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Abstract 

This paper estimates the term structure of volatility risk premia for the stock market. By modeling the 
logarithm of realized variance, the paper derives a closed-form relationship between the prices of variance 
swaps and VIX futures. Term premia estimates for realized variance and implied volatility predict 
variance swap and VIX futures returns. When systematic risk increases, realized variance term premia 
increase but implied volatility term premia decline or exhibit a muted response. VIX futures are cheaper 
than the option-implied model prices by .50 percent on average and they tend to cheapen even further 
relative to the model when the VIX increases. 
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1 Introduction

This paper develops a new approach for estimating the term-structure of volatility risk premia. By

modeling realized variance as log-affine in discrete time, the paper derives a closed-form relationship

between the prices of variance swaps and VIX futures. Model estimates of volatility term premia

measure the time-varying cost of insuring against realized variance and implied volatility shocks

over different horizons. Traders obtain exposures to these shocks for numerous reasons such as

risk management, earning volatility risk premia, obtaining leverage, and arbitrage trading, among

others.

The paper estimates the log term-structure model over a 25-year sample period from 1996 to 2020

using option-implied variance swaps and realized variance data. The log transformation guarantees

that the model prices and volatility forecasts are non-negative.1 In contrast, affine and quadratic

models that are prevalent in the literature provide closed-form prices for variance swaps but not

for VIX futures, and they do not guarantee non-negative prices without restrictive assumptions.

Model estimation is fast and tractable by applying insights from the regression-based methodology

from Adrian et al. (2015). A three-factor model is selected by standard information criteria. This

benchmark model matches realized variance dynamics exactly and performs well at pricing variance

swaps and forecasting variance swap returns.

The paper considers two empirical applications of the model. The first application studies the

risk-return tradeoff in volatility markets. When analyzing the dynamics of volatility risk premia,

many studies do not distinguish between the risk premium for realized variance and the risk premium

for implied volatility. Variance swap studies often focus on variance swap expected returns which

measure the realized variance risk premium (Egloff et al. 2010; Filipović et al. 2016; Amengual

and Xiu 2018; Aït-Sahalia et al. 2020). Other studies focus on the implied volatility risk premium

(Cheng 2018) or the realized variance risk premium (Lochstoer and Muir 2022) in isolation. Dew-

Becker et al. (2017) is an exception which emphasizes the different types of volatility risk premia,

finding that realized variance earns a much larger unconditional risk premium than implied variance

as measured by the average returns of variance swap forwards.

The model in this paper provides a straightforward way to estimate the conditional risk pre-

mium for realized variance and implied volatility in a way that is consistent with the absence of

arbitrage. Figures 1 and 2 plot the realized variance term premia (RVTP) and implied volatility
1Negative variance swap rates or VIX futures prices are arbitrage opportunities similar to zero lower bound

violations in fixed income settings.
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term premia (IVTP) estimates. To validate their interpretation as risk premia measures, the paper

shows that the RVTP and IVTP estimates significantly predict variance swap and VIX futures

returns.2 By studying the time-series dynamics of the estimates, the paper finds that there is a

positive risk-return tradeoff for realized variance but not for implied volatility. When systematic

risk increases, the RVTP estimates increase across maturities and then decline slowly over time. In

contrast, the IVTP estimates exhibit a negative or muted response for maturities up to six months,

increasing only at a lag. These findings are novel because they are inconsistent with the prediction

from many equilibrium models of a positive risk-return tradeoff for realized and implied volatility.

The analysis highlights the importance of testing whether different models are consistent with the

separate dynamics of realized variance and implied volatility risk premia.

The second application in the paper studies relative pricing across volatility markets, contribut-

ing to the limits-to-arbitrage literature (Gromb and Vayanos 2010). This analysis directly benefits

from the model’s closed-form pricing relationships. After being estimated with option-implied vari-

ance swap rates and realized variance data, the model is applied to price VIX futures. Figure 3

illustrates the model-based pricing error for the front-month VIX futures contract. While the model

tracks the futures price quite well throughout most of the sample, the analysis reveals differences

in average prices and periods with large dislocations in the prices of relative claims. VIX futures

are found to be cheaper than the option-implied model prices by .50% on average and exhibit pric-

ing errors as large as several percentage points at times. When the VIX increases, futures tend to

cheapen relative to the model, exacerbating the anomalous response of implied volatility risk premia

to increases in risk.

The paper compares the term-structure model’s ability to price VIX futures to a non-parametric

approach that uses index options and VIX options following Hülsbusch and Kraftschik (2018) and

Park (2020). The pricing errors from the model are highly correlated with the pricing errors from the

non-parametric approach, providing external validity to the analysis. In addition, the pricing errors

from the model are found to be smaller in magnitude for longer-dated contracts and more significant

at forecasting VIX futures returns than the pricing errors from the non-parametric approach. The

results illustrate the ability of the model to identify valuation differences across the VIX futures

and index options markets. Compared to the non-parametric approach, the term-structure model

is particularly valuable for pricing longer-dated contracts because it does not rely on the use of less
2The return predictability results are significant across contract maturities and forecast horizons and hold in-

sample and out-of-sample. The results are robust to accounting for conditional heteroskedasticity, Stambaugh (1999)
bias, and Hodrick (1992) standard errors following the approach in Johnson (2019).
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liquid or unavailable VIX options prices.

To interpret the results in more detail, one can observe that the behavior of the IVTP estimates is

unexpected. A natural hypothesis is that the risk premium for selling volatility should be increasing

in systematic risk due to the leverage effect for both variance swaps and VIX futures (Black 1976).3

In theories for why investors hedge volatility, risk premia for realized variance and implied volatility

are increasing in the economy’s systematic risk factors such as volatility-of-volatility and jump risk

(Bollerslev et al. 2009; Drechsler and Yaron 2011; Eraker and Wu 2017). In these models, volatility

term premia exhibit a positive time-series correlation with the VIX. For example, in the Eraker and

Wu (2017) model, volatility term premia for realized variance and implied variance increase after a

shock to the VIX and then decline slowly over time, as the paper demonstrates. More broadly, a

similar result holds in any theoretical model in which the returns from selling volatility are negatively

correlated with the stochastic discount factor, so that the negative correlation condition (NCC) from

Martin (2017) is satisfied.

The behavior of the IVTP estimates also relates to recent studies on the dynamics of volatility

risk premia such as Cheng (2018) and Lochstoer and Muir (2022). Cheng (2018) finds that the risk

premium for selling VIX futures is decreasing in various measures of systematic risk and provides

evidence that demand effects are contributing to the unexpected behavior. If volatility hedging

demand falls or if hedgers take profit when risk increases, downward demand pressure on futures

prices may dampen the implied volatility risk premium. Exploring a different channel, Lochstoer

and Muir (2022) consider a model in which the representative agent has slow-moving beliefs about

stock market volatility that leads to initial underreaction to volatility shocks followed by delayed

overreaction. Embedding these subjective beliefs into an otherwise standard long-run risk model

results in volatility term premia that initially decrease and go negative after a shock to expected

variance and then rise and become positive at a lag.

Compared to the reduced-form statistical approach in Cheng (2018), this paper finds similar

results for implied volatility risk premia in a fully-fledged no-arbitrage model. Since the term-

structure model is estimated without VIX futures data and because the sample extends back to

1996 before the start of VIX futures trading in 2004, it seems unlikely that demand for VIX futures

is driving the IVTP estimates. At the least, the impact of VIX futures demand on the IVTP
3The leverage effect refers to the negative correlation between increases in volatility and changes in stock prices.

Kalnina and Xiu (2017) show how to non-parametrically estimate the leverage effect using prices alone and using
the VIX as a volatility instrument. From a factor model perspective, selling volatility should earn a positive risk
premium as the returns from selling variance swaps and VIX futures load positively on stock market returns (Merton
1973; Ross 1976).
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estimates would need to arise through an indirect channel that overcomes the much larger size of

the index options market relative to the VIX futures market throughout most of the sample period.4

Demand for VIX futures is more likely an important factor for the relative pricing analysis, where

declining futures price relative to the model when the VIX increases is consistent with the demand

channel that Cheng (2018) identifies.

An alternative possibility is that the mechanism in Lochstoer and Muir (2022) explains the

IVTP estimates. However, there is a difficulty with this description as well. In Lochstoer and Muir

(2022), realized and implied volatility risk premia are driven by the same, single-factor, which is the

mistake agents make in their variance expectation. When there is a shock to expected variance in

the Lochstoer and Muir (2022) model, the volatility risk premium declines, resulting in a negative

risk-return tradeoff for both types of volatility shocks. In contrast, the RVTP estimates from the

term-structure model exhibit a positive risk-return tradeoff that differs from the negative or muted

tradeoff for the IVTP estimates. The empirical results in this paper suggest that the dynamics of

realized variance and implied volatility risk premia may be less intertwined than what is predicted

by many models.

From a historical time-series perspective, modeling the logarithm of realized variance is moti-

vated by numerous studies including French et al. (1987) who show that the log-transformation

reduces skewness, Nelson (1991) who develops an exponential ARCH model, and Andersen et al.

(2003) and Andersen et al. (2007) who forecast volatility using nonlinear transformations of realized

variance including the log transformation, which empirically tends to be approximately uncondition-

ally Normally distributed across asset classes. While Box-Cox transformations can further reduce

the skewness of realized variance in finite samples (Gonçalves and Meddahi 2011), this paper focuses

on the log transform as a special case because it allows for closed-form pricing of variance swaps

and VIX futures.

The literature on volatility term premia and variance swap pricing have received significant at-

tention in recent years. In fixed income, a large literature on term-structure modeling decomposes

yield curves into expected paths for interest rates and term premia components while seeking to

determine the number of factors that drive the yield curve (Dai and Singleton 2003; Piazzesi 2010).

Building on these results, a more recent literature focuses on variance swap term-structures, esti-
4S&P 500 index options had an average open interest of $4.65 billion in Black-Scholes-Merton vega in 2020. This

was over 15-times larger than the average VIX futures open interest of 302 thousand contracts or $302 million of
“vega” for one-point changes in VIX futures prices given the contract multiplier of $1000. Since 2010 the index options
market has been around 9-times larger than the VIX futures market as measured by average open interest in units
of vega. Earlier in the sample the index options market was even larger on a relative basis.
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mating affine and quadratic models that are adapted from fixed income settings (Egloff et al. 2010;

Filipović et al. 2016; Amengual and Xiu 2018; Aït-Sahalia et al. 2020). The variance swap models

are applied to study portfolio choice problems and to estimate expected returns for variance swaps

and the stock market.

Among existing variance swap models, Egloff et al. (2010), Dew-Becker et al. (2017), and Aït-

Sahalia et al. (2020) estimate two-factor affine models with spot- and long-run volatility factors to

match variance swap rates and a time-series factor that is either realized variance or stock market

returns. Giglio and Kelly (2017) estimate a two-factor affine model to price variance swaps, but do

not target realized variance dynamics. Filipović et al. (2016) develop a class of quadratic variance

swap models and find evidence in favor of a bivariate model without volatility jumps that is estimated

to match variance swap prices and variance swap and S&P 500 return dynamics. Closer to this paper,

Fusari and Gonzalez-Perez (2013) model spot variance in a two-factor log-affine specification that

outperforms affine models. Amengual and Xiu (2018) estimate a two-factor non-affine model with

double-sided volatility jumps, finding evidence of negative volatility jumps in a log-specification

for spot variance. Since spot variance drives the continuous component of realized variance, these

approaches are similar but distinct from modeling realized variance as log-affine, as realized variance

reflects both the continuous and jump components of the price process. In addition, since these

models are set in continuous time with latent volatility factors, rolling estimation for out-of-sample

analysis is more challenging and pricing of VIX futures is less tractable because variance swaps are

only available in (quasi) closed-form.5

2 Pricing Variance Swaps and VIX Futures

2.1 Variance Swaps

Variance swaps are over-the-counter derivatives that allow investors to hedge and speculate on

volatility over different horizons. The only cashflow occurs at maturity and is equal to the difference

between the fixed variance swap rate and the floating amount of realized variance that the underlying

asset exhibits over the life of the swap. The fixed rate is priced to make the swap costless to enter at

the time of trade. Variance swaps can be interpreted as a form of volatility insurance, with the fixed

rate and maturity representing the insurance premium and length of coverage. By trading variance
5Variance swap rates in Amengual and Xiu (2018) are computed numerically by integrating over the solutions of

ordinary differential equations. Pricing VIX futures by applying Zhu and Lian (2012) requires an additional numerical
integration step.
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swaps of different maturities, investors give rise to a term structure of market implied volatility that

embeds information about volatility expectations and risk premia over different horizons.

This paper constructs a detailed dataset of synthetic variance swap rates on a monthly grid

from one-month to two-years from S&P 500 index option quotes using OptionMetrics data. The

sample period is from January 4, 1996 to December 31, 2020. The estimation approach exploits the

well-known no-arbitrage relationship for pricing variance swaps from option portfolios that serves

as the basis for the VIX index (Carr and Wu 2009).6 The Appendix includes a detailed description

of the estimation procedure and a comparison of the estimated synthetic variance swap rates to the

CBOE volatility indices and Bloomberg synthetic rates. This paper’s estimated rates closely align

with the alternative datasets. The advantage of this study’s estimated rates is their availability over

the full sample period for a wide range of maturities.

2.2 Realized Variance

The floating leg of a variance swap pays the realized variance of the underlying asset from the

trade date until the maturity of the swap. In practice, variance swap contracts must provide a

definition for computing realized variance. For example, contracts must specify whether to use log

or simple returns, whether to demean returns or not, how to annualize estimates using different day

count conventions, etc. From a theoretical perspective, the definition should be chosen so that the

floating leg payoff produces an accurate estimate of the quadratic variation of the underlying asset.

The no-arbitrage replication argument that is used for pricing variance swaps relies on computing

the risk-neutral expectation of an asset’s quadratic variation through an application of Itô’s lemma.

Thus, it is desirable for the floating leg payoff to provide an accurate estimate of an asset’s quadratic

variation or realized variance during the life of the swap.

Based on these observations, the realized variance payoff for this paper is defined using the two-

scale realized variance estimator from Zhang et al. (2005). The two-scale estimator is computed
6The Appendix shows that the estimated synthetic variance swap rates closely track the volatility indices from the

Chicago Board Options Exchange (CBOE) and the synthetic variance swap rates from Bloomberg. The advantage of
the estimated rates is their availability from 1996 to 2020 for a wide range of maturities, whereas Bloomberg data is
only available from November 2008 and the CBOE indices are only available for 1-, 3-, and 6-month maturities with
the VIX3M and VIX6M starting in December 2007 and January 2008. This study focuses on traditional variance
swaps rather than simple variance swaps from Martin (2017) for two reasons. First, traditional variance swaps can
be decomposed into variance swap forwards. For example, a one-year variance swap is the sum of a six-month
variance swap and a six-month forward six-month variance swap. These properties are convenient for deriving prices
in dynamic term-structure settings and they do not hold for simple variance swaps. Second, VIX futures are based on
the CBOE definition for the VIX. The squared-VIX index is an estimate of a one-month traditional variance swap as
described in Carr and Wu (2006) and CBOE (2019). Simple variance swaps have the advantage that their replicating
portfolio is robust to jumps in the underlying asset (Martin 2017).
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using high frequency data for the S&P 500 Index from Thomson Reuters Tick History (TRTH).

