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Abstract 

We investigate the factor structure of the term structure of interest rates and argue that 
characterizing the minimal dimension of the data generating process is more challenging than 
currently appreciated. As a result, inference procedures for yield curve models that commit to a 
parsimoniously parameterized factor structure may be omitting important information about the 
underlying true factor space. To circumvent these difficulties, we introduce a novel 
nonparametric bootstrap that is robust to general forms of time and cross-sectional dependence 
and conditional heteroskedasticity of unknown form. We show that our bootstrap procedure is 
asymptotically valid and exhibits excellent finite-sample properties in simulations. We 
demonstrate the applicability of our results in two empirical exercises: first, we show that 
measures of equity market tail risk and the state of the macroeconomy predict bond returns 
beyond the level or slope of the yield curve; second, we provide a bootstrap-based bias correction 
and confidence intervals for the probability of recession based on the shape of the yield curve. 
Our results apply more generally to all assets with a finite maturity structure.  
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1 Introduction

Risk factors are the fundamental building block of modern asset pricing models. In some asset

classes such as equities, there are ongoing debates about how many and what risk factors are

present. In contrast, the debate in the term structure literature appears largely settled in favor of

the first three principal components of yields – commonly referred to as level, slope and curvature

(see Piazzesi (2010), Gürkaynak and Wright (2012), Duffee (2013) for recent surveys). In this

paper, we argue that characterizing the true factor structure of the term structure of interest rates

is much more challenging than it appears and is widely believed. Common indicators of goodness

of fit such as explained variation or the interpretability of the factor loadings are less informative

than currently appreciated.

The dominant approach is to use principal components analysis (PCA) to estimate factors using

yields which are highly persistent. Recent work by Uhlig (2009) and Onatski and Wang (2018) has

shown that PCA produces spurious common variation when applied to nonstationary time series

with no factor structure. This suggest that yields are not good primitive processes for modeling

and extracting the relevant factor space. Instead, we follow the seminal work on common factors in

the yield curve by Litterman and Scheinkman (1991) and Garbade (1996) which recommends the

use of bond returns (see also Adrian, Crump, and Moench (2013), Goliński and Spencer (2017)).

However, even after removing the strong time-series persistence, we show that specific properties

of returns across maturities obfuscate the true minimal dimension of the underlying data generating

process. At the heart of this “identification” problem lies the extreme cross-sectional dependence

across maturities that produces a polynomial pattern in the eigenvectors of the covariance and

correlation matrices of these processes; strikingly, the eigenspace can be completely characterized

by the time to maturity and a single parameter which governs local correlations. This strong cross-

sectional dependence is reinforced by the natural ordering of maturities and plays an instrumental

role in generating these patterns, regardless of the underlying true factor space. We characterize

analytically, in a stylized setting, the factor structure in bond returns that arises from definitional

relationships in the term structure.

Guided by these results, we propose a nonparametric, model-free bootstrap procedure which is

robust to unknown factor structure, time and cross-sectional dependence, conditional heteroskedas-

ticity, and measurement error. This bootstrap procedure operates directly on the primitive objects

that are only weakly serially and cross-sectionally correlated. To achieve this we propose different

primitive processes defined as the difference between returns at adjacent maturities – returns on

a forward trade. Their resampled analogs are then used to reconstruct, conditional on an initial

forward curve, the entire yield curve via term structure identities. Thus, the simulated yield curve

preserves both the genuine as well as any mechanical dependence structure. We stress that our pro-

posed method differs from the typical approach (e.g., Giglio and Kelly (2017), Bauer and Hamilton

(2018)) that specifies yields as the primitive process, takes a stand on their factor structure and its

law of motion, and employs a fully parametric model of yields in terms of their assumed pricing

factors. As argued above, taking a stand on the number of factors is particularly challenging with

a panel of highly-persistent time series (Uhlig (2009), Onatski and Wang (2018)).
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In contrast, our method is fully nonparametric which enables valid resampling of yield curves

while maintaining a high degree of agnosticism about the underlying data generating process. We

prove that our bootstrap procedure is asymptotically valid under mild assumptions. Importantly,

our analyses and results translate directly to all other assets with a finite maturity structure such

as options, swaps, or futures.

We assess the finite sample properties of our bootstrap with respect to bond return predictability

regressions controlling for the first three principal components of yields as predictors. A key feature

of our bootstrap is that the resampled data naturally satisfies term structure identities ensuring that

any predictability in future returns (built from yields) and past yields or forwards is retained. We

generate persistent extraneous predictors and show that inference based on our bootstrap controls

size well even with multi-period holding period returns and modest sample sizes. This suggests

that our bootstrap is ideal both for settings where the predictors of interest are functions of the

yield curve themselves (e.g., Fama and Bliss (1987), Campbell and Shiller (1991), Cochrane and

Piazzesi (2005, 2008)) or other external predictors (e.g., Cooper and Priestley (2008), Ludvigson

and Ng (2009), Joslin, Priebsch, and Singleton (2014), Cieslak and Povala (2015), Ghysels, Horan,

and Moench (2018), Haddad and Sraer (2018)).

We then investigate bond return predictability in US Treasuries and show that measures of

equity market skew significantly predict bond returns, especially at the short end of the curve, even

when controlling for the first three principal components of yields. We also revisit the question

of whether macroeconomic variables, here proxied by nowcasts based on surveys of professional

forecasters, have predictive power for future bond returns beyond the level and slope of the yield

curve (e.g., Piazzesi and Swanson (2008), Ludvigson and Ng (2009), Joslin, Priebsch, and Singleton

(2014), Ghysels, Horan, and Moench (2018), Cieslak (2018)). We find that real GDP nowcasts,

in particular, show significant evidence of predictive power especially toward the short end of the

curve. In a separate application, we use our bootstrap method to bias-correct a probit model which

estimates the probability of a future recession using the term spread as the main predictor. We

also construct bootstrap-based confidence intervals for the probability of recession. We find that,

as of mid-October 2019, this probability is elevated, but below the peaks in the last two cycles.

This paper is organized as follows. In Section 2 we show, by examples, the difficulties in

characterizing the minimal dimension of the term structure of interest rates. In Section 3 we

introduce the nonparametric bootstrap procedure; we demonstrate its asymptotic validity under

general assumptions and its appealing finite-sample properties in a simulation exercise. Section 4

presents results from our empirical applications: Sections 4.1 and 4.2 provide evidence on bond-

return predictability while in Section 4.3 we construct bootstrap-based bias corrected estimates

and confidence intervals for the probability of contractions in real GDP growth based on the term

spread and other aspects of the term structure of interest rates. Section 5 concludes.
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2 Motivation

In this section, we discuss and illustrate the difficulties in accurately characterizing the minimal

dimension of the drivers of the term structure of interest rates. The source of these problems may

be traced back to the strong local correlation structure across maturities. We start by visualizing

the salient properties of interest rate data. Figure 1 plots yields (left) and excess returns (right)

for maturities up to ten years using data from Gurkaynak, Sack, and Wright (2007).1 The top left

graph demonstrates the high time-series persistence in yields that has received some attention in

the recent literature both in terms of the bias it induces on yield forecasts (Duffee 2011a) and term

premia estimation (Bauer, Rudebusch, and Wu 2012) as well as its effect on inference in predictive

regressions (Wei and Wright 2013; Cattaneo and Crump 2014; Bauer and Hamilton 2018). In

contrast, excess returns show limited evidence of time-series persistence (top right graph of Figure

1). That said, both series share a common property of disciplined co-movement across maturities

similar to the appearance of sedimentary rock. These key features of yields and returns inform the

methodological approach we propose in this paper.

Before proceeding, let us introduce some notation. Define p
(n)
t as the time t log price of a zero-

coupon bond which pays $1 at time t+ n, where t = 1, . . . , T and n = 1, ..., N . The corresponding

log yield is denoted by y
(n)
t and satisfies p

(n)
t = −ny(n)t . The log forward rate corresponding to a

one-period investment between t+ n− 1 and t+ n , f
(n)
t , is defined as

f
(n)
t ≡ p(n−1)t − p(n)t . (1)

Since p
(1)
t = 0, the one-period rate, y

(1)
t , may equivalently be written as f

(1)
t . Using the recursive

(in n) nature of equation (1) and the definition of yields, we have

p
(n)
t = −

∑n

i=1
f
(i)
t , y

(n)
t =

1

n

∑n

i=1
f
(i)
t . (2)

We observe that p
(n)
t and y

(n)
t are partial sums and partial averages of forward rates, respectively.

These formulas demonstrate that two yields, y
(n)
t and y

(m)
t , have min(m,n) forwards in common

(and the same for prices). This overlap, which arises solely from these term-structure identities,

implies differential behavior in the covariance or correlation matrix of forwards relative to yields

(or prices); in fact, prices, will always show stronger local correlation than forwards across the same

maturities.2

The one-period holding return on a bond of maturity n from time t to t+ 1 is defined as

r
(n)
t,t+1 ≡ p

(n−1)
t+1 − p(n)t . (3)

The corresponding excess return is then

rx
(n)
t,t+1 ≡ r

(n)
t,t+1 − y

(1)
t = r

(n)
t,t+1 − r

(1)
t,t+1. (4)

1See Appendix C for details on data used in this paper.
2This is true provided forwards are positively correlated across maturities (as is the case in practice).
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Figure 1. Properties of the Term Structure. The top row of this figure shows the time series dynamics of
bond yields (left column) and excess returns (right column) for maturities 1- to 40-quarters. The second and third
rows show the principal components loadings and scree plot based on the corresponding empirical covariance matrix
using data from Gurkaynak, Sack, and Wright (2007). The sample period is 1987Q1–2018Q4.
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1

The notation r
(n)
t,t+1 and rx

(n)
t,t+1 signifies that these returns are earned from the period t to t+ 1. In

the sequel, we will simplify notation to r
(n)
t+1 and rx

(n)
t+1, respectively. Observe that since returns are

defined based on changes in prices, they have two important properties: (i) the (approximate) time

differencing reduces the degree of persistence substantially; (ii) the overlapping nature of prices

relative to forward rates is directly inherited by returns. We can demonstrate the second property
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in a straightforward way by defining what we will refer to as a “difference return,”

dr
(n)
t+1 ≡ r

(n)
t+1 − r

(n−1)
t+1 = f

(n−1)
t+1 − f (n)t . (5)

Then it follows immediately that excess returns are a partial sum (along maturity) of dr
(i)
t+1,

rx
(n)
t+1 =

∑n

i=2
dr

(i)
t+1. (6)

It is instructive to contrast these definitional relationships with the current practice of extracting

principal components from yields and some stylized facts about the estimated factor loadings. It is

now ubiquitous to estimate the factor structure of the term structure by applying static principal

components analysis to yields across maturities (e.g., Piazzesi (2010, p.738)). The top right plot

of Figure 1 replicates the factor loadings for yields, based on the empirical covariance matrix, that

are widely documented in the term structure literature and gave rise to the nomenclature: level,

slope and curvature. In this particular sample, these first 3 principal components explain almost

100% of the cross-sectional variation of yields with only the first principal component explaining

in excess of 97.8% of the variation. It is tempting to conjecture that this apparent strong factor

structure of yields is due, at least partly, to their high time-series persistence.

Uhlig (2009) and Onatski and Wang (2018) argue convincingly that extracting principal compo-

nents from factorless, nonstationary data results in a spurious inference of a small number of factors

that absorb almost all of the data variation. Onatski and Wang (2018) show that for nonstationary

but cross-sectionally independent data, the first k principal components explain 100
∑k

j=1 6/(jπ)2

percent of the variation, asymptotically (or approximately 69.2% for the first three principal com-

ponents). To guard against this spurious factor problem, the data should be transformed to induce

stationarity such as first (time-series) differences, y
(n)
t − y(n)t−1, or bond returns. In fact, this was

precisely the approach taken in the seminal work of the literature (Litterman and Scheinkman

(1991) and Garbade (1996)) on extracting principal components from bond data. Figure 1 reveals

that bond returns also exhibit strong cross-sectional dependence and decomposing their covariance

matrix continues to be summarized by highly structured principal component loadings. Below, we

make the argument that the source of the polynomial structure in these loadings is partly due to

the built-in definitional structure (cross-sectional partial sums or averages) that continues to be

retained in the time-differenced variables (see equation (6)). In contrast, objects like difference

returns, do not feature this property.

Difference returns will play a prominent role in the bootstrap procedure we introduce later in

the paper. They are an appealing choice as a primitive object for the study of the term structure

for a number of reasons. First, they are free from any “mechanical” cross-sectional correlation

which is present in yields and returns. Second, they have a direct tradable interpretation as the

one-period return on a trade which simultaneously buys an n-maturity bond and sells an (n− 1)-

maturity bond. Finally, they are a fundamental building block of the yield curve as observed by
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the following identity,

f
(n)
t = f

(n)
t + f

(n+1)
t−1 − f (n+1)

t−1 + · · ·+ f
(N)
t−N+n − f

(N)
t−N+n (7)

= f
(N)
t−N+n − dr

(n+1)
t − dr(n+2)

t−1 − · · · − dr(N)
t−N+n+1. (8)

To provide more concrete intuition for the underlying mechanisms, we present analytical results

for a number of simple cases under different assumptions about the driving process for difference

returns. The setup we maintain in this section is purposefully simple; we abstract from such

generalities as measurement error, conditional heteroskedasticity, yield curve smoothing and so on.

We concentrate on simplicity in order to obtain analytical or approximately analytical results to

build intuition and ensure transparency of the results.

2.1 Analytical Factor Loadings and Explained Variation

We will now attempt to characterize analytically the factor loadings for excess returns and difference

returns in a few different cases. To preview some of the results, we show that the identities which

link different maturities give rise to a polynomial structure – expressed as perturbations of sine

and cosine functions. The familiar level, slope and curvature characterizations are the first three

polynomials in this representation.

2.1.1 Role of Overlapping Maturities in the Cross-Section

Consider equation (6) where holding-period excess returns of an n-maturity bond is the sum of

differenced returns from maturity 2 to n. This implies that excess returns of maturities n1 and

n2 will have min(n1, n2)− 1 differenced returns in common. The commonality of these differenced

returns then generates strong cross-sectional dependence of excess returns regardless of the under-

lying dependence structure of dr across the curve. A simple analogy to this is a moving average

of a time-series which produces a smoother, and hence more locally correlated, series than the

underlying process.

We can write equation (6) in a matrix form as

R = C1D,

where R is an N × (T − 1) stacked matrix3 of excess returns rx
(n)
t , D is an N × (T − 1) matrix of

stacked differenced returns dr
(n)
t , and C1 is an N ×N lower triangular matrix of ones. Thus, the

covariance matrix of R is VR = C1VDC
′
1, where VD is the covariance matrix of D. The loadings

from a principal component analysis of this matrix are given by the eigenvectors of VR with order

of importance based on their associated eigenvalues.

