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Abstract 

We introduce a novel nonparametric bootstrap for the yield curve which is agnostic to the true factor 

structure of interest rates. We deconstruct the yield curve into primitive objects, with weak cross-sectional 

and time-series dependence, that serve as building blocks for resampling the data. We analyze the 

properties of the bootstrap for mimicking salient features of the data and conducting valid inference. We 

demonstrate the benefits of our general method by revisiting the predictability of bond returns based on 

slow-moving fundamentals. We find that trend inflation, but not the equilibrium real rate, has predictive 

power for future bond returns. 
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1 Introduction

The term structure of interest rates is a key object of study in both macroeconomics and finance.

Testing theories of interest-rate determination have important implications for understanding how

asset prices reflect expectations about the future, risk preferences, market structure, or other con-

siderations. Term structure modeling is generally parametric in nature and reduced-form inference

tends to rely on off-the-shelf procedures designed for generic regression specifications. However, ac-

curate inference is a formidable task as this parametric setting presents a confluence of econometric

challenges.

First, parametric models of the term structure of interest rates require the correct specification

of the underlying factor structure of the data. Recent research highlights the challenge of identifying

the correct factor space. Uhlig (2009) and Onatski and Wang (2021) demonstrate that high time-

series persistence can lead to spurious commonality across series suggestive of a stronger factor

structure than might exist. Crump and Gospodinov (2022) show that, even in the absence of strong

serial correlation, certain properties of maturity-ordered assets induce standard metrics to possibly

favor a much lower dimension than the true dimension of the underlying factor space. Other work

(e.g., Duffee 2011; Joslin et al. 2014) has argued for the presence of “hidden” or unspanned factors

which represent information that is not fully incorporated in bond yields.

Second, even under correct specification, the underlying yield factors will exhibit a high degree

of time-series persistence which presents a perennial obstacle to trustworthy inference in time-

series analysis. A number of papers, starting with Cavanagh et al. (1995), show that estimation

and inference of return predictability is sensitive to the exact degree of persistence and can result

in severe bias and size distortions (see also, e.g., Stambaugh 1999; Ferson et al. 2003; Jansson and

Moreira 2006; Campbell and Yogo 2006; Wei and Wright 2013; Bauer and Hamilton 2018).

Third, unlike most empirical settings where there are distinct dependent and explanatory vari-

ables, inference in fixed-income regressions is often conducted on regression coefficients where both

regressors and the regressand are linear combinations of the same underlying yield curve. This

makes the setting inherently distinct from the usual linear regression setup and implies that stan-

dard resampling approaches will produce bootstrapped samples which do not satisfy economic

relations and identities. Thus, the conventional parametric framework can omit potentially im-

portant factors and key aspects of their dynamics, and generate yields with internally inconsistent
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properties.

In this paper, we introduce a novel model-free resampling procedure which is tailored to assets

with a finite maturity structure such as the nominal yield curve. Rather than resampling yields

or prices directly, we instead resample excess returns along with a single, far-in-the-future forward

rate. This can be thought of as an economically-motivated transformation of the original price data

that produces primitive objects with more appealing statistical properties which, in turn, serve as

the basis for bootstrapping the data. We stress that our proposed method differs conceptually

and practically from the typical approach (e.g., Giglio and Kelly 2017, Bauer and Hamilton 2018)

that specifies yields as the primitive process, takes a stand on their factor structure and its law of

motion, and employs a fully parametric model of yields in terms of their assumed pricing factors.

In contrast, our method is nonparametric which enables valid resampling of yield curves while

remaining agnostic about the underlying data generating process. Our bootstrap procedure does

not require as an input either the correct factor structure or the true pricing model which generated

the data; moreover, it is robust to unaccounted forms of time-series and cross-sectional dependence

and presence of conditional heteroskedasticity. Importantly, our results translate directly to all

other assets with a finite maturity structure such as options, swaps, or futures.

A key feature of our method is that the term structure of interest rates can be fully reconstructed

from the bootstrapped primitive objects in an internally consistent manner via a set of identities.

As the resampled data naturally satisfies term structure identities, this bottom-up approach ensures

that any predictability in future returns from past yields or forwards is retained. This property is

particularly advantageous when the predictors of interest are functions of the yield curve themselves

(e.g., Fama and Bliss 1987; Campbell and Shiller 1991; Cochrane and Piazzesi 2005, 2008; Bauer

and Rudebusch 2020; Bauer and Chernov 2024). One prominent example is the equilibrium real

rate, or r∗, which is an explicit function of short-term interest rates and must be resampled in such

a way that is consistent with the rest of the nominal yield curve. Our method is also well-suited

to accommodate external (macroeconomic) predictors (e.g., Cooper and Priestley 2008, Ludvigson

and Ng 2009; Joslin et al. 2014; Cieslak and Povala 2015; Ghysels et al. 2018; Haddad and Sraer

2020) by preserving their potential relationships with the yield curve and accounting for sampling

uncertainty, arising from prior data transformations such as exponential smoothing.

We provide extensive Monte Carlo simulation evidence illustrating the ability of our method
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to retain the unknown factor structure in the data. The simulation experiments also highlight

the extremely challenging nature of conducting inference in bond predictive regressions that is

not fully appreciated in the literature. We show that our bootstrap inference procedure controls

size well for multi-period holding returns at various maturities and across different specifications.

Additionally, the simulation results suggest that this size control is achieved with only a minimal

loss of power relative to an infeasible “oracle” method which is based on the exact structure and

the true parameters of the data generating process.

In our main empirical application, we revisit the results from Cieslak and Povala (2015) and

Bauer and Rudebusch (2020) regarding the predictive content in trend inflation and the equilibrium

real interest rate (r∗) for future bond returns. Using our bootstrap, we find compelling evidence that

trend inflation has additional explanatory power for future bond returns beyond what is captured

by the current yield curve. In contrast, we fail to find any evidence that r∗ has predictive power;

importantly, this result holds uniformly across different subsamples, maturities, and regression

specifications. Furthermore, we also clarify why the bootstrap method of Bauer and Hamilton

(2018), which Bauer and Rudebusch (2020) rely on, is invalid in this setting.

We consider two additional empirical applications which highlight the broad applicability of

our bootstrap method. First, we revisit the regression-based tests of the expectations hypothesis

(Fama and Bliss 1987, Campbell and Shiller 1991).1 This is a perfect setting to demonstrate the

utility of our bootstrap as the dependent and independent variables are both functions of yields.

Furthermore, since we jointly bootstrap the whole yield curve, we can assess all of the different

regression-based tests of the expectations hypothesis in a unified way. We show how our bootstrap

enhances our understanding of the sampling properties of the OLS estimator in this setting. Second,

we use our new bootstrap procedure to construct bias-corrected estimates and confidence intervals

for the probability of recession, using information embedded in the yield curve. We show that the

direction of the bias correction closely aligns with the impressive forecasting record associated with

the term spread over the last 50 or so years and highlights the benefits of our bootstrap approach.

The rest of the paper is organized as follows. In Section 2, we introduce the nonparametric

bootstrap method. We demonstrate the appealing finite-sample properties of our bootstrap in a

series of simulation experiments in Section 3. Section 4 presents results from our three empirical

1Of independent interest, we also show how to view all of the existing regression specifications for testing the
expectations hypothesis in terms of a single unifying primitive equation.
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applications. Section 5 concludes. Additional details and results are available in Appendix A and

a Supplemental Appendix (hereafter, SA).

2 Resampling the Yield Curve

2.1 The Need for Robust Inference: A Motivation

We start this section by introducing notation used throughout the paper. We also provide a heuristic

motivation for why inference methods that exhibit robustness to the unknown factor structure and

time-series properties of bond data are desirable.

Let p
(n)
t denote the time t log price of a zero-coupon bond with n periods to maturity which

pays $1 at time t+ n, where t = 1, . . . , T and n = 1, ..., N . The corresponding log yield is denoted

by y
(n)
t and satisfies p

(n)
t = −ny(n)t . The log forward rate corresponding to a one-period investment

between t+ n− 1 and t+ n , f
(n)
t , is defined as

f
(n)
t ≡ p(n−1)t − p(n)t . (1)

Since p
(0)
t = 0, the one-period rate, y

(1)
t , may equivalently be written as f

(1)
t . Using the recursive

(in n) nature of equation (1) and the definition of yields, we have

p
(n)
t = −

∑n

i=1
f
(i)
t , y

(n)
t =

1

n

∑n

i=1
f
(i)
t . (2)

It is well known that bond yields have both strong cross-sectional and time-series dependence

which makes inference and, in particular, resampling-based inference challenging. We will begin

by discussing how the special setting of the yield curve is reflected in the strong cross-sectional

dependence. First, observe that, by equation (2), p
(n)
t and y

(n)
t are cross-sectional partial sums and

partial averages of forward rates, respectively. These formulas demonstrate that two bond prices

or yields, y
(n)
t and y

(m)
t , have min(m,n) forwards in common. This overlap, which arises solely

from these term-structure identities, implies differential behavior in the covariance or correlation

matrix of forwards relative to yields (or prices); in fact, prices, will always exhibit stronger local

correlation than forwards across the same maturities.2

2This is true provided that the forwards are positively correlated across maturities (as is the case in practice).
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What are the implications of these cross-sectional restrictions for characterizing the true factor

space? It is now ubiquitous to estimate the factor structure of the term structure by applying static

principal component (PC) analysis to yields across maturities. The top left plot of Figure 1 presents

the factor loadings for yields that are widely documented in the term structure literature.3 In this

particular sample, these first 3 principal components explain almost 100% of the cross-sectional

variation of yields with only the first principal component explaining in excess of 98.6% of the

variation. At first glance, this is suggestive of a low-dimensional factor structure.

A similar pattern appears to hold for any asset with a finite maturity structure. In the top right

and bottom left panels we show the associated PC loadings for oil futures and S&P 500 options

returns, respectively. However, in the last panel we present the PC loadings from a panel data set of

the seasonal cycle of global surface temperature. Remarkably again, the loadings are very similar

in shape to those estimated from maturity-ordered financial assets. This provides preliminary

evidence that the high explained variation and the particular shape of PC loadings are reflective

of the strong local correlation (i.e., smooth curve) across these ordered data. In fact, Crump and

Gospodinov (2022) show that this behavior can be consistent with a much higher dimensional factor

space.

But cross-sectional dependence is not the only challenge. Both bond yields and forward rates

exhibit a high degree of time-series persistence. Recent work by Uhlig (2009) and Onatski and Wang

(2021) argue that extracting principal components from factorless, nonstationary data results in a

spurious inference of a small number of factors that absorb almost all of the variation in the data.

To evade this spurious factor problem, the data should be transformed to induce stationarity which

is naturally achieved in this setting through bond returns. Define the one-period holding return on

a bond of maturity n from time t to t+ 1 as

r
(n)
t,t+1 ≡ p

(n−1)
t+1 − p(n)t . (3)

The corresponding excess return is then given by

rx
(n)
t,t+1 ≡ r

(n)
t,t+1 − y

(1)
t = r

(n)
t,t+1 − r

(1)
t,t+1. (4)

3Appendix A provides full details about the data used in Figure 1.
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Figure 1. Principal Component Loadings in Financial and Non-Financial Data. This figure presents the
loadings of the first three principal components for bond yields (top left), oil price futures (top right), S&P 500
options returns (bottom left) and global surface temperature (bottom right). For each panel, principal components
analysis is applied to the sample correlation matrix. A full description of the data and data sources is available in
Appendix A.

Treasury Yields

5 10 15 20 25 30 35 40
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Oil Futures

2 4 6 8 10 12
-0.4

-0.2

0

0.2

0.4

0.6

0.8

S&P 500 Options Returns

1 2 3 4 5 6 7 8 9
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Global Surface Temperature

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

The notation r
(n)
t,t+1 and rx

(n)
t,t+1 signifies that these returns are earned from period t to t+ 1. In the

sequel, we will simplify the notation to r
(n)
t+1 and rx

(n)
t+1, respectively. Observe that since returns are

defined based on changes in prices, they directly inherit the overlapping nature of prices relative

to forward rates. We can demonstrate the second property in a straightforward way by defining

the return on the following long/short trading strategy: buy an n-maturity bond and short an

(n− 1)-maturity bond (“difference return”)

dr
(n)
t+1 ≡ r

(n)
t+1 − r

(n−1)
t+1 =

(
p
(n−1)
t+1 − p(n)t

)
−
(
p
(n−2)
t+1 − p(n−1)t

)
= f

(n)
t − f (n−1)t+1 . (5)
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Then, it follows immediately that excess returns are a partial sum (along maturity) of dr
(i)
t+1,

rx
(n)
t+1 =

∑n

i=2
dr

(i)
t+1. (6)

Similar to the arguments above, the overlapping sum that links difference and excess returns in-

duces strong cross-sectional correlations which principal components analysis interprets as evidence

of only a small number of underlying factors. Difference returns, then, have the appealing property

that they have minimal time series persistence (unlike forwards and yields) and no mechanical

cross-sectional persistence (unlike returns). As such, it is advantageous to base our bootstrap on

difference returns as the main primitive object.

Further intuition for our bootstrap method can be gleaned from the following identity:

f
(n)
t = f

(n)
t + f

(n+1)
t−1 − f (n+1)

t−1 + · · ·+ f
(N)
t−N+n − f

(N)
t−N+n (7)

= f
(N)
t−N+n −

(
f
(n+1)
t−1 − f (n)t

)
−
(
f
(n)
t−2 − f

(n+1)
t−1

)
− · · · −

(
f
(N)
t−N+n − f

(N−1)
t−N+n+1

)
(8)

= f
(N)
t−N+n − dr

(n+1)
t − dr(n+2)

t−1 − · · · − dr(N)
t−N+n+1, (9)

where the transition from equation (8) to equation (9) utilizes the relationship between difference

returns and forwards given by equation (5). Equation (9) clearly illustrates that difference returns,

along with the longest horizon forward rate, serve as fundamental building blocks of the yield

curve. More specifically, this equation implies that if we observe the longest horizon forward

rate,
{
f
(N)
t

}T
t=2

, all difference returns,
{

(dr
(2)
t , . . . , dr

(N)
t )

}T
t=2

, along with an initial forward curve,(
f
(1)
1 , . . . , f

(N)
1

)
, we are able to construct the entire forward curve

{(
f
(1)
t , . . . , f

(N)
t

)}T
t=1

and yield

curve
{(
y
(1)
t , . . . , y

(N)
t

)}T
t=1

.4 Thus, conditional on an initial forward curve, we may jointly re-

sample the N -maturity forward rate and the difference returns to generate bootstrap samples of

the whole yield curve. A key feature of our bootstrap procedure is that we have chosen primitive

objects in such a way that the only persistent object is the longest horizon forward rate which is

confined to a single dimension and is also less persistent than other yields or forwards.

4For t ≤ N + 1, we can obtain forwards by directly relying on the recursive relationship, f
(n)
t = f

(n+1)
t−1 − dr(n+1)

t .
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2.2 Bootstrap Method

We first describe our procedure for resampling the yield curve (hereafter referred to as the “CG

bootstrap” for simplicity). Assume that f
(1)
1 , f

(2)
1 , ..., f

(N)
1 are given. Next, we stack f

(N)
t+1 and

dr
(n+1)
t+1 , n = 1, ..., N − 1 and t = 1, ..., T − 1, into a matrix Z with its t-th row given by

zt = (f
(N)
t+1 , dr

(2)
t+1, ..., dr

(N)
t+1)′. Under some regularity conditions (stationarity and ergodicity) for

the multivariate process zt, the bootstrap samples {z∗t } for t = 1, . . . , T − 1 are then obtained

by drawing with replacement blocks of M < T rows (time-series dimension) from the matrix Z,

jointly for all cross-sectional observations.5 This resampling structure allows for unknown forms

of (possibly strong) cross-sectional dependence. Importantly, while the bootstrap can capture and

preserve a strong common factor structure in the data, it remains agnostic about the precise source

of cross-sectional dependence. It also deals with general forms of serial correlation provided that

the time-series dependence is of mixing type. Furthermore, since the bootstrap is model-free, it is

robust to possible model misspecification.

Let Zt,M = (zt, zt+1, ..., zt+M−1) denote a block of M consecutive observations of zt, k = [(T −

1)/M ], where [a] signifies the smallest integer that is greater than or equal to a, and define T = kM .6

For a given block size M , we then construct the blocks {Zt,M}T/Mt=1 . We resample with replacement

k blocks from (Z1,M , Z2,M , ..., ZT−M,M ) by drawing k i.i.d. discrete uniform random variables

(u1, ..., uk) and obtain Zu1,M through Zuk,M . Then, the bootstrap sample is given by Z∗ = [(z∗1 , z
∗
2 ,

..., z∗M ), (z∗M+1, z
∗
M+2, ..., z

∗
2M ), ..., (z∗

T−M+1
, z∗

T−M+2
, ..., z∗

T
)]′. Since the cross-sectional dimension

N in term structure data is generally a nontrivial fraction of the sample size T , this informs our

choice of M which is guided by a simple rule-of-thumb:

M = (TN)2/5. (10)

Given the bootstrap sample {f (N)∗
t , dr

(2)∗
t , ..., dr

(N)∗
t } and the initial forward curve,7 the boot-

strap forward rates with maturities 1 to N − 1 periods are constructed, using the identity given in

5Since f
(N)
t is typically a persistent process, we discuss below the option of prewhitening f

(N)
t (and any other

persistent variables) via an approximate AR(1) or VAR(1) model.
6T is the smallest block bootstrap sample which has at least T observations. In practice, we select the first T

observations of the block bootstrap sample.
7In all numerical results, we initialize the forward curve with the first sample observation. However, there may

be circumstances where it is desirable to conduct inference conditional on a different initial condition. Our results
accommodate such a case.
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equation (5), as

f
(N−1)∗
t+1 = f

(N)∗
t − dr(N)∗

t+1 (11)

f
(N−2)∗
t+1 = f

(N−1)∗
t − dr(N−1)∗t+1 (12)

...

f
(1)∗
t+1 = f

(2)∗
t − dr(2)∗t+1 , (13)

for t = 1, ..., T − 1. Finally, the bootstrap yields and returns are obtained, respectively, as y
(n)∗
t =

1
n

∑n
i=1 f

(i)∗
t and rx

(n)∗
t =

∑n
i=2 dr

(i)∗
t for n = 1, ..., N and t = 2, ..., T by equations (2) and (6).