The two-scale estimator reflects the trade-offs in using high frequency data to estimate realized

variance. On one hand, sampling more finely allows for more accurate volatility estimation (Merton

1980). On the other hand, sampling too finely can magnify microstructure noise such as the bid-ask

spread and price discreteness, which can severely bias estimation (Aït-Sahalia and Jacod 2014).

The two-scale estimator balances these trade-offs by averaging realized variance estimates from a

sparse sampling frequency across subsamples on a finer grid.

In practice, this paper applies the two-scale estimator by computing first stage estimates of

realized variance that are equal to the sum of squared five-minute intraday log returns plus the

squared overnight log return across different one-minute subsamples for each trading day.7 The

choice of a five-minute intraday sampling frequency is common in the empirical literature and is

motivated by Liu et al. (2015). The second stage averages the first stage estimates across subsamples

for a daily estimate of realized variance with reduced sampling variability. The daily realized

variance estimates are then summed for each trading day within the month to obtain a monthly

estimate of realized variance. The payoff to the floating leg of an n-month variance swap traded

at time t is defined as the sum of the monthly realized variance estimates from month t to month

t+n. The Appendix describes the steps for cleaning the high frequency data which follow Liu et al.

(2015).

2.3 VIX Futures

The CBOE introduced trading in VIX futures in 2004 and VIX options in 2006. The payoff to a

VIX futures contract is the difference between the futures price and a special opening quotation

of the VIX index at maturity. From its definition, the VIX index upon which VIX futures are

based is equal to the square root of a one-month synthetic variance swap rate. The swap rate is

“synthetic” because it is computed from the price of a portfolio of S&P 500 index options following

the no-arbitrage formula for pricing variance swaps. The square-root adjustment expresses the VIX

index in the same units as the Black-Scholes-Merton implied volatility parameter which is familiar

to option traders. By providing exposure to the VIX index which is a measure of option prices,

VIX futures allow investors to hedge and speculate on shocks to implied volatility. This contrasts
7The realized variance estimate for the first subsample is the sum of the squared log returns from the previous

close to 9:30am, 9:30am to 9:35am, ..., 3:55pm to 4:00pm. The realized variance estimate for the second subsample
is sum of squared log returns from the previous close to 9:31am, 9:31am to 9:36am, ..., 3:56pm to 4:00pm, etc. Each
subsample uses the same starting and ending prices to estimate the daily realized variance.

7



variance swaps which provide exposure to realized volatility.

2.4 Modeling Variance Swaps and VIX Futures

This paper models variance swaps as the risk-neutral (Q-measure) expected value of realized variance

from the trade date until the maturity of the swap,

V St,n = EQ
t

[
n∑
i=1

RVt+i

]
. (1)

Time is discrete with each period representing one-month. To model variance swap dynamics, I

assume the systematic risk in the economy can be summarized by a K × 1 vector of state variables

Xt under the physical measure P that follow a stationary vector autoregression,

Xt+1 = µ+ ΦXt + vt+1, (2)

with shocks vt+1 that are conditionally Normal vt+1|Ft
P∼ N(0,Σv).8 This specification can be

motivated by the intertemporal capital asset pricing model of Merton (1973) or the arbitrage pricing

theory of Ross (1976).

I set the first element of the state vector to the logarithm of realized variance lnRVt,

X ′t = [lnRVt Y
′
t ]. (3)

This allows the model to match the dynamics of realized variance exactly and ensures that the model

spans variance swap payoffs. The subsequent variables Yt can be any financial or macroeconomic

variables that help to explain the cross-sectional and time-series variation of realized variance and

variance swaps.

To model risk premia and derive variance swap rates, I assume the stochastic discount factor is

equal to,

Mt+1 = e−rt−
1
2
λ′tλt−λ′tΣ

−1/2
v vt+1 , (4)

with an affine price of risk,

λt = Σ−1/2
v (Λ0 + Λ1Xt) . (5)

8The assumption of a first-order VAR is without loss of generality as the analysis encompasses the case in which
(2) is the companion form of a higher-order VAR(p). The model selection analysis provides empirical evidence in
favor of using a first-order VAR.
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This links the physical and risk-neutral dynamics through the relationships µQ = µ − Λ0 and

ΦQ = Φ− Λ1. The state vector under the risk-neutral measure Q follows,

Xt+1 = µQ + ΦQXt + vQt+1, (6)

with shocks that are conditionally Normal vQt+1|Ft
Q∼ N(0,Σv).

In deriving variance swap rates, it is convenient to first obtain prices for variance swap forwards.

Variance swap forwards can be defined as,

Ft,n = EQ
t [RVt+n] , (7)

where the zero-month forward rate is equal to realized variance Ft,0 = RVt. Variance swap forwards

decompose the variance swap curve into one-month forward rates,

V St,n =

n∑
i=1

Ft,i, (8)

similar to the relationship between forward rates and yields in fixed income.

The excess return from receiving fixed in variance swap forwards is equal to,

Rxt+1,n = Ft,n − Ft+1,n−1. (9)

This trade corresponds to receiving fixed in an n-month variance swap forward at time t and paying

fixed in an n− 1 month variance swap forward at time t+ 1. Since this trade costs zero dollars at

time t, it is equivalent to the risk-neutral pricing equation,

EQ
t [Ft,n − Ft+1,n−1] = 0. (10)

To derive variance swap rates, I guess and verify that variance swap forwards are exponential

affine in the state vector,

Ft,n = eAn+B′nXt . (11)

I set the initial condition to A0 = 0 and B0 = [1~0] so that the model prices realized variance exactly.

This restriction reduces the number of parameters to estimate. The risk-neutral pricing equation

for the one-month variance swap rate is then equal to,
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EQ
t [Rxt+1,1] = EQ

t [Ft,1 − Ft+1,0]

= EQ
t [V St,1 −RVt+1]

= eA1+B′1Xt − eA0+B′0(µQ+ΦQXt)+ 1
2
B′0ΣvB0

= 0.

(12)

Since this equation must hold state by state, matching coefficients determines A1 and B1. For longer

maturities, plugging the guess into the risk-neutral pricing equation produces the following system

of recursive equations,

An = An−1 +B′n−1µ
Q + 1

2B
′
n−1ΣvBn−1

B′n = B′n−1ΦQ.
(13)

These recursions coupled with the initial condition determine variance swap forward rates.

Variance swap rates are then equal to the sum of variance swap forward rates as noted above,

V St,n =

n∑
i=1

eAi+B
′
iXt . (14)

The adjustment
√

12/n · V St,n expresses variance swap rates in annualized volatility units. Variance

swap rates may be decomposed into realized variance term premia RV TPt,n and realized variance

forecasts RV Ft,n as follows,

V St,n = EP
t

[
n∑
i=1

RVt+i

]
︸ ︷︷ ︸

Realized Variance Forecast

+

(
EQ
t

[
n∑
i=1

RVt+i

]
− EP

t

[
n∑
i=1

RVt+i

])
.︸ ︷︷ ︸

Realized Variance Term Premium

(15)

Realized variance term premia are equal to the expected holding period return from receiving fixed

in variance swaps over an n-month horizon,

RV TPt,n ≡ EQ
t [
∑n

i=1RVt+i]− EP
t [
∑n

i=1RVt+i]

=
∑n

i=1 e
Ai+B

′
iXt −

∑n
i=1 e

APi +(BPi )′Xt . (16)

The realized variance forecasts are obtained by replacing µQ and ΦQ with µ and Φ in the recursions

above to compute the coefficients APn and BP
n . This shuts down the prices of risk, allowing for

forecasts under the physical as opposed to the risk-neutral measure.

The model also admits closed-form prices for VIX futures. The exponential affine price for

variance swap forwards that follows from modeling the logarithm of realized variance naturally
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absorbs the square-root adjustment that is needed to price VIX futures.9 To see this, define the

VIX as,

V IXt ≡
√
EQ
t [RVt+1] =

√
V St,1. (17)

It follows that the price of the n-month VIX futures contract is,

Futt,n = EQ
t [V IXt+n]

= EQ
t

[√
EQ
t+n [RVt+n+1]

]
= EQ

t

[√
eA1+B′1Xt+n

]
= EQ

t

[
e

1
2
A1+ 1

2
B′1Xt+n

]
= eA

F
n+(BFn )′Xt .

(18)

The coefficients AFn and BF
n for pricing VIX futures follow the same recursions as An and Bn for

pricing variance swaps with an adjusted initial condition AF0 = 1
2A1 and BF

0 = 1
2B1. Analogous to

realized variance term premia, implied volatility term premia are defined as,

IV TPt,n ≡ EQ
t [V IXt+n]− EP

t [V IXt+n]

= eA
F
n+(BFn )′Xt − eA

P,F
n +(BP,Fn )′Xt .

(19)

Implied volatility term premia IV TPt,n are equal to the expected holding period return from selling

the n-month VIX futures contract and thus represent the market price of risk for bearing exposure to

implied volatility shocks. This differs from realized variance term premia RV TPt,n which represent

the market price of risk for bearing exposure to realized variance shocks.

3 Model Estimation

3.1 Data and Estimation Approach

I estimate the model with realized variance and synthetic variance swap rate data from 1996 to

2020. Realized variance is estimated from high frequency data for the S&P 500 index. Synthetic

variance swap rates are estimated from SPX index option quotes for {1, 2, 3, 6, 9, 12, 18, 24}-

month maturities. The baseline estimation results are from non-overlapping monthly data. Realized
9In affine models, pricing VIX futures requires computing the risk-neutral expectation EQ

t [
√
A1 +B′1Xt+n] by

simulation or numerical integration. Quadratic models pose a similar problem. In the log term-structure model, the
VIX and VIX futures price can be expressed in annualized volatility units by multiplying

√
V St,1 and Futt,n by

100 ·
√

12.
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variance is the monthly sum of daily realized variance estimates from high frequency data. Synthetic

variance swap rates are observed at month-end. In addition to the baseline results, the Appendix

discusses estimating the model with an overlapping VAR and daily data. The paper uses the daily

estimates for the empirical applications including the return predictability analysis and the relative

value analysis of variance swap and VIX futures pricing.10

Table 1 reports summary statistics for the estimation data. The term-structure of volatility is

upward sloping on average. The higher level of variance swap rates compared to realized variance

reflects the unconditional variance risk premium that investors earn by bearing exposure to realized

variance shocks. Further out on the curve, variance swaps are more persistent and less volatile.

During periods of elevated stock market volatility, the variance swap curve tends to invert with re-

alized variance and short-maturity variance swaps increasing more than the persistent long-maturity

variance swaps. When stock market volatility declines, the curve tends to revert to its unconditional

upward sloping state.

The model can be summarized by the following system of equations,

Xt+1 = µ+ ΦXt + vt+1, vt+1|Ft ∼ N(0,Σv)

Yt,n = gn(Xt, µ
Q,ΦQ,Σv) + et,n, et,n|Ft ∼ (ρ · et−1,n, σ

2
e,n).

(20)

The state vector Xt follows a monthly vector autoregression. Variance swap rates Yt,n are assumed

to be observed with measurement errors et,n that are mutually independent across maturities but

serially correlated conditioned on the state vector with mean ρ ·et−1,n and variance σ2
e,n. The model

price expressed in annualized volatility units is,

gn(Xt, µ
Q,ΦQ,Σv) =

√√√√12

n

n∑
i=1

eAi+B
′
iXt . (21)

The parameters to be estimated are Θ = (µ,Φ, µQ,ΦQ, Lv, ρ, σe) where Lv is the Cholesky decom-

position of Σv = LvL
′
v.

The estimation approach proceeds in three steps. First, I estimate the physical parameters

(µ̂, Φ̂) from a monthly vector autoregression by ordinary least squares,

Xt+1 = µ̂+ Φ̂Xt + v̂t+1, (22)
10The model can accommodate daily data by allowing the state vector to follow a monthly vector autoregression

with overlapping observations and a horizon of h = 21 trading days. The parameter estimates from overlapping daily
data are similar to the baseline estimates from non-overlapping monthly data.
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and set Σ̂v to the sample covariance matrix of the innovations v̂t+1. This step follows the regression-

based approach in Adrian et al. (2013). Second, I estimate the risk-neutral parameters (µ̂Q, Φ̂Q)

and ρ̂ by minimizing the model’s variance swap pricing errors by nonlinear least squares,

(µ̂Q, Φ̂Q) = arg min
(µQ,ΦQ,ρ)

1

T ·Nτ

T∑
t=1

∑
n∈τ

(
Yt,n − gn(Xt, µ

Q,ΦQ, Σ̂v)− ρ · êt−1,n

)2
. (23)

Third, I compute the maximum likelihood estimates Θ̂MLE using the OLS and nonlinear least

squares estimates as an initial condition, assuming the pricing errors are conditionally Normal. The

Appendix reports the log-likelihood function.11

3.2 Model Selection

The baseline model selected for this paper is a VAR(1) with three factors,

Xt = [lnRVt PC1t PC2t]. (24)

The realized variance factor, lnRVt, is the log of monthly realized variance. The principal component

factors, PC1t and PC2t, are the first two PCs of log variance swap rates.12 Figure 4 plots the

state variables and the PC loadings. The top plot shows that the state variables are increasing

during periods of financial distress and mean reverting. The bottom plot shows that the principal

components can be interpreted as level and slope factors. High values for the slope factor indicate

an inverted variance swap curve.

The model selection and specification analysis is included in the Appendix. The lag length for the

VAR(p) and number of principal components is selected using standard AIC and BIC information

criteria measures that trade off the improved fit from a larger model against the increasing number of

model parameters. The best model according to the information criteria measures has one lag in the

VAR and two PC factors. The paper uses this three-factor VAR(1) specification as the benchmark

model for the empirical analysis. However, since it is challenging to precisely identify the number of

factors in term-structure settings (Crump and Gospodinov 2019), the Appendix provides detailed

robustness analysis showing that the estimation results and the dynamics of the volatility term
11Nonlinear least squares, maximum likelihood, and Bayesian MCMC estimation with latent factors deliver sim-

ilar parameter estimates and results for model prices and volatility term premia. The estimation results from the
alternative approaches are unreported and available upon request.

