
 
 

 

This paper presents preliminary findings and is being distributed to economists 
and other interested readers solely to stimulate discussion and elicit comments. 
The views expressed in this paper are those of the author and do not necessarily 
reflect the position of the Federal Reserve Bank of New York or the Federal 
Reserve System. Any errors or omissions are the responsibility of the author. 

Federal Reserve Bank of New York 
Staff Reports 

 

 

Identifying Shocks via Time-Varying 
Volatility 

 
Daniel J. Lewis 

 
 

 

  

 
Staff Report No. 871 

October 2018 
Revised May 2019 



Identifying Shocks via Time-Varying Volatility 
Daniel J. Lewis 
Federal Reserve Bank of New York Staff Reports, no. 871 
October 2018; revised May 2019 
JEL classification: C32, C58, E20, E62, H30 
 

 
 
 
 
 
 

Abstract 
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heteroskedasticity (Rigobon (2003), Sentana and Fiorentini (2001)). However, the path of 
residual covariances can only be recovered from the data under specific parametric assumptions 
on the variance process. I propose a new identification argument that identifies the SVAR up to 
shock orderings using the autocovariance structure of second moments of the residuals, implied 
by an arbitrary stochastic process for the shock variances. These higher moments are available 
without parametric assumptions like those required by existing approaches. The conditions 
required for identification can be tested using a simple procedure. The identification scheme 
performs well in simulations. I apply the approach to the debate on fiscal multipliers and obtain 
estimates lower than those of Blanchard and Perotti (2002) and Mertens and Ravn (2014), but in 
line with more recent studies.  
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1 Introduction

The central challenge of structural vector autoregression (SVAR) analysis is to identify un-
derlying structural shocks from observable VAR innovations (one-step ahead reduced-form
forecast errors). For example, an innovation to tax revenues could represent either a true tax
shock or the effect of automatic stabilizers as a response to changing macroeconomic condi-
tions. Policy analysis centers on the relationships between structural shocks and observables.
In an SVAR, the reduced-form innovations, ηt, are expressed as a linear combination of the
underlying shocks, εt: ηt = Hεt for some contemporaneous response matrix H. Up to second
moments, these equations have a multiplicity of solutions for H; economic assumptions are
generally needed for identification. The majority of approaches use “internal instruments”,
restricting elements of H to identify the remainder. These restrictions can be short-run
exclusions (Sims (1980)), long-run exclusions (Blanchard & Quah (1986)), on signs (Uhlig
(2005)), or calibrated parameters (Blanchard & Perotti (2002)). More recently, “external
instruments” have been proposed as an alternative, as in Mertens & Ravn (2013). However,
many of these assumptions are frequently controversial.

A smaller literature offers identification based on statistical properties of the innova-
tions. Sentana & Fiorentini (2001) and Rigobon (2003) share the important insight that if
the variances of the structural shocks change over time, shocks can be identified from the
reduced-form covariances at different points in time. However, this path of reduced form
covariances can be recovered by the econometrician only under specific parametric models.
Rigobon’s (2003) method fits discrete variance regimes to the data, either based on external
information or estimation. Sentana & Fiorentini (2001) use the full path of covariances, re-
coverable from the data only under models like Generalized Autoregressive Conditional Het-
eroskedasticity (GARCH).1 Generalizations have been made to Markov switching (Lanne,
Lütkepohl, & Maciejowska (2010)) and smooth transitions between regimes (Lütkepohl &
Netšunajev (2017)). All of these approaches rely on knowledge of the path of variances over
time and thus parametric features allowing that path to be consistently estimated, which
has so far limited researchers to choose one of the few models that can be accommodated.
There is compelling evidence of time-varying volatility in US macroeconomic aggregates, as
documented by Stock & Watson (2002), Blanchard & Simon (2001), and Jurado, Ludvigson,
& Ng (2015), so identification based on heteroskedasticity has the potential to be very useful
in practice.

1While the identification argument is in principle non-parametric, based simply on a path of variances,
this path can only be recovered from the data by an econometrician under functional forms like GARCH.
These moments are thus not available to the econometrician, in the sense of being consistently estimable,
without strong non-parametric assumptions. These distinctions are discussed in further detail in Section 2.4.
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I present a new identification argument based on heteroskedasticity that does not refer
to the variance path, and thus need not make use of a particular parametric model. If
time-varying volatility is present in any (unspecified) form, identification follows from the
autocovariance of the volatility process. Since shocks are assumed to be uncorrelated over
time, the autocovariance of squared residuals picks up only dynamics of the volatility process.
This autocovariance furnishes equations that identify the response matrix and the structural
shocks (up to an ordering) under very general conditions. In a simple model, the use of the
autocovariance for identification can be motivated as an instrumental variables problem. The
argument is similar in spirit to identification based on non-Gaussianity (e.g., Gouriéroux &
Monfort (2015, 2017) and Hyvärinen, Zhang, Shimizu, & Hoyer (2010)) which uses different
higher moments, but assumes that any volatility processes of the shocks are independent.
I additionally derive testable implications of the identification condition, allowing it to be
directly tested. Testing identification conditions has otherwise proven difficult when iden-
tification is based on heteroskedasticity, since the conditions typically apply to parameters
only identifiable conditional on identification holding.

Identification based on time-varying volatility (TVV-ID) establishes identification under
general conditions. Indeed, it separately establishes identification via a novel channel for the
models that have previously been shown to offer identification via heteroskedasticity (e.g.,
GARCH of Sentana & Fiorentini (2001) and regimes of Rigobon (2003)). More importantly,
it gives researchers the freedom to develop new alternative models and procedures in con-
texts exhibiting time-varying volatility, without having to stop to establish identification
from scratch. As opposed to identification via heteroskedasticity being a model-dependent
argument, TVV-ID progresses towards a model-free argument, which researchers can apply
in ways that best suit their data. Importantly, it admits more flexible models where the
volatilities are state variables as opposed to parameters, as in the stochastic volatility (SV)
model. It is unique in demonstrating that the parameters of interest can be consistently es-
timated in such contexts, since identification follows from moments that can be consistently
estimated even when the volatilities cannot.

These results mean that any estimator that fits an autocovariance to the squared residuals
can implement TVV-ID. The most natural candidate is GMM, which needs no parametric
assumptions. However, a researcher can also use a (quasi-) likelihood based on any model
that implies such an autocovariance. I compare a variety of approaches considered in the
literature with some newly-admissible estimators based on TVV-ID. I find that an estimator
based on an AR(1) SV model performs best across many DGPs.

Identification via heteroskedasticity has been widely adopted in practice. Its use has
spread from macrofinance to fields including public finance, growth, trade, political econ-
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omy, agriculture, energy, education, marketing, and even fertility. This proliferation illus-
trates that there is potential value in freeing applied researchers from the strict parametric
models they have been required to use and understanding any limitations of such models.
The full flexibility offered by TVV-ID also shows that macro models including time-varying
volatility are often estimated without realizing and exploiting its implications for identifica-
tion. For example, Primiceri (2005) assumes a triangular H matrix when his volatility model
means that these restrictions are not required for identification (and can thus be tested as
overidentifying restrictions).

As an empirical application, I use TVV-ID to estimate fiscal multipliers and test previous
identifying assumptions from the literature.2,3 The multipliers I estimate are lower than those
of Blanchard & Perotti (2002) or the comparative study of Mertens & Ravn (2014). I show
that the narrative tax shocks often used for identification may not pass standard tests for
validity. I reject the key parameter, the elasticity of tax revenues to output, obtained by both
and obtain a value, 1.58, in line with Follette & Lutz’s (2010) estimate based on institutional
data. My multipliers accord with recent estimates of Caldara & Kamps (2017) and Ramey
& Zubairy (2018).

The remainder of this paper proceeds as follows. Section 2 describes the identification
problem in detail and presents the theoretical results. Section 3 compares implementations
of TVV-ID and other identification schemes in simulation. The empirical application follows
in Section 4. Section 5 concludes.

Notation

The following potentially unfamiliar notation is used in the paper. ⊗ represents the Kro-
necker product of two matrices; � represents the element-wise product of two matrices (i.e.
Hadamard product); A(i) denotes the ith row of matrix A; A(j) denotes the jth column of
matrix A; Aij denotes the ijth element of matrix A; A(−i) denotes all columns of A except for
the ith, and similarly for rows and elements; matdiag (A) is a vector of the diagonal elements

2This application provides an interesting test case as competing identification assumptions have been
proposed for the same simple 3-variable reduced form model, which can be directly tested using TVV-ID.
Further, no existing research has sought to exploit time-varying volatility in this setting, presenting an
opportunity to develop a novel channel of identification.

3I have considered numerous other empirical applications. To summarize key results, I find that the
recursive structure of Bernanke, Boivin, & Eliasz (2005) can be rejected, causing the price puzzle to return,
and promoting other surprising behaviour at the contemporaneous horizon; the recursive structure of Kilian
(2009) summarizes the data well (assumed zeros correspond to precisely estimated zeros); in Kilian & Park
(2009) the zeroes assumed in the asset column of the contemporaneous response matrix are at odds with
point estimates, but cannot be rejected; the assumptions of Blanchard & Quah (1989) are borne out strongly
by TVV-ID; the exogeneity of uncertainty assumed in Bloom (2009) can be rejected, and the shapes of key
responses to uncertainty shocks change somewhat.
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of the square matrix A; diag (a) is a diagonal matrix with the vector a on the diagonal; x1:t
denotes {x1, x2, . . . , xt}.

Additionally, I use the non-standard notation Et [·] to denote a time-specific expectation,
i.e. the mean value of xt at time t, as opposed to across t, and similarly Et,s [·] when both
time t, s variables are contained in the argument. This notation is used to make explicit
that stationarity is not being assumed, unless otherwise noted, and to avoid the ambiguity
(and possible non-existence) present in simply writing E [xt] in a non-stationary context.
The use of Et should not be confused with reference to the t information set; when a specific
information set is intended, I condition on it explicitly.

2 Identification theory

In the canonical SVAR setting, a vector of innovations, ηt, is composed of unobserved struc-
tural shocks, εt, via a response matrix, H. This represents a more general decomposition
problem. ηt is n × 1, obtained from a reduced-form model or directly observed. For exam-
ple, a structural vector auto-regression (SVAR) based on data Yt would yield A (L)Yt = ηt.
Similarly, εt is n× 1, so H is n× n. Thus,

ηt = Hεt, t = 1, . . . , T, (1)

leaving H and, equivalently, εt, to be identified. Equation (1) could also describe a factor
model, for example. I begin by presenting a simple example under special assumptions to
outline the identification problem and how heteroskedasticity may solve it. I then derive
a representation of higher moments of the reduced-form innovations to serve as identifying
equations. The following section establishes conditions under which these equations have a
unique solution. I go on to highlight the role of the various assumptions and identification
conditions, propose a simple test of the identification conditions, explain the relation to
existing identification approaches, and discuss the interpretability of the shocks.

2.1 Intuition for the use of heteroskedasticity

Before the impact of heteroskedasticity can be illustrated, some standard assumptions un-
derlying equation (1) are required.