The next lemma aims at isolating the effect of partial summation on the loadings. For this

purpose, we assume that dr
(n)
t are mutually uncorrelated with a variance matrix proportional to

3In this section, for simplicity of presentation, we assume the maximum maturity is N + 1.
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the identity matrix IN so that VR = ωC1C
′
1, where ω is a constant of proportionality. Without

loss of generality, we assume that ω = 1. We acknowledge that this may be an unrealistic case but

it is instructive in understanding the effect of the definitional maturity relationship between rx
(n)
t

and dr
(n)
t on principal component analyses. Moreover, it enables a simple characterization of the

eigenvectors and eigenvalues of VR provided in the following lemma.4

Lemma 1. Suppose VR = C1C
′
1. Let λ1 ≥ . . . ≥ λn ≥ . . . ≥ λN denote the eigenvalues of the matrix

VR and (ϕ1, . . . , ϕn, . . . , ϕN ), where ϕn = (ϕ1,n, . . . , ϕN,n)′ for n = 1, . . . , N , be their corresponding

eigenvectors. Then, the eigenvalues of VR are given by

λn =
1

2 [1− cos ((2n− 1)π/(2N + 1))]
for n = 1, . . . , N.

Furthermore, the corresponding eigenvectors for VR are given by,

ϕj,n = sin

(
j(2n− 1)π

2N + 1

)
for j = 1, . . . , N and n = 1, . . . , N .

Proof. See Appendix B.

These expressions are related to the Karhunen-Loève approximation of a Wiener process (Shorack

and Wellner 1986), as N is allowed to go to infinity, and can be rewritten in alternative forms (see,

for example, Tanaka 1996). The important point is that the telescoping sum of independent dif-

ferenced returns induces an eigenfunction structure that is fully characterized only by the time to

maturity.

Figure 2. Principal Components Output: Excess Returns. The figure shows the output from principal
components analysis applied to the covariance matrix of excess returns where difference returns are assumed to have
covariance matrix proportional to an identity matrix and maximum maturity N = 40 based on Lemma 1. The left
plot shows the principal component loadings for the first three principal components; the right plot shows the
corresponding scree plot.
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Figure 2 illustrates the principal component loadings along with the scree plot for the setting of

4See also Lekkos (2000) for a numerical investigation of a similar setup for yields.
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Lemma 1. We observe that the factor loadings for holding-period returns take a highly structured

and parsimonious polynomial pattern. More importantly, the first three principal components

explain the bulk (in excess of 93%) of the cross-sectional variation of bond returns. This holds

despite the fact that the true process is described by N idiosyncratic factors in dr
(n)
t . To emphasize

this, the scree plot includes a line at 1/N which is the share of variance explained for each factor

when applied to the covariance matrix for difference returns. The shape of the loadings is nearly

indistinguishable from that of the empirical loadings in Figure 1 despite the fact that Lemma 1

makes the empirically implausible assumption of uncorrelated difference returns. In contrast, the

scree plot differs from its empirical counterpart. This issue will be addressed in Lemma 3.

2.1.2 Local Correlation in Differenced Returns

The assumption in the previous example that differenced returns are independent idiosyncratic

processes is unrealistic as it does not produce a smooth forward curve. In order to generate a more

realistic covariance structure, consider a discrete-time analog (Gáll, Pap, and van Zuijlen 2006) of

the random field model in Kennedy (1997), Goldstein (2000), and Santa-Clara and Sornette (2001).

Let Z+ be the set of positive integers and 4S(n)
t = S

(n)
t − S(n)

t−1, where {S(n)
t }t,n∈Z+ is a random

field which is characterized by two-dimensional (across time and maturity) stochastic string shocks.

Next, suppose that the forward rates evolve over time as

f
(n−1)
t+1 = f

(n)
t + α

(n)
t + σ

(n)
t 4 S

(n)
t+1.

Thus, forward rates of different maturities are driven by different processes 4S(n)
t+1.

5 To ensure that

the dynamics of forward rates is free of arbitrage opportunities, restrictions need to be placed on

{α(n)
t , σ

(n)
t }.

To ensure smoothness of the forward curve, S
(n)
t is assumed to satisfy

S
(n)
t = S

(n)
t−1 + ρS

(n−1)
t − ρS(n−1)

t−1 + ε
(n)
t ,

where |ρ| < 1, S
(−1)
t = S

(n)
0 = S

(−1)
0 = 0. The cross-sectional structure of 4S(n)

t is thus modeled

as a spatial AR(1) process,

4S(n)
t = ρ4 S

(n−1)
t + ε

(n)
t .

The parameter ρ controls the local correlation of differenced returns. Consider the simple case

where we assume the market prices of risk are constant over time and {ε(n)t } are jointly normally

distributed, mutually independent, with E[ε
(n)
t ] = 0 and V[ε

(n)
t ] = σ2 for all n ≥ 1. Then, under

no-arbitrage, Gáll, Pap, and van Zuijlen (2006) show that the covariance matrix VD of dr
(n)
t =

5When 4S(n)
t+1 is replaced by St − St−1, the model coincides with the Heath, Jarrow, and Morton (1992) where

the forward rates are driven by a single stochastic process.
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f
(n)
t − f (n+1)

t−1 has (i, j) element

C
(
dr

(i)
t , dr

(j)
t

)
=
σ2(ρ|i−j| − ρi+j)

1− ρ2
,

so that

VD =
σ2

1− ρ2
(
T (ρ)− ρ2 · H(ρ)

)
, (9)

where T (ρ) andH(ρ) are Toeplitz and Hankel matrices each with first row equal to (1, ρ, ρ2, . . . , ρN−1)

and H(ρ) has last row equal to (ρN−1, ρN , . . . , ρ2N−2). The following lemma presents an approx-

imation to the eigenvectors and eigenvalues of the covariance matrix of VD when ρ is close to

one.

Lemma 2. Let λ1 ≥ . . . ≥ λn ≥ . . . ≥ λN denote the eigenvalues of the matrix VD (given in

equation (9)) and (ϕ1, . . . , ϕn, . . . , ϕN ), where ϕn = (1, ϕ1,n, . . . , ϕN−1,n)′ for n = 1, . . . , N , be their

corresponding eigenvectors. Suppose that ρ is close to 1. Then, the eigenvalues λn are approximated

as

λn ≈
σ2

[1 + ρ2 − 2ρ cos ((2n− 1)π/(2N + 1))]
for n = 1, . . . , N

and the elements of ϕn are approximated as

ϕj,n ≈ (−1)j−1 sin

(
n(2j − 1)π

2N + 1

)
for j = 1, . . . , N and n = 1, . . . , N .

Proof. See Appendix B.

Lemma 2 shows that when ρ is in the vicinity of one, the loadings on the principal components

for differenced returns are fully predetermined perturbations of sine functions.6 The loadings on

the first three principal components are constant, linear and quadratic polynomials corresponding

to the level, slope and curvature effects. The approximations of the eigenvalues also show that,

when ρ is near unity, the first eigenvalue dominates and the level factor will account for the vast

majority of the cross-sectional variation in dr
(n)
t . However, the data are generated by N factors

and so the first few principal components are not sufficient to accurately span the true factor space

and consequently describe the driving forces of the term structure.

It is interesting to note that the eigenvectors of the Toeplitz matrix, T (ρ), in equation (9) are

analytically equivalent to the basis functions (the discrete cosine transform) in Müller and Watson

6Some earlier papers in mathematical finance (Forzani and Tolmasky 2003; Lord and Pelsser 2007; Salinelli
and Sgarra 2007) have alerted the finance literature of the sources of the level, slope and curvature effect and
their approximations as perturbations to sine functions. Lemma 2 provides more accurate approximations to the
eigenvectors when the persistence parameter ρ is close to one.
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(2008, 2018):

Ψn(s) = cos(nπs),

evaluated at s = (n−1/2)/N . Alternatively, implicit expressions of the eigenvalues and eigenvectors

of T (ρ) can be derived using the Karhunen-Loève approximation of an Ornstein-Uhlenbeck process.

Figure 3. Principal Components Output: Difference Returns. This figure shows the output from principal
components analysis applied to the variance-covariance matrix of difference returns shown in equation (9) for
ρ = 0.99 and maximum maturity N = 40 based on Lemma 2. The left plot shows the principal component loadings
for the first three principal components; the right plot shows the corresponding scree plot.
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Figure 3 presents the results of Lemma 2 in graphical form in the special case where ρ = 0.99

and N = 40. We again observe the familiar plot of level, slope and curvature as a function of

the maturity n = 1, . . . , N (left figure). In the right figure, we show the corresponding scree plot

associated with the 10 largest eigenvalues. The first component “explains” a little less than 80% of

the variation, the second component a little more than 10%, and the third component much less.

Moreover, it is important to emphasize that these expressions are functions of ρ and N only and

that excess returns are driven by N different processes.

2.1.3 Combined Case

We now turn to the more general covariance matrix of R

VR = C1VDC
′
1,

where VD has the special form in the previous section. The analytical characterization of the

eigenvalues and eigenvectors in this case is more challenging. Lemma 3 presents a general recursion

for obtaining the eigenvectors (loadings) of matrix VR. Let define the N × 1, (N − 1) × 1 and

(N − 2) × 1 vectors u, v and w, respectively, as follows. Let u1 = [1 + (1 + ρ)2]/σ2, uN = 1/σ2,

un = (1 + (1 + ρ)2 + ρ2)/σ2 for n = 1, ..., N − 1, vn = −(1 + ρ)2/σ2 for n = 1, ..., N − 2, vN−1 =

−(1 + ρ)/σ2, and wn = ρ/σ2 for n = 1, ..., N − 2.
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Lemma 3. Let λ1 ≥ . . . ≥ λn ≥ . . . ≥ λN denote the eigenvalues of matrix VR and ϕ1, ..., ϕn, ..., ϕN ,

where ϕn = (1, ϕ1,n, ..., ϕN−1,n)′ for n = 1, ..., N , be their corresponding eigenvectors. For a given

λn, the elements of ϕn are obtained as

ϕj+1,n = − vj
wj
ϕj,n +

1− ujλn
wjλn

ϕj−1,n −
vj−1
wj

ϕj−2,n −
wj−2
wj

ϕj−3,n

for j = 1, . . . , N − 2 with ϕ0,n = 1, ϕ−1,n = 0, ϕ−2,n(N) = 0, and ϕ1,n being a function only of ρ,

σ2, λn and n (see Appendix).

Proof. See Appendix B.

Figure 4. Principal Components Output: Excess Returns. This figure shows the output from principal
components analysis applied to the variance-covariance matrix of yields for ρ = 0.99 and maximum maturity
N = 40 based on Lemma 3. The left plot shows the principal component loadings for the first three principal
components; the right plot shows the corresponding scree plot.
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Since the eigenvectors are solutions to a difference equation, they can also be represented as

polynomial transformations of the persistence parameter ρ and the maturity N (as in Lemma 2).

Figure 4 shows the principal components output based on the lemma. The first thing to note is

that the shape of the loadings is largely unchanged as compared to Figure 2. Strikingly, now both

the loadings and the scree plot in Figure 4 are essentially indistinguishable from their empirical

counterparts in the right column in Figure 1.7 It is important to emphasize, once again, that the

true data generating process has N factors.

In all of these examples, the polynomial pattern of the loadings goes beyond the first three

principal components and characterizes the whole factor space of the term structure (see the Sup-

plemental Appendix for a numerical illustration). This suggests that the conventional metrics of

the factor structure in yields – loadings, explained variation etc. – are not as informative as it

was previously believed. This can be interpreted as an “identification problem” because, for given

ρ and N , we observe that factor loadings and explained variation are not necessarily indicative

about the underlying factor structure which generated the data. This echoes with the difficulties in

7See also Figure 1 in Litterman and Scheinkman (1991). Recall that eigenvectors are unique up to a sign trans-
formation.
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identifying the true factor space discussed elsewhere (e.g., Brown (1989)) and argues against taking

a strong stand on the exact factor structure of yield data when evaluating term structure models

and simulating the yield curve.

So how consequential is the extraction of a small number of principal components on subsequent

analyses? It depends on the purpose of the analysis. If the goal is dimension reduction, using

a small number of principal components may be sufficient while caution must still be exercised

in interpreting the loadings and emphasizing goodness-of-fit metrics. On the other hand, if the

interest lies in inference, committing to a tightly parameterized, finite-dimensional factor structure

may result in omission of important information embedded in more primitive transformations of

the yield data.

It should be stressed that none of these points is specific to the term structure of interest rates

and they would apply to other term structures as well (options, swaps, futures etc.). The Supple-

mental Appendix contains extensive evidence of level-slope-curvature effects in various maturity-

ordered asset markets such as oil futures, currency futures, inflation swaps, S&P500 options, divi-

dend prices as well as evidence on international term structures of interest rates. The commonality

across these examples is the natural maturity ordering inherent in these assets along with the strong

local correlation. These types of covariance matrices can arise in a non-financial context as well

and this is illustrated in the Supplemental Appendix with weather data.

Remark 1. The results in the previous sections call into question the ease with which we designate a

factor as either “spanned” or “unspanned” (Duffee (2011b), Joslin, Priebsch, and Singleton (2014))

as the distinction necessarily relies on an accurate characterization of the true factor structure of

the data. �

3 Bootstrap Inference in Bond Predictive Regression

In this section, we introduce our bootstrap procedure and study its theoretical and finite-sample

properties. The motivation for the bootstrap is to improve inference in common empirical settings in

the asset pricing literature such as predictive return regressions to test the expectations hypothesis

or estimate risk premia, or robust inference in parametric models of the term structure. Our

proposed resampling procedure can also be used for generating conditional future paths of yields or

other yield-related variables as well as measures of sampling uncertainty around projected paths.

This can be employed, for example, in forecasting, policy analyses, or the computation of option-

adjusted spreads.

3.1 Bootstrap Procedure

In this section, we propose a model-free, nonparametric resampling procedure that remains agnostic

about the exact factor structure in the data, possible presence and type of measurement errors,

and the form of time series dependence. Guided by the arguments presented in the previous

sections, the bootstrap procedure resamples the primitive objects dr
(n)
t , augmented with the longest

horizon forward rate f
(N)
t . Equation (8) implies that if we observe the longest horizon forward

12



rate,
{
f
(N)
t

}T
t=2

, all difference returns,
{

(dr
(2)
t , . . . , dr

(N)
t )

}T
t=2

along with an initial forward curve,(
f
(1)
1 , . . . , f

(N)
1

)
, we are able to construct

{(
f
(1)
t , . . . , f

(N)
t

)}T
t=1

and
{(
y
(1)
t , . . . , y

(N)
t

)}T
t=1

.8 Thus,

conditional on an initial forward curve, we may re-sample the N -maturity forward and the difference

returns to generate bootstrap samples of the whole yield curve. Reconstructing the yield curve via

these identities allows the bootstrap procedure to mimic the salient features, such as time-series

and cross-sectional dependence, of the bond data that we observe in practice.

3.1.1 Bootstrapping the Yield Curve

Assume that f
(1)
1 , f

(2)
1 , ..., f

(N)
1 are given. Next, we stack f

(N)
t+1 and dr

(n+1)
t+1 , n = 1, ..., N − 1 and

t = 1, ..., T − 1, into the matrix

Z =



f
(N)
2 dr

(2)
2 dr

(3)
2 ... dr

(N)
2

f
(N)
3 dr

(2)
3 dr

(3)
3 ... dr

(N)
3

... ... ... ... ...

f
(N)
t dr

(2)
t dr

(3)
t ... dr

(N)
t

... ... ... ... ...

f
(N)
T dr

(2)
T dr

(3)
T ... dr

(N)
T


.