12I standardize log realized variance and log variance swap rates for numerical stability when estimating the model.
This changes the initial condition for pricing variance swaps to A0 = µlnRV and B0 = [σlnRV ~0]. I omit the
standardization in this study for notational simplicity.
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premia estimates are similar across a range of model specifications, including a five-factor model

with daily and weekly realized variance factors.13

3.3 Estimation Results

Table 2 reports the model parameter estimates. The physical parameters in Panel A show that each

of the state variables contributes significantly to the realized variance forecasts. The first row of Φ̂

reveals that higher levels of log realized variance lnRV , the level factor PC1, and the slope factor

PC2 forecast higher levels of log realized variance next month. A one unit increase in lnRV , PC1,

and PC2 forecasts a .22, .52, and .25 standard deviation higher value of lnRV next month.14 The

mean of the physical parameters µ̂ is close to zero because log realized variance and log variance

swap rates have been z-scored when constructing the state vector. The second and third row of

Φ̂ show that the level and slope factors are persistent, but that their forecasts have only a limited

dependence on the other variables.

Panel B reports the price of risk estimates. The results indicate that each of the state variables

contributes significantly to the time variation in volatility term premia. Since the model is nonlinear,

it is difficult to interpret the price of risk estimates Λ̂0 and Λ̂1 directly. Instead, I present decom-

positions below to show how volatility term premia load on the different factors in the estimated

model. As a preview, realized variance term premia are decreasing in lnRV , increasing in PC1,

and increasing (decreasing) in PC2 at the short-end (long-end) of the curve. Implied volatility term

premia are increasing in PC1 and decreasing in PC2. Panel C reports the parameter estimates for

the standard deviation and autocorrelation of the variance swap pricing errors and the Cholesky

decomposition of the VAR residual covariance matrix. The results show that the model fits the

data with small pricing errors that are significantly autocorrelated.
13Table A.2 reports the model specification analysis. The estimated VAR is stationary with a maximum eigenvalue

of .85 (.03) and a 95% bootstrapped confidence interval from (.81, .93) that is significantly below 1. Augmented
Dickey-Fuller tests reject the null hypothesis of a unit-root process for each of the state variables in favor of the
alternative that the data is stationary. The VAR residuals in the benchmark three-factor model exhibit little auto-
correlation. Ljung-Box tests of the null hypothesis that the residual autocorrelations are jointly equal to zero are
not rejected at the 5% level for any of the state variables. In addition, since lnRVt reflects realized variance over
an entire month (thus spanning variance swap payoffs), whereas variance swap rates are observed at month-end, the
Appendix estimates a five-factor model with additional RV factors including the log of daily and weekly realized
variance computed during the last day and week of the month. Model prices and term premia estimates are similar
in the baseline three-factor and extended five-factor specification with weekly and daily RV factors.

14The standard deviations of the state variables Xt are 1, 2.75 and .65 for lnRV , PC1, and PC2.
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3.4 Variance Swap Pricing

Table 3 reports summary statistics for the model variance swap pricing errors using month-end

data from the baseline estimation results and daily data from the overlapping VAR. The mean of

the errors is close to zero across maturities showing that the model is unbiased. The standard

deviation of the errors is around .50% in annualized volatility units on average across maturities. In

comparison, the median bid-ask spread for synthetic variance swap rates is around 1% as estimated

in Table A.1 in the Appendix. The low standard deviation of the variance swap pricing errors

relative to typical bid-ask spreads shows that the model provides a good fit to the data. Figure 5

illustrates the model fit by plotting variance swap rates against the model prices over time. The

model provides a close fit throughout the sample period. In comparison to existing variance swap

models, the baseline three-factor logarithmic model performs well, obtaining similar in-sample and

good out-of-sample performance.15

4 Discussion

4.1 Equity Volatility Term Premia

This section investigates the relationship between the risk-return tradeoff and the volatility term

premia estimates. The results include: time-series plots of the term premia estimates, return pre-

dictability regressions confirming that the term premia estimates do predict returns, regression

analysis documenting how the term premia estimates are related to the different state variables

through the estimated prices of risk, and a discussion of how the term premia estimates behave

in response to changes in systematic risk with a comparison to the predictions from theoretical

equilibrium models.

4.1.1 Time-Series Dynamics

Figure 1 plots the realized variance term premia (RVTP) estimates for one-month and twelve-

month horizons in annualized variance units. The RVTP estimates tend to increase during periods

of financial distress and heightened systematic risk. During the financial crisis, the twelve-month
15A direct comparison to existing studies is challenging because other papers use proprietary datasets and different

sample periods, variance swap maturities, and estimation methods. However, reviewing existing studies for affine
and quadratic models , typical in-sample RMSEs are around .40%-.60% from 1996 to 2007 and out-of-sample RMSEs
are around .50%-1.50% from 2007 to 2010. For these sample periods and for {2, 3, 6, 12, 24}-month maturities, the
three-factor logarithmic model obtains an in-sample RMSE of .40% and an expanding window out-of-sample RMSE
of .45% on average across maturities.
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RVTP reaches levels as high as 5% to 15% versus an unconditional average of 2.6%. Since the

financial crisis, the term structure of RVTP has steepened with long-dated term premia increasing

relative to short-dated term premia. Figure 2 plots the implied volatility term premia (IVTP)

estimates for different maturities in monthly volatility units. The IVTP estimates are large in

magnitude relative to typical VIX futures bid-ask spreads of .05% and switch signs between being

positive and negative. During the financial crisis, IVTP reach levels as high as 1% to 3% per month,

but the IVTP estimates were negative in the years leading up to the financial crisis and for different

periods in recent years.

4.1.2 Variance Swap and VIX Futures Return Predictability

In the model, RVTP forecast variance swap returns and IVTP forecast VIX futures returns. The

paper tests this prediction by running return predictability regressions of the form,

Rt+h,n = β0 + β1Êt[Rt+h,n] + εt+h,n. (25)

The dependent variable, Rt+h,n, for the variance swap regressions is the excess return from receiving

fixed in an n-month variance swap over an h-month horizon,

Rt+h,n = V St,n − V St+h,n−h −
h∑
i=1

RVt+i. (26)

The independent variable is the expected return from the model Êt[Rt+h,n]. For example, the

one-month expected return for an n-month variance swap is equal to,

Êt[Rt+1,n] = Êt[V St,n −RVt+1 − V St+1,n−1]

=
∑n

i=1 e
Âi+B̂

′
iXt −

∑n−1
i=0 e

Âi+B̂
′
i(µ̂+Φ̂Xt)+

1
2
B̂′iΣ̂vB̂i .

(27)

Note that the expected return for an n-month variance swap over an n-month horizon is the realized

variance term premium Êt[Rt+n,n] = RV TPt,n. Thus, when h = n, these regressions test whether

RVTP predict returns.

Table 4 reports the return predictability regressions for variance swaps using overlapping returns

from daily data and Newey-West standard errors. The RVTP estimates significantly forecast returns

over 1-, 3-, and 6-month horizons and exhibit an explanatory power of 18%, 27% and 34% as

measured by the in-sample R2
adj . The out-of-sample R2

oos relative to a historical mean model is
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12%, 23%, and 29% for the corresponding maturities, showing that the model continues to perform

well in expanding window out-of-sample analysis from 2000 on.16 Beyond the RVTP estimates, the

table shows that the model expected return is significant at forecasting variance swap returns across

forecast horizons and maturities with positive out-of-sample R2
oos.

While this initial look at the model forecasting performance seems promising, several concerns

might be raised regarding the robustness of the results. First, the coefficient estimate on the model

expected return may be biased up (Stambaugh 1999). Second, Newey-West standard errors (SEs)

may be biased down in small samples due to the heteroskedasticity of variance swap returns (Hodrick

1992). Third, the predictability may be driven by a few periods when the conditional volatility of

returns is high, which OLS regressions may place a large emphasis upon (Johnson 2019). Each of

these concerns could lead to the predictability of the model being overstated in Table 4.

Table 5 addresses these concerns by following the approach in Johnson (2019) and finds that

the return predictability results are robust.17 The model continues to significantly forecast returns

in Hodrick-style overlapping return regressions and the null hypothesis that the model is unbiased

is harder to reject after accounting for Stambaugh bias and the larger Hodrick SEs. In Table

5, daily variance swap returns are regressed onto the model expected return, Xt = Êt[Rt+h,n],

summed h days into the past for each horizon h and maturity n. The point estimate and standard

error are scaled by V ar(
∑h−1

s=0 Xt−s)/V ar(Xt). This approach follows Hodrick (1992) and exploits

the observation that overlapping return regressions are asymptotically equivalent to non-overlapping

regressions of one-period returns onto the sum of the predictor variable h periods into the past under

the null hypothesis of no predictability and the assumption of stationarity. The point estimate on

the model expected return is reported as Stambaugh βadj after the bias adjustment and Unadjusted

β without the bias adjustment. The other rows report the standard errors and p-values from the

Hodrick regressions using asymptotic Newey-West and bootstrapped standard errors. The Appendix

reports the corresponding weighted least squares (WLS) estimates that account for the conditional
16For the expanding window analysis, the model is re-estimated each day in the sample starting in 2000 using

an overlapping VAR and daily data since the start of the sample in 1996. All aspects of the estimation including
standardizing (z-scoring) the state variables, computing the principal components of variance swap rates, estimating
the term-structure model, and estimating the return predictability regressions are repeated for each day so that the
estimates match what would be available to an econometrician in real-time. The R2

oos for horizon h and maturity
n is defined as R2

oos,h,n = 1 −
∑T
t=1(eew,modelt,h,n )2/

∑T
t=1(eew,avgt,h,n )2 where eew,modelt,h,n is the expanding window forecast

error from the return predictability regression using the model expected return and eew,avgt,h,n is the expanding window
average realized return. Results are similar if β0 = 0 and β1 = 1 is imposed for computing eew,modelt,h,n . In this case, the
average R2

oos across maturities is 6%, 13% and 21% for 1-month, 3-month, and 6-month horizons versus 6%, 14%,
and 22% in the table.

17I thank an anonymous referee for suggesting these robustness checks.
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heteroskedasticity of returns to improve efficiency following Johnson (2019).

In relation to the concerns above, the point estimate on the model expected return is similar in

Tables 4 and 5 despite the different estimation approaches. Adjusting for Stambaugh bias decreases

the point estimates and moves the coefficients closer to the null hypothesis of an unbiased model. The

asymptotic and bootstrap SEs from the Hodrick regressions range from being similar in magnitude

to being as much as 2-3 times larger than the Newey-West SEs. Despite this, the model continues

to significantly predict variance swap returns. For example, for a six-month forecast horizon, the

average t-statistic across maturities declines from 10 using Newey-West SEs to 3.8 using the Hodrick

bootstrapped SEs. In relation to the third concern about conditional heteroskedasticity, Johnson

(2019) finds that the significance of the variance risk premium for predicting stock market returns is

sensitive to accounting for the time-varying volatility of returns. Table A.3 in the Appendix shows

that the model remains significant at forecasting variance swap returns in WLS regressions that

downweight the importance of periods with high volatility such as the financial crisis and Covid-

19 crisis. The WLS results show that the model’s predictability for variance swap returns is not

sensitive to the high volatility periods. The term premia estimates predict returns throughout the

sample period in low and high volatility periods.

Tables 6 and 7 provide similar return predictability analysis for VIX futures returns. Table 6 re-

ports regressions of VIX futures holding period returns onto IVTP estimates that are interpolated to

match the futures contract maturity. The IVTP estimates significantly forecast VIX futures returns

using overlapping returns from daily data and Newey-West SEs. Table 7 checks the robustness of

these results by reporting Hodrick-style regressions. As before, the model continues to significantly

predict returns in OLS and WLS Hodrick regressions, showing that the IVTP estimates deliver

robust return forecasts. Combined with the variance swap return predictability regressions, the re-

sults show that the RVTP and IVTP estimates do forecast returns, supporting their interpretation

as risk premia measures.

4.1.3 Relationship of Volatility Term Premia to the State Variables

What is the relationship between the volatility term premia estimates and the state variables? The

nonlinear nature of the model makes it difficult to interpret the price of risk estimates Λ̂0 and Λ̂1

directly. To better understand how the RVTP and IVTP estimates are related to the state variables,

Table 8 regresses the monthly change in volatility term premia onto the standardized (z-scored)

change in the level of realized variance (RV) and the first two principal components from the level
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of variance swap rates (PC1lvl and PC2lvl). The regressions provide a linear approximation for how

realized variance, the level of variance swaps, and the slope of the variance swap curve contribute to

equity volatility term premia on average. In Panel A, the linear approximation for RVTP provides

high explanatory power with each of the factors contributing significantly. An increase in RV

decreases RVTP with a magnitude that is largest for shorter maturities. An increase in PC1lvl

increases RVTP in a roughly parallel manner across the curve. An increase in PC2lvl increases

(decreases) RVTP at the short-end (long-end) of the curve. In Panel B, the linear approximation

for IVTP provides moderate (high) explanatory power for shorter (longer) maturities. IVTP are

increasing in PC1lvl with coefficients that are increasing in maturity and decreasing in PC2lvl with

coefficients that are hump-shaped. IVTP are also increasing in RV, but with a smaller magnitude

compared to that of the PC factors. In addition to these linear approximations, the Appendix

computes the exact sensitivities of term premia to the model state variables at each point in time.

The time-series average of the exact sensitivities is qualitatively similar to the regression results.

During periods of heightened volatility, the response of term premia to the state vector is magnified

due to the high values of the state variables and the nonlinear nature of the model.

4.1.4 Volatility Term Premia and the Risk-Return Tradeoff

When systematic risk increases, the model can accommodate a positive or negative response in

volatility term premia depending on the estimated prices of risk and the response of the state

variables. Figures 1 and 2 provide an early glimpse of this result. During periods of heightened risk

like the financial crisis and Covid-19 crisis, it appears that RVTP tend to increase whereas IVTP

exhibit downward spikes and subsequent increases.