To visualize how well our resampling procedure mimics the actual dynamics of various yield

curve-based variables, Figure 2 plots a typical bootstrap realization against the observed data. It

is reassuring to see that not only are the time-series dynamics of all these variables quite reason-

able, but also that the bootstrap preserves and replicates the cross-sectional dependence across

maturities.8

In addition to simulating the yield curve, we are often interested in testing hypotheses related to

the term structure of interest rates: testing the expectations hypothesis, running predictive return

regressions to estimate or study risk premia, etc. Let

rx
(n,h)
t+h ≡ p

(n−h)
t+h − p(n)t + p

(h)
t (14)

be the h-period excess holding period return on a n-maturity bond. For example, suppose that

interest lies in a predictive regression of an individual excess return, rx
(n,h)
t+h , on a k-vector of

predictors xt, where the predictor vector xt is partitioned as xt = (g′t, w
′
t)
′ with gt denoting yield-

based predictors9 and wt being macro or other financial predictors. More explicitly, we focus on

inference in the following predictive regression model

rx
(n,h)
t+h = α(n) + β(n)′xt + ε

(n)
t+h (15)

= α(n) + β
(n)′
1 gt + β

(n)′
2 wt + ε

(n)
t+h, (16)

8Our bootstrap can be further modified by adjusting for yield level dependence of volatility (see Rebonato and
Zanetti 2023) but we do not pursue this possibility further in this paper.

9For example, the vector of yield-based predictors may include a long-maturity interest rate or forward rate, the
spread between a long-maturity and short maturity yield or forward (e.g., Fama and Bliss 1987; Campbell and Shiller
1991), or a linear combination of yields (e.g., Joslin et al. 2011) or forwards (e.g., Cochrane and Piazzesi 2005, 2008).
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Figure 2. Realized Sample versus Bootstrapped Sample. The left column of this figure shows the time
series of yields, forwards, and excess returns from Gurkaynak et al. (2007) for the sample 1972:Q1–2022:Q4. The
right column of this figure shows the corresponding bootstrapped time series for these same objects.
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where ε
(n)
t+h denote predictive regression errors. Following Cochrane and Piazzesi (2005), we also

consider a cross-sectional average of bond returns, rxt+h = 1
#Ns

∑
n∈Ns

rx
(n,h)
t+h , Ns ⊆ {2, . . . , N},

by replacing rx
(n,h)
t+h with rxt+h in the above model.

To accommodate the case of external predictors, we augment the matrix Z with wt and denote
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the new matrix by Z̃ so that its t-th row is given by z̃t = (f
(N)
t+1 , dr

(2)
t+1, ..., dr

(N)
t+1 , w

′
t+1)

′. This

matrix is resampled using a moving block bootstrap, as described above, to obtain Z̃∗. The

bootstrap sample {f (N)∗
t , dr

(2)∗
t , ..., dr

(N)∗
t } is used for reconstructing forwards f

(n)∗
t , yields y

(n)∗
t

and bond returns rx
(n)∗
t and rx

(n,h)∗
t . The bootstrap yield-based predictors g∗t are formed from the

resampled y
(n)∗
t or f

(n)∗
t which guarantees that all yield curve identities between variables hold in

each bootstrapped sample. The bootstrapped external predictors are the last columns of Z̃∗ and

are used to complete the full set of bootstrapped predictors x∗t = (g∗t
′, w∗t

′)′.

The bootstrap OLS estimator in the predictive regression is then given by

β̂(n)∗ =

(
T−h∑
t=1

(x∗t − x̄∗)(x∗t − x̄∗)′
)−1(T−h∑

t=1

(x∗t − x̄∗)rx
(n,h)∗
t+h

)
,

where x̄∗ = (T − h)−1
∑T−h

t=1 x∗t . Let Ω̂T denote the HAC estimator of the variance matrix of

the OLS estimator β̂(n) and Ω̂∗T be its bootstrap analog. With this notation, define the sample

t-statistic for the ith predictor as t̂i = (β̂
(n)
i − β(n)i )/se(β̂

(n)
i ), where se(β̂(n)) =

√
diag(Ω̂T ), and

t∗i = (β̂
(n)∗
i −β̂(n)i )/se(β̂∗i ), where se(β̂(n)∗) =

√
diag(Ω̂∗T ). The p-values for the symmetric percentile-

t bootstrap method are obtained as

p∗|ti| =
1

B

B∑
j=1

I
{
|t∗i,j | > |t̂i|

}
, (17)

where I {·} denotes the indicator function, B is the number of bootstrap replications, and t∗i,j is t∗i

for the j-th (j = 1, ..., B) bootstrapped sample. These are the bootstrap p-values that we utilize

in our simulations and empirical applications. The technical details regarding the validity of this

bootstrap procedure are provided in the SA.

2.2.1 Implementational Details for the CG Bootstrap

Pre-whitening. While long-horizon forward rates tend to exhibit less persistence than the short

rate, f
(N)
t can still be very persistent depending on the frequency of the data and the sample

period. Similarly, some external predictors may also exhibit strong serial correlation. At the very

least, it may be convenient to transform the data in such a way that all variables in the matrix

Z̃ are characterized by a similar degree of time-series dependence. In this case, we jointly “pre-

whiten” the processes f
(N)
t and wt using a VAR(1) model (or an AR(1) for f

(N)
t when there are no
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additional variables, wt) for approximating their dynamics and perform the block bootstrap on the

residuals from this model. This is a version of the hybrid bootstrap of Davison and Hinkley (1997)

and Niebuhr et al. (2017) which combines the autoregressive and nonparametric block bootstrap

approaches. It is important to underscore that the AR(1) or VAR(1) models are likely to be

misspecified and they are intended to only weaken the underlying persistence so that any remaining

time-series dependence is handled by the block bootstrap resampling. To outline the main steps

in this hybrid bootstrap, let f̃
(N)
t and w̃t denote the pre-whitened processes that are the residuals

from fitting a joint VAR(1) model of f
(N)
t and wt with projection coefficient matrix Φ̂. These

pre-whitened processes are used in the matrix Z̃ which is resampled by the block bootstrap to

obtain their bootstrap versions f̃
(N)∗
t and w̃∗t . The bootstrap series f̃

(N)∗
t and w̃∗t are in turn used

to construct (“re-whiten”) the original predictors recursively as

f (N)∗
t

w∗t

 = µ̂+ Φ̂

f (N)∗
t−1

w∗t−1

+

f̃ (N)∗
t

w̃∗t

 (18)

for t = 2, ..., T , f
(N)∗
1 = f

(N)
1 and w∗1 = w1.

10 We then proceed as discussed above.

Bias Correction. In all empirical applications and simulation experiments, we use the bootstrap

bias correction of the coefficient matrix Φ̂ as suggested by Kilian (1998). Similar bootstrap-based

bias correction has been utilized in the context of term structure applications before (see for ex-

ample, Bauer et al. 2012 and Bauer et al. 2014). We only implement the bias correction when the

maximum eigenvalue is less than one, as advocated in the bootstrap literature (e.g., Kilian 1998

and Kilian and Lütkepohl 2017, p.364). In our practical implementation, we use 1, 000 bootstrap

replications when utilizing the Kilian (1998) bias correction. In our simulation experiments in the

next section, we show that the difference between the bootstrap implemented with and without

bias correction is small. However, our recommendation is to use bias-corrected estimates for the

pre-whitening process as, in practice, the degree of persistence is unknown.

Overlapping Returns. The h-period predictive setup in our paper implies a particular (quasi-

overlapping) structure for the regression errors which is known to be poorly approximated by the

standard HAC estimators. A possible alternative is to utilize a larger-than-usual bandwidth/truncation

10As is standard in the bootstrap literature, we demean f̃
(N)∗
t and w̃∗t before re-whitening using equation (18).
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parameter in the HAC estimation in an effort to reduce the size distortions of the off-the-shelf HAC

variance estimators (Lazarus et al. 2018). Our setting appears to feature too much time-series per-

sistence for the effectiveness of such an approach. Another possibility is to resort to the percentile

bootstrap method which does not require an estimate of the variance matrix. Instead, we rely on

the moving block bootstrap to correct the size distortions induced by the HAC estimator. For our

baseline choice of HAC estimator, we use the Newey and West (1987) estimator with lag length h.

Having said that, we acknowledge that the complex serial correlation structure of the errors and

the potential high persistence of the predictors call for a careful approach to choosing kernel shape

and truncation parameters in this setup.

Gaps in Maturities. Some data sets of bond prices do not include a sequence of adjacent

maturities up to N . The most prominent example is the Fama-Bliss discount bond data which

are available at monthly frequency in the time series but only for annual maturities in the cross-

sectional dimension. In this case, we can follow a similar design to the procedure described above.

Suppose we observe K prices,
{(
p
(n1)
t , p

(n2)
t , . . . , p

(nK)
t

)}T
t=1

where N = nK . In the Fama-Bliss data,

we would have K = 5 and (n1, n2, n3, n4, n5) = (12, 24, 36, 48, 60). The analog of f
(N)
t in this setting

is

z1t =
(
p
(nK−1)
t − p(nK)

t

)
.

Similarly, the analog to the difference returns in this setting is

z2t = p
(nK−2)
t − p(nK−1)

t −
(
p
(nK−1)
t−1 − p(nK)

t−1

)
z3t = p

(nK−3)
t − p(nK−2)

t −
(
p
(nK−2)
t−1 − p(nK−1)

t−1

)
...

znKt = p
(0)
t − p

(n1)
t −

(
p
(n1)
t−1 − p

(n2)
t−1

)
= −p(n1)

t −
(
p
(n1)
t−1 − p

(n2)
t−1

)
.

We can bootstrap (z1t, z2t, . . . , znKt)
′, conditional on the first observation, to obtain

{(
z∗1t, z

∗
2t, . . . , z

∗
nKt

)}T
t=2

recursively, e.g.,

p
(nK−2)∗
2 − p(nK−1)∗

2 = z∗22 +
(
p
(nK−1)
1 − p(nK)

1

)
,
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and so on.

No Observed Short Rate. In some cases, data sets of bond prices do not have a short-rate

(n = 1) available or begin at some maturity n0 where n0 > 2. For example, the Treasury TIPS

market and the German Bund yield curve published by the Bundesbank (see Speck 2023 for further

discussion) do not have a short-rate directly available. Alternatively, depending on the application

at hand, it might be desirable to only resample a specific segment of the maturity spectrum. In

this case, we can straightforwardly modify the recursive relationships in equations (11)–(13) for

this setting. In particular, we can simply replace the terminal recursion in equation (13) by

f
(n0)∗
t+1 = f

(n0+1)∗
t − dr(n0+1)∗

t+1 ,

and generate bootstrap samples for
{(
f
(n0)
t , f

(n0+1)
t , . . . , f

(N)
t

)}T
t=1

.

2.2.2 Discussion

There are three important aspects of our proposed bootstrap method. First, the building blocks

of the CG bootstrap have weaker time-series persistence than yields or their principal components.

However, our bootstrapped yields and forward rates will still exhibit high time-series persistence

because they are generated via identities of the primitive objects that we resample.11 As a result,

the persistence of these predictors arises naturally from the relationships embedded in the term

structure of interest rates.

Second, we bootstrap the entire cross-section of the yield curve which allows us to remain

agnostic about the exact form of the strong cross-sectional dependence. Crump and Gospodinov

(2022) argue that characterizing the true factor space in the term structure of interest rates is

challenging and committing to a low-dimensional parametric structure can result in large hedging

and portfolio allocation errors (see also Filipović et al. 2024). In contrast, our resampling method

retains the underlying factor structure in the primitive processes and reconstructs the entire yield

curve in an identity-preserving fashion.

Third, the CG bootstrap procedure is model free. Bond returns exhibit predictability using

11Recall that the dependent variable rx
(n,h)
t+h and the predictors gt are both obtained from the same underlying

data, y
(n)
t for n = 1, ..., N . However, conventional resampling of rx

(n,h)
t+h and gt within a regression framework would

violate the definitional relationships described in Section 2.1.
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past yield and forward rate information. A standard parametric bootstrap procedure faces a num-

ber of difficulties in bootstrapping data in an internally consistent fashion that will replicate this

predictability as well as other properties of the yield data. Our proposed bootstrap method en-

sures this internal consistency in mimicking the salient properties of the data by accommodating

unknown forms of cross-sectional dependence and time-series persistence.

3 Simulation Evidence

In this section, we provide extensive simulation evidence demonstrating the performance of our new

bootstrap procedure relative to both feasible and infeasible alternatives. In our simulation designs,

forward rates are assumed to follow

Ft = af + Bfgt + et, (19)

where Ft is a vector of observed forward rates at time t, gt denotes a subset of individual forward

rates spanning the factor structure of the yield curve, and et is a vector of independent (over time)

Gaussian measurement errors with a reduced-rank variance matrix, Σe.
12 As is standard in the

literature, we assume that the factors, gt, follow a VAR(1),

gt = µg + Φggt−1 + ηgt , (20)

where ηgt are i.i.d. Gaussian errors with variance matrix Σg
η. To calibrate the parameters for

our simulations, we use monthly data with selected forward rates as the factors gt, and choose

Ft = (y
(12)
t , f

(24,12)
t , f

(36,12)
t , . . . , f

(108,12)
t , f

(120,12)
t )′, where

f
(n,h)
t ≡ p(n−h)t − p(n)t . (21)

For example, f
(24,12)
t is the one-year rate, one year in the future and note that f

(n,1)
t = f

(n)
t as

defined in equation (1). We vary the choice of gt to accommodate 3- and 5-factor specifications.

All necessary parameters (af , Bf , Σe, µg, Φg, and Σg
η) are calibrated using system OLS estimates

based on monthly Gurkaynak et al. (2007) data over the sample period 1972M1–2022M12 (612

12The variance matrix is of reduced rank to ensure internal consistency of the data-generating process, i.e., that
the factors, gt, are observed without error (e.g., Ang and Piazzesi 2003).
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observations).

We first simulate Ft for t = 1, . . . , T using equations (19) and (20). We then obtain simulated

prices, p
(12)
t , p

(24)
t , ..., p

(120)
t using equation (2), and simulated excess holding period returns using

equation (14). We run regressions of the form:

rx
(n,12)
t+12 = α(n) + β

(n)′
1 gt + vg,t, (22)

and conduct inference on the elements of β
(n)
1 . The values of the true parameters, β

(n)
1 , are obtained

analytically as

β
(n)
1 = L

(
Ξ1B

f − Ξ2B
f
h−1∑
i=0

Φh
gµg

)
, (23)

where Ξ1 and Ξ2 denote the conformable identity matrix with the first row removed and last

row removed, respectively, and L is a conformable lower triangular matrix of ones. For power

computations, we consider tests of H0 : β
(n)
1i = 0, where β

(n)
1i is the ith element of β

(n)
1 . We omit

results for the constant term as it is not generally a parameter of interest in these applications. In

all simulations, we set T = 600, B = 399, and S = 5000. In the main text, we present results at

10% nominal level and in the SA, we provide the analogous results at 5% nominal level.

We report results for the following three resampling procedures:13

Oracle [O]. This option serves as an infeasible benchmark. The oracle inference procedure

uses the full parametric structure of the data-generating process, including knowledge of the true

parameters. The only sampling uncertainty in this method arises from the randomness generated

from the B simulated draws of et and ηgt . As B → ∞, the oracle procedure, centered at the true

parameter value, obtains the exact finite-sample distribution of the t-statistic. However, we fix B

to be the same for all procedures to enable direct comparisons.

Bauer and Hamilton (2018) [BH]. We implement the BH bootstrap exactly as described in

Bauer and Hamilton (2018). Let Yt be the simulated yields obtained using Ft and equation (2).

13We also investigate the performance of commonly-used heteroskedasticity and autocorrelation consistent/robust
(HAC/HAR) variance estimators (Newey and West 1987 and Lazarus et al. 2018) which rely on asymptotic approxi-
mations to conduct feasible inference. We relegate these results to the SA as they fail to control size uniformly across
all of our simulation designs.
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Denote the first three principal components of yields as Pct, where Pct = Λ̂′Yt. Here, Λ̂ is the

10×3 matrix of eigenvectors of the sample variance matrix of Yt corresponding to the three largest

eigenvalues and satisfying Λ̂′Λ̂ = I3. Define σ̂2Pc as the estimator of the variance of the fitting error

from principal components estimation,

σ̂2Pc = (10T )−1
T∑
t=1

(Yt − Λ̂Λ̂′Yt)
′(Yt − Λ̂Λ̂′Yt). (24)

The dynamics of Pct are estimated as a VAR(1) model resulting in

Pct = µ̂Pc + Φ̂PcPct−1 + η̂Pct . (25)

To obtain bootstrapped yield curves, we first set Pc∗1 = Pc1 and for t > 1 we use the recursions

Pc∗t = µ̂Pc + Φ̂PcPc
∗
t−1 + η̂Pc∗t , (26)

where η̂Pc∗2 , . . . , η̂Pc∗T are independently sampled (with replacement) from the empirical distribution

of η̂Pct . Then,

Y ∗t = Λ̂ ·Pc∗t + σ̂Pc · νt, (27)

where νt are i.i.d. Gaussian random vectors with variance matrix I10. Bootstrapped forwards and

returns can then be constructed using Y ∗t for t = 1, . . . , T . In practice, yields (and consequently,

principal components of yields) exhibit a high degree of persistence. It is often recommended that

the parameter estimates in equation (25) be bias-adjusted (Bauer et al. 2012; Bauer et al. 2014). In

the main text, we present results using bias-adjusted parameter estimates based on Kilian (1998)

and report results without bias correction in the SA.14

[CG]. To implement our nonparametric bootstrap, we follow exactly the steps presented in Sec-

tion 2.2. We use the block size choice given in equation (10) and employ the Kilian (1998) bias

adjustment procedure for the pre-whitening process. We use the first observation in the simulated

14In order to exactly replicate the BH bootstrap, we follow the BH replication code which implements the bias
correction for the OLS estimator of ΦPc even when the maximal eigenvalue of Φ̂Pc is greater than or equal to one.
As in BH, we use 1,000 bootstrap replications for the bias correction.
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data as the initial condition for all bootstrapped samples.

Unlike the prior two procedures, our method does not aim to exploit any knowledge of the true

data-generating process.

3.1 Simulations with Yield-Based Predictors

We first explore the finite-sample size and power properties of the three different resampling pro-

cedures in the presence of only yield-based predictors. The true parameters are β
(n)
1 as given in

equation (23). Let β̂
(n)
1i,s be the OLS estimator for the sth simulation with corresponding t-statistic

t̂
(n)
1i,s based on the Newey and West (1987) variance estimator with 12 lags. Similarly, let β̂

(n)∗
1i,s(b) and

t̂
(n)∗
1i,s(b) be the bth bootstrap counterpart to β̂

(n)
1i,s and t̂

(n)
1i,s, respectively, for the sth simulation. We

calculate bootstrap p-values using the formula in equation (17). To obtain the bootstrap p-value

under the null hypothesis, the test statistics t̂
(n)
1i,s are centered at the true value of β

(n)
1i . To obtain

the bootstrap p-value under the alternative hypothesis, the test statistics t̂
(n)
1i,s are centered at zero.

We then obtain empirical size (power) as the share of simulations where the bootstrap p-value

constructed under the null (under the alternative) exceeds the pre-specified nominal level α.