We impose regularity conditions (stationarity and ergodicity) on the multivariate process zt =

(f
(N)
t , dr

(2)
t , ..., dr

(N)
t )′ that would guarantee validity of the block bootstrap. The bootstrap samples

{z∗t } for t = 2, ..., T are then obtained by drawing with replacement blocks of m = mT ∈ Z+

(1 ≤ m < T ) rows (time series dimension) from matrix Z, jointly for all cross-sectional observations.

This resampling structure allows for unknown forms of (possibly strong) cross-sectional dependence.

Importantly, while the bootstrap can capture and preserve a strong common factor structure in

the data, it remains agnostic to the precise source of cross-sectional dependence. It also deals with

general forms of serial correlation provided that the time series dependence is of mixing type. Since

the bootstrap is model-free, as it does not impose a particular model for generating the data, it is

also robust to possible model misspecification.

Let zt be the t-th row of the data matrix Z above. Also, let Bt,m = (zt, zt+1, ..., zt+m−1)

denote a block of m consecutive observations of zt, k = [T/m], where [a] signifies the largest

integer that is less than or equal to a, and T = km. We resample with replacement k blocks from

(B1,m, B2,m, ..., BT−m+1,m) by drawing k iid uniform random variables [u1], ..., [uk] on (1, k + 1).

Then, the bootstrap sample is given by Z∗ = [(z∗1 , z
∗
2 , ..., z

∗
m), (z∗m+1, z

∗
m+2, ..., z

∗
2m), ..., (z∗

T−m,

z∗
T−m+1

, ..., z∗
T

)] = (B[u1],m, B[u2],m, ..., B[uk],m). To induce stationarity in the bootstrap world,

we use the circular block bootstrap that “wraps” the data (Politis and Romano (1994)). This

is intended to rectify the heterogeneous nature of the distribution of z∗t . The block size m is

determined as in Politis and White (2004) for each individual series. We then take the maximum

block size across all series and use this conservative choice to construct the blocks {Bt,m}T/mt=1 .

Given the bootstrap sample {f (N)∗
t , dr

(2)∗
t , ..., dr

(N)∗
t }, the bootstrap forward rates with matu-

8For t ≤ N + 1, we can obtain forwards by directly relying on the recursive relationship, f
(n)
t = f

(n+1)
t−1 − dr(n+1)

t .
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rities 1 to N − 1 periods are constructed for t = 1, ..., T − 1 as9

f
(N−1)∗
t+1 = f

(N)∗
t − dr(N)∗

t+1

f
(N−2)∗
t+1 = f

(N−1)∗
t − dr(N−1)∗t+1

...

f
(1)∗
t+1 = f

(2)∗
t − dr(2)∗t+1 .

Finally, the bootstrap yields are obtained as y
(n)∗
t = 1

n

∑n
i=1 f

(i)∗
t for n = 1, ..., N and t = 2, ..., T .10

Because the resampled Z∗ could be used for simulating the entire yield curve, it is desirable to

establish first that the bootstrap approximates accurately the key moments of the true distribution.

Since in term structure data the cross-sectional dimension N is generally a nontrivial fraction of

the sample size T , it is convenient to allow N to be a function of T (see also Valkanov (1998) for

a similar parameterization). Given this panel structure of the data, the conditions for bootstrap

validity follow closely those in Gonçalves and White (2002) and Gonçalves (2011).

Using the notation above, we first provide a definition of {znt} as a mixing process. Let

Fn,t−∞ = σ(..., Zn,t−1, Zn,t) and Fn,∞t+k = σ(Zn,t+k, Zn,t+k+1, ...) denote the sigma-fields generated

by the corresponding set of random variables and, for each n,

αn(k) = sup
t

sup
A∈Fn,t−∞,B∈F

n,∞
t+k

|P (A ∩B)− P (A)P (B)|

Then, for each n, the random process {znt} is α-mixing if αn(k) → 0 as k → ∞. Let ‖znt‖p ≡
(E|znt|p)1/p denote the Lp norm of a random vector, where |znt| is its Euclidean norm.

Assumption A1. Assume that

(A1.a) for each n = 1, ..., N , {znt : t = 1, ..., T} are the realizations of a stationary α-mixing process

with mixing coefficients αn(k) such that supn αn(k) ≤ α(k), where α(k) = O(k−λ) for some

λ > (2 + δ)(r + δ)/(r − 2), r > 2 and ε > 0;

(A1.b) for some r > 2 and ε > 0, ‖znt‖r+ε ≤ ∆ <∞ for all n and t;

(A1.c) VN,T = 1
NT

∑N
n=1

∑T
t=1E[(znt−E(znt))(znt−E(znt))

′] is positive definite uniformly in N,T ;

(A1.d) N is a non-decreasing function of T ;

(A1.e) mT →∞ and mT = o(T 1/2).

Assumption (A1.a) imposes restrictions on the time series dependence without any constraints

on the cross-sectional dependence. It allows for heterogeneous, but uniformly bounded, serial

9In practice, the longest maturity of interest Ñ is often shorter than the longest maturity of the available data N
(say Ñ = 40 versus N = 60 or 80 for quarterly maturities). In this case, we still start with the longest maturity in
the data and discard the last N − Ñ forwards. This helps to reduce the sensitivity of the procedure to the choice of
forward rate.

10Another possibility is to replace f
(N)
t in Z by the residuals from an AR(1) process for f

(N)
t and then re-whiten

the bootstrap residuals to obtain f
(N)∗
t .
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dependence across the different series. Stationarity along the time-series dimension can be further

relaxed by allowing for some types of time heterogeneity. Assumption (A1.b) requires uniform

moment bounds. Assumption (A1.d) subsumes the standard case when N is fixed and T → ∞;

however, it also allows for N →∞ and T →∞ which proves to be a useful statistical device when

the cross-sectional dimension is large relative to T . Assumption (A1.e) states that the block size

mT is allowed to grow with T but at a slower rate than T 1/2.

In what follows, P ∗ denotes the probability measure induced by the bootstrap resampling,

conditional on the data. Also, for a sequence of bootstrap statistics Z∗NT , Z∗NT
P ∗→ 0 in probability

signifies that for any ε > 0, δ > 0, limN,T→∞ P [P ∗(|Z∗NT | > δ) > ε] = 0.

Lemma 4. Under Assumption A1, (a) 1
NT

∑N
i=1

∑T
t=1(z

∗
it − zit)

P ∗→ 0 in probability, and (b)

limN,T→∞ P [P ∗(|V̂ ∗N,T − VN,T | > δ) > ε] = 0 for any ε > 0, δ > 0.

The result in Lemma 4 is to demonstrate that the proposed model-free bootstrap mimics well

the first two moments of the true distribution of the data. This is useful when bootstrapping the

unconditional distribution of the entire yield curve.

3.1.2 Predictive Regression Inference

In addition to simulating the yield curve, we are often interested in testing hypotheses related to

the term structure of interest rates: testing the expectations hypothesis, running predictive return

regressions to estimate or study risk premia, etc. For example, suppose that the interest lies in a

predictive regression of an individual excess return, wt+h = rx
(n)
t+h, or a cross-sectional average of

bond returns, wt+h = 1
#Ns

∑
n∈Ns rx

(n)
t+h, Ns ⊆ {2, . . . , N}, on a k-vector of predictors xt. If xt are

stationary processes, we augment the matrix Z with xt and denote the new matrix by Z̃ so that

its t-th row is given by z̃t = (f
(N)
t , dr

(2)
t , ..., dr

(N)
t , x1t, ..., xkt)

′.11

This matrix is resampled using a moving block bootstrap as described above to obtain Z̃∗.

The bootstrap sample {∆f (N)∗
t , dr

(2)∗
t , ..., dr

(N)∗
t } is used for reconstructing forwards, yields and

bond returns w∗t and so respects the yield curve relationships between all variables. The bootstrap

external predictors X∗ are the last k columns of Z̃∗, constructed as X∗ = [(x∗1, x
∗
2, ..., x

∗
m), (x∗m+1,

x∗m+2, ..., x
∗
2m), ..., (x∗

T−m, x
∗
T−m+1

, ..., x∗
T

)]. The bootstrap OLS estimator in the predictive

regression is given by

β̂∗ =

(
T−h∑
t=1

(x∗t − x̄∗)(x∗t − x̄∗)′
)−1(T−h∑

t=1

(x∗t − x̄∗)(w∗t+h − w̄∗)′
)
,

where x̄∗ = (T − h)−1
∑T−1

t=1 x
∗
t and w̄∗ = (T − h)−1

∑T−h
t=1 w∗t+h.

Let εt+h = wt+h−α−x′tβ. To show that the quantiles of the bootstrap distribution of
√
T (β̂∗−β̂)

approximate well, in some metric, the quantiles of
√
T (β̂ − β), we need to strengthen Assumptions

(A1.a) and (A1.b) and expand them to include εt+h and xt.

11Alternatively, one could use a parametric model (VAR, for example) for describing the dynamics of xt and replace
xt in Z̃ with the residuals from this model.
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Assumption A2. Assume that

(A2.a) {(x′t, εt+h) : t = 1, ..., T} are the realizations of a stationary α-mixing process with mixing

coefficients α(k) = O(k−λ) for some λ > 4/(r − 2), r > 2;

(A2.b) for some r > 2 and ε > 0, ‖xt‖2(r+ε) ≤ ∆ <∞ and ‖εt+h‖2(r+ε) ≤ ∆ <∞ for all t;

(A2.c) AT = 1
T

∑T−h
t=1 (xt − E(xt))(xt − E(xt))

′ is uniformly nonsingular in T ;

(A2.d) BT ≡ Var
(
T−1/2

∑T−h
t=1 (xt − x̄)εt+h

)
is O(1) and det(B) > ε for any ε > 0 and for T

sufficiently large.

Theorem 1. Under Assumptions A1 and A2, we have that for any ε > 0,

P

(
sup
x∈Rk

∣∣∣P ∗ (√T (β̂∗ − β̂) ≤ x
)
− P

(√
T (β̂ − β) ≤ x

)∣∣∣ > ε

)
→ 0.

Proof. See Appendix B.

The result in Theorem 1 allows the construction of bootstrap percentile confidence intervals for

β with asymptotically correct coverage probabilities. We construct 100(1−α)% confidence intervals

for β using Efron’s percentile method defined as

Cα(β) =
[
β̂∗(α/2), β̂

∗
(1−α/2)

]
,

where β̂∗(α) denotes the α-th quantile of the bootstrap distribution of β̂∗. While the percentile-

t method is theoretically preferable, it requires a heteroskedasticity and autocorrelation (HAC)

consistent estimator of the variance matrix. Given the extreme persistence of some of the predictors

in these regressions, the finite-sample properties of existing HAC estimators are not reliable and so

we do not explicitly consider the percentile-t method.

Remark 2. We may also consider the case where future returns are predictable based on current

(or lagged) forwards or yields in addition to the variables xt. For example, such predictors could

be a long-maturity interest rate or forward rate, the spread between a long-maturity and short

maturity yield or forward (e.g., Fama and Bliss (1987), Campbell and Shiller (1991)), a linear

combination of yields (e.g., Joslin, Singleton, and Zhu (2011)) or forwards (e.g., Cochrane and

Piazzesi (2005, 2008)). Let us collect these variables in the vector gt. Then we have,

(
φ̂∗′, β̂∗′

)′
=

(
T−h∑
t=1

(x∗gt − x̄∗g)(x∗gt − x̄∗g)′
)−1(T−h∑

t=1

(x∗gt − x̄∗g)(w∗t+h − w̄∗)′
)
, (10)

where xgt = (g′t, x
′
t)
′, x̄g = (T − h)−1

∑T−h
t=1 xgt, and φ is the predictive coefficient associated with

the yield-based predictors; x∗gt, x̄
∗
g, and φ∗ correspond to their bootstrapped counterparts. The

variables g∗t are formed from the resampled yield curves just as w∗t and so all identities between
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forwards, yields, returns, and holding-period returns are guaranteed to hold in each bootstrapped

sample. This internal consistency is vital to ensure that bootstrap-based estimation and inference

can successfully approximate the stochastic behavior of the particular object of interest in each

application. We can thus conduct inference on
(
φ̂∗′, β̂∗′

)′
with a resampling procedure tailored to

this setting. For clarity of presentation we show results in this section assuming the only predictors

are xt but our results also cover this more general case. �

Remark 3. The coverage rates of the bootstrap can be further improved by an equal-tailed dou-

ble bootstrap. Suppose the first-stage bootstrap uses B1 bootstrap replications and let, for βi

(i = 1, ..., k), Cλi(βi) =
[
β̂∗i,(1−λi), β̂

∗
i,(λi)

]
for some 1/2 < λi < 1. For each first-stage bootstrap

replication j (j = 1, ..., B1) and using the same resampling procedure, generate a vector of B2

estimates β̂∗∗i,j = (β̂∗∗j,1, ..., β̂
∗∗
j,B1

) Then, solve for

λ̂i = arg minλi
1

B1

B1∑
j=1

I
{
β̂∗∗i,j ∈ Cλi(βi)|λi

}
> 1− α.

The adjusted double bootstrap is then constructed as
[
β̂∗
i,(1−λ̂i)

, β̂∗
i,λ̂i

]
(see McCarthy, Zhang,

Brown, Berk, Buja, George, and Zhao (2018)). This is repeated for all βi (i = 1, ..., k). �

The advantages of our proposed bootstrap method can be better appreciated by pointing out

some of the empirical regularities of bond prices (and their transformations) that make mimicking

the original data so challenging. First, there is the high time-series and cross-sectional persistence

in yields. The Supplemental Appendix reports evidence on the magnitude of the time-series and

cross-sectional dependence in yields, forwards and returns. While transformations of bond yields,

such as bond returns, remove the strong serial correlation in the yield data, they are still strongly

cross-sectionally correlated.

A bigger challenge, in our view, for statistically modeling and bootstrapping directly yields

is their extreme cross-sectional dependence. Part of this dependence is mechanistic (arising from

telescoping sums and averages of primitive processes) but so strong that it could overwhelm and

obscure the relevant information in the primitive objects. Instead, our bootstrap procedure op-

erates on the primitive objects and then recovers the mechanistic time-series and cross-sectional

characteristics of the original data. This is the main message of this paper.

Finally, bond returns exhibit substantial predictability using past yield and forward rate infor-

mation (see Remark 2). A standard model-based bootstrap procedure faces a number of difficulties

in bootstrapping data in an internally consistent fashion that will replicate this predictability as well

as the other time-series and cross-sectional properties of the yield data. Our proposed bootstrap

method provides this internally consistent method for mimicking the salient properties of the data

by accommodating unknown forms of factor structure, time-series persistence and cross-sectional

dependence.