Table 9 investigates this observation in more depth by regressing weekly changes in RVTP

and IVTP onto weekly changes in systematic risk factors including the VIX in Panel A and weekly

CRSP value-weighted stock market returns in Panel B. The results show that RVTP are significantly

positively (negatively) correlated with changes in the VIX (stock market returns), consistent with

the notion that RVTP increase during periods of heightened systematic risk. In contrast, the

changes in IVTP for one-month and three-month maturities are significantly negatively (positively)

correlated with the VIX (stock market returns), the opposite of what one might expect. At a six-

month maturity the changes in IVTP exhibit an insignificant contemporaneous relationship with

either of the systematic risk factors and at a twelve-month maturity the relationship changes signs

to become positive.
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The downward spikes in the one-month and three-month IVTP estimates when the VIX increases

and muted response of six-month IVTP are surprising. Many theoretical models with a risk-averse

representative agent predict that investors should earn a positive risk premium for bearing exposure

to realized and implied volatility shocks that is increasing in systematic risk. In any model where the

returns from receiving fixed in variance swaps and from selling VIX futures are negatively correlated

with the stochastic discount factor, so that the negative correlation condition from Martin (2017)

holds, the lower bound for volatility term premia is increasing in the SVIX2, not decreasing or

uncorrelated as with the IVTP estimates.18

To further investigate the relationship between equity volatility term premia and systematic

risk, Figure 6 reports impulse response functions (IRFs) of RVTP and IVTP to a VIX shock in a

bivariate VAR.19 The IRFs for RVTP increase in response to a VIX shock and then decline over

time. There is a more pronounced effect for the one-month RVTP in the first weeks after the

shock and a more persistent effect for the six-month RVTP over a longer horizon. The increase in

RVTP and subsequent decline is qualitatively similar to what one would expect in response to a

negative shock in a consumption-based asset pricing model (Eraker 2020). To illustrate this point,

the Appendix derives the analogous IRFs in the Eraker and Wu (2017) equilibrium model and finds

that the analogous term premia measures for realized and implied variance increase sharply after a

VIX shock and then decline.

In contrast, the IRFs for IVTP exhibit a negative or insignificant response to VIX shocks over

short horizons, consistent with the contemporaneous correlations documented in Table 8. The

decrease in the implied volatility risk premium is most pronounced for short-dated maturities where

the term premia estimates decline sharply at first and then start to rise, only becoming positive in the

period two- to three-months after the shock to the VIX. These dynamics are driven by the estimated

prices of risk in the term-structure model. Based on the decomposition from the previous section,

the negative short-term response of one-month IVTP indicates that the slope factor dominates at

first, but then over longer horizons the more persistent level factor drives the average response and

the elevated values of the implied volatility risk premium.
18The negative correlation between IVTP and the VIX documented in Table 8 also holds for the SVIX2. My

estimate of the VIX and SVIX2 are 89% correlated in levels and 87% correlated in weekly changes. The correlation
of ∆IV TPt,1 and ∆SV IX2

t in weekly changes is -.56∗∗∗ (.05).
19The VAR is estimated separately for RVTP and IVTP for one-month and six-month maturities using weekly

data with the optimal lag length selected by SBIC criterion. The IRFs are from a Cholesky decomposition with the
VIX ordered first. The confidence intervals are block bootstrapped and the variables are standardized (z-scored) for
ease of interpretation.
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4.2 Relative Pricing of VIX Futures

The second application of the term-structure model investigates the relative pricing of VIX futures

and index options. I define the VIX futures basis as the model pricing error,

Basist,n = Futt,n − Futmodelt,n . (28)

Futt,n is the daily settlement price of the n-th futures contract. Futmodelt,n is the price from the

term-structure model which is interpolated from the monthly grid to match the days to maturity of

the n-th VIX futures contract. The analysis of VIX futures pricing errors complements Van Tassel

(2020) which provides an in-depth investigation of the no-arbitrage violations across the VIX futures

and index options markets. Recall that the term-structure model is estimated with option-implied

variance swaps and realized variance data. The basis reveals how futures are valued relative to

index options through the lens of the term-structure model.

Table 10 reports summary statistics for the VIX futures basis for the front six contracts. The

bias is around -.50% on average across contracts, indicating that VIX futures are cheap relative

to the option-implied model prices. The standard deviation of around 1% for the pricing errors is

about double the variability of the variance swap pricing errors and large relative to typical VIX

futures bid-ask spreads of .05%. Further, the minimum and maximum values of the basis show that

VIX futures exhibit substantial deviations relative to the model prices. The front two contracts

have errors that are negatively skewed and fat-tailed. The errors are less negatively skewed for the

longer-dated contracts but the 25th percentile is still quite low at around -1.1% across contracts.

Overall, the results indicate that VIX futures prices exhibit substantial deviations relative to the

model and are lower than the model prices on average. The Appendix plots the VIX futures basis for

each of the front six contracts and confirms that similar summary statistics hold for a post-financial

crisis period starting in 2010. The magnitude and bias of the pricing errors do not decline as the

VIX futures market becomes more established, instead they are pervasive throughout the sample.

4.2.1 Comparison to Non-Parametric Estimates

This section compares the term-structure model to a non-parametric approach for estimating VIX

futures pricing errors. The purpose is two-fold. First, the non-parametric estimates provide external

validity for the term-structure analysis that is model-free. Second, comparing the estimated pricing

errors from the term-structure model and non-parametric approach allows for a better understanding
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of how VIX futures, index options, and VIX options are valued relative to each other.

The non-parametric approach is outlined in a recent set of papers that show how to value VIX

futures from a synthetic variance swap forward and VIX options (Hülsbusch and Kraftschik (2018),

Park (2020)). The no-arbitrage relationship is,

Futt,T =
√
Fwd2

t,T − V ar
Q
t (V IXT ), (29)

where Fwdt,T is a one-month forward variance swap rate starting at time T when the futures contract

matures and V arQt (V IXT ) is the risk-neutral variance of the VIX index at time T . To derive the

non-parametric estimate for the n-th futures contract, I estimate Fwdt,Tn as the synthetic variance

swap forward rate between the futures expiration date and thirty calendar days later [Tn, Tn + 30].

Similarly, I apply the results from Park (2020) to estimate V arQt (V IXTn) from a portfolio of out-of-

the-money VIX options whose maturity matches the futures expiration date. The non-parametric

basis is then defined as the difference between the futures price and the replicating value from the

formula above,

BasisNPt,n = Futt,n −
√
Fwd2

t,Tn
− V arQt (V IXTn). (30)

Table 11 reports summary statistics for the VIX futures basis estimated from the term-structure

model and the non-parametric approach from 2007 to 2020 on contract-days when VIX options are

available to estimate the non-parametric basis. As before, Panel A shows that VIX futures are

cheap relative to the term-structure model by around .50% on average with a standard deviation

of around 1% across contracts, showing that there is no discernible impact on the average level of

the basis from the sample selection requirement that VIX options be available. In contrast, Panel

B shows that VIX futures are expensive relative to index options and VIX options as measured

by the non-parametric approach. The bias for the non-parametric basis is positive and increases

across maturities from around .30% for the front contract to 1% for the sixth contract. Since VIX

futures are cheap relative to index options in Panel A, but expensive relative to index options after

the vol-of-vol adjustment (V arQt (V IXT )) in Panel B, the analysis indicates that VIX options are

expensive relative to futures and index options. In addition, the RMSE of the non-parametric basis

is found to be increasing in contract maturity from .85% for the front contract to around 1.50%-2%

for the fifth and sixth contracts. This contrasts the term-structure model which tracks VIX futures

prices more accurately for longer-dated contracts.

Despite the different estimation approaches, the VIX futures basis from the term-structure
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model and non-parametric approach exhibit similar time-series variation even after for controlling

for changes in the VIX. Table 12 illustrates this result by regressing weekly changes in the basis

from the term-structure model onto weekly changes in the non-parametric basis and weekly changes

in the VIX. The change in the basis from the term-structure model and non-parametric approach

are positively and significantly correlated for each contract and on average across contracts. These

results provide external validity for the term-structure analysis by showing that the non-parametric

approach delivers similar time-series behavior for the VIX futures basis.

Comparing the two approaches for estimating the VIX futures basis, the advantage of the non-

parametric estimates is the model-free nature of the approach. The disadvantage is the need for VIX

options data which are not available before 2006 and whose liquidity is worse for longer maturities.20

In contrast, the estimates of the basis from the term-structure model are not model free, but they

do not require VIX options data and they readily extend to longer maturities.

4.2.2 Predicting VIX Futures Returns with IVTP and the Basis

The substantial variation of VIX futures prices relative to the term-structure model raises the

question of whether the model pricing errors predict returns. A natural hypothesis is that the

larger index options market should provide a measure of fair value for VIX futures. Since there isn’t

a direct no-arbitrage relationship between index options and VIX futures, the term-structure model

is useful for making the comparison without needing to rely on additional data from another market

such as VIX options data. According to the model, the pricing error and the implied volatility term

premium should both predict VIX futures returns. To see this, note that expected returns for VIX

futures can be decomposed into a pricing error and IVTP component as,

Futt,n − Et[V IXTn ] = (Futt,n − Futmodelt,n )︸ ︷︷ ︸
Basist,n

+ (Futmodelt,n − Et[V IXTn ])︸ ︷︷ ︸
IVTPt,n

. (31)

An increase in either the pricing error or the IVTP predicts a higher return from selling VIX futures.

Table 13 tests whether IVTP and the basis predict VIX futures returns. Panel A regresses weekly

VIX futures excess returns for the n-month contract onto the standardized IVTP and basis for the

corresponding contract. Both variables are economically and statistically significant at predicting

returns. A one-standard deviation increase in IVTP increases expected returns by around .30 to
20For VIX options, the number of out-of-the-money options used to estimate V arQt (V IXT ) and their volume is

decreasing in time-to-maturity while the difference in estimates of V arQt (V IXT ) between ask and bid quotes is
increasing in time-to-maturity.
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.40 futures points for shorter-dated contracts and .20 for longer-dated contracts. A one-standard

deviation increase in the basis increases expected returns by around .40 to .50 for shorter-dated

contracts and by .10 to .30 for longer-dated contracts. The economic significance can be seen by

comparing the coefficient magnitudes to typical bid-ask spreads of .05 for VIX futures. Panel B

shows that the results are robust to including the non-parametric estimate of the basis, the VIX

index, and realized variance as additional predictors. While the coefficients on the non-parametric

estimate of the basis are positive as expected (similar to the model estimate), the coefficients on

the non-parametric estimate are lower in magnitude and less significant than the coefficients for the

estimate of the basis from the term-structure model. The return predictability analysis suggests

that, in addition to tracking VIX futures prices more closely, the estimates of the basis from the

term-structure model are more significant at predicting returns than the non-parametric estimate.

4.2.3 Relationship to the VIX Premium

Cheng (2018) defines the VIX premium as a statistical measure of the expected return from selling

VIX futures. The low premium response puzzle refers to the anomaly that the VIX premium tends

to decline when measures of systematic risk increase. The response of IVTP to a VIX shock and

the cheapening of VIX futures relative to the model when the VIX increases are both consistent

with the low premium response puzzle. Figure 7 illustrates this result by plotting estimates of the

implied volatility risk premium from the term-structure model alongside reduced form estimates

from Cheng (2018). The VIX premium and IVTP in the plot are for a one-month maturity and the

futures pricing error is the one-month weighted average pricing error across the front two contracts.

The plot shows that the VIX premium is 62% correlated with the IVTP estimate and 85% correlated

with the IVTP estimate plus the basis or weighted average pricing error.

The significant relationship between the VIX premium and the estimates from the term-structure

model is notable because it questions the mechanism driving the dynamics of the implied volatility

risk premium. Cheng (2018) argues that the low premium response puzzle is related to hedg-

ing demand, as the VIX premium and dealer net positions in futures contracts from the CFTC’s

Commitment of Traders Report tend to fall together when risk increases. This demand channel is

consistent with the decline in VIX futures pricing errors in the term-structure model when the VIX

increases and with the higher correlation of the VIX premium and the IVTP estimate when it is

combined with the weighted average futures pricing error. At the same time, the demand channel

does not directly explain the behavior of the IVTP estimate as the term-structure model is esti-
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mated with option-implied variance swap rates and realized variance data, not VIX futures data.

In addition, the IVTP estimates extend back in time before the start of VIX futures trading, when

demand for VIX futures could not have been driving the negative or muted response of IVTP to

increases in risk. Instead, the term-structure analysis suggests that the negative risk-return tradeoff

for implied volatility may be a more general feature of volatility markets, rather than being specific

to the VIX futures market, emphasizing the importance of studying the risk premia for realized

variance and implied volatility separately.

5 Conclusion

This paper estimates term premia for realized variance and implied volatility in a dynamic term-

structure model. By modeling the logarithm of realized variance, the paper develops a new approach

for pricing variance swaps and VIX futures in closed-form. The paper constructs a detailed dataset

of synthetic variance swap rates from index options and realized variance estimates from high

frequency S&P 500 data to estimate the model. The model is estimated over a 25-year sample

period from 1996 to 2020. The paper then considers two empirical applications of the model. In the

first application, the paper finds that realized variance term premia increase when there is a shock

to the VIX, but implied volatility term premia decrease or exhibit a muted response. The behavior

of implied volatility term premia poses a challenge to theoretical models in which term premia for

realized and implied volatility term are both increasing or decreasing in the economy’s systematic

risk factors. In the second application, the paper studies the relative pricing of VIX futures and

option-implied variance swaps. While the model tracks the futures price quite well, it also highlights

periods with large dislocations in the prices of relative claims across volatility markets. The futures

price is around .50% below the option-implied model price on average and cheapens even further

when systematic risk increases. Estimates of futures pricing errors from the term-structure model

are highly correlated with estimates of futures pricing errors from a non-parametric, model-free

approach. Compared to the non-parametric estimates, the pricing errors from the term-structure

model are smaller in magnitude for longer-maturity contracts and deliver more significant forecasts

of VIX futures returns. The results highlight the behavior of the model’s volatility term premia

estimates and illustrate how the model can be used to relate the prices of VIX futures to index

options.
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Realized Variance and Variance Swap Summary Statistics

Table 1: This table reports summary statistics for the realized variance and synthetic variance swap rate
data that is used to estimate the term-structure model. Realized variance is estimated from high frequency
S&P 500 index data. The synthetic variance swap rates are derived from SPX index option quotes. The
sample is monthly from 1996 to 2020.

RV and VS summary statistics (annualized volatility units)
Maturity RV VS1 VS2 VS3 VS6 VS9 VS12 VS18 VS24
Mean 15.00 20.75 21.05 21.40 22.04 22.31 22.51 22.93 23.22
Standard Deviation 9.04 8.25 7.68 7.27 6.59 6.15 5.85 5.59 5.45
Skewness 3.57 1.66 1.58 1.52 1.35 1.25 1.15 1.00 0.92
Kurtosis 23.63 6.98 6.62 6.31 5.44 5.03 4.72 4.22 4.02
Median 12.68 18.92 19.27 20.07 20.79 21.03 21.34 21.87 22.23
Autocorrelation 1mn 0.66 0.81 0.84 0.86 0.89 0.91 0.92 0.93 0.93

Model Parameter Estimates

Table 2: This table reports maximum likelihood estimates of the model parameters for the baseline VAR(1)
three-factor model using monthly data from 1996 to 2020. The standard errors in parentheses are from the
asymptotic robust covariance matrix. ∗p<.1, ∗∗p<.05, ∗∗∗p<.01.

