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Abstract 

Identification via heteroskedasticity exploits differences in variances across regimes to identify 

parameters in simultaneous equations. I study weak identification in such models, which arises 

when variances change very little or the variances of multiple shocks change close to 

proportionally. I show that this causes standard inference to become unreliable, outline two tests 

to detect weak identification, and establish conditions for the validity of nonconservative methods 

for robust inference on an empirically relevant subset of the parameter vector. I apply these tools 

to monetary policy shocks, identified using heteroskedasticity in high frequency data. I detect 

weak identification in daily data, causing standard inference methods to be invalid. However, 

using intraday data instead allows the shocks to be strongly identified. 
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1 Introduction

Unobserved structural shocks, like those in the structural vector auto-regressions (SVARs)

of Sims (1980), are ubiquitous in economic models across fields, where observed innovations

are related to structural shocks by a linear combination matrix. Economists frequently study

the effects of such structural shocks to identify causal relationships. A variety of identification

approaches to recover the structural shocks exist, but identification via heteroskedasticity,

which does not require the researcher to impose assumptions on the responses themselves,

has grown in popularity in empirical work. Holding constant contemporaneous responses,

this methodology compares differences in innovation covariances across regimes to identify

those constant parameters as coefficients on the changing variances of the structural shocks.

The intuition dates from at least Fisher (1965). This identification scheme is most popular

in macro-financial contexts, but has also been adopted in many other fields. However, no

work has addressed the possibility of weak identification in these studies.

The identifying variation is the difference in covariances across regimes. If the structural

variances are in fact the same across regimes, then so too are the reduced-form covariances,

and there is no identifying variation. More subtly, if the structural variances all change by the

same factor across regimes, there is no new identifying information, as the covariance matrices

are just scalar multiples. Both may lead to weak identification – if the variances change by

too little, or if they change (perhaps substantially) by too similar a factor. The latter

means that even if ample heteroskedasticity is present, identification is not guaranteed. The

effects are akin to the more familiar weak instruments (IV) context – where an instrument

that offers little information about an endogenous regressor leads to poor identification of the

parameter of interest. As a result, multiple sets of parameters may be almost observationally

equivalent, causing the asymptotic distribution of estimators to be non-standard. Standard

inference methods will be unreliable, as will any empirical conclusions based on them. If not

properly detected and accounted for, this can undermine the credibility of empirical work.

I provide a framework for inference in models identified via heteroskedasticity when weak
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identification causes standard methods to provide a poor approximation of the asymptotic

distribution. I present two tests for the presence of weak identification. In an empirically

common simple case, where only one variance changes, the model can be written as IV

using dummy variables for regimes. I propose a rule of thumb of F > 23 for the first-

stage F−statistic. In the general model, Andrews’ (2017) two-step procedure can be used.

This test would be (perhaps prohibitively) conservative using robust sets for a parameter

of interest computed using the only previously available option, projection inference. How-

ever, I establish conditions under which the asymptotic distributions of common subset test

statistics (S−statistic of Stock & Wright (2000), K−statistic of Kleibergen (2005)) may

be more tightly characterized by concentrating out nuisance parameters strongly identified

conditional on the null hypothesis. This means inference can proceed using the familiar

test statistic but potentially much smaller critical values. The resulting confidence sets can

be used with Andrews’ (2017) approach to detect weak identification and then to conduct

inference if necessary.

I demonstrate, both in data and empirically calibrated simulations, that weak identifi-

cation does in fact cause standard inference approaches to perform poorly. I consider the

application of Nakamura & Steinsson (2018) (henceforth NS), who attempt to exploit higher

variance in monetary policy shocks around monetary policy announcements, compared to

ordinary days, to identify monetary policy shocks. I find that the shocks are weakly iden-

tified in daily data, while intraday data provides strong identification. In daily data, using

robust confidence intervals renders all coefficients found to be statistically significant using

standard methods insignificant; in intraday data, conclusions are the same whether standard

or robust inference methods are used. In simulations based on the daily data, estimates

of the effect of monetary policy are not well approximated by a normal distribution. Addi-

tional simulations show that standard tests suffer from serious size distortions and projection

methods are severely undersized, while procedures I propose remain well-sized.

With the tools I outline, research using heteroskedasticity for identification can address
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concerns of weak identification head-on. It is possible to verify the strength identification

using these methods, much like is now best practice for IV following the work of Staiger &

Stock (1997).

The paper is organized as follows. Section 2 presents the model, shows how weak iden-

tification arises, and demonstrates its effects on parameter estimates. Section 3 presents

standard robust inference results, establishes conditions under which subset inference can

proceed using reduced critical values, and outlines tests to detect weak identification. Section

4 applies the methods to the data of NS. Section 5 concludes. Proofs are in the Appendix.

2 Strong and weak identification via heteroskedasticity

In this section, I outline the model and identification argument. I provide intuition for when

it might fail, and illustrate the consequences analytically in an empirically popular simple

case. I then characterize weak identification in the fully general model.

2.1 Identification and when it might fail

The observed data consists of an n× 1 vector of serially uncorrelated mean-zero innovations

ηt. These could be observed (asset price changes) or as-if observed (consistently-estimated

residuals from a VAR). While I focus on the time series setting, the results of this paper

applies equally in cross-sectional settings. Innovations are related to an n × 1 vector of

structural shocks, εt, by a time-invariant invertible matrix H:1

ηt =


η1t

...

ηnt

 =



1 H12 · · · H1n

H21 1 · · · H2n

...
... . . . ...

Hn1 Hn2 · · · 1




ε1t

...

εnt

 = Hεt. (1)

1Note that Rigobon & Sack (2003, 2004) consider bivariate models with 3 structural shocks. These models
can only be identified with additional application-specific structural assumptions. Instead, I focus on models
where identification follows exclusively from the heteroskedasticity.
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The diagonal of H is unit-normalized without loss of generality. The object of interest is

generally elements of H, which represent the contemporaneous responses of the innovations

to structural shocks. In contrast to the standard SVAR identification problem, assume there

are two regimes for ηt. While I focus on the two regime case, most results can be directly

extended to allow for additional regimes. For consistency with my empirical application to

NS, I denote C (control) and P (policy), which contrasts “Control” observations and “event”

observations, arguing that on the event days, when, for example, a Policy announcement

is made, the relevant structural shocks are likely to be more volatile than on a typical day.

Assumption 1 provides basic assumptions.

Assumption 1. For all t = 1, 2, . . . , T and regimes r ∈ {C,P},

1. H is fixed over time, invertible, and has a unit-diagonal,

2. E [εt | t ∈ r,Ft−1] = 0, E [εtε
′
t | t ∈ r,Ft−1] = Σε,r, Ft−1 = {ε1, . . . , εt−1},

3. Σε,r is diagonal.