17



3.2 Small Sample Evidence

We report the results of a Monte Carlo experiment to assess the finite-sample properties of our

proposed bootstrap procedure. To simulate the time series and cross section of yields we follow the

conventional affine setup with y
(n)
t evolving as

y
(n)
t = a(n) + b(n)′gt + η

(n)
t , n = 1, . . . , N, (11)

where the factors, gt, follow a VAR(1),

gt = µ+ Φgt−1 + vt, t = 1, . . . , T. (12)

We impose that (η(1), . . . , η(N))′ and vt are independent, mean-zero Gaussian random vectors with

variance matrices σ2η · In and Σv, respectively. We estimate the parameters of the data-generating

process (DGP) using monthly and quarterly data on zero-coupon yields expressed in annualized

percent obtained from Liu and Wu (2019)12 and STRIPS, respectively (see Appendix C for full

details about our data sources). The STRIPS data is at quarterly frequency for the period 1989:Q3-

2018:Q1 (115 times series observations) with consecutive maturities from 1 to 40 quarters. The

Liu and Wu (2019) data is at monthly frequency and we use the subsample 1990:M1-2018:M9 (345

time series observations) with consecutive maturities from 1 to 120 months to calibrate the DGP.

We extract the first three principal components of yields as our factors and then obtain all

necessary parameter estimates from subsequent linear regressions. For the measurement error

standard deviation, ση we use the sample estimate. Although the results in Section 2 imply that

we should be uneasy making strong parametric assumptions in the context of the yield curve, this

is the standard setup in the literature and so is apt for our simulation experiment. However, it is

important to emphasize that our resampling procedure does not use any information about how

the simulated data were generated; we remain fully nonparametric. The available procedures (e.g.,

Bauer and Hamilton (2018)) are parametric in nature as they exploit the assumed “true” model

and factor structure of the data.

Our aim is to conduct inference on the regression coefficients in the linear predictive model,

rx
(n)
t+h = α(n) + β(n)′gt + γ(n)′xt + ε

(n)
t+h, (13)

where rx
(n)
t+h are the excess h-period holding returns on an n-maturity bond,

rx
(n)
t+h = p

(n−h)
t+h − p(n)t − y

(h)
t . (14)

In our DGP, β(n) 6= 0 while γ(n) = 0 for n = 1, . . . , N .

To generate our extraneous predictors, xt, we consider three processes: (i) a univariate autore-

gression based on the CBOE Skew Index at a monthly frequency; (ii) a bivariate VAR(1) based

on current quarter forecasts of real GDP growth and CPI inflation from the Blue Chip Financial

12We thank the authors for sharing these data.
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Forecasts (BCFF) Survey at a quarterly frequency; (iii) two independent random walks. The first

two sets of predictors ((i) and (ii)) are fairly persistent with eigenvalues of the autoregressive ma-

trix of 0.75 and 0.49 (specification (i)), and an autocorrelation coefficient of 0.86 (specification (ii)),

respectively. We estimate the joint variance matrix of the innovations to the yield factors and these

autoregressive processes to replicate correlations observed in the data. The final set (iii) allows

us to assess how our inference procedure performs when concerns about spurious rejections are of

paramount importance. It is important to note that in this case, our assumptions introduced in

Section 3.1 do not hold; however, this is a natural setup to explore the robustness properties of our

proposed method.

We generate 5, 000 replications using B = 499 bootstrap repetitions and report empirical size

for the null hypothesis that each element in γ(n) is equal to zero. The bootstrap is implemented

as described in Section 3.1 in a fully nonparametric and data-driven way by block resampling the

matrix Z and then reconstructing the entire yield curve {y(n)∗t } for t = 1, ..., T and n = 1, ..., N .

Using the resampled data, we construct 100(1− α)% bootstrap confidence intervals for the factors

and the extraneous predictors and the empirical rejection rates are constructed by evaluating if

these confidence intervals contain 0. To choose m, we use the optimal block size proposed by Politis

and White (2004). Appendix A provides full details on implementation of the bootstrap.

First, consider specification (i). The DGP is calibrated to monthly data so we report results

based on sample sizes of T ∈ {350, 700} and consider forecast horizons of one month (h = 1), six

months (h = 6), and one year (h = 12). Table 1 reports rejection rates from simulations based on

a sample size of T = 350. The leftmost columns report results for a choice of 10% nominal size

(α = 0.1). The first three columns report rejection rates for β(n), the coefficients associated with

the factors. As the true values of these coefficients are non-zero these columns represent power.

The fourth and fifth columns, conversely, represent empirical size as the true value of γ(n) is zero for

all elements. For parsimony, we report results for three selected maturities (2-year, 6-year, 10-year)

in the first three rows and cross-sectional average holding-period returns across all maturities in

the fourth row. The rightmost columns record the corresponding results for a choice of 5% nominal

size (α = 0.05).

For both T = 350 and T = 700, we observe that the empirical size of the external predictor

(column “reg”) is very close to nominal size across maturities and forecast horizons, with only a

slight over-rejection rate. We emphasize that the overlapping nature of these returns (for h >

1) produces strong serial correlation in the left-hand side variable. With predictors which are

also persistent, minimizing size distortion becomes increasingly difficult. Despite this challenging

predictive regression design, the bootstrap appears to provide a very accurate approximation to

the finite-sample distribution of γ̂(n).

In terms of power, we observe reasonably high rejection rates for the first and second (level

“L” and slope “S”) factor; in contrast, the third (curvature “C”) factor has much weaker power

properties with rejection rates below nominal size. This comes about because the third factor is

responsible for only negligible predictability in the actual data complicating statistical discrimi-

nation of the null versus the alternative. When we increase the sample size to T = 700 ( Table
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2), rejection rates for the “L” and “S” factors rise correspondingly. Most importantly, we observe

excellent size control for the external (Skew Index) predictor with empirical rejection rates only

marginally different from nominal size.

To assess the role of multiple extraneous predictors, specification (ii) considers two correlated

regressors based on survey data “nowcasts” for CPI inflation and real GDP growth. Table 3 reports

results for T = 115 and 500, and forecast horizons of one quarter (h = 1), one year (h = 4) and a

year and a half (h = 6).

Despite the small sample size (T = 115), the empirical size of the extraneous predictors (“reg1”

is CPI inflation and “reg2” is GDP growth) is close to the nominal size with the bootstrap confidence

intervals being slightly liberal for short-maturity (2-year) returns. As in Tables 1 and 2, the power

of the first two factors (“L” and “S”) improves substantially with the sample size while the third

factor exhibits no power due to its small predictive coefficient and its correlation structure with

the external predictors (see Table 4). Given the highly challenging nature of this simulation design

and the small sample sizes, the performance of the bootstrap method is very reassuring.

Table 5 reports the analogous results of Table 3 but for the case where the extraneous predictors

are two independent random walks. The bootstrap again exhibits excellent size properties despite

the presence of unit roots in the predictors. Most importantly, we control size even in the case of one-

year holding period returns when concerns about “spurious regression” results are most heightened.

When T = 500, shown in Table 6, the confidence intervals for the random walk predictors are

somewhat conservative since the selected block size is too small to mimic the underlying true

persistence in the data.

As an additional robustness check we consider predictive regressions replacing the left-hand

side variable, holding period returns, with rx
(n)
t+1 + · · ·+ rx

(n)
t+h. Although this measure of h-period

returns is perhaps less practically relevant, it more closely aligns with the conventional overlapping

dependent variable structure which has been extensively studied in the literature (e.g., Hodrick

1992, Wei and Wright 2013, Adrian, Crump, and Vogt 2019). In the Supplemental Appendix

we show the corresponding results for this measure of returns (note that the two measures are

equivalent for h = 1). Again, across all specifications and for each set of predictors, we observe

excellent size control even in the extreme case of extensive overlapping observations and random

walk predictors.

4 Empirical Analyses

In this section we apply our bootstrap procedure to bond return predictability regressions for U.S.

Treasuries. We estimate predictive regression models of the form given by equation (13) where

the first set of regressors, gt, include the first three principal components of yields. As we have

previously discussed, because the left-hand side variable rx
(n)
t+h and gt are both constructed directly

from the term structure of interest rates at different time periods, it is vital to have a resampling

procedure which respects the relationship between returns and yields in an internally consistent

way.
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We have two applications. First, we show that a simple measure of tail risk, the CBOE skew

index,13 significantly forecasts future bond returns even after controlling for the current level of

interest rates along with the slope and curvature of the current yield curve. Second, we revisit the

question of whether macroeconomic variables, here proxied by nowcasts based on survey data, have

predictive power for future bond returns. We find that this is indeed the case.

In this section, we also revisit the predictive power of the yield curve, through the term spread

or other measures, for future recessions. We demonstrate that estimates of the probability of a

future recession can be bias-corrected straightforwardly using the bootstrap procedure introduced

in Section 3. In addition, we provide valid bootstrap-based confidence intervals for the probability

of a future recession. We find that current estimates of the probability of recession are elevated

with reasonably tight confidence intervals.

4.1 Bond Returns and the CBOE Skew Index

For this application, we calculate holding period returns and principal components of yields using

monthly data from Liu and Wu (2019) and consider forecasting horizons of h = 1, 2, 3, 6, 9, and 12.

For the bootstrap implementation, we choose m as described in Appendix A and perform B = 999

bootstrap replications. Our sample spans the period 1990:M1–2018:M9 and, at times, we restrict

it to a pre-crisis sample defined as 1990:M1–2007:M12.14

We begin by characterizing the evidence of predictability by the CBOE skew index for our

sample. Figure 5 displays the bootstrap-based p-values15 associated with the skew index for each

maturity from h + 1 through N = 120. For clarity of presentation, we truncate p-values at 0.3

in these plots. We observe that across all forecast horizons, for shorter maturities up to around 3

years, there is strong evidence of bond return predictability based on the skew index. At very short

horizons, especially, p-values are well below 0.05.16 In contrast, at longer horizons, the evidence of

predictability dissipates and the p-values rise over the truncation point of 0.3 at about the five-year

maturity and beyond.

In Figure 6 we show the corresponding p-values for the first three principal components. Recall

that in the simulation results, the data generating process was characterized by bond returns

which were predictable by lagged principal components of yields, by definition. In our empirical

application this is, of course, not ensured and the nonparametric nature of our bootstrap allows

us to remain agnostic on this point. We first observe in Figure 6 that the first two principal

components show signs of predictability for bond returns, especially at longer maturities and for

longer forecasting horizons. For example, when h ≥ 6 and for maturities longer than 4–5 years,

these two factors are statistically significant at (at least) the 10 percent level. In contrast, at shorter

13As a robustness check, we also use a simple alternative tail risk measure, the spread between the VIX and the
VXO. The results are very similar as those described in this section (available upon request).

14We do not impose that our bootstrapped samples satisfy the zero-lower bound.
15Specifically, we calculate the p-value as 2 min

(
1
B

∑B
b=1 1{γ̂

(n)∗
b ≤ 0}, 1

B

∑B
b=1 1{γ̂

(n)∗
b > 0}

)
, where 1{·} denotes

the indicator function and γ̂
(n)∗
b is the bth bootstrap-based estimate of γ(n) (see MacKinnon (2009)).

16The simulation results presented in Section 3.2 provide reassurance that properties such as the persistence of
holding period returns, generated by the overlapping time periods, or the persistence of the principal components or
the skew index, do not generate size distortions in our tests.
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forecasting horizons the evidence for predictability based on the first two principal components is

much more limited as judged by conventional significance levels. Finally, we observe that the third

principal component is associated with p-values that are above the truncation point, 0.3, across all

maturities and all 6 forecasting horizons.

Next, we restrict the sample to observations prior to the financial crisis. Figure 7 shows that in

this earlier period the statistical evidence for bond return predictability based on the skew index

was even stronger than for the full sample. For forecast horizons between two and six months ahead,

p-values are almost uniformly below 0.05 for all maturities (and below 0.1 for h = 1). For forecast

horizons of h = 9 and 12 months, the return predictability is concentrated in shorter maturities as

was the case for the full sample. For maturities and forecast horizons where we observe statistically

significant predictability the coefficient associated with the skew index is negative. This is, for

example, consistent with a flight-to-safety interpretation: when tail risk increases, contemporaneous

bond returns rise and expected returns fall (see discussion in Adrian, Crump, and Vogt (2019)).

Last, Figure 8 shows the p-values associated with the coefficients on the first three principal

components for the pre-crisis sample. As in the full sample, any evidence of predictability is

concentrated in longer forecast horizons and holding-period returns for longer-maturity bonds.

In contrast to the full sample, consistent evidence of predictability is only observed for the first

principal component. The second principal component, “slope”, is only marginally significant for

h = 12 and very long maturities. One possible explanation for the weak predictability results in

this sub-sample is the relatively few observations (T = 216). Alternatively, it may be that the

level and slope of the yield curve show only pockets of stable predictability, partially specific to

particular sub-samples or maturities. Further work on this point appears warranted; we plan to

investigate this in future research.

4.2 Bond Returns and the Current State of the Economy

For this application, we calculate holding period returns and principal components of yields using

quarterly data based on STRIPS and consider forecasting horizons of h = 1, 2, 3, and 4 quarters. As

before, we choose m as described in Appendix A and perform B = 999 bootstrap replications. Our

sample spans the period 1989:Q3–2017:Q4 along with a pre-crisis subsample of 1989:Q3–2007:Q4.

For our predictors we use survey forecasts of the current quarter for the real short rate and real

GDP growth from the Blue Chip Financial Forecasts (BCFF) survey. It is important to emphasize

that these data are “real-time” by construction and so are unaffected by data revisions (see Ghysels,

Horan, and Moench (2018)). To form the ex-ante real short rate, we take the current quarter

forecast (nowcast) for the 3-month Treasury yield and subtract the one-quarter ahead forecast for

CPI inflation. Since we include the first principal component of yields as a predictor, this regression

model is approximately the same as the one that features the nowcast of CPI inflation as one of

the predictors. Although our simulation evidence presented in Section 3.2 was reassuring, this

transformation replaces a variable which presents a clear downward trend (CPI nowcast) with a

series that has less pronounced trending behavior. We make this additional change to be more

conservative.
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Figure 9 presents the bootstrap-based p-values for the real short rate forecast (red) and real

GDP growth forecast (blue) for maturities ranging from h+ 1 to N = 40. As before, we truncate

p-values at 0.3 to ease presentation. We observe that both additional predictors show signs of

significant predictability for shorter-maturity Treasury returns. The evidence is stronger for the

nowcast of real GDP growth especially at longer horizons, h = 3 and 4 quarters, out to about the

5-year maturity. As has found in previous studies, we observe a negative coefficient on the measure

of real activity (e.g., Joslin, Priebsch, and Singleton (2014)).

Figure 10 presents the corresponding results for the first three principal components of yields in

the same specification. As in the previous application, the third principal component presents no

evidence of predictability. In contrast, the first two principal components are statistically significant

at standard levels except for returns on short maturity bonds. Figures 11 and 12 restrict the sample

to end in the fourth quarter of 2007. The results for the survey forecasts are broadly similar as for

the full sample with the nowcast of real GDP growth showing more evidence of predictive power

for longer-horizon forecasts. The evidence for predictability of bond returns based on the first two

principal components is modestly weaker at short forecast horizons but somewhat stronger at h = 3

and h = 4.

