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Abstract

Recent developments in nonlinear time series modelling are re-
viewed. Three main types of nonlinear model are discussed: Markov
Switching, Threshold Autoregression and Smooth Transition Autore-
gression. Classical and Bayesian estimation techniques are described
for each model. Parametric tests for nonlinearity are reviewed with ex-
amples from the three types of model. Finally forecasting and impulse
response analysis is developed.
Keywords: Markov Switching, Threshold Autoregression, Smooth

Transition Autoregression.

1 INTRODUCTION

It is now ten years since Jim Hamilton’s seminal paper on nonlinear mod-
elling of U.S. output was published. This ten years has witnessed an explo-
sion of interest amongst econometricians in the testing, estimation, specifi-
cation and properties of nonlinear models. The purpose of this paper is to
give a non-technical survey of the main developments and some observations
on the difficulties of successful nonlinear modelling in macroeconomics.1 It

∗I would like to thank Gary Koop for numerous helpful discussions. The views ex-
pressed in this paper are those of the author and do not necessarily reflect the views of
the Federal Reserve Bank of New York or the Federal Reserve System.

1There is also a vast literature in finance (see De Lima’s accompanying article). While
many of the developments and problems are similar, the higher frequency of observation
of financial time series has allowed a much greater emphasis on flexible non-parametric
methods. An excellent example of such methods is in Gallant, Rossi and Tauchen (1993).
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is useful to begin by giving some motivation for the need for nonlinear mod-
elling.

The 1970s and 1980s saw economists adopt many of the time series
techniques introduced by Box and Jenkins. The basis for such modelling
approaches was the Wold Representation: any covariance stationary time
series can be expressed as moving average function of present and past in-
novations:

Yt =
∞X
i=0

θiUt−i,with
X

θ2
i <∞, θ0 = 1,

where

E[UtUt−i] = 0 for all i 6= 0 and E[U2
t ] = σ

2
u

This infinite moving average can nearly always be well approximated by low
order autoregressive processes perhaps with some moving average compo-
nents. Further, the dynamics of the time series could be ‘read off’ from the
Wold Representation since θi represents the impulse response function at
horizon i.

It might appear at first that there is no need for nonlinear modelling given
the Wold Representation. However, as well illustrated in the appropriately
titled “Forecasting White Noise,” by Clive Granger, lack of autocorrelation
in a time series does not imply that the time series cannot be predicted.
Indeed some perfectly predictable time series have zero autocorrelations at
all lags.2

Further, while the Wold Representation gives the impulse response func-
tion directly it imposes some strong restrictions on it. First, the impulse
response function does not depend on the recent history of the time series.
Thus, for example, the response to a positive innovation of 1% is the same
whether last period’s growth rate was 8% or -8%. Second, the response to
innovations is restricted to be homogeneous of degree 1. That is, once the
response to a shock of size 1 has been found all other shocks are given by
simple scalings of this response.

Successful nonlinear time series modelling would improve forecasts and
produce a richer notion of business cycle dynamics than linear time series

2The classic example is Brock and Chamberlain’s 1984 working paper which like
Granger’s paper has a title that gives the result. In the late 1980s nonlinear modeling was
strongly associated with the study of chaotic systems. Such systems are less amenable to
statistical techniques than the nonlinear time series models considered here.
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models allow. For this to happen two conditions are necessary. First, eco-
nomic time series must contain nonlinearities. Second, we need reliable
statistical methods to summarize and understand these nonlinearities suit-
able for time series of the typical macroeconomic length. Unfortunately the
second condition is needed to evaluate the veracity of the first condition
and as we shall see it is not clear that we have yet found reliable statistical
methods.

The organization of the paper is as follows: I start by describing three
types of models most widely used in the economics literature and Classical
and Bayesian estimation techniques in simple cases; the testing problem
is then discussed with respect to these three models; finally simulation of
the conditional expectations is described and its use in the construction of
forecasts and impulse response functions.

2 THREE MODELS

In this section I discuss the three types of models that have most commonly
be used in nonlinear modelling particularly for aggregate output measures
and unemployment. I will use a common notation across all models. Yt
will be a univariate covariance stationary time series, Y t = (Y1, Y2, . . . , Yt)
will be the history of the time series up to time t. Vt will be a sequence of
independent and identically distributed random variables with unit variance.
When likelihood based methods are discussed one can assume that Vt has
a standard normal distribution. The Greek letters α,φ,σ will respectively
refer to the intercepts, autoregressive coefficients and the scaling of the time
series innovation. φ(L) is a polynomial in the lag operator of the form:

φ1L+ φ2L
2 + · · ·+ φpLp.

Below we will make use of the fact that if Vt ∼ N(µ, 1) and the prior belief
on µ is flat over the line then the posterior belief about µ after observing a
sample of size T is

µ ∼ N( 1
T

TX
t=1

vt,
1

T
).

2.1 Markov Switching

It is best to begin with Hamilton’s model from Econometrica 1989. His
original motivation was to model long swings in the growth rate of output
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but instead he found evidence for discrete switches in the growth rate at
business cycle frequencies. Output growth was modelled as the sum of a
discrete Markov chain and a Gaussian autoregression:

Yt = Zt +Xt,

where

Zt = α0 + α1St, St = 0 or 1

and

Xt = φ1Xt−1 + φ2Xt−2 + φ3Xt−3 + φ4Xt−4 + σVt,

and P [St = 1|St−1 = 1] = p, P [St = 0|St−1 = 0] = q, Vt ∼ N(0, 1).
The major estimation difficulty with the model is the lack of separate

observability of Zt and Xt. A simple variation on the model is:

Yt = Zt + φ(L)Yt−1 + σVt,

where only St is now unobservable. Note that the original model can also
be written in this form by multiplying both sides by (1− φ(L)) we have:

Yt = (1− φ(L))Zt + φ(L)Yt−1 + σVt. (1)

Expanding out the term (1−φ(L))Zt using the lag operator we see that the
two state Markov chain is transformed into a tightly parameterized 32 state
chain.