We consider two specifications. For the first specification, we assume a three-factor model of

the term structure and choose gt = (y
(12)
t , f

(60,12)
t , f

(120,12)
t )′. To provide context, in this design, the

calibrated Φg matrix from the data has a maximum eigenvalue of .992 and all three eigenvalues are

above 0.85. Note also that this setup aligns closely with the parametric structure which is imposed

by the BH bootstrap. Table 1 presents the empirical size of the different methods for this design.

The BH bootstrap under-rejects relative to the nominal size of 10% and for some maturities this

under-rejection is severe. This is despite the fact that both the dimension of the factor space and the

time-series dynamics are correctly specified. In contrast, the empirical size for our nonparametric

bootstrap is very close to the nominal size of 10% uniformly across maturities and for all three

factors.15 It is important to reiterate that the nonparametric bootstrap is completely agnostic

about how the term structure data are generated. The performance by our method is even more

impressive when compared to the infeasible oracle method whose rejection rates under the null

hypothesis are very similar despite the fact that it uses full knowledge of the underlying DGP.

Table 2 reports the associated power in this simulation design. In terms of power, the rejection

15Results for a nominal size of 5% are qualitatively similar and presented in Section SA-2.3 in the SA.
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Table 1. Size: Three-Factor VAR(1). This table presents empirical size for the three bootstrap methods:
the nonparametric bootstrap introduced in Section 2.2 (CG); the parametric bootstrap of Bauer and Hamilton
(2018) (BH); and the oracle bootstrap (O). The nominal level is 10% and the sample size is T = 600. Each column

reports results for the t-test associated with the regressor (g1t, g2t, g3t) = (y
(12)
t , f

(60,12)
t , f

(120,12)
t ). Each row reports

results for bond returns of the corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications
per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t g1t g2t g3t g1t g2t g3t

2y 0.107 0.100 0.079 0.045 0.023 0.013 0.097 0.101 0.100
3y 0.102 0.107 0.083 0.049 0.017 0.006 0.102 0.102 0.098
4y 0.102 0.114 0.086 0.051 0.011 0.001 0.104 0.101 0.098
5y 0.101 0.113 0.091 0.049 0.010 0.000 0.105 0.100 0.097
6y 0.103 0.113 0.090 0.049 0.006 0.000 0.104 0.099 0.098
7y 0.103 0.112 0.090 0.047 0.006 0.000 0.106 0.099 0.097
8y 0.104 0.112 0.090 0.046 0.006 0.000 0.107 0.100 0.096
9y 0.109 0.114 0.089 0.046 0.008 0.000 0.106 0.101 0.097
10y 0.110 0.112 0.088 0.045 0.005 0.000 0.108 0.105 0.096

Table 2. Power: Three-Factor VAR(1). This table presents empirical power for the three bootstrap
methods: the nonparametric bootstrap introduced in Section 2.2 (CG); the parametric bootstrap of Bauer and
Hamilton (2018) (BH); and the oracle bootstrap (O). The nominal level is 10% and the sample size is T = 600.

Each column reports results for the t-test associated with the regressor (g1t, g2t, g3t) = (y
(12)
t , f

(60,12)
t , f

(120,12)
t ).

Each row reports results for bond returns of the corresponding maturity. Based on 5,000 simulations and 399
bootstrap replications per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t g1t g2t g3t g1t g2t g3t

2y 0.262 0.236 0.079 0.254 0.160 0.005 0.307 0.236 0.109
3y 0.431 0.371 0.089 0.406 0.256 0.010 0.477 0.365 0.103
4y 0.552 0.436 0.100 0.513 0.303 0.006 0.589 0.428 0.109
5y 0.626 0.445 0.099 0.575 0.326 0.004 0.660 0.437 0.106
6y 0.673 0.422 0.092 0.614 0.288 0.000 0.696 0.411 0.098
7y 0.694 0.378 0.087 0.634 0.234 0.000 0.715 0.363 0.097
8y 0.697 0.326 0.093 0.636 0.171 0.000 0.724 0.305 0.111
9y 0.698 0.268 0.111 0.624 0.138 0.000 0.718 0.246 0.142
10y 0.688 0.213 0.152 0.615 0.060 0.000 0.707 0.202 0.191

rates for our bootstrap are highest for the first factor reaching a peak of about 70% for long

maturities. The power for the second and third factor are noticeably lower. However, this is a

feature of the simulation design, reflecting the relative proximity of the true parameter to zero,

rather than a defect in the CG bootstrap. To see this, we can compare the power from the CG

bootstrap to that of the oracle method (O bootstrap). The oracle bootstrap has power that is,

at most, only modestly above that of the CG bootstrap. Since this benchmark method is both

infeasible and uses all available information, the relatively small difference in power compared to

our bootstrap confirms the excellent performance of our procedure. Note that for some entries,

the power of the CG bootstrap exceeds that of the O bootstrap. This can arise from either slight
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relative overrejections under the null hypothesis or some residual randomness from the limited

simulation or bootstrap draws. Finally, we also report power for the BH bootstrap. This procedure

has notably lower rejection rates than the CG bootstrap.

Table 3. Size: Five-Factor VAR(1). This table presents empirical size for the three bootstrap methods: the
nonparametric bootstrap introduced in Section 2.2 (CG); the parametric bootstrap of Bauer and Hamilton (2018)
(BH); and the oracle bootstrap (O). The nominal level is 10% and the sample size is T = 600. Each column reports

results for the t-test associated with the regressor (g1t, g2t, g3t, g4t, g5t) = (y
(12)
t , f

(36,12)
t , f

(60,12)
t , f

(84,12)
t , f

(120,12)
t ).

Each row reports results for bond returns of the corresponding maturity. Based on 5,000 simulations and 399
bootstrap replications per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t

2y 0.101 0.104 0.094 0.093 0.097 0.042 0.023 0.012 0.005 0.013 0.097 0.108 0.107 0.098 0.101
3y 0.100 0.098 0.097 0.091 0.093 0.030 0.013 0.013 0.008 0.013 0.098 0.109 0.108 0.103 0.099
4y 0.100 0.098 0.095 0.093 0.092 0.022 0.005 0.012 0.007 0.015 0.097 0.106 0.105 0.106 0.101
5y 0.101 0.095 0.095 0.094 0.092 0.019 0.005 0.011 0.010 0.015 0.097 0.104 0.104 0.107 0.100
6y 0.100 0.096 0.095 0.094 0.095 0.016 0.004 0.014 0.008 0.013 0.099 0.106 0.104 0.101 0.102
7y 0.102 0.099 0.095 0.095 0.096 0.015 0.003 0.014 0.007 0.012 0.099 0.108 0.106 0.103 0.101
8y 0.101 0.100 0.096 0.096 0.095 0.014 0.004 0.015 0.008 0.011 0.101 0.107 0.106 0.103 0.102
9y 0.101 0.098 0.097 0.096 0.095 0.015 0.008 0.015 0.008 0.014 0.101 0.106 0.106 0.105 0.103
10y 0.101 0.101 0.097 0.097 0.095 0.014 0.008 0.015 0.007 0.013 0.102 0.105 0.106 0.108 0.104

Table 4. Power: Five-Factor VAR(1). This table presents empirical power for the three bootstrap methods:
the nonparametric bootstrap introduced in Section 2.2 (CG); the parametric bootstrap of Bauer and Hamilton
(2018) (BH); and the oracle bootstrap (O). The nominal level is 10% and the sample size is T = 600. Each column
reports results for the t-test associated with the regressor
(g1t, g2t, g3t, g4t, g5t) = (y

(12)
t , f

(36,12)
t , f

(60,12)
t , f

(84,12)
t , f

(120,12)
t ). Each row reports results for bond returns of the

corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t

2y 0.363 0.507 0.565 0.597 0.511 0.037 0.000 0.000 0.000 0.000 0.392 0.515 0.593 0.649 0.557
3y 0.404 0.438 0.484 0.546 0.507 0.095 0.000 0.000 0.000 0.000 0.426 0.446 0.516 0.602 0.557
4y 0.408 0.366 0.412 0.515 0.519 0.128 0.000 0.000 0.000 0.000 0.427 0.376 0.456 0.580 0.570
5y 0.407 0.323 0.384 0.519 0.538 0.127 0.000 0.000 0.000 0.000 0.423 0.327 0.431 0.582 0.596
6y 0.408 0.299 0.386 0.543 0.561 0.149 0.000 0.000 0.000 0.000 0.422 0.304 0.431 0.604 0.618
7y 0.415 0.290 0.404 0.570 0.580 0.146 0.000 0.000 0.000 0.000 0.426 0.298 0.446 0.627 0.637
8y 0.424 0.288 0.426 0.591 0.583 0.144 0.000 0.000 0.000 0.000 0.434 0.298 0.465 0.643 0.635
9y 0.430 0.296 0.443 0.598 0.564 0.136 0.000 0.000 0.000 0.000 0.440 0.298 0.477 0.654 0.612
10y 0.435 0.297 0.449 0.590 0.528 0.136 0.000 0.000 0.000 0.000 0.446 0.299 0.479 0.641 0.576

For the second simulation design, we increase the number of factors to five by adding f
(36,12)
t

and f
(84,12)
t and re-calibrate the parameters using the actual data.16 This change will induce

misspecification for the BH bootstrap as its prescription is to utilize only three principal components

of yields. However, this misspecification would not be easily detected as the percentage of variation

(averaged across simulations) in yields explained by the first three principal components is 97.40%,

16It is important to note that since we use forward rates as factors when expanding the factor space relative to the
three-factor model, we are incorporating additional persistent and cross-sectionally dependent variables. Since we
calibrate all parameters to the data, this will naturally lead to changes in all of the true regression coefficients that,
in part, determine the power envelope.
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2.47%, and 0.12%, respectively.

Table 3 presents the empirical size for this specification. Again, our nonparametric bootstrap

has excellent size properties while the BH bootstrap is severely undersized across all five factors.

As would be expected, the oracle method has size that is very close to the nominal level across

all factors and maturities. Table 4 reports the associated power in this simulation design. As

in the three-factor design, the CG bootstrap has power that compares favorably to the infeasible

oracle bootstrap across all coefficients and maturities.17 The power of the BH bootstrap is severely

compromised by the misspecification due to a strong estimation bias induced by the incorrect factor

space. Although there is some very modest power to discriminate the coefficient associated with

the first factor from zero, for all other factors, the test fails to reject across all simulations. The

intuition for this result is that, by bootstrapping based on a factor space of dimension three, the

bootstrapped second moments fail to reproduce their population counterparts.

Another source of misspecification can arise from the time-series dynamics of the factors. In

our third specification, we consider again a three-factor model but now with factors following a

VAR(2). The results follow a very similar pattern as in Tables 3 and 4 and are presented in the

SA (Tables SA.9 and SA.10 in the SA). The CG bootstrap continues to have empirical size close to

the nominal level whereas the BH bootstrap is severely undersized. Moreover, the CG bootstrap

has power that is similar to that of the infeasible O bootstrap while this form of misspecification

further deteriorates the power properties of the BH bootstrap.

3.2 Simulations with External Predictors

We now provide further simulation evidence by considering return regressions featuring both yield-

based variables and external predictors as in equation (16). We assume that the external predictors

follow a VAR(1):

wt = µw + Φwwt−1 + ηwt , t = 1, . . . , T, (28)

where ηwt are i.i.d. Gaussian errors with variance matrix Σw
η . The true coefficients associated with

β
(n)
1 are as before whereas the coefficients associated with the variables wt, β

(n)
2 , are identically

17In the SA, we present results for a sample size of T = 2, 000 which confirm that the empirical power approaches
100% with the sample size.
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zero.

We choose two standard macroeconomic predictors: the 3-month percentage change in core

CPI inflation and the 3-month percentage change in industrial production. We then calibrate the

necessary parameters for the VAR(1) model using system OLS estimates over the same sample

period as for yields. Note that these predictors are quite persistent with the maximum eigenvalue

of the autoregressive matrix equal to 0.94. We report empirical size for the null hypothesis that

each element in β
(n)
2 is equal to zero along with the empirical size for the three coefficients in β

(n)
1 .

Our proposed bootstrap method is implemented as described in Section 2. We pre-whiten f
(N)
t

and wt jointly using a VAR(1) specification. For the BH bootstrap, the external predictors are

bootstrapped under the null hypothesis of no return predictability. It is important to note that

the BH method proceeds under the null hypothesis, H0 : β
(2)
n = 0, which holds in this design. In

contrast, our resampling procedure is agnostic about how the simulated data were generated and

remains fully nonparametric.

Table 5. Size: Three-Factor VAR(1) with External Predictors. This table presents empirical size for
the three bootstrap methods: the nonparametric bootstrap introduced in Section 2.2 (CG); the parametric
bootstrap of Bauer and Hamilton (2018) (BH); and the oracle bootstrap (O). The nominal level is 10% and the
sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t) = (y

(12)
t , f

(60,12)
t , f

(120,12)
t ) and the external predictors w1t and w2t. Each row reports results for bond

returns of the corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t w1t w2t g1t g2t g3t w1t w2t g1t g2t g3t w1t w2t

2y 0.111 0.098 0.081 0.098 0.101 0.046 0.019 0.015 0.107 0.106 0.096 0.103 0.100 0.101 0.107
3y 0.109 0.105 0.085 0.099 0.104 0.046 0.016 0.006 0.103 0.106 0.100 0.102 0.097 0.101 0.109
4y 0.104 0.110 0.086 0.103 0.105 0.047 0.009 0.002 0.103 0.107 0.100 0.101 0.098 0.102 0.109
5y 0.100 0.110 0.087 0.105 0.106 0.046 0.011 0.001 0.103 0.104 0.101 0.100 0.098 0.100 0.110
6y 0.099 0.110 0.085 0.107 0.106 0.046 0.007 0.000 0.102 0.104 0.103 0.097 0.096 0.102 0.107
7y 0.100 0.109 0.088 0.105 0.107 0.043 0.006 0.000 0.103 0.103 0.101 0.096 0.097 0.099 0.102
8y 0.100 0.110 0.086 0.107 0.104 0.043 0.006 0.000 0.104 0.103 0.100 0.096 0.098 0.101 0.102
9y 0.101 0.110 0.085 0.106 0.102 0.042 0.009 0.000 0.107 0.106 0.103 0.097 0.098 0.101 0.101
10y 0.100 0.110 0.085 0.108 0.103 0.042 0.006 0.000 0.105 0.105 0.104 0.099 0.098 0.101 0.103

Table 5 presents results for inference on the coefficients β
(n)
1 and β

(n)
2 . For the yield-based

predictors, the BH bootstrap continues to be severely undersized as in Table 1 whereas the CG

bootstrap and the O bootstrap control size very well across maturities and the three different

predictors. For the external predictors, both feasible methods (BH and CG bootstraps) work very

well with empirical size very close to the 10% nominal level across maturities. We emphasize that

the overlapping nature of these returns (since h = 12) produces strong serial correlation in the left-

hand side variable.18 With predictors which are also persistent, minimizing size distortions becomes

18For a heuristic example, note that an h-period moving average of a white noise process has first-order autocor-
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Table 6. Power: Three-Factor VAR(1) with External Predictors. This table presents empirical power
for the three bootstrap methods: the nonparametric bootstrap introduced in Section 2.2 (CG); the parametric
bootstrap of Bauer and Hamilton (2018) (BH); and the oracle bootstrap (O). The nominal level is 10% and the
sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t) = (y

(12)
t , f

(60,12)
t , f

(120,12)
t ). Each row reports results for bond returns of the corresponding maturity.

Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t g1t g2t g3t g1t g2t g3t

2y 0.230 0.242 0.075 0.232 0.166 0.004 0.272 0.238 0.107
3y 0.403 0.375 0.089 0.382 0.262 0.011 0.446 0.367 0.102
4y 0.527 0.441 0.103 0.495 0.318 0.009 0.570 0.437 0.112
5y 0.611 0.454 0.100 0.562 0.338 0.005 0.648 0.447 0.111
6y 0.651 0.433 0.094 0.601 0.301 0.001 0.687 0.418 0.103
7y 0.676 0.386 0.082 0.619 0.247 0.000 0.706 0.371 0.097
8y 0.687 0.330 0.089 0.621 0.183 0.000 0.710 0.309 0.111
9y 0.684 0.274 0.108 0.618 0.142 0.000 0.706 0.250 0.142
10y 0.678 0.219 0.143 0.612 0.067 0.000 0.698 0.201 0.192

increasingly difficult. Despite this challenging predictive regression design, both feasible bootstrap

procedures appear to provide a very accurate approximation to the finite-sample distribution of the

t-statistics associated with β
(n)
2 . In Section SA-2.4 of the SA, we report the corresponding results

based on HAC/HAR estimators which rely on asymptotic approximations to the distribution of

the test statistic. These methods uniformly fail to control empirical size, especially for the external

predictors. Since the true value of β
(n)
2 is zero, Table 6 only reports power for the yield-based

predictors. Despite the addition of two extraneous regressors, the power of the CG bootstrap is

similar to that of Table 2 and comparable to the power of the O bootstrap.

Taken in sum, these simulation experiments show that it is preferable to avoid committing to

a tightly parameterized, finite-dimensional factor structure as this may result in the omission of

important information embedded in the yield curve.

4 Empirical Applications

4.1 Bond Returns and Economic Trends

The co-movement of inflation and nominal yields is a well established empirical fact in the United

States and other economies. In addition, the dynamics of inflation have been shown to feature a

time-varying, low-frequency component (e.g., Stock and Watson 2007). Cieslak and Povala (2015)

construct a measure of trend inflation and find that the inclusion of this variable substantially

relation coefficient of h−1
h

.
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improves upon bond return predictability relative to using yield-based information. Building off of

Cieslak and Povala (2015), Bauer and Rudebusch (2020) (“BR,” hereafter) use the BH bootstrap

to argue that, in addition to trend inflation, bond returns are also predictable by the equilibrium

real interest rate. In this section, we utilize our bootstrap to re-examine the evidence of bond

return predictability based on these slow-moving economic fundamentals. Importantly, we show

that our bootstrap can be tailored perfectly to this setting whereas the BH bootstrap used by BR

is invalid. The source of this invalidity is that the BH bootstrap cannot accommodate predictors,

outside of the the first three principal components of yields, which are themselves a function of the

yield curve.

In the first part of this empirical application, we use the same data as in BR (see Appendix

A for full description of the data and additional implementation details). The predictors are the

first three (scaled) principal components, a measure of trend inflation, π∗t , and a measure of the

equilibrium real short-term interest rate, r∗t . As a proxy for trend inflation, BR use the perceived

target rate (PTR) which is an input in the FRB/US model (see BR for further details). BR present

results for different proxies of the equilibrium real rate. We use their “moving average” measure,

which is an exponential weighted moving average (EWMA) of the difference between the 3-month

interest rate and year-over-year core PCE inflation. We focus on this proxy as it has the smallest

reported p-values in BR.

