
whether to use log or simple returns, whether to demean returns or not, how to annualize
estimates using different day count conventions, etc. From a theoretical perspective, it is
desirable to choose a definition that produces an accurate estimate of the quadratic variation
of the underlying asset. This follows from the no-arbitrage replication argument for pricing
variance swaps which relies on computing the risk-neutral expectation of an asset’s quadratic
variation through an application of Itô’s lemma.

Based on these observations, the realized variance payoff for this paper is defined using
the two-scale realized variance estimator from Zhang et al. (2005). The two-scale estima-
tor is computed using high frequency data for the S&P 500 Index from Thomson Reuters
Tick History (TRTH). This estimator reflects the trade-offs in using high frequency data
to estimate realized variance. On one hand, sampling more finely allows for more accurate
volatility estimation (Merton 1980). On the other hand, sampling too finely can magnify mi-
crostructure noise such as the bid-ask spread and price discreteness, which can severely bias
estimation. The two-scale estimator balances these trade-offs by averaging realized variance
estimates from a sparse sampling frequency across subsamples on a finer grid. For each trad-
ing day, the first stage estimate is the sum of squared five-minute intraday log returns plus
the overnight squared log return. The choice of a five-minute intraday sampling frequency is
common in the empirical literature and motivated by Liu et al. (2015). The second stage av-
erages the first stage estimates across one-minute subsamples to reduce sampling variability
to obtain a daily estimate of realized variance. The monthly floating leg payoff to a variance
swap is defined as the sum of the second stage daily realized variance estimates every 21
business days. The Appendix provides additional details and outlines the steps employed
when cleaning the high frequency data.

2.3 VIX Futures

The CBOE introduced trading in VIX futures and options in 2004 and 2006 respectively.
The payoff to a VIX futures contract is the difference between the futures price and a special
opening quotation of the VIX index at maturity. From its definition, the VIX index upon
which VIX futures are based is equal to the square root of a one-month synthetic variance
swap rate. The swap rate is “synthetic” because it is computed from the price of a portfolio of
S&P 500 index options following the no-arbitrage formula for pricing variance swaps (Carr

6



and Wu (2006), CBOE (2019)). The square-root adjustment expresses the VIX index in
the same units as the Black-Scholes-Merton implied volatility parameter which is familiar to
option traders. In contrast to variance swaps which provide exposure to realized volatility,
VIX futures provide exposure to the VIX index which is a measure of implied volatility.

2.4 Modeling Variance Swaps and VIX Futures

The paper models variance swaps as the expected value of future realized variance under the
risk-neutral measure Q from the trade date until the maturity of the swap,

V St,n = EQ
t

[
n∑
i=1

RVt+i

]
. (1)

Time is discrete with each period representing one month.5 To model variance swap dynam-
ics, I assume the systematic risk in the economy can be summarized by aK×1 vector of state
variables Xt under the physical measure P that follow a stationary vector autoregression,

Xt+1 = µ+ ΦXt + vt+1, (2)

with shocks vt+1 that are conditionally Normal vt+1|Ft
P∼ N(0,Σv). This specification can be

motivated by the intertemporal capital asset pricing model of Merton (1973) or the arbitrage
pricing theory of Ross (1976). I set the state vector equal to,

X ′t = [lnRVt Y
′
t ]. (3)

The first element is the logarithm of realized variance lnRVt which spans variance swap
payoffs. The subsequent variables Yt can be any financial or macroeconomic variables that
price the cross-section of variance swap rates and explain the time-series variation of variance
swap returns.6

To model risk premia and derive variance swap rates, I assume the stochastic discount
factor is equal to,

Mt+1 = e−rt−
1
2
λ′tλt−λ′tΣ

−1/2
v vt+1 , (4)

5The Appendix presents a continuous time model for pricing variance swaps. Closed-form pricing for
VIX futures is only available in the discrete time model. This distinction and the fast estimation approach
outlined below motivate using the discrete time model for the empirical analysis in the paper. The Appendix
also shows how to estimate an affine variance swap model by three-step regression by applying Adrian et al.
(2013).

6In the baseline three-factor model Yt is the first two principal components from the logarithm of variance
swap rates. Section 3.3 discusses model selection including the number of principal component factors and
the performance relative to a linear model.
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with an affine price of risk,
λt = Σ−1/2

v (Λ0 + Λ1Xt) . (5)

This links the physical and risk-neutral dynamics through the relationships µQ = µ−Λ0 and
ΦQ = Φ− Λ1. The state vector under the risk-neutral measure Q follows,

Xt+1 = µQ + ΦQXt + vQt+1, (6)

with shocks that are conditionally normal vQt+1|Ft
Q∼ N(0,Σv).

In deriving variance swap rates, it is convenient to first obtain prices for variance swap
forwards. Variance swap forwards are defined as,

Ft,n = EQ
t [RVt+n] , (7)

where the zero-month forward rate is equal to realized variance Ft,0 = RVt. Variance swap
forwards decompose the variance swap curve into one-month swap rates with forward starting
dates,

V St,n =
n∑
i=1

Ft,i, (8)

similar to the relationship between forward rates and yields in fixed income.
The excess return from receiving fixed in variance swap forwards is equal to,

Rxt+1,n = Ft,n − Ft+1,n−1. (9)

This trade corresponds to receiving fixed in an n month variance swap forward at time t and
paying fixed in an n− 1 month variance swap forward at time t + 1. Since this trade costs
zero dollars at time t, it is equivalent to the risk-neutral pricing equation,

EQ
t [Ft,n − Ft+1,n−1] = 0. (10)

Put differently, the risk-neutral expected value from trading variance swaps is zero. Variance
swap forwards are a martingale under the risk-neutral measure.7

To derive variance swap rates, I guess and verify that variance swap forwards are expo-
nential affine in the state vector,

Ft,n = eAn+B′nXt . (11)

I set the initial condition to A0 = 0 and B0 = [1~0] so that the model prices realized variance
7This follows from the common assumption in the variance swap literature that interest rates are deter-

ministic or uncorrelated with realized variance.
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exactly. This restriction reduces the number of parameters to estimate and results in a more
parsimonious model since A0 and B0 are pinned down. The risk-neutral pricing equation for
the one-month variance swap rate is thus equal to,

EQ
t [Rxt+1,1] = EQ

t [Ft,1 − Ft+1,0]

= EQ
t [V St,1 −RVt+1]

= eA1+B′1Xt − eA0+B′0(µQ+ΦQXt)+ 1
2
B′0ΣvB0

= 0.

(12)

Since this equation must hold state by state, matching coefficients determines A1 and B1.
For longer maturities, plugging the guess into the risk-neutral pricing equation produces the
following system of recursive equations,

An = An−1 +B′n−1µ
Q + 1

2
B′n−1ΣvBn−1

B′n = B′n−1ΦQ.
(13)

These recursions coupled with the initial condition determine variance swap forward rates.
Variance swap rates are then equal to the sum of variance swap forward rates as noted

above,

V St,n =
n∑
i=1

eAi+B
′
iXt . (14)

The adjustment
√

12/n · V St,n expresses variance swap rates in annualized volatility units.
Variance swap rates may then be decomposed into realized variance forecasts RV Ft,n and
realized variance term premia RV TPt,n,

V St,n = EP
t

[
n∑
i=1

RVt+i

]
︸ ︷︷ ︸

Realized Variance Forecasts

+

(
EQ
t

[
n∑
i=1

RVt+i

]
− EP

t

[
n∑
i=1

RVt+i

])
.︸ ︷︷ ︸

Realized Variance Term Premia

(15)

Variance term premia are equal to the expected holding period return from receiving fixed in
variance swaps over an n-month horizon which are computed by subtracting realized variance
forecasts from variance swap rates,

RV TPt,n ≡ EQ
t [
∑n

i=1RVt+i]− EP
t [
∑n

i=1 RVt+i]

=
∑n

i=1 e
Ai+B

′
iXt −

∑n
i=1 e

APi +(BPi )′Xt . (16)

The realized variance forecasts are obtained by replacing µQ and ΦQ with µ and Φ in the
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recursions above to compute the coefficients APn and BP
n . This shuts down the prices of risk,

allowing for forecasts under the physical as opposed to the risk-neutral measure.
The model also admits closed-form prices for VIX futures. By modeling the logarithm of

realized variance, the exponential affine price for variance swap forwards naturally absorbs
the convexity adjustment for VIX futures. To see this, define the VIX as,

V IXt ≡
√
EQ
t [RVt+1] =

√
V St,1. (17)

It follows that the price of the n-month VIX futures contract is,

Futt,n = EQ
t [V IXt+n]

= EQ
t

[√
EQ
t+n [RVt+n+1]

]
= EQ

t

[√
eA1+B′1Xt+n

]
= EQ

t

[
e

1
2
A1+ 1

2
B′1Xt+n

]
= eA

F
n+(BFn )′Xt .

(18)

The coefficients AFn and BF
n for pricing VIX futures follow the same recursions as An and

Bn for pricing variance swaps with an adjusted initial condition AF0 = 1
2
A1 and BF

0 = 1
2
B1.8

Analogous to realized variance term premia, implied volatility term premia are defined as,

IV TPt,n ≡ EQ
t [V IXt+n]− EP

t [V IXt+n]

= eA
F
n+(BFn )′Xt − eA

P,F
n +(BP,Fn )′Xt .

(19)

Implied volatility term premia IV TPt,n are equal to the expected holding period return from
selling the n-month VIX futures contract and thus represent the market price of risk for
bearing implied volatility shocks. This differs from realized variance term premia RV TPt,n
which represent the market price of risk for bearing realized variance shocks.

3 Model Estimation

3.1 Estimation Data

I estimate the model with synthetic variance swap rate and realized variance data from Jan-
uary 31, 1996 to June 30, 2020.9 Table 1 reports summary statistics for the data used in

8Multiply Futt,n by 100 ·
√

12 to express VIX futures prices in annualized volatility units.
9The sample starts on January 31, 1996 to provide one-month of high frequency data for estimating RVt

at the start of the sample. The TRTH data and OptionMetrics data begin on January 3, 1996 and January
4, 1996 respectively. The sample period has T = 6, 074 trading days or 248.7 trading days per year after
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estimation. Panel A shows that the term-structure of variance swaps is upward sloping with
an average realized variance of 15.1% and one-month variance swap rate of 20.7% in annual-
ized volatility units. The gap between realized variance and variance swap rates reflects the
unconditional variance risk premium that investors earn by receiving fixed variance swaps.
The average one-year and two-year variance swap rates are even higher at 22.4% and 23.1%.
Long-dated variance swaps are more persistent and less volatile than short-dated variance
swaps. During periods of elevated stock market volatility, the variance swap curve tends
to invert with realized variance and short-dated variance swap rates increasing more than
persistent long-dated variance swap rates. When stock market volatility declines, the curve
reverts to its unconditional upward sloping state.

Panel B in Table 1 reports summary statistics for monthly variance swap returns in
percentage units. Variance swap returns are defined by receiving fixed in an n month swap
at time t and paying fixed in an n− 1 month swap at time t+ 1,

Rt+1,n = V St,n −RVt+1 − V St+1,n−1. (20)

This payoff is an excess return because it costs zero dollars to enter into at time t. The
mean and standard deviation of variance swap returns defined in this manner are increasing
in maturity while the Sharpe ratio (SR) and t-statistic are decreasing. The annualized SR
from receiving fixed in one-month variance swaps is 1.28 =

√
12 · .37 and the CAPM alpha

is 13 [5.35] basis points compared to an average monthly return of 16 basis points.10

Beyond the significant returns from receiving fixed in short dated variance swaps, the
results highlight how variance swap returns are negatively skewed and positively correlated
with the stock market. The CAPM betas are significant and increasing in maturity with the
market factor explaining around 45% of the variation in variance swap returns for maturities
longer than one-month. The positive and significant betas reflect how increases in volatility
are negatively correlated with stock market returns. Figure 3 illustrates this result by plotting
realized variance and one-month variance swap rates against CRSP value-weighted stock
market returns. The plot indicates that one-month changes in realized variance and one-
month variance swap rates are -67% and -76% correlated with one-month stock returns.
Finally, the percentage of negative returns is only 9% for one-month variance swaps and

excluding early closes.
10The high SR and t-statistic reflect, in part, the use of high frequency data to estimate realized variance

RVt. Using squared daily log returns to define the floating leg payoff lowers the SR to .69 and t-statistic
to 3.55. I use high frequency data to estimate realized variance RVt as this more accurately estimates the
quadratic variation that variance swaps are designed to price. Whether investors can capture these returns
in practice depends on the setting. By frequently delta-hedging, an option trader may better approximate
the theoretical returns from continuous hedging (Bertsimas et al. 2000).
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19% for three-month variance swaps. The low frequency of negative returns at the short end
of the curve supports the interpretation of variance swaps as a form of volatility insurance.
In most periods, volatility is low and a premium is collected. However, occasional spikes in
volatility result in large losses as evidenced by the negatively skewed returns.

3.2 Estimation Approach

I estimate the model using daily observations of synthetic variance swap rates for τ =

{1, 3, 6, 9, 12, 18, 24} month maturities. Adjusting the notation slightly to allow for daily
data, the model can be summarized by the following system of equations,

Xt+h = µ+ ΦXt + vt+h, vt+h|Ft ∼ N(0,Σv)

Yt,n = gn(Xt, µ
Q,ΦQ,Σv) + et,n, E[et,n|Xt] = 0.

(21)

The state vector Xt follows a monthly vector autoregression with overlapping observations
and a horizon of h = 21 trading days. Variance swap rates Yt,n are assumed to be observed
with measurement errors et,n that are mean zero conditioned on the state vector. The model
prices expressed in annualized volatility units are,

gn(Xt, µ
Q,ΦQ,Σv) =

√√√√12

n

n∑
i=1

eAi+B
′
iXt . (22)

The parameters to be estimated are Θ = (µ,Φ, µQ,ΦQ, Lv) where Lv is the Cholesky decom-
position of Σv = LvL

′
v.

Estimating the model with overlapping daily data has several advantages relative to
month-end data. Daily data increases the sample size which improves precision when esti-
mating the parameter values and is demanding because it requires fitting the more extreme
observations of variance swap rates that occur within the month rather than just the month-
end observations.11 Finally, estimating the model with daily data results in estimates of
equity volatility term premia at a daily frequency and allows for a study of the relative
pricing of variance swaps and VIX futures.

I estimate the model in two steps. First, I estimate the physical parameters (µ̂, Φ̂) from
a monthly vector autoregression with overlapping observations by ordinary least squares,

Xt+h = µ̂+ Φ̂Xt + v̂t+h, (23)
11For example, during the financial crisis in the fall of 2008, the five highest closing values of the VIX were

80.86, 80.06, 79.13, 74.26, and 72.67 on 11/20, 10/27, 10/24, 11/19, and 11/21, none of which are month-end
dates. The month-end observations were 59.89 on 10/31 and 55.28 on 11/28.
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and set Σ̂v to the sample covariance matrix of the innovations v̂t+h. Second, I estimate the
risk-neutral parameters (µ̂Q, Φ̂Q) by minimizing the model’s variance swap pricing errors by
nonlinear least squares,

(µ̂Q, Φ̂Q) = arg min
(µQ,ΦQ)

1

T ·Nτ

T∑
t=1

∑
n∈τ

(
Yt,n − gn(Xt, µ

Q,ΦQ, Σ̂v)
)2

. (24)

This two-step approach easily accommodates daily data and is robust to assumptions about
the distribution of the variance swap measurement errors, et,n. The Appendix considers
alternative estimation approaches as a robustness check. Maximum likelihood and Bayesian
methods with latent factors deliver similar results.

3.3 Factor Selection

The model spans variance swap payoffs by including the logarithm of realized variance in the
state vector. The remaining state variables can be any financial or macroeconomic variables
that help to price the cross-section of variance swap rates and explain the time-series of
variance swap returns. In this paper, I use principal components from log variance swap
rates as the additional variables.

Table 2 provides a detailed investigation of the model pricing errors as the number of
principal component factors KPC varies. The results are averaged across maturities from
January 3, 2000 to June 30, 2020. The out-of-sample analysis is performed by estimating the
model with an expanding window at a daily frequency using January 31, 1996 to December
31, 1999 as the initial estimation period. The results indicate that a three factor model,

Xt = [lnRVt PClevel,t PCslope,t], (25)

with two principal components KPC = 2 performs well relative to the competing models.
Figure 4 plots the state variables over time. The principal components can be interpreted as
level PClevel and slope PCslope factors that explain over 99% of the variation in log variance
swap rates.12

To illustrate the performance of the three-factor model, Panels A.I and B.I report the
in-sample and out-of-sample variance swap pricing errors in annualized volatility units. The
slope factor significantly reduces the pricing errors by around .50% to .80% depending on
the loss criterion. Adding further principal components continues to lower the pricing errors

12For numerical stability, I standardize log realized variance and log variance swap rates before computing
the principal components. This changes the initial condition for pricing variance swaps to A0 = µlnRV and
B0 = [σlnRV ~0]. I omit the standardization in the paper for notational simplicity.
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but with smaller gains. Panels A.II and B.II report the in-sample and out-of-sample return
forecast errors as measured by the R2 from return predictability regressions. The model’s
return predictability is primarily driven by the realized variance and level factors, with the
slope factor adding some additional predictability. Inspecting the results, one could argue
in favor of a larger model on the grounds of the slightly lower variance swap pricing errors
and similar out-of-sample return predictability results. I select a smaller three-factor model
(KPC = 2) for the baseline analysis in the interest of parsimony and its similar performance
to the larger models with KPC = 3 or KPC = 4.