Assumption 0. (temporary) For all t = 1, 2, . . . , T,

1. E [εtε
′
t | σt] = diag (σ2

t ) ≡ Σt (σ2
t is the conditional variance of the shocks),
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2. σt is a strictly positive stochastic process with time-invariant moments up to fourth
order,

3. E [Σt] = Σε,

4. Shocks satisfy conditional mean independence, E [εit | ε−is] = 0 for all i, all t, s =

1, 2, . . . T,

5. H is time-invariant, invertible, with a unit diagonal normalization.

The fourth point substitutes conditional mean independence for the usual slightly weaker
uncorrelated shocks assumption. While the variance of shocks may change, fixing H (as
in Assumption 0.5) means that the economic impact of a unit shock remains the same. It
is natural to seek to identify H from the overall covariance of ηt, E [ηtη

′
t] = Ση. However,

it is well-known that these equations can only identify H up to an orthogonal rotation, Φ

(ΦΦ′ = I).4

Variation in Σt may allow the researcher to overcome this indeterminacy. Consider a
simple two-variable example, where one structural variance is time-varying and the other is
fixed. This admits the simplest form of the Rigobon (2003) approach, which yields closed
form solutions for H (as in Nakamura & Steinsson (2018), for example). Without loss of
generality, assume σ2

2t changes and σ2
1t ≡ σ2

1 is constant. Denote

σ2
t =

[
σ2
1

σ2
2t

]
, H =

[
1 H12

H21 1

]
.

The conditional variances of the reduced-form innovations are given by Et [ηtη
′
t | σt] =

HΣtH
′. Given two subsamples, A,B, containing the sets of time points TA, TB, it is shown

by Rigobon & Sack (2004) (and in the Supplement) that

ETA [η1tη2t]− ETB [η1tη2t]

ETA [η22t]− ETB [η22t]
=
H12∆ (σ2

2t)

∆ (σ2
2t)

= H12. (2)

where the ∆ (· ) operator represents the difference in expectation of the argument between
subsamples TA, TB. Assuming that ∆ (σ2

2t) 6= 0, H12 can thus be identified in closed form. σ2t
need only have finite second moments for all t ∈ TA, TB. While this argument is motivated
by a regime-based process, identification holds even when misspecified, provided ∆ (σ2

2t) 6= 0

4Observe Ση = HΣεH
′ = (HΦ) (Φ′ΣεΦ) (HΦ)

′
= H∗Σ∗εH

∗′ , where H∗ = HΦDH,Φ and Σ∗ε =
D−1
H,ΦΦ′ΣεΦD

−1
H,Φ, with DH,Φ the matrix that unit-normalizes the diagonal of HΦ. This means that the

pairs (H,Σε) and (H∗,Σ∗ε) are observationally equivalent. Alternatively, note that due to the symmetry
of Ση, it offers n (n+ 1) /2 equations, but there are n2 unknowns. This is the fundamental identification
problem posed by the SVAR methodology and indeed many related models (e.g., factor models).
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and σ1 is indeed fixed. If there are in fact regimes, they need not be known or correctly
specified, as noted in Rigobon (2003). However, if the value of the σ2t process is instead
constant, ∆ (σ2

2t) would be zero in population, and identification fails.
Rigobon’s approach exploits moment conditions based on subsample means of the vari-

ance process, but arguments are possible using other moments. Across periods, there is
motivation for an instrumental variables (IV) approach. Noting

η2tη1t = H21ε
2
1t +H12ε

2
2t + ε1tε2t +H12H21ε1tε2t,

η22t = H2
21ε

2
1t + 2H21ε1tε2t + ε22t,

it is clear that H12 would be identified from the ratio of the H12ε
2
2t and ε22t terms. This is not

possible as only the values of ηt are observed, and not their separate components. However,
a lagged value of η22t can be used as an instrument for ε22t. Note

cov
(
η2tη1t, η

2
2(t−p)

)
= H12cov

(
ε22t, ε

2
2(t−p)

)
, cov

(
η22t, η

2
2(t−p)

)
= cov

(
ε22t, ε

2
2(t−p)

)
,

by Assumption 0.4 and the fact that σ1 is fixed. H12 is then identified in closed form:

cov
(
η2tη1t, η

2
2(t−p)

)
cov
(
η22t, η

2
2(t−p)

) =
H12cov

(
ε22t, ε

2
2(t−p)

)
cov
(
ε22t, ε

2
2(t−p)

) = H12. (3)

This is the familiar IV estimator, where the dependent variable is η2tη1t, the endogenous
regressor is η22t, and the instrument is η22(t−p). This works because the previous value η22(t−p)
is uncorrelated with all period t terms except those containing ε22t. The argument applies
for any lag, p. Identification holds provided

cov
(
ε22t, ε

2
2(t−p)

)
6= 0

for some p.
This requirement that the pth autocovariance of η22t is non-zero is satisfied by a variety of

processes for σ2
2t. If the true process is regime-based, as suggested by the Rigobon estimator,

identification follows from the non-zero autocovariance around break dates. In an SV model,
it holds if the AR coefficient is non-zero. In a GARCH model at least one of the auto-
regressive parameters must be non-zero. This simple example displays the crux of TVV-ID:
given the structure of the autocovariance of ηtη′t, comparing elements of the autocovariance
(in this simple case, via a ratio) identifies the columns of H.

This flexibility of identification – independent of specification – is not shared by the
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Figure 1: Distribution of AR(1) coefficients of η2t

Time series ηt are obtained as reduced-form innovations from AR(12) processes fitted to each of McCracken
& Ng’s 128 FRED-MD monthly time series. The figure displays the distribution of the implied AR(1)
coefficients of η2

t .

existing approaches. I have made no assumptions about whether the heteroskedasticity is
conditional or unconditional (either can imply a suitable autocovariance) and I have required
only that the volatility process is stationary and exhibits some degree of persistence.

Empirically, there is strong evidence of such persistence, as discussed in Jurado, Ludvig-
son, & Ng (2015), for example. As a simple exercise, Figure 1 displays AR(1) parameters
of η2t , where ηt are residuals of AR(12) models fitted to each series of McCracken & Ng’s
FRED-MD database in turn. I reject the null hypothesis of zero autocovariance at the 1%
level for 96 of the 128 series, 5% for 98, and 10% for 101. A Ljung-Box test, as in Lanne &
Saikkonen (2007), rejects homoskedasticity at the 1% level for 100 of the series and the 5%
level for 103. The identifying condition is frequently satisfied empirically.

In this simple case, multiple autocovariances can easily be combined; each yields moments
of the form

cov
(
η2tη1t, η

2
2t−p
)
−H12cov

(
η22t, η

2
2t−p
)

= 0,

which can be stacked to yield an overidentified GMM problem. Alternatively, it might be
natural to assume that the (log) variances follow some loose parametric form, like an AR(1),
and let this imply a whole range of autocovariances.

2.2 Identification via time-varying volatility

In the previous section, I made strong assumptions to assist intuition. I now relax them and
develop TVV-ID in its general form. Again, let

ηt = Hεt, t = 1, 2, . . . T.

Write Ft−1 = {ε1, . . . εt−1, σ1, . . . σt−1}. I replace Assumption 0 with Assumption A:
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Assumption A. For every t = 1, 2, . . . , T,

1. Et (εt | σt,Ft−1) = 0 and Vart (εt | σt,Ft−1) = Σt,

2. Σt = diag (σ2
t ) , σ

2
t = σt � σt,

3. Et [σ2
t ] <∞.

By explicitly conditioning on σt, these assumptions cover both SV and auto-regressive condi-
tional heteroskedasticity-type (ARCH) models (where σt is a function of ε1, . . . εt−1), amongst
many others, including unconditional heteroskedasticity. While this means that first-order
shocks can have impacts on the second-order variance process, this setup does generally rule
out first-order effects of innovations to volatility, as is also the case in existing approaches
to identification exploiting time-varying volatility (and indeed VAR models more broadly).
An exception arises when any first-order effects are driven by an observable factor of the
volatility process, as in the model of Carriero, Clark, & Marcellino (2017).

In addition, I make an assumption on H:

Assumption B. H is time-invariant, full rank, and has a unit diagonal.5

The assumption that H is time-invariant is crucial for identification, ubiquitous in the
literature. In fact, identification has not been established when H is time-varying except in
very special cases, as in Angelini, Bacchiocchi, Caggiano, & Fanelli (2018). Work allowing
more flexible time-variation in H is limited to Bayesian frameworks, most notably Cogley &
Sargent (2005) or Primiceri (2005). I discuss the time-invariance of H further following the
main identification results. Implicit in this setting and most related work is the additional
assumption of invertibility, so the shocks are fundamental and thus recoverable from ηt.

Decomposition of ηtη′t

To obtain moments in terms of just H and the underlying volatility process, I work with a
transformation of ηt, (ζt, defined below), as my basic data. I begin by writing the decompo-
sition

ηtη
′
t = HΣtH

′ + Vt, Vt = H
(
εtε

′

t − Σt

)
H ′,

5The unit diagonal assumption is a normalization, without loss of generality. Note that even if there are
zeros in H, such that certain column orderings are incompatible with a unit-diagonal, this poses no problem
for the identification of H, since column order is imposed only ex-post for interpretation.
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where Σt is unknown. Define L to be an elimination matrix, and G a selection matrix (of
ones and zeros), see Magnus & Neudecker (1980), for example.6 Then

ζt = vech (ηtη
′
t) = vech (HΣtH

′) + vech (Vt)

= L (H ⊗H) vec (Σt) + vt, vt = vech (Vt) (4)

= L (H ⊗H)Gσ2
t + vt, (5)

The simplification from (4) to (5) in the first term is stark and follows due to the diago-
nality of Σt using A.2. From the definition of Vt, A.1, A.3, and B, Et [Vt | σt,Ft−1] = 0, so
Et [vt | σt,Ft−1] = 0 and

Et [ζt | σt,Ft−1] = L (H ⊗H)Gσ2
t .

This provides a signal-noise interpretation for the decomposition of the outer product ηtη′t.
It follows from A.3 that I can integrate over Σt to obtain Et [vt | Ft−1] = 0 and similarly that
Et [|vt|] <∞. Therefore vt is a martingale difference sequence. Each observation of ζt (ηtη′t)
is an observation of HΣtH

′, plus mean-zero noise.

Properties of ζt

Assumption C expands on A.3 to permit a characterization of the autocovariance of ζt.

Assumption C. For every t,

1. Vart (σ2
t ) <∞,

2. Vart (εtε
′
t) <∞.

Using these additional assumptions, the autocovariance of ζt has a convenient form:

Proposition 1. Under Assumptions A.1-2, B, & C,

Covt,s (ζt, ζs) = L (H ⊗H)GMt,s (H ⊗H)′ L′, t > s (6)

where
Mt,s = Et,s

[
σ2
t σ

2′

s

]
G′ + Et,s

[
σ2
t vec (εsε

′
s − Σs)

′]− Et [σ2
t

]
Es

[
σ2′

s

]
G′.