4.3 Probability of Recession

The term spread, the difference between the yield on a long maturity bond and a short maturity

bond, has been shown to have strong predictive power for future recessions (Harvey (1988), Estrella

and Hardouvelis (1991), Chen (1991)). When the term spread is particularly compressed this

tends to be associated with a NBER-defined recession in the subsequent 2-8 quarters; of course,

recessions occur relatively infrequently in the data. Against this backdrop, it is well established

that limited dependent variable methods suffer from finite-sample biases when specific outcomes

occur infrequently in the data (e.g., King and Zeng (2001)). We utilize our bootstrap procedure to

bias-correct a probit model of future activity based on past values of the term spread.

Rather than work directly with the NBER definition of recession, we follow Rudebusch and

Williams (2009) and define a recession by a real GDP contraction (negative GDP growth).17 Let

Gt be real GDP growth at time t measured at a quarterly annualized rate. To avoid any look-

ahead bias we use a time series of the third release of GDP (often referred to as the “final” release)

available toward the end of the subsequent quarter, rather than the current, revised series. Our zt

then becomes zt =
{
Gt, f

(N)
t , dr

(2)
t , . . . , dr

(N)
t

}
and we can easily block bootstrap this augmented

matrix as detailed in Section 3.

The most common specification in the literature is a probit model of the form,

Pr (Ht+h = 1|xt) = Φ
(
x′tβ
)

, (15)

17This definition produces similar, but not the same, definitions of US recessions. However, along with its simplicity,
it also has the advantage that this information is available toward the end of the following quarter whereas the NBER
dating committee announces the designation of peaks or troughs with a considerably longer lag. See Rudebusch and
Williams (2009) for additional discussion about this measure of recessions.
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for some h ≥ 1 where Ht is a transformation of Gt. We work with two choices for Ht: first, we define

H1,t+h = 1 {Gt+h ≤ 0}; second, we define H2,t+h = 1

{⋃t+h
r=t+1 {Gr ≤ 0}

}
. The latter measure is

then set equal to one when there is a contraction in real GDP in any of the next h quarters.

Let β̂ be the maximum-likelihood estimator of the coefficient β in equation (15). To construct

the bootstrap-based bias correction, we block resample the matrix Z which is comprised of the

stacked vectors zt. In each bootstrapped sample, (b = 1, . . . , B), we first calculate H∗t+h,b and the

requisite term structure variables, and finally β̂∗b . We can then form d̂∗b = β̂∗b − β̂ for b = 1, . . . , B.

To obtain a bias-corrected estimate we utilize,

β̂bc = β̂ − 1

B

∑B

b=1
d̂∗b . (16)

We can also form bootstrap based confidence intervals by,

Cα(β) =
[
β̂ − d̂∗(1−α), β̂ − d̂

∗
(α)

]
. (17)

where d̂∗(α) denotes the α-th quantile of the bootstrap distribution of d̂∗. Note that when α = 0.5

we obtain the bootstrap-based median unbiased estimator. For the choice of xt we consider two

specifications. The first specification uses only the ten-year yield less the 3-month yield, which is

the most common formulation used. The second specification then adds the 3-month yield as a

separate regressor as advocated by Wright (2006). In order to be less constrained by the effective

lower bound after 2008, which is not explicitly imposed in our bootstrap data, we use the deviation

of the 3-month yield from its 3-year moving average. This transformation also reduces the extreme

persistence of the short rate and renders the dynamic properties of this predictor similar to those

of the term spread. Finally, in the empirical implementation we use a leave-out approach: for each

t we estimate β and bootstrap the data omitting the t-th observation.

Figure 13 presents the results from this exercise. We choose h = 4 and use B = 999 bootstrap

samples. Our data is quarterly and the sample period is 1971:Q3–2018:Q3. The top chart shows the

time series of the fitted conditional probability that H1t = 1 based on the value of the term spread.

The black line denotes the estimated probability utilizing the bias-correction discussed above. We

observe that the estimated probability tends to peak around the beginning of NBER recessions

(grey shading). The black diamond, which denotes the current estimate as of mid-October 2019, is

a bit below 30% which stands higher than the values observed in 1998, but lower than those around

the 2001 and 2007-09 recessions. The second chart reflects the addition of the 3-month yield, less

its 3-year moving average, as a predictor. The fitted probability is very similar to the baseline case,

although the peaks occur at higher levels. That said, the bootstrap-based uncertainty measure

around the estimated probability is wider with the extra regressor. In both specifications, the

probability of a contraction in real GDP in four quarters from mid-October 2019 is estimated to be

below 40%; however, in the second graph the 68% confidence interval for this period is noticeably

wider. Finally, in the Supplemental Appendix we show the full-sample estimate versus its bias

corrected counterpart. We observe that for small fitted probabilities – periods associated with

a wider term spread – the bias-corrected estimate is below the sample estimate; in contrast, for
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large fitted probabilities – periods associated with a compressed term spread – the bias corrected

estimate is comfortably above the sample estimate. The upward shift in the fitted probability more

closely aligns with the impressive forecasting record associated with the term spread over the last

50 or so years.

The bottom two charts, instead, show the time series of the fitted conditional probability that

H2t = 1. The third chart uses only the term spread as a predictor. The estimated probability

for mid-October 2019 is a bit below 70%, not much below the peaks in the last two cycles; based

on information contained in the yield curve, the risk of a contraction in real GDP is elevated.

The final chart shows the corresponding model with the 3-month yield deviation from its 3-year

moving average as an additional predictor. The results are similar, although again we see that the

confidence intervals are wider than in the term spread only model.

5 Conclusion

In this paper, we propose a new method for resampling the yield curve that is agnostic to the

true underlying factor structure and the correct specification of the pricing model, and robust to

unknown forms of serial correlation, conditional heteroskedasticity, cross-sectional dependence and

measurement error. We establish the asymptotic validity of this bootstrap method under general

assumptions. The primitive objects for resampling are cross-sectionally differenced bond returns

that are only weakly dependent across both the time-series and cross-sectional dimensions. This

approach is motivated by the fact that the identification of the minimal dimension of the data

generating process from bond yields and returns – which is common practice in empirical work

– appears to be quite challenging. At the heart of this “identification” problem lies the extreme

cross-sectional dependence across maturities that produces a polynomial pattern in the eigenvectors

of the covariance and correlation matrices of these processes, regardless of the true dimension of

their factor space.

Small-sample simulation results confirm the desirable properties of our proposed bootstrap

method. We demonstrate the applicability of our results for (i) predicting bond returns, beyond

the level and slope of the yield curve, by macro variables and equity tail risk measures, and (ii)

computing the bias-corrected probability of recession based on the term spread.

The proposed resampling scheme can be used for generating conditional future paths of yields

or other yield-related variables as well as measures of sampling uncertainty around projected paths.

This can be employed for policy analysis as well as an improved computation for option-adjusted

spreads. Another advantage of our bootstrap method is in a multi-asset setup. For example, the

original data matrix can be augmented with other asset returns, possibly in excess of the short

rate, to ensure that the data is bootstrapped in an internally consistent manner for the purposes of

predictive regressions, extracting common factor structure of expected returns across asset classes,

etc. These extensions are currently under investigation by the authors.
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Figures and Tables

Simulation Results: Tables 1–6 report empirical rejection rates from simulation experiments as de-

scribed in Section 3.2. Results are based on 5, 000 simulations and B = 499 bootstrap replications. Columns

labelled “reg” denote empirical size associated with tests of γ(n) = 0, where γ(n) is the coefficient vector

associated with the extraneous predictors.

Table 1. CBOE Skew Index (T=350)

10% Level 5% Level
L S C reg L S C reg

h = 1 2-yr 0.172 0.024 0.001 0.116 0.062 0.004 0.000 0.061
6-yr 0.302 0.080 0.000 0.106 0.137 0.021 0.000 0.055
10-yr 0.348 0.171 0.002 0.103 0.167 0.058 0.000 0.057
Avg Rets 0.324 0.108 0.000 0.106 0.150 0.029 0.000 0.054

h = 6 2-yr 0.531 0.134 0.016 0.118 0.300 0.031 0.002 0.061
6-yr 0.665 0.300 0.012 0.110 0.435 0.116 0.001 0.061
10-yr 0.714 0.487 0.046 0.110 0.494 0.252 0.010 0.060
Avg Rets 0.699 0.369 0.022 0.110 0.473 0.155 0.002 0.061

h = 12 2-yr 0.622 0.134 0.012 0.105 0.369 0.029 0.002 0.055
6-yr 0.773 0.314 0.014 0.103 0.517 0.112 0.001 0.053
10-yr 0.826 0.503 0.065 0.101 0.588 0.239 0.012 0.051
Avg Rets 0.809 0.387 0.028 0.102 0.567 0.153 0.004 0.053

Table 2. CBOE Skew Index (T=700)

10% Level 5% Level
L S C reg L S C reg

h = 1 2-yr 0.630 0.637 0.016 0.112 0.369 0.325 0.002 0.061
6-yr 0.637 0.703 0.008 0.112 0.409 0.429 0.001 0.056
10-yr 0.664 0.852 0.036 0.110 0.444 0.622 0.006 0.055
Avg Rets 0.676 0.782 0.015 0.111 0.446 0.524 0.002 0.057

h = 6 2-yr 0.978 0.905 0.197 0.113 0.913 0.757 0.063 0.063
6-yr 0.971 0.949 0.106 0.121 0.893 0.843 0.033 0.064
10-yr 0.975 0.987 0.296 0.109 0.915 0.940 0.121 0.062
Avg Rets 0.982 0.972 0.174 0.119 0.924 0.898 0.059 0.063

h = 12 2-yr 0.983 0.881 0.175 0.116 0.927 0.718 0.057 0.064
6-yr 0.976 0.945 0.101 0.124 0.922 0.839 0.030 0.067
10-yr 0.988 0.985 0.258 0.121 0.941 0.935 0.102 0.060
Avg Rets 0.988 0.966 0.161 0.122 0.946 0.892 0.054 0.066
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Table 3. BCFF Nowcasts of Output/Inflation (T=115)

10% Level 5% Level
L S C reg1 reg2 L S C reg1 reg2

h = 1 2-yr 0.354 0.113 0.002 0.131 0.126 0.188 0.040 0.000 0.077 0.072
6-yr 0.467 0.301 0.002 0.126 0.119 0.282 0.144 0.000 0.076 0.065
10-yr 0.511 0.457 0.007 0.127 0.102 0.327 0.270 0.001 0.075 0.050
Avg Rets 0.500 0.355 0.005 0.125 0.109 0.311 0.186 0.000 0.075 0.059

h = 4 2-yr 0.608 0.200 0.010 0.125 0.124 0.358 0.077 0.003 0.073 0.071
6-yr 0.737 0.479 0.008 0.119 0.109 0.501 0.254 0.003 0.069 0.062
10-yr 0.786 0.663 0.020 0.115 0.099 0.555 0.415 0.008 0.067 0.054
Avg Rets 0.779 0.561 0.012 0.117 0.105 0.546 0.317 0.003 0.066 0.058

h = 6 2-yr 0.599 0.166 0.011 0.118 0.112 0.353 0.062 0.004 0.069 0.066
6-yr 0.749 0.441 0.009 0.113 0.104 0.516 0.214 0.004 0.063 0.056
10-yr 0.812 0.627 0.027 0.103 0.089 0.581 0.362 0.010 0.054 0.047
Avg Rets 0.794 0.526 0.015 0.106 0.096 0.560 0.274 0.006 0.059 0.052

Table 4. BCFF Nowcasts of Output/Inflation (T=500)

10% Level 5% Level
L S C reg1 reg2 L S C reg1 reg2

h = 1 2-yr 1.00 0.999 0.151 0.113 0.137 1.000 0.999 0.057 0.062 0.079
6-yr 1.00 1.00 0.038 0.113 0.108 0.996 1.00 0.009 0.060 0.060
10-yr 1.000 1.00 0.096 0.116 0.096 0.998 1.00 0.029 0.061 0.050
Avg Rets 1.00 1.00 0.062 0.115 0.102 0.998 1.00 0.016 0.064 0.055

h = 4 2-yr 1.00 1.000 0.207 0.114 0.121 1.000 0.999 0.085 0.063 0.069
6-yr 1.00 1.00 0.071 0.115 0.104 0.999 1.000 0.024 0.063 0.055
10-yr 1.00 1.00 0.183 0.113 0.104 1.00 1.00 0.077 0.058 0.052
Avg Rets 1.00 1.00 0.119 0.111 0.102 1.00 1.00 0.047 0.060 0.050

h = 6 2-yr 1.00 0.999 0.216 0.115 0.114 1.00 0.997 0.094 0.060 0.065
6-yr 1.000 1.00 0.113 0.107 0.101 1.000 1.000 0.039 0.062 0.051
10-yr 1.00 1.00 0.272 0.100 0.096 0.999 1.00 0.122 0.055 0.051
Avg Rets 1.00 1.00 0.190 0.102 0.096 1.000 1.00 0.075 0.057 0.047
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Table 5. Independent Random Walks (T=115)

10% Level 5% Level
L S C reg1 reg2 L S C reg1 reg2

h = 1 2-yr 0.583 0.122 0.003 0.109 0.090 0.370 0.038 0.000 0.053 0.044
6-yr 0.690 0.420 0.002 0.090 0.068 0.483 0.212 0.001 0.041 0.030
10-yr 0.712 0.617 0.008 0.074 0.057 0.511 0.398 0.002 0.031 0.023
Avg Rets 0.720 0.482 0.004 0.084 0.066 0.511 0.267 0.001 0.038 0.027

h = 4 2-yr 0.739 0.160 0.005 0.089 0.076 0.517 0.054 0.002 0.043 0.038
6-yr 0.844 0.550 0.006 0.080 0.064 0.650 0.303 0.001 0.036 0.029
10-yr 0.861 0.766 0.020 0.068 0.058 0.681 0.527 0.004 0.030 0.024
Avg Rets 0.870 0.645 0.010 0.075 0.059 0.686 0.395 0.002 0.033 0.027

h = 6 2-yr 0.710 0.107 0.006 0.090 0.078 0.484 0.034 0.002 0.046 0.036
6-yr 0.833 0.474 0.006 0.080 0.066 0.640 0.247 0.001 0.038 0.028
10-yr 0.851 0.707 0.025 0.065 0.052 0.665 0.449 0.007 0.031 0.022
Avg Rets 0.857 0.579 0.012 0.073 0.061 0.674 0.331 0.004 0.036 0.026

Table 6. Independent Random Walks (T=500)