In addition to factor selection, Table 2 also compares the return predictability perfor-
mance of the no-arbitrage models to reduced form forecasts from unrestricted linear models
Rt+h,n = β′h,nft + εt+h that use realized variance and up to five principal components from
the level of variance swap rates as factors. Panel A.III shows that the in-sample R2 of the
unrestricted linear forecasts improves with the number of factors. Panel A.IV shows that
linear models with four to six factors outperform the three-factor no-arbitrage model by
as much as 5% to 8% at in-sample return prediction over a one-month horizon. However,
in Panels A.IV and A.V, the linear models do not outperform for longer horizons or for a
mean-absolute-error criterion. Moreover, Panels B.II-V show that the three-factor logarith-
mic model outperforms the linear models at out-of-sample return predictability for nearly all
combinations of forecast horizons and model sizes, sometimes by as much as 5% to 15%. The
results suggest that the larger linear models are unstable or are overfitting in-sample. The
superior out-of-sample performance for the logarithmic models provides empirical support
for modeling the logarithm as opposed to the level of realized variance.

3.4 Estimation Results

Table 3 reports estimates of the model parameters. Panel A contains the physical param-
eters which are estimated by ordinary least squares from a monthly overlapping vector-
autoregression with Newey-West t-statistics. Panel B reports the price of risk estimates
which are estimated by minimizing variance swap pricing errors by nonlinear least squares
alongside block bootstrapped t-statistics that take into account the overlapping observations
and the sampling uncertainty from the first step estimation of the physical parameters.

The physical parameter estimates in Panel A indicate that each of the state variables
contributes significantly to the realized variance forecasts. The first row of Φ̂ reveals that
higher levels of log realized variance, the level factor PClevel, and the slope factor PCslope all
forecast higher levels of log realized variance. The loadings for the slope factor are positive
for shorter-dated maturities and negative for longer-dated maturities, so an increase in slope
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is associated with an inversion of the variance swap curve. Interpreting the point estimates,
a one unit increase in log realized variance, PClevel, and PCslope forecasts a .24, .20, and .42
standard deviation higher value of log realized variance over the next month.13 The mean of
the physical parameters µ̂ is close to zero because log realized variance and log variance swap
rates have been standardized or z-scored when constructing the state vector. In contrast to
realized variance, the second and third row of Φ̂ show that the level and slope factors are
persistent, but that their forecasts have only a limited dependence on the other variables.

In Panel B the price of risk estimates Λ̂1 indicate that each of the state variables con-
tributes significantly to the time variation in variance term premia. Interpreting the price
of risk estimates Λ̂0 and Λ̂1 beyond these observations is challenging because the model is
nonlinear. Instead of interpreting the point estimates, I present decompositions below to
interpret how realized variance and implied volatility term premia load on the different fac-
tors both on average and during specific points in time. As a preview of the results, realized
variance term premia are decreasing in realized variance, increasing in the level factor, and
increasing in the slope factor at the short-end of the curve while decreasing at the long-end
of the curve. I discuss these results in greater detail below after reviewing the model fit.

4 Discussion

4.1 Variance Swap Pricing

Table 4 reports summary statistics for the model fitting errors. In Panel A the mean and
standard deviation of the variance swap pricing errors are -.00% and .43% in annualized
volatility units averaged across maturities. The standard deviation is similar to the in-
sample (out-of-sample) RMSE of .42% (.44%) in Table 2 for the post-2000 sample. Beyond
variability, the results indicate that the variance swap pricing errors are fat-tailed, persistent,
and negatively skewed on average. Panel B reports the pricing errors as monthly return
fitting errors in basis points.14 This change of units provides a different perspective on the
magnitude of the errors. For example, the standard deviation of the one-month and twelve-
month return fitting errors is 4.3 and 27.3 basis points versus a standard deviation for returns
of 43 and 183 basis points in Table 1. The return pricing errors are less persistent than the
variance swap pricing errors but they still exhibit excess kurtosis.

13The standard deviation of the state variables Xt are 1, 2.57, and .58 for lnRVt, PClevel,t, and PCslope,t
respectively.

14Variance swap return fitting errors are defined as ut+1,n = Rt+1,n− (V̂ St,n− R̂V t+1− V̂ St+1,n−1) where
Rt+1,n is the observed return for the n-month variance swap rate and (V̂ St,n, R̂V t+1, V̂ St+1,n−1) are the
estimated model prices. Note that R̂V t+1 = RVt+1 as the model prices realized variance exactly.
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Figure 5 illustrates the model fit by plotting the synthetic variance swap rates against
the model prices over time. The model provides a close fit throughout the sample period.
To put the results in context, the variance swap pricing errors are small compared to typical
bid-ask spreads in the index options and variance swap markets of around 1%.15 At the
same time, the errors are large compared to typical VIX futures bid-ask spreads of .05%
and are somewhat large relative to the implied volatility fitting errors of around .20% when
estimating synthetic variance swap rates. In comparison to existing variance swap models,
the three-factor logarithmic model performs well, obtaining similar in-sample and good out-
of-sample performance.16

4.2 Variance Swap Return Predictability

Table 5 investigates whether the model predicts variance swap returns by running return
predictability regressions of the form,

Rt+h,n = β0 + β1Êt[Rt+h,n] + εt+h,n. (26)

The dependent variable Rt+h,n is the excess return from receiving fixed in an n-month vari-
ance swap over an h-month horizon. The independent variable is the expected return from
the estimated model Êt[Rt+h,n]. For example, one-month expected returns are equal to,

Êt[Rt+1,n] = Êt[V St,n −RVt+1 − V St+1,n−1]

=
∑n

i=1 e
Âi+B̂

′
iXt −

∑n−1
i=0 e

Âi+B̂
′
i(µ̂+Φ̂Xt)+

1
2
B̂′iΣ̂vB̂i .

(27)

I also compute three-month and six-month expected returns. Note that the expected return
for an n-month variance swap over an n-month horizon is the realized variance term premium
RV TPt,n. The results indicate that the model significantly forecasts returns across horizons
and maturities. The explanatory power of the model is 11% (5%), 18% (13%), and 28%
(21%) for one-, three-, and six-month horizons as measured by the average in-sample R2

adj

15For comparison, the average bid-ask spread for the index options used to compute synthetic variance
swap rates in this paper is around .75-1.00% on a vega-weighted basis. In Markit Totem data the average
bid-ask spread for over-the-counter variance swap quotes is around .75% for maturities up to two-years. Dew-
Becker et al. (2017) indicate that variance swap bid-ask spreads obtained from a large market participant
are around 1-2% for maturities up to one year and increasing in maturity. In contrast, bid-ask spreads for
index options and in Markit Totem data are decreasing in maturity.

16An immediate comparison to existing studies is challenging because other papers use proprietary datasets
and different estimation methods. However, reviewing existing studies, typical in-sample RMSEs for affine
models are around .40-.60% from 1996 to 2007 and out-of-sample RMSEs are around .40% to 1.40% from
2007 to 2010. The in-sample (out-of-sample) RMSE for the three-factor logarithmic model over the analogous
period of time is around .40% (.45%). As Table 2 indicates, the fit for the logarithmic model can be improved
by adding additional factors to obtain RMSEs closer to .20% at the cost of a more complicated model.
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(out-of-sample R2
oos) across maturities.17 The out-of-sample R2

oos is computed relative to a
historical mean model. Similar to Table 2, the historical mean and model expected returns
for the out-of-sample analysis are estimated from daily rolling estimation using an expanding
window with 1996 to 2000 as the initial estimation period. The table also reports the Wald
statistic for the null hypothesis that the return forecast is unbiased H0 : β = [0 1]. While
the null hypothesis is rejected at a one-month horizon for maturities of one-year or more, it
is not rejected for other horizons or maturities.

The return predictability results are encouraging. Recall that the model is estimated by
minimizing variance swap pricing errors, not by minimizing return forecast errors. Despite
this, the model provides relatively unbiased return forecasts and delivers significant in-sample
and out-of-sample predictability for variance swap returns. The Appendix provides further
analysis and robustness checks. The model continues to significantly predict variance swap
returns during a post-crisis subsample starting in 2010, showing that the results are not
driven by the financial crisis. In addition, the model significantly predicts the returns of
delta-hedged index option straddles, showing that the predictability is not driven by the
interpolation of synthetic variance swap rates or the definition of variance swap returns.

4.3 Realized Variance and Implied Volatility Term Premia

4.3.1 Time-Series Dynamics

Figure 1 plots estimates of realized variance term premia RVTP for one-month and twelve-
month horizons in annualized variance units. RVTP represent the term-structure of expected
holding period returns from receiving fixed in variance swaps of different maturities. The
RVTP estimates tend to increase during periods of financial distress and heightened system-
atic risk. For example, during the financial crisis, the twelve-month RVTP reaches levels
as high as 5% to 15% versus an unconditional average of 2.5%. The twelve-month term
premium is also more persistent than the one-month term premium. After a negative shock,
long-dated term premia increase and remain elevated whereas short-dated term premia mean
revert more quickly, particularly during the financial crisis and European sovereign debt cri-
sis. Finally, the plot reveals that the term structure of RVTP has changed since the financial
crisis, with long-dated term premia increasing relative to short-dated term premia on average.

Figure 2 plots estimates of implied volatility term premia IVTP for one-, two-, three-,
and six-month horizons in monthly volatility units. IVTP represent the term-structure of

17Results are similar if expected returns are defined as variance swap rates minus the model forecast
V St,n− Êt[V St+1,n−1] rather than the model price minus the model forecast V̂ St,n− Êt[V St+1,n−1]. In this
case, the average in-sample (out-of-sample) R2

adj is 11% (5%), 17% (13%), and 28% (21%) over one-, three-,
and six-month horizons.
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expected holding period returns from selling VIX futures contracts of different maturities.
The IVTP estimates are large in magnitude and switch signs between being positive and
negative. For example, following the financial crisis, IVTP reach levels as high as 1% to
3% per month, but were negative before the financial crisis and in recent years. The nega-
tive estimates of IVTP and downward spikes when systematic risk increases are surprising.
Equilibrium models such as Drechsler and Yaron (2011) and Eraker and Wu (2017) indicate
that investors should earn a positive risk premium for bearing exposure to implied volatility
shocks that is increasing in systematic risk.18 Similarly, from a factor model perspective,
the returns from selling VIX futures are positively correlated with stock market returns,
suggesting that the IVTP should be positive and increasing in measures of the equity risk
premium like the SVIX from Martin (2017). Empirically, the downward spikes in the IVTP
estimates are similar to the findings in Cheng (2018) who documents a negative response of
the VIX premium to increases in systematic risk. I explore what drives these results in the
estimated term-structure model below.

4.3.2 Variance Decompositions

Table 6 reports a variance decomposition for the model prices of variance swaps and VIX
futures into the percentage contributions stemming from term premia versus volatility fore-
casts. Panel A indicates that RVTP account for around 40% of the variation in variance
swap rates for maturities less than six-months and as much as 75% of the variation for longer-
dated maturities. Panel B indicates that IVTP account for less than 30% of the variation in
VIX futures prices for short-dated maturities and as much as 90% of the variation for longer-
dated maturities. The prominent role of term premia in driving long-dated variance swap
rates and VIX futures prices alludes to the excess volatility puzzle documented in Giglio and
Kelly (2017). From the perspective of the no-arbitrage model in this paper, the forecasts for
realized and implied volatility explain little of the movement in long-dated variance swaps
and VIX futures, with term premia, or the unexplained component, driving the prices and
return predictability.

4.3.3 Reaction to the State Variables

To better understand how the RVTP and IVTP estimates respond to changes in risk, Table 7
regresses monthly changes in the term premia onto standardized changes in realized variance
and the first two principal components of variance swap rates. The term premia are driven

18The Appendix derives RVTP and IVTP in the two-factor Eraker and Wu (2017) model and shows that
equity volatility term premia are increasing in the spot and long-run volatility factors.
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by the estimated prices of risk Λ̂0 and Λ̂1 in Table 3. While the point estimates are difficult to
interpret in isolation, the regression results provide a linear approximation for how realized
variance, the level of variance swap rates, and the slope of the variance swap curve contribute
to equity volatility term premia on average.

In Panel A, the linear approximation for RVTP provides explanatory power of around
95%. The results indicate that each of the variables contributes significantly to the variation
in RVTP. An increase in realized variance decreases RVTP with a magnitude that is largest
at the short end of the curve. An increase in the level of variance swap rates increases RVTP
in a roughly parallel manner across the curve. An increase in the slope factor increases
(decreases) RVTP at the short-end (long-end) of the curve.

In Panel B, the linear approximation for IVTP provides explanatory power of around 60%
for short-dated maturities and up to 90% for longer-dated maturities. In contrast to RVTP,
changes in realized variance are less significant for IVTP as measured by either statistical
significance or the magnitude of the coefficients. Instead, the level and slope factors have
offsetting effects, with IVTP increasing in the level factor and decreasing in the slope factor.
The magnitude of the coefficients is increasing in maturity for the level factor and hump
shaped for the slope factor. Intuitively, an increase in the slope factor or inversion of the
variance swap curve corresponds to lower variance swap forward rates and lower VIX futures
prices for longer maturities relative to shorter maturities, all else equal. This decreases
IVTP further out on the curve while having a limited impact on the statistical or P-measure
forecast for the level factor as evidenced from the point estimate for Φ̂ in Table 3.

The estimated loadings provide insight into how the model estimates of RVTP and IVTP
respond to changes in risk. As the results indicate, the model is flexible and can accommodate
a positive or negative response. For example, increases in realized variance have an offsetting
effect from increases in the level and slope factors for RVTP. Empirically the latter effects
tend to have a larger quantitative impact during periods of heightened risk which leads to
increases in the RVTP estimates during periods like the financial crisis. In contrast, the
level and slope factors have offsetting effects for the IVTP estimates. The downward spikes
and subsequent increases in the IVTP estimates during periods of increased risk indicate
that the slope factor initially dominates but then the more persistent level factor becomes
pronounced.

In addition to the linear approximations, it is also possible to compute the exact sen-
sitivities of term premia with respect to the state variables. For example, the response of
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RVTP to changes in the state variables is,

∇RV TPt,n =
12

n

(
n∑
i=1

Bi · eAi+B
′
iXt −

n∑
i=1

BP
i · eA

P
i +(BPi )′Xt

)
. (28)

This response changes over time and depends on the state vectorXt. To provide a comparison
to the regression results, Figure 6 plots the average partial derivatives for RVTP and IVTP
for a one-standard deviation change in the state variables. The plots are qualitatively similar
to the regression results with different magnitudes. For example, for both the regressions
and average partial derivatives, the IVTP estimates are increasing in the level factor and
decreasing in the slope factor. The Appendix provides additional results illustrating how
the sensitivity of term premia to the state variables changes over time. For example, during
the financial crisis, the response of term premia to the state vector is magnified due to the
high values of the state variables. The qualitative shape can also change depending on the
state. In a low volatility state with an upward sloping variance swap curve, increases in the
level factor have a larger impact at the long-end of the curve for RVTP rather than a more
parallel impact.

4.3.4 Relationship to Risk

Figure 7 investigates the relationship between equity volatility term premia and risk by
plotting the impulse response functions of the RVTP and IVTP estimates to a VIX shock
from a bivariate VAR. The VAR is estimated separately for one-month and six-month term
premia estimates using weekly data with four lags over the full sample period. The IRFs are
from a Cholesky decomposition with the VIX ordered first and the term premia estimate
second. The confidence intervals are block bootstrapped and the variables in the VAR are
standardized or z-scored for ease of interpretation.

The IRFs indicate that the RVTP estimates increase in response to a VIX shock and
then decline over time. There is a more pronounced effect for the one-month RVTP in the
first few weeks and a more persistent effect for the six-month RVTP over longer horizons.
This reaction is qualitatively similar to the response of risk premia to a negative shock in
consumption-based asset pricing models (Eraker 2020). In contrast, the IRFs for the IVTP
estimates do not feature a sharp increase in the first few weeks after a VIX shock. In fact,
the one-month IVTP estimate actually has a negative response over short horizons. Over
longer horizons, the IVTP response is positive and then declines. These dynamics are driven
by the estimated prices of risk as discussed in the previous section. The negative response
over short horizons indicates that the slope factor dominates, but then over longer horizons
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the more persistent level factor drives the response.
The finding that IVTP are decreasing in risk over short horizons is related to Cheng

(2018)’s analysis of the VIX premium. The VIX premium is defined as the VIX futures price
minus a statistical forecast of the VIX index at maturity scaled to a one-month horizon.
Figure 8 plots the one-month IVTP against the one-month VIX premium from Cheng (2018).
The time-series are 62% correlated from March 26, 2004 to May 21, 2020. Building on the
results in Cheng (2018), the term-structure model arrives at a similar estimate for the one-
month implied volatility risk premium using a different modeling approach that does not
require VIX futures data and is thus available for the full 1996 to June 2020 sample period.
Similar to the VIX premium, the one-month IVTP exhibits a negative response to risk over
short horizons.