6This means vech (A) = Lvec (A) and vec (ADA′) = (A⊗A)Gd where d = diag (D).
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This equation represents an “observable” quantity, covt,s (ζt, ζs), as a product of H and
the n × n2 matrix Mt,s (composed of n × (n2 + n) /2 different moments of the underlying
variance process). If Et,s

[
σ2
it

(
εsε

′
s − Σs

)]
is diagonal (as in an SV model, or if any ARCH

effects come from only own past shocks), Mt,s can be replaced with M̃t,sG where M̃t,s is only
n× n.

An autocovariance of the vectorization of ηtη′t can thus be expressed as just a product of
H, an n × n2 nuisance matrix, and known matrices of zeros and ones. This is remarkably
parsimonious for a covariance of random matrices. Note that stationarity has not been
assumed, merely the existence of higher moments. All of the expectations used are well-
defined for an object at a particular point in time, even if the distribution might be different
at another point in time. A single autocovariance provides (n2 + n) /2×(n2 + n) /2 equations
in n2 − n+ n (n2 + n) /2 unknowns, so the order condition is satisfied.

Uniqueness

Having derived a set of equations of adequate order to identify H, it remains to show that
they yield a unique solution. The conditions under which (6) yields a unique solution for H
are established by Theorem 1.

Theorem 1. Under Assumptions A.1-2, B, & C, equation (6) holds. Then H and Mt,s are
jointly uniquely determined from (6) (up to labeling of shocks) provided rank (Mt,s) ≥ 2 and
Mt,s has no proportional rows.

Theorem 1 states that (under certain conditions) equation (6) will yield a unique solution
for the relative magnitudes of elements in each column of H. The identification result is
based on period-specific moments – an autocovariance between two specific time periods,
s, t – so stationarity is not assumed and is not required. In practice though, fourth-order
stationarity of εt will often be needed so that (6) may be consistently estimated across the full
sample. The solution is unique up to column order given the unit-diagonal normalization.7

However, there are n! column orderings. The same is true for any statistical identification
approach, including those based on heteroskedasticity or non-Gaussianity, and is discussed
in Chapter 14 of Kilian & Lütkepohl (2017). Ordering or otherwise labeling the columns, or
equivalently the shocks, is an issue of rendering the shocks interpretable in an economic sense.
In some cases, the labeling of shocks is unnecessary (as in factor models), and identification
is complete, but for policy analysis labeling is required, as discussed in Section 2.5.

Theorem 1 makes two requirements of Mt,s. First, it must have rank of at least 2.
Second, it must have no proportional rows. This is weaker than a full rank condition, since

7After a re-ordering of columns, H can be re-normalized to maintain a unit-diagonal.
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rows of Mt,s may be linear combinations, so long as they are not simply proportional. This
dimensionality requirement ensures adequate heterogeneity in Mt,s to uniquely identify H.
Mt,s encodes the autocovariance (and potentially ARCH) properties of σ2

t with σ2
s ; in an SV

model,Mt,s is simply the autocovariance of σ2
t multiplied by G′. These conditions imply that

all n variances must be time-varying and persistent, and additionally that no two variance
processes can have fully proportional autocovariance structures with respect to σ2

s . Provided
each variance has at least some persistent idiosyncratic component, this will not be the case.
Jurado et al (2015) find that there are indeed strong idiosyncratic components in time-varying
volatility that cannot be explained by common factors; the identification conditions will hold
as long as those idiosyncratic components are persistent, and thus impact Mt,s. Conversely,
in some finance settings (eg. Campbell, Giglio, Polk, & Turley (2017)), many volatilities
are modeled as proportional. In Section 2.3, I propose a formal test of the identification
conditions to evaluate these cases in practice. If the proportional row condition on Mt,s does
in fact fail, partial identification is still possible, as established in Corollary 1.

Corollary 1. Under Assumptions A.1-2, B, & C, equation (6) holds. Then H(j) is identified
from (6) provided rank (Mt,s) ≥ 2 and Mt,s contains no rows proportional to row j.

This shows that columns of H pertaining to shocks whose volatility processes do not have
proportional autocovariance structures can still be identified.

The identification conditions in Theorem 1 can be loosened by exploiting additional
identifying equations. If, for example, the (often highly informative) mean

Et [ηtη
′
t] = Et [ζt] (7)

is considered, Theorem 1 can be supplanted by Theorem 2.

Theorem 2. Under Assumptions A.1-2, B, & C, equation (6) holds. Then H is uniquely
determined from (6) and (7) (up to labeling of shocks) provided

[
Mt,s Et [σ2

t ]
]
has rank of

at least 2 and no proportional rows.

Theorem 2 shows that, provided the covariance of ηt is also used as an identifying mo-
ment, a proportional row assumption must additionally relate Et [σ2

t ] to Mt,s in order for
identification to fail. Similar arguments can be made, adding in further observable mo-
ments, requiring any proportionality extend to a matrix with progressively more columns.
Corollary 1 can also be applied to Theorem 2. A major implication of Theorem 2 is described
in Corollary 2.
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Corollary 2. H is uniquely determined from (6) and (7) (up to labeling of shocks) if at least
n − 1 shocks display time-varying volatility with non-zero autocovariance, provided that for

no two shocks i, j, covt,s (σ2
it, vec (εsε

′
s)) = covt,s

(
σ2
jt, vec (εsε

′
s)
) Et[σ2

it]
Et[σ2

jt]
.

Corollary 2 states that with the addition of (7), only n−1 dimensions of persistent time-
varying volatility are sufficient to identify H, except in a very special case. This degenerate
case amounts to the autocovariance structure of two shock variances being proportional by
the ratio of their means. As discussed in Section 2.4, this weaker dimensionality requirement
puts TVV-ID on a level footing with existing heteroskedasticity-based approaches.

Time-invariance of H

While TVV-ID focuses on the instability of the variances of structural shocks, H is assumed
fixed. Although this is in principle a strong assumption, no existing identification scheme can
flexibly accommodate time-varying H (Carreiro, Clark & Marcellino (2017) and Angelini et
al (2018) do so under very specific functional forms). Even the simplest recursive short-run
restrictions, when the true structure is in fact recursive, do not identify a known moment of
H if H is in fact time-varying. Allowing H to vary more generally presents an interesting
econometric problem, which warrants further study. While there are workhorse models in
macroeconomics that allow for time-varying H, (e.g., Primiceri (2005) and Cogley & Sargent
(2005)), these all adopt a Bayesian framework without identification results to separate
variation in H from variation in Σt based on properties of the observable data alone. In this
context, the parameter values obtained are driven by the structure of the priors, imposing
information the data could never offer. As such, these approaches are largely orthogonal to
the goal of this paper to provide non-parametric frequentist identification results facilitating
consistent estimation of H based on observable data and (relatively) mild assumptions.
While some frequentist work has adopted time-varying parameters (TVP) in the reduced
form model, for example Auerbach & Gorodnichenko (2012), such papers are still unable
to incorporate variation in H; time-variation in reduced form parameters can be combined
with TVV-ID.

There are two ways in which time-variation in H is potentially compatible with TVV-ID.
First, if H varies at a slower rate than the variances, identification may still hold asymptot-
ically; H will be locally stationary over intervals over which the variances are not. Such a
case could be explored in an infill-asymptotic setting, for example. Theoretical work some-
times reflects such distinctions in the rate of variation; for example, Barro & Liao (2017)
split volatility into short-run and long-run components, with agents’ behaviour driven by
the slower moving component. Second, compared to identification exploiting regimes, as
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in Rigobon (2003), TVV-ID is better equipped to permit estimation over sub-samples over
which H may plausibly be fixed, since the data do not already need to be subdivided for iden-
tification under a constant H. Should a researcher remain worried about the assumption of a
fixed H, tests of overidentifying restrictions remain an option, as H is always over-identified
by TVV-ID. Further, Andrews (1993) develops tests for parameter instability in a GMM
context, for example the sup-Wald test, the conditions for which are satisfied for a variety
of time-varying volatility models.8

2.3 Testing the identification conditions

Testing conditions for identification based on heteroskedasticity is difficult in general. The
requirements for identification impose conditions on parameters that are only identified con-
ditional on identification holding. In Sentana & Fiorentini (2001), the time paths of struc-
tural variances are required to be linearly independent, and in Rigobon (2003) the two (or
more) sets of structural variances must be non-proportional. In TVV-ID, Mt,s must have
rank of at least 2 and no proportional rows. Given knowledge of the structural parameters,
these conditions could easily be tested, but those parameters cannot be recovered without
assuming identification. However, in Proposition 2, I derive testable implications of Mt,s

being full rank that pertain to the reduced form covariance covt,s (ζt, ζs).

Proposition 2. By construction, rank (Mt,s) = rank (covt,s (ζt, ζs)) = r; if r = n, Mt,s is
full rank and the identification conditions of Theorem 1 are satisfied.

The implication of r = n for Mt,s is in general actually stronger than the condition
required for identification, which requires only a rank of 2, with no proportional rows (rows
that are not proportional but are otherwise linear combinations lower the rank of Mt,s but
not prevent identification). Thus, this condition rank (covt,s (ζt, ζs)) = n can be viewed as
conservative with respect to the true identification conditions for TVV-ID.

The problem of testing for identification is now reduced to testing the rank of the rele-
vant autocovariance of ζt. Tests of matrix rank have been studied extensively, for example
by Cragg & Donald (1996). For this purpose, I impose the assumption of fourth-order sta-
tionarity on εt (as discussed above), so that the matrix cov (ζt, ζt−p) can be consistently
estimated. Then, Theorem 3 provides a test statistic and asymptotic distribution to assess

8The less-familiar assumptions needed in Andrews (1993), those of Near-Epoch Dependence (NED), can
be replaced by stronger properties that hold for both GARCH and SV processes. Lindner (2009) shows that
GARCH satisfies β-mixing (and thus α-mixing with exponential rate) and Davis & Mikosch (2009) show
that SV models inherit the mixing properties of the log-variance process. Andrews’ (1983) results show that
an AR(1) variance process is α−mixing with exponential rate. These mixing properties can be shown to
imply NED; see Davidson (1994) Chapter 17 for additional background.
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the rank of the autocovariance matrix, and thus test whether the conditions to identify H
using TVV-ID hold.

Theorem 3. If ̂cov (ζt, ζt−p) is an asymptotically normal estimator of cov (ζt, ζt−p), then
under the null hypothesis that the autocovariance has rank r, the associated Cragg-Donald
statistic CDζ,p (r) has the asymptotic distribution CDζ,p (r)

d→ χ2
(

((n2 + n) /2− r)2
)
.

The interested reader should consult Cragg & Donald (1996) for additional technical
details and a description of the test statistic. Essentially, the test assesses the deviation
of part of the estimated matrix from zero following r steps of Gaussian elimination. Note
that since cov (ζt, ζt−p) is of dimension (n2 + n) /2 × (n2 + n) /2, its rank will in general
be greater than n in finite samples; indeed, Cragg & Donald’s Assumption 1 requires this
to be the case in finite samples.9 While this result offers an immediate way to test the
identification condition, as always it is unclear what constitutes a suitable level for a test of
strong identification. I sketch general methods for assessing weak identification in nonlinear
models, which could be applied here, in the Supplement.