The first point imposes necessary assumptions on H. The second and third jointly state

serial uncorrelatedness and orthogonality assumptions as well as stationarity of ηt within

regimes. Consequently, the covariance of ηt for regime r is

Ση,r = E [ηtη
′
t|t ∈ r] = HΣε,rH

′, r ∈ {C,P} , (2)

which is easily estimated. I treat the regimes C,P as known; in practice, they are frequently

chosen using external information about volatility, like monetary policy announcement dates.

This leaves H, Σε,C , and Σε,P to be identified.

A single covariance of ηt yields (n2 + n) /2 equations with n2 unknowns between H and

the shock variances. However, adding a second regime doubles the number of identifying

equations to n2 + n, while only adding n new shock variances. Thus, with two regimes the

equations in (2) are potentially just identified. Rigobon (2003) establishes conditions under
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which these equations do indeed have a unique solution, laid out in Proposition 1. Let σ2
ε,r

denote the diagonal of Σε,r.

Proposition 1. Under Assumption 1, H is globally identified from Ση,C and Ση,P up to

column order provided the rows of
[
σ2
ε,C σ2

ε,P

]
are not proportional.

Under additional assumptions, distinguishing the columns of H , point identification

holds. I adopt Assumption 2, a common choice to this effect:

Assumption 2. The shock of interest experiences the largest relative change in variance;

additional columns are labeled using external information or a statistical rule.

The second part of the assumption is required to point-identify H when n > 2.

Figure 1 presents the intuition of the identification approach. The first two panels fol-

low the example from Rigobon & Sack (2004), who identify the response of asset prices to

monetary policy via variance changes on policy announcement days. The first panel plots

hypothetical data for ηt, asset price changes against interest rate changes, on “control” days

– those with no monetary policy announcement. The lines represent the monetary policy

and asset price response curves – the coefficients that the econometrician wishes to identify.

Due to the simultaneity of the problem, with two structural shocks impacting ηt contempo-

raneously, neither response can be identified. The second panel plots what might happen

on days with monetary policy announcements if the variance of the policy shock increases

dramatically. Now – due to the increase in volatility in the monetary policy shock – the data

begin to trace out the asset price response. Since there is still non-negligible volatility in the

second structural shock, the response cannot be identified from the second regime alone, but

it can be identified by contrasting the information contained in both regimes.

What happens when the condition in Proposition 1 is close to failing? First, the vari-

ances might not change much at all across regimes. For example, if most of the information

contained in monetary policy announcements is anticipated, the volatility may not increase

much on announcement days over its average level. This would make the two variance
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Figure 1: Distinguishing simultaneous responses using heteroskedasticity

Observations are simulated to replicate the setup in Figures 1 and 2 of Rigobon & Sack (2004).

regimes close to identical. The third panel of Figure 1 depicts this concern; the variance

of the monetary policy shock increases but the cloud of data does not clearly trace out the

asset price response curve. The policy regime offers little additional identifying information

over the control sample. Second, all variances could change together. In the Great Moder-

ation, many volatilities decreased simultaneously, while during the Financial Crisis, many

volatilities increased together. On announcement days, there may be increased volatility in

more than one shock if there are multiple dimensions of monetary policy shocks. The closer

the comovement of variances, the less identifying information the second variance regime

provides about H. The final panel of Figure 1 depicts this concern. There is a large increase

in volatility in both dimensions, and the data do not trace the curve. Again, the policy

regime offers little additional identifying information.

Turning to estimation, the identification approach is easily implemented via GMM. Defin-

ing the vector θ ∈ Θ as the elements of H, Σε,C , and Σε,P , the equations (2) can be written

as a combined set of moments (as in Rigobon (2003)):

φ (θ, ηt) =

 1 [t ∈ C] vech (ηtη
′
t −HΣε,CH

′)

1 [t ∈ P ] vech (ηtη
′
t −HΣε,PH

′)

 , (3)

Under Assumption 1, E [φ (θ0, ηt)] = 0 at θ0, the true parameter value. The GMM objective
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function is defined as

ST

(
θ; θ̃
)

=

[
T−1/2

T∑
t=1

φ (θ, ηt)

]′
WT

(
θ̃
)[

T−1/2

T∑
t=1

φ (θ, ηt)

]
. (4)

where θ̃ is the parameter used to compute the weighting matrix, WT (·). For the purposes

of this paper, I focus on a continuous updating estimator (CUE) with the efficient weighting

matrix (on which most weak identification results are based). This means θ̃ = θ andWT (θ) =

ΩT (θ)−1, ΩT (θ) = 1
T

∑
φ (θ, ηt)φ (θ, ηt)

′, so for compactness I write ST (θ) ≡ ST (θ; θ). To

characterize the asymptotic distribution of GMM estimates, regularity conditions such as

those of Assumption 3 are required:

Assumption 3. Assume

1. The process ηt is ergodic and stationary within regimes,

2. E
[
vech (ηtη

′
t) vech (ηtη

′
t)
′ | t ∈ r

]
<∞ for r ∈ {P,C},

3. Tr/T = τr > 0, for Tr = |{t : t ∈ r}| , r ∈ {P,C}.

4. Θ is compact.

The first two points allow for the application of a martingale central limit theorem within

each regime. The first point strengthens the covariance stationarity assumed within regimes

in Assumption 1.2. The second is a standard moment existence condition. The third point

guarantees that the sample size within each regime increases at the same rate as the overall

sample size. Under these assumptions, if additionally θ0 is the unique solution to (3), stan-

dard arguments show that the GMM estimates of θ will be consistent and have the standard

asymptotically normal GMM limiting distribution.

However, in contexts characterized by weak identification, it is this final assumption –

the uniqueness of the solution to (3) – that is in doubt. I now consider formally how that

condition may fail and the consequences when it does.
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2.2 The asymptotic distribution under weak identification in a sim-

ple case

Many empirical papers make the additional assumption that only the variance of the shock

of interest changes across regimes (e.g., NS, Rigobon & Sack (2004), Hébert & Schreger

(2017), Wright (2012)). Under this assumption, the parameter of interest can be estimated

in closed form via analogy to IV. This means that the effects of weak identification can be

clearly illustrated. Throughout the paper, I refer to this restricted model as the “simple

case”. Without loss of generality, I assume that σ2
ε1,r
≡ σ2

ε1
is constant; H12 is the parameter

of interest. It measures the impact of a unit structural shock (say a policy shock) on η1t. In

NS, H12 represents the impact of monetary policy shocks on Treasury forward rates.

Following Rigobon & Sack (2004), H12 can be recovered in closed form:

ση1η2,P − ση1η2,C
σ2
η2,P
− σ2

η2,C

=
H12

(
σ2
ε2,P
− σ2

ε2,C

)
+H21

(
σ2
ε1,P
− σ2

ε1,C

)(
σ2
ε2,P
− σ2

ε2,C

)
+H2

21

(
σ2
ε1,P
− σ2

ε1,C

) =
H12∆

(
σ2
ε2

)
∆
(
σ2
ε2

) = H12, (5)

where σ2
η2,r

, ση1η2,r denote elements of Ση,r and the ∆ (·) operator takes the difference in the

argument between regimes. If in fact σ2
ε1,P
6= σ2

ε1,C
fails, then H12 will be misidentified, since

the ∆
(
σ2
ε1

)
terms will not vanish.