Panel A: Physical Parameters

µ Φk,1 Φk,2 Φk,3
ln(RV ) 0.00 0.22∗ 0.19∗∗∗ 0.38∗∗∗

(0.06) (0.13) (0.04) (0.13)
PC1 0.03 0.07 0.88∗∗∗ 0.04

(0.07) (0.27) (0.09) (0.28)
PC2 -0.01 -0.01 -0.03 0.80∗∗∗

(0.07) (0.08) (0.02) (0.07)

Panel B: Prices of Risk

Λ0 Λ1,k,1 Λ1,k,2 Λ1,k,3

ln(RV ) -0.65∗∗∗ 0.23∗ -0.07∗ -0.04
(0.06) (0.13) (0.04) (0.13)

PC1 -0.04 0.06 -0.05 0.57∗∗
(0.08) (0.27) (0.09) (0.28)

PC2 -0.04 -0.03 -0.00 0.11
(0.07) (0.08) (0.02) (0.07)

Panel C: Pricing error and VAR innovation parameters
ρ σe,1 σe,2 σe,3 σe,6 σe,9 σe,12 σe,18 σe,24

0.61 0.71 0.26 0.41 0.36 0.33 0.39 0.26 0.35
(0.07) (0.05) (0.02) (0.03) (0.03) (0.02) (0.04) (0.02) 0.03
Lv,11 Lv,21 Lv,22 Lv,31 Lv,32 Lv,33
0.62 0.75 0.85 0.17 0.15 0.30
(0.04) (0.08) (0.04) (0.03) (0.02) (0.02)
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Variance Swap Pricing Errors

Table 3: This table reports the mean and standard deviation of the model’s variance swap pricing errors
in annualized volatility units for the baseline three-factor VAR(1) model using monthly and daily data from
1996 to 2020. The daily estimates are obtained by estimating the model as a monthly overlapping VAR.

Maturity 1 2 3 6 9 12 18 24 Avg.
Monthly Data (T = 300)
Mean -0.04 -0.04 0.02 0.07 -0.02 -0.07 -0.00 0.01 -0.01
Standard Deviation 0.78 0.26 0.43 0.56 0.49 0.44 0.30 0.51 0.47

Daily Data (T = 6, 200)
Mean -0.10 -0.06 0.01 0.05 -0.02 -0.05 -0.00 0.01 -0.02
Standard Deviation 0.80 0.29 0.46 0.60 0.53 0.47 0.32 0.52 0.50

Variance Swap Return Predictability

Table 4: This table reports variance swap return predictability regressions. Variance swap excess returns
are regressed onto model expected returns using overlapping returns from daily data for each forecast horizon
h and variance swap maturity n. The table reports Newey-West standard errors with 3 · h · 21 lags. R2

oos is
the out-of-sample explanatory power relative to a historical mean model using expanding window estimation
from 2000 on. The sample period is 1996 to 2020. ∗p<.1, ∗∗p<.05, ∗∗∗p<.01.

Rt+h,n = β0 + β1Et[Rt+h,n] + εt+h,n
Maturity (n) 1 2 3 6 9 12 18 24
One-month horizon (h = 1, T = 6, 179)

β0 -0.00 -0.08∗ -0.10 -0.15 -0.17 -0.17 -0.19 -0.20
(0.01) (0.05) (0.07) (0.10) (0.12) (0.13) (0.16) (0.18)

β1 0.91∗∗∗ 1.28∗∗∗ 1.39∗∗∗ 1.51∗∗∗ 1.53∗∗∗ 1.58∗∗∗ 1.65∗∗∗ 1.74∗∗∗
(0.14) (0.20) (0.25) (0.25) (0.25) (0.23) (0.26) (0.29)

R2
adj 0.18 0.13 0.12 0.11 0.10 0.11 0.10 0.10

R2
oos 0.12 0.08 0.07 0.05 0.05 0.04 0.04 0.04

Three-month horizon (h = 3, T = 6, 137)

β0 -0.21 -0.25 -0.30 -0.30 -0.31 -0.33
(0.13) (0.21) (0.26) (0.30) (0.36) (0.44)

β1 1.25∗∗∗ 1.24∗∗∗ 1.23∗∗∗ 1.23∗∗∗ 1.28∗∗∗ 1.35∗∗∗
(0.17) (0.17) (0.16) (0.14) (0.14) (0.14)

R2
adj 0.27 0.20 0.17 0.17 0.17 0.17

R2
oos 0.23 0.16 0.13 0.12 0.11 0.11

Six-month horizon (h = 6, T = 6, 074)

β0 -0.40 -0.46 -0.51 -0.50 -0.56
(0.31) (0.43) (0.52) (0.66) (0.80)

β1 1.20∗∗∗ 1.17∗∗∗ 1.17∗∗∗ 1.22∗∗∗ 1.27∗∗∗
(0.14) (0.13) (0.11) (0.11) (0.12)

R2
adj 0.34 0.30 0.27 0.28 0.27

R2
oos 0.29 0.24 0.21 0.20 0.19
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Variance Swap Return Predictability Robustness

Table 5: This table investigates the robustness of the variance swap return predictability results following
Johnson (2019). For each horizon h and maturity n, daily returns are regressed onto the model expected
return, Xt = Et[Rt+h,n], summed h days into the past following the Hodrick (1992) approach for estimat-
ing overlapping return predictability regressions under the null hypothesis of no predictability. The point
estimate and standard error are scaled by V ar(

∑h−1
s=0 Xt−s)/V ar(Xt). The table adjusts for Stambaugh

bias using a simulation procedure and computes asymptotic and bootstrap SEs and p-values following John-
son (2019). The model continues to significantly predict returns. The Appendix reports the corresponding
weighted least squares estimates that account for the conditional volatility of returns. The sample period is
1996 to 2020. ∗p<.1, ∗∗p<.05, ∗∗∗p<.01.

β̂ = arg minβ
∑T
t=1(Rt+1 −

(∑h−1
s=0 Xt−s

)
· β)2

Maturity 1 2 3 6 9 12 18 24

One-month horizon
Stambaugh βadj 1.17 1.36 1.41 1.42 1.43 1.47 1.52 1.61
Unadjusted β 1.23 1.44 1.50 1.55 1.58 1.62 1.68 1.76
SE(Asym) (0.25) (0.38) (0.42) (0.40) (0.39) (0.37) (0.38) (0.39)
p-val(Asym %) 0.00∗∗∗ 0.03∗∗∗ 0.08∗∗∗ 0.04∗∗∗ 0.02∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.00∗∗∗
SE(Boot) (0.29) (0.35) (0.36) (0.36) (0.36) (0.37) (0.38) (0.39)
p-val(Boot %) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

Three-month horizon
Stambaugh βadj 1.52 1.31 1.23 1.23 1.23 1.29
Unadjusted β 1.62 1.39 1.32 1.33 1.35 1.42
SE(Asym) (0.43) (0.35) (0.32) (0.31) (0.31) (0.32)
p-val(Asym %) 0.04∗∗∗ 0.02∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗
SE(Boot) (0.39) (0.34) (0.34) (0.34) (0.36) (0.37)
p-val(Boot %) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.30∗∗∗ 0.20∗∗∗

Six-month horizon
Stambaugh βadj 1.63 1.35 1.33 1.28 1.34
Unadjusted β 1.68 1.39 1.37 1.33 1.39
SE(Asym) (0.34) (0.29) (0.28) (0.30) (0.32)
p-val(Asym %) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗
SE(Boot) (0.39) (0.35) (0.34) (0.36) (0.37)
p-val(Boot %) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.10∗∗∗ 0.00∗∗∗
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VIX Futures Return Predictability

Table 6: This table reports regressions of VIX futures holding period returns onto the implied volatility
term premia estimates from 2007 to 2020. V IXTn is the special opening quotation (SOQ) used to calculate
the expiration day value of VIX futures contracts. R2

oos is the out-of-sample explanatory power relative to
a historical mean model using expanding window estimation from 2007 on. The table reports Newey-West
standard errors.

Return Predictability: Futt,n − V IXTn = β0 + β1IV TPt,n + εt,n

Contract (n) 1 2 3 4 5 6

β0 -0.03 -0.12 -0.37 -0.51 -0.68 -0.84
(0.47) (0.91) (1.09) (1.30) (1.44) (1.66)

β1 1.68∗∗∗ 1.22∗∗∗ 1.17∗∗∗ 1.21∗∗∗ 1.21∗∗∗ 1.28∗∗∗

(0.62) (0.31) (0.21) (0.21) (0.19) (0.18)

R2
adj 0.08 0.08 0.11 0.15 0.16 0.19

R2
oos 0.01 -0.02 0.02 0.01 0.11 0.19

N 3502 3502 3502 3502 3502 3502

VIX Futures Return Predictability Robustness

Table 7: This table investigates the robustness of the VIX futures return predictability regressions. The
approach follows Johnson (2019) and reports OLS and WLS Hodrick-style return predictability regressions
for an n-month horizon for contract n. The predictor variable is the IVTP for each contract. The sample
period is 2007 to 2020. ∗p<.1, ∗∗p<.05, ∗∗∗p<.01.

Predicting VIX Futures Returns with IVTP
Contract (n) 1 2 3 4 5 6

Panel A: OLS estimate for IVTP
Stambaugh βadj 1.62 1.28 1.05 1.01 0.98 0.93
Unadjusted β 1.69 1.42 1.07 0.99 0.94 0.88
SE(Asym) (0.73) (0.49) (0.35) (0.30) (0.28) (0.27)
p-val(Asym %) 2.66∗∗ 0.92∗∗∗ 0.31∗∗∗ 0.07∗∗∗ 0.05∗∗∗ 0.07∗∗∗

SE(Boot) (0.45) (0.35) (0.29) (0.27) (0.26) (0.26)
p-val(Boot %) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

Panel B: WLS estimate for IVTP
Stambaugh βadj 1.22 0.96 0.83 0.82 0.83 0.81
Unadjusted β 1.29 1.09 0.85 0.81 0.78 0.76
SE(Asym) (0.45) (0.29) (0.24) (0.22) (0.23) (0.23)
p-val(Asym %) 0.72∗∗∗ 0.10∗∗∗ 0.04∗∗∗ 0.02∗∗∗ 0.03∗∗∗ 0.05∗∗∗

SE(Boot) (0.41) (0.32) (0.27) (0.25) (0.25) (0.25)
p-val(Boot %) 0.10∗∗∗ 0.10∗∗∗ 0.20∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

Panel C: WLS first stage conditional variance: R2
t+1 = γ · V IXt + et+1

γ 14.08∗∗∗ 7.72∗∗∗ 4.88∗∗∗ 3.41∗∗∗ 2.56∗∗∗ 1.95∗∗∗

(1.77) (1.09) (0.80) (0.55) (0.35) (0.19)
R2
adj 0.05 0.05 0.05 0.06 0.07 0.09
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Variance Swap Rate and VIX Futures Factor Loadings

Table 8: Panel A regresses monthly changes in realized variance term premia onto z-scored changes in
realized variance and the first two principal components of variance swap rates. Panel B reports the analogous
results for VIX futures. The loadings from the regressions are qualitatively similar to the time-series average
of the exact sensitivities of term premia to the state variables reported in the Appendix.

Variance Swap and VIX Futures Decompositions from 1996-2020
Maturity in months 1 2 3 6 9 12 18 24

Panel A: Realized Variance Term Premia Decomposition: ∆RV TPt,n = β′∆ft + εt,n

∆RV -0.80∗∗∗ -0.43∗∗∗ -0.29∗∗∗ -0.14∗∗∗ -0.09∗∗∗ -0.06∗∗∗ -0.04∗∗ -0.02∗

(0.07) (0.04) (0.03) (0.03) (0.02) (0.02) (0.02) (0.01)
∆PC1lvl 1.67∗∗∗ 1.48∗∗∗ 1.42∗∗∗ 1.37∗∗∗ 1.37∗∗∗ 1.36∗∗∗ 1.32∗∗∗ 1.26∗∗∗

(0.03) (0.04) (0.05) (0.06) (0.05) (0.04) (0.03) (0.02)
∆PC2lvl 1.05∗∗∗ 0.38∗∗∗ 0.03 -0.40∗∗∗ -0.55∗∗∗ -0.61∗∗∗ -0.64∗∗∗ -0.63∗∗∗

(0.02) (0.03) (0.03) (0.02) (0.02) (0.02) (0.03) (0.03)
R2
adj 0.98 0.99 0.98 0.96 0.95 0.95 0.96 0.97

Panel B: Implied Volatility Term Premia Decomposition: ∆IV TPt,n = β′∆ft + εt,n

∆RV 0.19∗∗∗ 0.16∗∗ 0.16∗∗ 0.14∗∗ 0.11∗∗ 0.09∗∗ 0.07∗∗ 0.06∗∗

(0.06) (0.07) (0.08) (0.06) (0.05) (0.04) (0.03) (0.03)
∆PC1lvl 0.26∗∗∗ 0.60∗∗∗ 0.87∗∗∗ 1.41∗∗∗ 1.66∗∗∗ 1.74∗∗∗ 1.69∗∗∗ 1.53∗∗∗

(0.10) (0.12) (0.12) (0.08) (0.06) (0.07) (0.08) (0.09)
∆PC2lvl -0.96∗∗∗ -1.26∗∗∗ -1.39∗∗∗ -1.40∗∗∗ -1.28∗∗∗ -1.17∗∗∗ -1.00∗∗∗ -0.86∗∗∗

(0.06) (0.09) (0.11) (0.12) (0.10) (0.09) (0.08) (0.07)
R2
adj 0.67 0.62 0.62 0.72 0.83 0.89 0.91 0.91

RVTP and IVTP versus the VIX and Stock Market Returns

Table 9: This table reports the correlation of weekly changes in RVTP and IVTP with the VIX and CRSP
value-weighted stock market returns. Panels A and B regress z-scored changes in the term premia estimate
onto z-scored changes in the risk factors. The table reports Newey-West standard errors. The sample period
is 1996 to 2020 using overlapping daily data.

Correlation of Weekly Changes: ∆Yt = β∆Xt + et
Term Premia (∆Yt) ∆RV TPt,n ∆IV TPt,n
Maturity 1 3 6 12 1 3 6 12

Panel A: Weekly Change in the VIX Index (∆Xt )
∆V IXt 0.85∗∗∗ 0.79∗∗∗ 0.65∗∗∗ 0.55∗∗∗ -0.71∗∗∗ -0.48∗∗∗ -0.13 0.33∗∗∗

(0.08) (0.08) (0.08) (0.08) (0.05) (0.08) (0.08) (0.07)
R2
adj 0.73 0.62 0.42 0.30 0.50 0.23 0.02 0.11

Panel B: Weekly CRSP Value-Weighted Stock Market Return (∆Xt)
RMRFt -0.66∗∗∗ -0.65∗∗∗ -0.58∗∗∗ -0.52∗∗∗ 0.49∗∗∗ 0.28∗∗∗ -0.02 -0.39∗∗∗

(0.07) (0.07) (0.07) (0.06) (0.05) (0.06) (0.06) (0.05)
R2
adj 0.44 0.42 0.33 0.27 0.24 0.08 0.00 0.15
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VIX Futures Basis Summary Statistics

Table 10: This table reports summary statistics for the VIX futures basis or model pricing errors for the
front six futures contracts from 2007 to 2020 (T = 3502, N = 6).