The significant correlation between the one-month IVTP and VIX premium is also inter-
esting because it questions the mechanism driving the VIX premium. Cheng (2018) argues
that falling hedging demand contributes to the negative response of the VIX premium to
risk, as the VIX premium and dealer net positions from the CFTC’s Commitment of Traders
Report tend to fall together when risk increases. This explanation does not explain the neg-
ative response of the one-month IVTP estimate to increases in risk, as the IVTP estimate is
from a term-structure model estimated with synthetic variance swap and realized variance
data, not VIX futures data. Instead, the analysis in this paper suggests that an important
component of the VIX premium dynamics is related to the pricing of risk as captured by the
no-arbitrage term-structure model.

4.4 Relative Pricing of Variance Swaps and VIX Futures

This section investigates the pricing of VIX futures. The analysis complements Van Tassel
(2020) which provides an in-depth analysis of the no-arbitrage violations across the VIX
futures and index options markets. Recall that the model is estimated with synthetic variance
swap rates implied by index option prices and realized variance data. As such, the model
pricing errors for VIX futures reveal how VIX futures are valued relative to index options.

Figure 9 plots the VIX futures prices and model prices over time for the front six contracts.
While the model seems to track the futures price very accurately in the plots on the left,
the pricing errors on the right reveal that there can be substantial differences between the
futures prices and model prices. Table 8 reports summary statistics for the model pricing
errors for a balanced panel of the front six futures contracts from January 3, 2007 to June
30, 2020. The average bias is around -.40% across contracts indicating that VIX futures
are cheap relative to the option-implied model prices. The standard deviation of around 1%
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is more than double the RMSE for the variance swap pricing errors and large relative VIX
futures bid-ask spreads of around .05%. Moreover, the minimum and maximum values of
the errors indicate that VIX futures can exhibit substantial deviations relative to the model
prices which is also evident in the time-series plots. The front two contracts have errors that
are negatively skewed and fat-tailed. The errors are less negatively skewed for the longer-
dated contracts but the 25th percentile of the errors is still quite low at between -.8% for
the front contract to around -1% for the longer-dated contracts. In relation to the previous
section, a measure similar to the VIX premium can be decomposed as the pricing error plus
the implied volatility term premium,

Futt,n − Êt[V IXTn ]︸ ︷︷ ︸
VIX Premium

= (Futt,n − F̂ utt,n)︸ ︷︷ ︸
Pricing Error

+ ( ˆFutt,n − Êt[V IXTn ])︸ ︷︷ ︸
IV TP

, (29)

where ˆFutt,n is the model price and Êt[V IXTn ] is a statistical forecast of the VIX index at
maturity from the term-structure model. To the extent that the pricing errors are negatively
correlated with risk, the negative response of the VIX premium will reflect declines in the
pricing errors and the IVTP.

Despite the sometimes large pricing errors, Table 9 shows that the IVTP estimates pre-
dict VIX futures returns. The table reports regressions of VIX futures holding period returns
for the front six contracts onto the IVTP estimates. Similar to the variance swap return
predictability regressions, although these moments are not targeted in estimation, the Wald
statistic for the null hypothesis that IVTP estimates are unbiased H0 : β = [0 1] is not
rejected. The model delivers significant in-sample forecasts across contracts and a positive
out-of-sample R2

oos for the longer-dated contracts. The Appendix shows that similar sum-
mary statistics and return predictability results hold for a post-crisis period starting in 2010.
The bias of the pricing errors is -.50% on average and the standard deviation of the errors is
similar at around .90%. The magnitude of the pricing errors does not decline as the market
becomes more established. Instead, they are pervasive throughout the sample. In addition,
the IVTP estimates continue to predict VIX futures for the post-crisis period and the null
that the estimates are unbiased return predictors is not significantly rejected.

5 Conclusion

This paper estimates term premia for realized variance and implied volatility in a dynamic
term-structure model. By modeling the logarithm of realized variance in discrete time,
the paper outlines a new approach for pricing variance swaps and VIX futures in closed
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form. The paper estimates the model using a detailed dataset of synthetic variance swaps
constructed from index option prices and realized variance estimates from high frequency
data. Estimates of realized variance term premia are increasing in systematic risk and
predict the returns of variance swaps and index option straddles. Estimates of implied
volatility term premia initially decrease or are unresponsive when risk increases, but then
increase at a lag, predicting the returns of VIX futures. The model provides accurate pricing
but also highlights periods of large dislocations between the index options and VIX futures
markets. Term premia account for a significant fraction of the variation in long-maturity
claims. Future research can build on these results in multiple directions. VIX options are
now actively traded. Developing models to price VIX futures and options, and seeing how
these models inform estimates of equity volatility term premia is an interesting direction for
future work.
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Table 1: Summary Statistics for Variance Swap Rates and Returns

This table reports summary statistics for variance swap rates and monthly excess returns from
January 31, 1996 to June 30, 2020. Panel A indicates that variance swaps are higher in level and
more autocorrelated than realized variance. The term-structure is upward sloping on average and
exhibits higher volatility and more positive skewness at the short-end of the curve. Panel B indicates
that receiving fixed in one-month variance swaps has earned an excess return of .16% and a Sharpe
ratio of .37 per month over the sample period. The mean and standard deviation of variance swap
returns are increasing in maturity while the Sharpe ratio and t-statistic are decreasing. Selling
volatility by receiving fixed has earned significant abnormal returns relative to the CAPM at the
short-end of the curve.

Panel A: Variance Swap Rates (annualized volatility units)
Maturity in months RV 1 3 6 9 12 18 24
Mean 15.08 20.70 21.24 21.86 22.12 22.38 22.80 23.08
Standard Deviation 9.10 8.69 7.52 6.67 6.18 5.88 5.59 5.44
Skewness 3.32 2.21 1.92 1.62 1.48 1.31 1.12 1.04
Kurtosis 20.01 10.89 8.90 7.07 6.30 5.54 4.70 4.41
Minimum 4.33 9.65 10.97 11.89 12.51 13.12 13.79 13.91
Median 12.81 18.86 19.74 20.54 20.94 21.17 21.69 22.08
Maximum 86.82 83.60 74.30 63.46 58.06 54.19 50.66 48.96
Autocorrelation 1-month 0.71 0.78 0.84 0.87 0.89 0.90 0.92 0.92
Autocorrelation 6-month 0.24 0.36 0.42 0.49 0.52 0.56 0.61 0.64

Panel B: Variance Swap Returns (one-month excess returns, percent)
Maturity in months 1 3 6 9 12 18 24
Mean 0.16 0.16 0.17 0.17 0.20 0.19 0.21
Standard Deviation 0.43 0.96 1.36 1.62 1.83 2.31 2.80
Sharpe ratio 0.37 0.17 0.13 0.10 0.11 0.08 0.07
t-statistic 6.71 3.11 2.28 1.85 1.92 1.46 1.36
Skewness -5.54 -5.57 -5.25 -4.66 -4.27 -3.37 -3.02
Kurtosis 74.04 70.11 64.23 54.23 48.73 37.03 33.38
Minimum -5.59 -14.38 -22.00 -25.62 -28.23 -32.82 -39.86
Median 0.14 0.19 0.25 0.27 0.31 0.32 0.36
Maximum 3.67 8.91 12.04 14.21 14.49 18.36 21.75
Autocorrelation 1-month 0.10 0.09 0.10 0.10 0.10 0.07 0.05
Autocorrelation 6-month -0.00 -0.08 -0.10 -0.10 -0.11 -0.11 -0.11
Negative Percent 0.09 0.19 0.27 0.30 0.32 0.35 0.37
CAPM α 0.13 0.07 0.04 0.01 0.02 -0.03 -0.04
tα-statistic 5.35 1.52 0.64 0.16 0.27 -0.29 -0.34
CAPM β 0.05 0.13 0.19 0.22 0.25 0.31 0.36
tβ-statistic 4.18 5.38 5.97 6.46 6.79 7.29 7.32
CAPM R2

adj 0.28 0.45 0.47 0.47 0.46 0.45 0.41
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Table 2: Model Performance Varying the Number of Factors

This table compares the performance of the three-factor logarithmic model Xt = [lnRVt PClevel,t
PCslope,t] with two principal component factors KPC = 2 to alternative specifications that vary the
number of principal components in the state vector and reduced form linear models. The results
are averaged across maturities during a January 2000 to June 2020 sample period. The out-of-
sample analysis is performed by estimating the model with an expanding window using 1996 to
1999 as the initial estimation period. Panel I reports variance swap pricing errors in annualized
volatility units measured by the root-mean-squared error RMSE, mean-absolute error MAE, and
median-absolute deviation MAD. Panel II reports the model’s variance swap return forecast errors
measured by explanatory power R2 from return predictability regressions. Panel III reports the
unrestricted linear model’s return forecast errors. Panels IV and V compare the return forecast
errors of the three-factor logarithmic model to the linear models for a mean-squared-error MSE

and mean-absolute-error MAE criteria. When forecasting returns out-of-sample, the three-factor
no-arbitrage model outperforms the reduced form linear models by as much as 5% to 15%.

Panel A: In-sample

Panel A.I: Model pricing errors
KPC 1 2 3 4 5
RMSE 1.21 0.42 0.45 0.22 0.21
MAE 0.88 0.29 0.31 0.14 0.14
MAD 0.71 0.22 0.13 0.11 0.10

Panel A.II: Model return forecast R2
Mod,is

KPC 1 2 3 4 5
1mn 0.09 0.10 0.11 0.13 0.13
3mn 0.15 0.17 0.17 0.18 0.18
6mn 0.24 0.26 0.26 0.26 0.27

Panel A.III: Linear return forecast R2
Lin,is

KPC 1 2 3 4 5
1mn 0.08 0.09 0.14 0.17 0.17
3mn 0.15 0.15 0.17 0.18 0.18
6mn 0.24 0.25 0.25 0.25 0.25

Panel A.IV: ln(MSEKPC

Lin,is/MSEKPC=2
Mod,is )

KPC 1 2 3 4 5
1mn 0.03 0.01 -0.05 -0.08 -0.08
3mn 0.03 0.02 0.00 -0.01 -0.01
6mn 0.04 0.02 0.02 0.02 0.01

Panel A.V: ln(MAEKPC

Lin,is/MAEKPC=2
Mod,is )

KPC 1 2 3 4 5
1mn 0.01 0.01 0.03 0.02 0.01
3mn 0.05 0.03 0.04 0.03 0.03
6mn 0.06 0.04 0.04 0.04 0.03

Panel B: Out-of-sample

Panel B.I: Model pricing errors
KPC 1 2 3 4 5
RMSE 1.30 0.44 0.28 0.24 0.22
MAE 0.95 0.31 0.18 0.15 0.14
MAD 0.71 0.22 0.13 0.11 0.10

Panel B.II: Model return forecast R2
Mod,oos

KPC 1 2 3 4 5
1mn 0.05 0.05 0.06 0.06 0.06
3mn 0.12 0.13 0.13 0.13 0.14
6mn 0.19 0.21 0.21 0.21 0.21

Panel B.III: Linear return forecast R2
Lin,oos

KPC 1 2 3 4 5
1mn -0.12 -0.11 -0.06 -0.02 -0.02
3mn 0.11 0.11 0.10 0.11 0.11
6mn 0.20 0.20 0.17 0.17 0.16

Panel B.IV: ln(MSEKPC

Lin,oos/MSEKPC=2
Mod,oos)

KPC 1 2 3 4 5
1mn 0.19 0.16 0.14 0.08 0.08
3mn 0.04 0.03 0.05 0.03 0.03
6mn 0.01 0.01 0.05 0.05 0.06

Panel B.V: ln(MAEKPC

Lin,oos/MAEKPC=2
Mod,oos)

KPC 1 2 3 4 5
1mn 0.06 0.06 0.08 0.07 0.07
3mn 0.09 0.09 0.14 0.13 0.13
6mn 0.10 0.09 0.13 0.13 0.13
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Table 3: Model Estimate

This table reports the estimated model parameters using the realized variance and variance swap
data from January 31, 1996 to June 30, 2020. The physical parameters µ and Φ are estimated
by a monthly vector autoregression equation by equation from overlapping daily data by ordinary
least squares. The risk-neutral parameters µQ and ΦQ are estimated by nonlinear least squares
to minimize daily variance swap pricing errors. The table reports the price of risk parameters
Λ0 = µ − µQ and Λ1 = Φ − ΦQ. The significant estimates indicate that each state variable
contributes to the time-varying price of volatility risk and volatility forecasts. The table reports
Newey-West t-statistics for the VAR using 3·h lags and block bootstrapped t-statistics for the prices
of risk where ∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1% levels.

Panel A: Physical Parameters

µ Φ1,1 Φ1,2 Φ1,3

ln(RV ) 0.01 0.24∗∗∗ 0.20∗∗∗ 0.42∗∗∗

[0.21] [3.58] [9.15] [6.04]
PClevel 0.03 0.02 0.89∗∗∗ -0.01

[0.43] [0.20] [25.97] [-0.09]
PCslope -0.00 0.01 -0.04∗∗∗ 0.80∗∗∗

[-0.17] [0.20] [-4.05] [28.31]

Panel B: Prices of Risk

Λ0 Λ1,1 Λ1,2 Λ1,3

ln(RV ) -0.63∗∗∗ 0.23∗∗∗ -0.08∗∗∗ -0.07
[-12.10] [4.10] [-3.65] [-1.26]

PClevel -0.01 0.05 -0.06∗ 0.43∗∗∗

[-0.18] [0.51] [-1.69] [4.63]
PCslope -0.02 0.01 -0.02∗ 0.02

[-0.97] [0.49] [-1.71] [0.73]

Table 4: Variance Swap Pricing Errors

This table summarizes the model fitting errors for variance swaps in annualized volatility units and
for monthly returns in basis points from January 31, 1996 to June 30, 2020 using daily data. The
pricing errors are unbiased and slightly smaller than typical bid-ask spreads in the index options
and variance swap markets. The return pricing error is Rt+1,n − R̂t+1,n where the fitted monthly
return is R̂t+1,n = V̂ St,n − V̂ St+1,n−1 −RVt+1.

Panel A: Variance swap rate pricing errors (annualized volatility units)
Maturity in months 1 3 6 9 12 18 24 Avg.
Mean 0.00 -0.06 0.05 -0.02 -0.01 0.02 -0.01 -0.00
Standard Deviation 0.68 0.37 0.46 0.40 0.39 0.29 0.42 0.43
Skewness 1.13 -0.99 -0.07 -0.56 -1.54 -1.59 -0.94 -0.65
Kurtosis 13.78 13.15 10.50 8.22 14.46 18.61 9.44 12.59
Autocorrelation 1-month 0.39 0.21 0.56 0.58 0.42 0.43 0.59 0.46
Autocorrelation 6-month 0.15 0.10 0.26 0.23 0.21 0.06 0.30 0.19

Panel B: Variance swap return pricing errors (monthly returns in basis points)
Maturity in months 1 3 6 9 12 18 24 Avg.
Mean 0.18 -0.01 -0.05 -1.25 1.06 -0.74 0.77 -0.01
Standard Deviation 4.31 7.15 13.82 18.80 27.30 31.00 44.78 21.02
Skewness 3.93 -3.16 -2.46 -1.15 -0.44 0.79 -0.20 -0.38
Kurtosis 96.09 70.08 53.93 53.52 49.21 64.31 37.80 60.71
Autocorrelation 1-month 0.28 0.11 -0.15 -0.12 -0.22 -0.24 -0.26 -0.09
Autocorrelation 6-month 0.02 0.03 -0.06 -0.05 0.09 0.01 0.08 0.02
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Table 5: Variance Swap Return Predictability

This table reports regressions of variance swap returns onto model expected returns for different
horizons h and maturities n from January 31, 1996 to June 30, 2020. R2

oos is the out-of-sample
explanatory power relative to a historical mean model using expanding window estimation from
2000 on. Wβ is the Wald statistic for H0 : β = [0 1] whose p-value is in parentheses. The table
reports Newey-West standard errors to account for the overlapping returns using 3 · h · 21 lags.

Return Predictability: Rt+h,n = β0 + β1Êt[Rt+h,n] + εt+h,n

Maturity (n) 1 3 6 9 12 18 24

One-month returns (h = 1, T = 6, 053)

β0 -0.02 -0.10 -0.14 -0.17 -0.16 -0.19 -0.19
(0.02) (0.06) (0.09) (0.12) (0.13) (0.16) (0.19)

β1 1.01∗∗∗ 1.34∗∗∗ 1.50∗∗∗ 1.55∗∗∗ 1.61∗∗∗ 1.63∗∗∗ 1.67∗∗∗
(0.12) (0.25) (0.26) (0.26) (0.25) (0.27) (0.29)

R2
adj 0.18 0.11 0.10 0.10 0.11 0.10 0.11

R2
oos 0.11 0.06 0.05 0.05 0.04 0.04 0.04

Wβ 1.53 2.64 3.82 4.54 6.48∗∗ 5.87∗ 5.71∗
p-value (0.46) (0.27) (0.15) (0.10) (0.04) (0.05) (0.06)

Three-month returns (h = 3, T = 6, 011)

β0 -0.21∗ -0.24 -0.28 -0.28 -0.30 -0.30
(0.12) (0.20) (0.26) (0.30) (0.37) (0.44)

β1 1.23∗∗∗ 1.24∗∗∗ 1.22∗∗∗ 1.24∗∗∗ 1.24∗∗∗ 1.27∗∗∗
(0.15) (0.18) (0.16) (0.15) (0.14) (0.14)

R2
adj 0.26 0.18 0.16 0.16 0.16 0.17

R2
oos 0.21 0.14 0.12 0.11 0.11 0.10

Wβ 3.27 2.23 2.25 2.74 3.11 3.86
p-value (0.19) (0.33) (0.32) (0.25) (0.21) (0.15)

Six-month returns (h = 6, T = 5, 948)

β0 -0.27 -0.33 -0.35 -0.32 -0.37
(0.23) (0.38) (0.47) (0.62) (0.76)

β1 1.15∗∗∗ 1.15∗∗∗ 1.14∗∗∗ 1.14∗∗∗ 1.16∗∗∗
(0.11) (0.11) (0.10) (0.10) (0.11)

R2
adj 0.33 0.28 0.26 0.27 0.27

R2
oos 0.27 0.21 0.19 0.18 0.17

Wβ 2.42 2.01 1.97 2.49 3.18
p-value (0.30) (0.37) (0.37) (0.29) (0.20)
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Table 6: Variance Swap Rate and VIX Futures Variance Decompositions

Panel A reports a variance decomposition of variance swaps into realized variance term premia and
realized variance forecasts. Panel B reports a variance decomposition of VIX futures into implied
volatility term premia and implied volatility forecasts. Term premia play a larger role in the variance
decompositions at the long-end of the curve for both variance swaps and VIX futures.