10% Level 5% Level
L S C reg1 reg2 L S C reg1 reg2

h = 1 2-yr 1.00 0.999 0.184 0.078 0.060 1.00 0.998 0.077 0.036 0.027
6-yr 1.00 1.00 0.049 0.091 0.077 1.000 1.00 0.016 0.039 0.035
10-yr 1.000 1.00 0.106 0.073 0.071 1.000 1.00 0.042 0.034 0.030
Avg Rets 1.00 1.00 0.072 0.084 0.073 1.000 1.00 0.025 0.038 0.034

h = 4 2-yr 1.00 0.999 0.263 0.078 0.074 1.00 0.997 0.130 0.040 0.034
6-yr 1.00 1.00 0.116 0.097 0.091 1.00 1.00 0.049 0.045 0.042
10-yr 1.00 1.00 0.270 0.086 0.081 1.000 1.00 0.129 0.042 0.035
Avg Rets 1.00 1.00 0.184 0.091 0.085 1.00 1.00 0.081 0.045 0.040

h = 6 2-yr 1.00 0.998 0.285 0.081 0.073 1.000 0.992 0.143 0.040 0.033
6-yr 1.000 1.00 0.199 0.101 0.093 0.999 1.000 0.088 0.049 0.043
10-yr 1.000 1.00 0.415 0.090 0.081 0.999 1.00 0.239 0.042 0.038
Avg Rets 1.00 1.00 0.307 0.095 0.087 0.999 1.00 0.153 0.046 0.042
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Figure 5. Bond Returns and the CBOE Skew Index: Skew Index in the Full Sample

This figure plots the p-values for the null hypothesis that γ(n) = 0 (where γ(n) is the coefficient associated with the CBOE skew index) in predictive bond return
regressions based on the bootstrap procedure introduced in Section 3. Red squares with black infill are maturities where the p-value has been truncated at 0.3.
Horizontal lines are shown at 0.05 and 0.10 for reference. The sample period is 1990:M1–2018:M9.
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Figure 6. Bond Returns and the CBOE Skew Index: First Three Principal Components in the Full Sample

This figure plots the p-values for the null hypothesis that β(n) = 0 (where β(n) are the coefficients associated with the first three principal components of yields) in
predictive bond return regressions based on the bootstrap procedure introduced in Section 3. Color squares with black infill are maturities where the p-value has
been truncated at 0.3. Horizontal lines are shown at 0.05 and 0.10 for reference. The sample period is 1990:M1–2018:M9.
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Figure 7. Bond Returns and the CBOE Skew Index: Skew Index in the Pre-Crisis Sample

This figure plots the p-values for the null hypothesis that γ(n) = 0 (where γ(n) is the coefficient associated with the CBOE skew index) in predictive bond return
regressions based on the bootstrap procedure introduced in Section 3. Horizontal lines are shown at 0.05 and 0.10 for reference. The sample period is
1990:M1–2007:M12.
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Figure 8. Bond Returns and the CBOE Skew Index: First Three Principal Components in the Pre-Crisis Sample

This figure plots the p-values for the null hypothesis that β(n) = 0 (where β(n) are the coefficients associated with the first three principal components of yields) in
predictive bond return regressions based on the bootstrap procedure introduced in Section 3. Color squares with black infill are maturities where the p-value has
been truncated at 0.3. Horizontal lines are shown at 0.05 and 0.10 for reference. The sample period is 1990:M1–2007:M12.
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Figure 9. Bond Returns and Survey Forecasts: BCFF Forecasts in the Full Sample

This figure plots the p-values for the null hypothesis that γ(n) = 0 (where γ(n) is the coefficient associated with the real T-bill forecast and real GDP growth forecast,
respectively) in predictive bond return regressions based on the bootstrap procedure introduced in Section 3. Color squares with black infill are maturities where the
p-value has been truncated at 0.3. Horizontal lines are shown at 0.05 and 0.10 for reference. The sample period is 1989:Q3–2017:Q4.
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Figure 10. Bond Returns and Survey Forecasts: First Three Principal Components in the Full Sample

This figure plots the p-values for the null hypothesis that β(n) = 0 (where β(n) are the coefficients associated with the first three principal components of yields) in
predictive bond return regressions based on the bootstrap procedure introduced in Section 3. Color squares with black infill are maturities where the p-value has
been truncated at 0.3. Horizontal lines are shown at 0.05 and 0.10 for reference. The sample period is 1989:Q3–2017:Q4.
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Figure 11. Bond Returns and Survey Forecasts: BCFF Forecasts in the Pre-Crisis Sample

This figure plots the p-values for the null hypothesis that γ(n) = 0 (where γ(n) is the coefficient associated with the real T-bill forecast and real GDP growth forecast,
respectively) in predictive bond return regressions based on the bootstrap procedure introduced in Section 3. Color squares with black infill are maturities where the
p-value has been truncated at 0.3. Horizontal lines are shown at 0.05 and 0.10 for reference. The sample period is 1989:Q3–2007:Q4.
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Figure 12. Bond Returns and Survey Forecasts: First Three Principal Components in the Pre-Crisis Sample

This figure plots the p-values for the null hypothesis that β(n) = 0 (where β(n) are the coefficients associated with the first three principal components of yields) in
predictive bond return regressions based on the bootstrap procedure introduced in Section 3. Color squares with black infill are maturities where the p-value has
been truncated at 0.3. Horizontal lines are shown at 0.05 and 0.10 for reference. The sample period is 1989:Q3–2007:Q4.
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Figure 13. Probability of Recession

This figure plots the fitted values of P(H1t = 1|xt) or P(H2t = 1|xt) as defined in Section 4.3. xt is either: (i) a
constant and the term spread; (ii) a constant, the term spread, and the deviation of the 3-month yield from its
3-year moving average. The black line represents the estimated probability based on the bootstrap bias correction;
pink shading denotes 68% pointwise confidence intervals for the associated probability; black diamonds denote the
bias-corrected estimate and pink diamonds denote the 68% pointwise confidence interval based on a term spread of
−0.05 and 3-month yield deviation of 1.20. Grey shading denotes NBER recessions. The sample period is
1971:Q3–2018:Q3.
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Appendix

A Implementation of the Bootstrap: Choosing the Block Size

As for any block bootstrap procedure, the choice of the block size m plays a key role in our bootstrap implementation.
We follow Politis and White (2004) and utilize their automatic block-size selection but we adapt it to the overlapping
nature of the dependent variable for multi-period (h > 1) holding returns.18 Let {z1, z2, ..., zT } be the observed
data and define a new series z̃t = ztmod(T )

, where mod(T ) denotes “modulo T”, which is obtained by wrapping
{z1, z2, ..., zT } around a circle so that zT+1 = z1, zT+2 = z2, etc. The starting points of the different blocks are
denoted by i0, i1, ... and are drawn from a uniform distribution on the set {1, 2, ..., T}. For a given block size m and
k = 0, 1, ..., the blocks of the bootstrap series are constructed as z̃∗kb+j = z̃ik+j−1 for j = 1, 2, ...,m.

Before presenting the automatic block-size choice of m, we need some additional notation. Let R(s) denote
the autocovariance function and g(ω) =

∑∞
s=−∞R(s) cos(ωs) be the spectral density function at frequency ω, G =∑∞

l=−∞ |l|R(l), and D = 4
3
g(0). Then, the optimal block size estimator of Politis and White (2004) is given by

m̂ = T 1/3
(

2Ĝ2
D̂

)1/3
, where Ĝ and D̂ denote consistent estimators of G and D, respectively. In our setup, we use a

common block size for the whole matrix Z by taking max(m1,m2, ...,mN+k) across all N + k columns. Lastly, to
account for the overlapping structure of the dependent variable of length h, we multiply the optimal block size by
the factor h1/3.

B Proofs

The proofs of Lemmas 1–3 employ the relationship between the non-zero eigenvalues of a matrix and its inverse. The
inverses of the covariance matrices of interest in Lemma 1 and 2 take the form of a tridiagonal matrix with certain
restrictions on its elements. We start with a preliminary lemma for the eigenvalues and eigenvectors of a tridiagonal
matrix of a specific form (Willms (2008), Yueh (2005)).

Lemma B.1. Consider the N ×N matrix

A =



b− b1 c1 0 ... 0
a1 b c2 ...
0 a2 b
... ...

... 0
b cN−1

0 ... 0 aN−1 b− b2


with the condition

√
ajcj = d 6= 0 for j = 1, ..., N − 1. Also, let λj (λ1 ≤ . . . ≤ λn≤ . . . ≤ λN ) denote the eigenvalues

of A. Then, the eigenvalues are given by

λj = b+ 2d cos(θ) (18)

which are obtained from a characteristic equation of the form

g(j + 1, θ) +
b1 + b2
d

g(j, θ) +
b1b2
d2

g(j − 1, θ) = 0, (19)

where g(j, θ) = sin(jθ)/ sin(θ) with the properties

g(j + 1, θ) + g(j − 1, θ) = 2g(j, θ) cos(θ) (20)

and, for 0 < θ < π,

g(j, θ)− g(j − 1, θ) =
cos((2j − 1)θ/2)

cos(θ/2)
. (21)

Finally, the corresponding eigenvectors are

ϕj = qj

[
sin(jθ) +

b1
d

sin((j − 1)θ)

]
(22)

18We thank Andrew Patton for making the code available on his website.
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for θ 6= 0, π, where q1 = 1 and qi =
√
ai−1/ci−1qi−1 for i = 2, ..., N .

Proof of Lemma 1: The inverse of C1C
′
1 takes the following tridiagonal form

(C1C
′
1)−1 =



2 −1 0 0 .... 0
−1 2 −1 0 0 0
0 −1 2 −1 0 ...
... ...

... 0
−1 2 −1

0 ... 0 −1 1


.

In the notation above, A = (C1C
′
1)−1 with b = 2, b1 = 0, b2 = 1, and ai = ci = −1 for i = 2, ..., N − 1. Substituting

into (19) and using (21), we obtain

cos((2N + 1)θ/2) = 0

with a solution

θn =
(2n− 1)π

2N + 1
for n = 1, ..., N .

Thus, the eigenvalues and eigenvectors for C1C
′
1 are

λn =
1

2[1− cos ((2n− 1)π/(2N + 1))]

and

ϕj,n = sin

(
j(2n− 1)π

2N + 1

)
for j, n = 1, ..., N. �

Proof of Lemma 2: The inverse of VD has a tridiagonal form as matrix A in Lemma B.1 with b = (1 + ρ2)/σ2,
a1 = ... = aN−1 = c1... = cN−1 = −ρ/σ2, and b1 = 0 and b2 = ρ2/σ2. Substituting into (19) and using (21) and that
ρ→ 1, we obtain

cos((2N + 1)θ/2) ≈ 0

with an approximate solution

θn ≈
(2n− 1)π

2N + 1
for n = 1, ..., N − 1.

Substituting for θ into eq. (18) gives

1/λn ≈
1 + ρ2 − 2ρ cos((2n− 1)π/(2N + 1))

σ2

or

λn ≈
σ2

(1 + ρ2 − 2ρ cos((2n− 1)π/(2N + 1))
for n = 1, ..., N.

Finally, using eq. (22) (see also Willms (2008) and Yueh (2005)), the elements of ϕn are approximated as

ϕj,n ≈ (−1)j−1 sin

(
n(2j − 1)π

2N + 1

)
for j = 1, ..., N and n = 1, ..., N . �

Proof of Lemma 3: The Cholesky factorization of VD is given by VD = V
1
2
D V

1
2
′

D , where V
1
2
D is the following lower
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diagonal matrix

V
1
2
D = σ



1 0 0 0 0
ρ 1 0 0 ...
ρ2 ρ 1 0 0
ρ3 ρ2 ρ 1 0 0
... ... ...

... 0
1 0

ρN−1 ρN−2 ... ρ2 ρ 1


.

Then,

C1V
1
2
D = σ



1 0 0 0 0
1 + ρ 1 0 0 ...

1 + ρ+ ρ2 1 + ρ 1 0 0
1 + ρ+ ρ2 + ρ3 1 + ρ+ ρ2 1 + ρ 1 0 0

... ... ...
... 0

1 0
1 + ρ+ ..+ ρN−1 1 + ..+ ρN−2 ... 1 + ρ+ ρ2 1 + ρ 1


.

Its inverse (C1V
1
2
D )−1 is given by

1

σ



1 0 0 0 0
−(1 + ρ) 1 0 0 ...

ρ −(1 + ρ) 1 0 0
0 ρ −(1 + ρ) 1 0 0
... ... ...

... 0
−(1 + ρ) 1 0

0 0 ... 0 ρ −(1 + ρ) 1


.

Finally, V −1
R = (C1V

1
2
D )−1′(C1V

1
2
D )−1 is a symmetric pentadiagonal matrix

1

σ2



ρ2 −ρ21 ρ 0 0 0
−ρ21 ρ2 −ρ21 ρ ...
ρ −ρ21 ρ2 −ρ21
0 ρ −ρ21 ρ2
... ... ρ ...

ρ2 −ρ21 ρ
−ρ21 (1 + ρ21) −ρ1

0 0 ... 0 ρ −ρ1 1


,

where ρ1 = 1 + ρ and ρ2 = 1 + ρ21 + ρ2. We write this as

V −1
R =



u1 v1 w1 0 0 0
v1 u2 v2 w2 0 ...
w1 v2 u3 v3 w3 0
0 w2 v3 u4 v4 w4 0
0 0 w3 v4 u5 v5 w5 0 ...

... ... ...
... ... ...

wN−5 vN−4 uN−3 vN−3 wN−3 0
0 wN−4 vN−3 uN−2 vN−2 wN−2

0 wN−3 vN−2 uN−1 vN−1

0 0 ... 0 0 wN−2 vN−1 uN


With λn and ϕn = (1, ϕ1,n, ..., ϕN−1,n)′ denoting the eigenvalues and eigenvectors of VR, we have

V −1
R ϕn =

1

λn
ϕn.
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The first row element
[
V −1
R ϕn

]
1

is then given by

u1 + v1ϕ1,n + w1ϕ2,n =
1

λn

or

ϕ2,n = − v1
w1
ϕ1,n +

1− u1λn
w1λn

.

The second row element
[
V −1
R ϕn

]
2

is given by

v1 + u2ϕ1,n + v2ϕ2,n + w2ϕ3,n =
ϕ1,n

λn

or

ϕ3,n = − v2
w2
ϕ2,n +

1− u2λn
w2λn

ϕ1,n −
v1
w2
.

The third row element
[
V −1
R ϕn

]
3

is given by

w1 + v2ϕ1,n + u3ϕ2,n + v3ϕ3,n + w3ϕ4,n =
ϕ2,n

λn

or

ϕ4,n = − v3
w3
ϕ3,n +

1− u3λn
w3λn

ϕ2,n −
v2
w3
ϕ1,n −

w1

w3

The fourth row element
[
V −1
R ϕn

]
4

is given by

w2ϕ1,n + v3ϕ2,n + u4ϕ3,n + v4ϕ4,n + w4ϕ5,n =
ϕ3,n

λn

or

ϕ4,n = − v4
w4
ϕ4,n +

1− u4λn
w4λn

ϕ3,n −
v3
w4
ϕ2,n −

w2

w4
ϕ1,n.

Thus, the j-th row element
[
V −1
R ϕn

]
j
, for j ≥ 3, is given by

wj−2ϕj−3,n + vj−1ϕj−2,n + ujϕj−1,n + vjϕj,n + wjϕj+1,n =
ϕj−1,n

λn

or

ϕj+1,n = − vj
wj
ϕj,n +

1− ujλn
wjλn

ϕj−1,n −
vj−1

wj
ϕj−2,n −

wj−2

wj
ϕj−3,n.