Basist,n = Futt,n − Futmodelt,n

Contract 1 2 3 4 5 6 Avg.
Mean -0.34 -0.33 -0.49 -0.61 -0.62 -0.57 -0.49
Standard Deviation 0.98 1.12 1.12 1.07 1.02 0.97 1.05
Skewness -3.85 -0.25 0.12 0.65 0.51 -0.07 -0.48
Kurtosis 44.25 10.07 5.08 4.77 4.22 4.73 12.19
Minimum -15.43 -8.58 -6.40 -5.78 -5.70 -7.71 -8.27
25th-Percentile -0.66 -0.97 -1.24 -1.38 -1.35 -1.27 -1.15
Median -0.25 -0.42 -0.69 -0.82 -0.80 -0.63 -0.60
75th-Percentile 0.13 0.34 0.33 0.21 0.12 0.12 0.21
Maximum 4.60 7.72 5.54 4.98 4.56 3.04 5.07
RMSE 1.04 1.17 1.22 1.23 1.19 1.13 1.16
t-statistic -5.31 -1.94 -2.33 -2.82 -3.15 -3.30 -3.14

Term-Structure Model versus Non-Parametric VIX Futures Basis Estimates

Table 11: This table compares estimates of the VIX futures basis from the term-structure model to a non-
parametric approach that estimates VIX futures prices from synthetic variance swap rates and VIX options.
The sample period is from 2007 to 2020 on days when VIX options are available for the non-parametric
estimate. The last column averages across the contracts.

VIX Futures Basis Estimates
Contract 1 2 3 4 5 6 Avg.

Panel A: Term-Structure Model: Futt,n − Futmodelt,n

Mean -0.37 -0.33 -0.50 -0.63 -0.69 -0.66 -0.53
Standard Deviation 0.98 1.13 1.11 1.07 0.98 0.90 1.03
RMSE 1.05 1.17 1.22 1.24 1.20 1.12 1.17

Panel B: Non-Parametric: Futt,n −
√

Fwdt,n − V arQt (V IXTn)

Mean 0.28 0.41 0.68 0.57 0.78 0.94 0.61
Standard Deviation 0.80 0.89 1.11 1.08 1.24 1.75 1.15
RMSE 0.85 0.98 1.30 1.22 1.46 1.99 1.30

Sample Size 2538 3443 3468 3407 3296 3196 3224
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Time-Series Relationships with the VIX Futures Basis

Table 12: This table reports regressions of the weekly change in the VIX futures basis onto the weekly
change in the VIX index and the non-parametric estimate of the basis from 2007 to 2020 by contract. The
last column uses the weekly change in the average basis across the front six contracts. The variables are
z-scored in each regression. The table reports Newey-West standard errors.

∆Basist = β ·∆Xt + εt
Contract 1 2 3 4 5 6 Avg.
∆VIX -0.39∗∗∗ -0.40∗∗∗ -0.34∗∗∗ -0.32∗∗∗ -0.20∗∗ -0.11 -0.40∗∗∗

(0.05) (0.07) (0.06) (0.09) (0.10) (0.12) (0.06)
∆Non-Parametric Basis 0.38∗∗ 0.31∗∗∗ 0.20∗∗∗ 0.25∗∗∗ 0.33∗∗∗ 0.26∗∗∗ 0.60∗∗∗

(0.15) (0.04) (0.07) (0.05) (0.06) (0.09) (0.09)
R2
adj 0.32 0.20 0.13 0.12 0.13 0.09 0.41

T 2534 3439 3464 3403 3292 3192 3496

Predicting VIX Futures Returns with IVTP and the Basis

Table 13: This table reports VIX futures return predictability regressions. Panel A regresses weekly VIX
futures returns onto the IVTP and VIX futures basis estimates from the term-structure model. Panel B adds
the non-parametric basis, VIX, and RV as additional predictors. The predictor variables are z-scored for
ease of interpretation. The table reports Newey-West standard errors to account for the overlapping weekly
returns. The variation in sample size reflects the availability of longer-dated VIX futures and VIX options
contracts to estimate the non-parametric basis. The sample period is from 2007 to 2020.

Futt,n − Futt+h,n = β ·Xt + et+h,n

Panel A: Predicting returns with IVTP and Basis
Contract (n) 1 2 3 4 5 6

Constant 0.19∗∗ 0.14∗ 0.06 0.03 0.03 0.03
(0.09) (0.07) (0.06) (0.05) (0.05) (0.04)

IVTP 0.35∗∗ 0.41∗∗∗ 0.34∗∗∗ 0.28∗∗∗ 0.20∗∗∗ 0.15∗∗∗

(0.15) (0.15) (0.12) (0.10) (0.07) (0.05)
Basis 0.44∗∗∗ 0.51∗∗∗ 0.30∗∗∗ 0.17∗∗ 0.10∗∗ 0.07

(0.16) (0.13) (0.11) (0.07) (0.04) (0.04)
R2
adj 0.05 0.09 0.06 0.04 0.02 0.02

N 3497 3497 3497 3497 3497 3497

Panel B: Robustness to additional predictor variables
Contract (n) 1 2 3 4 5 6

Constant 0.22∗ 0.14∗ 0.05 0.03 0.03 0.05
(0.12) (0.07) (0.05) (0.05) (0.04) (0.04)

IVTP 0.32 0.44∗∗ 0.43∗∗∗ 0.40∗∗∗ 0.35∗∗∗ 0.27∗∗∗

(0.21) (0.18) (0.15) (0.15) (0.12) (0.09)
Basis 0.56∗∗ 0.48∗∗∗ 0.28∗∗∗ 0.20∗∗ 0.14∗∗ 0.13∗∗∗

(0.22) (0.15) (0.10) (0.09) (0.06) (0.04)
Non-Parametric Basis 0.26 0.12 0.02 0.09 0.07 0.02

(0.19) (0.09) (0.07) (0.06) (0.05) (0.04)
VIX 0.12 -0.26 -0.20 -0.25 -0.24 -0.16

(0.36) (0.30) (0.33) (0.26) (0.21) (0.16)
RV 0.04 0.08 -0.19 -0.18 -0.15 -0.18

(0.45) (0.37) (0.29) (0.19) (0.16) (0.13)
R2
adj 0.07 0.09 0.09 0.10 0.09 0.08

N 2533 3438 3463 3402 3291 3191
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Realized Variance Term Premia
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Figure 1: This figure plots the realized variance term premia (RVTP) estimates for a one-month and
twelve-month horizons in annualized variance units. RVTP represent the expected holding period returns
from receiving fixed in variance swaps of different maturities. High levels of RVTP predict high returns from
selling volatility by receiving fixed in variance swaps. The RVTP estimates can be interpreted as the cost of
insuring against realized variance shocks over different horizons.

35



Implied Volatility Term Premia
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Figure 2: This figure plots the implied volatility term premia (IVTP) estimates over different horizons in
monthly volatility units. IVTP represent the holding period return from selling VIX futures contracts for
different maturities. High levels of IVTP predict high returns from selling VIX futures. The IVTP estimates
can be interpreted as the cost of insuring against implied volatility shocks over different horizons.
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Relative Pricing of VIX Futures versus Option-Implied Model Price
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Pricing Error: Bias = -0.32%, RMSE = 0.99%

Figure 3: The top figure plots the futures price for the front-month contract against the estimated model
price. The bottom figure plots the difference between the futures price and the model price. Negative values
in the bottom plot indicate that VIX futures are lower than the model price. Large pricing errors reveal
dislocations between the prices of index options and VIX futures as measured by the term-structure model.
The sample period is March 2004 to December 2020.
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State Variables in Three-Factor Logarithmic Model
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Figure 4: This figure plots the state variables, Xt = [lnRVtPC1tPC2t], and the loadings for the principal
component factors. lnRVt is the logarithm of realized variance. PC1t and PC2t are the first and second
principal components from log variance swap rates which can be interpreted as level and slope factors.

Model Fit for Variance Swap Rates
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6-month maturity: RMSE = 0.56%

96 98 00 02 04 06 08 10 12 14 16 18 20

Date

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

A
n
n
u
a
liz

e
d
 V

o
la

ti
lit

y

12-month maturity: RMSE = 0.44%

Figure 5: This figure plots the variance swap rate data against the estimated model prices for one-, three-,
six-, and twelve-month maturities. A three-factor logarithmic model with two principal components fits the
cross section of variance swap rates with small pricing errors as measured by the root-mean-squared-errors
(RMSEs) in the titles of the subplots.
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Impulse Response Functions of RVTP and IVTP to a VIX Shock
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IRF of 1-month RVTP to a VIX Shock
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IRF of 6-month RVTP to a VIX Shock
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IRF of 1-month IVTP to a VIX Shock
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Figure 6: This figure plots the impulse response functions (IRFs) of the one-month and six-month RVTP
and IVTP estimates to a one-standard deviation VIX shock in a bivariate VAR using weekly data. The IRFs
are from a Cholesky decomposition with the VIX ordered first. The sample period is 1996 to 2020.
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IVTP and VIX Futures Basis versus the VIX Premium
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Figure 7: This figure plots the VIX premium from Cheng (2018) against the one-month IV TP estimate
from the term-structure model and the IV TP estimate plus the model pricing error. The model estimates
are 67% and 84% correlated with the VIX premium from March 2004 to December 2020. The IV TP estimate
from the model extends back before the start of VIX futures trading.
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Appendix for “Equity Volatility Term Premia”
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A Appendix

A.1 Synthetic Variance Swap Rates

I compute synthetic variance swap rates from the price of a replicating portfolio of options following

Carr and Wu (2009). I perform this computation every day for expirations between ten days and

three years to maturity with at least three quotes for out-of-the-money (OTM) puts and calls with

non-zero bids.21 For each maturity and date, I fit a flexible implied volatility function by local linear

regression to OTM options and compute synthetic variance swap rates as the weighted average of

fitted option prices.22 To obtain a constant maturity term-structure, I interpolate the synthetic

variance swap rates at the observed maturities onto a monthly grid from one-month to two-years.

The interpolation is linear in total variance following Carr and Wu (2009) and the CBOE volatility

indices. When necessary, I use nearest neighbor extrapolation to estimate the one-month and two-

year synthetic rates.

Figure A.1 provides an example of the estimation procedure on December 20, 2019. The top

plot reports the fitted implied volatility functions against log-moneyness for different maturities.

The close fit indicates that the implied volatility functions provide an accurate estimate of the risk-

neutral distribution. The bottom plot reports the estimated synthetic variance swap rates against

the CBOE volatility indices and Bloomberg synthetic variance swap rates.23 The estimated rates

closely align with the CBOE indices. The Bloomberg rates are somewhat lower but within typical

bid-ask spreads.

The empirical choice of a two-year term-structure balances the earlier years in the sample when

some extrapolation is required versus the latter years in the sample when longer maturities are

available so no extrapolation is needed. Figure A.2 illustrates this point by plotting the maturities

of the estimated synthetic rates each day. Starting in December 2005, an option with a three-year

maturity is introduced at the end of each calendar year that rolls down to a two-year maturity
21I determine which options are OTM from the forward rate implied by put-call parity. The forward rate implied

by different strike prices is F (τ,K) = K + Z(τ)−1(C(τ,K)− P (τ,K)) where Z(τ) is the risk-free discount function.
I estimate the forward rate as the median implied forward rate from as many as ten strike prices that are closest to
the strike price that minimizes the absolute difference between call and put prices.

22Following the CBOE construction of the VIX index, I include options with strike prices that are successively
OTM until either all options are used or there are two consecutive strike prices with zero bids. As a result, the strike
price range varies as volatility changes over time and across maturities. To extrapolate beyond the strike price range,
I use the implied volatility of the put and call that are furthest OTM to append log-Normal tails. I compute synthetic
variance swap rates for “standard” 3rd Friday expiration dates and begin to include SPX “weekly” expirations in 2014
on Fridays other than the 3rd Friday of the month following the VIX index methodology.

23In addition to the VIX which tracks one-month (30-day) implied volatility of SPX index options, the CBOE also
tracks three-month and six-month implied volatility with the VIX3M (formerly VXV) and VIX6M (formerly VXMT)
indices.
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throughout the year. As a result, there is almost no extrapolation at the long-end of the curve from

2006 to 2020. Prior to 2006 the maximum maturity with an estimated synthetic variance swap rate

is typically between 18-months and two-years.

Table A.1 compares the estimated synthetic variance swap rates to CBOE and Bloomberg data

for external validation. Panel A shows that the average mean and median difference between the

estimated synthetic rates and CBOE indices is .17% and .11% across maturities with an average

standard deviation of .41%. Panel B shows that similar results hold when the estimated rates

are compared to Bloomberg data. Panel C reports estimates of bid-ask spreads for the synthetic

rates from bid and ask quotes for SPX options using the CBOE VIX construction methodology.

The mean differences in Panels A and B are within the average bid-ask spreads across maturities.

Finally, in terms of comovement, the table shows that the estimated rates are highly correlated with

the CBOE and Bloomberg data in monthly, weekly, and daily changes.

Figure A.3 illustrates the similarity in the time-series dynamics results by plotting the one-

month synthetic variance swap rate versus the CBOE Volatility index (VIX) at month-end dates

along with a scatter plot of daily changes. Similar to the summary statistics, the daily changes

are highly correlated and the RMSE is low. Overall, the results indicate that the estimated rates

closely track the alternative data sources. The estimated rates are used in this paper because they

are available over the full sample period for a wide range of maturities.

A.2 Two-Scale Realized Variance Estimation

I estimate realized variance for the S&P 500 index following the two-scale approach from Zhang et al.

(2005). In the first step, I use a sparse five-minute sampling frequency to compute realized vari-

ance estimates from one-minute data for five different subsamples. The two-scale realized variance

estimate for each trading day, or second stage estimate, is the average of the first stage estimates

across subsamples to reduce sampling variability. I apply standard data cleaning techniques for

high frequency data when implementing the two-scale estimator. I use one-minute intraday prices

during regular market hours from 9:30am to 4:00pm from Thomson Reuters Tick History (TRTH).

I filter these observations by dropping prices that are below the daily low or above the daily high

as reported in TRTH’s end-of-day data. In addition, I follow Liu et al. (2015) by excluding short

days with fewer than 60% of the expected observations during regular market hours (days with less

than 235 observations) to remove early closes from the sample. On each of the remaining days, I

interpolate the observed prices onto a one-minute grid from 9:30am to 4:00pm using the previous
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tick method (previous neighbor interpolation).24 I then compute the two-scale realized variance

estimate as described above.