We consider the model,

rx
(n)
t+h = α+ β

(n)′
1 gt + β

(n)′
2 wt + ε

(n)
t , (29)

where gt = Pct and wt is one of three different specifications: (i) wt = π∗t , (ii) wt = (π∗t , r
∗
t )
′, or

(iii) wt = r∗t . BR consider specifications (i) and (ii) and we add specification (iii) to investigate the

marginal predictive power of r∗t . We follow BR and construct (approximate) one-quarter returns

when h = 1 and (exact) four-quarter returns when h = 4 for annual maturities of two years to 15

years.19

In Table 7, we exactly replicate the results for specifications (i) and (ii) shown in Table 2

on p.1329 of BR for both samples they considered (1971Q4–2018Q1 and 1985Q1–2018Q1). The

19We follow BR and calculate one-quarter returns using the approximation described in Bauer and Rudebusch
(2020, Footnote 21).
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left-hand side variable is the cross-sectional average (across maturities) of one-quarter ahead bond

returns. As in BR, standard errors are constructed using the Eicker-White variance estimator.

Using this variance estimator, the magnitude of the t-statistics associated with π∗t are above 4 and

the t-statistic associated with r∗t is 2.6. BR also report results for the restricted sample starting

in 1985 which we show in the middle panel of Table 7. In this subsample, the magnitude of the

t-statistic associated with r∗t increases further, rising to 3.8. Across both of these samples, the

addition of r∗t as a predictor increases the regression R2 notably, as shown in the bottom two rows

of the table. For completeness, we also report the four-quarter ahead results for both of these

samples using Newey-West standard errors. At the four-quarter ahead horizon, the magnitudes of

the t-statistics continue to be very large.

Table 7. Replication of Bauer and Rudebusch (2020). This table replicates Table 2 in Bauer and
Rudebusch (2020) along with an additional subsample (1971Q4-2007Q4) for the regression model given by equation
(29). The dependent variable is the cross-sectional average of bond returns for annual maturities from two to 15
years and the independent variables are the first three principal components of yields, the perceived target rule
(π∗), and an exponentially weighted moving average of real interest rates (r∗). We report OLS estimates with
corresponding standard errors in parentheses. Standard errors are constructed with the Eicker-White variance
matrix for one-quarter ahead returns and the Newey-West variance estimator with six lags for four-quarter ahead
returns. The last two rows present the unadjusted and adjusted regression R2 statistics.

1971Q4–2018Q1 1985Q1–2018Q1 1971Q4–2007Q4
1-Qtr. Ahead 4-Qtrs. Ahead 1-Qtr. Ahead 4-Qtrs. Ahead 1-Qtr. Ahead 4-Qtrs. Ahead
(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii)

PC1 0.98 2.04 2.70 5.34 0.59 2.38 1.80 6.77 1.72 2.05 4.96 5.38
(0.26) (0.56) (0.69) (0.99) (0.22) (0.51) (0.52) (1.01) (0.43) (0.62) (0.80) (0.96)

PC2 0.47 0.68 1.76 2.26 0.50 0.65 1.71 2.11 0.48 0.58 1.87 1.99
(0.17) (0.15) (0.29) (0.28) (0.16) (0.15) (0.34) (0.28) (0.18) (0.17) (0.29) (0.29)

PC3 -1.79 -0.90 -1.96 0.03 -0.97 2.11 -1.63 6.53 -2.88 -2.45 -4.20 -3.65
(1.27) (1.43) (1.71) (2.05) (1.12) (1.55) (2.38) (2.93) (1.46) (1.63) (2.05) (2.33)

π∗ -1.95 -3.89 -5.68 -10.52 -1.05 -3.34 -4.03 -10.36 -2.71 -3.48 -7.87 -8.86
(0.44) (0.92) (1.17) (1.80) (0.73) (0.83) (1.36) (1.31) (0.54) (1.02) (1.31) (1.78)

r∗ -2.71 -6.90 -4.11 -11.78 -1.45 -1.84
(1.04) (1.82) (1.08) (2.47) (1.33) (1.94)

R2 0.16 0.20 0.43 0.51 0.10 0.18 0.31 0.53 0.23 0.24 0.58 0.59
adj. R2 0.14 0.18 0.41 0.49 0.07 0.15 0.29 0.51 0.21 0.21 0.57 0.57

In the right panel of Table 7, we provide results for the pre-crisis sample 1971Q4–2007Q4.

Compared to the other samples, the magnitude of the t-statistic associated with r∗t declines sharply

to about one while the t-statistic associated with π∗t remains large. Furthermore, in the pre-crisis

sample, adding r∗t to the regression has no effect on the adjusted R2. These latter results suggest

that the strong predictive ability of r∗t for future bond returns reported in BR is likely driven by the

post-crisis sample. However, there are two important considerations when interpreting the results

presented in Table 7. First, as discussed in Section 3, and shown in Section SA-2.4 of the SA,
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HAC estimators, such as Newey-West, can lead to over-rejections of the null of no-predictability

in settings with persistent predictors and (possibly) overlapping returns. Second, we may have

cherry-picked the pre-crisis sample which fails to find a predictive role for r∗t at either forecast

horizon. In general, valid resampling-based procedures can circumvent both of these problems.

In particular, an appealing aspect of bootstrap-based inference is that if the in-sample results are

driven by a small number of observations (as appears to be the case here), then these observations

will occur relatively infrequently in the bootstrapped samples. This leads to larger bootstrap-

based critical values and wider bootstrap-based confidence intervals, making rejection of the null

of no-predictability less likely.

Table 8. Bootstrap Inference on Return Predictability. This table provides bootstrap p-values for the
coefficients of the regression model given by equation (29) based on the Bauer and Hamilton (2018) (BH) procedure
and the nonparametric bootstrap introduced in Section 2.2 (CG). For reference, the OLS estimates for each
specification are also shown. All results are based on 5,000 bootstrap replications.

1971Q4–2018Q1 1985Q1–2018Q1
1-Qtr. Ahead 4-Qtrs. Ahead 1-Qtr. Ahead 4-Qtrs. Ahead

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

Est. Coeffs.
π∗ -1.95 -3.89 -5.68 -10.52 -1.05 -3.34 -4.03 -10.36
r∗ -2.71 0.68 -6.90 2.46 -4.11 -1.14 -11.78 -2.43
BH (p-val)
π∗ 0.00 0.00 0.01 0.00 0.36 0.00 0.14 0.00
r∗ 0.03 0.28 0.02 0.24 0.01 0.47 0.03 0.65
CG (p-val)
π∗ 0.02 0.25 0.02 0.13 0.50 0.10 0.15 0.03
r∗ 0.83 0.40 0.74 0.36 0.72 0.93 0.79 0.94

Using the BH bootstrap procedure, BR report strong, statistically significant predictive power

of r∗t . These results are reproduced in Table 8.20 As in BR, the BH bootstrap produces p-values

for the coefficients associated with both π∗t and r∗t that are generally close to zero for specification

(ii). However, when r∗t is included as a predictor on its own in specification (iii), the sign of the

coefficient switches in the full sample and the BH bootstrap p-values are far away from 10% for

both sample periods and forecast horizons. This is also the case for the CG bootstrap, shown in the

bottom rows of Table 8, where, again, there is no evidence of marginal predictive power for r∗t . In

contrast to the BH bootstrap, the CG bootstrap also fails to find evidence for the predictive power

of r∗t in specification (ii). Across all samples and forecast horizons the p-value is above 0.72. Taken

in sum, our bootstrap results shown in Table 8 provide strong evidence against r∗t as a predictor

20Note that there will be some differences in the p-values in Table 8 as compared to BR because of the inherent
randomness of the bootstrap.
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of bond returns.

What drives the stark differences in inference between the BH and CG bootstrap? Most im-

portantly, the BH bootstrap cannot be used to conduct inference on measures of r∗t as an external

predictor. This is because the BH bootstrap is conducted under the null hypothesis that returns

are only predictable based on lagged yields and any additional variables do not predict returns.

This necessarily excludes any additional variables which, themselves, are a function of yields such

as the proxy for r∗t shown in Table 7. However, all of the r∗t proxies considered in BR include the

short-term interest rate as an input. This dependence is not reflected in the BH bootstrap as it fails

to correctly incorporate the underlying structure and is consequently invalid. To see this clearly,

Figure 3 shows realized yields and i∗t = π∗t + r∗t along with the same objects for a single bootstrap

draw from the BH bootstrap and the CG bootstrap. Clearly, the i∗t from the BH bootstrap does

not behave as if it is the underlying trend in the corresponding bootstrapped yields. Yields have a

strong upward trend that is entirely divorced from the bootstrapped i∗t which comes about because

the bootstrapped yields and i∗t are decoupled in the BH procedure. In contrast, our bootstrap has

the desirable feature that yields and i∗t exhibit strong co-movement as shown in the right chart of

Figure 3.21

Figure 3. Actual and Bootstrapped Yields and i∗t . This figure shows actual and bootstrapped yields along
with i∗t . The left chart shows realized yields along with i∗t constructed as the sum of the perceived target rule (π∗t )
and the exponentially weighted moving average of real interest rates (r∗t ). The middle and right chart show the
bootstrap counterparts of yields and i∗t based on the Bauer and Hamilton (2018) (BH) bootstrap and the
nonparametric bootstrap introduced in Section 2.2 (CG).
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The results in Tables 7 and 8 rely on the PTR as the measure of trend inflation. However, the

PTR is an amalgamation of both model-based and survey-based measures of the trend in inflation.

In contrast, Cieslak and Povala (2015) (hereafter, “CPo”) introduce a simple and transparent

21Note that neither our bootstrap procedure nor the BH bootstrap ensure that resampled nominal yields remain
positive.
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measure of trend inflation that can be nested easily into our bootstrap procedure. Furthermore,

the CPo measure of trend inflation is available in real-time which is not the case for the PTR. The

measure of π∗t introduced by CPo is defined as a truncated exponentially weighted moving average

(EWMA) of year-over-year core inflation,

π∗CPo,t ≡
1− φ

1− φ(H−1)
H−1∑
s=0

φsπyoyt−s, (30)

where πyoyt−s is year-over-year core CPI inflation lagged one month to reflect the timing of the data

release. CPo use monthly data and choose (φ,H) = (0.987, 120). To adapt (φ,H) to the quarterly

setting of BR, we use the modified parameters (φ,H) = (0.9873, 40). Since the core CPI index is

only revised in terms of seasonal factors, the year-over-year growth rate is (essentially) unrevised.22

To ensure that our measure of r∗t is also real time, we construct it using year-over-year core CPI

inflation (lagged one month) instead of core PCE inflation as the latter can be revised substantially

(Audoly et al. 2023). This also has the advantage of reducing the dimension of the VAR process

for pre-whitening from three to two. To bootstrap the data in this setting, we follow the approach

given in Section 2 and utilize a bivariate VAR(1):

f (N)
t

πyoyt

 = µ̂+ Φ̂

f (N)
t−1

πyoyt−1

+

f̃ (N)
t

π̃yoyt

 . (31)

Table 9 presents the results for this exercise using these real-time measures of π∗t and r∗t .

The column titles denote the specification and the coefficient of interest: (i,π∗) and (ii,π∗) are the

coefficients associated with π∗t in specifications (i) and (ii), respectively, and (ii,r∗) is the coefficient

associated with r∗t in specification (ii). We consider the same sample periods and forecast horizons

as in Table 8. We report p-values for regressions using bond returns for individual maturities with

the last row representing average bond returns. Table 9 convincingly shows that there is no evidence

that r∗t has predictive content for future bond returns. Across all maturities, sample periods, and

forecast horizons, the p-values for the coefficient associated with r∗t are no lower than 0.59. If

we restrict our attention to the one-quarter ahead forecast horizon, which is what is reported in

BR, the p-values range from 0.68 to 0.87. This reinforces the conclusions drawn from Table 8 and

22To our knowledge, the only exception occurred in September 2000 due to an error in calculation of the price
index (see The Wall Street Journal 2000).
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Table 9. Bootstrap Inference with Real-Time Trend Estimates. This table provides bootstrap
p-values for the coefficients of the regression model given by equation (29) based on the nonparametric bootstrap
introduced in Section 2.2 (CG). The dependent variable is bond returns for a specific annual maturity (or average
across maturities) and the independent variables are the first three principal components of yields, the Cieslak and
Povala (2015) factor, and an exponentially weighted moving average of real interest rates based on core CPI
inflation (r∗). All results are based on 5,000 bootstrap replications.

1971Q4–2018Q1 1985Q1–2018Q1
1-Qtr. Ahead 4-Qtrs. Ahead 1-Qtr. Ahead 4-Qtrs. Ahead

(i,π∗) (ii,π∗) (ii,r∗) (i,π∗) (ii,π∗) (ii,r∗) (i,π∗) (ii,π∗) (ii,r∗) (i,π∗) (ii,π∗) (ii,r∗)

2-yr 0.32 0.38 0.87 0.23 0.22 0.95 0.16 0.21 0.82 0.15 0.14 0.90
3-yr 0.26 0.32 0.84 0.14 0.15 0.86 0.15 0.17 0.84 0.12 0.12 0.90
4-yr 0.20 0.27 0.82 0.09 0.11 0.81 0.14 0.15 0.84 0.11 0.10 0.89
5-yr 0.17 0.22 0.80 0.06 0.09 0.77 0.13 0.12 0.84 0.09 0.08 0.87
6-yr 0.14 0.18 0.78 0.05 0.07 0.74 0.12 0.11 0.82 0.07 0.06 0.84
7-yr 0.12 0.16 0.76 0.04 0.06 0.71 0.11 0.09 0.80 0.06 0.05 0.81
8-yr 0.11 0.14 0.75 0.04 0.05 0.69 0.10 0.07 0.79 0.05 0.04 0.78
9-yr 0.10 0.12 0.74 0.03 0.04 0.67 0.09 0.06 0.77 0.04 0.03 0.74
10-yr 0.09 0.11 0.72 0.04 0.04 0.65 0.08 0.05 0.76 0.04 0.02 0.70
11-yr 0.09 0.10 0.71 0.04 0.04 0.63 0.08 0.05 0.74 0.04 0.02 0.67
12-yr 0.08 0.09 0.70 0.04 0.04 0.62 0.08 0.04 0.73 0.04 0.02 0.64
13-yr 0.07 0.09 0.69 0.04 0.04 0.61 0.08 0.04 0.72 0.04 0.01 0.62
14-yr 0.07 0.09 0.69 0.04 0.03 0.60 0.08 0.03 0.71 0.04 0.01 0.61
15-yr 0.06 0.08 0.68 0.04 0.03 0.59 0.08 0.03 0.71 0.04 0.01 0.60
Avg. 0.09 0.12 0.73 0.04 0.05 0.66 0.09 0.05 0.76 0.04 0.02 0.73

confirms that they hold across the maturity spectrum.

Table 9 shows that trend inflation, on the other hand, has predictive content beyond information

in the current yield curve for future bond returns. We omit the estimated coefficients in this table

but note that the estimated coefficient associated with π∗t is negative in sign and increasing in

magnitude with maturity across all specifications, forecast horizons, and sample periods. For the

full sample period and one-quarter ahead prediction, we find that the bootstrap p-values associated

with trend inflation are at 10% or below for longer maturities. The results are stronger for the

post-1985 subsample and for the four-quarter ahead horizon. In fact, at the four-quarter ahead

horizon, and across both sub-samples, p-values uniformly fall below 5% beyond the eight-year

maturity. Furthermore, average bond returns (last row) have p-values of 5% or lower for both

specifications and both sample periods for this longer forecast horizon. One possible explanation

for why the results for trend inflation are stronger in the shorter sample is the more complicated

dynamics arising from multiple hump-shaped periods in the inflation process in the 1970s whereas

the shorter sample is dominated by the downward trend in inflation and yields.

While, at first glance, it may appear that the p-values for trend inflation in Table 9 are not as

small as frequently encountered in the literature, it is important to emphasize that our bootstrap
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procedure is accommodating all of the possible sources of uncertainty. It takes into consideration

the uncertainty arising from the exponential smoothing, the high persistence of inflation, and the

joint dynamics of interest rates and inflation. Furthermore, it should not be surprising that the p-

values for the coefficient on trend inflation sometimes increase with the inclusion of r∗t as a predictor.

This would be the case even when including a completely independent, highly persistent process as

it can contaminate estimation and inference on the coefficient associated with π∗t (see Section 1 of

Bauer and Hamilton (2018) for a discussion of this phenomenon).

To summarize, the results from Tables 7–9 are supportive of the role of trend inflation as a

bond risk factor, as argued by Cieslak and Povala (2015), as future returns appear to be driven by

deviations of the yield curve from a time-varying reference point determined by inflation (Rebonato

and Hatano 2022). Finally, note that we have focused on the EWMA measure of r∗t in BR but our

bootstrap can handle any of the individual r∗t proxies (or the average thereof) used in BR. More

generally, our bootstrap can preserve the underlying structure and appropriately accommodate

uncertainty from generated regressors that might arise, for example, from reduced-form regressions

(e.g., Cooper and Priestley 2008), state-space models, machine learning methods (e.g., Bianchi

et al. 2020) or structural models.

4.2 Regression-Based Tests of the Expectations Hypothesis

The flexibility of our bootstrap facilitates its use, without modification, in more general contexts.

As an illustrative example, we investigate the sampling properties of regression-based tests of the

expectations hypothesis (EH). It has been well established in the literature that the results of these

tests can vary dramatically depending on which regression specification is used (see Campbell 2017

for a comprehensive discussion). It is also well known that inference on the coefficient of interest in

these regression-based tests is fraught with difficulties (see Bekaert et al. 1997 or Rossi 2007, among

others). In particular, statistical challenges arise from the high persistence of yields and forwards,

the “unbalancedness” of some of the specifications,23 the overlapping nature of some variables, and

the unusual property that the dependent and explanatory variables are both derived from the same

underlying yield curve.

Our bootstrap is uniquely situated to better understand the statistical properties of the different

23We follow the time-series econometrics literature and define an unbalanced regression as a specification where the
dependent and explanatory variables are characterized by meaningfully different degrees of persistence and variability.
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versions of the regression-based tests of the EH. More specifically, we nonparametrically resample

the entire yield curve, rather than the specific maturities used in a particular specification, which

allows us to make comparisons across all of these formulations in a unified way. By contrast, any

parametric resampling approach would necessarily be model-specific imposing the expectations

hypothesis or its failure.