Variance Swap and VIX Futures Decompositions from 1996-2018
Maturity in months 1 3 6 9 12 18 24

Panel A: Variance Swap Decomposition: V St,n = RV Ft,n +RV TPt,n

σV S,RV F /σ
2
V S 0.62 0.56 0.46 0.38 0.32 0.23 0.18

σV S,RV TP /σ
2
V S 0.38 0.44 0.54 0.62 0.68 0.77 0.82

Panel B: VIX Futures Decomposition: Futt,n = V IXFt,n + IV TPt,n

σFut,V IXF /σ
2
Fut 0.95 0.73 0.43 0.26 0.17 0.08 0.04

σFut,IV TP /σ
2
Fut 0.05 0.27 0.57 0.74 0.83 0.92 0.96

Table 7: Variance Swap Rate and VIX Futures Factor Loadings

Panel A regresses monthly changes in realized variance term premia onto z-scored changes in realized
variance and the first two principal components of the level of variance swap rates. Panel B reports
the analogous results for VIX futures. The loadings from the regressions of RV TP and IV TP onto
the linear factors are similar to the model’s average partial derivatives of term premia with respect
to the state vector reported in Figure 6.

Variance Swap and VIX Futures Decompositions from 1996-2018
Maturity in months 1 3 6 9 12 18 24

Panel A: Realized Variance Term Premia Decomposition: ∆RV TPt,n = β′∆ft + εt,n

∆RV -0.96∗∗∗ -0.30∗∗∗ -0.14∗∗∗ -0.13∗∗∗ -0.14∗∗∗ -0.05∗∗∗ -0.03∗∗
(0.06) (0.08) (0.04) (0.03) (0.02) (0.01) (0.01)

∆PC1 1.43∗∗∗ 1.46∗∗∗ 1.36∗∗∗ 1.34∗∗∗ 1.29∗∗∗ 1.25∗∗∗ 1.24∗∗∗
(0.12) (0.09) (0.08) (0.07) (0.06) (0.01) (0.03)

∆PC2 1.22∗∗∗ -0.09 -0.48∗∗∗ -0.57∗∗∗ -0.63∗∗∗ -0.68∗∗∗ -0.71∗∗∗
(0.10) (0.06) (0.05) (0.04) (0.03) (0.03) (0.05)

R2
adj 0.93 0.91 0.92 0.94 0.94 0.97 0.95

Panel B: Implied Volatility Term Premia Decomposition: ∆IV TPt,n = β′∆ft + εt,n

∆RV -0.07∗∗ 0.05 0.12∗∗ 0.13∗∗ 0.13∗∗ 0.12∗∗ 0.11∗∗
(0.03) (0.05) (0.06) (0.05) (0.05) (0.05) (0.04)

∆PC1 0.40∗∗∗ 0.85∗∗∗ 1.27∗∗∗ 1.52∗∗∗ 1.66∗∗∗ 1.75∗∗∗ 1.72∗∗∗
(0.04) (0.08) (0.07) (0.07) (0.07) (0.08) (0.09)

∆PC2 -0.48∗∗∗ -0.99∗∗∗ -1.20∗∗∗ -1.22∗∗∗ -1.20∗∗∗ -1.12∗∗∗ -1.04∗∗∗
(0.03) (0.08) (0.11) (0.11) (0.11) (0.10) (0.10)

R2
adj 0.63 0.65 0.72 0.80 0.85 0.88 0.89
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Table 8: VIX Futures Pricing Errors

This table reports summary statistics for the model pricing errors for the front six VIX futures
contracts for a balanced panel from January 3, 2007 to June 30, 2020 (T = 3, 375, N = 6).

VIX Futures Model Pricing Errors et,n = Futt,n − Futmodelt,n
Contract 1 2 3 4 5 6 Avg.
Mean -0.51 -0.37 -0.35 -0.38 -0.37 -0.34 -0.39
Standard Deviation 0.99 1.15 1.10 1.01 0.99 0.97 1.03
t-statistic -8.48 -3.86 -3.50 -3.84 -3.69 -3.56 -4.49
Skewness -3.73 -2.11 -1.28 -0.24 0.18 -0.36 -1.26
Kurtosis 36.26 17.12 10.81 6.48 6.45 8.55 14.28
Minimum -13.42 -11.17 -8.74 -7.77 -7.32 -9.35 -9.63
25th-Percentile -0.81 -0.87 -0.97 -1.05 -1.04 -1.02 -0.96
Median -0.39 -0.32 -0.38 -0.49 -0.46 -0.42 -0.41
75th-Percentile -0.03 0.22 0.33 0.33 0.32 0.32 0.25
Maximum 4.20 4.81 4.15 4.41 4.75 3.47 4.30

Table 9: VIX Futures Return Predictability

This table reports regressions of VIX futures holding period returns onto the implied volatility term
premium by contract from January 3, 2007 to June 30, 2020. R2

oos is the out-of-sample explanatory
power relative to a historical mean model using expanding window estimation from 2000 on. Wβ

is the Wald statistic for the hypothesis H0 : β = [0 1] whose p-value is in parentheses. The table
reports Newey-West standard errors to account for the overlapping returns using 3 · h · 21 lags.

Return Predictability: Futt,n − V IXTn = β0 + β1IV TPt,n + εt,n

Contract (n) 1 2 3 4 5 6

β0 -0.16 -0.18 -0.25 -0.25 -0.41 -0.56
(0.54) (0.90) (1.08) (1.28) (1.45) (1.70)

β1 1.15∗∗ 1.22∗∗∗ 1.24∗∗∗ 1.26∗∗∗ 1.27∗∗∗ 1.33∗∗∗
(0.51) (0.31) (0.24) (0.23) (0.21) (0.20)

R2
adj 0.05 0.07 0.10 0.13 0.15 0.18

R2
oos 0.00 -0.00 0.02 0.01 0.11 0.17

N 3375 3375 3375 3375 3366 3347

Wβ 0.09 0.77 1.18 1.63 1.95 3.08
p-value (0.95) (0.68) (0.55) (0.44) (0.38) (0.21)
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Figure 1: Realized Variance Term Premia
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This figure plots realized variance term premia RV TPt,n for one-month and twelve-month horizons
in annualized variance units. Realized variance term premia represent the expected holding period
return from receiving fixed in variance swaps of different maturities. These term premia estimates
can be interpreted as the cost of insuring against realized variance shocks over different horizons.
High levels of variance term premia predict high returns from selling volatility by receiving fixed in
variance swaps and by selling index option straddles.
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Figure 2: Implied Volatility Term Premia
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This figure plots the time-varying price of implied volatility risk as measured by the model estimate
of VIX futures term premia V XTPt,n for one-, two-, three-, and six-month horizons. VIX futures
term premia represent the expected holding period return from selling VIX futures contracts of
different maturities. These term premia estimates can be interpreted as the cost of insuring against
implied volatility shocks over different horizons. High levels of VIX term premia predict high returns
from selling VIX futures.
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Figure 3: Realized and Implied Volatility versus the Stock Market
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This figure plots the time series of the one-month synthetic variance swap rate and realized variance
estimates against the cumulative excess return on the stock market. Increases in volatility are
negatively correlated with stock market returns. Selling volatility by receiving fixed in variance
swaps produces returns that are positively correlated with stock market returns. Equivalently,
paying fixed in variance swaps provides a hedge for stock market declines. The plot reports the
correlation of one-month changes in realized variance and variance swap rates with stock market
returns. Stock market returns are defined as the CRSP value-weighted excess returns.
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Figure 4: State Variables for Three-Factor Logarithmic Model
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This figure plots the state variables Xt = [ln(RVt) PClevel,t PCslope,t] for the baseline model used
in estimation with two principal component factors KPC = 2. The first state variable is the
logarithm of realized variance. The second and third state variables are the first and second principal
components from the logarithm of variance swap rates. The principal components can be interpreted
as level and slope factors. The state variables are standardized in the plot for comparison. The
model setup is similar to three-factor fixed income term-structure models that use three principal
components from the yield curve to price bonds. The difference for the variance swap model is
that realized variance plays the role of the short rate and the factors are in logs, not levels. The
Appendix reports the principal component loadings for logarithmic and linear models.
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Figure 5: Model Fit for Variance Swap Rates
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This figure plots the synthetic variance swap rates against the estimated model prices for 1, 3, 6,
and 12-month maturities at a daily frequency from January 31, 1996 to June 30, 2020. A three-
factor logarithmic model with two principal components fits the cross section of variance swap rates
with small pricing errors as measured by the root-mean-squared-errors (RMSEs) in the titles of the
subplots. The model’s risk neutral parameters µQ and ΦQ are estimated by nonlinear least squares
to minimize variance swap pricing errors.
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Figure 6: RVTP and IVTP State Variable Sensitivities
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This figure plots the average partial derivative of the variance term premia ∇RV TPt,n and vix term
premia ∇IV TPt,n for a one standard deviation increase in the state variables. The average response
is qualitatively similar to the regression coefficients in Table 7. Since the model is nonlinear, the
response of term premia to the state vector depends on the level of the state vector. The Appendix
reports similar figures for high and low volatility states.
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Figure 7: Impulse Response Functions of RVTP and IVTP to a VIX Shock
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This figure plots the impulse response functions of the RVTP and IVTP estimates for one-month
and six-month horizons to a one standard deviation VIX shock from a bivariate VAR. The VAR is
estimated with weekly data using four lags. The IRFs are from a Cholesky decomposition with the
VIX ordered first and the confidence intervals are block bootstrapped.

Figure 8: Implied Volatility Risk Premium versus the VIX premium
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This figure plots the one-month IV TP estimate against the one-month VIX premium from Cheng
(2018). The two series are 62% correlated from March 26, 2004 to May 21, 2020. The VIX premium
is the expanding window estimate from daily data. The IV TP estimates from the term-structure
model extend back before the start of VIX futures trading.
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Figure 9: Relative Pricing of VIX Futures
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This figure illustrates the relative pricing of variance swaps and VIX futures. The model is estimated
from realized variance and variance swap data as described in the paper and is then applied to study
the pricing of VIX futures. The left plots report the futures price and model futures price for the
front six contracts. The right plots report the pricing error or difference between the futures price
and model with the root-mean-squared-error (RMSE) in annualized volatility units in the title.
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A Appendix

A.1 Data

A.1.1 Synthetic Variance Swap Rates

I compute synthetic variance swap rates from the price of a replicating portfolio of options
following Carr and Wu (2009). I perform this computation every day for traditional expira-
tions with between ten days and three years to maturity and at least five out-of-the-money
(OTM) options whose Black-Scholes-Merton (BSM) deltas are greater than 0.1% in mag-
nitude.19 For each maturity-date pair satisfying this filter, I fit a flexible implied volatility
function by local linear regression to OTM options and compute synthetic variance swap
rates as the weighted average of fitted option prices.20 To obtain a constant maturity term-
structure, I interpolate the synthetic variance swap rates at the observed maturities onto
a monthly grid from one-month to two-years. The interpolation is linear in total variance
following Carr and Wu (2009) and the CBOE volatility indices.

Figure A.1 provides an example of the estimation procedure on December 20, 2019. The
top plot reports the fitted implied volatility functions against log-moneyness for different
maturities. The close fit indicates that the implied volatility functions provide an accurate
estimate of the risk-neutral distribution. The bottom plot reports the estimated synthetic
variance swap rates against the CBOE volatility indices and Bloomberg synthetic rates.21

The estimated rates closely align with the CBOE indices. The Bloomberg rates are somewhat
lower but within typical bid-ask spreads in the index options and OTC variance swap markets
for the longer maturities (for example, see Eraker and Wu (2017) and Dew-Becker et al.
(2017)).

Table A.1 reports summary statistics for the index option prices used in the synthetic
variance swap rate construction over time. Similar to the example, the average number of

19I use traditional SPX options with AM settlement on the third Friday of the month. In recent years, the
CBOE has introduced Weekly, End-of-Month, and PM SPX options. Liquidity and contract specifications
can differ for these products, introducing noise in implied volatility curve fitting. To mitigate this issue, I
use traditional expirations and require the first four characters of the option symbol field to match “SPX ”
rather than “SPXW” in the OptionMetrics data from 2011 on.

20To extrapolate beyond the observed strikes and for deep out-of-the money options with a delta less
than 0.1%, I extend the fitted implied volatility function by appending log-normal tails. I determine which
options are OTM from the forward rate implied by put-call parity. The forward rate is defined as the median
implied forward rate from as many as ten strike prices that are closest to the strike price that minimizes
the absolute difference between call and put prices. The forward rate implied by different strike prices is
F (τ,K) = K + Z(τ)−1(C(τ,K)− P (τ,K)) where Z(τ) is the risk free discount function.

21In addition to the VIX which tracks one-month (30-day) implied volatility of SPX index options, the
CBOE also tracks three-month and six-month implied volatility with the VIX3M (formerly VXV) and VIX6M
(formerly VXMT) indices.
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maturities is nine to ten per day with a minimum maturity shorter than one-month and a
maximum maturity longer than two-years. There are many OTM options per maturity with
a large range of moneyness. The average RMSE of the implied volatility fitting errors is
around .05-.15% on a vega-weighted basis. This is smaller than the corresponding bid-ask
spread of around .75-1.00%. The large number of maturities, wide range of moneyness, small
implied volatility fitting errors, and liquidity of the options as evidenced by the large open
interest amounts and small bid-ask spreads provide support for the empirical approach in
the paper.

Table A.2 compares the estimated synthetic variance swap rates to CBOE and Bloomberg
data for external validation. Panel A shows that the average difference between the estimated
synthetic rates and CBOE indices is .24% across maturities with a standard deviation of
.40%. The difference in average rates is most pronounced for the one-month maturity which
in part reflects the strike truncation that is present in the CBOE index but avoided in
the estimated rate. The average difference and standard deviation are smaller for longer
maturities. Panel B shows that similar results hold when the estimated rates are compared
to Bloomberg data. In terms of comovement, the estimated rates are 97%-99% correlated
with the CBOE and Bloomberg data in weekly and monthly changes. Figure A.2 illustrates
these results by plotting the one-month and three-month estimated rates versus the CBOE
indices at month-end dates along with scatter plots of the daily changes. Similar to the
summary statistics, the daily changes are highly correlated and the RMSEs are within the
typical bid-ask spread in the index options and variance swap markets. Overall, the results
indicate that the estimated synthetic variance swap rates closely track the alternative rates,
with the advantage that they are available over the full sample period for a wide range of
maturities.

A.1.2 Two-Scale Realized Variance Estimation

I estimate realized variance for the S&P 500 index following the two-scale approach from
Zhang et al. (2005). In the first step, I use a sparse five-minute sampling frequency to
compute realized variance estimates from one-minute data for five different subsamples. For
example, the realized variance estimate for the first subsample is the sum of the squared log
returns from the previous close to 9:30am, 9:30am to 9:35am, ..., 3:55pm to 4:00pm. The
realized variance estimate for the second subsample is sum of squared log returns from the
previous close to 9:31am, 9:31am to 9:36am, ..., 3:56pm to 4:00pm, etc. Each subsample uses
the same starting and ending prices to estimate the daily realized variance. The two-scale
realized variance estimate for each trading day, or second stage estimate, is the average of
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the first stage estimates across subsamples to reduce sampling variability.
I apply standard data cleaning techniques for high frequency data when implementing

the two-scale estimator. I use one-minute intraday prices during regular market hours from
9:30am to 4:00pm from Thomson Reuters Tick History (TRTH). I filter these observations
by dropping prices that are below the daily low or above the daily high as reported in
TRTH’s end-of-day data. In addition, I follow Liu et al. (2015) by excluding short days with
fewer than 60% of the expected observations during regular market hours (days with less
than 235 observations) to remove early closes from the sample. On each of the remaining
days, I interpolate the observed prices onto a one-minute grid from 9:30am to 4:00pm using
the previous tick method (previous neighbor interpolation).22 I then compute the two-scale
realized variance estimate as described above.