A slightly different model is produced by allowing all of the parameters
to switch with the Markov chain:

Yt = α
s(t) + φs(t)(L)Yt−1 + σ

s(t)Vt (2)

Three approaches to estimating the model have been taken.3 In Hamil-
ton’s original article he developed a nonlinear filter to evaluate the likelihood
function of the model and then directly maximized the likelihood function.
Hamilton (1990) constructed an EM algorithm that is particularly useful for
the case where all the parameters switch. Finally, Albert and Chib (1993)
developed a Bayesian approach to estimation that was later refined using

3Links to software for all three types of estimation can be found at
http://weber.ucsd.edu/~jhamilto/software.htm#Markov
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results due to Chang-Jin Kim. The recent monograph by Kim and Nelson
(1999) contains an excellent discussion of both Classical and Bayesian esti-
mation of Markov switching models. The idea behind all three approaches
can be illustrated in the following simple model:

Yt = α0(1− St) + α1St + Vt, t = 1, 2, . . . T.

For simplicity suppose we know that S0 = 1, then entering the next period
the P [S1 = 1|S0 = 1] = p. The observation Y1 is either drawn from a normal
distribution with mean α0 and variance 1 or a normal distribution with
mean α1 and variance 1 and the likelihood is given by

f(y1;α0,α1, p, q, s0 = 1) =

p exp(−0.5(y1 − α1)
2) + (1− p) exp(−0.5(y1 − α0)

2)√
2π

Assume for the moment the two mean parameters are known, then given
the realization of Y1 Bayes rule can be used to update the probability S1 = 1,
denote this by b1 :

P [S1|Y1, S0 = 1,α0,α1, p, q] = b1

=
exp(−0.5(y1 − α1)

2)p

exp(−0.5(y1 − α1)2)p+ exp(−0.5(y1 − α0)2)(1− p) .

Now b1 can be used to produce a prediction of the state next period denote
this by bb2 :

P [S2|Y1,S0 = 1,α0,α1, p, q] = bb2 = pb1 + (1− q)(1− b1).
Using this prediction we can weight together the two possible likelihood func-
tions depending on the state to produce a likelihood function that averages
out over the value of S2:

f(y2|y1;α0,α1, p, q, s0 = 1) =bb2 exp(−0.5(y2 − α1)
2) + (1−bb2) exp(−0.5(y2 − α0)

2)√
2π

and so on. This process then continues up through the last observation T
to obtain the overall the likelihood function:

f(y1, . . . , yT ;α0,α1, p, q, s0 = 1) =

TY
t=1

bbt exp(−0.5(yt − α1)2) + (1−bbt) exp(−0.5(yt − α0)2)√
2π
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Numerical optimization techniques can be used to find the maximum with
respect to α0,α1, p, q. Further, one can also treat the probability that initial
state s0 = 1 as a parameter to be estimated.

For both the EM algorithm and the Bayesian analysis and inference
about the unobserved Markov chain one needs to “smooth” the estimate of
the Markov state bt so that it contains information from the whole sample.
Only the last probability bT contains information on the whole observed
time series. Using the Markov property and the exogeneity of the Markov
chain we know that conditional on observing tomorrow’s state st+1all future
realizations of the observed time series {Ys : s > t} are not relevant for the
estimate of today’s state. Using this restriction and ignoring the dependence
on estimated parameters we have:

P [ST−1 = 1, ST = 1|Y T ] (3)

= P [ST−1 = 1|ST = 1, Y T ]P [ST = 1|Y T ]
= P [ST−1 = 1|ST = 1, Y T−1]bT

= p
bT−1bbT bT,

since

P [ST−1 = 1|ST = 1, Y T−1] (4)

=
P [ST−1 = 1, ST = 1|Y T−1]

P [ST = 1|Y T−1]

=
P [ST−1|Y T−1]P [ST = 1|ST−1 = 1]bbT

=
bT−1pbbT .

Thus denoting the smoothed probability by ebT−1 we need to average out
the value of ST in (3) by performing a similar calculation for the case that
ST = 0:

ebT−1 = bT−1

Ã
p
ebTbbT + (1− q)1−

ebT
1−bbT

!
.

This process continues until we arrive at time 1 or 0 depending on the as-
sumption made on the initial condition. In the EM algorithm the smoothed
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probabilities are used to produce estimates of the unknown parameters as
follows:

bαi0 = TX
t=1

yt(1−ebt+1), bαi0 = TX
t=1

ytebt+1

and using (3):

bpi =

PT
t=1 P [St−1 = 1, St = 1|Y T ]PT

t=1 P [St−1 = 1|Y T ]
= bpi−1 bt−1bbt

ebtebt−1

,

bqi =

PT
t=1 P [St−1 = 0, St = 0|Y T ]PT

t=1 P [St−1 = 0|Y T ]
= bqi−1 (1− bt−1)

(1−bbt) (1−ebt)
(1−ebt−1)

.

Thus, the intercepts are estimated by weighting observations by the likeli-
hood they are in regime 0 or 1 and the transition probabilities by a pseudo
count of the number of times the Markov chain stayed in the same state.

These updated parameter values are then used to re-run the filter and
smoother on the observed data. This produces new parameter values and
the iteration continues until a fixed point is achieved. This fixed point will be
a local maxima of the likelihood function. By considering different starting
parameter values for the algorithm one can check which of one local maxima
is the global one. Of course one local maximum occurs at the least squares
estimate of the mean of the time series with no transitions amongst states
and is easy to discard (but we shall see later it causes inference problems).
Consider the case of the EM algorithm where all the smoothed probabilities
were 1 or 0 and there were some transitions amongst states. Then in this case
the smoother would have correctly identified the movement of the Markov
chain and the data would be grouped in the appropriate manner. The
Bayesian approach works off this intuition by using the filter probabilities
to generate realizations of the Markov chain.

Starting from bT a value of sT is drawn using standard inversion tech-
niques (that is, generate a uniform random number, if it is less than or equal
to bT , sT = 1, otherwise sT = 0). Then using (4) if ST = 1 is drawn ( or its
obvious complement if ST = 0 is drawn), a value of ST−1 is drawn and this
process continues until the whole sequence of the realization of the Markov
chain has been drawn, {sit}. Using this sequence of values for the Markov
chain it is possible to split the observed data directly into two regimes. That

7



is,

bαi0 =
1

T i0

TX
t=1

yt(1− sit), T i0 =
TX
t=1

(1− sit),

bαi1 =
1

T i1

TX
t=1

yts
i
t, T

i
1 =

TX
t=1

sit.

In the case that flat independent priors are used for α0,α1,their posterior
densities are normal with means bαi0, bαi1and variances 1/T i0, 1/T i1 respectively.
These posterior distributions can then be used to draw realizations of α0,α1.