I now move from H12, identified in population, to estimators, Ĥ12. The sample analogues

from the left-hand-side of (5) can be simply estimated. This is equivalent to an instrumental

variables problem (Rigobon & Sack (2004)):

Ĥ12 =
∆ (σ̂η1η2)

∆
(
σ̂2
η2

) =
T
TP

∑
t∈P η1tη2t − T

TC

∑
t∈C η1tη2t

T
T2

∑
t∈P η

2
2t − T

TC

∑
t∈C η

2
2t

=

∑T
t=1 η1tZt∑T
t=1 η2tZt

, (6)

where

Zt =

[
1 (t ∈ P )× T

TP
− 1 (t ∈ C)× T

TC

]
η2t. (7)
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Thus, Ĥ12 can also be estimated via TSLS, as suggested in Rigobon & Sack (2004), using

first stage: η2t︸︷︷︸
X

= ΠZt︸︷︷︸
ΠZ

+vt, second stage: η1t︸︷︷︸
Y

= H12η2t︸ ︷︷ ︸
βX

+ut, (8)

where standard IV notation is indicated below the terms. If Zt is strongly correlated with

the innovation η2t (exogeneity follows from (1) and Assumption (1)), standard asymptotic

results for TSLS apply. First,

Ĥ12 =
1
T

∑T
t=1 η1tZt

1
T

∑T
t=1 η2tZt

p→ E [η1tZt]

E [η2tZt]
= H12, (9)

as long as the denominator, 1
T

∑T
t=1 η2tZt, does not converge to zero, so Slutsky’s theorem

can be applied. Moreover, Slutsky’s theorem shows that, provided the denominator does not

converge to zero, the asymptotic distribution will be fully characterized by the behavior of

the numerator. In particular, under a martingale central limit theorem,

√
T
(
Ĥ12 −H12

)
=

√
T 1
T

∑T
t=1 η1tZt

1
T

∑T
t=1 η2tZt

d→ N (0, Vstrong) .

Vstrong is the usual White (1980) heteroskedasticity-robust TSLS asymptotic variance, E [η2tZt]
−2E [u2

tZ
2
t ].

If the denominator is in fact close to zero, standard inference methods are not reliable in

the familiar IV setting (e.g., Staiger & Stock (1997)). As the first stage coefficient, Π, tends

to zero, the instrument provides less information about the endogenous regressor. Here, Π

goes to zero as σ2
ε2,P

approaches σ2
ε2,C

, the case of no variance change.

If σ2
ε2,P

= σ2
ε2,C

(Π = 0) , so H12 is unidentified, then the denominator (and numerator)

of (6) converges in probability to zero. To obtain a limit distribution, multiplying (6) by
√
T√
T
leads both numerator and denominator to converge in distribution to mean-zero normal

random variables. Ĥ12 converges in distribution to the ratio of two correlated normal random

variables, a Cauchy-like distribution, so the standard normal approximation is not a good

one. Thus, the convergence of (6) is non-uniform with respect to
(
σ2
ε2,P

, σ2
ε2,C

)
: if σ2

ε2,P
6= σ2

ε2,C
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it is normal, but if σ2
ε2,P

= σ2
ε2,C

it is not. To derive an asymptotic distribution that well-

approximates the behavior of Ĥ12 when σ2
ε2,P

is close to, but not equal to, σ2
ε2,C

, I follow

convention and model the difference as “small”. In particular,

σ2
ε2,P

σ2
ε2,C

= 1 +
d√
T
. (10)

Rearranging yields

σ2
ε2,P

= σ2
ε2,C

(
1 + d/T 1/2

)
= σ2

ε2,C
+ dσ2/T 1/2, dσ2 ≡ σ2

ε2,C
d,

so σ2
ε2,P

is “local to σ2
ε2,C

”. Employing this device means that, even as T → ∞, the proba-

bility of rejecting the hypothesis σ2
ε2,P

= σ2
ε2,C

tends to neither zero nor one, capturing the

intermediate case of weak identification.

With this model of σ2
ε2,P

and σ2
ε2,C

in hand, the asymptotic distribution of Ĥ12 under

weak identification is similar to that for the standard IV model:

Proposition 2. Under the device (10) and Assumptions 1 & 3, Ĥ12 is not consistent for

H12; rather,

Ĥ12 −H12
d→ z1

dσ2 + z2

,

 z1

z2

 ∼ N (0, Vweak) , (11)

where Vweak is determined by the parameters of the model and distribution of the data.

Proposition 2 follows from an argument in the spirit of Staiger & Stock (1997), presented

in the Appendix. The estimator is no longer consistent. Likewise, Vweak cannot be consis-

tently estimated. The reason is that, asymptotically, the denominator 1
T

∑T
t=1 η2tZt

p→ 0.

As the identifying variation becomes small, sampling variation in the consistently estimated

means matters for the asymptotic distribution of Ĥ12.

The estimator’s asymptotic distribution is thus better represented as a ratio of two cor-

related normals. Inference approaches based on the normal approximation break down. A
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bootstrap approach for Ĥ12 (for Wald-type inference) is also invalid, as shown in Moreira,

Porter, & Suarez (2005). Similarly, a GMM application of the IV estimator will fare no better

(Stock, Wright, & Yogo (2002)). Instead, robust methods developed for weak instruments

must be used.

2.3 Weak identification in the general case

Proposition 1 states the conditions for global identification, which can break down in the

two related cases outlined above. As in detail in the simple case, I model the relationship

between the variances of two shocks, i and j, as local-to-unity:

σ2
εi,P

/σ2
εi,C

σ2
εj,P

/σ2
εj,C

= 1 +
d√
T
, (12)

where d is finite. In economic terms, the Great Moderation or Financial Crisis were of-

fered above as examples where variances might change together. If instead the variances

barely differ across regimes, that too can be captured in this device, as both the numerator

and denominator on the left-hand-side are close to unity. The impact on identification is

characterized in Proposition 3:

Proposition 3. Adopting the modeling device in (12) and Assumption 1, H is asymptotically

unidentified.

Intuitively, under the local-to-unity device, the non-proportionality requirement of Propo-

sition 1 fails asymptotically in population, as the variances converge to the knife-edge case

σ2
εi,P

=
(
σ2
εj,P

/σ2
εj,C

)
σ2
εi,C

, resulting in an unidentified system. However, the limiting proba-

bility of rejecting the hypothesis
σ2
εi,P

/σ2
εi,C

σ2
εj,P

/σ2
εj,C

= 1 from (infeasible) observations of εt is neither

zero nor one, capturing the spirit of the intermediate case of weak identification. As iden-

tification breaks down, H cannot be consistently estimated, as argued by Stock & Wright

(2000). Similarly, standard asymptotic approximations used for inference also fail.
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To conclude this section, I demonstrate via simulations just how poor of an approximation

standard asymptotic results provide. I calibrate my simulations to NS’s specification using

daily changes in 2-year Treasury forward rates as a dependent variable and daily changes

in 2-year nominal Treasury yields as the policy series. Additional details can be found in

the empirical application below and in Section B of the Supplement. I vary T from 400 to

1600 (empirical size is approximately 800) and vary the empirical degree of identification

(δ =
(
σ2
ε2,P

/σ2
ε2,C

)
/
(
σ2
ε1,P

/σ2
ε1,C

)
− 1) by a factor of 10 in each direction.