We begin by showing that our focus on difference returns as a primitive object allows us to

unify and generalize the various regression-based tests of the expectations hypothesis (Fama and

Bliss 1987, Campbell and Shiller 1991). To our knowledge, this result is new to the literature. By

the definition of forward rates and multi-period holding returns, we have that

f
(n−m)
t+m = p

(n−m−1)
t+m − p(n−m)

t+m + f
(n)
t − f (n)t (32)

= p
(n−m−1)
t+m − p(n−m)

t+m + f
(n)
t −

(
p
(n−1)
t − p(n)t

)
(33)

= f
(n)
t −

(
rx

(n,m)
t+m − rx

(n−1,m)
t+m

)
, (34)

where the first equality follows by equation (1) and the last equality follows by equation (14). Thus,

under rational expectations, a regression-based implementation of a test of the EH can be based

on the specification:

f
(n−m)
t+m = α+ β · f (n)t + ε

(n,m)
t+m . (35)

Following Fama and Bliss (1987), under the null hypothesis that β = 1, we can subtract the

contemporaneous short rate from either side to obtain

f
(n−m)
t+m − y(1)t = α+ β ·

(
f
(n)
t − y(1)t

)
+ ε

(n,m)
t+m . (36)

We refer to this regression-based test of the EH as the CG test. Equation (36) forms the basis for

all existing tests of the EH; specifically, under the null hypothesis, any existing test can be obtained

through linear combinations of equation (36) for different n and m. To see this, note first that the

test of Fama and Bliss (1987), denoted by FB, is implemented exactly as in equation (36) in the
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Figure 4. Expectations Hypothesis Tests: OLS Sampling Properties. This figure presents the in-sample
OLS estimate based on the realized data (black line) and 1,000 draws (grey lines) from the nonparametric bootstrap
introduced in Section 2.2 (CG). The top row presents the estimates for the CS2 test, the middle-left plot for the
CS1 test, the middle-right plot for the FB test, and the bottom row for the CG test. The black dashed horizontal
line is at a value of one which corresponds to the EH. The sample period is 1972:Q1–2024:Q1.

CS2: m = 4 CS2: m = 20

CS1 FB

CG: m = 4 CG: m = 20

special case where m = n− 1, i.e.,

y
(1)
t+n−1 − y

(1)
t = α+ β ·

(
f
(n)
t − y(1)t

)
+ ε

(n,n−1)
t+n−1 . (37)
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Furthermore, a time-series average of equation (37) gives

1

n

n∑
s=1

y
(1)
t+s−1 − y

(1)
t = α+ β ·

(
1

n

n∑
s=1

f
(s)
t − y

(1)
t

)
+

1

n

n∑
s=1

ε
(s,s−1)
t+s−1 , (38)

and using equation (2) we obtain the first test of Campbell and Shiller (1991), denoted by CS1,

1

n

n−1∑
s=0

(
y
(1)
t+s − y

(1)
t

)
= α+ β

[
y
(n)
t − y(1)t

]
+ v

(n)
CS1,t+n−1, (39)

where v
(n)
CS1,t+n−1 = 1

n

∑n
s=1 ε

(s,s−1)
t+s−1 . The second specification considered in Campbell and Shiller

(1991), denoted by CS2, is

y
(n−m)
t+m − y(n)t = α+ β

m

n−m

(
y
(n)
t − y(m)

t

)
+ v

(n)
CS2,t+n−1. (40)

This can be obtained by taking a cross-sectional average of equation (36). To see this, note that

1

n−m

n−m∑
s=1

f
(s)
t+m = y

(n−m)
t+m ,

1

n−m

n−m∑
s=1

f
(s+m)
t = y

(n)
t +

m

n−m

(
y
(n)
t − y(m)

t

)
, (41)

and v
(n)
CS2,t+n−1 = 1

n−m
∑n−m

s=1 ε
(s,m)
t+m .

Although FB, CS1, CS2 can all be derived from CG, their statistical properties may be very

different. To illustrate this, we use quarterly bond yield data from Gurkaynak et al. (2007) for

maturities up to ten years for the sample period 1972Q1 to 2024Q1. Figure 4 provides the OLS

estimates (black line) across different maturities for the four tests above, along with a horizontal

line at β = 1 (dashed black line). For the CS2 and CG tests, we require a choice of m. We present

results for m = 4 (one year) and m = 20 (5 years). The top row shows the results for CS2. For

small m, we observe the well-known result that estimates of β are negative and large in magnitude

providing strong counterfactual evidence against the expectations hypothesis.24 When m = 20, the

point estimate of β rises but is close to zero for most maturities. The results of 1,000 bootstrap

draws are presented in grey.25 Despite the point estimates being far away from one, in general,

the bootstrapped OLS estimates are subject to a high degree of variability. In fact, the statistical

24See, for example, Campbell (2017, p. 239): “...an estimated slope coefficient that not only fails to equal one but
is actually negative.”

25We deliberately choose the same scale for all graphs to demonstrate the different sampling behavior of the OLS
estimator in each specification.
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Figure 5. Expectations Hypothesis Tests: Time-Series Properties. This figure presents the dependent and
explanatory variables from different regression-based tests of the expectations hypothesis. The top row presents the
time series for the CS2 test, the middle-left plot for the CS1 test, the middle-right plot for the FB test, and the
bottom row for the CG test. The sample period is 1972:Q1–2024:Q1.
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evidence against the expectations hypothesis for the CS2 test is generally weaker than the point

estimate would suggest as most bootstrap draws lie above it.

Figure 5 sheds some light on why this might be the case. The CS2 test features a highly
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unbalanced specification, especially when m is small. The top left chart of Figure 5 shows that

when m = 4, the dependent and explanatory variables have strikingly different persistence and

volatility properties. This unbalancedness comes about because the dependent variable in the CS2

specification involves y
(n−m)
t+m − y(n)t rather than just y

(n−m)
t+m as in equation (41). In fact, the OLS

estimate is no longer negative if we regress y
(n−m)
t+m − y

(1)
t on y

(n)
t − y

(1)
t + m

n−m(y
(n)
t − y

(m)
t ). A

key advantage of our bootstrap is that we do not resample these variables directly but, instead,

we resample primitive objects with better statistical properties while still mimicking the important

features of the data. Thus, the top row of Figure 4 provides a translation of the statistical problems

induced by the unbalanced specification – as hinted by the time-series plots in Figure 5 – which is

mapped to the sampling variability of the OLS estimator.

Conversely, the CS1 and FB tests, in the middle row of Figure 4, have very different proper-

ties. First, the point estimates are much closer to one and are comfortably positive. Second, the

variability – as judged by the bootstrap draws of the OLS estimate – is modulated substantially

relative to the top row. However, the estimate of β appears unstable across maturities: a feature

that our bootstrap mimics and is thus likely to be inherent to the test itself.

We can improve further upon all of these tests by using equation (36) directly. In the bottom

row of Figure 4, we present results for m = 4 and m = 20. We observe that the OLS coefficient is

substantially more stable across maturities. We also observe that the sampling uncertainty is lower

than in the CS1 and FB tests and significantly smaller than in the CS2 test. We can link these

results to the much more balanced dependent and explanatory variables as shown in the bottom

row of Figure 5.

This application highlights the flexibility of our bootstrap procedure and how it can offer insights

to existing results in the literature. In particular, we have shown how different the sampling

properties of the OLS estimator can be for seemingly innocuous choices of how a regression-based

test of the EH is implemented.

4.3 Estimation and Inference in Probability of Recession Models

The term spread – the difference between the yield on a long maturity bond and a short maturity

bond – has been shown to have strong predictive power for future recessions (Harvey 1988, Estrella

and Hardouvelis 1991, Chen 1991). Historically, when the term spread is particularly compressed,
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this tends to be associated with a NBER-defined recession in the subsequent 2–8 quarters; of course,

recessions occur relatively infrequently in the data. Against this backdrop, it is well established

that limited dependent variable methods suffer from finite-sample biases when specific outcomes

occur infrequently in the data (e.g., King and Zeng 2001). We utilize our bootstrap procedure to

bias-correct a probit model of future activity based on past values of the term spread.

Rather than working directly with the NBER definition of recession, we follow Rudebusch and

Williams (2009) and define a recession by a real GDP contraction (negative GDP growth).26 Let Gt

be real GDP growth at time t measured at a quarterly annualized rate. To avoid any look-ahead

bias, we use a time series of the third release of GDP (often referred to as the “final” release)

available toward the end of the subsequent quarter, rather than the current, revised series. Our zt

then becomes zt =
{
f
(N)
t+1 , dr

(2)
t+1, . . . , dr

(N)
t+1 , Gt+1

}
and we can easily block bootstrap this augmented

matrix as detailed in Section 2.

The most common specification in the literature is a probit model of the form,

P (Ht+h = 1|xt) = Φ
(
x′tβ
)

(42)

for some h ≥ 1, where Ht is a transformation of Gt and xt are term-structure variables defined

below. We work with two choices for Ht: first, we define H1,t+h = 1 {Gt+h ≤ 0}; second, we

define H2,t+h = 1

{⋃t+h
r=t+1 {Gr ≤ 0}

}
. The latter measure is then set equal to one when there is a

contraction in real GDP in any of the next h quarters.

Let β̂ be the maximum-likelihood estimator of the coefficient β in equation (42). To construct

the bootstrap-based bias correction, we block resample the matrix Z which is comprised of the

stacked vectors zt (with a pre-whitening step). In each bootstrapped sample, (b = 1, . . . , B), we

first calculate H∗t+h,b and the requisite term structure variables, and finally β̂∗b . We can then form

d̂∗b = β̂∗b − β̂ for b = 1, . . . , B. To obtain a bias-corrected estimate, we utilize

β̂bc = β̂ − 1

B

∑B

b=1
d̂∗b . (43)

26This definition produces similar, but not the same, definitions of US recessions. However, along with its simplicity,
it also has the advantage that this information is available toward the end of the following quarter whereas the NBER
dating committee announces the designation of peaks or troughs with a considerably longer lag. See Rudebusch and
Williams (2009) for additional discussion about this measure of recessions.
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We can also construct bootstrap-based confidence intervals as

Cα(β) =
[
β̂ − d̂∗(1−α), β̂ − d̂

∗
(α)

]
, (44)

where d̂∗(α) denotes the α-th quantile of the bootstrap distribution of d̂∗. Note that when α = 0.5,

we obtain the bootstrap-based median unbiased estimator.

For the choice of xt, we consider two specifications. The first specification uses a constant and

the ten-year yield less the 3-month yield, which is the most common formulation used (Estrella and

Hardouvelis 1991; Rudebusch and Williams 2009). The second specification then adds the 3-month

yield as a separate regressor as advocated by Wright (2006). In order to be less constrained by the

effective lower bound, which is not explicitly imposed in our bootstrap data, we use the deviation of

the 3-month yield from its 3-year moving average.27 This transformation also reduces the extreme

persistence of the short rate and renders the dynamic properties of this predictor similar to those

of the term spread. Finally, in order to robustify the results, we use a leave-one-out approach: for

each t we estimate β by omitting the t-th observation and then obtain the fitted value; we follow

the exact same steps in the bootstrap procedure.

Figure 6 presents the results from this exercise. We choose h = 4 and use B = 999 bootstrap

samples. We use quarterly yield curve data from Gurkaynak et al. (2007) and real GDP data for

the sample period 1971Q3–2024Q1. The top chart shows the time series of the fitted conditional

probability that H2,t = 1 based on the value of the term spread. The black line depicts the estimated

probability utilizing the bias-correction discussed above. We observe that the estimated probability

tends to peak around the beginning of NBER recessions (grey shading). The estimated probability,

as of the beginning of 2024, is over 80% which is the highest value since the early 1980s – higher

than both the 2001 and 2007-09 recessions. The second chart reflects the addition of the 3-month

yield, relative to its 3-year moving average, as a predictor. The fitted probability is largely similar

to the baseline case, although this specification is more prone to ostensibly false positives (e.g., late

1980s and 1998).

In the top two charts, we also report the fitted values without bias correction (red lines). We

observe that for small fitted probabilities – periods associated with a wider term spread – the bias-

27The addition of this variable can potentially provide information on the nature (“bull” versus “bear”) of the
flattening or steepening of the yield curve.
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corrected estimate is below the sample estimate; in contrast, for large fitted probabilities – periods

associated with a compressed term spread – the bias-corrected estimate is comfortably above the

sample estimate. The upward shift in the fitted probability more closely aligns with the impressive

forecasting record associated with the term spread over the last 50 or so years and illustrates the

advantages of our bootstrap approach.

The bottom two charts present pointwise 68% boostrap-based confidence intervals for the prob-

ability of recession for each specification. We observe that the bootstrap-based uncertainty measure

around the estimated probability tends to be wider when the estimated probability of recession is

at intermediate values. In the SA, we report the results for H1,t which are largely similar. One

important difference is that the width of the bootstrap-based confidence intervals is shorter for

H1,t than for H2,t. This is an appealing result of our inference approach as it is consistent with

the intuition that H2,t represents a more serially correlated process than H1,t, making accurate

inference more challenging.

5 Conclusion

In this paper, we propose a new method for resampling the yield curve that is agnostic to the

true underlying factor structure and the correct specification of the pricing model, and robust to

unknown forms of serial correlation, conditional heteroskedasticity, and cross-sectional dependence.

The primitive objects we use for resampling – excess returns and a single far-in-the-future forward

rate – have more appealing statistical properties than bond prices or yields. Our method stands

in sharp contrast to the conventional approach of committing to a factor dimension and specific

parametric form for the cross-sectional dependence and time-series persistence.

In our main empirical application, we revisit the predictive power of slow-moving economic

fundamentals – trend inflation and the equilibrium real rate – for future bond returns (Cieslak and

Povala 2015; Bauer and Rudebusch 2020). We first clarify why existing methods used to conduct

inference in this setting, such as HAC/HAR variance estimators or the bootstrap method of Bauer

and Hamilton (2018), are unreliable. As in Cieslak and Povala (2015), we find that trend inflation

significantly forecasts future bond returns beyond the information contained in the current yield

curve. In contrast, we cannot find any evidence to suggest that the equilibrium real rate has

predictive content for future bond returns. We also show how our bootstrap can shed light on the
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sampling properties of the OLS estimator in regression-based tests of the expectations hypothesis.

Finally, we use our bootstrap procedure to produce bias-corrected estimates and confidence intervals

in probability of recession models, based on the shape of the yield curve.

The proposed resampling scheme can be further used for generating conditional future paths of

yields or other yield-related variables to obtain measures of sampling uncertainty around projected

paths. This can be employed for policy analysis as well as an improved computation for option-

adjusted spreads. Our bootstrap method can also be adapted to a multi-asset setup. For example,

the original data matrix can be augmented with other asset returns, possibly in excess of the short

rate, to ensure that the data is bootstrapped in an internally consistent manner for the purposes

of predictive regressions, extracting the common factor structure of expected returns across asset

classes, and other applications. These extensions are currently under investigation by the authors.
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Figure 6. Probability of Recession

This figure plots the fitted values of P (H2,t = 1|xt) as defined in Section 4.3. xt is either: (i) a constant and the
term spread; (ii) a constant, the term spread, and the deviation of the 3-month yield from its 3-year moving
average. The black (red) line represents the estimated probability with (without) the bootstrap bias correction;
pink shading denotes 68% pointwise confidence intervals for the probability of recession. Grey shading denotes
NBER recessions. The sample period is 1971Q3–2024Q1.
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Appendix

A Data Sources and Additional Details

The primary data set we use is continuously-compounded, zero-coupon Treasury yields from Gurkaynak et al.

(2007) (hereafter, “GSW”).28 We use both monthly and quarterly data up to a maximum of a fifteen-year

maturity. In previous versions of this paper, we also utilized the yield curve data from Liu and Wu (2021)

and our results are robust to this different data set.

Section 2 In Figure 1, we use end-of-quarter GSW yields for quarterly maturities up to 10 years for the

sample period from 1972Q1–2022Q4. The remaining data sources for this figure are as follows. First, the

data on oil futures consist of WTI oil prices in USD of futures contracts (traded on NYMEX) with monthly

maturities from 1 to 12 months for the period January 2000 to December 2018. The source of these data is

Bloomberg. The data for the S&P500 index options are from Constantinides et al. (2013), and aggregated

and sorted by maturity as in He et al. (2017).29 The sample period is 1986:Q4 to 2012:Q1. Finally, the data

on global surface temperature (measured as deviations from annual mean in Celsius) for the period 1880-2017

are obtained from the Goddard Institute for Space Studies (National Aeronautics and Space Administration)

website.30

Section 3 To calibrate the simulations, we use end-of-month observations of yields for annual maturities

ranging from one to ten years, based on the GSW data. To calibrate the external predictors, we use monthly

industrial production (Fred mnemonic: INDPRO) and the core CPI price index (Fred mnemonic: CPILFESL).

All necessary parameters utilized in the simulation experiments are estimated over the sample 1972M1–

2022M12.

Section 4.1 For Tables 7 and 8, we use the same data sources as in BR. Our bond data are based on

end-of-quarter yields for 3-month and 6-month maturities from the H.15 release31 and end-of-quarter yields

for annual maturities between one year and 15 years from Gurkaynak et al. (2007). We use data for the

PTR and year-over-year core PCE inflation directly from the replication code of Bauer and Rudebusch

(2020) (hereafter, “BR”).32 For Table 9, we use the core CPI index as in Section 3. We construct quarterly

observations by averaging the index level within the quarter. For the results in Table 9, we construct r∗t

using the end-of-quarter observation for the 3-month yield rather than the average of the last month of the

28Data are available at https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.
29We thank the authors for making the data available.
30https://data.giss.nasa.gov/gistemp/graphs/
31Fred mnemonics: DTB3 and DTB6, respectively. More information is available at https://www.federalreserve.

gov/releases/h15/.
32Replication code is available at https://www.openicpsr.org/openicpsr/project/115622/version/V1/view.
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quarter as done in BR. It is important to emphasize that using the end-of-quarter 3-month yield shifts r∗t by

minimal amounts. For example, over the 1971Q4–2018Q1 sample, the average absolute difference between

the two series is 2.8 basis points and the maximum absolute difference is 5.6 basis points.

For both the CG bootstrap and the BH bootstrap, we consider different bootstrap samples for Specifi-

cations (i), (ii), and (iii) separately. For example, when conducting bootstrap inference for Specification (i),

we treat π∗
t as the only external predictor.

For the CG bootstrap, we want to mimic the empirical implementation in BR and Cieslak and Povala

(2015) and so we require a ten-year burn-in period. To do so, we pre-whiten using a VAR(1) specification on

the sample 1971Q4–2018Q1 which is of length T but generate a bootstrapped sample for T +40 observations.

We use initial conditions for the forward curve, year-over-year core PCE inflation, and year-over-year core

CPI inflation as the realized data in 1961Q4. The PTR series is not available for 1961Q4 and so we instead

use the consensus forecast of annualized 6-month inflation, 6-months in the future, from the December 1961

Livingston Survey, as the initial condition.33 For the full-sample (1971Q4–2018Q1) regression results, we

drop the first 40 observations from the bootstrapped data to construct bootstrap-based OLS estimates,

Eicker-White standard errors (h = 1), and Newey-West standard errors (h = 6).34 For the subsample

starting in 1985Q1, we drop the first 93 observations from the bootstrapped data to construct OLS and

standard error estimates. Within the CG bootstrap, we construct r∗t using the end-of-quarter 3-month yield

less the year-over-year inflation rate. This approximates the implementation in the realized data in Tables 7

and 8 but is exact for Table 9. However, it is important to emphasize that this has negligible effects on our

inference results and is instead done only for convenience by avoiding the need to additionally bootstrap the

monthly average of the last month of the quarter for the 3-month yield.