A.3 Model Estimation

A.3.1 Specification Analysis

Table A.2 reports the model specification analysis. Panel A provides information criteria for selecting

the VAR(p) lag length and the number of principal component factors (KPC) in the state vector.

Since the level and slope factors capture over 99% of the variation in log variance swap rates, this

study only considers using up to two PC factors to avoid overfitting. The objective is to choose

a model that minimizes the information criteria which include the Schwarz (SBIC), and Hannan

and Quinn (HQIC), and Akaike (AIC) measures. The best model according to the IC measures is

bolded and has one lag p = 1 and two principal component factors KPC = 2 . Panel B reports

the sample autocorrelations of the VAR residuals in the selected three-factor VAR(1) model out to

six lags. The autocorrelations are close to zero and insignificant at the 5% level in univariate tests.

Ljung-Box tests of the null hypothesis that the autocorrelations are jointly equal to zero are not

rejected at the 5% level for any of the variables. Figure A.4 illustrates the autocorrelation tests.

The left panels plot the residual autocorrelations alongside 95% pointwise confidence intervals. The

right panel plots the time-series of the VAR residuals. The low and primarily insignificant values

of the residual autocorrelations provide evidence against modeling higher order MA processes in

the VAR. Reverting back to Table A.2, Panel C reports augmented Dickey-Fuller tests. The null

hypothesis of a unit-root process is rejected at the 1% level for each of the variables in favor of

the alternative that the data is generated by a stationary process. The maximum eigenvalue of Φ̂

is .85 (.03) with a 95% bootstrapped confidence interval from (.81, .93) which does not reject the

hypothesis that the estimated VAR is stationary.
24On most days I observe a price every minute so no interpolation is required. The mean (median) number of

observations per day is 389.7 (391) out of 6.5×60+1 = 391 possible one-minute observations from 9:30am to 4:00pm.
Out of 6220 trading days there are only 242 days with fewer than 391 observations and most of these days occur
during the early years in the sample. On these days, the mean (median) number of observations is 357.2 (388.5).
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A.3.2 Likelihood Function

To compute the MLE, I assume the pricing errors are conditionally Normal. The likelihood function

from the forecast error decomposition is,

f(Yt, Xt|Xt−1,Θ) = f(Yt|Xt,Θ)f(Xt|Xt−1,Θ)

= f(Yt|Xt, µ
Q,ΦQ, Lv, ρ, σe)f(Xt|Xt−1, µ,Φ, Lv).

(32)

The resulting log likelihood function (conditioned on t = 0 information) is,

LL =
∑T

t=1 ln f(Yt|Xt,Θ) +
∑T

t=2 ln f(Xt|Xt−1,Θ)

= −T ·Nτ
2 ln(2πσ2

e)− 1
2

∑T
t=1

∑
n∈τ ((Yt,n − gn(Xt, µ

Q,ΦQ,Σv)− ρ · et−1,n)/σe,n)2

−T ·K
2 ln(2π)− T

2 ln |Σv| − 1
2

∑T
t=1(Xt − µ− ΦXt−1)′Σ−1

v (Xt − µ− ΦXt−1).

(33)

The separation of the physical parameters that govern the conditional mean of the state vector

and the risk-neutral parameters that govern variance swap pricing is emphasized by Joslin et al.

(2011). Because of this separation, one can show that the maximum likelihood estimates for µ and

Φ are the ordinary least squares estimates from a vector autoregression of the state variables. This

simplifies maximum likelihood estimation as the likelihood function only needs to be maximized

over the remaining parameters (µQ,ΦQ, Lv, ρ, σe).

A.3.3 RVTP and IVTP Sensitivities to State Variables

In addition to the linear approximations from the regressions in Table 8, the exact sensitivities or

partial derivatives of volatility term premia with respect to the state variables are also available.

For example, the response of RVTP to changes in the state variables is,

∇RV TPt,n =
12

n

(
n∑
i=1

Bi · eAi+B
′
iXt −

n∑
i=1

BP
i · eA

P
i +(BPi )′Xt

)
. (34)

Figure A.5 reports sensitivities of RVTP and IVTP with respect to changes in the state vector

over time. The top left subplots report the time-series average of the partial derivatives. The

top right subplots show the sensitivities on October 31, 2007 when the state vector is close to its

unconditional mean. The bottom right subplots show the sensitivities during the financial crisis

on November 30, 2008, a period with high realized and implied volatility and an inverted variance

swap curve. The magnitude of these sensitivities is much larger for RVTP than average, which is
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illustrated by the gray box highlighting the scale of the other plots. The bottom right subplots

report the partial derivatives on December 31, 2016, a low volatility period with an upward sloping

variance swap curve. The analysis highlights how the sensitivity of RVTP and IVTP with respect

to the state vector can change over time due to the nonlinear nature of the model. The average

partial derivatives and regression coefficients in Table 8 provide a sense for the typical relationships.

A.3.4 Five-Factor Model with Daily and Weekly RV Factors

The state vector in the baseline three-factor model includes lnRVt which is estimated over an entire

month and two principal component factors from log variance swap rates that are observed at

the end of the month. The asynchronous observation of lnRVt and the PC factors may lead to

concerns that the model’s volatility forecasts could be improved by using higher frequency realized

variance factors, thus impacting the term premia estimates and empirical results. In particular,

the heterogeneous autoregressive (HAR) model of Corsi (2009) and the extensions in Bekaert and

Hoerova (2014) show that volatility forecasts can be improved by using realized variance estimates

over different horizons.

Embellishing the model setup, I follow Corsi (2009) by adding daily lnRVDt and weekly

lnRVWt log realized variance factors to the state vector and estimate the five-factor model,

Xt = [lnRVt lnRVDt lnRVWt PC1t PC2t], (35)

with KPC = 2 principal component factors. Figure A.6 compares the estimates from the five-factor

VAR(1) model to the baseline three-factor VAR(1) model and a three-factor VAR(2) specifica-

tion. The model prices and volatility term premia estimates are economically very similar across

the different model specifications, showing that the results are robust to the concerns regarding

asynchronicity and the lag length of the VAR.

A.3.5 Time-Varying Volatility-of-Volatility

The covariance matrix of the VAR(1) residuals for Xt is constant in the baseline model. While

this is a standard assumption in many term-structure models, one may wonder how allowing for a

time-varying covariance matrix would impact the estimation results.

Before extending the analysis, it is important to recall that the state vector already models second

moments directly. In this sense, the baseline model is already a nonlinear stochastic volatility model
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that features time-varying volatility-of-volatility. In the baseline model, vol-of-vol is increasing in

the lnRVt and PC1t factors. In addition, since the model prices realized variance exactly, the model

already matches the realized vol-of-vol for the stock market.

Another observation before considering an extension is that the log transformation attenuates

much of the excess kurtosis and vol-of-vol that is present in the level of realized variance. From 1996

to 2020, the kurtosis of realized variance is 87 in levels versus 4 in logs. There is also limited vol-of-

vol in the VAR residuals for the log model. In unreported results that are available upon request, I

estimate OLS regressions of the squared VAR(1) residuals onto the lagged state variables for log and

linear specifications of the state vector. The regressions test for evidence of time-varying vol-of-vol

in the residuals and are motivated by the usual affine setup for stochastic volatility models (Piazzesi

(2010)). In the log specification, the coefficients are insignificant and the explanatory power is low.

In the linear or affine specification, the coefficients are significant and the explanatory power is

higher. The results suggest that modeling a time-varying covariance matrix for the VAR residuals

is more of a concern when realized variance is modeled in levels, not in logs as in this paper.

Nonetheless, one can extend the baseline model and examine the robustness of the estimates.

To that end, I consider the following modification,

Xt+1 = µ+ ΦXt +
(
LvS

1/2
t

)
vt+1, εt+1|Ft ∼ N(0, I)

Xt+1 = µQ + ΦQXt +
(
LvS

1/2
t

)
vQt+1, ε

Q
t+1|Ft ∼ N(0, I)

St =


α1 + β′1Xt

. . .

αK + β′KXt

 .

(36)

The derivation of model prices proceeds as before with an adjustment for the time-varying covariance

matrix. Variance swap forwards and VIX futures prices continue to be exponential affine in the state

vector. The recursive pricing equations for the extended model are,

An = An−1 +B′n−1µ
Q + 1

2B
′
n−1LvΣαL

′
vBn−1

B′n = B′n−1ΦQ + 1
2 β̃
′
n−1,

(37)

where,

β̃′n−1 ≡
K∑
i=1

Wii,n−1β
′
i, Wn−1 ≡ L′vBn−1B

′
n−1Lv, (38)

and St ≡ Σα + Σβ,Xt with Σα = Diag(α) and Σii,β,Xt = β′iXt. I estimate the model by maximum

6



likelihood and impose the constraint that the time-varying covariance matrix is positive definite

at each point in time. Figure A.7 reports the estimated variance swap rates and volatility term

premia in the baseline model versus the extension with a time-varying VAR(1) covariance matrix.

The model variance swap rates closely match the data and the volatility term premia estimates

are broadly similar. Overall, the plots show that the empirical results are robust to allowing for a

time-varying VAR covariance matrix.

A.3.6 Estimation with Overlapping Daily Data

Adjusting the notation slightly, the model can accommodate daily data by allowing the state vector

to follow a monthly vector autoregression with overlapping observations and a horizon of h = 21

trading days,

Xt+h = µ+ ΦXt + vt+h, vt+h|Ft ∼ N(0,Σv)

Yt,n = gn(Xt, µ
Q,ΦQ,Σv) + et,n, et,n|Ft ∼ (ρ · et−h,n, σ2

e,n).
(39)

The nonlinear least squares estimation proceeds as before after adjusting the standard errors in the

first-step for the overlapping nature of the VAR. Estimating the model with daily data increases the

sample size which improves precision and is more demanding because it requires fitting the more

extreme observations of variance swap rates that occur within month.25 In addition, estimating the

model with daily data allows for a study of the relative pricing of variance swaps and VIX futures

and for the estimation of the VIX futures convexity adjustment at a daily frequency.

A.4 Equity Volatility Term Premia in an Equilibrium Model

This section derives RVTP and IVTP in the consumption-based asset pricing model from Eraker

and Wu (2017). The stochastic discount factor (SDF) is,

Mt = Etx
−γ
T e−rf t = eα(u−γ ,t,T )+β′(u−γ ,t,T )Xt−rf t. (40)

In the two-factor volatility model and T →∞ limit it follows from Ito’s lemma that,

dMt

M−t
= −rfdt− γσtdBx

t − ησvσtdBv
t − φσθ

√
θtdB

θ
t + (e−ηξt − 1)dNt − l0(ρ(−η)− 1)dt. (41)

25For example, during the financial crisis in the fall of 2008, the five highest closing values of the VIX were 80.86,
80.06, 79.13, 74.26, and 72.67 on 11/20, 10/27, 10/24, 11/19, and 11/21, none of which are month-end dates. The
month-end observations were 59.89 on 10/31 and 55.28 on 11/28.
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The price of variance futures is derived in Appendix A.4 as Ft,t+τ = V arQt (lnPt+τ ) = a(τ) +

b(τ)σ2
t + c(τ)θt from the conditional cumulant generating function for lnPt+τ . The instantaneous

risk premium for variance futures is thus,

−Covt(dMt

M−t
, dFt,t+τ ) = −Covt

(
dMt

M−t
, a(τ) + b(τ)dσ2

t + c(τ)dθt

)
=

(
b(τ)l0µξ(1− 1

(1+ηµξ)2
) + b(τ)ησ2

vσ
2
t + c(τ)σ2

θφθt

)
dt.

(42)

The risk premium has three factors that are all negative. The second and third-term are time-

varying and increasing in risk as measured by either spot volatility σt or the long-run volatility

factor θt.

In addition to the instantaneous risk premium, it is also possible to compute the realized variance

and implied variance term premia for any horizon τ . The stock price dynamics under P are,

d lnPt =

(
∂α(u1−γ , t, T )

∂t
− ∂α(u−γ , t, T )

∂t

)
dt+ rfdt+ d lnxt + λσdσ

2
t + λθdθt. (43)

It follows that realized variance is an affine function of σ2
t and θt,

d lnP 2
t = (σtdB

x
t + λσ(σvσtdB

v
t + ξtdNt) + λθσθ

√
θtdB

θ
t )2

=
(
(1 + λ2

σσ
2
v)σ

2
t + λ2

θσ
2
θθt
)
dt+ λ2

σξ
2
t dNt.

(44)

The expected realized variance from time t to time t+ τ is then,

Et

[∫ t+τ
t d lnP 2

s

]
= 2λ2

σl0µ
2
ξτ + (1 + λ2

σσ
2
v)
∫ t+τ
t Et[σ

2
s ]ds+ λ2

θσ
2
θ

∫ t+τ
t Et[θs]ds. (45)

We can compute this expectation directly. Define Yt = (σ2
t , θt). For this analysis note that we can

drop lnxt as a state variable because (dBx
t , dB

v
t , dB

θ
t , dNt) are independent and because lnxt does

not feed back into Xt The dynamics for Yt are thus,

dYt =

 0

kθθ

+

 −κ κ

0 −κθ

 σ2
t

θt

 dt+

 σvσt 0

0 σθ
√
θt

 dBv
t

dBθ
t

+

 ξtdNt

0

 .

(46)

We can rewrite dYt as,

dYt = K(µ− Yt)dt+ σ(Yt)dBt + dJt, (47)

where E[Yt] = µ and dBt and dJt are martingale components. The conditional expectation of Yt is
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then,

Et[Ys] = f(t, Yt) = µ+ e−K(s−t)(Yt − µ), (48)

where e−K(s−t) ≡
∑∞

n=0
1
n!(−K(s− t))n is the matrix exponential. Rewriting Yt in this way,

dYt ≡
(
KY,P

0 +KY,P
1 Yt

)
dt+ σ(Yt)dBt + dJt

= (−KY,P
1 )((−KY,P

1 )−1KY,P
0 − Yt)dt+ σ(Yt)dBt + dJt

≡ KP (µP − Yt)dt+ σ(Yt)dBt + dJt.