2.4 Relation to existing approaches

TVV-ID generalizes the conditions under which previous approaches have established iden-
tification via heteroskedasticity and nests the parametric models on which they have relied.
Below, I describe the relation of TVV-ID to each of the existing identification results.

Sentana & Fiorentini (2001) offer an identification argument that is in principle non-
parametric; they show that, conditional on the time path of reduced form covariances, Ση1:T ,
H is identified, provided the variance processes are linearly independent. However, this
path is not in general available to the econometrician, who observes only the noisy ηtη′t in
each time period, no matter the sample length. This leads the authors to recommend a
GARCH functional form, which is unique in allowing the reduced form covariances to be
deterministically recovered from the observations conditional on H and the parameters of
the volatility process. Of particular concern is the fact that the need to recover the path
of reduced form covariances to use as identifying moments rules out all variance processes
where the variance innovations are not coupled to innovations to observable variables. This
precludes all variance processes including state variables, in particular the very popular class
of stochastic volatility models. The only alternative is to collapse observations into subsam-
ples and apply the identification argument to the covariance path across these subsamples,

9Tests for rank exceeding n provide a possible avenue for a test of misspecification, which I defer to future
work. The possibility that a test for identification may interact with evidence of misspecification is a general
concern and not limited to the present setting.
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essentially the Rigobon (2003) argument. However, if the true variance process is stationary,
then, asymptotically, such an implementation will recover the same covariance across each
subsample, and Sentana & Fiorentini’s (2001) identification condition will fail.

TVV-ID avoids these issues entirely by not making any reference to the variance path
for identification, instead using a single unconditional moment, the autocovariance of ζt.
Because it is unnecessary to recover the variance path for identification, TVV-ID can admit
a near arbitrary range of volatility models, and is truly non-parametric. Such moments can,
under suitable assumptions, be consistently estimated even in models with state variables.
TVV-ID is the first such scheme to imply that H can be consistently estimated even when
the volatility path cannot.

Additionally, TVV-ID nests the implementations of Sentana & Fiorentini (2001) that have
appeared in the literature, exclusively based on GARCH volatility processes. This is because
a (stationary) GARCH process clearly implies a suitable matrix Mt,t−p for autocovariance
p.10 Sentana & Fiorentini (2001) require n − 1 dimensions of linearly independent time-
varying volatility; TVV-ID similarly requires n−1 volatility processes with non-proportional
autocovariance structures (Corollary 2). These conditions will generally coincide.

In a recent paper, Bertsche & Braun (2018) use the Sentana & Fiorentini (2001) argu-
ment to motivate identification of an SVAR based on SV. While a good heuristic argument,
identification does not hold in a true sense since the moments on which the identification
argument is based, Ση1:T , cannot be recovered even asymptotically in a state space model
like SV. There is no guarantee that the noise unavoidable in the versions of these moments
available to the econometrician will not confound identification. Likewise, since the identify-
ing moments Ση1:T cannot be consistently estimated, H cannot be argued to be consistently
estimated. On the basis of TVV-ID though, their model is clearly identified from the uncon-
ditional moments in (6), which are consistently estimated (indirectly) via their EM approach.
This means that their results are all valid, just on the basis of TVV-ID, which operates in
the background.

As noted above, the Rigobon (2003) argument is essentially the same as the Sentana
& Fiorentini (2001) argument, except that periods are pooled into subsamples for identifi-
cation. n − 1 shocks must exhibit non-proportional variance changes across regimes. The
subsamples can either be based on external information (e.g., monetary policy announcement
days) or estimated. The former is ideal, but puts an additional informational burden on the
econometrician to supply the information. I show in Section 5 of the Supplement that the
latter process of estimating regimes can induce bias in estimates, since the estimated regimes

10Milunovich & Yang (2013) offer an additional (local) identification argument for the GARCH model
based on reduced-form moments, more similar to the TVV-ID approach.
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may be endogenous with respect to the structural shocks. A third alternative of arbitrary
regular cuts in the data (e.g split at T/2) causes identification to break down asymptot-
ically if the volatility process is stationary (the moments converge over each subsample).
Markov switching (e.g., Lanne, Lütkepohl, & Maciejowska (2010)) and smooth transition
(e.g., Lütkepohl & Netšunajev (2017)) variants of the Rigobon argument address the regime
estimation problem internally through their likelihoods. Because TVV-ID relies on full-
sample unconditional moments, these challenges are avoided entirely. If the true volatility
model is a regime-based model, TVV-ID can also nest that parametric form. While, within
a regime, the volatilities are invariant, so there is no autocovariance, transitions between
regimes induce autocovariance in the volatilities, providing the identifying variation needed
by TVV-ID.11

TVV-ID belongs more broadly to a long literature (dating to at least Darmois (1953)
and Skitovich (1953)) of identification based on higher moments. Work has generally focused
on contemporaneous moments (or cumulants), whereas TVV-ID exploits inter-temporal mo-
ments. This literature includes extensive work by Hyvärinen and co-authors (e.g., Hyvärinen,
Karhunen, & Oja (2001)), which considers the model as a signal extraction problem, develop-
ing variants of the Independent Components Analysis approach to exploit non-Gaussianity.
Provided n−1 shocks exhibit unconditional non-Gaussianity, H can be identified. Identifica-
tion via non-Gaussianity is growing in prominence in economics (e.g., Gouriéroux & Monfort
(2015, 2017)). In principle, non-Gaussianity encompasses heteroskedasticity, as time-varying
volatility makes Gaussian shocks unconditionally non-Gaussian. TVV-ID cannot nest these
highly general identification results. However, the converse is also true: identification via
non-Gaussianity requires that, for i 6= j, shocks εit and εjt be mutually independent, not just
orthogonal. This rules out dependence in higher moments, and thus restricts any volatil-
ity processes to be uncorrelated across shocks. Such an assumption is at odds with many
empirical findings suggesting factor structures in macroeconomic volatilities, see Jurado et
al (2015), for example. This means that there may be value to identification approaches
tailored to heteroskedasticity when it is time-varying volatility that motivates the presence
of non-Gaussianity, as borne out in the simulation study in Section 3.

The identification conditions for TVV-ID parallel those of these other approaches. Sen-
tana & Fiorentini (2001), Rigobon (2003), and identification via non-Gaussianity all impose
a dimensionality condition to ensure adequate heterogeneity to identify H, requiring n − 1

non-proportional dimensions of time-varying volatility or n− 1 shocks to be non-Gaussian.
11As a simple example, consider a univariate process with σ2

t = 1, t = 1, . . . , T/2 and σ2
t = 2, t = T/2 +

1, . . . , T . cov
(
σ2
t , σ

2
t−1

)
= 1

T (2 + 1× (T/2− 1) + 4× (T/2− 1)) −
(

1+2
2

)2, which converges to 2.5 − 1.52 =
0.25 as T goes to infinity, so even with a single regime switch, the autocovariance is non-zero asymptotically.
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Likewise, n − 1 dimensions of time varying volatility with non-proportional autocovariance
structures will satisfy the conditions for TVV-ID. However, TVV-ID does not require the
researcher to recover paths for covariances and is thus able to accommodate a much wider
range of volatility processes due to its non-parametric nature.

A final strength of TVV-ID is the testability of the identification conditions, as demon-
strated in Theorem 3. This test exploits evidence of the identification conditions that can
be found in the reduced form moment cov (ζt, ζt−p). This result is significant. The parame-
ters to which identification conditions based on heteroskedasticity apply cannot be recovered
without assuming identification holds. This means that such conditions cannot generally be
tested directly. This poses difficulty in the GARCH implementation of Sentana & Fiorentini
(2001). Lanne & Saikkonen (2007) propose a test for the dimensionality of a variance process
based on time series of the structural shocks. However, the authors must obtain estimated
time series of the structural shocks to test. As a result, they recommend assuming a recursive
structure for part of H when the null hypothesis specifies only enough dimensions of het-
eroskedasticity to partially identify H, in order to avoid assuming heteroskedasticity. This
means that frequently their test may be for heteroskedasticity in a rotation of the structural
shocks of interest.12 Lewis (2018) proposes tests for weak identification (and thus identifi-
cation more broadly) in the Rigobon (2003) model, but the tests remain computationally
challenging; recent work by Lütkepohl et al (2018) promises to offer an alternative closer in
spirit to the test presented here.

2.5 Interpreting results

Having identified the columns of H through TVV-ID, it is frequently still necessary to label
the columns of H, or, equivalently, the resulting structural shocks. Kilian and Lütkepohl
(2017) discuss how there may in fact be some difficulty in interpreting these as economically
meaningful shocks, given the purely statistical methods used to derive them; this step helps to
develop such interpretations. In the Supplement, I outline a number of potential approaches
to labeling the columns of H. These frequently constitute a weaker version of standard
structural identification assumptions that might otherwise be used to identify the model.
For example, instead of assuming a certain macroeconomic shock has no contemporaneous
impact on some series (as in a Cholesky ordering, say), the recovered shock that has the
closest-to-zero effect on that series could be labeled as that particular macroeconomic shock.

Any such labeling exercise does not, however, necessarily assume the shocks are meaning-
12While an orthogonal rotation of the variance paths themselves would not alter the dimensionality of the

variance process, the test proposed is on the autocovariance of the recovered shock series, for which such a
result is not obvious.
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ful - it is possible that no shock meets a theoretically-motivated labeling criterion satisfac-
torily. A researcher so concerned can test whether a statistically-recovered shock represents
a particular economic shock by formally testing conventional identifying assumptions as
overidentifying restrictions. An alternative is to informally evaluate the extent to which
the impulse response functions (IRFs) align with those based on economic theory, as in
Brunnermeier et al (2017) or Lütkepohl & Netšunajev (2014).

Importantly, inference approaches that are valid for an estimated Ĥ will also be valid
for a labeled column of Ĥ, denoted Ĥ(j), under standard conditions. In general, the use of
statistical measures to select a column of an estimated matrix will impact the asymptotic
distribution of the ultimate column estimates. However, for most statistical labeling criteria
that select a unique shock, the labeling criterion is consistent in the probability limit sense.
This means that as T → ∞, the probability of selecting the correct column based on the
criterion approaches unity. Pötscher (1991) establishes asymptotic distributions in a discrete
model selection setting building on intuition dating back to at least Geweke & Meese (1981).
For a consistent labeling criterion, it is direct to show that a strong form of Pötscher’s results
hold. This means that if a labeling method is consistent and the asymptotic distribution of
Ĥ is known, the selected column Ĥ(j) simply inherits that asymptotic distribution. In other
words, the labeling problem can be ignored for the purpose of asymptotic inference.