Figure 2 presents histograms of the t−ratio, Ĥ12−H12

se(Ĥ12)
, for 10,000 draws. The estimates

are not normally distributed for low degrees of identification, even as T grows large. For the

“strong identification” specifications, the distribution is closer to a normal distribution; these

specifications map to about seven-times the empirical relative change in the policy shock

variance and twice the change observed in the Treasury yield innovation variance. These

distributions constitute prima facie evidence of weak identification. It is clear that relying

on standard inference, assuming asymptotic normality for estimates, may lead to unreliable

tests under weak identification, as it is a poor approximation to the true distribution of the

estimator.

3 Weak identification robust inference

In this section, I present results for robust inference in GMM settings, before presenting

a new result allowing non-conservative inference on empirically interesting subsets of θ. I

then outline how existing tests for weak identification may be used.

3.1 Parameter inference

The asymptotic behaviour of GMM estimators, robust to weak identification, is estab-

lished in Stock & Wright (2000). Instead of providing an asymptotic distribution for the

parameter estimates, as in strongly identified GMM problems, they show that ST (θ0) follows

a χ2 distribution. Many refinements have since been developed, including the “K−statistic”
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Figure 2: Distribution of t−ratio for Ĥ12

The figure presents t−ratios, Ĥ12−H12

se(Ĥ12)
, calculated from 10,000 Monte Carlo draws, using the sample length

in the left margin and the degree of identification in the bottom margin. Extreme outliers are truncated to
allow comparison on the same axes. Calibration details are given in (14) in the Supplement. Point estimation
proceeds via Brunnermeier et al’s (2017) eigenvector method, with inference using this solution for efficient
GMM.

of Kleibergen (2005), which is efficient under strong identification. Most of this literature is

limited to joint tests on the full parameter vector or subsets of the parameter vector includ-

ing all parameters that are weakly identified, as only strongly identified nuisance parameters

can be “concentrated out”. However, the parameter(s) of interest in applied work is often

some generic subset of the parameter vector; this is the case in Rigobon & Sack (2003)

(response of 3-month Treasury rate to S&P 500 shocks), Rigobon & Sack (2004), (response

of equity indices and long-term rates to monetary policy shocks), Wright (2012) (response

of long-term interest rates to monetary policy shocks), Hébert & Schreger (2017) (response

of equities and exchange rates to sovereign default shocks), and NS (response of Treasury

forward rates to monetary policy shocks), for example. In this section, I present standard

results for tests on the full parameter vector, and then establish conditions under which test

statistics for subsets of the parameter vector have a more precise limiting distribution.
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I state results using Kleibergen’s (2005) “K−statistic”. In the leading two-regime case

considered here, the K−statistic coincides with the S−statistic of Stock & Wright (2000)

since the model is just-identified. With additional regimes, the K−statistic will be asymp-

totically efficient under strong identification. Further refinements may have better power

properties in over-identified models (e.g., the Conditional Linear Combination tests of An-

drews (2016)).

Full vector inference

Under the assumptions presented in Section 2, Theorem 1 shows that inference on the full

parameter vector can proceed using the K−statistic.

Theorem 1. Under Assumptions 1 & 3,

KT (θ0)
d→ χ2

n2+n,

where KT (θ) is Kleibergen’s K−statistic.

As discussed below, Magnusson &Mavroeidis (2014) already consider this test (their split-

KLM ) for identification via heteroskedasticity. Simulations in the supplement calibrated to

NS’s data show the test performs well, while the size of standard methods exceeds 70%.

Inference for subsets of the parameter vector

Projection methods constitute the only previous option for subset inference when some

nuisance parameters are weakly identified. Such tests are notoriously conservative; the full-

vector test statistic is minimized conditional on the parameter(s) of interest, but is compared

to the same critical values as for the full-vector test (see e.g., Dufour & Taamouti (2005),

Chaudhuri & Zivot (2011)).

However, Kleibergen (2005) provides a refinement over Theorem 1 for tests on certain

subsets of the parameter vector. Partition θ into the parameter(s) of interest, β, and the

nuisance parameters, α. If the rank of the asymptotic Jacobian conditional on β is equal
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to the dimension of α, α is strongly identified conditional on β (but may be uncondition-

ally weakly identified), so inference may use degrees of freedom equal to the dimension of

β (Kleibergen (2005), Theorem 2). The elements of β may be either weakly or strongly

identified. Assumption 4 and Theorem 2 state this result formally.
Assumption 4. Conditional on β, α is asymptotically strongly identified.

DefineKT (β) = KT (β, α (β)), where α (β) = argmin
α

KT (β, α). Theorem 2 of Kleibergen

(2005) implies Theorem 2:

Theorem 2. Under Assumptions 1 & 3, if Assumption 4 additionally holds, then

KT (β0)
d→ χ2

pint
,

where pint is the dimension of β.

The degrees of freedom of the limiting distribution for the full parameter vector (or

projection tests) is lowered from n2 + n to pint. I henceforth refer to the test comparing

KT (β0) to the χ2
pint

critical values as the “reduced” test due to the degrees of freedom

reduction.

When does the model satisfy Assumption 4? While existing work concentrates out param-

eters that are unconditionally strongly identified, I crucially exploit the fact that Kleibergen’s

result allows parameters that are only conditionally identified to be concentrated out. First,

I introduce a partition of H:

Definition 1. Partition H as HI
...HW such that H(k) ∈ HI if and only if

(
σ2
εk,C

σ2
εk,P

)

is proportional to no other row in


σ2
ε1,C

σ2
ε1,P

...
...

σ2
εn,C

σ2
εn,P

, and conversely for HW .

HI is unconditionally identified from (2), while HW is not.
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In empirical work, the object of interest is generally either the immediate impact of one

shock on one variable or the shock’s impact on all variables. The former consists of a single

element of H; the latter pertains to a full column (e.g., Rigobon & Sack (2003, 2004), Wright

(2012), Hébert & Schreger (2017), and NS). Theorem 3 shows that if such parameters are in

HW , conditioning on them may render the remainder of the model strongly identified.