The posterior of the transition parameters can also be simply found
under the assumption that the priors are independent Beta distributions:

f(p) ∝ pδ1−1(1− p)δ2−1, f(q) ∝ qη1−1(1− q)η2−1,

where δ1, δ2, η1, η2 are all strictly positive and a standard uniform prior is
obtained for δ1 = δ2 = η1 = η2 = 1. Given the Beta prior the posterior will
also have a Beta form with parameters:

δi1 = δ1 + bpi TX
t=1

P [St−1 = 1|Y T ], δi2 = δ2 + (1− bpi) TX
t=1

P [St−1 = 1|Y T ]

ηi1 = η1 + bqi TX
t=2

P [St−1 = 0|Y T ], ηi2 = η2 + (1− bqi) TX
t=2

P [St−1 = 0|Y T ],

where bpi, bqi are defined in the same manner as in the EM algorithm. Again
it is easy to draw from these posterior densities to obtain the realization
pi, qi. Combined with the realization for the intercepts the new values can
be used to run the nonlinear filter and smoother again and obtain a fresh
draw of the Markov chain.

This is a Gibbs sampling algorithm for the Markov switching model.
One important issue is how to initialize the algorithm. A good choice is
the maximum likelihood estimates. Unlike the EM algorithm the output of
the Gibbs sampler is a collection of draws from the posterior of the Markov
switching model. In addition to draws of the parameters this also includes
the draws of the full sample smoother. Features of the posterior distribution
can then be found by averaging. For example, the estimate of the path of the
Markov chain would be obtained by averaging the draws of the full sample
smoother:

P [St = 1|Y T ] = 1

I

IX
i=1

ebit.
8



2.2 Threshold Models

Threshold autoregressive (TAR) models are perhaps the simplest general-
ization of linear autoregressions. They were introduced to the time series
literature by Howell Tong (see his 1983 and 1990 monographs for descrip-
tions and extensive background on nonlinear time series).4 Various differ-
ent threshold models have been successfully applied to US GDP/GNP by
Beaudry and Koop (1993), Potter (1995) and Potter and Pesaran (1997).
The general form is as follows

Yt = α
j(t) + φj(t)(L)Yt−1 + σ

j(t)Vt,

where j(t) = 1 if Yt−d < r1, j(t) = 2 if r1 ≤ Yt−d < r2, . . . , j(t) = J if
rJ−1 ≤ Yt−d, and it is possible that the length of the autoregression varies
across the regimes. The parameters rj are called the thresholds and d is
called the delay.

Although this model looks very similar to the Markov switching one in
(2) there is a crucial difference. In the threshold model regimes are defined
by the past values of the time series itself, in the Markov switching case
regimes are defined by the exogenous state of the Markov chain. Filardo
(1994) constructed an intermediate case where the transition probabilities
of the Markov chain vary with the history of the observed time series

Suppose {rj}, {pj}, d were known then the model can be estimated by
separating the data into groups by regime and finding the least squares es-
timates for the parameters in each regime. Unfortunately these parameters
are not known and standard nonlinear least squares algorithms are not use-
ful since the sum of squares functions is not differentiable with respect to
these parameters. For the discrete parameters of the delay and order of
autoregressive lags it is easy to repeat the least squares estimation for each
choice. In the case of the threshold parameters one needs to estimate the
sum of squares for a finite number of choices.

Estimation can be illustrate in a similar simplified model to the Markov
switching:

Yt = α01(Yt−1 < r) + α11(Yt−1 ≥ r) + Vt,
where 1(Yt−1 < r) = 1 if the inequality holds and is zero otherwise.

4Software for classical estimation and inference of threshold autoregressions can be ob-
tained from www.ssc.wisc.edu/~bhansen. Software for Bayesian estimation and inference
can be obtained from http://emlab.Berkeley.EDU/Software/abstracts/potter0898.html.
These latter algorithms make heavy use of recursive least algorithms that can produce

big speed ups in estimation time.
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The first step is to organize data into the matrix:
Y1 Y0

Y2 Y1
...

...
YT YT−1

 ,
then sort this matrix from smallest to largest according to the values in the
second column: 

Y
{1}
t Y

{1}
t−1

Y
{2}
t Y

{2}
t−1

...
...

Y
{T}
t Y

{T}
t−1

 .

Now note that if r < Y {1}t−1 then all the data are in regime 1 (bα1 would be

the sample average, α0 is not identified) or if r ≥ Y {T}t−1 then all of the data
are in regime 0 (bα0 would be the sample average, α1 is not identified). If
Y
{1}
t−1 ≤ r < Y {2}

t−1 then

bα{1}0 = Y
{1}
t , bα{1}

1 =
1

T − 1
TX
s=2

Y
{s}
t ,

and we have the (least squares) recursion:

bα{i+1}
0 =

T
{i}
0

T
{i+1}
0

bα{i}0 +
1

T
{i+1}
0

Y
{i+1}
t , T

{i+1}
0 = i+ 1

bα{i+1}
i =

T
{i}
1

T
{i+1}
1

bα{i}0 − 1

T
{i+1}
1

Y
{i+1}
t , T

{i+1}
1 = T − i− 1

These estimates give the sum of squared errors function in terms of the
threshold:

SSE
{i}
0 =

T
{i}
0X
s=1

(Y
{s}
t − bα{i}0 )2, SSE

{i}
1 =

TX
s=T

{i}
0 +1

(Y
{s}
t − bα{i}1 )2

The obvious least squares estimate of r is the interval associated with the
smallest sum of square errors (this is also the case when the delay is esti-
mated). Note that any estimate within this interval is equally valid. Under
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the assumption of Gaussianity of the errors this would also be the maximum
likelihood estimate. Chan (1993) showed that the estimate of the threshold
(and delay) converges at a sufficiently fast rate that conditioning on the least
squares/maximum likelihood estimate of the threshold, one could ignore its
sampling variability in the asymptotic inference about the other parameters.

The Bayesian approach to estimating the threshold model (under the
assumption of Gaussian errors) is similar in terms of the regime coefficients.
Continuing with our simple example and assuming flat independent priors on
the two intercepts, conditional on the threshold, the intercepts would have
Normal distributions centered at the least squares estimates bα{i}0 , bα{i}1 with

variances 1/T {i}0 , 1/T
{i}
1 respectively. In order to find the marginal posterior

of the threshold consider the case of a flat prior on the thresholds. Then the
joint posterior is proportional to the likelihood function.

p(α0,α1, r|Y T ) ∝

1
√
2π
T
{i}
0

exp(−0.5
T
{i}
0X
s=1

(Y
{s}
t − α0)

2)

× 1
√
2π

T
{i}
1

exp(−0.5
TX

s=T
{i}
0 +1

(Y
{s}
t − α1)

2).