A.2 Estimation of Logarithmic Model

A.2.1 MLE and MCMC Estimation

I estimate the model parameters in the paper by two steps. First, I estimate the physical
parameters (µ̂, Φ̂, Σ̂v) from a monthly vector autoregression with overlapping daily data. Sec-
ond, I estimate the risk-neutral parameters (µ̂Q, Φ̂Q) by nonlinear least squares using daily
variance swap rates. This approach easily accommodates daily data and only requires that
the observation errors be mean zero conditioned on the state vector E[et,n|Xt] = 0. With the
additional assumption that the measurement errors conditionally follow a parametric statis-
tical distribution I can estimate the model by maximum likelihood (MLE) or by Bayesian
methods using a Markov Chain Monte Carlo (MCMC) algorithm.

To compute the MLE and Bayesian estimates I use non-overlapping month-end data.
Assuming the pricing errors are conditionally normal, the model can be summarized as,

Xt+1 = µ+ ΦXt + vt+1, vt+1|Ft ∼ N(0,Σv)

Yt,n = gn(Xt, µ
Q,ΦQ,Σv) + et,n, et,n|Xt ∼ N(0, σ2

e).
(30)

The likelihood function from the forecast error decomposition is,

f(Yt, Xt|Xt−1,Θ) = f(Yt|Xt,Θ)f(Xt|Xt−1,Θ)

= f(Yt|Xt, µ
Q,ΦQ, Lv)f(Xt|Xt−1, µ,Φ, Lv).

(31)

22On most days I observe a price every minute so no interpolation is required. The mean (median) number
of observations per day is 389.7 (391) out of 6.5 · 60 + 1 = 391 possible observations. In total there are 242
out of trading 6,094 days with fewer than 391 observations, most of which occur earlier in the 1996 to June
2020 sample period. On these days, the mean (median) number of observations is 357.2 (388.5).
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The resulting log likelihood function (conditioned on t = 0 information) is,

LL =
∑T

t=1 ln f(Yt|Xt,Θ) +
∑T

t=2 ln f(Xt|Xt−1,Θ)

= −T ·Nτ
2

ln(2πσ2
e)− 1

2

∑T
t=1

∑
n∈τ ((Yt,n − gn(Xt, µ

Q,ΦQ,Σv))/σe)
2

−T ·K
2

ln(2π)− T
2

ln |Σv| − 1
2

∑T
t=1(Xt − µ− ΦXt−1)′Σ−1

v (Xt − µ− ΦXt−1).

(32)

The separation of the physical parameters that govern the conditional mean of the state
vector and the risk-neutral parameters that govern variance swap pricing is emphasized by
Joslin et al. (2011). Because of this separation, one can show that the maximum likelihood
estimates for µ and Φ are the ordinary least squares estimates from a vector autoregres-
sion of the state variables. This simplifies maximum likelihood estimation as the likelihood
function only needs to be maximized over the remaining parameters (µQ,ΦQ, Lv). In ad-
dition, the separation implies that variance swap pricing errors do not inform the model’s
predictability for the state variables in the VAR. Forecasts are entirely driven by the es-
timated VAR under the physical measure. Of course, variance swap rates still impact the
model’s predictability as they are included in the state vector through the level and slope
factors Xt = [lnRVt PClevel,t PCslope,t].

In addition to maximum likelihood, one can also estimate the model by MCMC methods
following the literature on the Bayesian estimation of stochastic volatility models (Jacquier
et al. 1994; Eraker et al. 2003). In this case, the posterior distribution is,

p(X,Θ|V S) ∝ p(Y,X,Θ)

= p(Y |X,Θ)p(X|Θ)p(Θ),
(33)

which suggests an MCMC algorithm that cycles through:23

• p(Θ|Y,X) draw µ, µQ,Φ,ΦQ, Lv sequentially

• p(Xt|Yt, Xt−1, Xt+1,Θ) draw Xt for t = 1, . . . , T .

In implementing the estimation I use diffuse priors for (µ,Φ, µQ,ΦQ) centered around the null
of no return predictability. The advantage of the MCMC algorithm is that it accommodates
latent factors and the nonlinear model for pricing variance swaps, addressing a potential
criticism of the baseline estimation strategy. In particular, variance swaps in the model are a
nonlinear function of the state vector. While realized variance is priced exactly by the model,
the level and slope factors are not. Despite this, I have assumed that the level and slope
factors are observable, i.e. the model should price these factors exactly so that the factors can

23Drawing from P (X1|Y1,Θ) and P (XT |YT , XT−1,Θ) for the initial and final conditions.
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be found by inverting the model prices. I argue below that this distinction does not matter
for the empirical results. Using observable or latent state variables delivers similar estimates
of variance swap rates and variance term premia. Given that model estimation is significantly
faster for the two-step approach described in the paper as compared to the MCMC estimation
strategy, I assume the state variables are observable for the baseline analysis. In particular,
faster estimation helps to facilitate the expanding window estimation of the model at a daily
frequency to allow for the out-of-sample analysis of the model performance.

Table A.3 summarizes these results by reporting the model parameters estimated by the
different methods using month-end non-overlapping data. The results are similar across the
estimation methods. The differences from the baseline parameter estimates using overlapping
data and nonlinear least squares from Table 3 are insignificant and economically small. Panel
D illustrates this result for the MCMC estimates. Similar results hold for the NLLS and
MLE estimates (not shown). The t-statistics for the MLE are from the asymptotic sandwich
covariance matrix estimated numerically using double-sided finite differences for the Hessian
and gradient.

Figure A.4 plots the model variance swap rates and realized variance term premia from
the different estimation methods alongside each other to interpret the differences from an
economic perspective. The results are similar across the estimation methods with differences
that are smaller than the fitting errors in Table 4. Figure A.5 compares the level PClevel,t and
slope PCslope,t factors from the baseline estimation to the posterior distribution of the latent
state variables from the MCMC estimation. The highest posterior density (HPD) regions
for the first latent factor are very tightly centered around PClevel,t. The HPD regions are
somewhat wider for the slope factor, but still close to PCslope,t used in the baseline estimation.
Despite the uncertainty in the latent factors, the variance swap rates and term premia from
the MCMC approach are similar to the other estimation methods.

A.2.2 RVTP Confidence Intervals

Figure A.6 plots the one-month and twelve-month RVTP estimates alongside 95% pointwise
confidence intervals at month-end dates. The top plots report NLLS confidence intervals
that are block bootstrapped treating the state variables as observable. The bottom plots re-
port Bayesian MCMC confidence intervals allowing for latent state variables. The confidence
intervals are small relative to the time variation in RVTP. The null hypothesis of a constant
variance risk premium at a one-month or twelve-month horizon is easily rejected. Beyond
illustrating how RVTP vary significantly over time, the plot quantifies the size of the confi-
dence intervals. For the MCMC (NLLS) estimates, the average lengths of the one-month and
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twelve-month confidence intervals are .74% (.67%) and 1.42% (1.39%). The longer forecast
horizon for the twelve-month versus one-month RVTP estimates results in a larger change
in the confidence intervals relative to the difference in estimation method.

A.2.3 RVTP and IVTP State Variable Sensitivities

Figures A.7 and A.8 report sensitivities of RVTP and IVTP with respect to changes in
the state vector over time. The top left subplot reproduces the average partial derivatives
from Figure 6. The top right plot shows the partial derivatives on October 31, 2007 when
the state vector was close to its unconditional mean µ̂ under the physical measure. The
shape of these derivatives is similar to the average derivatives, but with magnitudes that are
somewhat lower for RVTP. The bottom right plot shows the partial derivatives during the
financial crisis on November 30, 2008, a period with high realized and implied volatility and
an inverted variance swap curve. The magnitude of these partial derivatives is much larger
for RVTP than average. The gray box highlights the scale of the other subplots, illustrating
the increase in magnitude. There is also an increase in magnitude for IVTP sensitivities
during the financial crisis but it is not as stark as the increase for RVTP. The bottom right
subplot reports the partial derivatives in on December 31, 2016, a low volatility period with
an upward sloping variance swap curve. In that plot, the level factor partial derivatives are
upward sloping and the realized variance partial derivatives are roughly parallel for RVTP.
The partial derivatives for IVTP in the low volatility state look roughly similar to the other
plots. The analysis highlights how the sensitivity of RVTP and IVTP with respect to the
state vector can change over time. As discussed in the paper, the average partial derivatives
provide a good sense for the typical, qualitative patterns.

A.3 Robustness to Sample Period

Table A.4 reports variance swap return predictability regressions for a post-crisis period
from January 4, 2010 to June 30, 2020. The approach is analogous to Table 5 in the paper
which reports full sample results. As before, the model estimates of expected variance swap
returns are significant and the in-sample and out-of-sample predictability as measured by
R2 is high. The null hypothesis that the expected return estimates are unbiased is rejected
more frequently for the six-month horizon but less frequently for the one-month horizon
compared to the full sample results. Overall, the continued predictability in the post-crisis
period shows that the financial crisis is not driving the variance swap return predictability
results.

Table A.5 reports summary statistics for VIX futures pricing errors for the full sample
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from March 26, 2004 to June 30, 2020 for the front three contracts and for a post-crisis
sample from January 4, 2010 to June 30, 2020 for the front six contracts. The results are
similar to Table 8 in the paper which reports results for the front six contracts from January
3, 2007 to June 30, 2020. As before, the VIX futures pricing errors are negative on average,
more volatile than the variance swap pricing errors, negatively skewed for the front contracts,
and large in magnitude.

Table A.6 reports the VIX futures return predictability regressions for a post-crisis period
from January 4, 2010 to June 30, 2020. The approach is analogous to Table 9 in the paper
which reports results from January 3, 2007 to June 30, 2020. Similar to the variance swap
return predictability regressions, the model remains significant at predicting VIX futures
returns and the null hypothesis of unbiased expected returns is either not rejected or not
strongly rejected across forecast horizons.

A.4 Straddle Return Predictability

A.4.1 Straddle Returns and Summary Statistics

The returns of delta-hedged straddles and variance swaps are closely related. A short straddle
refers to a position that is short call and put options with the same strike price and maturity.
A delta-hedge removes the directional exposure to the underlying. The combination of
selling a straddle and delta-hedging produces a return that is largely determined by the
relationship of implied to realized volatility. In Black-Scholes parlance, delta-hedged short
straddle positions have positive theta Θ, negative gamma Γ, and negative vega ν,

dF ≈ FSdS + 1
2
FSSdS

2 + Ftdt+ Fσdσ

= 1
2
ΓdS2 + Θdt+ νdσ.

(34)

When realized volatility dS2 is low and implied volatility dσ does not increase, short straddle
positions are profitable as option writers earn the theta Θdt or carry. When realized volatility
dS2 is high or implied volatility dσ increases, short straddle positions can suffer losses. One
can draw an analogy to variance swap returns where,

Rt+1,n = V St,n − V St+1,n−1 −RVt+1

= (V St,n − V St,n−1)︸ ︷︷ ︸
Θdt

+ (V St,n−1 − V St+1,n−1)︸ ︷︷ ︸
νdσ

+ (−RVt+1)︸ ︷︷ ︸ .
1
2

ΓdS2

(35)

Beyond this informal connection, there is also a close theoretical relationship between strad-
dle returns and the variance risk premium. Andries et al. (2015) show that delta-hedged
straddle returns provide a non-parametric estimate of the variance risk premium in the ab-
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sence of jumps in the underlying asset. This suggests a natural application for the model:
testing whether expected variance swap returns are significant in predicting delta-hedged
straddle returns.

To perform this test, I compute at-the-money forward (ATMF) delta-hedged straddle
returns at a daily frequency,

Rstraddle
t+1 ≡ St − St+1 −∆t(Pt+1 − Pt)

St
, (36)

where St is the straddle mid-price, Pt is the index value, and ∆t is the straddle delta.24 The
ATMF strike price is determined each day for each maturity as the price that minimizes the
absolute difference between call and put prices. To be included in the analysis, I require
the ATMF straddle to have a BSM delta less than 25% in absolute value. I then average
the straddle returns for all expirations satisfying this filter in different maturity buckets to
obtain a term structure of daily ATMF delta-hedged straddle returns. As a final step, I
aggregate the daily returns for each maturity bucket over one, three, and six-month horizons
which can be compared to the model’s expected variance swap returns.

Table A.7 reports summary statistics for the one-month ATMF delta-hedged straddle
returns by maturity bucket. Selling straddles for (0, 3] month maturities delivers an average
return of 4.66 percent with a standard deviation of 26.4%. This corresponds to a Sharpe
ratio (SR) of .18 per month which is comparable to the SR of .17 and .13 for three-month
and six-month variance swap returns in Table 1. As with variance swap returns, the returns
are negatively skewed and the SR, CAPM alpha, and CAPM alpha t-statistic all decline
with maturity.

A.4.2 Relationship to Variance Swap Returns

Table A.8 compares the ATMF delta-hedged straddle returns to synthetic variance swap
returns from January 31, 1996 to June 30, 2020. Panel A reports the correlation of straddle
and variance swap returns by maturity. The returns are highly correlated overall with
an average pairwise correlation of around 70%. The most highly correlated returns have
similar maturities. For example, straddle returns in the (9,15] and (15,24] month buckets
are most highly correlated with variance swap returns for 9-24 month maturities rather than
1-6 month maturities. Panel B reports regressions of straddle returns onto variance swap
returns over one-, three-, and six-month horizons by maturity. Variance swap returns have
significant explanatory power of around 60% on average across maturities. In addition, the

24Table A.10 shows that the reutrn predictability results for straddles are robust to the definition of straddle
returns (i.e. whether a delta-hedge is included or not, using percentage returns versus dollar returns, etc.).
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intercepts reveal that straddles deliver similar average returns to synthetic variance swaps
after adjusting for risk, as the estimated intercepts are predominantly insignificant. In some
cases the intercepts are negative and marginally significant, meaning that selling straddles
underperformed relative to receiving fixed in variance swaps for these cases. Overall the
results indicate that the returns from selling delta-hedged straddles are closely related to
variance swap returns.

A.4.3 Straddle Return Predictability

Returning to the hypothesis suggested above, Table A.9 investigates whether the model
expected returns for variance swaps also predict straddle returns,

Rstraddle
t+h,b = β0 + β1Êt[Rt+h,n] + εt+h,b. (37)

The delta-hedged straddle return Rstraddle
t+h,b for maturity bucket b over horizon h is regressed

onto the estimated variance swap expected return Êt[Rt+h,n] for a similar maturity n. The
results indicate that the variance swap expected returns are significant at predicting delta-
hedged straddle returns across maturity buckets and horizons. Despite estimating the model
from variance swap and realized variance data, not straddle returns, the model still provides
significant predictive power on the order of 5% for straddle returns over a one-month hori-
zon and 10-20% for straddle returns over three- and six-month horizons. Straddle return
predictability also increases in the post-crisis 2010-2018 sample period, similar to post-crisis
variance swap return predictability reported in Table A.4.

A.5 Model Extensions

A.5.1 Volatility Swap Rates and VIX Futures Bounds

Bounds on VIX futures prices can be derived from Jensen’s inequality (Carr and Wu 2006).
Using the notation in this paper, the upper bound for the n-month futures contract is the
square root of the n+ 1 month variance swap forward,

Futt,n = EQ
t

[√
V St+n,1

]
≤

√
EQ
t [V St+n,1]

=
√
Ft,n+1

≡ UBt,n.

(38)
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Proceeding along similar lines, the lower bound for the n-month futures contract is the price
of an n+ 1 month volatility swap forward,

Futt,n = EQ
t

[√
EQ
t+n [RVt+n+1]

]
≥ EQ

t

[
EQ
t+n

[√
RVt+n+1

]]
= EQ

t

[√
RVt+n+1

]
= EQ

t

[
e

1
2
A0+ 1

2
B′0Xt+n+1

]
= EQ

t [V olt+n+1]

= Fvolt,n+1

≡ LBt,n.

(39)

Similar to variance swap forwards, volatility swap forwards are exponential affine in the state
vector Fvolt,n = eA

V ol
n +(BV oln )′Xt . The coefficients AV oln and BV ol

n follow the same recursions
as before with the adjusted initial conditions AV ol0 = 1

2
A0 and BV ol

0 = 1
2
B0. Note at n = 0

the upper bound becomes an equality,

Futt,0 = V IXt =
√
V St,1 =

√
Ft,1. (40)

In contrast, the lower bound at n = 0 remains an inequality,

Futt,0 = V IXt =

√
EQ
t [RVt+1] ≥ EQ

t

[√
RVt+1

]
. (41)

Summarizing these results, VIX futures prices are bounded by,

LBt,n ≡ Fvolt,n+1 ≤ Futt,n ≤
√
Ft,n+1 ≡ UBt,n. (42)

A.5.2 Continuous Time Model

The baseline approach assumes that the logarithm of realized variance follows a discrete
time first order VAR with innovations that are conditionally Normal. With the additional
assumption that the price process is continuous, a similar model can be derived in continuous
time. Note that the discrete time analysis in the paper does not require the price process to
be continuous, i.e. realized variance in the discrete time model can be driven by continuous
and jump components of the price process.

As a motivating example, suppose that spot log variance ln vt = yt follows a univariate
Gaussian process,

dyt = κ(ȳ − yt)dt+ σdWQ
t , (43)
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with the conditional distribution,

yT |yt
Q∼ N

(
ȳ + e−κτ (yt − ȳ),

σ2

2κ
(1− e−2κτ )

)
, (44)

where τ = T − t. In this example, variance swap rates can be derived by applying Fubini’s
theorem and the moment generating function of a Normally distributed random variable to
evaluate the expectation,

V S(t, T ) = EQ
t

[∫ T
t
vsds

]
=

∫ T
t
EQ
t [vs] ds

=
∫ T
t
EQ
t [eys ] ds

=
∫ T
t
eȳ+e−κ(s−t)(yt−ȳ)+σ2

4κ
(1−e−2κ(s−t))ds.