Theorem 3. Under Assumptions 1 & 2, if HW contains two columns, H is conditionally

identified from the covariance matrices provided

1. A single element Hlk is fixed and Hlk 6= Hlm/Hkm for H(k), H(m) ∈ HW , or

2. The full column H(k) ∈ HW is fixed.

By explicitly incorporating the information to be used in the null hypothesis of the subset

test (which fixes Hlk or H(k)), I obtain conditional (strong) identification for the remainder

of HW . This means that a system of equations satisfying the conditions of Theorem 3 meets

Assumption 4, so Theorem 2 applies. The ancillary condition on the relative magnitudes of

elements of HW can be seen as strengthening the standard invertibility condition on H to

an invertibility assumption on a sub-block of H.

Condition 1 interprets the result of Theorem 3 through the lens of the model, abstracting

from the knife-edge Hlk = Hlm/Hkm case.

Condition 1. If there are at most two variances, i, j, for which limT→∞
σ2
εi,P

/σ2
εi,C

σ2
εj,P

/σ2
εj,C

= 1,

and i or j is the shock of interest, then Assumption 4 is satisfied for tests where β contains

the corresponding column of H or a single element of the column (and possibly additional

parameters), and Theorem 2 holds.

Since most empirical papers focus on a single element of H or a column of H, this result

means subset inference can frequently proceed using reduced degrees of freedom instead of

projection methods, provided proportionality is not too prevalent, since the nuisance subset,

α, is conditionally strongly identified. Five remarks clarify the impact of Condition 1.
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Remark 1. Condition 1 nests the cases where β = θ or where β is the set of weakly identified

parameters.

Remark 2. The shock of interest must be one of those affected by any variance pathology.

Otherwise, fixing a parameter(s) in the column of interest of H adds no new information.

Remark 3. Given at most two variances may evolve proportionally, a researcher should

minimize the dimension of ηt subject to the constraint that ηt spans εt (invertibility).

Remark 4. In empirical practice, bivariate systems are common. In this case, both the limit

on proportionality and the condition on relative magnitudes in H are non-binding.

Remark 5. It is straightforward to extend the results of Theorem 3 to IRFs. For a detailed

discussion, see Section C of the Supplement.

Additional simulations in the supplement show that the reduced test is very well-sized,

while a standard t−test delivers size distortions in the 10% range and projection tests have

size of approximately zero.

To complete the discussion of robust inference, I relate my results to those in the existing

literature. Robust inference on the full parameter vector (and the subset of all weakly iden-

tified parameters) in models identified via heteroskedasticity has already been considered as

a motivating example in Magnusson & Mavroeidis (2014). They propose a variety of tests

that accommodate the present setting. They only discuss subset inference in the context of

concentrating out a strongly identified nuisance parameter, ζ, besides θ; they show that in

this setting the asymptotic distributions of the split-S and split-KLM test statistics are unaf-

fected by estimating ζ, retaining degrees of freedom equal to the number of weakly identified

parameters, θ (Theorems 6 and 7). This treatment requires all nuisance parameters, ζ, to be

strongly identified (unconditionally). The subset result I offer extends these results, by ex-

ploiting the fact that Kleibergen’s results require nuisance parameters only be conditionally

strongly identified (while perhaps unconditionally weakly identified) and establishing condi-

tions under which this is the case for relevant β. Heuristically, in Magnusson & Mavroeidis’

notation, this allows ζ to be a subset of the weakly identified θ (not just additional strongly
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identified parameters), such that their test statistics are now distributed χ2
p−pζ instead of χ2

p.

NS compute robust confidence intervals for a single parameter of interest using what

they refer to as a “Fieller’s method” bootstrap, drawing on Staiger, Stock, & Watson (1997).

This approach only works in their simple case, since their test statistic depends only on

H12, by virtue of the direct analogy to IV. With multiple variance changes, the test statistic

they propose depends on structural parameters other than H12, and thus cannot be used to

test values of H12 without specifying values for the other parameters, returning to the full

parameter vector/projection problem. Their test asymptotically coincides with an S−test.

3.2 Tests for weak identification

It is desirable to assess the strength of identification ex ante in order to determine whether

standard inference techniques will be reliable, or whether robust methods must be adopted.

In the IV literature, the first-stage F−test of Staiger & Stock (1997) and Stock & Yogo

(2005) is now ubiquitous. I address this problem for two cases: first, the simple case with a

single variance change, and second, the fully general model.

As demonstrated in equations (7) and (8), the simple case can be recast as a just-identified

linear IV model with a single endogenous regressor. This means that a first-stage F−test

approach can be adopted. However, the critical values of Stock & Yogo (2005) are only valid

under homoskedasticity. Fortunately, Montiel Olea & Pflueger (2013) develop alternative

critical values under weaker assumptions.2 They allow for arbitrary heteroskedasticity and

autocorrelation and calibrate critical values to the Nagar bias of TSLS relative to a “worst

case” benchmark. Table 1 reports the relevant critical values. A threshold of F > 23

corresponds to 10% bias, the threshold motivating the F > 10 rule of thumb found in the
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Table 1: Critical values for first-stage F−test based on TSLS bias

Bias 0.05 0.1 0.2 0.3

Critical Value 37.42 23.11 15.06 12.05
Critical values for the first-stage F−statistic from Montiel Olea & Pflueger (2013). For a given critical value
for the F−statistic, bias is greater than that indicated in 5% of repeated samples. Assumptions underlying
these results are enumerated in the text.

IV literature. This test can be easily adopted in this restricted framework.
In the fully general model, the only option is the Andrews (2017) two-step approach.

This test can be applied to a subset of the parameter vector. First, a researcher decides

on a maximal size distortion that she believes is compatible with strong identification, say

ξ = 0.1. Then, a preliminary robust confidence set is constructed to have size 1 − ν − ξ,

where ν is the desired level of the test, say ν = 0.05. This robust set will be valid regardless

of the true strength of identification. Next, a 1 − ν confidence set is constructed under

strong identification asymptotics (based on standard t inference, say). If this second set

contains the preliminary robust set, then identification is not so weak that the size distortion

passes the pre-specified threshold. The parameter(s) can be said to be strongly identified,

and standard inference methods adopted. If the preliminary set is not contained, weak

identification cannot be rejected, and a robust 1− ν set should be constructed for inference.

More details can be found in Andrews (2017). Non-conservative reduced tests based on

Theorem 3 are particularly valuable here. Given how conservative projection methods are,

it would be highly impractical to use them here, since the resulting confidence sets are so

large; the sets are unlikely to be contained by a lower-size standard confidence set, even if

strong identification truly holds.