Subtracting and adding the least squares estimates of the intercepts in each
squared function and re-arranging using the orthogonality of least squares
estimates we have:

p(α0,α1, r|Y T ) ∝

exp

−0.5
T {i}

0X
s=1

(Y
{s}
t − bα{i}0 )2 +

TX
s=T

{i}
0 +1

(Y
{s}
t − bα{i}1 )2




× exp
³
−0.5

h
T
{i}
0 (bα{i}0 − α0)

2 + T
{i}
1 (bα{i}1 − α1)

2
i´
.

Now integrating out over α0,α1 we have:

p(r|Y T ) ∝
1q

T
{i}
0 T

{i}
1

exp
¡−0.5 £SSEi0 + SSEi1¤¢ (Y {i}t−1 − Y {i−1}

t−1 ),(5)

for i = 2, . . . , T.Where the intervals (Y {i}t−1−Y {i−1}
t−1 ) represent the fact that

there is no information on the threshold between data points.
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The Bayesian modal estimate of the threshold is not likely to be the
same as the classical one (i.e., the same interval) even under the assumption
of a flat prior on the thresholds. Although the exponential term will be
maximized at the same threshold value as the total sum of square errors,
the lead term involving the inverse of the square roots of the sample size
in each regime will affect the location of the maximum. Further, the mean
and median of the posterior distribution of the threshold are very unlikely
to be at the mode unless T is very large and the sum of squared errors terms
dominates.

Marginal inference about the regime coefficients is very different than in
the classical case (see Hansen 1999 for a method to improve the classical ap-
proach). In the Bayesian case inference about the intercepts would be based
on weighting the individual normal distributions by the posterior probability
of the particular threshold interval and threshold uncertainty would affect
inference about individual regime coefficients.

2.3 Smooth Transition Autogressions

For many the abrupt regime changes in the threshold model are unrealistic.
Consider the case where one is forecasting US GDP and the initial release
his slightly below the threshold but the subsequent revision is above the
threshold. A threshold model would imply large changes in the forecast of
the future for this small change initial conditions. Further, the difficulties
of the non-standard likelihood/least squares functions are a distraction.

As originally suggested by Chan and Tong (1986) and subsequently de-
veloped by Timo Teräsvirta and his various co-authors (see for example,
his 1993 monograph with Clive Granger) if one introduces smooth transi-
tions between regimes standard nonlinear estimation techniques can be used.
Since smooth transition models have a more traditional structure, Teräsvirta
has been able to implement a model specification, estimation and diagnos-
tic cycle very similar to the Box and Jenkins approach (see his 1994 JASA
paper). The models were successfully applied to a wide range of industrial
production series by Teräsvirta and Anderson (1992).

In the simple threshold model above imagine changing from the indicator
function to a smooth cumulative distribution function:

Yt = α0(1− F (Yt−1; γ, r)) + α1F (Yt−1; γ, r) + Vt,

where F (−∞; γ, r) = 0, F (∞; γ, r) = 1.
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The simplest smooth transition function is of a logistic type:

F (Yt−1; γ, r) =
1

1 + exp(−γ(Yt−1 − r)) ,

where the parameter γ > 0 determines the abruptness of the transition at r.
For example, for very large γ the smooth transition model might effectively
be the same as a threshold model for certain values of r since for the pair
observations of Yt−1 either side of r the transition might be complete. On
the other hand, if γ ' 0 then the logistic function hardly varies away from
0.5 and there is really only one regime.

Once again if r and γ were known ex-ante simple least squares meth-
ods could be used to estimate the remaining parameters. Thus, one can
concentrate the least squares function/likelihood function with respect to r
and γ and use standard nonlinear optimizers to estimate these parameters.
In practice because of numerical instability issues it makes some sense to
limit the variation in one of these two parameters. One choice favored by
Teräsvirta is to normalize (Yt−1 − r) by the standard deviation of the delay
variable. Another is to examine a finite set of thresholds, as in the Thresh-
old autoregression case, thus leaving only γ to be directly estimated by the
nonlinear optimizer.5

A more general version of the model is as follows:

Yt = α1 + φ1(L)Yt−1 + (α2 + φ2(L)Yt−1)F (Yt−d; r, d, γ) + σVt (6)

One difference to the other two models is that less attention is focused
on possible changes in the variance of the innovations across regimes. In
addition to the logistic smooth transition function there has also been con-
siderable attention paid to the possibility of symmetric transitions away
from the threshold:

F s(Yt−1; γ, r) = 1− exp(−γ(Yt−1 − r)2).
Lubrano (1999) discusses Bayesian estimation of smooth transition autore-
gressions. As in the threshold autoregression case one can integrate out
the intercept, autoregressive coefficients and variance. This leaves a 3-
dimensional posterior distribution. One dimension is the delay parameter
and is discrete, the other two involve the threshold and speed of transition.
One choice is to find their posterior using standard numerical techniques.
Another choice is to use a Metropolis-Hastings algorithm.

5Smooth transition autoregressions can be estimated using standard econometric pack-
ages with nonlinear estimation options. In addition there will be a website available soon
with Gauss software available implementating the full approach taken by Teräsvirta.
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3 TESTING

Perhaps the greatest theoretical progress in the last ten years has been in
our understanding of testing for nonlinearity in economic time series. On the
other hand, perhaps the least empirical progress has been made in finding
evidence for nonlinearity in economic time series given the new theoretical
tools available. For example, a range of statistical tests have been applied to
aggregate output in the United States. At first the results were encouraging
but as shown by Hansen (1992,1996a) some of the encouragement was of
the wishful thinking variety. First, direct tests of the Hamilton’s Markov
switching model suggested that it was not statistically significant. Subse-
quent searches over different Markov switching specifications (Chib 1995,
Hansen 1992) were motivated by this failure and their success should be
qualified. Second, direct tests of threshold models also indicate that the
nonlinear terms are not highly statistically significant. Tests for smooth
transition models usually do not take into account the effects of searching
over different values of the delay parameter. These classical statistical re-
sults have also been supported by the Bayesian analysis of Koop and Potter
(1999a). Overall there is probably less evidence for nonlinearity in US output
at the end of the 1990s then researchers thought at the start of the decade
but still considerable evidence that the behavior of output in at business
cycle turning points is not well captured by linear models.6

In Hamilton’s (1989) paper he was careful to point out that testing the
null hypothesis of a linear model against his particular nonlinear model
was not standard and appeared to be very difficult. There were two main
problems. First, under the null hypothesis the transition parameters of the
Markov chain in the alternative hypothesis were not pinned down. Consider
the likelihood value from above:

f(y1;α0,α1, p, q, s0 = 1) =

p exp(−0.5(y1 − α1)
2) + (1− p) exp(−0.5(y1 − α0)

2)√
2π

In the case that α1 = α0 the value of p has no effect on the likelihood
function.