To counterbalance the challenge of shock labeling, an advantage of statistical approaches
to identification is that it is straightforward to describe the impact of economic assumptions
quantitatively when they are used. Because they are used to make discrete decisions –
one shock or another is the policy shock – it is possible to report and compare estimated
economic effects under alternative labeling assumptions. Frequently in empirical applications
a large number of labeling assumptions will agree on the policy shock. Reporting these
findings makes a single result compelling to readers believing any, but perhaps not all, of
that collection of assumptions.

3 Estimators and performance

A strength of TVV-ID is that it is an identification argument not tied to any model or
estimator. It can thus be implemented by any estimator that fits an autocovariance of the
residuals to the data. This can either be explicit – in the case of GMM on equation (6) – or
implicit, in the case of many likelihood models. This is in contrast to the Sentana & Fiorentini
or Rigobon arguments, which require either a GARCH-type model or regimes, respectively.
This means that a researcher can choose a completely non-parametric approach (GMM),
whatever model she thinks best describes the data (quasi-maximum likelihood, QML), or
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compare a variety of different models for robustness.
As noted briefly above, while identification does not require stationarity, in order for all

of the estimators considered here to be well-behaved, some degree of stationarity must be
assumed. In the case of GMM, for example, εt must be fourth-order stationary so that the
identifying moments (6) can be consistently estimated. In an SV model, log σ2

t must be
second-order stationary so the parameters of the SV process governing the autocovariance
can be consistently estimated.

While GMM is the natural entirely non-parametric implementation of TVV-ID, the
higher moments used for identification can be very noisily estimated in realistically short
macro time series. This motivates the use of likelihood approaches, which make parametric
assumptions in exchange for possible efficiency gains. QML is a natural way to incorporate
the identifying information of multiple autocovariances implied by a functional form. The
drawback of any likelihood-based approach is the necessity of specifying a law of motion for
the structural variances. To some extent this may seem a return to parametric assumptions
this paper set out to avoid. However, thanks to the general identification arguments offered
above, identification is not tied to a particular functional form. In particular, the SV model
is a common, highly flexible model of time-varying volatility that decouples the innovations
in variances from the shocks themselves. It has proven popular in the financial econometrics
literature, where much work has compared its ability to describe the data with GARCH
and other models (e.g., Diebold & Lopez (1995), Kim, Shephard, & Chib (1998), Barndorff-
Nielsen & Shephard (2002)). There is reason to believe it could at least be a competitor to
GARCH-based approaches. Bertsche & Braun (2018) adopt the model to estimate an SVAR
under heteroskedasticity (without the theoretical justification offered by TVV-ID), and find
it performs well in simulation. Carriero, Clark, & Marcellino (2018) use it to capture time-
varying volatility in an SVAR (identification follows from particular model features), as do
many Bayesian applications (e.g., Uhlig (1997), Cogley & Sargent (2005), Primiceri (2005)).
In this section, I put the three heteroskedasticity-based identification schemes discussed in
this paper, as well as identification based on non-Gaussianity, to the test. I consider several
different implementations in a simulation study based on a wide range of DGPs.

3.1 DGPs and estimators

The DGPs are empirically calibrated from the residuals of a bivariate SVAR where the two
variables are the first principal component extracted from the McCracken & Ng FRED-MD
database and the Fed Funds rate, identified using an AR(1) SV model. For each alternative
volatility process considered, the model is calibrated based on the structural shock series
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resulting from the AR(1) SV estimates. The H matrix used in the simulations is

H =

[
1 0.298

0.033 1

]
.

H21 represents the contemporaneous effect of a macroeconomic shock on the Fed Funds rate,
and H12 represents the contemporaneous effect of a Fed Funds shock on the first principal
component of the FRED-MD database. The DGPs thus calibrated consist of a Markov
switching model, a GARCH(1,1) model (including a “weak” variant), and an AR(1) SV
model (including varied sample size, a “weak” variant, and non-Gaussian (t7) disturbances).
I take 5000 replications, and unless otherwise noted, T = 200. Values of the parameters for
the volatility models can be found in the Supplement.

I consider a diverse range of identification approaches and associated estimators. For
TVV-ID, I consider an AR(1) SV QML implementation generalizing the EM algorithm of
Bertsche & Braun (2018), exploiting the expansions of Chan & Grant (2016) in the E-step.
I also use a 2-step GMM estimator, making use of the first autocovariance augmented by
E [ηtη

′
t]. For the Sentana & Fiorentini approach (2001), I adopt two estimators based on the

GARCH model. First, I estimate the standard GARCH(1,1) model adopted in Normandin
& Phaneuf (2004), Lanne & Saikkonen (2007), Milunovich & Yang (2013), Lütkepohl &
Milunovich (2016), and many others. Second, I consider a “hybrid GARCH” estimator,
a GARCH(1,1) model where the autoregressive parameters are calibrated to macro data,
but the mean parameters are estimated (details of this calibration based on the FRED-
MD database can be found in the Supplement); this can be thought of as a parametric
kernel estimator. For the Rigobon approach, I use estimated regimes based on the trace,
median threshold, and 13 period windows, as recommended by results in Section 5 of the
Supplement. I also use an arbitrary split at T/2, as well as a Markov switching model
estimated via ML. Finally, for non-Gaussianity, I use the FastICA algorithm described in
Shimizu, Hoyer, Hyvärinen, & Kerminen (2006) (preliminary simulations show performance
superior to ML approaches). Details on selected estimators can be found in the Supplement.
Columns of H are labeled using the infeasible method of minimizing the L2 norm to the true
value.
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Table 1: Mean estimates and rejection rates
QML

AR(1)

SV

GMM Hybrid GARCH Sub-

sample

(rolling)

Sub-

sample

(T/2)

Markov

Switch-

ing

Non-

Gaussianity

mean α mean α mean α mean α mean α mean α mean α mean α

Markov

switching,

T = 200

H21 0.03 6.8 0.01 39.9 0.02 10.0 0.03 47.2 0.02 17.0 0.01 22.6 0.03 4.1 0.03 38.5

H12 0.28 10.1 0.45 44.2 0.34 12.2 0.31 45.4 0.38 4.3 0.38 4.2 0.28 4.5 0.27 43.7

RMSE 2.70 6.78 5.49 4.87 4.45 6.61 2.45 4.86

GARCH(1,1),

T = 200

H21 0.03 5.3 0.03 26.6 0.03 4.3 0.03 4.8 0.03 15.8 0.03 15.6 0.03 11.2 0.03 11.4

H12 0.29 6.8 0.40 32.0 0.33 5.3 0.30 4.7 0.19 2.3 0.36 2.8 0.37 11.1 0.41 13.3

RMSE 2.96 7.73 2.47 2.58 5.47 6.89 5.28 6.98

GARCH(1,1),

T = 200,

weak

H21 0.03 19.0 0.02 48.7 0.02 24.4 0.03 4.8 0.03 14.1 0.02 21.6 0.03 9.6 0.02 8.1

H12 0.32 21.7 0.84 51.9 0.98 24.6 0.27 5.8 0.11 1.6 0.83 2.3 0.58 9.5 1.19 11.2

RMSE 8.52 12.15 8.27 6.94 7.99 13.28 11.05 15.02

AR(1),

T = 100

H21 0.03 14.9 0.01 45.2 0.03 9.2 0.03 22.3 0.02 19.4 0.02 17.0 0.02 11.5 0.02 31.2

H12 0.29 16.3 0.74 49.8 0.35 10.2 0.37 21.5 0.38 4.3 0.39 3.4 0.43 10.6 0.41 31.7

RMSE 5.47 9.19 6.67 6.35 8.08 7.42 7.16 7.80

AR(1),

T = 200

H21 0.03 7.8 0.02 40.6 0.03 6.9 0.03 23.4 0.02 19.1 0.02 18.9 0.03 5.4 0.03 35.4

H12 0.29 9.6 0.51 44.1 0.32 7.7 0.30 22.1 0.37 3.3 0.36 3.3 0.34 5.1 0.33 38.5

RMSE 2.89 7.89 4.31 3.91 6.91 6.29 5.20 5.92

AR(1),

T = 400

H21 0.03 4.2 0.02 33.7 0.03 4.3 0.06 61.7 0.02 25.2 0.02 19.9 0.03 5.5 0.03 37.1

H12 0.30 5.9 0.45 38.7 0.29 4.9 0.74 51.6 0.31 3.4 0.37 3.1 0.28 5.1 0.33 41.1

RMSE 1.42 6.28 2.52 8.50 6.23 5.72 3.17 4.42

AR(1),

T = 200,

weak

H21 0.03 41.5 0.01 44.7 0.02 47.6 0.02 8.6 0.04 23.9 0.02 28.3 0.02 15.5 0.01 10.1

H12 0.33 42.9 0.63 45.2 0.50 48.6 0.50 10.1 0.09 2.8 0.47 3.6 0.51 14.9 0.52 12.0

RMSE 7.63 9.08 8.36 7.80 6.38 8.41 8.00 8.96

AR(1),

T = 200, t7

shocks

H21 0.03 4.7 0.02 40.1 0.03 8.7 0.03 32.8 0.02 18.8 0.02 17.6 0.03 4.0 0.03 32.4

H12 0.30 5.8 0.60 44.0 0.32 9.6 0.31 30.7 0.33 3.6 0.38 3.6 0.32 3.5 0.30 34.4

RMSE 2.24 8.45 5.62 4.95 6.38 6.27 5.65 4.54

True values: H21 = 0.033, H12 = 0.298, nominal size α = 5%

Mean estimates for the full range of estimators for the specified DGPs. True H21 = 0.033 and H12 = 0.298.
Labeling proceeds via an infeasible method matching H estimates to the true H to minimize L2 norm.
Rejection rates, α, are presented for a nominally-sized 5% test for each draw. Details on standard errors can
be found in the Supplement. Since the RMSE must account for error in multiple parameter estimates, the
MSE is computed for each, and then normalized by the square of the true parameter, before the root of the
sum is taken.
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3.2 Results

Table 1 reports the results. It lists the mean estimates for the off-diagonal elements of H,
RMSE (root of weighted sum of MSEs for both parameters), and rejection rates for nominal
5% tests of the true parameter values using each estimator’s appropriate standard errors (de-
scribed in the Supplement). The choice of a MSE measure mirrors the related contemporary
study of Lütkepohl & Schlaak (2018). Histograms reported in the Supplement show that
distributions for most estimators and DGPs are centered around the true parameters; large
discrepancies in mean estimates are mostly driven by outliers. Recall that the true values
are H21 = 0.033 and H12 = 0.298. The former represents the contemporaneous response of
the Fed Funds rate to a macroeconomic shock and the latter represents the contemporaneous
response of the first principal component of the FRED-MD database to a Fed Funds shock.

Across DGPs, the QML implementation of the AR(1) SV model performs best. The mean
estimates are accurate, and even when misspecified the RMSE is often only slightly worse
than that for well-specified estimators. This makes it a compelling choice to implement
TVV-ID. A further benefit is that tests of true values are fairly well-sized, except in the
presence of weak identification.