(49)

where,

KY,P
0 =

 l0µξ

κθθ

 , KY,P
1 =

 −κ κ

0 −κθ

 . (50)

The realized variance forecast is then,

RV Ft,t+τ ≡ Et

[∫ t+τ
t d lnP 2

s

]
= aτ +

∫ t+τ
t (b c) · Et[Ys]ds

= aτ + (b c) ·
∫ t+τ
t

(
µP + e−K

P (s−t)(Yt − µP )
)
ds

= aτ + (b c) ·
(
µP τ + (KP )−1(I − e−KP τ )(Yt − µP )

) (51)

where (a, b, c) = (2λ2
σl0µ

2
ξ , 1 + λ2

σσ
2
v , λ

2
θσ

2
θ). Variance swap rates follow from the same computation

under the risk-neutral measure with aQ = 2λ2
σl
Q
0 (µQξ )2,

V St,t+τ ≡ EQt
[∫ t+τ

t
d lnP 2

s

]
= aQτ + (b c) ·

(
µQτ + (KQ)−1(I − e−KQτ )(Yt − µQ)

)
, (52)

To compute this expectation we need the risk-neutral dynamics which are,

dYt =
(
KY,Q

0 +KY,Q
1 Yt

)
dt+ σ(Yt)dB

Q
t + dJQt

= (−KY,Q
1 )((−KY,Q

1 )−1KY,Q
0 − Yt)dt+ σ(Yt)dB

Q
t + dJQt

≡ KY,Q(µQ − Yt)dt+ σ(Yt)dB
Q
t + dJQt ,

(53)

where,

KY,Q
0 =

 lQ0 µ
Q
ξ

κθθ

 , KY,Q
1 =

 −κ κ

0 −κθ

 (54)

and η = −β2(u−γ) and φ = −β3(µ−γ) are the prices of risk from the SDF. The realized variance

term premium (Q − P ) is thus, RV TPt,t+τ = V St,t+τ − RV Ft,t+τ . Similarly, the implied variance
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term premium is, IV TPt,T1,T2 = V St,T2 − V St,T1 − EPt [V ST1,T2 ], which can be derived from the

observation that,

EPt [V ST1,T2
] = aQτ + (b c) ·

(
µQτ + (KQ)−1(I − e−KQτ )(µP + e−K(T1−t)(Yt − µP )− µQ)

)
. (55)

where τ = T2 − T1. This risk premium measures the expected return for bearing exposure to

implied volatility risk. The aQτ term stemming from jump risk cancels out in the IV RPt,T1,T2

measure which reduces the IV RP risk premium relative to the forward variance risk premium

RV TPt,T2 −RV TPt,T1 .
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Estimated Synthetic Variance Swaps versus CBOE and Bloomberg Data

Table A.1: This table compares the estimated synthetic variance swap rates to CBOE and Bloomberg data.
Panels A and B report the mean, standard deviation, and median of the difference between the estimated
synthetic variance swap rates and the alternative data sources in annualized volatility units along with the
correlation between the estimated rate and the alternative rate in monthly, weekly, and daily changes. Panel
C reports estimates of synthetic variance swap bid-ask spreads from bid and ask quotes for SPX options
using the CBOE VIX construction methodology. The table shows that the estimated synthetic rates used
in the paper are highly correlated with the alternative data sources and within typical bid-ask spreads of
the alternative rates on average. The advantage of the estimated synthetic rates is their availability across
maturities and during the full sample period from 1996 to 2020. In contrast, the Bloomberg data is only
available starting in November 2008 and the CBOE VIX3M and VIX6M indices are only available starting
in December 2007 and January 2008 respectively.

Panel A: Synthetic rates vs. CBOE volatility indices
Maturity 1 3 6 Avg.
Mean Difference 0.34 0.13 0.05 0.17
Standard Deviation 0.57 0.37 0.30 0.41
Median Difference 0.27 0.07 -0.00 0.11
Correlation of monthly changes 0.99 1.00 1.00 1.00
Correlation of weekly changes 0.98 0.99 0.99 0.99
Correlation of daily changes 0.96 0.96 0.97 0.96

Panel B: Synthetic rates vs. Bloomberg synthetic rates
Maturity 1 2 3 6 9 12 18 24 Avg.
Mean Difference 0.73 0.38 0.29 0.17 0.19 0.16 0.15 0.08 0.27
Standard Deviation 1.01 0.60 0.54 0.46 0.51 0.49 0.45 0.43 0.56
Median Difference 0.48 0.26 0.18 0.08 0.10 0.08 0.10 0.05 0.17
Correlation of monthly changes 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.99
Correlation of weekly changes 0.97 0.98 0.98 0.98 0.97 0.96 0.94 0.94 0.97
Correlation of daily changes 0.91 0.94 0.93 0.93 0.92 0.88 0.84 0.80 0.89

Panel C: Synthetic variance swap rate bid-ask spread estimates
Maturity 1 2 3 6 9 12 18 24 Avg.
Mean 1.41 1.28 1.19 1.05 1.03 1.15 1.34 1.31 1.22
Median 1.29 1.14 1.05 0.90 0.85 0.93 0.97 0.94 1.01
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Model Specification Analysis

Table A.2: This table provides model specification analysis. Panel A reports information criteria for
selecting the VAR(p) lag length and the number of principal component factors (KPC) in the state vector.
The objective is to choose a model that minimizes the information criteria which include the Schwarz (SBIC),
and Hannan and Quinn (HQIC), and Akaike (AIC) measures. The best model according to the IC measures
is bolded and has one lag p = 1 and two principal component factors KPC = 2. Panel B reports the
sample autocorrelations for the VAR residuals in the selected three-factor VAR(1) model out to six lags.
The autocorrelations are close to zero and insignificant at the 5% level in univariate tests. Ljung-Box tests
of the null hypothesis that the autocorrelations are jointly equal to zero are not rejected at the 5% level
for any of the state variables. Panel C reports augmented Dickey-Fuller tests. The null hypothesis of a
unit-root process is rejected for each of the variables in favor of the alternative that the data is generated
by a stationary process.

Panel A: Model Lag Length Selection
Model p KPC SBIC HQIC AIC

1 1 1 -8.60 -8.62 -8.64
2 1 2 -10.20 -10.25 -10.28
3 2 1 -8.75 -8.81 -8.85
4 2 2 -9.87 -10.01 -10.09
5 3 1 -8.66 -8.80 -8.88
6 3 2 -9.59 -9.88 -10.04
7 4 1 -8.49 -8.72 -8.85
8 4 2 -9.34 -9.84 -10.12

Panel B: VAR(1) residuals
Variable v̂lnRV v̂PC1 v̂PC2

Panel B.I: Autocorrelation
ρ1 0.11 0.01 -0.11∗
ρ2 0.06 -0.06 -0.02
ρ3 0.08 -0.04 0.02
ρ4 -0.09∗ -0.01 0.04
ρ5 0.08 0.05 0.10∗
ρ6 -0.01 -0.06 0.07

Panel B.II: Ljung-Box tests
Variable v̂lnRV v̂PC1 v̂PC2

QLB 11.35 3.34 9.06
p-val 7.8∗ 76.6 17.0

Panel C: ADF tests
Variable XlnRV XPC1 XPC2

H0 : Unit root
t-statistic -6.82 -4.02 -5.88
p-value 0.00∗∗∗ 0.13∗∗∗ 0.00∗∗∗
H0 : Unit root with trend and lag
t-statistic -5.85 -3.75 -5.52
p-value 0.00∗∗∗ 1.91∗∗ 0.00∗∗
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Variance Swap Return Predictability Robustness: WLS Estimates

Table A.3: This table reports in-sample weighted-least-squares (WLS) estimates of variance swap return
predictability regressions following Johnson (2019). Panel A reports the first stage estimate of conditional
variance σ2

t from a regression of squared daily returns for each maturity onto realized variance over the
past month (a constant is omitted so the conditional variance estimates are positive; the coefficient and
SE are multiplied by 1e4 for readability). Panel B reports the WLS estimates for the return predictability
regressions. The model continues to significantly predict returns in the WLS regressions.

Panel A: First Stage Conditional Variance Regressions: R2
t+1 = γ ·RVt + et+1

Maturity (n) 1 2 3 6 9 12 18 24
γ 12.38∗∗∗ 26.69∗∗∗ 38.78∗∗∗ 69.22∗∗∗ 100.73∗∗∗ 133.66∗∗∗ 156.74∗∗∗ 194.89∗∗∗

(3.19) (6.70) (9.51) (15.15) (24.27) (43.07) (31.79) (41.25)
R2
adj 0.07 0.08 0.08 0.11 0.10 0.09 0.13 0.11

Panel B: Second Stage WLS Regressions: β̂ = arg minβ
∑T
t=1

((
Rt+1 −

(∑h−1
s=0 Xt−s

)
· β
)
/σ̂t
)2

Maturity (n) 1 2 3 6 9 12 18 24

One-month horizon
Stambaugh βadj 1.03 1.08 1.04 0.97 0.95 0.99 0.94 0.99
Unadjusted β 1.09 1.17 1.14 1.10 1.09 1.14 1.10 1.14
SE(Asym) (0.12) (0.16) (0.17) (0.19) (0.21) (0.22) (0.25) (0.27)
p-val(Asym %) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.01∗∗∗ 0.02∗∗∗
SE(Boot) (0.15) (0.20) (0.21) (0.21) (0.21) (0.22) (0.23) (0.23)
p-val(Boot %) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

Three-month horizon
Stambaugh βadj 1.10 0.92 0.89 0.93 0.87 0.92
Unadjusted β 1.20 1.01 0.98 1.03 0.98 1.04
SE(Asym) (0.19) (0.18) (0.20) (0.21) (0.24) (0.26)
p-val(Asym %) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.03∗∗∗ 0.05∗∗∗
SE(Boot) (0.24) (0.22) (0.22) (0.22) (0.23) (0.24)
p-val(Boot %) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

Six-month horizon
Stambaugh βadj 1.09 0.94 0.97 0.90 0.97
Unadjusted β 1.14 0.98 1.02 0.95 1.01
SE(Asym) (0.22) (0.21) (0.22) (0.25) (0.28)
p-val(Asym %) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.03∗∗∗ 0.05∗∗∗
SE(Boot) (0.26) (0.23) (0.23) (0.24) (0.25)
p-val(Boot %) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

VIX Futures Basis Summary Statistics: Full Sample and Post-Crisis Sample

Table A.4: This table reports summary statistics for the model’s VIX futures pricing errors for the front
three contracts from 3/26/04 and for the front six contracts from 1/4/10.

Basist,n = Futt,n − Futmodelt,n

Sample Period 2004 to 2020 2010 to 2020
Contract 1 2 3 Avg. 1 2 3 4 5 6 Avg.
Mean -0.32 -0.21 -0.28 -0.27 -0.36 -0.53 -0.75 -0.88 -0.88 -0.80 -0.70
Standard Deviation 0.94 1.08 1.15 1.06 0.93 0.95 0.97 0.96 0.90 0.86 0.93
Skewness -3.79 -0.42 -0.10 -1.43 -4.92 0.81 0.87 1.39 1.07 0.00 -0.13
Kurtosis 45.65 10.01 4.26 19.97 63.07 12.37 6.59 8.81 7.65 7.22 17.62
Minimum -15.43 -8.58 -6.40 -10.14 -15.43 -7.26 -5.42 -5.78 -5.70 -7.71 -7.88
25th-Percentile -0.64 -0.86 -1.14 -0.88 -0.65 -1.07 -1.33 -1.48 -1.44 -1.38 -1.22
Median -0.24 -0.23 -0.34 -0.27 -0.27 -0.62 -0.90 -1.07 -1.02 -0.88 -0.79
75th-Percentile 0.13 0.43 0.56 0.37 0.09 -0.06 -0.24 -0.36 -0.37 -0.27 -0.20
Maximum 4.60 7.72 5.54 5.95 4.60 7.72 5.54 4.98 4.56 3.04 5.07
RMSE 0.99 1.10 1.18 1.09 0.99 1.09 1.22 1.30 1.25 1.17 1.17
t-statistic -5.87 -1.35 -1.33 -2.85 -4.71 -3.33 -3.72 -4.34 -4.95 -5.16 -4.37
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Synthetic Variance Swap Rate Estimation
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Figure A.1: This figure illustrates the synthetic variance swap rate estimation procedure for the S&P
500 index on December 20, 2019. The top plot reports the fitted implied volatility functions against log-
moneyness for different maturities with the legend indicating the calendar days until expiration. I estimate
the synthetic variance swap rates as a weighted average of out-of-the money option prices following Carr and
Wu (2009) for each maturity. As the plot indicates, I extrapolate the strike price range with non-zero bids
by appending log-Normal tails with flat implied volatility functions. The bottom plot reports the estimated
synthetic variance swap rates against the CBOE volatility indices and synthetic variance swap rates from
Bloomberg. In the paper, I interpolate the estimated synthetic rates onto a monthly grid from one-month
to two-years. The hump in the term-structure for maturities around one-year reflects market pricing of the
2020 election at the end of 2019.
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SPX Index Option Maturities with Estimated Synthetic Variance Swap Rates
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Figure A.2: This figure plots the time-to-maturity of the SPX index option maturities for which synthetic
variance swap rates were estimated and the number of maturities for each day in the sample.

One-Month Synthetic Variance Swap Rate versus the VIX
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Figure A.3: This figure plots the estimated one-month synthetic variance swap rate against the VIX
index from 1996 to 2020. The left plots report the time series at month-end dates. The right plots report
the daily changes which are 96% correlated.

15



VAR Residuals in the Baseline Model and Autocorrelation Tests
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Figure A.4: The left plots report the autocorrelation estimates of the VAR residuals in the baseline
three-factor model alongside 95% pointwise confidence intervals for the first six lags. The autocorrelation
estimates are close to zero and insignificant in univariate tests. The title reports the Ljung-Box test-statistic
and p-value for the null hypothesis that the autocorrelations are jointly equal to zero which is not rejected
at the 5% level for any of the state variables. The right plots report the time-series of the VAR residuals.

RVTP and IVTP Sensitivites to the State Vector
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Figure A.5: The left (right) figure plots the sensitivity of realized variance term premia ∇RV TPt,n
(implied volatility term premia ∇IV TPt,n) to a one standard deviation increase in the state variables on
average and at different points in time.
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Robustness to Model Specification
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Figure A.6: This figure plots the model estimates of variance swap rates and realized variance term
premia for the baseline three-factor VAR(1) model against a five-factor VAR(1) model with daily and weekly
log realized variance factors and a three-factor VAR(2) model.

Robustness to Time-Varying VAR Covariance Matrix
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Figure A.7: This figure plots the model estimates of variance swap rates and RVTP for the baseline model
and for a model with a time-varying covariance matrix for the VAR(1) residuals.
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IRFs of RVTP and IVTP to a VIX Shock in the Eraker and Wu Model
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Figure A.8: This figure plots the IRFs of RVTP and IVTP for one-month and six-month horizons to a
one standard deviation VIX shock from a bivariate VAR for 100 years of data simulated from the two-factor
Eraker and Wu (2017) equilibrium model. The VAR is estimated with weekly data using four lags and the
IRFs are from a Cholesky decomposition with the VIX ordered first.
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Relative Pricing of VIX Futures Across Contracts
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Figure A.9: The left figures plot the model price against the futures price for the front six contracts. The
right figures plot the difference between the futures price and model price. Negative values in the right plots
indicate that VIX futures are cheap relative to the option-implied model price. The plots report five-day
moving averages with the root mean-squared-error (RMSE) of the pricing error in the right plot titles.
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