Second, the likelihood function for the nonlinear model has a local maxi-
mum at the parameter values for the linear model with p set at the boundary
value of 1 since this implies all the realizations of the Markov chain will be
in state 1 given that this is the initial condition.

6For a review of earlier testing approaches see Brock and Potter (1993).
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The first problem is common to nearly all nonlinear models with the no-
table exception of the smooth transition class where the following reparametriza-
tion is available:

F ∗(Yt−1; r, γ) =
1

1 + exp(−γ(Yt−d − r)) − 0.5.

Now testing for nonlinearity can be undertaken by allowing γ to take on all
real values under the alternative and fixing the delay at a particular value.
The null hypothesis of linearity is captured by the restriction γ = 0. As
described in Teräsvirta (1994) a Lagrange Multiplier test can be developed.
However, in the general case where the delay is unknown the problem crops
up again.

In the general case the imposition of the null hypothesis of linearity leaves
some of the parameters describing the nonlinear model free. In statistics it
is called the Davies’ problem. In order to understand the seriousness of the
Davies’ problem consider that under the null hypothesis for a fixed choice
of the parameters the likelihood ratio will have a Chi-squared distribution
in large samples. But one can vary these “free” parameters to find a largest
and smallest likelihood ratio. Again under the null hypothesis these are both
draws from the same Chi-squared distribution. Obviously if the minimum
value still exceeds the critical value rejection of the null hypothesis is war-
ranted. Such an outcome is possible in the case where some restrictions are
placed on the parameters present only under the alternative. For example,
in the threshold case if each regime must have at least 15% of the data or
in the Markov switching case where one rules out boundary values for the
transition probabilities and defines them on a closed subset of the unit inter-
val. One solution is to choose the nuisance parameters at random. Another
more powerful one is to examine the properties of the maximum across the
parameter space as described in the accompanying article by Bruce Hansen.

All of the previous solutions ignored some information in the behavior
of the test statistic as the parameters describing the nonlinear model are
varied. In a large enough sample it is safe to do this and concentrate on the
most powerful tests involving the largest test statistic. However, in a typical
macroeconomic application where the likelihood function might have may
local maxima such an approach can be dangerous. One obvious solution
would be to examine some average of the test statistics. This intuition was
formalized by Andrews and Ploberger (1994) who showed that under certain
conditions averaged test statistics were the most powerful.

In order to illustrate these ideas I will work with the simple threshold
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autoregression as the alternative nonlinear model.

Yt = α01(Yt−1 < r) + α11(Yt−1 ≥ r) + Vt
and the sequence of observed data y0 = −0.2, y1 = 2, y2 = −0.1, y3 =
−1.9. The initial observation will be treated as fixed and for both linear and
nonlinear models the innovation variance is assumed to be 1. For the linear
model we have a sample average of 0 and a resulting sum of squared errors
of 22 + 0.12 + 1.92 = 7. 62.

For the threshold model we shall assume a priori that the threshold
value is in the interval [−1, 1]. Thus we have 3 possible sum of squared error
functions:

1. If −1 ≤ r ≤ −0.2, then the same sum of squared error function is the
sum as the linear model since all the observations are drawn from the
same regime.

2. If −0.2 < r ≤ −0.1 then observations 2 and 3 are drawn from the
upper regime and observation 1 is drawn from the lower regime. Thus,bα0 = 2, bα1 = (−0.1 +−1.9)/2 = −1 and the sum of squared errors is
02 + 0.92 + 0.92=1. 62.

3. If −0.1 < r ≤ 1 then observations 1 and 3 are drawn from the lower
regime and observation 2 is drawn from the upper regime. Thus,bα0 = (2+−1.9)/2 = 0.05, bα1 = −0.1 and the sum of squared errors is
1.952 + 02 + 1.952= 7. 605.

We have three log likelihood ratio statistics: 0, 6, 0.03 (in this example
the log likelihood ratio is just the difference in the sum of squared errors).
Clearly, an estimate of r in the interval −0.2 < r ≤ −0.1 is the maximum
likelihood estimate and the associated test statistic of 6 is large relative to
a Chi-squared distribution with one degree of freedom that one would use
to measure statistical significance in large samples. On the other hand the
minimum statistic of 0 is obviously not significant compared to a Chi-squared
distribution. If we average the test statistics against a uniform distribution
for the threshold in the given interval the value is 0.4×0+0.05×6+0.55×
0.03 = 0.317. This is also the expected value of a randomized test but such
a test would have considerable variability depending on which interval was
chosen.

Hansen (1996a) provides a general method of calculating sampling dis-
tributions under the null hypothesis for such operations on the family of test
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statistics. The procedure in this case works as follows (note in this special
case the procedure gives an exact small sample result, this is not true in
general). Generate 3 standard normal random variables and without loss
of generality assume they are ordered: V1 ≤ V2 ≤ V3. The likelihood ratio
statistic considered by plugging in the maximum likelihood estimate of the
threshold is equivalent to the following minimization problem:
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The 95th percentile of this distribution is approximately 2.9 thus on this
measure there is significant evidence of the threshold effect (the p-value for
the observed statistic is 0.1%). This give significance at a better than 1%
level. However, if we consider the average likelihood ratio statistic using the
observed frequency of likelihood ratios different than zero:
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,

the 95th percentile is approximately 1.4. Thus, on this measure the threshold
effect is not statistically significant.

An alternative to the classical approach is to use Bayes factors to com-
pare the linear and nonlinear models (see Koop and Potter, 1999a). The
Bayes factor in this case is ratio of the average value (over prior distribution
of parameters) of the likelihood function for the nonlinear model against the
average value (over the prior distribution of parameters) of the likelihood
function for the linear model. In order for the Bayes factor to be useful,
informative priors on the parameters are required. In this simple case we
shall assume that the prior on the mean for the linear model is uniform over
[−m,m] and that the prior on the nonlinear model is uniform and indepen-
dent for both intercepts over the same interval of length 2m. Then using
our previous result on the posterior for the threshold and the numbers for
differences in sum of squared errors form above we have:

√
2π

2m

"
0.4× 1 + 0.05×

√
3√
2
exp(3) + 0.55×

√
3√
2
exp(0.015)

#
=

1.2533

m
2. 314 if m ≥ 2.