These recursive equations determine all ϕj for j ≥ 2 except for ϕ1. To pin down ϕ1, we use an alternative approach.

Since V −1
R = (C1V

1
2
D )−1′(C1V

1
2
D )−1, we premultiply both sides of V −1

R ϕn = 1
λn
ϕn by (C1V

1
2
D )−1′ to obtain

(C1V
1
2
D )−1ϕn =

1

λn
(C1V

1
2
D )′ϕn.

Starting from the last element, we have

ρϕN−3,n − (1 + ρ)ϕN−2,n + ϕN−1,n =
σ2

λn
ϕN−1,n

or

ϕN−1,n =
(1 + ρ)λn
λn − σ2

ϕN−2,n −
ρλn

λn − σ2
ϕN−3,n.

Proceeding further, ϕN−2,n, ϕN−3,n, ..., ϕ2,n are functions of the previous two values ϕN−3,n, ϕN−2,n, ..., ϕ1,n and
ϕ0,n = 1, respectively. By backward substitution, they all can be expressed as linear functions of ϕ2,n (and ϕ0,n)

with coefficients that depend on ρ, σ2, λn and n. Plugging into the equation for

[
(C1V

1
2
D )−1ϕn

]
1

,

−(1 + ρ) + ϕ1,n =
σ2

λn

[
ϕ1,n + (1 + ρ)ϕ2,n + ...+ (1 + ...+ ρN−2)ϕN−1,n

]
,
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we obtain the solution for ϕ1,n. This completes the proof. �

Proof of Theorem 1: The limiting behavior of some terms in Theorem 1 can be inferred from the following lemma
(see Gonçalves (2011) for details).

Lemma B.2. Under Assumptions A.1 and A.2,

Â−1
T −A

−1
T

P→ 0,

Â∗−1
T − Â−1

T
P∗
→ 0,

and

B
−1/2
T

1√
T

T−h∑
t=1

(x∗t − x̄∗)ε∗t+h
d∗→ N(0k, Ik),

where X∗T
d∗→ X denotes that, conditional on the sample, X∗T weakly converges to X under P ∗.

Next, let

Â∗T =
1

T

T−h∑
t=1

(x∗t − x̄∗)(x∗t − x̄∗)′

and

ε∗t+h = w∗t+h − α̂∗ − x∗′t β̂∗.

Then, we can rewrite the expression for
√
T (β̂∗ − β̂) as

√
T (β̂∗ − β̂) = Â∗−1

T

1√
T

T−h∑
t=1
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=
[
A−1
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T )
] 1√

T

T−h∑
t=1
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= A−1
T B

1/2
T B

−1/2
T

1√
T

T−h∑
t=1
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+
[
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T − Â−1
T )− (Â−1

T −A
−1
T )
] 1√

T
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The limiting behavior of the terms on the right-hand side is inferred from Lemma B.2. Pre-multiplying both sides
by B

−1/2
T AT and invoking the results in Lemma B.2, we have that

B
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T ATA

−1
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1/2
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−1/2
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T−h∑
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and
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[
(Â∗−1
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T )− (Â−1

T −A
−1
T )
] 1√

T

T−h∑
t=1

(x∗t − x̄∗)ε∗t+h = oP∗(1),

using that 1√
T

∑T−h
t=1 (x∗t − x̄∗)ε∗t+h = OP∗(1). The result in Theorem 1 follows from noting that, under the stated

assumptions,

B
−1/2
T AT

√
T (β̂ − β)

d→ N(0k, Ik)

as T →∞. �
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C Data Sources and Description

We use three bond datasets in the paper. The first bond dataset consists of coupon STRIPS (Separate Trading of
Registered Interest and Principal of Securities) prices of U.S. Treasury securities. For a detailed description of the
institutional features of the U.S. Treasury Department’s STRIPS program, see Daves and Ehrhardt (1993), Grinblatt
and Longstaff (2000), Jordan, Jorgensen, and Kuipers (2000), and Sack (2000). The coupon STRIPS data19 is not
subjected to statistical smoothing and contains raw market bond prices with short and continuous maturities.20

We construct yields, forward rates and holding-period returns from non-missing price data with quarterly maturi-
ties ranging from 1-quarter to 80-quarter maturities: n = 0.25, 0.5, ..., 20. Daily observations for coupon STRIPS
bid prices of notes and bonds are obtained from the Wall Street Journal prior to 1998 and from Street Software
Technology Inc. from 1998 onwards.21 While STRIPS prices can be affected by extraneous factors such as relative
supply and liquidity, specialness in the repo market, stripping and reconstitution characteristics, tax and accounting
treatments etc. (Sack 2000), the arbitrage and profit opportunities from exploring mispricing in the STRIPS market
are largely economically insignificant (Grinblatt and Longstaff 2000; Jordan, Jorgensen, and Kuipers 2000). Some
more pronounced idiosyncrasies arise at the very long end of the STRIPS curve but these maturities are excluded
from our sample. To match the maturity of the data, which is convenient in constructing holding-period returns,
we convert the daily observations into quarterly observations by sampling the daily observation in the middle of the
quarter (the 15th of the middle month or the closest available workday) in order to match the expiration date of the
bonds and maintain an approximately constant 3-month maturity. The sample period of the data is from the third
quarter of 1989 to the first quarter of 2018. Some of the results are presented for the sub-sample 1989:Q3-2007:Q4
that excludes the zero-lower bound period in the wake of the most recent financial crisis.

The second bond dataset consists of smoothed, continuously-compounded, zero-coupon Treasury yields with 1-
month to 120-month maturities. The data is provided by Liu and Wu (2019) and constructed by smoothing raw
CUSIP-level bond prices from CRSP Treasuries Time Series. The filters for selecting the raw data are similar to
those of Gurkaynak, Sack, and Wright (2007) but unlike Gurkaynak, Sack, and Wright (2007), Treasuries with shorter
maturities are also included in the sample. While Gurkaynak, Sack, and Wright (2007) use a parametric (Nelson-
Siegel-Svensson) approach to smooth the data, Liu and Wu (2019) perform nonparametric kernel smoothing with a
local bandwidth selection that adapts to the amount of information at each maturity. This allows for a better fit of
the short end of the yield curve and a more reliable interpolation at monthly maturities which is essential for our
bootstrap and predictive regression analysis.

The third bond dataset is based on the U.S. Treasury yield curve of Gurkaynak, Sack, and Wright (2007).22

As mentioned above, the data are smoothed via the Nelson-Siegel-Svensson approach to construct continuously-
compounded, zero-coupon yields with 1-month to 120-month maturities. The sample period is 1987:M1 – 2018:M12.
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Gáll, J. M., G. Pap, and M. C. van Zuijlen (2006): “Forward Interest Rate Curves in Discrete Time
Settings Driven by Random Fields,” Computers and Mathematics with Applications, 51(3-4), 387–396.

Garbade, K. (1996): Fixed Income Analytics. MIT Press.

Ghysels, E., C. Horan, and E. Moench (2018): “Forecasting Through the Rear-View Mirror: Data
Revisions and Bond Return Predictability,” Review of Financial Studies, 31(2), 678–714.

Giglio, S., and B. Kelly (2017): “Excess Volatility: Beyond Discount Rates,” Quarterly Journal of
Economics, 133(1), 71–127.

Goldstein, R. S. (2000): “The Term Structure of Interest Rates as a Random Field,” Review of Financial
Studies, 13(2), 365–384.
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Supplemental Appendix for

“Deconstructing the Yield Curve”

Richard K. Crump and Nikolay Gospodinov

In this Supplemental Appendix, we provide additional empirical, simulation and theoretical results
that complement those presented in the paper. We start with reporting commonalities in the
“factor structure” for bond returns across countries as well as for other maturity-sorted assets
including commodities, inflation swaps, options, currencies etc. All these assets appear to be
characterized by level, slope and curvature factors extracted as the first three principal components.
As in the paper, we work with (stationary) returns instead of (highly persistent) yields. Similar
regularities are documented for non-financial variables such as global surface temperature. Evidence
for commonalities in higher-order principal components is also presented. We then describe the
time series and cross-sectional dependence in bond yields, forwards and returns that is intended
to support our adopted analytical strategy in the paper. The second section replicates Tables 1–6
in the paper for a different (overlapping) measure of excess returns. This section also presents
additional simulation results for a generic predictive regression. The third section discusses, in the
context of a simple two-factor model, how information about “hidden” factors can be extracted
from differenced returns – the primitive object of our analysis in the paper. The last section outlines
the effect of bootstrap bias correction for the estimated probability of recession.

1 Factor Loadings for Bond Data across Countries and Assets

Figure 1 in the paper presents the typical shape of loadings on the first three principal components
from U.S. bond yields and returns and their interpretation as level, slope and curvature factors
(see, for example, Piazzesi, 2010, pp. 736–739). This section provides evidence on these loadings
from bond data for other countries as well as several other asset markets - Eurodollar futures, oil
price futures, inflation swaps, and S&P 500 options. The common feature of all these markets is
their maturity structure that orders the contracts from those with shortest to those with longest
expiration. We also provide an example outside the field of financial economics which is also
characterized by a natural ordering. In all of the examples below, the principal components are
computed from the empirical correlation, instead of covariance, matrix.

As argued in the paper, it may be prudent to work with bond returns data in order to avoid
spurious correlations and commonalities induced by the near-nonstationary dynamics of yields.
Figure 1 presents the loadings on the first three principal components from 1-quarter to 40-quarter
bond returns (in excess of the 3-month rate) for 9 advanced economies: UK, Germany, Japan,
Canada, Switzerland, Australia, Sweden, Norway, and New Zealand. The data is from Wright
(2011). The starting date for each country varies (the earliest one is 1973:1 for Germany) but the
end date is the end of 2007 for all countries. The similarity of the loadings across countries is
striking especially in light of the results and discussion in Section 2 of the main text of the paper.
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The shapes of the loadings for bond yields and forwards are almost indistinguishable from those in
Figure 1 for returns.

We now proceed with other assets with maturity structure. Again, we construct and work with
asset returns. Figure 2 plots the corresponding loadings for the returns on Eurodollar futures, oil
futures, S&P500 options and inflation swaps. Eurodollar futures prices with maturities 1 to 14
quarters and cover the period December 1999 - December 2016. The data for oil futures contains
WTI oil prices in USD of future contracts (traded on NYMEX) with monthly maturities from 1 to
12 months for the period January 2000 to December 2018. The data for inflation swaps of maturities
1 to 10 years is at monthly frequency and covers the period from the November 2011 to December
2018. The source of these three series is Bloomberg. The data for the S&P500 index options is
from Constantinides, Jackwertt, and Savov (2013), and aggregated and sorted by maturity as in
He, Kelly and Manela (2017). The period is 1986:04 to 2012:01.

Figure 2 also reveals a pronounced (level-slope-curvature) factor structure. The similarity of
these loadings is striking.1 This is somewhat surprising because the evidence on priced risk fac-
tors for equity, commodity, currency etc. markets is rather weak. Furthermore, the evidence of
commonality of risk factors across different assets is even weaker.

As it turns out, the documented loadings pattern is not specific to financial assets. To illustrate
this, we use data for the seasonal cycle of the global surface temperature (measured as deviations
from annual mean in Celsius) for the period 1880-2017.2 The data is plotted in the top graph of
Figure 3 where the average deviations for January to December for each year in the sample are
represented by a line. The estimated loadings are in the bottom graph of Figure 3. Remarkably
again, the loadings are very similar in shape to those estimated from maturity-ordered financial
assets.

The evidence so far is about the loadings on the first three principal components. While the first
three principal components explain the bulk of the cross-sectional variation in yields and returns,
it is interesting to see if there is still residual factor structure beyond the level, slope and curvature
effect. Figure 4 presents the loadings on the next three principal components from the international
bond returns. The strong polynomial pattern in these loadings, which is exhibited by all countries,
confirms again that the source of the pattern lies in the specific form of the correlation matrix of
returns which is induced by their maturity structure and strong local correlation.

To gain further understanding into the sources of this seemingly common variation, we document

the time-series persistence and cross-correlation dependence in bond yields y
(n)
t , forwards f

(n)
t , and

one-quarter excess holding-period returns rx
(n)
t+1 = ny

(n)
t − (n − 1)y

(n−1)
t+1 − y

(1)
t in U.S., Japan,

Switzerland and Canada (the results for the other countries are similar). Figure 5 demonstrates
the serial correlation patterns in yields, forwards, and excess returns. Yields and forwards exhibit
near-unit root behavior along the whole curve. Medium- and long-maturity excess returns, on the
other hand, exhibit only weak time series dependence.

Figure 6 shows that the cross-sectional correlations for yields and forwards are very close to one
and decay very slowly. This is further exacerbated by the fact that data is coming from a smoothed
curve. The correlations for returns decrease monotonically with the maturity of the bond but

1The level, slope and curvature effects have been also documented in the term structure of variance swaps and
implied volatility (Giglio and Kelly, 2018), currency portfolios (Lustig, Roussanov and Verdelhan, 2011), equity yields
(van Binsbergen, Hueskes, Koijen and Vrugt, 2013) and return-sorted equity portfolios (Clarke, 2016) etc.

2The data was downloaded from the Goddard Institute for Space Studies (National Aeronautics and Space Ad-
ministration) website https://data.giss.nasa.gov/gistemp/graphs/. Similar results can be obtained from data
on 35 weather stations in Canada available at http://www.psych.mcgill.ca/misc/fda/ex-weather-a1.html.
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the local correlation (between two adjacent maturities) is still quite high (0.9813 for U.S. bond
returns). This suggests that one cross-sectional difference in constructing returns is not sufficient
to unwind the implied cross-sectional correlation of term structure models. This is the reason why
the estimated loadings for yields and returns are essentially indistinguishable from each other.