The hybrid GARCH estimator and Markov switching estimators offer the next best per-
formance. The mean estimates are still accurate, but their RMSEs are higher in general.
They struggle in the face of weak variation in volatility. For the hybrid, this is largely be-
cause the calibrated parameters are no longer a good fit for the data. The standard errors
for both estimators offer minimal size distortions, apart from cases of weak identification.

The FastICA estimator exploiting non-Gaussianity is also reliable. The mean estimates
are close to the true values except for DGPs with small sample sizes or weak variation. In
these cases, the higher moments on which this identification rests seem very imprecisely es-
timated – moreso than the persistence of the process, which TVV-ID exploits. In contrast,
estimators like that for SV or GARCH models exploit a path of variances for identification
as well as these unconditional higher moments of the data. The RMSE is accordingly higher,
depending on the DGP. Naturally, its performance improves when disturbances are them-
selves non-Gaussian. The standard errors perform quite poorly with respect to rejection
rates – this is because the asymptotic variance depends on up to the sixth moment of the
shocks, so is very imprecisely estimated.

The GARCH estimator is generally competitive with the previous approaches, but breaks
down for SV with T = 400. This is because the empirically calibrated DGP dictates param-
eters that are very close to non-stationarity when approximated by GARCH. As a result,
with a longer draw of data, there is a reasonable chance of observing dynamics that ap-
pear explosive from a GARCH-fitting perspective, negatively impacting the estimates. This
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phenomenon also appears in un-reported simulations for different empirical calibrations,
generally manifest in excess mass around zero for the H parameters when the GARCH pa-
rameters are close to the boundary of stationarity. Since these calibrations are empirical,
this is a strike against adopting GARCH estimators for identifying SVARs in similar macro
data. The rejection rates are accurate when well-specified, but as expected, break down
when misspecified.

The Rigobon estimates based on rolling windows are quite good, which is unsurprising
given the tuning parameters are optimized based on simulations discussed in Section 5 of
the Supplement. Other combinations might harm performance. However, the breakdown
is dramatic for weak identification; when changes in the volatilities are minimal, estimated
regimes will be increasingly determined by realized shock values instead, biasing estimates,
as discussed in detail in Section 5 of the Supplement. This estimator is not in general
competitive with the best estimators in terms of RMSE. Generally, the same remarks apply
to the simple T/2 split estimator. For both, the rejection rates are badly distorted.

GMM generally struggles, especially with small samples and weak variation. Since it
relies mostly on fourth moments, for identification, without any auxiliary information from
variance paths, this makes sense, as these moments are noisily estimated in those DGPs.
Accordingly, the rejection rates are also distorted. For progressively higher T , additional
simulations suggest performance does become acceptable. Thus, for larger sample sizes,
GMM may offer a viable alternative requiring no parametric assumptions.

The results of this simulation study are related to those of Lütkepohl & Schlaak (2018).
That paper estimates a range of parametric volatility models for a variety of DGPs and
assesses the consequences of misspecification while comparing the performance of popular
model-selection criteria with the goal of choosing a well-specified volatility model. They
consider the MSEs for impulse response functions estimated using their competing models.
Their results also demonstrate that a GARCH-based estimator can perform quite poorly
under misspecification, with a striking break-down as T increases. The Markov switching
estimator also performs reasonably well across DGPs considered in their study. Their study
focuses on the single-break, smooth transition, Markov switching, and GARCH models,
justified by existing identification results, and thus is not informative about the SV model
found to be most reliable here.

4 Empirical application: fiscal multipliers

Considerable work has been devoted to estimating the value of fiscal multipliers, but has
resulted in considerable disagreement over their size. The range of estimates is documented
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by Mertens & Ravn (2014), Caldara & Kamps (2017), and Ramey (2011a). Prominent
estimates range from less than zero to over three. While government spending multipliers
are perhaps most familiar, tax multipliers capture an equally important dimension of fiscal
policy, and are central to current policy debates. Blanchard & Perotti (2002) (henceforth BP)
is seminal in the literature; recent work by Mertens & Ravn (2013, 2014) and Mountford
& Uhlig (2009) has obtained contrasting estimates. Caldara & Kamps (2017) show the
discrepancy can be largely explained by differing values for the elasticity of tax revenues with
respect to output. BP calibrate this parameter to 2.08 based on institutional information,
Mountford & Uhlig’s (2009) penalty-function identification is consistent with a prior for the
elasticity centered around 3, and Mertens & Ravn (2014) (henceforth MR) estimate a value of
3.13 using Romer & Romer (2010) (henceforth RR) narrative shocks as external instruments.
This setting provides an ideal test case for TVV-ID due to the relatively small dimension of
the standard model (n = 3) and because TVV-ID offers a channel of identification completely
different to those previously considered. This setting was not previously a strong candidate
for identification via heteroskedasticity due to a lack of ex ante natural variance regimes.13

Theorem 1 shows that the autocovariance of volatility present in the data can identify
the structural parameters determining fiscal multipliers without the economic assumptions
required in prior work. BP need a calibrated value, the assumption of no contemporaneous
response of spending to output, and a recursive ordering between tax revenue and spending,
and MR require their instrument to be valid and there to be no contemporaneous response
of spending to output. Since I am able to depart from these assumptions (making them
over-identifying restrictions), I can test them using the results of TVV-ID.

4.1 Data & model

I adopt MR’s trivariate VAR with federal tax revenue, federal government consumption and
investment, and GDP, based on quarterly BLS data found in the NIPA tables, spanning
1950Q1 to 2006Q4.14 Additional details on the data and de-trending procedures (including

13Higher dimensions put more strain on the EM algorithm required to implement TVV-ID using the
favoured AR(1) SV model. While comparison with prominent papers on the effects of monetary policy that
already incorporate time-varying volatility, like Primiceri (2005) or Brunnermeier et al (2017), is in principle
interesting, these papers work with higher-dimensional models and are Bayesian in approach. This means
that testing identification conditions is not a straightforward problem, and does not permit an “apples to
apples” comparison, since “identification” follows at least partly from priors (particularly in Primiceri (2005)).
In contrast, the fiscal multipliers debate provides competing identification assumptions based on the same
simple reduced form model, which can be directly tested.

14While Auerbach & Gorodnichenko (2012) estimate a TVP model in the reduced form, I maintain the
constant parameter reduced form VAR specification, since that remains the benchmark in the literature, even
in more recent work, such as Caldara & Kamps (2017) and Mertens & Montiel Olea (2018). Maintaining
the same reduced form allows a clearer comparison of identifying assumptions across approaches.
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Figure 2: Moving averages of squared residuals and shocks

2-year moving averages of the square of the specified series. For the first panel, this is the reduced form
residuals, BP structural shocks for the second, and MR structural shocks for the third.

Table 2: Tests of identification assumptions
null/alternative ̂cov (ζt, ζt−1)

rank (·) = 1/rank (·) > 1 112.24∗∗∗

rank (·) = 2/rank (·) > 2 253.70∗∗∗

Cragg-Donald (1996) tests of the rank of ̂cov (ζt, ζt−1), where ζt = vech (ηtη
′
t); test statistics are starred

at the 1% level and follow the χ2
(((

n2 + n
)
/2− r

)2) distribution. A White variance matrix is used; the
rejection is stronger still using two unreported alternative HAC approaches.
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federal vs. general government data) can be found in MR. I use the replication code available
on Mertens’ website to obtain identical residuals.

In MR’s notation, the BP benchmark model is

uTt =σT e
T
t + θGσGe

G
t + θY u

Y
t

uGt =γTσT e
T
t + σGe

G
t + γY u

Y
t

uYt =ζTu
T
t + ζGu

G
t + σY e

Y
t ,

where ut = ηt and et are structural shocks with E
[
e
′
tet
]

= I. Key parameters θY and γY are
the elasticities of tax revenue and government spending with respect to output, respectively.
These capture what are commonly referred to as “automatic stabilizer” effects. This model
is a transformation of the ηt = Hεt parameterization. The transformations linking the
parameters to H are

θG =
H12 −H32H13

1−H23H32

, θY = H13

γT =
H21 −H23H31

1−H31H13

, γY = H23 (8)

ζT =
H31 −H32H21

1−H21H12

, ζG =
H32 −H31H12

1−H21H12

,

This mapping allows for direct comparison with the TVV-ID results.

4.2 Estimates & tests

In this section, I present evidence in favour of the conditions for TVV-ID to hold, report es-
timates of the structural parameters based on TVV-ID, and test the identifying assumptions
of both BP and MR.

Testing the identification conditions

To motivate TVV-ID, Figure 2 plots “eyeball” evidence of heteroskedasticity in the data
using moving averages of squared disturbances for the reduced form residuals, BP’s shocks,
and MR’s shocks in turn; in all three sets of series, there appear to be strong patterns of
heteroskedasticity. Table 2 formalizes this evidence using the test proposed in Theorem 3.
Specifically, I test the rank of ̂cov (ζt, ζt−1), the estimate of the first autocovariance of ηtη′t,
to assess the identification conditions of Theorem 1. The tests are of the null hypothesis
rank (·) = r against the alternative of rank (·) > r. In this 3-variable system, a rank of 3

implies that Mt,t−1 satisfies the conditions imposed by Theorem 1, as shown in Proposition
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Table 3: Estimates
BP MR TVV-ID

θG -0.06 -0.20 −0.13
(0.10)

θY 2.08 3.13 1.58
(0.18)

γT 0 0.06 0.11
(0.13)

γY 0 0 0.02
(0.39)

ζT -0.08 -0.35 −0.00
(0.02)

ζG 0.07 0.10 0.06
(0.045)

The first two columns are estimates obtained in Mertens & Ravn (2014). The third column maps estimates
of H obtained via TVV-ID to the parameters of BP and MR using (8). The TVV-ID estimates result from
fitting the AR(1) SV model, described in Section 3, with details provided in Supplement 2.2.

2. Both tests easily reject ranks smaller than 3 at the 1% level, indicating a rank exceeding
2, so the model is well-identified by TVV-ID.

Estimates of structural parameters

Estimation based on TVV-ID proceeds using the AR(1) SV approach recommended by the
simulation study. The estimates are reported in the third column of Table 3, with BP and
MR results for comparison.15 The structural shocks themselves are extremely well-correlated
with the BP shocks and very well-correlated with the MR shocks. The one statistically
significant parameter estimate is that central to the tax multiplier debate, θY , for which I
obtain the value 1.58 with a 95% confidence interval of [1.23, 1.94].

Testing the Blanchard & Perotti (2002) assumptions

The three identifying assumptions made by BP can be directly tested from the estimates
of H. First, for the elasticity of tax revenues with respect to output, θY , I obtain a value
of 1.58, and can reject BP’s calibrated value 2.08 at the 1% level. In the version of their
model documented in MR, spending is assumed to respond contemporaneously only to its
own shocks: γT = γY = 0. In the original paper, θG = 0 (taxes do not respond to spending)

15It is well-known that EM algorithms can be sensitive to start values; thus, optimization was carried out
across a grid of start values and the median estimates were used to initialize a final optimization. The range
of estimates across start values is very small, see Table 4 in the Supplement. As an additional check, the
estimates from alternative volatility models (same Table) are extremely similar.
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is an alternative to γT = 0. None of these exclusion restrictions can be rejected; they are
consistent with TVV-ID results.