Here to keep things simple I have assumed that the prior is sufficiently
flat that boundary value problems do not occur. The interpretation of
the Bayes factor is different to classical statistical tests. In this case it
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is giving (assuming linear and nonlinear models were equally likely ex-
ante) the posterior odds in favor of the nonlinear model. Notice that if
2 ≤ m < 1. 253 × 2.314 = 2. 899 they are favorable. For an ignorant prior
(m → ∞) the Bayes factor would always favor the simpler linear model.
The highest posterior odds for the nonlinear model are obtained at m = 2
and are equal to about 1.45, that is about 60% of the posterior weight is
placed on the nonlinear model and about 40% on the linear model.

Obviously the main drawback of the Bayesian approach is its sensitivity
to the prior distributions on the parameters. For example, if the prior on
the threshold had been uniform on [−10, 10] then the Bayes factor would be

√
2π

2m

"
9.8

20
× 1 + 0.1

20
×
√
3√
2
exp(3) +

10.1

20
×
√
3√
2
exp(0.015)

#
=

1.253

m
1.241 if m ≥ 2,

and at best (m = 2) the posterior odds in favor of nonlinearity would be 44%.
The benefit of the drawback is that the Bayes factor has a very big penalty
for more complicated models something that classical models are unable to
do. For example, in the case that both the threshold and intercepts are
assumed to uniformly distributed over a wide interval we are placing most
of the ex-ante weight on very strong forms of nonlinearity. Suppose m =
10 and r ∼ U [−10, 10] then most threshold models produced would have
bimodal distributions with modes very far apart and values like y2 = −0.1
are improbable.

Bayesian methods have a strong advantage when it comes to finding tests
for Markov switching models. Hansen (1992,1996b) provides a bounds test
that deals with the both the Davies’ problem and the zero scores problem.
However, this is a very computationally intensive test and it only provides
a bound on the size. Garcia (1998) adopts the approach of Andrews and
Ploberger (1994)and Hansen (1996a) by ignoring the zero scores problem.
His simulation results suggest that zero scores might not be a problem in
practice. In contrast, Bayesian testing of the Markov switching models is
simple and direct. In order to illustrate consider the simple Markov switch-
ing model:

Yt = α1St + Vt.

Here linearity is given by the restriction that α1 = 0. As discussed in Koop
and Potter (1999a) the Bayes factor in this Markov switching case can be
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written as the ratio of the posterior density to the prior density for α1

evaluated at zero, i.e.,

b(α1 = 0)

p(α1 = 0|Y T ) .

Once again suppose that α1 has a uniform prior on the interval [−m,m] and
using our previous results we have a conditional Bayes factor of :

b(α1 = 0)

p(α1 = 0|Y T , {sit}, pi, qi)
=

q
T i1

2m
√
2π
exp

£−0.5T i1(bαi1)2¤ .
The overall Bayes factor is found by replacing the conditional posterior den-
sity with its average across posterior draws:

p(α1 = 0|Y T ) = 1

I

IX
i=1

q
T i1√
2π
exp

£−0.5T i1(bαi1)2¤ ,
which requires minimal changes to existing computer code.

Once again if the initial ignorance about α1 is high (large values of m)
there is less chance of finding evidence of nonlinearity. Or alternatively if
the priors on p and q lead to most runs of {sit} consisting of zeros there is
also little chance of finding nonlinearity. Chib (1995) discusses a slightly
more computationally intensive method of constructing the average likeli-
hood for the Markov switching model that is easier to implement when all
the parameters of the model switch with the Markov variable as in (2).

4 CONSTRUCTING CONDITIONAL EXPECTA-
TIONS

Once a final nonlinear model is arrived at there remains the issue of un-
derstanding the estimated dynamics and forecasting capabilities. Since the
primary objective of nonlinear modelling is to obtain the true conditional
expectation function there is still a substantial task remaining.

The task is easiest for the Markov switching models. As an illustration
consider Hamilton’s original model in the form given in (1). We introduce
the following notation: P represents the transition matrix of the 32 state
Markov chain, bt is a vector representing the filter probabilities for each of
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the 32 individual states, s∗ is a vector containing the 32 possible values of
(1− φ(L))Zt.

Et[Yt+h] = Et[Z
∗
t+h] +Et[φ(L)Yt+h−1].

The second term on the LHS can be evaluated using standard linear re-
cursions. The first term on the LHS requires more care. Assume for the
moment that S∗t was in the information set at time t. Then one could find
Et[S

∗
t+h] using the estimated probability transition matrix as follows:

E[S∗t |S∗t = sj ] = s∗
0
Ph0ej,

where ej is a vector of zeros except for the jth row which contains 1. Of
course the state of the Markov chain is not known at time t but one can
replace ej with filter probabilities over the states of the Markov chain at
time t,

E[S∗t |S∗t = sj] = s∗
0
Ph0bt.

For the TAR and STAR models obtaining the conditional expectation
nearly always requires the use of simulation once the forecast horizon exceeds
the length of the delay lag. If the horizon is less than the delay lag then
the conditional expectation is given by iterating on the nonlinear difference
equation. For example, in the simple model:

Yt = −1(Yt−4 < 0) + 1(Yt−4 ≥ 0) + Vt,
the conditional expectation function up to horizon 4 is given by

E[Yt+h|Y t] = −1(Yt+h−4 < 0) + 1(Yt+h−4 ≥ 0), if h ≤ 4.
Suppose the conditional expectation of Yt+1 at time t was 1 (i.e., Yt−3 > 0).
It would be incorrect to use this value in the indicator function to forecast
Yt+5 = 1 since Vt+1 is standard normal there is non-zero probability that
Yt+1 < 0. Continuing with this example, there is approximately a 16%
probability that Yt+1 < 0. Thus,

E[Yt+5|Yt−3 > 0] = −P [Yt+1 < 0|Yt−3 > 0] + P [Yt+1 ≥ 0|Yt−3 > 0]

= −0.16 + 0.84 = 0.68.
Similar results would be available up to forecast horizon 8 where things
become more complicated:

E[Yt+9|Yt−3 > 0] = −P [Yt+5 < 0|Yt−3 > 0] + P [Yt+5 ≥ 0|Yt−3 > 0].
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In order to evaluate the probabilities on the RHS one can iterate forward
the distribution for Yt+5 using the fact that Yt+1 is drawn from a N(1, 1)
with probability 0.84 and from a N(−1, 1) with probability 0.16.