Section 4.3 We use end-of-quarter GSW yields for quarterly maturities up to 10 years. We use the third

release of GDP (often referred to as the “final” release) available toward the end of the subsequent quarter.35

The sample period is 1971Q3–2024Q1.

33Data are available here: https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/

livingston-survey.
34Although BR do not report results for h = 4, estimation and inference results for this forecast horizon are available

in their replication code. We follow BR and use the Newey-West estimator with 6 lags in our implementation of the
CG bootstrap. Note that all of the results and conclusions in Section 4 are robust to using 4 lags when implementing
the CG bootstrap instead.

35Data are obtained from the Federal Reserve Bank of Philadelphia: https://www.philadelphiafed.org/

surveys-and-data/real-time-data-research/first-second-third.
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The replication code and data are available in the Harvard Dataverse at https://doi.org/10.

7910/DVN/DOLUXM.
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Filipović, D., Pelger, M., Ye, Y., 2024. Shrinking the term structure. Working Paper No. 32472, NBER.

Ghysels, E., Horan, C., Moench, E., 2018. Forecasting through the rear-view mirror: Data revisions and
bond return predictability. Review of Financial Studies 31, 678–714.

Giglio, S., Kelly, B., 2017. Excess volatility: Beyond discount rates. Quarterly Journal of Economics 133,
71–127.

Gurkaynak, R. S., Sack, B., Wright, J. H., 2007. The U.S. Treasury yield curve: 1961 to the present. Journal
of Monetary Economics 54, 2291–2304.

Haddad, V., Sraer, D. A., 2020. The banking view of bond risk premia. Journal of Finance 75, 2465–2502.

Harvey, C. R., 1988. The real term structure and consumption growth. Journal of Financial Economics 22,
305–333.

He, Z., Kelly, B., Manela, A., 2017. Intermediary asset pricing: New evidence from many assets. Journal of
Financial Economics 126, 1–35.

Jansson, M., Moreira, M. J., 2006. Optimal inference in regression models with nearly integrated regressors.
Econometrica 74, 681–714.

Joslin, S., Priebsch, M., Singleton, K. J., 2014. Risk premiums in dynamic term structure models with
unspanned macro risks. Journal of Finance 69, 1197–1233.

Joslin, S., Singleton, K. J., Zhu, H., 2011. A new perspective on Gaussian dynamic term structure models.
Review of Financial Studies 24, 926–970.

Kilian, L., 1998. Small-sample confidence intervals for impulse response functions. Review of Economics and
Statistics 80, 218–230.

Kilian, L., Lütkepohl, H., 2017. Structural Vector Autoregressive Analysis. Cambridge University Press,
Cambridge, U.K.

King, G., Zeng, L., 2001. Logistic regression in rare events data. Political Analysis 9, 137–163.

Lazarus, E., Lewis, D. J., Stock, J. H., Watson, M. W., 2018. HAR inference: Recommendations for practice.
Journal of Business & Economic Statistics 36, 541–559.

Liu, Y., Wu, J. C., 2021. Reconstructing the yield curve. Journal of Financial Economics 3, 1395–1425.

Ludvigson, S. C., Ng, S., 2009. Macro factors in bond risk premia. Review of Financial Studies 22, 5027–5067.

Newey, W. K., West, K. D., 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation
consistent covariance matrix. Econometrica 55, 703–708.

Niebuhr, T., Kreiss, J.-P., Paparoditis, E., 2017. Some properties of the autoregressive-aided block bootstrap.
Electronic Journal of Statistics 11, 725–751.

44



Onatski, A., Wang, C., 2021. Spurious factor analysis. Econometrica 89, 591–614.

Rebonato, R., Hatano, T., 2022. Why does the Cieslak-Povala model predict treasury returns? a reinterpre-
tation. Journal of Fixed Income 33, 20–32.

Rebonato, R., Zanetti, P., 2023. Does the Cochrane-Piazzesi factor predict? an international resampling
perspective. Journal of Fixed Income 32, 1–16.

Rossi, B., 2007. Expectations hypotheses tests at long horizons. Econometrics Journal 10, 554–579.

Rudebusch, G. D., Williams, J. C., 2009. Forecasting recessions: The puzzle of the enduring power of the
yield curve. Journal of Business & Economic Statistics 27, 492–503.

Speck, C., 2023. Pricing the bund term structure with linear regressions - without an observable short rate.
Discussion Paper No 08/2023, Deutsche Bundesbank.

Stambaugh, R. F., 1999. Predictive regressions. Journal of Financial Economics 54, 375–421.

Stock, J. H., Watson, M. W., 2007. Why has U.S. inflation become harder to forecast? Journal of Money,
Credit and Banking 39, 3–33.

The Wall Street Journal, 2000. Major price index is revised upward as a result of error.

Uhlig, H., 2009. Comment on ‘how has the Euro changed the monetary transmission mechanism?’. In:
Acemoglu, D., Rogoff, K., Woodford, M. (eds.), NBER Macroeconomics Annual , MIT Press, vol. 24, pp.
141–152.

Wei, M., Wright, J. H., 2013. Reverse regressions and long-horizon forecasting. Journal of Applied Econo-
metrics 28, 353–371.

Wright, J. H., 2006. The yield curve and predicting recessions. Finance and Economics Discussion Series
2006-7, Federal Reserve Board.

45



Supplemental Appendix:
“Deconstructing the Yield Curve”

Richard K. Crump Nikolay Gospodinov

(New York Fed) (Atlanta Fed)



Contents

SA-1 Bootstrap Validity 2

SA-1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

SA-1.2 Technical Results and Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

SA-2 Additional Simulation Results 6

SA-2.1 No Bias Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

SA-2.2 Additional Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

SA-2.3 Results for 5% Nominal Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

SA-2.4 Inference Based on Asymptotic Approximations . . . . . . . . . . . . . . . . . . . . 17

SA-3 Probability of Recession: Additional Results 20

1



SA-1 Bootstrap Validity

SA-1.1 Assumptions

In this appendix, we will write zt from the main text as znt for full clarity. We first provide a defini-

tion of {znt} as a mixing process. Let Fn,t−∞ = σ(..., zn(t−1), znt) and Fn,∞t+k = σ(zn(t+k), zn(t+k+1), ...)

denote the sigma-fields generated by the corresponding set of random variables and, for each n,

αn(k) = sup
t

sup
A∈Fn,t

−∞,B∈F
n,∞
t+k

|P (A ∩B)− P (A)P (B)|

Then, for each n, the random process {znt} is α-mixing if αn(k) → 0 as k → ∞. Let ‖znt‖p ≡
(E|znt|p)1/p denote the Lp norm of a random vector, where |znt| is its Euclidean norm. Let ∆ be a

fixed, positive constant.

Assumption A1. Assume that

(A1.a) for each n = 1, ..., N , {znt : t = 1, ..., T} are the realizations of a stationary α-mixing process

with mixing coefficients αn(k) such that supn αn(k) ≤ α(k), where α(k) = O(k−λ) for some

λ > (2 + δ)(r + δ)/(r − 2), r > 2 and ε > 0;

(A1.b) for some r > 2 and ε > 0, ‖znt‖r+ε ≤ ∆ <∞ for all n and t;

(A1.c) VNT = 1
NT

∑N
n=1

∑T
t=1E[(znt −E(znt))(znt −E(znt))

′] is positive definite uniformly in N,T ;

(A1.d) N is fixed;

(A1.e) the block size M diverges with T (MT →∞) and MT = o(T 1/2).

Assumption (A1.a) imposes restrictions on the time-series dependence without any constraints

on the cross-sectional dependence. It allows for heterogeneous, but uniformly bounded, serial

dependence across the different series. Stationarity along the time-series dimension can be further

relaxed by allowing for some forms of heterogeneity. Assumption (A1.b) requires uniform moment

bounds. While the cross-sectional (maturity) dimensionN could be large relative to T and it may be

convenient to allow N to be a function of T (see, for example, Valkanov 1998), Assumption (A1.d)

maintains that N is a fixed constant. Nevertheless, we use the notation N,T →∞ to accommodate

the more general case when N is possibly a nondecreasing function of T . Assumption (A1.e) states

that the block size MT grows with T but at a slower rate than T 1/2.

Assumption A2. Assume that

(A2.a) {(x′t, ε
(n)
t+h) : t = 1, ..., T} are the realizations of a stationary α-mixing process with mixing

coefficients α(k) = O(k−λ) for some λ > 4/(r − 2), r > 2;

(A2.b) for some r > 2 and ε > 0, ‖xt‖2(r+ε) ≤ ∆ <∞ and
∥∥∥ε(n)t+h

∥∥∥
2(r+ε)

≤ ∆ <∞ for all t;
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(A2.c) AT = 1
T

∑T−h
t=1 (xt − E(xt))(xt − E(xt))

′ is positive definite uniformly in T ;

(A2.d) BT ≡ Var
(
T−1/2

∑T−h
t=1 (xt − x̄)ε

(n)
t+h

)
isO(1) andB ≡ limT→∞Var

(
T−1/2

∑T−h
t=1 (xt − x̄)ε

(n)
t+h

)
is positive definite with det(B) bounded away from zero.

Assumption (A2.a) imposes stationarity on the predictors and the errors. Stationary but highly

persistent predictors, such as the yields and forward rates, present challenges to statistical inference

as discussed in the main text. Assumption (A2.b) provides regularity conditions that need to be

strengthened further when xt is subjected to pre-whitening by a VAR(1) model. Assumptions

(A3.c) and (A3.d) are standard for the matrices AT and BT . Letting ξt+h = (xt − x̄)ε
(n)
t+h, we can

rewrite BT as

BT = Γ(0) +

T−h∑
j=1

ω(j/b)
(
Γ(j) + Γ(j)′

)
,

where Γ(j) = E(ξt+hξ
′
t+h−j), ω(.) is a kernel function and b is a bandwidth parameter. The

population analog of this matrix is given by B = limT→∞Var
(
T−1/2

∑T−h
t=1 ξt+h

)
and its HAC

estimator as B̂T = Γ̂T (0) +
∑T−1

j=1 ω(j/b)(Γ̂T (j) + Γ̂T (j)′), where Γ̂T (·) is a consistent estimator of

Γ(·). The next assumption imposes sufficient conditions (see, for example, Newey and West 1987

and Andrews 1991) for establishing consistency of the HAC estimator that is used for constructing

the robust t-statistic.

Assumption A3. Assume that

(A3.a) ω(x) satisfies (i) |ω(x)| ≤ 1 and ω(x) = ω(−x) for all x ∈ R, (ii) ω(0) = 1, (iii)
∫∞
−∞ |ω(x)|dx <

∞, (iv) ω(x) is continuous at zero and almost all x ∈ R, and (v) ω(x) has a characteristic

exponent k ≥ 1 which is the largest real number such that limx→0
1−ω(x)
|x|k = ck for some

ck ∈ (0,∞).

(A3.b) b = bT satisfies (i) bT = o(T 1/2), (ii) bT →∞ as T →∞.

Assumption (A3.a) is satisfied for popular kernels such as the Bartlett, Parzen and quadratic

spectral kernels that yield positive semi-definite estimators. Assumption (A3.b) states the rate of

increase for bT that ensures the consistency of the HAC estimator (Andrews 1991).

SA-1.2 Technical Results and Proofs

It is desirable to establish first that the bootstrap approximates accurately the key moments of the

true distribution. Given the panel structure of the data, the conditions for bootstrap validity follow

closely those in Goncalves and White (2002) and Goncalves (2011). These conditions are collected

in Assumption A1.

In what follows, P ∗ denotes the probability measure induced by the bootstrap resampling,

conditional on the data. Also, for a sequence of bootstrap statistics Z∗NT , Z∗NT
P ∗→ 0 in probability
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signifies that for any ε > 0, δ > 0, limN,T→∞ P [P ∗(|Z∗NT | > δ) > ε] = 0. Finally, let VNT =
1
NT

∑N
n=1

∑T
t=1E[(znt − E(znt))(znt − E(znt))

′].

Lemma 1. Under Assumption A1, (a) 1
NT

∑N
n=1

∑T
t=1(z

∗
nt − znt)

P ∗→ 0 in probability, and (b)

limN,T→∞ P [P ∗(|V̂ ∗NT − VNT | > δ) > ε] = 0 for any ε > 0, δ > 0.

The result in Lemma 1 is to demonstrate that the proposed model-free bootstrap approximates

well the first two moments of the true distribution of the data. This is useful when bootstrapping

the unconditional distribution of the entire yield curve.

To show that the quantiles of the bootstrap distribution of
√
T (β̂(n)∗ − β̂(n)) approximate well,

in some metric, the quantiles of
√
T (β̂(n) − β(n)), we need to strengthen Assumption A1 and

expand it to include ε
(n)
t+h and xt. This is done in Assumption A2. Furthermore, Assumption A3

provides sufficient conditions for HAC estimation of the variance matrices of β̂(n) and β̂(n)∗: Ω̂T

and Ω̂∗T , respectively. More specifically, Ω̂T = Â−1T B̂T Â
−1
T , where Â−1T = T−1

∑T−h
t=1 (xt− x̄)(xt− x̄)′

and B̂T is the HAC estimator of the variance matrix of (xt − x̄)ε̂
(n)
t+h. The bootstrap analog

Ω̂∗T = Â∗−1T B̂∗T Â
∗−1
T is obtained by using the bootstrapped predictors x∗t and residuals ε̂

(n)∗
t+h in these

expressions. With this notation, define the t-statistic of the ith predictor t̂i = (β̂
(n)
i −β

(n)
i )/se(β̂

(n)
i ),

where se(β̂(n)) =

√
diag(Ω̂T ), and t∗i = (β̂

(n)∗
i − β̂(n)i )/se(β̂∗i ), where se(β̂(n)∗) =

√
diag(Ω̂∗T ). The

next theorem establishes the validity of the bootstrap method.

Theorem 1. Under Assumptions A1, A2, and A3, we have that for any ε > 0,

P

(
sup
x∈Rk

∣∣∣P ∗ (√T (β̂(n)∗ − β̂(n)) ≤ x
)
− P

(√
T (β̂(n) − β(n)) ≤ x

)∣∣∣ > ε

)
→ 0

where ≤ applies to each component of the relevant vector and

P

(
sup
x∈R

∣∣P ∗ (t∗i ≤ x)− P
(
t̂i ≤ x

)∣∣ > ε

)
→ 0

for i = 1, . . . , k.

The limiting behavior of some terms in Theorem 1 can be inferred from the following lemma

(see Goncalves (2011) for details).

Lemma 2. Under Assumptions A.1, A.2, and A.3,

Â−1T −A
−1
T

P→ 0, Â∗−1T − Â−1T
P ∗→ 0, B̂∗T −BT

P ∗→ 0,

in probability, and

B
−1/2
T

1√
T

T−h∑
t=1

(x∗t − x̄∗)ε
(n)∗
t+h

d∗→ N(0, I),
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where X∗T
d∗→ X denotes that, conditional on the sample, X∗T weakly converges to X under P ∗.

Proof of Theorem 1: Let

Â∗T =
1

T

T−h∑
t=1

(x∗t − x̄∗)(x∗t − x̄∗)′

and

ε
(n)∗
t+h = rx

(n)∗
t+h − α̂

(n) − x∗′t β̂(n).

Then, we can rewrite the expression for
√
T (β̂(n)∗ − β̂(n)) as

√
T (β̂(n)∗ − β̂(n)) =

[
A−1T + (Â∗−1T −A−1T )

] 1√
T

T−h∑
t=1

(x∗t − x̄∗)ε
(n)∗
t+h

= A−1T B
1/2
T B

−1/2
T

1√
T

T−h∑
t=1

(x∗t − x̄∗)ε
(n)∗
t+h

+
[
(Â∗−1T − Â−1T )− (Â−1T −A

−1
T )
] 1√

T

T−h∑
t=1

(x∗t − x̄∗)ε
(n)∗
t+h .

The limiting behavior of the terms on the right-hand side is inferred from Lemma 2. Pre-multiplying

both sides by B
−1/2
T AT and invoking the results in Lemma 2, we have that

B
−1/2
T ATA

−1
T B

1/2
T B

−1/2
T

1√
T

T−h∑
t=1

(x∗t − x̄∗)ε
(n)∗
t+h

d∗→ N(0k, Ik)

and

B
−1/2
T AT

[
(Â∗−1T − Â−1T )− (Â−1T −A

−1
T )
] 1√

T

T−h∑
t=1

(x∗t − x̄∗)ε
(n)∗
t+h = oP ∗(1),

using that 1√
T

∑T−h
t=1 (x∗t − x̄∗)ε

(n)∗
t+h = OP ∗(1). The first result in Theorem 1 follows from noting

that, under the stated assumptions,

B
−1/2
T AT

√
T (β̂(n) − β(n)) d→ N(0k, Ik)

as T →∞. The result for the t-statistic in Theorem 1 follows from Lemma 2 and similar arguments.