2 Additional Simulation Evidence

2.1 Predictive Regression: Alternative Holding-Period Returns

This section reports results from predictive regressions where the holding period returns are con-

structed as rx
(n)
t+1 + · · ·+rx

(n)
t+h. This measure aligns more closely with the conventional overlapping

dependent variable structure which has been extensively studied in the literature (e.g., Hodrick,
1992; Wei and Wright, 2013; Adrian, Crump and Vogt, 2017). The results for this measure of
holding period returns, for the same simulation designs considered in the paper, are reported in
Tables 1 to 6. As for the measure used in the paper (note that the two measures are equivalent for
h = 1), we observe excellent size control even in the extreme case of severe overlapping observations
and random walk predictors across all specifications and for each set of predictors.
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2.2 Figures and Tables

Table 1: CBOE Skew Index (T=350)

10% Level 5% Level
L S C reg L S C reg

h = 6 2-yr 0.519 0.118 0.021 0.113 0.294 0.030 0.003 0.059
6-yr 0.660 0.296 0.016 0.104 0.440 0.124 0.002 0.056
10-yr 0.706 0.481 0.056 0.102 0.488 0.250 0.011 0.058
Avg Rets 0.693 0.358 0.026 0.103 0.477 0.162 0.003 0.053

h = 12 2-yr 0.603 0.101 0.023 0.105 0.344 0.024 0.004 0.057
6-yr 0.777 0.301 0.026 0.103 0.535 0.111 0.003 0.057
10-yr 0.820 0.489 0.082 0.098 0.596 0.241 0.025 0.053
Avg Rets 0.807 0.366 0.043 0.100 0.571 0.149 0.009 0.056

Table 2: CBOE Skew Index (T=700)

10% Level 5% Level
L S C reg L S C reg

h = 6 2-yr 0.982 0.885 0.240 0.109 0.915 0.728 0.078 0.062
6-yr 0.980 0.950 0.135 0.113 0.913 0.849 0.040 0.061
10-yr 0.984 0.988 0.318 0.111 0.924 0.942 0.141 0.062
Avg Rets 0.988 0.971 0.209 0.114 0.937 0.897 0.071 0.060

h = 12 2-yr 0.980 0.833 0.263 0.115 0.927 0.647 0.094 0.061
6-yr 0.986 0.938 0.144 0.113 0.940 0.842 0.042 0.063
10-yr 0.993 0.984 0.309 0.109 0.961 0.941 0.123 0.060
Avg Rets 0.993 0.961 0.211 0.113 0.961 0.890 0.069 0.061
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Table 3: BCFF Nowcasts of Output/Inflation (T=115)

10% Level 5% Level
L S C reg1 reg2 L S C reg1 reg2

h = 4 2-yr 0.607 0.191 0.012 0.124 0.125 0.353 0.070 0.004 0.072 0.073
6-yr 0.755 0.484 0.011 0.124 0.107 0.522 0.257 0.002 0.071 0.062
10-yr 0.806 0.667 0.023 0.121 0.102 0.575 0.413 0.008 0.065 0.056
Avg Rets 0.795 0.555 0.016 0.123 0.103 0.556 0.308 0.004 0.068 0.060

h = 6 2-yr 0.575 0.137 0.018 0.115 0.118 0.326 0.053 0.007 0.065 0.070
6-yr 0.778 0.432 0.019 0.110 0.100 0.530 0.212 0.006 0.060 0.055
10-yr 0.835 0.628 0.035 0.099 0.095 0.599 0.362 0.013 0.057 0.052
Avg Rets 0.813 0.497 0.025 0.106 0.096 0.571 0.254 0.009 0.057 0.053

Table 4: BCFF Nowcasts of Output/Inflation (T=500)

10% Level 5% Level
L S C reg1 reg2 L S C reg1 reg2

h = 4 2-yr 1.00 0.999 0.267 0.125 0.113 1.00 0.997 0.123 0.073 0.065
6-yr 1.00 1.00 0.108 0.118 0.099 1.00 1.00 0.042 0.063 0.056
10-yr 1.00 1.00 0.213 0.110 0.096 1.00 1.00 0.094 0.060 0.051
Avg Rets 1.00 1.00 0.160 0.113 0.097 1.00 1.00 0.062 0.062 0.053

h = 6 2-yr 1.00 0.998 0.320 0.123 0.113 1.00 0.993 0.159 0.075 0.065
6-yr 1.00 1.00 0.190 0.118 0.096 1.00 1.00 0.076 0.064 0.055
10-yr 1.00 1.00 0.334 0.109 0.092 1.00 1.00 0.158 0.065 0.051
Avg Rets 1.00 1.00 0.265 0.113 0.095 1.00 1.00 0.112 0.063 0.052
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Table 5: Independent Random Walks (T=115)

10% Level 5% Level
L S C reg1 reg2 L S C reg1 reg2

h = 4 2-yr 0.751 0.143 0.006 0.077 0.093 0.514 0.045 0.003 0.034 0.047
6-yr 0.873 0.553 0.006 0.061 0.075 0.688 0.306 0.001 0.025 0.038
10-yr 0.888 0.769 0.020 0.053 0.058 0.719 0.523 0.007 0.024 0.027
Avg Rets 0.893 0.631 0.011 0.058 0.072 0.723 0.377 0.002 0.025 0.035

h = 6 2-yr 0.687 0.074 0.008 0.077 0.087 0.434 0.023 0.003 0.038 0.047
6-yr 0.861 0.448 0.010 0.061 0.077 0.667 0.225 0.003 0.025 0.039
10-yr 0.884 0.693 0.030 0.051 0.061 0.705 0.429 0.010 0.022 0.030
Avg Rets 0.881 0.530 0.015 0.059 0.070 0.695 0.276 0.005 0.023 0.035

Table 6: Independent Random Walks (T=500)

10% Level 5% Level
L S C reg1 reg2 L S C reg1 reg2

h = 4 2-yr 1.00 0.998 0.340 0.068 0.077 1.00 0.993 0.184 0.029 0.036
6-yr 1.00 1.00 0.181 0.083 0.089 1.00 1.00 0.083 0.034 0.043
10-yr 1.00 1.00 0.319 0.078 0.079 1.00 1.00 0.163 0.033 0.034
Avg Rets 1.00 1.00 0.242 0.080 0.084 1.00 1.00 0.115 0.034 0.040

h = 6 2-yr 1.00 0.995 0.408 0.069 0.077 1.00 0.985 0.242 0.029 0.037
6-yr 1.00 1.00 0.307 0.080 0.090 1.00 1.000 0.160 0.033 0.043
10-yr 1.00 1.00 0.472 0.073 0.079 1.00 1.00 0.288 0.031 0.033
Avg Rets 1.00 1.00 0.383 0.076 0.083 1.00 1.000 0.214 0.032 0.039
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2.3 Generic Predictive Regression

In this section, we present additional evidence on the finite-sample performance of our proposed
bootstrap procedure. The simulation design is based only on external macro predictors and mimics
a typical predictive regression for generic asset returns with highly persistent predictors.

The simulation parameters are calibrated to data. Bond returns are holding period returns,
in excess of the 3-month rate, computed from STRIPS data for the period 1989:Q3–2018:Q3 and
maturities from one to 40 quarters. To present the results in a parsimonious way, we use as
a dependent variable the average returns over all maturities. The one-quarter ahead predictive
regression has the following form:

rxt+1 = α+ x′tβ + et+1,

where xt is a vector of predictors and rxt+1 = 1
N−1

∑N
j=2 rx

(j)
t+1. We also consider multi-period

forecasts of returns rxt+h with h = 4 and 8.
The predictors xt are survey expectations of CPI inflation and real GDP growth rates from the

Blue Chip Financial Forecasts for the current quarter. The dynamics of the predictors is assumed
to follow a VAR(1) process

xt+1 = µ+ Φxt + εt+1,

where µ and Φ are estimated from the data.
For the implementation of our bootstrap procedure, we need a sample path for the longest (N)

forward rate. Given the strong downward trend in the data, we model f
(N)
t as f

(N)
t = dt+ct, where

dt = (1, t)′ is a deterministic component and ct = ρct−1 +ut is an AR(1) process fitted to the data.
We evaluate the coverage probabilities of the bootstrap confidence intervals under no pre-

dictability (size for both β1 and β2) and predictability of the first predictor only (power for β1

and size for β2). Under the first scenario, we have et+1 = rxt+1 − α and under the second scenario

e
(j)
t+1 = rx

(j)
t+1 − α(j) − β(j)

1 x1t, where α is obtained from the data and β
(j)
1 is a scaled version of its

sample estimate from the data.

We generate (e
(1)
t , ..., e

(N−1)
t , εt, ut) jointly from a multivariate normal distribution with mean

zero and covariance matrix estimated from the data. We then use the estimates of α(j), β
(j)
1 (under

the second scenario), µ, Φ, dt and ρ to generate excess bond returns, predictors and the longest
forward rate. For initialization of the recursive processes, we use the first observation in the sample.

Table 7 presents the empirical coverage rates of 90% bootstrap (Efron’s percentile) confidence
intervals for β1 and β2 for two sample sizes: T = 115 which is equal to the sample size of the
actual STRIPS data at quarterly frequency and T = 500. The forecast horizons are h = 1, 4 and
8 quarters. The bootstrap method is based on resampling moving blocks with a data-driven block
size selection as in the paper. The difference is that we do not reconstruct the entire yield curve
but work only with the resampled returns.

Table 7. Empirical coverage rates of 90% bootstrap confidence intervals.

T = 115 T = 500
β1 = 0 β2 = 0 β1 6= 0 β2 = 0 β1 = 0 β2 = 0 β1 6= 0 β2 = 0

h = 1 0.8880 0.8980 0.0940 0.8950 0.9140 0.9020 0.0000 0.9100
h = 4 0.8980 0.8880 0.4490 0.8680 0.9050 0.9180 0.0090 0.9120
h = 8 0.9240 0.9040 0.6780 0.8960 0.9290 0.9300 0.1180 0.9140
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The coverage rates under the null of predictability are very close to the nominal level across
different sample sizes and forecast horizons. For the smaller sample size, there is a slight under-
coverage which is corrected in larger samples. If anything, for T = 500, the bootstrap confidence
intervals are somewhat conservative for longer forecast horizons. The relatively low power for small
T and large h for β1 is not particularly surprising and is substantially improved as the number of
time series observations increases.

3 Hidden Factor in Differenced Returns

This section follows Cochrane (2015) to show that a hidden factor can be extracted from differenced
returns. Consider a simple two-factor model with state variables Xt = (lt, zt)

′, where lt denotes
the level factor and zt is another risk factor. Suppose that the dynamics of Xt under the physical
measure P is given by

Xt+1 = µ+ ΦXt + Σ1/2εt+1,

with µ =

(
(1− ρl)µl
(1− ρz)µz

)
, Φ =

(
ρl 0
0 ρz

)
, |ρl| < 1, |ρz| < 1, εt+1 ∼ iid(0, I) and Σ =(

σ2
l 0

0 σ2
z

)
. The spot rate is assumed to be an affine function of the state variables

rt = δ0 + δ′1Xt.

The prices of risk are parameterized as in Fisher (2000),

λt =

(
(1− ρl)µl/σl

0

)
︸ ︷︷ ︸

λ0

+

(
0 ρl/σl
0 0

)
︸ ︷︷ ︸

Λ1

(
lt
zt

)
︸ ︷︷ ︸

Xt

.

Then, the dynamics of the state variables under the risk-neutral measure Q is given by

Xt+1 =

(
0

(1− ρz)µz

)
︸ ︷︷ ︸

µQ

+

(
ρl −ρl
0 ρz

)
︸ ︷︷ ︸

ΦQ

(
lt
zt

)
︸ ︷︷ ︸

Xt

+ Σ1/2εQt+1

that imposes the restriction ρl = ρQl , ρz = ρQz and µz = µQz .
In this setup, the second state variable zt affects the dynamics of the level factor under the risk-

neutral measure but not under the physical measure. Note that this specification for a “hidden”
factor differs from the one used by Duffee (2002) where the variable zt does not affect yields but
investors observe it. We find the specification of Fisher (2000) to be more realistic for the following
reasons. First, it is more consistent with the notion of a hidden factor since it passes through
(the observable dynamics of) the bond market completely undetected. Second, allowing the prices
of risk to depend on the independent source of variation in zt is crucial for explaining the widely
documented failure of (the weak form of) the expectations hypothesis.

Following Cochrane and Piazzesi (2008), it follows that the n-period forward rate f
(n)
t =

ln(P
(n−1)
t ) − ln(P

(n)
t ), where P

(n)
t denotes time-t log price of a n-period zero-coupon bond, is

given by

f
(n)
t = Af,n +B′f,nXt,
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where

B′f,n = δ′1(ΦQ)n−1,

Af,n = δ0 −B′n−1µ
Q − 1

2
B′n−1ΣBn−1

and B′n = B′n−1ΦQ − δ′1. Similarly, excess bond returns rx
(n)
t+1 = ln(P

(n−1)
t+1 ) − ln(P

(n)
t ) − rt can be

represented as

rx
(n)
t+1 = B′n−1Σ1/2λ0 −

1

2
B′n−1ΣBn−1 +B′n−1Σ1/2Λ1Xt +B′n−1Σ1/2εt+1.

Using that B′n−1 = −δ′1
∑n−2

j=0 (ΦQ)j and E[εt+1] = 0, the expected excess returns are given by

E[rx
(n)
t+1] = const.− δ′1

[∑n−2

j=0
(ΦQ)j

]
Σ1/2Λ1Xt.

Specializing these expressions to the two-factor example, we obtain (ignoring the constant terms
for simplicity) that forward rates depend on both of the state variables:

f
(n)
t = const.+

(
δ1,1 δ1,2

)( ρl −ρl
0 ρz

)n−1(
lt
zt

)
.

On the other hand, for expected excess returns we have

E[rx
(n)
t+1] = const.−

(
δ1,1 δ1,2

) [∑n−2

j=0
(ΦQ)j

]( 0 ρl
0 0

)(
lt
zt

)
= const.−

δ1,1(1− ρn−1
l )

1− ρl
ρlzt

and they are a function only of the variable zt.
This suggests that the hidden (unobservable) factor zt can be extracted from bond returns.

Unfortunately, bond returns are not immune to the mechanical factor structure (that gives rise to
level, slope and curvature factors) and the state variable zt will be mixed and possibly overwhelmed

by the mechanical factors. For expected differenced returns E[dr
(n−1)
t ] = E[rx

(n)
t+1 − rx

(n−1)
t+1 ], we

have
E[dr

(n−1)
t ] = const.− δ1,1ρ

n−1
l zt

with most of the information about zt contained at the front end. Since differenced returns are also
only a function of the variable zt but are immune to the mechanical factor structure, they can be
used to extract the factor zt.

4 Probability of Recession

Figure 7 shows the estimated probability of the event H1t or H2t for both the bias-corrected
estimator (black line) or the standard estimator (red line). As discussed in the main text, we
observe that for small fitted probabilities – periods associated with a wider term spread – the bias
corrected estimate is below the sample estimate; in contrast, for large fitted probabilities – periods
associated with a compressed term spread – the bias corrected estimate is comfortably above the
sample estimate.
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Figure 1: Loadings for the first three principal components for international bond returns (in excess
of the 3-month rate). The data is at quarterly frequency with varying start dates (see text) but
the same end date (2007:Q4). The yields for all countries are with 1- to 40-quarter continuous
maturities.
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Figure 2: Loadings for the first three principal components for the returns on Eurodollar futures,
oil futures, S&P500 options and U.S. inflation swaps.
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Figure 4: Loadings on the fourth and fifth principal components for excess bond returns by country.
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Figure 5: Time series persistence (partial correlation coefficient) for yields, forwards and excess
returns by maturity.
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Figure 6: Cross-sectional correlations for yields, forwards and excess returns by maturity.
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Figure 7: Probability of Recession

This figure plots the fitted values of P(H1t = 1|xt) or P(H2t = 1|xt) as defined in the main text. xt is either: (i)

a constant and the term spread; (ii) a constant, the term spread, and the deviation of the 3-month yield from its

3-year moving average. The black line represents the estimated probability based on the bootstrap bias correction

and the red line represents the full sample estimate. Black diamonds denote the bias-corrected estimate based on

a term spread of −0.05 and 3-month yield deviation of 1.20. Grey shading denotes NBER recessions. The sample

period is 1971:3–2018:3.
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