Testing the validity of Mertens & Ravn’s (2014) instruments

MR use the RR shocks as external instruments to identify tax shocks. Like standard in-
struments, they must be both relevant and exogenous (see Montiel Olea, Stock, & Watson
(2016)). Thus, for relevance, I compute first-stage F−statistics under both homoskedastic-
ity and heteroskedasticity, and compare them to the corresponding rules of thumb, F > 10

(Staiger & Stock (1997)) and F > 23 (Montiel Olea & Pflueger (2013)). Under homoskedas-
ticity the value is 4.13 and under heteroskedasticity 1.76; the instrument is only weakly
related to the endogenous residual. This suggests there could be a weak identification prob-
lem. Table 6 in the Supplement shows that this is true of all alternative narrative measures
considered by MR. These results are at odds with the reliability measure they report. That
measure of how much variation in the instrument is explained by the structural shock is
asymptotically equivalent to the R2. There are reasons to favour conclusions based on the
first-stage F−statistic. The reliability measure can only be computed based on estimated
structural shocks; instrument validity is assumed to obtain these. The F−statistic also con-
veys more information because established thresholds are based on how a deficiency in the
first-stage quantitatively impacts bias or size-distortion in the second stage.16,17

Using the structural shocks from TVV-ID, I can also test the exogeneity assumption
required for the proxy VAR. I test the hypothesis that the coefficients in the regression
of the RR shocks on εGt and εYt are zero. The test rejects at the 5% level for the shocks
jointly, driven by a significant negative relationship with εYt . This suggests that, despite
careful construction, the narrative measure has not been fully purged of cyclical behaviour,
and still contains endogenous variation in tax revenues. Table 6 in the Supplement repeats
the exercise for the alternative shocks in MR; only the series based on the full set of RR
shocks (including shocks with implementation lags) does not exhibit endogeneity. The strong
negative relationship between the instrument and output shocks implies that, for a tax cut,
the estimated impact on output could be biased upwards.

16Additionally, MR note that the reliability statistic requires the additive form of measurement error
specified in the text. However, it is reasonable to believe measurement error could scale with the size of the
tax shock being measured, in keeping with several common forms of heteroskedasticity (in linear regression).
The reliability itself also offers no measure of the uncertainty around the relationship between the shocks
and instrument. While MR do bootstrap the statistic, it is well-known that bootstrapping procedures may
not properly capture variability if weak identification is present.

17While the instruments considered here appear weak, Mertens & Montiel Olea (2018) focus on the impact
of marginal tax rates and construct an alternative instrument based on the RR narrative shocks, scaled based
on marginal tax rate changes, which appears to be a strong instrument for the tax rate changes they consider.
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Mertens & Montiel Olea (2018) hypothesize that effects of tax changes estimated using
instruments are possibly underestimated, arguing that the pro-cyclicality of tax rates and
bracket creep potentially push estimates downwards. This argument is at odds with the
evidence here. However, the negative relationship I estimate can be rationalized. Given the
need to parse political motivations behind tax changes in order to classify them in RR, it
is possible that in an effort to avoid pro-cyclicality, the time series over-omits ideologically-
motivated events that may appear pro-cyclical. Further, given the focus on ideologically-
motivated tax changes in the RR shocks, a range of political economy stories linking rising
incomes with pro-tax cut governments could explain the negative relationship between the
instrument and the output shocks. Finally, a bracket creep story can also work in this
direction, with bracket creep a consequence of rising incomes, and tax cuts often coinciding
with episodes of bracket creep (Mertens & Montiel Olea (2018) note 1964, 1981, 2001).

4.3 Multipliers

The parameter estimates from TVV-ID lead to important differences in dynamic multipliers
compared to previous work. Figure 3 plots the dynamic tax multiplier following the method-
ology of MR. The shock corresponds to a tax cut of 1% of GDP. 95% confidence intervals
are computed using the same wild bootstrap as MR for the reduced form portion of the IRF
with the ML variance estimates of the structural parameters, combined via the delta method.
The differences compared to the BP and particularly MR results in the first panel are stark.
The MR IRF is rejected at all horizons; the BP for horizons up to five quarters. As discussed
above, endogeneity of the RR shocks with respect to output shocks could be causing an up-
ward bias for MR. The response on impact is -0.02% (not significant) compared to 0.48% for
BP and 1.99% for MR. The peak multiplier occurs later and is lower: 0.86 at eight quarters
compared to 1.35% at seven quarters (BP) and 3.19% at four quarters (MR). It suggests
a more significant response lag of the economy to tax changes than previous results. The
second panel recomputes the IRF for BP using the new elasticity estimated via TVV-ID.
The path is virtually identical to the TVV-ID path, mimicking the result when MR do the
same using their estimated elasticity. This affirms the finding of Caldara & Kamps (2017)
that the elasticity explains virtually all estimated differences in multipliers, and shows that
the results of BP can be reconciled with those of TVV-ID via the calibrated parameter, θY .

Figure 4 plots the government spending multipliers. The estimates here are much more
similar across approaches, as predicted by more similar values for θG and ζG. On impact, the
multipliers are 0.65% for TVV-ID, just lower than BP (0.69%) and close to MR (0.80%). The
maximum response is 0.75% for TVV-ID, compared to 0.81% for BP and 0.96% for MR, all

29



Figure 3: Response to a tax cut of 1% of GDP

Dashed lines are 95% confidence intervals computed using a wild bootstrap for the reduced form and ML
for the structural parameters, combined via the delta method. The BP estimates in the left panel use their
elasticity θY = 2.08; the right uses the value of 1.58 estimated via TVV-ID.

Figure 4: Response to a spending shock of 1% of GDP

Dashed lines are 95% confidence intervals computed using a wild bootstrap for the reduced form and ML
for the structural parameters, combined via the delta method. The BP estimates in the left panel use their
elasticity θY = 2.08; the right uses the value of 1.58 estimated via TVV-ID.

after two quarters. The second panel plots the BP response with the elasticity re-calibrated
to TVV-ID; doing so barely impacts estimates of the structural parameters, so the paths are
virtually identical.

Caldara & Kamps (2017) develop a new methodology using non-fiscal proxies as instru-
ments for identification and find that, in the short run, spending multipliers are larger than
tax multipliers. This is also true here, but tax multipliers do eclipse spending multipliers
around their peak impact, after two years. Figure 7 in the Supplement plots their estimates
against mine. In general, the IRFs are similar, but TVV-ID again yields smaller multipliers
on impact. Except for quarters 0-4 for tax cuts, my point estimates lie within their 68%
credible sets; all estimates lie within 95% credible sets. They also find that the impact effect
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largely explains discrepancies in dynamic multipliers across identification approaches, and
in turn, that the impacts are governed almost entirely by the elasticities with respect to
output and the covariances of ut (their equation (11)). Accordingly, for their version of BP,
using a tax elasticity of 1.7, they obtain an almost identical IRF to mine. For spending,
the slightly higher (though not statistically significantly so) spending elasticity I obtain can
explain the somewhat lower multipliers obtained. Differences in the shape of the IRFs result
from different reduced form coefficients (they use a 5-variable VAR and only a linear time
trend). Since the identifying conditions of both schemes hold up to testing (their instruments
pass validity tests), it is reassuring that, with the exception of taxes on impact, the dynamic
multipliers of each study cannot be rejected under the methodology of the other.

The results under TVV-ID are also in line with the spending multipliers obtained by
Ramey (2011b) using a very different methodology based on isolating defense-related spend-
ing events. For a sample from 1939-2008, excluding WWII, her estimates range from 0.6-0.8,
which includes the values estimated here. Ramey & Zubairy (2018) consider how the multi-
plier changes across states of the economy using defense spending and BP spending shocks
as instruments, which they check carefully for relevance. While in some relevant states of
the economy they obtain slightly lower estimates, the 0.6-0.7 range found here accords with
their results.

The elasticity of revenues with respect to output

The differences in tax multipliers are largely determined by the lower elasticity of tax revenues
with respect to output that I estimate via TVV-ID. This discrepancy between my elasticity
and that in the original BP paper may be partially explained by the fact that, in their
calibration, they consider data on general government revenue and spending, as opposed to
solely federal government. The response of federal revenues should be lower than that of
federal, state, and local revenues combined. Significantly, Follette & Lutz (2010) develop
a more detailed methodology and estimate the elasticity of tax revenues with respect to
output for just the federal government, and obtain a value of 1.6 for the period 1986-2008 –
nearly identical to what I obtain via TVV-ID. They obtain 1.4 for 1960-1985. On average,
their value is thus slightly lower than mine, but they consider a mix of annual data and
quarterly data. This accords with BP’s argument that lower frequency data will deliver
lower elasticities. MR discuss discrepancies between institutional estimates of BP, Giorno,
Richardson, Roseveare, & van der Noord (1995), and others and results coming from their
instrumental approach; there is far less discrepancy between the results arising from all of
the former approaches and my findings based on TVV-ID.

The higher elasticity of MR, 3.13, may result from the weakness of the instrument, as
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discussed above. In more recent work, Caldara & Kamps’ (2017) baseline elasticity estimated
using all of their non-fiscal instruments is lower at 2.18. Their instruments pass all tests for
relevance and exogeneity, unlike the RR shocks. Their elasticity is still higher than mine,
but is based on a different reduced-form VAR. They also show that the high elasticity found
in Mountford & Uhlig (2009) – about 3.2 – can be traced to those authors’ penalty-function
identification approach, which maximizes the systematic component of tax revenues.

5 Conclusion

This paper presents a general argument that structural shocks can be identified via time-
varying volatility. The previous literature offers identification arguments based on a path
of variances available for only a handful of parametric models of the variance process. My
identification approach makes minimal assumptions on the variances as a stochastic process.
This argument highlights a novel channel of identification based on heteroskedasticity that
frees the researcher from needing to assume a particular functional form (or, indeed, any
functional form) to obtain identifying moments. This empowers researchers to develop new
models and approaches in contexts exhibiting time-varying volatility without needing to re-
establish identification for each. Economic information often used to structurally identify
such models need only be used to label the shocks identified by TVVID. I propose a simple
test of the identification conditions that is valid even when the parameters to be tested are
unidentified. A variety of estimation methods are considered. Simulation evidence shows
that quasi-likelihood methods based on an auto-regressive log-variance process work well
even when the true process has a different form.

My empirical investigation of fiscal multipliers produces estimates that are quite low,
but broadly align with previous studies. The tax multipliers estimated by Blanchard &
Perotti (2002) can easily be reconciled with TVV-ID by adjusting their calibrated elasticity
of revenues. The tax elasticity I obtain, about 1.6, is consistent with the work of Follette &
Lutz (2010). For both tax changes and government spending, my results are fairly similar
to those recently obtained by Caldara & Kamps (2017). For government spending, my
multipliers are consistent with the values in Ramey (2011b) and Ramey & Zubairy (2018).
Mertens & Ravn’s (2014) high values may result from instrument endogeneity or weakness.
These findings contribute to an increasing body of empirical work in favour of multipliers
below unity, and to tax multipliers smaller than spending multipliers. This demonstrates the
potential of TVV-ID to offer new insights into old problems using an identification approach
different to those previously considered in the literature.
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A Proofs

A.1 Derivation of Proposition 1

Proof. I start with
Et,s [ζt | σt,Ft−1] = L (H ⊗H)Gσ2

t .