�
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SA-2 Additional Simulation Results

SA-2.1 No Bias Correction

To assess the effect of the bias-corrected VAR(1) estimates on our procedure, we report the coun-

terpart of Tables 1–6 for both the CG bootstrap and the BH bootstrap using unadjusted VAR(1)

estimates. In Tables SA.1, SA.3, and SA.5, we report the empirical size for the three different

simulation designs considered in the main text. The results show that the CG bootstrap with and

without bias correction produces very similar results. This is also the case for the empirical power

which is shown in Tables SA.2, SA.4, and SA.6.
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Table SA.1. Size: Three-Factor VAR(1) [No Bias Correction]. This table presents empirical size for
the nonparametric bootstrap introduced in Section 2.2 (CG) and the parametric bootstrap of Bauer and Hamilton
(2018) (BH). Both procedures use OLS estimates rather than the bias-correction approach discussed in the main
text. The nominal level is 10% and the sample size is T = 600. Each column reports results for the t-test associated
with the regressor (g1t, g2t, g3t) = (y

(12)
t , f

(60,12)
t , f

(120,12)
t ). Each row reports results for bond returns of the

corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap
g1t g2t g3t g1t g2t g3t

2y 0.108 0.110 0.100 0.068 0.024 0.013
3y 0.101 0.113 0.102 0.067 0.019 0.004
4y 0.099 0.122 0.105 0.065 0.013 0.000
5y 0.100 0.120 0.109 0.063 0.013 0.000
6y 0.101 0.118 0.107 0.059 0.010 0.000
7y 0.102 0.122 0.105 0.054 0.008 0.000
8y 0.104 0.122 0.108 0.053 0.008 0.000
9y 0.107 0.123 0.107 0.053 0.011 0.000
10y 0.107 0.123 0.108 0.050 0.008 0.000

Table SA.2. Power: Three-Factor VAR(1) [No Bias Correction]. This table presents empirical size for
the nonparametric bootstrap introduced in Section 2.2 (CG) and the parametric bootstrap of Bauer and Hamilton
(2018) (BH). Both procedures use OLS estimates rather than the bias-correction approach discussed in the main
text. The nominal level is 10% and the sample size is T = 600. Each column reports results for the t-test associated
with the regressor (g1t, g2t, g3t) = (y

(12)
t , f

(60,12)
t , f

(120,12)
t ). Each row reports results for bond returns of the

corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap
g1t g2t g3t g1t g2t g3t

2y 0.257 0.247 0.101 0.264 0.160 0.004
3y 0.422 0.380 0.105 0.414 0.257 0.007
4y 0.538 0.446 0.114 0.523 0.310 0.005
5y 0.616 0.461 0.116 0.593 0.332 0.002
6y 0.659 0.440 0.110 0.630 0.307 0.000
7y 0.681 0.390 0.106 0.648 0.261 0.000
8y 0.688 0.333 0.116 0.650 0.203 0.000
9y 0.686 0.276 0.146 0.640 0.164 0.000
10y 0.676 0.220 0.198 0.631 0.086 0.000
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Table SA.3. Size: Five-Factor VAR(1) [No Bias Correction]. This table presents empirical size for the
nonparametric bootstrap introduced in Section 2.2 (CG) and the parametric bootstrap of Bauer and Hamilton
(2018) (BH). Both procedures use OLS estimates rather than the bias-correction approach discussed in the main
text. The nominal level is 10% and the sample size is T = 600. Each column reports results for the t-test associated
with the regressor (g1t, g2t, g3t, g4t, g5t) = (y

(12)
t , f

(36,12)
t , f

(60,12)
t , f

(84,12)
t , f

(120,12)
t ). Each row reports results for bond

returns of the corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap
g1t g2t g3t g3t g3t g1t g2t g3t g3t g3t

2y 0.108 0.104 0.095 0.085 0.090 0.048 0.022 0.012 0.006 0.013
3y 0.101 0.101 0.096 0.087 0.089 0.035 0.010 0.012 0.007 0.012
4y 0.100 0.097 0.094 0.090 0.089 0.023 0.005 0.011 0.007 0.016
5y 0.096 0.096 0.094 0.091 0.091 0.019 0.005 0.011 0.010 0.015
6y 0.098 0.097 0.094 0.092 0.092 0.016 0.003 0.014 0.008 0.012
7y 0.098 0.095 0.094 0.092 0.090 0.016 0.003 0.012 0.007 0.010
8y 0.099 0.096 0.097 0.093 0.094 0.015 0.005 0.015 0.007 0.010
9y 0.098 0.100 0.096 0.095 0.094 0.016 0.006 0.015 0.008 0.013
10y 0.100 0.100 0.097 0.097 0.098 0.014 0.007 0.015 0.007 0.012

Table SA.4. Size: Five-Factor VAR(1) [No Bias Correction]. This table presents empirical size for the
nonparametric bootstrap introduced in Section 2.2 (CG) and the parametric bootstrap of Bauer and Hamilton
(2018) (BH). Both procedures use OLS estimates rather than the bias-correction approach discussed in the main
text. The nominal level is 10% and the sample size is T = 600. Each column reports results for the t-test associated
with the regressor (g1t, g2t, g3t, g4t, g5t) = (y

(12)
t , f

(36,12)
t , f

(60,12)
t , f

(84,12)
t , f

(120,12)
t ). Each row reports results for bond

returns of the corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap
g1t g2t g3t g3t g3t g1t g2t g3t g3t g3t

2y 0.356 0.506 0.545 0.569 0.475 0.020 0.000 0.000 0.000 0.000
3y 0.396 0.431 0.462 0.523 0.479 0.070 0.000 0.000 0.000 0.000
4y 0.397 0.356 0.400 0.499 0.490 0.105 0.000 0.000 0.000 0.000
5y 0.392 0.310 0.371 0.503 0.514 0.107 0.000 0.000 0.000 0.000
6y 0.395 0.289 0.368 0.527 0.541 0.136 0.000 0.000 0.000 0.000
7y 0.400 0.280 0.386 0.561 0.556 0.135 0.000 0.000 0.000 0.000
8y 0.409 0.280 0.408 0.578 0.559 0.136 0.000 0.000 0.000 0.000
9y 0.418 0.282 0.425 0.587 0.542 0.126 0.000 0.000 0.000 0.000
10y 0.420 0.282 0.432 0.579 0.509 0.128 0.000 0.000 0.000 0.000
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Table SA.5. Size: Three-Factor VAR(1) with External Predictors [No Bias Correction]. This
table presents empirical size for the nonparametric bootstrap introduced in Section 2.2 (CG) and the parametric
bootstrap of Bauer and Hamilton (2018) (BH). Both procedures use OLS estimates rather than the bias-correction
approach discussed in the main text. The nominal level is 10% and the sample size is T = 600. Each column
reports results for the t-test associated with the regressor (g1t, g2t, g3t) = (y

(12)
t , f

(60,12)
t , f

(120,12)
t ) and the external

predictors w1t and w2t. Each row reports results for bond returns of the corresponding maturity. Based on 5,000
simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap
g1t g2t g3t w1t w2t g1t g2t g3t w1t w2t

2y 0.111 0.110 0.095 0.104 0.104 0.067 0.021 0.013 0.112 0.106
3y 0.105 0.112 0.101 0.107 0.107 0.065 0.018 0.005 0.111 0.108
4y 0.101 0.115 0.100 0.108 0.106 0.062 0.012 0.001 0.111 0.107
5y 0.098 0.117 0.101 0.111 0.108 0.059 0.010 0.001 0.111 0.108
6y 0.096 0.113 0.101 0.109 0.108 0.055 0.008 0.000 0.107 0.108
7y 0.097 0.113 0.104 0.109 0.108 0.054 0.008 0.000 0.106 0.105
8y 0.095 0.114 0.100 0.109 0.104 0.051 0.009 0.000 0.107 0.106
9y 0.096 0.115 0.103 0.109 0.106 0.049 0.013 0.000 0.109 0.105
10y 0.099 0.115 0.104 0.109 0.104 0.046 0.008 0.000 0.109 0.106

Table SA.6. Power: Three-Factor VAR(1) with External Predictors [No Bias Correction]. This
table presents empirical power for the nonparametric bootstrap introduced in Section 2.2 (CG) and the parametric
bootstrap of Bauer and Hamilton (2018) (BH). Both procedures use OLS estimates rather than the bias-correction
approach discussed in the main text. The nominal level is 10% and the sample size is T = 600. Each column
reports results for the t-test associated with the regressor (g1t, g2t, g3t) = (y

(12)
t , f

(60,12)
t , f

(120,12)
t ). Each row reports

results for bond returns of the corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications
per simulation.

CG Bootstrap BH Bootstrap
g1t g2t g3t g1t g2t g3t

2y 0.222 0.245 0.099 0.238 0.166 0.004
3y 0.395 0.389 0.103 0.393 0.264 0.010
4y 0.514 0.458 0.111 0.509 0.318 0.006
5y 0.595 0.472 0.111 0.578 0.342 0.003
6y 0.637 0.446 0.105 0.615 0.316 0.001
7y 0.661 0.397 0.099 0.634 0.269 0.000
8y 0.669 0.341 0.113 0.638 0.212 0.000
9y 0.666 0.277 0.142 0.631 0.165 0.000
10y 0.659 0.227 0.191 0.622 0.089 0.000
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SA-2.2 Additional Designs

Tables SA.7 and SA.8 report the empirical size and power for the five-factor model with a larger

sample size than reported in the main text (Tables 3 and 4 in the main text, respectively). We

use T = 2000 which shows that empirical size continues to be controlled well using our rule-of-

thumb choice for M (see Table SA.7). Table SA.8 shows that the power of the CG bootstrap

approaches one as the sample size increases. Moreover, the discrepancy between the power of the

CG bootstrap and the O bootstrap is also reduced with the larger sample size. Note that even with

the larger sample size, the misspecification of the factor space in the BH bootstrap implies that the

finite-sample properties of this procedure remain poor.

Tables SA.9 and SA.10 report empirical size and power for the VAR(2) specification discussed

in Section 3 of the main text. Although the CG bootstrap has relatively low power for inference on

the coefficients associated with the lagged factors, this is also the case for the O bootstrap. Again,

this is due to the relative proximity of these coefficients, that are calibrated to actual data, to

zero. Finally, note that the misspecification of the time-series dynamics leads to poor finite-sample

performance for the BH bootstrap under both the null and alternative hypotheses.
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Table SA.7. Size: Five-Factor VAR(1) [T = 2,000]. This table presents empirical size for the three
bootstrap methods: the nonparametric bootstrap introduced in Section 2.2 (CG); the parametric bootstrap of
Bauer and Hamilton (2018) (BH); and the oracle bootstrap (O). The nominal level is 10% and the sample size is
T = 2, 000. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t, g4t, g5t) = (y

(12)
t , f

(36,12)
t , f

(60,12)
t , f

(84,12)
t , f

(120,12)
t ). Each row reports results for bond returns of the

corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t

2y 0.090 0.092 0.086 0.080 0.094 0.032 0.002 0.000 0.000 0.000 0.098 0.096 0.101 0.107 0.111
3y 0.095 0.094 0.087 0.078 0.089 0.036 0.005 0.001 0.000 0.000 0.101 0.096 0.098 0.104 0.108
4y 0.094 0.094 0.084 0.079 0.089 0.031 0.013 0.001 0.001 0.000 0.100 0.095 0.102 0.107 0.108
5y 0.096 0.099 0.083 0.077 0.087 0.029 0.014 0.001 0.001 0.000 0.100 0.098 0.099 0.105 0.107
6y 0.097 0.099 0.085 0.077 0.087 0.025 0.015 0.001 0.000 0.000 0.103 0.098 0.097 0.103 0.106
7y 0.099 0.099 0.085 0.079 0.085 0.024 0.016 0.001 0.000 0.000 0.104 0.098 0.097 0.101 0.107
8y 0.102 0.099 0.086 0.079 0.083 0.025 0.014 0.001 0.000 0.000 0.103 0.095 0.097 0.102 0.105
9y 0.101 0.099 0.086 0.081 0.085 0.028 0.011 0.001 0.000 0.000 0.103 0.094 0.098 0.102 0.104
10y 0.103 0.100 0.086 0.080 0.086 0.028 0.012 0.001 0.000 0.000 0.104 0.094 0.096 0.100 0.103

Table SA.8. Power: Five-Factor VAR(1) [T = 2,000]. This table presents empirical power for the three
bootstrap methods: the nonparametric bootstrap introduced in Section 2.2 (CG); the parametric bootstrap of
Bauer and Hamilton (2018) (BH); and the oracle bootstrap (O). The nominal level is 10% and the sample size is
T = 2, 000. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t, g4t, g5t) = (y

(12)
t , f

(36,12)
t , f

(60,12)
t , f

(84,12)
t , f

(120,12)
t ). Each row reports results for bond returns of the

corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t

2y 0.904 0.932 0.977 0.986 0.962 0.193 0.000 0.000 0.000 0.000 0.920 0.945 0.979 0.990 0.967
3y 0.914 0.877 0.948 0.980 0.963 0.521 0.000 0.000 0.000 0.000 0.924 0.884 0.953 0.985 0.968
4y 0.900 0.792 0.910 0.970 0.968 0.638 0.000 0.000 0.000 0.000 0.914 0.790 0.916 0.979 0.974
5y 0.887 0.711 0.888 0.974 0.976 0.598 0.000 0.000 0.000 0.000 0.897 0.712 0.898 0.980 0.981
6y 0.880 0.670 0.886 0.979 0.983 0.654 0.000 0.000 0.000 0.000 0.887 0.670 0.899 0.985 0.987
7y 0.877 0.659 0.898 0.986 0.985 0.629 0.000 0.000 0.000 0.000 0.884 0.660 0.911 0.988 0.989
8y 0.877 0.664 0.914 0.988 0.984 0.602 0.000 0.000 0.000 0.000 0.882 0.663 0.922 0.989 0.988
9y 0.879 0.673 0.927 0.988 0.980 0.533 0.000 0.000 0.000 0.000 0.885 0.674 0.933 0.989 0.986
10y 0.879 0.676 0.931 0.986 0.973 0.533 0.000 0.000 0.000 0.000 0.887 0.678 0.935 0.987 0.977
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Table SA.9. Size: Three-Factor VAR(2). This table presents empirical size for the three bootstrap methods: the nonparametric bootstrap introduced in
Section 2.2 (CG); the parametric bootstrap of Bauer and Hamilton (2018) (BH); and the oracle bootstrap (O). The nominal level is 10% and the sample size is

T = 600. Each column reports results for the t-test associated with the regressor (g1t, g2t, g3t) = (y
(12)
t , f

(60,12)
t , f

(120,12)
t ). Each row reports results for bond returns

of the corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t g1(t−1) g2(t−1) g3(t−1) g1t g2t g3t g1(t−1) g2(t−1) g3(t−1) g1t g2t g3t g1(t−1) g2(t−1) g3(t−1)

2y 0.129 0.110 0.105 0.092 0.079 0.076 0.041 0.023 0.004 0.029 0.000 0.000 0.106 0.103 0.100 0.109 0.103 0.103
3y 0.127 0.119 0.108 0.094 0.080 0.079 0.045 0.018 0.002 0.031 0.000 0.000 0.104 0.101 0.098 0.110 0.102 0.107
4y 0.127 0.123 0.108 0.099 0.081 0.081 0.051 0.012 0.001 0.037 0.000 0.000 0.105 0.101 0.096 0.109 0.104 0.107
5y 0.125 0.121 0.106 0.100 0.084 0.080 0.039 0.015 0.000 0.027 0.000 0.000 0.106 0.101 0.099 0.108 0.106 0.107
6y 0.123 0.121 0.106 0.103 0.081 0.080 0.044 0.009 0.000 0.030 0.000 0.000 0.104 0.099 0.097 0.110 0.106 0.104
7y 0.122 0.121 0.105 0.105 0.083 0.079 0.042 0.007 0.000 0.028 0.000 0.000 0.099 0.099 0.097 0.110 0.104 0.102
8y 0.118 0.122 0.107 0.107 0.082 0.077 0.042 0.007 0.000 0.027 0.000 0.000 0.099 0.102 0.097 0.110 0.105 0.102
9y 0.116 0.122 0.107 0.108 0.084 0.075 0.041 0.009 0.000 0.026 0.000 0.000 0.098 0.100 0.097 0.110 0.105 0.100
10y 0.116 0.122 0.110 0.107 0.083 0.075 0.038 0.006 0.000 0.020 0.000 0.000 0.098 0.101 0.098 0.110 0.104 0.098

Table SA.10. Power: Three-Factor VAR(2). This table presents empirical power for the three bootstrap methods: the nonparametric bootstrap introduced
in Section 2.2 (CG); the parametric bootstrap of Bauer and Hamilton (2018) (BH); and the oracle bootstrap (O). The nominal level is 10% and the sample size is

T = 600. Each column reports results for the t-test associated with the regressor (g1t, g2t, g3t) = (y
(12)
t , f

(60,12)
t , f

(120,12)
t ). Each row reports results for bond returns

of the corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t g1(t−1) g2(t−1) g3(t−1) g1t g2t g3t g1(t−1) g2(t−1) g3(t−1) g1t g2t g3t g1(t−1) g2(t−1) g3(t−1)

2y 0.238 0.228 0.102 0.121 0.085 0.076 0.087 0.140 0.003 0.000 0.000 0.000 0.225 0.218 0.097 0.125 0.105 0.108
3y 0.373 0.348 0.119 0.115 0.084 0.082 0.193 0.224 0.008 0.001 0.000 0.000 0.370 0.327 0.109 0.118 0.105 0.112
4y 0.485 0.416 0.130 0.109 0.085 0.081 0.259 0.271 0.004 0.001 0.000 0.000 0.483 0.389 0.115 0.109 0.106 0.112
5y 0.556 0.437 0.122 0.109 0.086 0.080 0.370 0.299 0.002 0.001 0.000 0.000 0.554 0.404 0.106 0.107 0.105 0.111
6y 0.599 0.415 0.106 0.104 0.085 0.076 0.385 0.270 0.000 0.001 0.000 0.000 0.600 0.383 0.099 0.101 0.106 0.109
7y 0.620 0.368 0.107 0.103 0.086 0.075 0.407 0.227 0.000 0.001 0.000 0.000 0.624 0.337 0.098 0.100 0.107 0.105
8y 0.627 0.310 0.129 0.099 0.089 0.074 0.413 0.168 0.000 0.000 0.000 0.000 0.630 0.282 0.115 0.101 0.104 0.102
9y 0.624 0.255 0.169 0.097 0.088 0.075 0.412 0.125 0.000 0.000 0.000 0.000 0.626 0.224 0.158 0.098 0.107 0.099
10y 0.611 0.200 0.228 0.095 0.089 0.076 0.404 0.053 0.000 0.000 0.000 0.000 0.613 0.175 0.219 0.098 0.105 0.098
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SA-2.3 Results for 5% Nominal Size

Tables SA.11–SA.16 report empirical size and power using a nominal level of 5% rather than 10%

presented in Tables 1–6 in the main text. The results for this alternative choice are qualitatively

similar to what is described and summarized in the main text.
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Table SA.11. Size: Three-Factor VAR(1) [5% Nominal Size]. This table presents empirical size for the
three bootstrap methods: the nonparametric bootstrap introduced in Section 2.2 (CG); the parametric bootstrap of
Bauer and Hamilton (2018) (BH); and the oracle bootstrap (O). The nominal level is 5% and the sample size is
T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t) = (y

(12)
t , f

(60,12)
t , f

(120,12)
t ). Each row reports results for bond returns of the corresponding maturity.

Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t g1t g2t g3t g1t g2t g3t

2y 0.061 0.049 0.040 0.020 0.007 0.004 0.050 0.047 0.047
3y 0.060 0.055 0.044 0.020 0.005 0.001 0.049 0.048 0.049
4y 0.062 0.059 0.046 0.020 0.003 0.000 0.051 0.047 0.049
5y 0.061 0.060 0.046 0.020 0.002 0.000 0.052 0.046 0.049
6y 0.060 0.062 0.048 0.020 0.001 0.000 0.051 0.048 0.049
7y 0.061 0.063 0.046 0.019 0.001 0.000 0.051 0.047 0.049
8y 0.059 0.062 0.044 0.018 0.001 0.000 0.049 0.045 0.050
9y 0.059 0.062 0.043 0.017 0.001 0.000 0.048 0.046 0.049
10y 0.059 0.061 0.044 0.016 0.001 0.000 0.049 0.047 0.047

Table SA.12. Power: Three-Factor VAR(1) [5% Nominal Size]. This table presents empirical power
for the three bootstrap methods: the nonparametric bootstrap introduced in Section 2.2 (CG); the parametric
bootstrap of Bauer and Hamilton (2018) (BH); and the oracle bootstrap (O). The nominal level is 5% and the
sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t) = (y

(12)
t , f

(60,12)
t , f

(120,12)
t ). Each row reports results for bond returns of the corresponding maturity.

Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t g1t g2t g3t g1t g2t g3t

2y 0.162 0.152 0.039 0.156 0.092 0.001 0.198 0.145 0.052
3y 0.300 0.264 0.047 0.289 0.164 0.002 0.348 0.245 0.050
4y 0.417 0.331 0.058 0.384 0.195 0.001 0.461 0.311 0.056
5y 0.498 0.342 0.057 0.444 0.212 0.000 0.534 0.318 0.055
6y 0.535 0.323 0.050 0.483 0.163 0.000 0.580 0.299 0.051
7y 0.563 0.287 0.044 0.502 0.123 0.000 0.602 0.255 0.051
8y 0.572 0.236 0.046 0.507 0.082 0.000 0.607 0.206 0.059
9y 0.573 0.186 0.062 0.505 0.061 0.000 0.603 0.161 0.079
10y 0.565 0.139 0.088 0.497 0.021 0.000 0.593 0.119 0.113
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Table SA.13. Size: Five-Factor VAR(1) [5% Nominal Size]. This table presents empirical size for the
three bootstrap methods: the nonparametric bootstrap introduced in Section 2.2 (CG); the parametric bootstrap of
Bauer and Hamilton (2018) (BH); and the oracle bootstrap (O). The nominal level is 5% and the sample size is
T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t, g4t, g5t) = (y

(12)
t , f

(36,12)
t , f

(60,12)
t , f

(84,12)
t , f

(120,12)
t ). Each row reports results for bond returns of the

corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t

2y 0.059 0.050 0.050 0.047 0.053 0.019 0.007 0.008 0.003 0.007 0.048 0.057 0.051 0.051 0.050
3y 0.055 0.049 0.048 0.049 0.051 0.011 0.003 0.005 0.004 0.008 0.048 0.055 0.053 0.053 0.048
4y 0.053 0.050 0.048 0.052 0.051 0.007 0.001 0.003 0.004 0.009 0.050 0.057 0.052 0.051 0.048
5y 0.051 0.049 0.049 0.049 0.051 0.006 0.001 0.005 0.006 0.010 0.050 0.055 0.051 0.052 0.048
6y 0.051 0.048 0.049 0.048 0.050 0.005 0.000 0.006 0.006 0.008 0.050 0.052 0.051 0.052 0.046
7y 0.050 0.047 0.051 0.049 0.051 0.005 0.000 0.006 0.005 0.007 0.050 0.052 0.051 0.051 0.048
8y 0.050 0.045 0.050 0.050 0.053 0.005 0.001 0.006 0.004 0.008 0.052 0.053 0.052 0.051 0.047
9y 0.052 0.048 0.051 0.051 0.052 0.004 0.001 0.007 0.005 0.008 0.052 0.054 0.052 0.052 0.046
10y 0.053 0.049 0.051 0.052 0.053 0.004 0.001 0.008 0.005 0.009 0.052 0.053 0.053 0.049 0.046

Table SA.14. Power: Five-Factor VAR(1) [5% Nominal Size]. This table presents empirical power for
the three bootstrap methods: the nonparametric bootstrap introduced in Section 2.2 (CG); the parametric
bootstrap of Bauer and Hamilton (2018) (BH); and the oracle bootstrap (O). The nominal level is 5% and the
sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t, g4t, g5t) = (y

(12)
t , f

(36,12)
t , f

(60,12)
t , f

(84,12)
t , f

(120,12)
t ). Each row reports results for bond returns of the

corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t

2y 0.245 0.373 0.420 0.437 0.349 0.009 0.000 0.000 0.000 0.000 0.267 0.380 0.465 0.517 0.418
3y 0.279 0.318 0.336 0.386 0.353 0.034 0.000 0.000 0.000 0.000 0.300 0.322 0.392 0.472 0.422
4y 0.282 0.257 0.276 0.362 0.359 0.048 0.000 0.000 0.000 0.000 0.302 0.258 0.328 0.451 0.426
5y 0.280 0.215 0.252 0.364 0.384 0.049 0.000 0.000 0.000 0.000 0.297 0.219 0.307 0.459 0.452
6y 0.283 0.195 0.250 0.389 0.409 0.060 0.000 0.000 0.000 0.000 0.297 0.203 0.312 0.477 0.479
7y 0.287 0.190 0.270 0.414 0.427 0.060 0.000 0.000 0.000 0.000 0.300 0.199 0.326 0.498 0.498
8y 0.295 0.192 0.286 0.438 0.428 0.058 0.000 0.000 0.000 0.000 0.305 0.198 0.345 0.513 0.496
9y 0.304 0.194 0.301 0.446 0.411 0.050 0.000 0.000 0.000 0.000 0.310 0.202 0.353 0.518 0.479
10y 0.313 0.196 0.306 0.436 0.373 0.051 0.000 0.000 0.000 0.000 0.316 0.203 0.361 0.505 0.440
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Table SA.15. Size: Three-Factor VAR(1) with External Predictors [5% Nominal Size]. This
table presents empirical size for the three bootstrap methods: the nonparametric bootstrap introduced in Section
2.2 (CG); the parametric bootstrap of Bauer and Hamilton (2018) (BH); and the oracle bootstrap (O). The nominal
level is 5% and the sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t) = (y

(12)
t , f

(60,12)
t , f

(120,12)
t ) and the external predictors w1t and w2t. Each row reports results for bond

returns of the corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t w1t w2t g1t g2t g3t w1t w2t g1t g2t g3t w1t w2t

2y 0.068 0.051 0.039 0.050 0.052 0.021 0.006 0.003 0.049 0.054 0.052 0.050 0.048 0.050 0.052
3y 0.063 0.058 0.041 0.051 0.053 0.020 0.004 0.001 0.052 0.052 0.052 0.047 0.047 0.050 0.053
4y 0.063 0.058 0.043 0.053 0.052 0.021 0.002 0.000 0.053 0.055 0.051 0.049 0.049 0.051 0.052
5y 0.062 0.061 0.044 0.053 0.052 0.018 0.002 0.000 0.054 0.055 0.053 0.051 0.050 0.050 0.053
6y 0.061 0.063 0.043 0.055 0.051 0.018 0.002 0.000 0.051 0.053 0.051 0.051 0.049 0.048 0.053
7y 0.059 0.064 0.043 0.055 0.053 0.018 0.002 0.000 0.050 0.053 0.051 0.051 0.051 0.049 0.052
8y 0.058 0.065 0.041 0.058 0.053 0.018 0.001 0.000 0.048 0.054 0.051 0.052 0.050 0.050 0.053
9y 0.057 0.063 0.042 0.057 0.054 0.017 0.002 0.000 0.051 0.055 0.051 0.050 0.051 0.050 0.052
10y 0.055 0.062 0.042 0.057 0.055 0.016 0.001 0.000 0.051 0.054 0.050 0.050 0.051 0.051 0.053

Table SA.16. Power: Three-Factor VAR(1) with External Predictors [5% Nominal Size]. This
table presents empirical power for the three bootstrap methods: the nonparametric bootstrap introduced in Section
2.2 (CG); the parametric bootstrap of Bauer and Hamilton (2018) (BH); and the oracle bootstrap (O). The nominal
level is 5% and the sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t) = (y

(12)
t , f

(60,12)
t , f

(120,12)
t ). Each row reports results for bond returns of the corresponding maturity.

Based on 5,000 simulations and 399 bootstrap replications per simulation.

CG Bootstrap BH Bootstrap O Bootstrap
g1t g2t g3t g1t g2t g3t g1t g2t g3t

2y 0.136 0.153 0.037 0.137 0.091 0.001 0.167 0.149 0.051
3y 0.274 0.269 0.045 0.264 0.170 0.003 0.314 0.251 0.050
4y 0.391 0.336 0.056 0.359 0.207 0.001 0.436 0.310 0.056
5y 0.472 0.349 0.055 0.432 0.221 0.001 0.515 0.324 0.055
6y 0.520 0.329 0.048 0.469 0.177 0.000 0.567 0.300 0.050
7y 0.548 0.287 0.041 0.491 0.133 0.000 0.591 0.257 0.051
8y 0.562 0.238 0.043 0.498 0.088 0.000 0.598 0.207 0.060
9y 0.563 0.186 0.056 0.494 0.067 0.000 0.595 0.159 0.078
10y 0.559 0.138 0.085 0.482 0.022 0.000 0.585 0.117 0.112
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SA-2.4 Inference Based on Asymptotic Approximations

Here, we report the empirical size for procedures that rely on critical values obtained from asymp-

totic approximations to the t-statistic. We include results using the variance estimator of Newey

and West (1987) with lag length h = 12 (labelled “NW”) along with the two inference procedures

discussed in Lazarus et al. (2018). The first approach uses the equal-weighted cosine (EWC) esti-

mator of the long-run variance and a limiting t distribution (labelled “LLSW-EWC”). The second

approach uses the variance estimator of Newey and West (1987) and a fixed-b asymptotic approxi-

mation (labelled “LLSW-NW”). We implement both of these tests exactly as described in Lazarus

et al. (2018). Tables SA.17–SA.20 show that these procedures uniformly fail to control size in

all of the simulation designs. The size distortions are particularly acute with extraneous external

predictors as shown in Table SA.19. We note that Lazarus et al. (2018, p. 542) do not recommend

the use of these tests for high degrees of persistence as in our case. Instead, we include these results

as a benchmark comparison only.
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Table SA.17. Size: Three-Factor VAR(1) [HAC/HAR Variance Estimator]. This table presents
empirical size for three methods which rely on different sample variance estimators and asymptotic distributional
approximations: Newey and West (1987) estimator with lag length of 12; the equal-weighted cosine estimator as in
Lazarus et al. (2018); the Newey and West (1987) estimator as in Lazarus et al. (2018). The nominal level is 10%
and the sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t) = (y

(12)
t , f

(60,12)
t , f

(120,12)
t ). Each row reports results for bond returns of the corresponding maturity.

Based on 5,000 simulations and 399 bootstrap replications per simulation.

NW LLSW-EWC LLSW-NW
g1t g2t g3t g1t g2t g3t g1t g2t g3t

2y 0.263 0.202 0.200 0.194 0.147 0.146 0.208 0.157 0.155
3y 0.255 0.206 0.199 0.185 0.150 0.146 0.197 0.163 0.153
4y 0.242 0.208 0.196 0.182 0.153 0.145 0.190 0.161 0.149
5y 0.238 0.207 0.194 0.176 0.154 0.144 0.186 0.165 0.149
6y 0.236 0.212 0.194 0.178 0.153 0.141 0.187 0.167 0.152
7y 0.237 0.213 0.195 0.175 0.156 0.141 0.189 0.171 0.154
8y 0.235 0.213 0.193 0.177 0.160 0.140 0.186 0.171 0.155
9y 0.233 0.212 0.194 0.177 0.160 0.142 0.188 0.169 0.155
10y 0.232 0.212 0.194 0.174 0.157 0.142 0.187 0.166 0.155

Table SA.18. Size: Five-Factor VAR(1) [HAC/HAR Variance Estimators]. This table presents
empirical size for three methods which rely on different sample variance estimators and asymptotic distributional
approximations: Newey and West (1987) estimator with lag length of 12; the equal-weighted cosine estimator as in
Lazarus et al. (2018); the Newey and West (1987) estimator as in Lazarus et al. (2018). The nominal level is 10%
and the sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t, g4t, g5t) = (y

(12)
t , f

(36,12)
t , f

(60,12)
t , f

(84,12)
t , f

(120,12)
t ). Each row reports results for bond returns of the

corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

NW LLSW-EWC LLSW-NW
g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t

2y 0.209 0.177 0.179 0.177 0.180 0.157 0.141 0.142 0.140 0.138 0.169 0.147 0.148 0.147 0.146
3y 0.205 0.180 0.177 0.175 0.180 0.153 0.140 0.140 0.141 0.142 0.165 0.147 0.143 0.146 0.147
4y 0.202 0.181 0.174 0.176 0.181 0.149 0.140 0.139 0.142 0.144 0.162 0.148 0.146 0.147 0.147
5y 0.203 0.181 0.175 0.180 0.184 0.151 0.139 0.137 0.141 0.144 0.160 0.149 0.148 0.150 0.153
6y 0.202 0.179 0.174 0.180 0.188 0.149 0.139 0.139 0.142 0.145 0.162 0.148 0.148 0.149 0.154
7y 0.200 0.178 0.174 0.186 0.189 0.149 0.139 0.138 0.145 0.147 0.159 0.150 0.148 0.151 0.152
8y 0.197 0.180 0.179 0.183 0.191 0.147 0.138 0.139 0.145 0.143 0.158 0.147 0.148 0.154 0.152
9y 0.197 0.181 0.181 0.181 0.190 0.149 0.136 0.140 0.148 0.145 0.157 0.144 0.148 0.153 0.153
10y 0.196 0.180 0.182 0.180 0.190 0.150 0.136 0.143 0.148 0.148 0.157 0.145 0.149 0.153 0.153
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Table SA.19. Size: Three-Factor VAR(1) with External Predictors [HAC/HAR Variance Estimators]. This table presents empirical size for
three methods which rely on different sample variance estimators and asymptotic distributional approximations: Newey and West (1987) estimator with lag length of
12; the equal-weighted cosine estimator as in Lazarus et al. (2018); the Newey and West (1987) estimator as in Lazarus et al. (2018). The nominal level is 10% and

the sample size is T = 600. Each column reports results for the t-test associated with the regressor (g1t, g2t, g3t) = (y
(12)
t , f

(60,12)
t , f

(120,12)
t ) and the external predictors

w1t and w2t. Each row reports results for bond returns of the corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

NW LLSW-EWC LLSW-NW
g1t g2t g3t w1t w2t g1t g2t g3t w1t w2t g1t g2t g3t w1t w2t

2y 0.277 0.212 0.210 0.255 0.182 0.212 0.155 0.157 0.189 0.142 0.228 0.166 0.165 0.198 0.148
3y 0.265 0.216 0.209 0.253 0.181 0.202 0.162 0.157 0.188 0.142 0.214 0.171 0.167 0.195 0.152
4y 0.257 0.221 0.209 0.251 0.179 0.195 0.162 0.155 0.186 0.143 0.207 0.171 0.165 0.192 0.152
5y 0.251 0.221 0.202 0.247 0.178 0.187 0.166 0.157 0.188 0.140 0.197 0.174 0.164 0.193 0.149
6y 0.249 0.222 0.202 0.251 0.179 0.185 0.167 0.154 0.187 0.139 0.196 0.176 0.166 0.193 0.149
7y 0.246 0.225 0.203 0.251 0.180 0.184 0.167 0.153 0.186 0.143 0.194 0.174 0.163 0.192 0.149
8y 0.244 0.224 0.200 0.251 0.182 0.182 0.166 0.150 0.185 0.141 0.193 0.178 0.160 0.192 0.148
9y 0.243 0.222 0.200 0.247 0.179 0.184 0.165 0.150 0.186 0.138 0.195 0.176 0.159 0.193 0.147
10y 0.243 0.222 0.197 0.246 0.177 0.182 0.164 0.150 0.183 0.140 0.193 0.174 0.160 0.192 0.147

Table SA.20. Size: Three-Factor VAR(2) [HAC/HAR Variance Estimators]. This table presents empirical size for three methods which rely on
different sample variance estimators and asymptotic distributional approximations: Newey and West (1987) estimator with lag length of 12; the equal-weighted
cosine estimator as in Lazarus et al. (2018); the Newey and West (1987) estimator as in Lazarus et al. (2018). The nominal level is 10% and the sample size is

T = 600. Each column reports results for the t-test associated with the regressor (g1t, g2t, g3t) = (y
(12)
t , f

(60,12)
t , f

(120,12)
t ). Each row reports results for bond returns

of the corresponding maturity. Based on 5,000 simulations and 399 bootstrap replications per simulation.

NW LLSW-EWC LLSW-NW
g1t g2t g3t g1(t−1) g2(t−1) g3(t−1) g1t g2t g3t g1(t−1) g2(t−1) g3(t−1) g1t g2t g3t g1(t−1) g2(t−1) g3(t−1)

2y 0.174 0.152 0.147 0.135 0.151 0.167 0.167 0.133 0.129 0.130 0.127 0.139 0.169 0.134 0.130 0.129 0.131 0.143
3y 0.168 0.155 0.145 0.136 0.151 0.165 0.160 0.136 0.127 0.133 0.128 0.138 0.162 0.135 0.125 0.131 0.133 0.146
4y 0.163 0.154 0.145 0.138 0.150 0.165 0.152 0.135 0.128 0.136 0.129 0.140 0.154 0.137 0.128 0.134 0.133 0.144
5y 0.156 0.159 0.143 0.141 0.151 0.161 0.146 0.139 0.127 0.137 0.128 0.138 0.145 0.139 0.128 0.139 0.132 0.142
6y 0.151 0.161 0.144 0.144 0.150 0.160 0.141 0.140 0.124 0.139 0.128 0.137 0.143 0.142 0.128 0.141 0.134 0.140
7y 0.149 0.159 0.141 0.146 0.150 0.157 0.137 0.141 0.124 0.142 0.127 0.134 0.138 0.144 0.126 0.143 0.134 0.138
8y 0.146 0.160 0.141 0.145 0.151 0.157 0.137 0.142 0.126 0.144 0.128 0.132 0.135 0.145 0.127 0.143 0.133 0.138
9y 0.146 0.160 0.145 0.146 0.151 0.158 0.136 0.140 0.129 0.144 0.130 0.133 0.133 0.143 0.130 0.143 0.132 0.137
10y 0.144 0.160 0.147 0.149 0.151 0.154 0.134 0.138 0.129 0.144 0.128 0.133 0.134 0.139 0.129 0.142 0.132 0.137
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SA-3 Probability of Recession: Additional Results

In the main text, we report results for the conditional probability that H2,t = 1. Figure SA.1,

instead, shows the results for H1,t = 1. The fitted probabilities are lower than for H2,t since

{H1,t = 1} ⇒ {H2,t = 1}. The top two charts of Figure SA.1 compare the full-sample (leave-one-

out) standard probit estimator (red line) with the bootstrap-bias corrected (leave-one-out) probit

estimator (black line). Across both specifications, we observe that the bias-corrected estimate is

lower when the probability of recession is estimated to be low but it is higher when the probability

of recession is estimated to be high. This results in more variation of the bias-corrected estimate

with much more prominent peaks in the estimated probability of recession before NBER recessions.

The bottom two charts in Figure SA.1 show the associated 68% pointwise confidence intervals.
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Figure SA.1. Probability of Recession in Four Quarters

This figure plots the fitted values of P (H1,t = 1|xt) as defined in Section 4.3. xt is either: (i) a constant and the
term spread; (ii) a constant, the term spread, and the deviation of the 3-month yield from its 3-year moving
average. The black line represents the estimated probability based on the bootstrap bias correction; pink shading
denotes 68% pointwise confidence intervals for the associated probability. Grey shading denotes NBER recessions.
The sample period is 1971:Q3–2024:Q1.
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