Notice that forecasts after horizon 4 were crucially dependent on the
assumption on the innovations were Gaussian and the size of their variance,
unlike the linear case. Further the calculations were greatly simplified by
the fact there were no autoregressive lags. Consider another simple model:

Yt = 0.5Yt−11(Yt−1 ≥ 0) + Vt.
We have E[Yt+1|Y t] = 0.5Yt1(Yt ≥ 0) and at horizon 2

E[Yt+2|Y t] = 0.5E[Yt+11(Yt+1 ≥ 0)|Y t],
which can be evaluated using the fact the Yt+11(Yt+1 ≥ 0) is a (conditional)
truncated normal with parameters 0.5Yt1(Yt ≥ 0) and 1 to obtain

E[Yt+2|Y t] = 0.25Yt1(Yt ≥ 0) + 0.5
·

ϕ(−0.5Yt1(Yt ≥ 0))
1−Ψ(−0.5Yt1(Yt ≥ 0))

¸
,

where ϕ(z) and Ψ(z) are the standard normal density and cumulative dis-
tribution functions respectively. Notice that for Yt À 0 the forecasts are
very similar to a first order linear autoregression with zero intercept and
autoregressive coefficient of 0.5. For smaller values of Yt the forecasts are
very different from such a linear autoregression. However,

E[Yt+3|Y t] = 0.5E[Yt+21(Yt+2 ≥ 0)|Y t],
is much less tractable since Yt+2 does not have a conditional normal distri-
bution.

Instead of directly attempting to calculate this expectation consider us-
ing the time series model to simulate a large number of time series for each
particular history. Thus, we know that Yt+1 ∼ N(0.5Yt1(Yt ≥ 0), 1) and this
fact can be used to generate K realizations from this distribution. Now take
this realizations and generate K realizations of Yt+2 using K draws of Vt+2

and the equation:

ykt+2 = 0.5y
k
t+11(y

k
t+1 ≥ 0) + vkt+2.

We can then approximate E[Yt+3|Y t] by:

1

K

KX
k=1

0.5ykt+21(y
k
t+2 ≥ 0)
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which by the Law of Large Numbers will converge to the conditional expec-
tation as K →∞.

For both the Threshold and Smooth Transition Models dynamic simula-
tion of time series paths allows one to calculate good approximations to the
conditional expectation function for a wide range of specifications.

4.1 Forecasting with known parameters

Given a method to calculate the conditional expectation function and a
model with no unknown parameters the production of forecasts is straight-
forward. The comparison of these forecasts with those from linear models is
less straightforward. First, in out of sample comparisons it is important that
the nonlinear feature found in the historical sample is present. For example,
many of the nonlinear models of U.S. output focus on the dynamics enter-
ing and recovering from recessions. The last recession in the United States
ended in early 1991, thus it has been difficult to verify the nonlinearities out
of sample.

This lack of variation in the out of sample period can be compensated
for by various experiments within the sample. In particular, unlike linear
models useful information can be generated by considering in sample multi-
step ahead prediction. Consider first a linear first order autoregression with
zero intercept and estimated first order coefficient bφ and residuals {bUt}.We
have the following identities:

Yt+1 = bφYt + bUt+1,

Yt+2 = bφYt+1 + bUt+2 = bφ2
Yt + bφbUt+1 + bUt+2, . . . ,

Yt+H = bφYt+H−1 + bUt+H = bφHYt + H−1X
h=0

bφh bUt+H−h.
Thus, for large sample size the in sample one-step ahead forecast variance

is bσ2,the two-step ahead is bσ2(1 + bφ2
), and h-step ahead by bσ2(

PH−1
h=0

bφ2h
).

For nonlinear models such a recursion does not exist. In fact it is not
even possible to show that the RMSE of a forecasts grows monotonically
with the horizon as in a linear model for all histories. This cost in terms
of computational complexity is a benefit in terms of model evaluation since
simulation of h-step ahead conditional expectation function in sample can
provide a diagnostic check on the nonlinear model. By definition, for any
forecast horizon, the variance of the forecast error using the best linear
predictor has to be greater than or equal to the variance of the forecast error
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using the true conditional expectation function, Thus, a good diagnostic
check on the estimated nonlinear model is whether this is true in the observed
sample.

There are two ways to formalize the notion of the best linear predictor.
One is to use the linear model used in the testing phase and iterate it as above
to obtain multi-step predictions. In this case it might prove useful to adjust
for the loss of observations as the steps ahead of the prediction increase.
For Markov switching models this is an easy check since no simulation is
required. For the other models it becomes more computationally intensive
once the forecast horizon exceeds the delay lag of the threshold variable.

Using the iterated properties of a linear model is only a weak check since
if nonlinearity is present the model will only produce the best linear forecasts
for one step ahead. A stronger one in the case where nonlinearity is present
but not necessarily of the type estimated, is to estimate different linear
models for each prediction horizon. If the true nonlinearity is different from
that estimated then such adaptive linear models should start to outperform
the nonlinear model.

4.2 Forecasting with parameter uncertainty

It is typical in linear time series forecasting applications to provide some
measure of the effect on the forecast of parameter uncertainty. There are
a two main ways of doing this using classical statistical methods. One can
use asymptotic approximations for functions of the parameters of the model
or one can simulate random draws from the approximately normal sampling
distributions of the parameters and construct the forecasts from the draws.
These methods are only directly applicable to the STAR model. Even in
this case the situation is far more complicated than the linear one, since we
need to calculate the conditional expectation function, as described above,
for each set of parameter values.

In the case of the threshold model, the threshold estimates and delay
are converging at faster rates than the other parameters, hence in a large
enough sample they can be ignored. Unfortunately, the adequacy of this
large sample approximation in time series of the typical length in macroeco-
nomics is very much open to question. Further, unlike the mild effects that
a poor approximation might have in a linear model the effects in threshold
models can be drastic. Consider the case where the threshold variable in the
information set for the forecast is close to the estimate of the threshold. By
treating the threshold and delay as known the forecast will be very different
depending on which side of the threshold the observed data is. However,

23



this is a false precision since the value of the threshold or delay is not known
with certainty.