4 Empirical application

I demonstrate the use of the robust inference methods by studying the identification

2In particular, in the TSLS framework, they assume 1√
T

( ∑T
t=1 Ztvt

∑T
t=1 Ztut

)′
is asymptotically

normal with consistently estimable positive definite covariance, the covariance of
(
vt ut

)′ is positive
definite and consistently estimable, and a local-to-zero representation for Π. See Montiel Olea & Pflueger
(2013) for additional details.
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of monetary policy shocks in the setting of NS.3 The authors analyze the impact of policy

shocks on nominal and real Treasury instantaneous forward rates of varying maturities. They

argue that the response of these forward rates captures forward guidance effects. They use

identification via heteroskedasticity as a robustness check on their main results. They adopt

a bivariate model with daily changes in a forward rate as the “dependent” variable and a

second series that serves as a policy instrument. They consider two such instruments: the

daily change in nominal 2-year Treasury yields and the 30-minute or daily change in a “policy

news” series, which they construct as the first principal component of several interest rate

series. They assume that the only shock exhibiting a variance change on announcement

days is the monetary policy shock. They use announcement days as the “high-variance”

regime, and a sample of analogous dates as the control period, or “low variance” sample. I

examine specifications using the daily Treasury yields and the authors’ 30-minute window

“policy news” series as the policy instrument, with either nominal or real 2-year Treasury

instantaneous forward rates as the “dependent” variable. Thus, ηt =

(
∆st ∆it

)′
where st

is a forward rate and it is the policy instrument.

4.1 Tests of identification and estimates

NS assume only the variance of policy shocks changes on announcement days. This

places their analysis in the simple case, with analogy to just-identified linear IV with a single

endogenous regressor. However, this paper focuses on the fully general model, allowing for

the possibility that the variances of both structural shocks might change. Economically, it

might make sense for only the variance of the policy shock to change, but if that is the

case, the restriction need not be imposed mechanically, as estimation will bear it out. I thus

primarily consider the unrestricted model.

I first test formally for weak identification using the methods proposed in Section 3.2.

Under NS’s restricted model, the first-stage F−statistic tests for weak identification. These
3I am very grateful to Emi Nakamura and Jòn Steinsson for making their “policy news” series available

to me.
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results are reported in the first panel of Table 2. For the daily nominal Treasury yield series,

weak identification cannot be rejected at any level considered. In contrast, for the 30-minute

“policy news” series, the first stage F−statistic is large and weak identification is rejected

for all levels of bias. Andrews’ (2017) test for the general model is reported in the second

panel. The daily nominal Treasury yield displays weak identification for all distortions. The

30-minute “policy news” series shows only mild evidence of weak identification at the 5 and

10% distortion thresholds (owing to the far right tail of the asymmetric robust confidence

sets, see Table 3). These test results corroborate the less formal observations of NS, who

suspect weaker identification in daily data.

Table 3 reports estimates for the unrestricted model. Note that NS do not report esti-

mates for H21, preventing comparison on that dimension. For the 30-minute “policy news”

shock, the results for H12, the pass-through of policy shocks to forwards (1.07 and 0.97) are

extremely close to NS’s restricted model (1.10 and 0.96), indicating a forward guidance/news

effect that shifts expectations. Their assumption that σ2
1 is fixed has little impact on esti-

mates of H12 because H21 is near-zero, minimizing the possible bias in (5). Using daily

changes in the nominal yield as the policy series, the point estimates for the real forward

rate are in keeping with the intraday results and those of NS (who estimate 0.97 for H12). In

contrast, the negative pass-through of monetary policy to nominal forward rates is starkly

at odds with the other estimates (-0.31, NS obtain 1.14); it indicates that a positive forward

guidance shock lowers the two-year instantaneous forward rate, while raising the average

rate over the next two years, altering the shape of the yield curve. The positive value for

H21 is compatible with there being a second meaningful dimension of monetary policy news,

as opposed to NS’s “background noise” interpretation of the second shock. However, these

results remain at odds with the strongly identified specifications.
4.2 Performance of tests

I now compare confidence sets robust to weak identification to those computed assuming

identification is strong. For the daily yield shocks (exhibiting weak identification), the ro-
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Table 2: Tests of Identification

First-stage F (bias) Andrews 2-step (size)

F 0.2 0.1 0.05 0.2 0.15 0.1 0.05

Nominal, daily shock 8.15 × × × × × × ×
Real, daily shock × × × ×

Nominal, 30-min shock 6891.94 X X X
X X × ×

Real, 30-min shock X X × ×
The first panel tests each shock series using the first-stage F−statistic bias-based critical values in Table 1.
The second panel conducts the Andrews 2-step size test for each specification. The acceptable distortions are
those greater than or equal to the maximum threshold, Andrews’ γmin, the value at which the 1− α− γmin

robust set is just contained by the strong identification set.

bust confidence intervals are much wider than standard confidence intervals. However, they

are substantially asymmetric, so do not always contain the standard confidence interval.

Notably, the anomalous estimate of Ĥ21 = 0.70 for the nominal forward rate specification

is highly statistically significant using standard methods, but this effect vanishes using the

robust interval. Additionally, for the real forward rate specification, Ĥ12 = 0.95 is highly

statistically significant using standard methods, but not using robust intervals. For the 30-

minute window “policy news” shocks (exhibiting strong identification), the robust confidence

intervals are comparable with the standard ones, and the estimates of H12 remain statisti-

cally significant at the 5% or 1% level.4 For H21, I obtain (largely) precisely estimated zeros.

These conclusions replicate NS’s findings for the restricted model.

For the specifications using 30-minute shocks, I can also test the null hypothesis that the

non-policy shock variance is fixed across regimes, adopting standard inference methods based

on the evidence of strong identification. This is the over-identifying assumption used by NS

to reduce the model to the simple case. For the model with nominal forwards, p = 0.12 for

a simple Wald test. While equality may not be soundly rejected, there is not strong enough

evidence of equality to justify an identifying assumption. For real forwards, p = 0.65, which

is more compelling evidence of equality. This ambiguity supports the use of the unrestricted

model in the simulations conducted in this paper and the Supplement.
4Under strong identification, they should be asymptotically equivalent, but even if the model is strongly

identified, this need not be true in finite samples.
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Table 3: Estimates

policy inst. one-day yield 30 min. news

dep. var. Nominal fwd. Real fwd. Nominal fwd. Real fwd.

H21

stnd. CI
robust CI

0.70
[0.52, 0.89]

[−42.25, 0.79]

−0.01
[−0.14, 0.12]
[−0.51, 0.49]

0.01
[−0.00, 0.02]
[−0.01, 0.02]

0.00
[−0.00, 0.01]
[−0.00, 0.91]

H12

stnd. CI
robust CI

−0.31
[−5.12, 4.50]
[−48.95, 1.50]

0.95
[0.60, 1.3]

[−59.05, 2.36]

1.07∗∗

[0.14, 2.01]
[0.25, 3.49]

0.97∗∗∗

[0.41, 1.53]
[0.50, 2.46]

103 × σ2
s,C 3.9 5.9 3.9 5.8

103 × σ2
i,C 0.1 2.1 0.02 0.02

103 × σ2
s,P 7.1 2.9 6.2 7.8

103 × σ2
i,P 0.5 4.0 0.8 0.8

GMM estimates allowing for changes in all variances. The “dependent variable” is the one-day change in
either the nominal or real 2-year instantaneous forward rate on treasuries. The policy instrument is either
one-day changes in the 2-year nominal Treasury yield or 30-minute changes in NS’s “policy news” series. For
the variances, i denotes the monetary policy shock and s the second shock. The standard confidence interval
is based on a t−statistic. The robust confidence interval is based on the reduced K−test. Stars indicate
significance from zero at the 5 or 1% levels based on the more conservative of the two tests.