(45)

The integral above is analogous to the summation of exponential affine variance swap for-
wards from the discrete time model. Moreover, this approach readily extends to a multivari-
ate setting.

Suppose there is a K × 1 state vector Xt following the multivariate Gaussian process,

dXt = κ(µ−Xt) + σdWt, (46)

with the instantaneous covariance matrix,

EQ
t [dXtdX

′
t] = σσ′dt = Σ · dt. (47)

As before, the conditional distribution under the risk-neutral measure is,

XT |Xt
Q∼ N

((
I − e−κτ

)
µ+ e−κτXt,Σ(τ)

)
, (48)

where τ = T − t and Σ(τ) ≡
∫ τ

0
eκ(u−τ)Σeκ

′(u−τ)du. If the spot variance is an exponential
affine function of the state vector ln vt = A0 + B′0Xt, variance swap forward rates are equal
to,

F (t, T ) = EQ
t [vT ]

= EQ
t

[
eA0+B′0XT

]
= eA0+B′0((I−e−κτ)µ+e−κτXt)+ 1

2
B′0Σ(τ)B0

= eA0+B′0(I−e−κτ)µ+ 1
2
B′0Σ(τ)B0+B′0e

−κτXt

≡ eA(τ)+B(τ)′Xt

(49)
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Variance swap rates are then equal to,

V S(t, T ) =

∫ T

t

F (t, s)ds. (50)

As a final observation, note that closed-form VIX futures prices are not available in the
continuous time model. To see this, note that,

V IXt = 100 ·

√
12 · V S

(
t, t+

1

12

)
= 100 ·

√
12 ·

∫ t+ 1
12

t

eA(s−t)+B(s−t)′Xtds. (51)

The one-month variance swap rate is obtained by integrating over spot variance in continu-
ous time, which prevents the exponential function from being able to absorb the convexity
adjustment as it does in discrete time. For a more general analysis of log-volatility models
in continuous time see Amengual and Xiu (2018).

A.5.3 VIX Options

The VIX is conditionally log-Normal in the model. As a result, VIX options can be priced
by the Black (1976) formula for pricing options on futures contracts. Assuming that interest
rates are constant and equal to r, the price of an n-month call option on the n-month VIX
futures contract is,

Ct,n = EQ
t

[
e−r·

n
12 (Futt+n,0 −K)+]

= EQ
t

[
e−r·

n
12 (V IXt+n −K)+]

= EQ
t

[
e−r·

n
12

(
eA

F
0 +(BF0 )′Xt+n −K

)+
]
.

(52)

The conditional distribution of the logarithm of the VIX is,

lnV IXt+n = AF0 + (BF
0 )′Xt+n|Ft

Q∼ N(µt,n, σ
2
n). (53)

with mean and variance that are equal to,

µt,n = AF0 +
(
BF

0

)′ (∑n
i=1

(
ΦQ
)i−1

)
µQ +

(
BF

0

)′ (
ΦQ
)n
Xt

σ2
n =

∑n
i=1

(
BF

0

)′ (
ΦQ
)n−i

Σv

((
ΦQ
)n−i)′

BF
0 .

(54)

It follows that VIX futures prices are equal to,
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Futt,n = EQ
t [V IXt+n]

= E
[
eµt,n+σnZ

]
= eµt,n+ 1

2
σ2
n .

(55)

and that VIX options prices are equal to,

Ct,n = CBlack

(
Futt,n, K, σn

√
12

n
, r,

n

12

)
. (56)

The option price is expressed using the Black formula,

CBlack(Ft, K, σ, r, τ) = e−rT [Ft ·N(d1)−K ·N(d2)]

d1 =
ln(

Ft
K

)+ 1
2
σ2τ

σ
√
τ

d2 = d1 − σ
√
τ .

(57)

This result has several implications. First, the model admits an unconditional term
structure of implied volatility for VIX options that is equal to σn

√
12/n in annualized units.

The corresponding term structure for realized volatility of the VIX can be computed by
replacing ΦQ with Φ in equation 54 above. The top plot in Figure A.9 illustrates these term
structures alongside their empirical counterparts from February 2006 to June 2020. The
model roughly matches the level and downward sloping term structure for the volatility of
the VIX. In addition, over longer horizons the estimates indicate that there is a risk premium
for the volatility of volatility.

However, as the lower plots in Figure A.9 indicate, the implied volatility and skew of VIX
options is time-varying. The model assumes that the logarithm of realized variance follows
a vector autoregression with homoskedastic shocks. As a result, the Black formula applies
for pricing VIX options with the implication that the model features no time variation in
the volatility of the VIX and no volatility smile for VIX options. These features of the
model are rejected by the data. The CBOE VVIX Index provides direct evidence that
the implied volatility of VIX options is time varying. In addition, VIX options feature an
implied volatility smile that reflects an asymmetric conditional distribution under the risk-
neutral measure. High strike call options that hedge against increases in the VIX tend to
have a higher implied volatility than low strike call options. Figure A.9 illustrates these
results. Eraker and Yang (2020) study these features of the data from the perspective of a
consumption-based asset pricing model.
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A.6 Estimation of Affine Model by Three-Step Regression

The paper models the logarithm of realized variance to estimate equity volatility term premia.
An alternative approach is to model the level of realized variance and to estimate the model
by three-step regression following Adrian et al. (2013). This approach yields closed-form
prices for variance swaps but not VIX futures. To see this, let the state vector follow a first-
order vector autoregression under the physical measure with an affine stochastic discount
factor. The risk-neutral dynamics are then,

Xt+1 = µQ + ΦQXt + vQt+1. (58)

Let Xt = [RVt Yt] where RVt is realized variance and Yt consists of the other state variables.
Guess that forward variance swap rates Ft,n = EQ

t [RVt+n] are equal to,

Ft,n = An +B′nXt. (59)

The risk-neutral pricing equation is,

EQ
t [Rxt+1,n] = EQ

t [Ft,n − Ft+1,n−1]

= An +B′nXt − (An−1 +B′n−1(µQ + ΦQXt)

= 0.

(60)

Matching coefficients produces the recursion,

An = An +B
′
n−1µ

Q

B′n = B′nΦQ.
(61)

In contrast to the logarithmic model, note that the variance of the innovations does not enter
these recursions. This occurs because the stochastic discount factor is affine as opposed to
exponentially affine. The initial condition to close the model is A0 = 0 and Bn =

[
1~0
]
so

Ft,0 = RVt. The linear relationship between variance swaps and forward variance swaps then
allows us to price variance swaps as,

V St,n = EQ
t [

n∑
i=1

RVt+i] =
n∑
i=1

Ft,i = (
n∑
i=1

Ai) + (
n∑
i=1

B′i)Xt. (62)

To estimate the model let the return from receiving fixed in an n-month variance swap
over one-period be,

Rt+1,n = V St,n − V St+1,n−1 −RVt+1, (63)
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with the conditional beta relationship,

Rn,t+1 = β′n (Λ0 + Λ1Xt) + β′nvt+1 + en,t+1. (64)

The return pricing error en,t+1 is conditionally orthogonal to the innovations vt+1 in the state
variables.25 Assuming the K × 1 state vector Xt is observable, stack the model as,

R = BΛ0ι
′
T +BΛ1X− +BV + E

X = µι′T + ΦX− + V,
(65)

where R is a N × T matrix of excess returns, B is a N ×K matrix whose rows β′i equal the
factor loadings for each maturity, ιT is a T × 1 vector of ones, X = [X1 · · ·XT ] is a K × T
matrix of state variables, X− = [X0 · · ·XT−1] is a K × T matrix of lagged state variables,
V = [v1 · · · vT ] is a K×T matrix of state variable innovations, and E = [e1 · · · eT ] is a N ×T
matrix of return pricing errors.

With this setup, we can estimate the model from the following regressions. First, we
estimate the physical parameters from a vector autoregression of the observed state variables,

X = µ̂ι′T + Φ̂X− + V̂ . (66)

Second, we rewrite the return generating process in the seemingly-unrelated regression R =

AZ +E where Z = [ιT X
′
− V

′]′ and A = [A0 A1 B]. Replacing the unobserved innovations V
with our first-step estimate V̂ , we can estimate A from the regression,

Â = RẐ ′
(
ẐẐ ′

)−1

= [Â0 Â1 B̂]. (67)

Third, observing that A0 = BΛ0 and A1 = BΛ1, we can estimate the market prices of risk
from the regressions,

Λ̂0 =
(
B̂′B̂

)−1

B̂′Â0, Λ̂1 =
(
B̂′B̂

)−1

B̂′Â1. (68)

The risk-neutral coefficients are estimated as µ̂Q = µ̂− Λ̂0 and Φ̂Q = Φ̂− Λ̂1. Adrian et al.
(2015) provide conditions under which these estimators are consistent and asymptotically
normal, and they derive the asymptotic covariance matrix for the parameters taking into
account the estimation uncertainty that stems from the multi-step approach.

25The pricing coefficients are related to the beta representation from the relationship β̃n = −Bn−1 for
variance swap forwards. The factor loading for variance swaps is then βn =

∑n
i=1 β̃i.
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A.7 RVTP and IVTP in an Equilibrium Model

This section derives RVTP and IVTP in the consumption-based asset pricing model from
Eraker and Wu (2017). The stochastic discount factor (SDF) is,

Mt = Etx
−γ
T e−rf t = eα(u−γ ,t,T )+β′(u−γ ,t,T )Xt−rf t. (69)

In the two-factor volatility model and T →∞ limit it follows from Ito’s lemma that,

dMt

M−
t

= −rfdt− γσtdBx
t − ησvσtdBv

t − φσθ
√
θtdB

θ
t + (e−ηξt − 1)dNt− l0(ρ(−η)− 1)dt. (70)

The price of variance futures is derived in Appendix A.4 as Ft,t+τ = V arQt (lnPt+τ ) =

a(τ) + b(τ)σ2
t + c(τ)θt from the conditional cumulant generating function for lnPt+τ . The

instantaneous risk premium for variance futures is thus,

−Covt(dMt

M−t
, dFt,t+τ ) = −Covt

(
dMt

M−t
, a(τ) + b(τ)dσ2

t + c(τ)dθt

)
=

(
b(τ)l0µξ(1− 1

(1+ηµξ)2
) + b(τ)ησ2

vσ
2
t + c(τ)σ2

θφθt

)
dt.

(71)

The risk premium has three factors that are all negative. The second and third-term are
time-varying and increasing in risk as measured by either spot volatility σt or the long-run
volatility factor θt.

In addition to the instantaneous risk premium, it is also possible to compute the realized
variance and implied variance term premia for any horizon τ . The stock price dynamics
under P are,

d lnPt =

(
∂α(u1−γ, t, T )

∂t
− ∂α(u−γ, t, T )

∂t

)
dt+ rfdt+ d lnxt + λσdσ

2
t + λθdθt. (72)

It follows that realized variance is an affine function of σ2
t and θt,

d lnP 2
t = (σtdB

x
t + λσ(σvσtdB

v
t + ξtdNt) + λθσθ

√
θtdB

θ
t )

2

= ((1 + λ2
σσ

2
v)σ

2
t + λ2

θσ
2
θθt) dt+ λ2

σξ
2
t dNt.

(73)

The expected realized variance from time t to time t+ τ is then,

Et

[∫ t+τ
t

d lnP 2
s

]
= 2λ2

σl0µ
2
ξτ + (1 + λ2

σσ
2
v)
∫ t+τ
t

Et[σ
2
s ]ds+ λ2

θσ
2
θ

∫ t+τ
t

Et[θs]ds. (74)

We can compute this expectation directly. Define Yt = (σ2
t , θt). For this analysis note

that we can drop lnxt as a state variable because (dBx
t , dB

v
t , dB

θ
t , dNt) are independent and
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because lnxt does not feed back into Xt The dynamics for Yt are thus,

dYt =

((
0

kθθ

)
+

(
−κ κ

0 −κθ

)(
σ2
t

θt

))
dt

+

(
σvσt 0

0 σθ
√
θt

)(
dBv

t

dBθ
t

)
+

(
ξtdNt

0

)
.

(75)

We can rewrite dYt as,
dYt = K(µ− Yt)dt+ σ(Yt)dBt + dJt, (76)

where E[Yt] = µ and dBt and dJt are martingale components. The conditional expectation
of Yt is then,

Et[Ys] = f(t, Yt) = µ+ e−K(s−t)(Yt − µ), (77)

where e−K(s−t) ≡
∑∞

n=0
1
n!

(−K(s− t))n is the matrix exponential. Rewriting Yt in this way,

dYt ≡
(
KY,P

0 +KY,P
1 Yt

)
dt+ σ(Yt)dBt + dJt

= (−KY,P
1 )((−KY,P

1 )−1KY,P
0 − Yt)dt+ σ(Yt)dBt + dJt

≡ KP (µP − Yt)dt+ σ(Yt)dBt + dJt.

(78)

where,

KY,P
0 =

(
l0µξ

κθθ

)
, KY,P

1 =

(
−κ κ

0 −κθ

)
. (79)

The realized variance forecast is then,

Et

[∫ t+τ
t

d lnP 2
s

]
= aτ +

∫ t+τ
t

(b c) · Et[Ys]ds

= aτ + (b c) ·
∫ t+τ
t

(
µP + e−K

P (s−t)(Yt − µP )
)
ds

= aτ + (b c) ·
(
µP τ +

[
(−KP )−1e−K

P (s−t)(Yt − µP )|t+τt

])
= aτ + (b c) ·

(
µP τ + (KP )−1(I − e−KP τ )(Yt − µP )

) (80)

where (a, b, c) = (2λ2
σl0µ

2
ξ , 1 + λ2

σσ
2
v , λ

2
θσ

2
θ). Variance swap rates follow from the same com-

putation under the risk-neutral measure with aQ = 2λ2
σl
Q
0 (µQξ )2,

EQ
t

[∫ t+τ

t

d lnP 2
s

]
= aQτ + (b c) ·

(
µQτ + (KQ)−1(I − e−KQτ )(Yt − µQ)

)
, (81)
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To compute this expectation we need the risk-neutral dynamics which are,

dYt =
(
KY,Q

0 +KY,Q
1 Yt

)
dt+ σ(Yt)dB

Q
t + dJQt

= (−KY,Q
1 )((−KY,Q

1 )−1KY,Q
0 − Yt)dt+ σ(Yt)dB

Q
t + dJQt

≡ KY,Q(µQ − Yt)dt+ σ(Yt)dB
Q
t + dJQt ,

(82)

where,

KY,Q
0 =

(
lQ0 µ

Q
ξ

κθθ

)
, KY,Q

1 =

(
−κ κ

0 −κθ

)
(83)

andη = −β2(u−γ) and φ = −β3(µ−γ) are the prices of risk from the SDF. In summary, the
realized variance forecast is,

RV Ft,t+τ = Et

[∫ t+τ

t

d lnP 2
s

]
= aτ + (b c) ·

(
µP τ + (KP )−1(I − e−KP τ )(Yt − µP )

)
, (84)

the variance swap rate is,

V St,t+τ = EQ
t

[∫ t+τ

t

d lnP 2
s

]
= aQτ + (b c) ·

(
µQτ + (KQ)−1(I − e−KQτ )(Yt − µQ)

)
, (85)

and the realized variance term premium (Q− P ) is,

V RPt,t+τ = V St,t+τ −RV Ft,t+τ . (86)

Similarly, define the implied variance term premium as,

IV RPt,T1,T2 = V St,T2 − V St,T1 − EP
t [V ST1,T2 ]. (87)

This risk premium measures the expected return for bearing exposure to implied volatility
risk. It can be interpreted as the return from receiving fixed in a forward variance swap from
T1 to T2 that is closed by paying fixed in a variance swap at time T1. Note the similarity to
trading VIX futures. If a trader sells a VIX futures contract the payoff is Ft,T −V IXT where
Ft,T is the futures price and V IXT is the VIX index at maturity. In both cases, the trader
is exposed directly to implied volatility risk, not realized volatility. It is straightforward to
solve for the implied variance risk premium applying the analysis above. We only need to
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compute EP
t [V ST1,T2 ] which is,

EPt [V ST1,T2 ]

= EPt

[
aQτ + (b c) ·

(
µQτ + (KQ)−1(I − e−KQτ )(YT1 − µQ)

)]
= aQτ + (b c) ·

(
µQτ + (KQ)−1(I − e−KQ(T2−T1))(EPt [YT1 ]− µQ)

)
= aQτ + (b c) ·

(
µQτ + (KQ)−1(I − e−KQτ )(µP + e−K(T1−t)(Yt − µP )− µQ)

)
,

(88)

where τ = T2 − T1. Note that the aQτ term stemming from jump risk cancels out in the
IV RPt,T1,T2 measure which reduces the IV RP risk premium relative to the forward variance
risk premium V RPt,T2 − V RPt,T1 .