Dacco and Satchell (1999) find that the regime misclassification intro-
duced can lead to a nonlinear model having inferior forecast performance
to a linear model even when the nonlinear model is true and all parameters
but the threshold are known. This issue can be illustrated using the simple
intercept shift threshold autoregression under the assumption that α0,α1

are known. In this case the posterior distribution for the threshold is given
by:

p(r|Y T ) ∝ exp ¡−0.5 £SSEi0 + SSEi1¤¢ (Y {i}t−1 − Y {i−1}
t−1 ).

Denoting the cumulative distribution function of the posterior of r by G we
have for the one step ahead forecast:

ET [YT+1] = α0 + (α1 − α0)G(yT ).

Obviously as the sample size increases G(yT ) will start to get closer to
an indicator function but in typical macroeconomic samples it will contain
considerable uncertainty about the true location of the threshold.

One implication of the above analysis is that for forecasting Bayesian
estimation of threshold models has a distinct advantage (although it might
be possible to adapt some of results of Hansen 1999 to reproduce a classical
analog). This is also true for the Markov switching models. In this case
the difficulty is that the estimate of the current Markov state is dependent
on the whole set of parameter estimates. Any change in the parameter
estimates would affect the estimate of the Markov state. One could simulate
from the asymptotic distribution of the parameter estimates and then re-
run the filter at these parameter values to obtain some feeling for how the
estimate of the current state would change. But this is an inconsistent
approach: the new filter values would imply different parameter estimates
(by definition only maxima in the likelihood function will not have this
problem, see the discussion of the EM algorithm above). The Bayesian
solution to the forecasting problem is to use the output of the Gibbs sampler.
Recall that for each complete draw from the Gibbs sample we have draws
of the unknown parameter values and the value of the filter probability
of the most recent state. These values can be used to form a forecast.
Repeating this exercise across all the draws from the posterior and averaging
will produce the conditional expectation allowing for parameter uncertainty.
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4.3 Impulse Response Functions

Once one is satisfied with the nonlinear model there is the remaining question
of describing how its dynamics differ from that of linear models fit to the
same time series. Since most economists describe the dynamics of linear
models using impulse response functions it is important to generalize impulse
response functions to nonlinear time series. As described in the introduction
the linear dynamics of a time series are given by the Wold Representation.
The coefficients in the Wold Representation can be thought of as producing
the same answer to the following four questions:

1. What is the response to a unit impulse today when all future shocks
are sent to zero?

2. What is the response to a unit impulse today when all future shocks
are integrated out?

3. What is the derivative of the predictor of the future?

4. How does the forecast of the future change between today and yes-
terday, normalizing the change by the innovation to the time series
today.

For nonlinear models there will be different answers to each question.
To illustrate consider the simple threshold model:

Yt = −1(Yt−1 < 0) + 1(Yt−1 ≥ 0) + Vt
and the case of a positive unit impulse for the first two questions.

1. If Yt ≥ 0 then the response is 0 for all horizons , if −1 ≤ Yt < 0 then
response is 2 for all horizons since this permanently moves the time
series into the upper regime given the assumption of no future shocks,
if Yt < −1 then the response is 0 for all horizons.

2. At horizon 1 the response is the same as the answer to question 1 but
as the horizon increases we have the difference:

E[Yt+h|Yt = yt + 1]−E[Yt+h|Yt = yt],
which must converge to zero by the stationarity of the underlying time
series.

3. The derivative is either 0 or not defined if Yt = 0.
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4. Consider the case where Et−1[Yt] = 1 and the realized value of Yt = 1.
Then the initial shock is 0 but

Et[Yt+1]−Et−1[Yt+1] = 1− 0.68 = 0.32.

Or the case where Et−1[Yt] = 1 and the realized value of Yt = 5. Then
the initial shock is 4 but the Et[Yt+1]−Et−1[Yt+1] is still equal to 0.32.

It should be immediately apparent that questions 1 and 3 are not par-
ticularly useful questions to ask for a nonlinear time series. This leaves a
choice between the more traditional definition of the impulse response func-
tion defined by the answer to question 2 and the forecasting revision function
defined by the answer to question 4. In order to choose between the two
possibilities observe that both the initial condition and the magnitude and
sign of the impulse is important in describing the dynamics of nonlinear
models. This is problematic since one can chose values of the initial condi-
tion or shock that produce atypical responses. In answering question 4 the
properties of the impulse are defined directly by the time series model, that
is:

Et[Yt]−Et−1[Yt],

or σVt in our examples. Further, in order to define the initial conditions one
can use the history of the time series or random draws from its simulated
distributions. In answering question 2 there is no direct way of defining the
relevant set of perturbations away from the initial condition using the prop-
erties of the time series model. Note that using the time series innovation
to define the perturbation is not correct since this innovation represents the
unforecastable change between time t− 1 and t.

Koop, Pesaran and Potter (1996) and Potter (1999) call the forecast
revision function a generalized impulse response function and develop its
properties. Of particular importance is the fact that the generalized im-
pulse response function is a random variable on the same probability space
as the time series. Thus, in order to measure the size of a response at a
particular horizon one needs to measure the size of a random variable. In
the cases where the response averages to zero (the standard one for the fore-
cast revision function) one can use the concept of second order stochastic
dominance. Some other experiments lead to responses with non-zero means
where size can be measured by the mean. Perhaps the most interesting non-
linear feature found from impulse response functions has been a lower level
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of persistence of negative shocks in recessions than expansions (see Beaudry
and Koop 1993).

In the linear time series literature there is a considerable literature on
inference for impulse response functions. As the previous discussion of fore-
casting under parameter uncertainty would indicate such inference is more
difficult for nonlinear time series models. Koop (1996) develops a Bayesian
approach to the analysis of generalized impulse response functions that al-
lows directly for parameter uncertainty. Koop and Potter (1999b) combine
this analysis of impulse response functions under parameter uncertainty with
Bayesian measures of model uncertainty (see the discussion at the end of
Section 3) to present impulse response functions that are less reliant on
particular model specifications.

5 CONCLUDING REMARKS

Three basic nonlinear time series models have been reviewed. Both Classical
and Bayesian approaches to estimation and inference have been described.
The focus has been on univariate time series models. The three basic mod-
els do generalize to the multiple time series case but some of the difficulties
concerning inference highlighted in this article are compounded in higher
dimensions. Given the difficulties of interpreting test statistics for linearity
vs. nonlinearity discussed, it seems important to shift the focus to differ-
ences in forecasting and dynamics that allow for both parameter and model
uncertainty.
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