As an additional exercise, I compute confidence intervals for impulse responses based on
the NS data. The results are broadly similar to those for the contemporaneous responses,
with standard intervals far too narrow; details can be found in Section C of the Supplement.

5 Conclusion

This paper provides a framework for conducting inference robust to weak identification

in models identified via heteroskedasticity. I describe and model the deficiencies that can

lead to such weak identification, and show that these properties can significantly impact

the reliability of standard inference methods in empirical data. I propose tests to detect

weak identification, allowing researchers to determine whether they ought to consider these

concerns.

I show that robust inference for a subset of the parameter vector can use smaller critical

values than those required for projection methods. Such tests provide the first option for

robust inference in this context that is not prohibitively conservative. Given the problem

posed by robust subset inference in nonlinear models, the approach of focusing on deriving
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conditional identification results suggests an outline for those interested in other models.

I apply these methods to the identification of monetary policy shocks, as in NS. Daily

data exhibits several symptoms of weak identification, but intraday data strongly identifies

monetary policy shocks. Daily data is frequently used in macro-financial contexts, so this

finding has implications for the design of empirical studies. It remains to examine whether

weak identification arises in lower frequency (e.g., monthly, quarterly) data.

Following Staiger & Stock (1997), papers using IV report first-stage F−statistics to

justify instrument relevance. Up to now, this has not been possible for the growing literature

exploiting identification via heteroskedasticity, but the results presented in this paper enable

researchers to do so.

Appendix

Notation

Mij denotes the ijth element of matrix M

M (j) denotes the jth column of matrix M

M(i) denotes the ith row of matrix M

vech (M) denotes the unique vectorization of matrix M

Proofs

Proof of Proposition 1.

Proof. The result owes to Rigobon (2003). Alternatively, Brunnermeier et al (2017) show

the columns of H are the right eigenvectors of Ση,PΣ−1
η,C , whose eigenvalues are the diagonal

of Σε,PΣ−1
ε,C . Eigenvectors of non-repeated eigenvalues (which implies non-proportionality)

are uniquely determined.
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Proof of Proposition 2.

Proof. While the weak instruments literature models Π = C√
T
, the device I adopt implies

Π =
dσ2

dσ2+
√
Tσ2

ε2,C

. However, the asymptotic distribution of Ĥ12 is fundamentally unchanged.

Under my local-to-unity device, σ2
ε2,P

= σ2
ε2,C

+
dσ2√
T

so σ2
η2,P

= σ2
η2,C

+
dσ2√
T

and ση1η2,P =

ση1η2,C +H12
dσ2√
T
. Asymptotically, the estimator in (6) yields

Ĥ12 −H12 =
1
TP

∑
t∈P η1tη2t − 1

TC

∑
t∈C η1tη2t

1
TP

∑
t∈P η

2
2t − 1

TC

∑
t∈C η

2
2t

−H12

=
1
TP

∑
t∈P ση1η2,P + (η1tη2t − ση1η2,P )− 1

TC

∑
t∈C ση1η2,C + (η1tη2t − ση1η2,C)

1
TP

∑
t∈P σ

2
2,P +

(
η2

2t − σ2
η2,P

)
− 1

TC

∑
t∈C σ

2
2,C +

(
η2

2t − σ2
η2,C

) −H12

=
H12

dσ2√
T

+ 1
TP

∑
t∈P η1tη2t − ση1η2,C −H12

dσ2√
T
− 1

TC

∑
t∈C η1tη2t − ση1η2,C

dσ2√
T

+ 1
TP

∑
t∈P η

2
2t − σ2

η2,C
− dσ2√

T
− 1

TC

∑
t∈C η

2
2t − σ2

η2,C

−H12

=

1√
T

(
H12dσ2 +

√
T
TP

1√
TP

∑
t∈P η1tη2t − ση1η2,C −H12

dσ2√
T
−
√

T
TC

1√
TC

∑
t∈C η1tη2t − ση1η2,C

)
1√
T

(
dσ2 +

√
T
TP

1√
TP

∑
t∈P η

2
2t − σ2

η2,C
− dσ2√

T
−
√

T
Tc

1√
Tc

∑
t∈C η

2
2t − σ2

η2,C

) −H12

d→ H12dσ2 + z12,2 − z12,1

dσ2 + z2,2 − z2,1

−H12 =
H12dσ2 + z12

dσ2 + z2

−H12 =
z1

dσ2 + z2

where
(
z1 z2

)′
∼ N (0, Vweak). The convergence follows from a martingale central limit

theorem for each of the summations, since ηt is assumed to be ergodic and stationary condi-

tional on regime. In the last line, z12 ≡ z12,2−z12,1, z2 ≡ z2,2−z2,1 , and z1 ≡ z12−H12z2.

Proof of 3.

Proof. I model the variance deficiency as
σ2
εi,P

/σ2
εi,C

σ2
εj,P

/σ2
εj,C

= 1+ d√
T
. The ith row of

[
diag (Σε,C) diag (Σε,P )

]
is equal to

[
σ2
εi,C

σ2
εi,C

σ2
εj ,P

σ2
εj ,C

(
1 + d/T 1/2

)]
. In the limit, this equals

[
σ2
εi,C

σ2
εi,C

σ2
εj ,P

σ2
εj ,C

]
.

However, this expression is
σ2
εiC

σ2
εjC

times the jth row,
[
σ2
εj ,C

σ2
εj ,P

]
, so the condition of

Proposition 1 is violated.
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Proof of 1.

Proof. Define φ̄ (θ, ηt) = φ (θ, ηt)−E (φ (θ, ηt)) , q (θ, ηt) = vec
(
∂φ(θ,ηt)
∂θ′

)
, q̄ (θ, ηt) = q (θ, ηt)−

E (q (θ, ηt)) , as in Kleibergen (2005), with φ replacing his f . Lemma 1 provides asymptotic

distributions for φ̄ (θ0, ηt) and q̄ (θ0, ηt).

Lemma 1. Under Assumptions 1 & 3, ψT (θ0) = 1√
T

∑T
t=1

 φ̄ (θ0, ηt)

q̄ (θ0, ηt)

 d→

 ψφ

ψθ0

 where

ψ =

 ψφ

ψθ0

 is a 2 (n2 + n)-dimensional normally distributed random variable with mean

zero and positive semi-definite 2 (n2 + n)× 2 (n2 + n)-dimensional covariance matrix

V (θ) =

 Vφφ (θ) Vφθ (θ)

Vθφ (θ) Vθθ (θ)

 = lim
T→∞

var

 1√
T

 φT (θ)

qT (θ)




where φT (θ) =
∑T

t=1 φ (θ, ηt) and qT (θ) =
∑T

t=1 q (θ, ηt) .