Since vt was shown to be a martingale difference sequence and Vart (vt) < ∞ (Assumption
C.2-3),

covt,s (vt, vs) = 0, s 6= t.

This also implies that in the signal-noise decomposition, (5), vt is white noise. Using this
fact, Assumption B, Assumption C.1-2, and the decomposition of ζt above, it is immediate
that, for s 6= t,

Et,s (ζtζ
′
s) = L (H ⊗H)GEt,s

[
σ2
t σ

2′

s

]
G′ (H ⊗H)′ L′ (9)

+ L (H ⊗H)GEt,s
[
σ2
t v
′
s

]
+ Et,s

[
vtσ

2′

s

]
G′ (H ⊗H)′ L′.

By the law of iterated expectations, Assumption A.1 implies that

Et,s
[
Σt | σ2

s

]
= Et,s

[
εtε
′
t | σ2

s

]
, t ≥ s.

This, in turn, by the law of iterated expectations, implies that

Et,s

[
vec (εtε

′
t − Σt)σ

2′

s

]
= 0, t ≥ s.

Thus, setting t > s, the third term in (9) vanishes, leaving

Et,s (ζtζ
′
s) = L (H ⊗H)GEt,s

[
σ2
t σ

2′

s

]
G′ (H ⊗H)′ L′ + L (H ⊗H)GEt,s

[
σ2
t v
′
s

]
. (10)

Finally, I can rewrite (10) as

L (H ⊗H)
(
GEt,s

[
σ2
t σ

2′

s

]
G′ +GEt,s

[
σ2
t vec (εsε

′
s − Σs)

])
(H ⊗H)′ L′

= L (H ⊗H)GMt,s (H ⊗H)′ L′ (11)

whereMt,s = Et,s
[
σ2
t σ

2′
s

]
G′+Et,s

[
σ2
t vec (εsε

′
s − Σs)

′]. Mt,s is an n×n2 matrix. Proposition
1 then follows directly.
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A.2 Proof of Theorem 1

I begin by proving two lemmas for properties of the singular value decomposition (SVD).18

Definition 1. Define

1. U1DUU
′
2 = V , a reduced SVD, V n1 × n2, DU d× d,19

2. Ci is a full rank matrix, mi × ni,mi ≥ ni,

3. F = C1V C
′
2, with rank (F ) = d.

First, I show that a linear relationship exists between the singular vectors of V (U1, which
will later correspond to an unobservable object) and singular vectors of F (which will later
correspond to an observable object).

Lemma 1. There exists a matrix Γ1 such that C1U1Γ1 is an orthogonal matrix of singular
vectors from an SVD of F .

Proof. Define Q1R1 = C1U1, a QR decomposition, and similarly for U2C2. Then F can be
factored as F = Q1R1DUR

′
2Q
′
2. The upper-triangular matrix R1 is d× d and full rank since

C1U1 is full rank d (rank (R1) ≥ rank (Q1R1) = rank (C1U1) ≥ rank (F ) = d). Now take
another singular value decomposition, this time of R1DUR

′
2, so W1DRW

′
2 = R1DUR

′
2. Then

F can be factored as F = (Q1W1)DR (W ′
2Q
′
2), which is itself a reduced SVD (it is easily

shown DR are singular values of F , and the corresponding vectors are clearly orthogonal).
To obtain Γ1, recall Q1R1 = C1U1 and note Q1R1

(
R−11 W1

)
= Q1W1, singular vectors of F ,

so Γ1 = R−11 W1, which is guaranteed to exist.

Definition 2. Define S1DSS
′
2 = F , a reduced SVD.

I now establish the uniqueness of an SVD of F up to orthogonal rotations, accounting
for the possibility of repeated eigenvalues.

Lemma 2. The SVD of F is unique up to rotations characterized by F = S1T1DST2S
′
2 where

Ti is orthogonal.
18For a real-valued matrix V , the singular value decomposition V = U1DUU2 decomposes V into two

orthogonal matrices U1, U2, and a non-negative diagonal matrix DU . The “singular vectors”, columns of U1

and U2, are eigenvectors of V V ′ and V ′V respectively. The non-zero singular values (diagonal of DU ) are
square-roots of the non-zero eigenvalues of V V ′ and V ′V .

19A reduced SVD reduces the dimension of U1, DU , U2 to drop singular values equal to zero and their
corresponding arbitrary singular vectors.
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Proof. For non-repeated singular values in DS, the corresponding singular vectors are unique
up to sign, and the space of vectors corresponding to any k repeated singular values corre-
sponds to linear combinations of any k such vectors. Thus any alternative reduced singular
value decomposition of F can be written as F = (S1T1)DS (T2S

′
2), since Ti can incorporate

any such sign changes or linear combinations. Since SiTi must be orthogonal (by definition of
an SVD), T ′iS ′iSiTi = Id. Then since Si is orthogonal, T ′iTi = Id, so Ti is itself orthogonal.

Definition 3. Define

1. C1 = (H ⊗H)G, n2 × n with rank n, C2 = (H ⊗H)′ , n2 × n2 with rank n2,

2. G is a selection matrix such that vec (ADA′) = (A⊗ A)Gdiag (D),

3. S̃1 = C1U1Γ1T1, singular vectors from any reduced SVD of F ,

4. V is n× n2 and has no proportional rows,

5. rank (V ) = d ≥ 2.

Using the relationships I have derived in Lemma 1 between an SVD of the observable F
and an SVD of the unobservable V , I now establish conditions under which H is uniquely
determined from singular vectors of F . Using Lemma 2, I show that this is true even in the
case of repeated singular values.

Proposition 3. H is uniquely determined from the equations F = C1V C
′
2 provided V has

no proportional rows.

Proof. U1 is n × d. Note C1U1 =
[
vec
(
Hdiag

(
U

(1)
1

)
H ′
)
, . . . , vec

(
Hdiag

(
U

(d)
1

)
H ′
)]

,
where d ≥ 2 (this follows from the structure of C1). By the proportional row condition
on V , for any j, there exists at least one pair k, l such that U (l)

1,j/U
(l)
1,i 6= U

(k)
1,j /U

(k)
1,i for

all i = 1, 2, ..., d, i 6= j. By an argument due to Brunnermeier et al (2017) (the underlying
mathematical result also features in Rigobon (2003) and Sentana & Fiorentini (2001)), H(j) is

unique up to scale and sign as the right eigenvector of Hdiag
(
U

(l)
1

)
H ′
(
Hdiag

(
U

(k)
1

)
H ′
)−1

corresponding to the jth eigenvalue, provided U
(l)
1,j/U

(l)
1,i 6= U

(k)
1,j /U

(k)
1,i . The same argument

applies to C1Ũ1 where Ũ1 = U1Γ1T1, provided Ũ1 has no proportional rows. To establish
this, take any two rows in U1 that are not proportional rows; multiplying by full rank Γ1

cannot decrease their rank (so they do not become proportional). The same holds true for
multiplication by the orthogonal T1. Thus H remains the unique solution to C1Ũ1.

Proposition 4 is re-written in terms of the identifying equations to yield Theorem 1, noting
that the requirements imposed on U1 imply the stated conditions of Mt,s.
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A.3 Proof of Corollary 1

Proof. Corollary 1 follows directly from Proposition 4 above for any column j for which a
pair k, l exists such that U (l)

1,j/U
(l)
1,i 6= U

(k)
1,j /U

(k)
1,i for all i = 1, 2, ..., d.

A.4 Proof of Theorem 2

Proof. Theorem 2 is based on the argument underlying Proposition 3. Note that the vec-
torization of Et [ζt] is given by vech (HEt [Σt]H

′), an additional equation of the form found
in CU1. Define M̂ =

[
U1,M Et [σ2

t ]
]
. Then there is an additional column over which to

find a k, l pair for j such that M̂ (l)
j /M̂

(l)
i 6= M̂

(k)
j /M̂

(k)
i for all i = 1, 2, ..., d i 6= j. The no

proportional rows condition that applied toMt,s in Theorem 1 now applies to the augmented
matrix

[
Mt,s Et [σ2

t ]
]
. Note that this logic can be extended to adding additional autoco-

variances, etc., in each case adding columns to M̂ and thus decreasing the plausibility of the
condition failing.

A.5 Proof of Corollary 2

Proof. Corollary 2 follows directly from Theorem 2 by noting that the rank
(
M̂t,s

)
≥ 2 is

satisfied given even one dimension of time-varying volatility and considering scenarios under
which the proportional row condition fails.

A.6 Proof of Proposition 2

Proof. I begin by showing rank (covt,s (ζt, ζs)) = r if and only if rank (Mt,s) = r. Recall
covt,s (ζt, ζs) = L (H ⊗H)GMt,s (H ⊗H)′ L′ . The elimination matrix L merely deletes
repeated rows (and L′ columns), so cannot impact rank. Thus it suffices to work with
(H ⊗H)GMt,s (H ⊗H)′. Denote C = (H ⊗H), which is square with full rank n2, since H
is full rank n. G is a full rank n2 × n matrix. First, if rank (Mt,s) = r, rank (GMt,s) =

rank (Mt,s) = r since G is rank n. Because C is full rank and square, rank (CGMt,s) =

rank (GMt,s) = r, and likewise rank (CGMt,sC
′) = r. Thus, rank (Mt,s) = r implies

rank (LCGMt,sC
′L′) = r. Going the other way, if rank (CGMt,sC

′) = r, then rank (CGMt,s) =

r since C ′ is full rank and square. For the same reason, it then follows that rank (GMt,s) = r.
Because G has rank n, it further follows that rank (Mt,s) = r. Thus, rank (LCGMt,sC

′L′) =

r implies rank (Mt,s) = r, so rank (covt,s (ζt, ζs)) = r if and only if rank (Mt,s) = r.
This means that if rank (covt,s (ζt, ζs)) = r = n, then rank (Mt,s) = n. In that case,

rank (Mt,s) ≥ 2, satisfying the first identification condition. Moreover, since Mt,s is n× n2,
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it is full rank, so it must have no proportional rows, satisfying the second identification
condition.

A.7 Proof of Theorem 3

Proof. This is a direct restatement of a main result of Cragg & Donald (1996). If ̂cov (ζt, ζt−p)

is a consistent and asymptotically normal estimator of cov (ζt, ζt−p), rank (cov (ζt, ζt−p)) <

(n2 + n) /2 (which it is because the maximum rank of Mt,t−p is n) and ̂cov (ζt, ζt−p) is almost
surely full rank (which it is due to sampling error in finite samples) then their Assumption
1 is satisfied. Then the Cragg-Donald statistic and its limiting distribution are given in
equation (9) of that paper.
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