Figures A.10 and A.11 show that RVTP and IVTP are positive for the calibrated pa-
rameter values from Section A.1 in the Eraker and Wu (2017). In Figure A.10, the left
plots report the realized variance forecast RVt,t+τ (P ) and variance swap rate V St,t+τ (Q)
against the number of days to maturity. The right plots report the variance risk premium
V RPt,t+τ (Q - P ). The rows vary the spot σt and long-term θt volatility across high and
low states. The realized variance risk premium or expected return from receiving fixed in
variance swaps is always positive. Figure A.11 plots the variance risk premium V RPt,t+τ and
implied variance risk premium IV RPt,T1,T2 as a function of the state variables σ2

t and θt. The
horizon is three-months for the VRP τ = 63 and three-month, three-month for the IVRP
T1 = 63, T2 = 126. The plot shows that the risk premia measures are affine and increasing
in risk as measured by both state variables, similar to the intuition from the instantaneous
risk premium derivation.
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Table A.1: Index Option Summary Statistics

This table reports summary statistics for the out-of-the money SPX option prices that are used to
estimate the synthetic variance swap rates for the S&P 500 Index from 1996 to 2020. The table
reports the average of the minimum, average, and maximum maturity τ in months and the number
of maturities Nτ for each maturity bucket. The table also reports the average number of out-of-the-
money options Notm, the minimum, average, and maximum absolute moneyness |x| = |K/F−1| and
absolute Black-Scholes delta |∆|, the equal-weighted and vega-weighted root-mean-squared implied
volatility fitting error RMSE and option price bid-ask spread SPD = (Ask−Bid)/V ega, and the
open interest OI and volume V LM in thousands of contracts and Black-Scholes vega in millions of
dollars averaged across maturity-date pairs in each maturity bucket. The latter part of the sample
features a larger number of OTM option quotes and a larger quantity of option trading as measured
by volume and open interest. The vega-weighted bid-ask spread of around .75% to 1% implied
volatility units is larger than the implied volatility fitting error RMSE of around .10%.

Sample Period 1996-2020 2010-2020 1996-2009
Maturity (τ) [0,3) [3,9) [9,36] [0,3) [3,9) [9,36] [0,3) [3,9) [9,36]
τmin 0.82 4.01 10.43 0.82 3.55 10.37 0.81 4.31 10.47
τavg 1.63 5.69 17.18 1.65 5.43 18.40 1.63 5.86 16.40
τmax 2.45 7.50 25.88 2.47 7.56 29.82 2.44 7.47 23.34
Nτ 2.65 2.45 3.75 2.66 2.95 4.52 2.64 2.14 3.26
Notm 86.21 53.31 45.55 152.80 76.81 68.29 43.03 32.48 25.28
|x|min 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01
|x|avg 0.12 0.20 0.25 0.14 0.22 0.29 0.10 0.17 0.21
|x|max 0.35 0.53 0.66 0.42 0.60 0.80 0.31 0.47 0.54
|∆|min 0.01 0.01 0.02 0.00 0.00 0.00 0.01 0.01 0.03
|∆|avg 0.15 0.16 0.20 0.11 0.13 0.17 0.18 0.19 0.22
|∆|max 0.49 0.50 0.51 0.50 0.50 0.52 0.49 0.49 0.49
RMSEew 0.26 0.14 0.12 0.29 0.14 0.13 0.24 0.14 0.12
RMSEvw 0.16 0.08 0.08 0.13 0.06 0.06 0.18 0.10 0.11
SPDew 1.59 1.28 1.15 1.76 1.44 1.44 1.48 1.14 0.90
SPDvw 0.96 0.74 0.76 0.84 0.66 0.78 1.04 0.80 0.74
OIthousands 911.52 529.83 227.28 1430.21 682.03 297.97 575.17 394.90 164.25
OIvega 87.68 115.40 86.72 154.43 165.27 127.99 44.40 71.18 49.92
V LMthousands 78.71 16.91 3.81 118.90 22.19 4.66 52.65 12.23 3.06
V LMvega 9.52 4.41 1.70 16.74 6.46 2.45 4.83 2.59 1.03
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Table A.2: Estimated Synthetic Variance Swaps versus CBOE and Bloomberg Data

This table compares the estimated synthetic variance swap rates to synthetic rates from the CBOE
and Bloomberg. Summary statistics for the difference between the estimated rate and the alternative
rates are reported below along with the average statistic across maturities. The mean and standard
deviation are in annualized volatility units. The estimated rates are highly correlated with the
alternatives. The sample periods are Jan96-Jun20 for the VIX, Jan08-Jun20 for the VIX3M and
VIX6M, and Nov08-Jun20 for the Bloomberg data.

Panel A: CBOE Volatility Indices
Maturity 1 3 6 Avg.
Mean 0.48 0.17 0.08 0.24
Standard Deviation 0.55 0.38 0.27 0.40
Skewness 4.25 5.43 2.11 3.93
Kurtosis 116.01 70.04 32.41 72.82
Correlation of monthly changes 0.99 1.00 1.00 1.00
Correlation of weekly changes 0.98 0.98 0.99 0.98
Correlation of daily changes 0.95 0.95 0.96 0.95

Panel B: Bloomberg Synthetic Rates
Maturity 1 3 6 9 12 18 24 Avg.
Mean 1.01 0.29 0.17 0.12 0.11 0.06 -0.03 0.24
Standard Deviation 0.95 0.48 0.38 0.38 0.37 0.43 0.36 0.48
Skewness 4.20 3.84 3.21 3.22 1.50 1.46 1.14 2.65
Kurtosis 64.31 54.47 36.81 42.57 16.25 17.52 36.42 38.34
Correlation of monthly changes 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.99
Correlation of weekly changes 0.96 0.98 0.98 0.97 0.97 0.95 0.96 0.97
Correlation of daily changes 0.89 0.91 0.92 0.90 0.89 0.85 0.84 0.89
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Table A.3: Model Estimation By Different Methods

This table reports the model parameters estimated by different methods using month-end non-
overlapping data from January 1996 to June 2020 (T = 294). Panel A reports nonlinear least
squares (NLLS) estimates with bootstrapped t-statistics. Panel B reports maximum likelihood
estimates (MLE) with t-statistics from the asymptotic sandwich covariance matrix. Panel C reports
MCMC results from a Bayesian estimation of the model with latent state variables. Panel D finds
insignificant differences between the baseline estimates and the MCMC estimates. The results are
similar across the estimation methods.

Panel A.I: Physical Parameters (NLLS bootstrap)
µ Φ1,1 Φ1,2 Φ1,3

ln(RV ) 0.01 0.24∗∗∗ 0.20∗∗∗ 0.52∗∗∗
[0.23] [2.82] [6.00] [5.02]

PClevel 0.03 0.07 0.87∗∗∗ 0.14
[0.43] [0.53] [15.48] [0.80]

PCslope -0.00 0.01 -0.05∗∗∗ 0.76∗∗∗
[-0.11] [0.26] [-2.81] [15.64]

Panel B.I: Physical Parameters (MLE)
µ Φ1,1 Φ1,2 Φ1,3

ln(RV ) 0.01 0.26 0.19∗∗∗ 0.44∗∗∗
[0.21] [1.46] [3.33] [3.44]

PClevel 0.03 0.05 0.90∗∗∗ 0.07
[0.61] [0.13] [7.48] [0.30]

PCslope -0.00 0.01 -0.04 0.79∗∗∗
[-0.11] [0.10] [-0.96] [9.98]

Panel C.I: Physical Parameters (MCMC)
µ Φ1,1 Φ1,2 Φ1,3

ln(RV ) 0.01 0.24∗∗∗ 0.19∗∗∗ 0.41∗∗∗
[0.34] [3.19] [7.45] [4.97]

PClevel 0.03 0.02 0.90∗∗∗ 0.10
[0.56] [0.17] [18.31] [0.76]

PCslope -0.01 -0.00 -0.03∗∗ 0.80∗∗∗
[-0.44] [-0.01] [-2.12] [18.78]

Panel D.I: Difference from baseline (MCMC)
µ Φ1,1 Φ1,2 Φ1,3

ln(RV ) -0.00 0.00 0.01 0.01
[-0.11] [0.06] [0.42] [0.10]

PClevel -0.01 -0.00 -0.00 -0.11
[-0.10] [-0.02] [-0.11] [-1.21]

PCslope 0.01 0.01 -0.00 -0.01
[0.37] [0.22] [-0.25] [-0.22]

Panel A.II: Prices of Risk (NLLS bootstrap)
Λ0 Λ1,1 Λ1,2 Λ1,3

ln(RV ) -0.66∗∗∗ 0.23∗∗∗ -0.07∗ 0.07
[-10.85] [2.62] [-1.92] [0.62]

PClevel 0.02 0.08 -0.08 0.53∗∗
[0.08] [0.48] [-0.87] [2.16]

PCslope -0.06 0.02 -0.03 -0.02
[-0.18] [0.10] [-0.38] [-0.07]

Panel B.II: Prices of Risk (MLE)
Λ0 Λ1,1 Λ1,2 Λ1,3

ln(RV ) -0.66∗∗∗ 0.23∗∗∗ -0.07∗ 0.07
[-10.82] [2.63] [-1.93] [0.62]

PClevel 0.02 0.08 -0.08 0.53∗∗
[0.08] [0.48] [-0.87] [2.16]

PCslope -0.05 0.01 -0.03 -0.02
[-0.18] [0.10] [-0.41] [-0.07]

Panel C.II: Prices of Risk (MCMC)
Λ0 Λ1,1 Λ1,2 Λ1,3

ln(RV ) -0.66∗∗∗ 0.24∗∗∗ -0.07∗∗∗ 0.02
[-19.57] [3.23] [-2.78] [0.27]

PClevel -0.01 0.04 -0.06 0.57∗∗∗
[-0.26] [0.31] [-1.18] [4.18]

PCslope -0.03 0.01 -0.02 0.01
[-1.51] [0.30] [-1.36] [0.23]

Panel D.II: Difference from baseline (MCMC)
Λ0 Λ1,1 Λ1,2 Λ1,3

ln(RV ) 0.04 -0.00 -0.01 -0.09
[0.70] [-0.07] [-0.25] [-1.64]

PClevel 0.00 0.01 -0.00 -0.15
[0.02] [0.08] [-0.09] [-1.57]

PCslope 0.01 -0.00 0.00 0.01
[0.62] [-0.00] [0.35] [0.37]
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Table A.4: Variance Swap Return Predictability from 2010

This table reports variance swap return predictability regressions from 1/4/10 to 6/30/20 for com-
parison to the full sample results in Table 5. As before, the model significantly predicts returns
across horizons h and maturities n.

Return Predictability: Rt+h,n = β0 + β1Êt[Rt+h,n] + εt+h,n

Maturity (n) 1 3 6 9 12 18 24

One-month returns (h = 1, T = 2, 599)

β0 -0.01 -0.23 -0.29 -0.32 -0.34 -0.37 -0.38
(0.02) (0.14) (0.24) (0.28) (0.29) (0.31) (0.34)

β1 0.83∗∗∗ 2.19∗∗∗ 2.26∗∗∗ 2.10∗∗∗ 1.99∗∗∗ 1.79∗∗∗ 1.65∗∗∗
(0.27) (0.48) (0.71) (0.71) (0.62) (0.54) (0.48)

R2
adj 0.05 0.12 0.11 0.10 0.10 0.09 0.09

R2
oos 0.06 0.08 0.08 0.07 0.07 0.05 0.04

Wβ 1.03 8.36∗∗ 4.53 2.95 3.03 2.17 1.82
p-value (0.60) (0.02) (0.10) (0.23) (0.22) (0.34) (0.40)

Three-month returns (h = 3, T = 2, 557)

β0 -0.43∗ -0.54 -0.60 -0.63 -0.69 -0.74
(0.24) (0.44) (0.55) (0.62) (0.70) (0.80)

β1 1.63∗∗∗ 1.77∗∗∗ 1.69∗∗∗ 1.61∗∗∗ 1.50∗∗∗ 1.45∗∗∗
(0.21) (0.35) (0.39) (0.37) (0.34) (0.31)

R2
adj 0.23 0.22 0.21 0.20 0.20 0.19

R2
oos 0.21 0.19 0.18 0.17 0.17 0.16

Wβ 19.55∗∗∗ 10.39∗∗∗ 5.47∗ 4.33 2.67 2.25
p-value (0.00) (0.01) (0.07) (0.11) (0.26) (0.32)

Six-month returns (h = 6, T = 2, 494)

β0 -0.59 -0.53 -0.51 -0.44 -0.44
(0.39) (0.55) (0.66) (0.80) (0.96)

β1 1.46∗∗∗ 1.43∗∗∗ 1.39∗∗∗ 1.33∗∗∗ 1.30∗∗∗
(0.16) (0.18) (0.18) (0.16) (0.17)

R2
adj 0.38 0.35 0.33 0.33 0.32

R2
oos 0.36 0.33 0.32 0.33 0.33

Wβ 18.88∗∗∗ 14.04∗∗∗ 10.30∗∗∗ 7.16∗∗ 5.20∗
p-value (0.00) (0.00) (0.01) (0.03) (0.07)
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Table A.5: VIX Futures Pricing Error Summary Statistics from 2004 and 2010

This table reports summary statistics for the model’s VIX futures pricing errors for balanced panels
of the front three contracts from 3/26/04 and the front six contracts from 1/4/10 to 6/30/20.

VIX Futures Pricing Errors Summary Statistics: et,n = Futt,n − Futmodelt,n

Sample Start 2004 (T = 4, 071) 2010 (T = 2, 619)
Contract 1 2 3 1 2 3 4 5 6
Mean -0.48 -0.27 -0.19 -0.53 -0.54 -0.57 -0.62 -0.60 -0.55
Standard Deviation 0.94 1.10 1.10 0.92 0.92 0.90 0.89 0.90 0.89
t-statistic -9.43 -3.23 -1.92 -8.16 -6.51 -6.19 -6.49 -6.14 -5.84
Skewness -3.69 -2.17 -1.26 -4.88 -1.84 -0.93 0.00 0.59 -0.33
Kurtosis 37.88 18.03 10.09 52.87 16.24 9.51 9.57 10.52 12.75
Minimum -13.42 -11.17 -8.74 -13.42 -10.06 -7.86 -7.77 -7.32 -9.35
25th-Percentile -0.78 -0.77 -0.84 -0.79 -0.97 -1.07 -1.13 -1.14 -1.13
Median -0.38 -0.21 -0.16 -0.41 -0.50 -0.59 -0.71 -0.67 -0.63
75th-Percentile -0.03 0.31 0.52 -0.09 -0.00 -0.07 -0.15 -0.14 -0.05
Maximum 4.20 4.81 4.15 4.20 4.81 2.99 4.41 4.75 3.47

Table A.6: VIX Futures Return Predictability from 2010

This table reports regressions of VIX futures holding period returns onto the implied volatility term
premium by contract from January 4, 2010 to June 30, 2020 for comparison to the results in Table
9. As before, the model significantly predicts returns across contracts.

Return Predictability: Futt,n − V IXTn = β0 + β1IV TPt,n + εt,n

Contract (n) 1 2 3 4 5 6

β0 0.02 0.41 0.63 0.93 0.97 1.30
(0.62) (0.80) (0.89) (0.97) (1.08) (1.09)

β1 1.21∗ 1.12∗∗ 1.18∗∗∗ 1.18∗∗∗ 1.19∗∗∗ 1.22∗∗∗
(0.73) (0.44) (0.33) (0.30) (0.26) (0.22)

R2
adj 0.05 0.06 0.09 0.13 0.14 0.19

R2
oos 0.02 0.01 0.01 -0.03 0.12 0.25

N 2619 2619 2619 2619 2610 2591

Wβ 0.94 2.15 3.60 4.94∗ 3.99 5.30∗
p-value (0.63) (0.34) (0.17) (0.08) (0.14) (0.07)
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Table A.7: Straddle Returns Summary Statistics

This table reports summary statistics for at-the-money-forward (ATMF) straddle returns from
January 31, 1996 to June 30, 2020. The table reports statistics for monthly returns that are
aggregated from daily returns. The daily return is computed by averaging across maturities within
each maturity bucket for ATMF straddles with Black-Scholes deltas less than 25%. The ATMF
strike for each maturity is the strike that minimizes the absolute difference between call and put
prices.

Monthly ATMF Straddle Returns (percent)
Daily return definition Rstraddlet+1 ≡ (St − St+1 −∆t(Pt+1 − Pt))/St

Maturity Bucket (0, 3] (3, 6] (6, 9] (9, 15] (15, 24] Avg.
Mean 4.66 1.36 0.27 -0.03 -0.29 1.19
Standard Deviation 26.42 13.81 10.69 8.70 6.83 12.61
Sharpe ratio 0.18 0.10 0.03 -0.00 -0.04 0.09
t-statistic 2.90 1.58 0.41 -0.06 -0.73 1.53
Skewness -2.10 -2.38 -2.03 -2.17 -1.35 -2.25
Kurtosis 10.84 14.98 13.46 15.80 9.31 13.55
Minimum -205.06 -131.99 -101.69 -91.29 -55.92 -117.19
Median 9.96 3.97 1.95 1.14 0.34 3.49
Maximum 66.34 38.76 37.01 33.74 33.58 33.65
Autocorrelation 1-month 0.18 0.23 0.20 0.21 0.14 0.21
Autocorrelation 6-month -0.03 -0.01 -0.03 -0.02 -0.03 -0.03
Negative Percent 0.32 0.36 0.40 0.43 0.47 0.35
CAPM α 3.01 0.52 -0.35 -0.50 -0.62 0.41
tα-statistic 2.28 0.71 -0.63 -1.05 -1.74 0.62
CAPM β 2.35 1.20 0.89 0.66 0.47 1.11
tβ-statistic 5.86 4.72 4.69 3.99 4.15 5.06
CAPM R2

adj 0.20 0.19 0.17 0.14 0.12 0.19
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Table A.8: Explaining Straddle Returns with Variance Swap Returns

Panel A reports the correlation of one-month returns for ATMF straddles and synthetic variance
swaps for different maturities. Panel B reports regressions of the straddle returns onto variance swap
returns over one-, three-, and six-month horizons by maturity. Variance swap returns significantly
explain straddle returns. The estimated alphas are insignificant or significant and slightly negative,
indicating that ATMF straddles and variance swaps deliver similar average returns for the same
maturity. The sample period is January 31, 1996 to June 30, 2020. Straddle returns are computed
over different horizons by aggregating daily returns within the maturity buckets.