Proof. First, note that each block of φ̄ (θ0, ηt) forms a martingale difference sequence with re-

spect to Ft−1 = {η1, η2, . . . , ηt−1}. This follows from observing that the rth block of φ (θ0, ηt),

denoted φr (θ0, ηt), takes the form

1 [t ∈ r] (vech (ηtη
′
t)− vech (HΣε,rH

′))

Then

E [φr (θ0, ηt) | Ft−1] = E [1 [t ∈ r] vech (ηtη
′
t) | Ft−1]− 1 [t ∈ r] vech (HΣε,rH

′)

=
Tr
T

(vech (Ση,r)− vech (HΣε,rH
′)) = 0

by Assumption 1.2. Finally, E |φ (θ, ηt)| < ∞ by Assumption 3.2, so φr (θ0) is a martingale

difference sequence. This means that, stacking the blocks, φ (θ, ηt) is a martingale difference

sequence. By Billingsley’s (1961) Ergodic Stationary Martingale Differences CLT, given
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Assumption 3.1,

1√
T

T∑
t=1

φ̄ (θ0, ηt)
d→ N

(
0, E

[
φ̄ (θ0, ηt) φ̄ (θ0, ηt)

′]) .
Note that

E
[
φ̄ (θ, ηt) φ̄ (θ, ηt)

′] = lim
T→∞

1

T

T∑
t=1

var (φ (θ, ηt))

= lim
T→∞

var

[
1√
T

T∑
t=1

(φ (θ, ηt))

]

= Vφφ (θ)

as required, where the second-last equality follows from the fact that cov (φ (θ, ηt) , φ (θ, ηs)) =

0, t 6= s by Assumption 1.2.

By definition, q̄ (·) = 0 deterministically; note that ∂φ(θ,ηt)
∂θ′

= −
∂
(
vech(ΣηC )

′
,vech(ΣηP )

′)′
∂θ′

=

E
[
∂φ(θ,ηt)
∂θ′

]
since q (·) contains only parameters and no data (the moment equations are

separable in data and parameters). This is true for any θ ∈ Θ; θ need not equal θ0. Thus

ψθ is a degenerate random variable. It remains to show that V (θ) is positive semi-definite.

Since all but the top left block, Vφφ (θ), will be zeros, it suffices to show that Vφφ (θ) is

positive semi-definite. This follows as Vφφ (θ0) has the form E
[
φ̄ (θ, ηt) φ̄ (θ, ηt)

′].
Lemma 2 establishes additional properties of the asymptotic variance.

Lemma 2. Under Assumptions 1 & 3, the covariance matrix estimator V̂ (θ0) satisfies

V̂ (θ0)
p→ V (θ0) and

∂vec(V̂φφ(θ0))
∂θ′

p→ ∂vec(Vφφ(θ0))
∂θ′

.

Proof. By the Ergodic Theorem (e.g., Karlin & Taylor (1975), Theorem 9.5.5) and Assump-

tion 3, the natural covariance estimator is consistent, 1
T

∑
φ (θ0, ηt)φ (θ0, ηt)

′ p→ E
[
φ (θ0, ηt)φ (θ0, ηt)

′].
Then

V (θ0) = lim
T→∞

var

[
1√
T
φT (θ0)

]
= lim

T→∞

1

T

T∑
t=1

var (φ (θ0, ηt)) ,
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by the same assumptions, which simplifies to E
[
φ (θ0, ηt)φ (θ0, ηt)

′] since cov (φ (θ, ηt) , φ (θ, ηs)) =

0, t 6= s by Assumption 1.2. Since q (θ, ηt) is deterministic, this establishes the first part.

For the second part, note that ∂V̂ φφ(θ0)

∂θ′
=

∂[ 1
T

∑T
t=1 φ(θ0,ηt)φ(θ0,ηt)

′]
∂θ′

= 1
T

∑T
t=1

[
∂φ(θ0,ηt)

∂θ′
φ (θ0, ηt)

′
]
.

∂φ(θ0,ηt)

∂θ′
is a matrix of zeros, ones, and continuous functions of elements of θ; it is de-

terministic. Similarly, ∂V φφ(θ0)

∂θ′
= E

[
∂φ(θ0,ηt)

∂θ′
φ (θ0, ηt)

′
]

= ∂φ(θ0,ηt)

∂θ′
E
[
φ (θ0, ηt)

′], and since
1
T

∑T
t=1 φ (θ0, ηt) is consistent for E

[
φ (θ0, ηt)

′], ∂Vφφ(θ0)

∂θ′
is consistently estimated by Slut-

sky’s Theorem.

Theorem 1 then follows directly from Kleibergen (2005). Lemmata 1 and 2 establish As-

sumptions 1 and 2 from that paper, under which his Theorem 1 holds. They also establish

the required conditions of Stock & Wright (2001) Theorem 2 so ST (θ0)
d→ χ2

n2+n. �

Proof of Theorem 2.

Proof. As above, Theorem 2 follows directly from Theorem 2 of Kleibergen 2005. Again,

this also implies ST (β0)
d→ χ2

pint
as an immediate corollary.

Proof of Theorem 3.

Proof. The proof follows from extending the argument of Proposition 4 in Sentana & Fioren-

tini (2001). They show that for a similarly partitioned H, the columns of HI are identified

to column order; Assumption 2 guarantees point identification. However, the columns of

HW are identified only up to an orthogonal rotation Q, QQ′ = Q′Q = I. HW contains at

least two columns. If HW contains two columns, then Q is 2 × 2. Consider first a single

fixed element of H(k), the subject of the null hypothesis for the subset test. Without loss of

generality, let it be H2k = x. This yields the system of equations



1 H1m

x 1

...
...

Hnk Hnm


 Q11 Q12

Q21 Q22

 =



1 H̃1m

x 1

...
...

H̃nk H̃nm


. (13)
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Placing H(k) and H(m) as the first and second columns, with the associated unit normal-

ization, is without loss of generality, as identification is only up to scale of each column.

Since Q is orthogonal, fixing column order, Q2
11 + Q2

21 = 1. Given this and the equa-

tion xQ11 + Q21 = x, Q11 and Q21 can be solved for where the sign is pinned down by

the unit normalization. This yields two solutions for Q11 and Q21: {Q11 = 1, Q21 = 0}

and
{
Q11 = x2−1

x2+1
, Q21 = 2x

x2+1

}
. However, using an additional equation implied by (13),

Q11 + H1mQ21 = 1, rules out the second solution unless H1m = 1/x. Generalizing away

from the case where H(k) and H(m) are the first two columns yields the first condition of the

theorem, Hkm 6= Hlm/Hlk. With Q11 and Q21 thus pinned down, the other column of Q is

unique, and thus the entirety of H is identified.

This argument extends to the case where the entirety of H(k) is fixed. Now, however, the

solution is unique unless Hlm/Hmm = Hlk/Hmk for all l, in which case column m is a scalar

multiple of column k, making H non-invertible, which is false by Assumption 1.1. Thus, the

solution when a full column of H is specified is unique.
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