Panel A: Correlation of Straddle × VS one-month returns
Maturity 1 3 6 9 12 18 24 Avg.
(0,3] 0.54 0.64 0.65 0.65 0.64 0.62 0.60 0.62
(3,6] 0.59 0.72 0.75 0.75 0.75 0.74 0.72 0.72
(6,9] 0.56 0.69 0.75 0.76 0.77 0.77 0.76 0.72
(9,15] 0.56 0.69 0.75 0.77 0.79 0.80 0.79 0.73
(15,24] 0.47 0.61 0.68 0.71 0.74 0.77 0.78 0.68

Panel B: Straddle Return Explanatory Regressions Rstraddlet+h,b = α+ βRt+h,n + εt+h,b

Straddle Maturity Bucket b (0,3] (3,6] (6,9] (9,15] (15,24] Avg.
Expected Return Maturity n 3 6 9 12 18 Avg.

One-month returns (h = 1, T = 6, 053)
α 1.78 0.04 -0.58 -0.77∗∗ -0.72∗∗∗ 0.13

[1.43] [0.08] [-1.43] [-2.31] [-2.89] [0.27]
β 17.53∗∗∗ 7.62∗∗∗ 5.03∗∗∗ 3.73∗∗∗ 2.28∗∗∗ 5.95∗∗∗

[7.76] [11.07] [11.34] [12.93] [13.83] [11.65]
R2
adj 0.40 0.56 0.58 0.62 0.60 0.57

Three-month returns (h = 3, T = 6, 011)
α 1.76 -1.10 -2.10 -2.35∗ -2.28∗∗∗ -0.24

[0.45] [-0.65] [-1.49] [-1.90] [-2.63] [-0.16]
β 26.69∗∗∗ 10.28∗∗∗ 6.19∗∗∗ 4.39∗∗∗ 2.60∗∗∗ 7.71∗∗∗

[8.57] [12.57] [11.39] [9.78] [12.23] [10.37]
R2
adj 0.41 0.63 0.65 0.66 0.63 0.64

Six-month returns (h = 6, T = 5, 948)
α -5.05 -4.99 -4.76 -4.79∗∗ -4.08

[-1.23] [-1.47] [-1.62] [-2.41] [-1.44]
β 13.67∗∗∗ 7.10∗∗∗ 4.88∗∗∗ 2.82∗∗∗ 6.16∗∗∗

[6.98] [6.84] [6.39] [8.15] [7.01]
R2
adj 0.54 0.56 0.58 0.59 0.62
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Table A.9: Predicting Straddle Returns with Variance Swap Expected Returns

This table reports return predictability regressions for ATMF straddles for different horizons h
and maturity buckets b using the model’s estimated variance swap expected returns for maturity n.
Panel A reports full sample results and Panel B reports post-crisis results from 1/4/10. Newey-West
t-statistics indicate significance using 21 · h · 3 lags.

Straddle Return Predictability: Rstraddlet+h,b = β0 + β1Êt[Rt+h,n] + εt+h,b

Straddle Maturity Bucket b (0,3] (3,6] (6,9] (9,15] (15,24] Avg.
Expected Return Maturity n 3 6 9 12 18 Avg.

Panel A: Full Sample

One-month returns (h = 1, T = 6, 053)
β0 2.66 -0.48 -1.19 -1.33∗∗ -1.19∗∗ -0.51

[1.42] [-0.47] [-1.48] [-1.99] [-2.42] [-0.55]
β1 10.28∗∗ 8.82∗∗∗ 6.70∗∗∗ 5.79∗∗∗ 3.83∗∗∗ 7.92∗∗∗

[2.37] [3.87] [4.76] [5.24] [5.41] [4.60]
R2
adj 0.01 0.03 0.04 0.06 0.07 0.04

Three-month returns (h = 3, T = 6, 011)
β0 5.72 -1.37 -2.79 -3.23 -2.97∗∗ -1.00

[0.93] [-0.44] [-1.11] [-1.53] [-1.98] [-0.35]
β1 15.66∗∗ 9.22∗∗∗ 5.93∗∗∗ 4.92∗∗∗ 3.11∗∗∗ 7.55∗∗∗

[2.52] [3.28] [4.00] [4.51] [5.02] [3.82]
R2
adj 0.02 0.06 0.07 0.09 0.10 0.07

Six-month returns (h = 6, T = 5, 948)
β0 -5.30 -5.61 -6.09 -5.52∗ -5.07

[-0.73] [-1.02] [-1.38] [-1.78] [-1.08]
β1 12.71∗∗∗ 6.78∗∗∗ 5.28∗∗∗ 3.11∗∗∗ 6.30∗∗∗

[3.00] [3.43] [3.97] [4.67] [3.86]
R2
adj 0.12 0.11 0.14 0.14 0.14

Panel B: Post-Crisis

One-month returns (h = 1, T = 2, 599)
β0 2.75 -0.72 -1.61 -2.01 -1.70∗ -1.21

[0.81] [-0.36] [-1.05] [-1.46] [-1.91] [-0.63]
β1 14.26 12.66∗∗∗ 8.28∗∗∗ 6.99∗∗∗ 4.15∗∗∗ 10.51∗∗∗

[1.31] [2.69] [2.72] [2.75] [3.03] [2.76]
R2
adj 0.01 0.03 0.04 0.06 0.07 0.04

Three-month returns (h = 3, T = 2, 557)
β0 3.58 -2.52 -4.11 -4.86 -4.09∗ -3.35

[0.36] [-0.50] [-1.01] [-1.33] [-1.70] [-0.68]
β1 25.45∗ 14.24∗∗∗ 7.95∗∗∗ 6.22∗∗∗ 3.59∗∗∗ 11.12∗∗∗

[1.84] [4.01] [3.52] [3.29] [3.37] [4.01]
R2
adj 0.03 0.07 0.08 0.09 0.11 0.09

Six-month returns (h = 6, T = 2, 494)
β0 -10.72 -7.75 -7.77 -6.14∗ -6.78

[-1.02] [-1.10] [-1.37] [-1.79] [-1.08]
β1 23.18∗∗∗ 10.01∗∗∗ 6.88∗∗∗ 3.67∗∗∗ 8.88∗∗∗

[4.72] [4.09] [3.99] [4.21] [4.44]
R2
adj 0.19 0.16 0.17 0.19 0.19
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Table A.10: Robustness of Return Predictability for Straddle Returns

The estimated variance swap expected returns Êt[Rt+h,n] provide significant forecasts for straddle
returns using various definitions for daily straddle returns that are aggregated to longer horizons.
Newey-West t-statistics indicate significance using 21 · h · 3 lags to account for overlapping obser-
vations from daily data. The table reports one-month predictability regressions from 1/31/96 to
6/1/20 (h = 1, T = 6, 053). Similar results hold in unreported analysis for the post-crisis sample
and for three- and six-month horizons.

Straddle Return Predictability Regressions (h = 1): Rt+h,b = β0 + β1Êt[Rt+h,n] + εt+h,b

Straddle Maturity Bucket b (0,3] (3,6] (6,9] (9,15] (15,24] Average
Expected Return Maturity n 3 6 9 12 18 Average

Daily Returns: Rt+1 = (St − St+1 −∆t(Pt+1 − Pt))/K
β0 -0.03 -0.13 -0.21∗ -0.23∗∗ -0.23∗∗ -0.18∗

[-0.27] [-1.35] [-1.94] [-2.06] [-2.19] [-1.73]
β1 1.16∗∗∗ 1.26∗∗∗ 1.21∗∗∗ 1.18∗∗∗ 0.96∗∗∗ 1.22∗∗∗

[3.39] [5.05] [6.12] [6.29] [5.94] [6.35]
R2
adj 0.03 0.06 0.07 0.09 0.09 0.08

Daily Returns: Rt+1 = (St − St+1)/K
β0 0.02 -0.13 -0.21∗∗ -0.26∗∗ -0.26∗∗∗ -0.18∗

[0.16] [-1.31] [-2.10] [-2.43] [-2.86] [-1.90]
β1 0.92∗∗ 1.00∗∗∗ 1.04∗∗∗ 1.03∗∗∗ 0.83∗∗∗ 1.04∗∗∗

[2.39] [3.84] [4.72] [5.03] [4.87] [5.01]
R2
adj 0.02 0.04 0.06 0.07 0.08 0.06

Daily Returns: Rt+1 = (St − St+1 −∆t(Pt+1 − Pt) + rft · (St +K −∆tPt))/K − rft
β0 -0.01 -0.11 -0.18 -0.19∗ -0.18∗ -0.15

[-0.12] [-1.09] [-1.61] [-1.67] [-1.65] [-1.39]
β1 1.16∗∗∗ 1.25∗∗∗ 1.19∗∗∗ 1.15∗∗∗ 0.93∗∗∗ 1.20∗∗∗

[3.38] [4.99] [5.98] [6.10] [5.66] [6.20]
R2
adj 0.03 0.06 0.07 0.08 0.08 0.07

Daily Returns: Rt+1 = (St − St+1 −∆t(Pt+1 − Pt))/St
β0 2.66 -0.48 -1.19 -1.33∗∗ -1.19∗∗ -0.51

[1.42] [-0.47] [-1.48] [-1.99] [-2.42] [-0.55]
β1 10.28∗∗ 8.82∗∗∗ 6.70∗∗∗ 5.79∗∗∗ 3.83∗∗∗ 7.92∗∗∗

[2.37] [3.87] [4.76] [5.24] [5.41] [4.60]
R2
adj 0.01 0.03 0.04 0.06 0.07 0.04

Daily Returns: Rt+1 = (St − St+1)/St
β0 3.41∗ -0.52 -1.27∗ -1.53∗∗ -1.40∗∗∗ -0.48

[1.84] [-0.53] [-1.65] [-2.41] [-3.05] [-0.54]
β1 7.64∗ 7.48∗∗∗ 6.01∗∗∗ 5.38∗∗∗ 3.51∗∗∗ 6.95∗∗∗

[1.80] [3.51] [4.55] [5.20] [5.19] [4.43]
R2
adj 0.00 0.03 0.04 0.06 0.06 0.04
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Figure A.1: Synthetic Variance Swap Rate Estimation
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This figure illustrates the synthetic variance swap rate estimation procedure for the S&P 500 index
on December 20, 2019. The top plot reports the fitted implied volatility functions against log-
moneyness for different maturities. I estimate the synthetic variance swap rate as a weighted
average of out-of-the money option prices following Carr and Wu (2009) for each maturity. As the
plot indicates, I extrapolate the prices for deep out-of-the-money options whose BSM deltas are
less than 0.1% by appending log-normal tails with flat implied volatility functions. The bottom
plot reports the estimated synthetic variance swap rates against the CBOE volatility indices and
synthetic variance swap rates from Bloomberg. In the paper, I interpolate the estimated synthetic
rates onto a monthly grid from one-month to two-years. The hump in the term-structure for
maturities around one-year reflects market pricing of the 2020 election at the end of 2019.
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Figure A.2: Synthetic Variance Swap Rates versus the CBOE indices
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This figure plots the estimated one-month and three-month synthetic variance swap rates against
the CBOE volatility indices from 2008 to 2018. The left plots report the time series at month-end
dates. The right plots report the daily changes which are 95% correlated. The results highlight
how the estimated synthetic variance swap rates and CBOE indices move together with a high
time-series correlation. Table A.2 confirms that similar results hold over a longer horizon for the
VIX and across the other maturities and variance swap datasets.
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Figure A.3: State Variables and Principal Component Loadings
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This figure plots the variance swap principal component loadings and state variables Xt for three-
factor logarithmic and linear models. The top row plots the loadings and factors for the baseline
three-factor logarithmic model used in the paper. The bottom row plots the loadings and factors
for a three-factor linear model for comparison. The correlation of the RV , PC1, and PC2 factors
is 71%, 92%, and 77% respectively across the logarithmic and linear models.

31



Figure A.4: Robustness of Model Estimates Across Estimation Methods
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This figure plots estimated one-month and twelve-month variance swap rates and term premia
at month-end dates across the different estimation methods. The baseline estimates using the
parameters from Table 3 are plotted in blue. The alternative estimates from Table A.3 are plotted
in red, green, and orange for the nonlinear least squares (NLLS), maximum likelihood (MLE), and
Bayesian (MCMC) estimates respectively. The small differences in the parameter estimates from
the different methods do not translate into economically meaningful differences in variance swap
rates or term premia as indicated by the RMSEs in the legends.
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Figure A.5: Observable versus Latent State Variables
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This figure plots the standardized logarithm of the first two principal components of variance swap
rates denoted as level and slope that are used in the baseline estimation against the smoothed
estimates of the corresponding latent variables from the Bayesian MCMC estimation including the
posterior median and the 95% highest posterior density region. The smoothed median is very close
to the observed principal components. In addition, the highest posterior density regions fall very
tightly around the observed principal components, particularly for the level factor.
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Figure A.6: Variance Term Premia Confidence Intervals
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This figure plots the variance term premium alongside 95% confidence intervals for the one-month
and twelve-month maturities at month-end dates. The top plots report the baseline estimates
that are obtained by nonlinear least squares using daily data with block bootstrapped 5th and
95th quantiles treating the state variables as observable. The bottom plots report the Bayesian
MCMC estimates from non-overlapping monthly data that allow for latent state variables. There
is substantial time variation in the variance term premium relative to both the bootstrapped and
the MCMC confidence intervals.
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Figure A.7: Variance Term Premia Response to State Vector
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This figure plots the partial derivative of the realized variance term premia ∇RV TPt,n on average
and at different points in time for a one standard deviation increase in the state variables. The
average partial derivatives in the top left subplot are similar to the regression coefficients from
Table 7. The other plots highlight how the partial derivatives change for different values of the
state vector. The top right subplot from October 2007 represents a period when the state vector is
close to its unconditional mean µ̂ of zero. The bottom left subplot from November 2008 represents a
high volatility state with an inverted variance swap curve. The bottom right subplot from December
2016 represents a low volatility state with an upward sloping variance swap curve. The shaded box
for the November 2008 plot highlights the scale of the other subplots, illustrating the increase in
magnitude of the partial derivatives during the financial crisis.
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Figure A.8: VIX Term Premia Response to State Vector
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This figure plots the partial derivative of the implied volatility term premia ∇IV TPt,n on average
and at different points in time for a one standard deviation increase in the state variables. The
average partial derivatives in the top left subplot are similar to the regression coefficients from
Table 7. The other plots highlight how the partial derivatives change for different values of the
state vector. The top right subplot from October 2007 represents a period when the state vector is
close to its unconditional mean µ̂ of zero. The bottom left subplot from November 2008 represents a
high volatility state with an inverted variance swap curve. The bottom right subplot from December
2016 represents a low volatility state with an upward sloping variance swap curve. The shaded box
for the November 2008 plot highlights the scale of the other subplots, illustrating the increase in
magnitude of the partial derivatives during the financial crisis.
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Figure A.9: Volatility of the VIX Index
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The top plot reports the unconditional term structure of volatility for the VIX in the model estimated
from February 2006 to June 2020 against the realized volatility of the VIX index and the average
term-structure of implied volatility from VIX options. The middle plot reports the CBOE VVIX
Index alongside the interpolated one-month at-the-money implied volatility for VIX options. The
bottom plot reports VIX options skew, measured as the difference in implied volatility for one-month
options with high and low strike prices of KHigh = Fut+ 5 and KLow = Fut− 5.
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Figure A.10: Variance Risk Premium in Eraker and Wu (2017) Two-Factor Model
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The left plots report the realized variance forecast RVt,t+τ (P ) and variance swap rate V St,t+τ (Q)
against the number of days to maturity. The right plots report the variance risk premium V RPt,t+τ
(Q - P ). The rows vary the spot σt and long-term θt volatility across high and low states. The
realized variance risk premium or expected return from receiving fixed in variance swaps is always
positive. The calibrated parameters are from Section A.1 in Eraker and Wu (2017).
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Figure A.11: VRP and IVRP in Eraker and Wu (2017) Two-Factor Model
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This figure plots the variance risk premium V RPt,t+τ and implied variance risk premium IV RPt,T1,T2
as a function of the state variables σ2

t and θt. The horizon is three-months for the VRP τ = 63 and
three-month, three-month for the IVRP T1 = 63, T2 = 126. The plot shows that the risk premia
measures are increasing in risk as measured by both state variables, similar to the intuition from
the instantaneous risk premium derivation. Consistent with the plot, the formulas above show that
the VRP and IVRP measures are affine in the state variables.
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