
 

 

  

Deconstructing the 
Yield Curve 

Richard K. Crump | Nikolay Gospodinov  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NO.  88 4  

APRIL  2019  

 

REVI SED 

AUG UST 2 02 3  



Deconstructing the Yield Curve 

Richard K. Crump and Nikolay Gospodinov 

Federal Reserve Bank of New York Staff Reports, no. 884 

April 2019; revised August 2023 

JEL classification: G10, G12, C15, C58 

 

 

 

 

 

 

 
Abstract 

We introduce a novel nonparametric bootstrap for the nominal yield curve which is agnostic to the true 

factor structure. We deconstruct the yield curve into primitive objects, with weak cross-sectional and 

time-series dependence, which serve as building blocks for resampling the data. We analyze the 

asymptotic and finite-sample properties of the bootstrap for mimicking salient features of the data and 

conducting inference on bond return predictability. We demonstrate the applicability of our results to: the 

“tent shape” in forward rates, regression tests of the expectations hypothesis, the role of trend inflation in 

expected bond returns, and yield-based forecasts of recessions. 
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1 Introduction

The term structure of interest rates is a key object of study in both macroeconomics and finance.

Testing theories of interest-rate determination have important implications for understanding how

asset prices reflect expectations about the future, risk preferences, market structure, or other con-

siderations. Term structure modeling is generally parametric in nature and reduced-form inference

tends to rely on off-the-shelf procedures designed for generic regression specifications. However, ac-

curate inference is a formidable task as this parametric setting presents a confluence of econometric

challenges.

First, parametric models of the term structure of interest rates require the correct specification

of the underlying factor structure of the data. Recent research highlights the challenge of identifying

the correct factor space. Uhlig (2009) and Onatski and Wang (2021) demonstrate that high time-

series persistence can induce spurious commonality across series suggestive of a stronger factor

structure than might exist. Crump and Gospodinov (2021) show that, even in the absence of

strong serial correlation, certain properties of maturity-ordered assets induce standard metrics to

possibly favor a much lower dimension than the true dimension of the underlying factor space.

Other work (e.g., Duffee (2011), Joslin et al. (2014)) has argued for the presence of “hidden” or

unspanned factors which represent information that is not fully incorporated in bond yields.

Second, even under correct specification, the underlying yield factors will exhibit a high degree

of time-series persistence which presents a perennial obstacle to trustworthy inference in time-

series analysis. A number of papers, starting with Cavanagh et al. (1995), show that estimation

and inference of return predictability is sensitive to the exact degree of persistence and can result in

severe bias and size distortions (see also, e.g., Stambaugh (1999), Ferson et al. (2003), Jansson and

Moreira (2006), Campbell and Yogo (2006), Wei and Wright (2013), Bauer and Hamilton (2018)).

Third, unlike most empirical settings where there are distinct dependent and explanatory vari-

ables, inference in fixed-income regressions is often conducted on regression coefficients where both

regressors and the regressand are linear combinations of the same underlying yield curve. This

makes the setting distinct from the usual linear regression setup and implies that conventional

resampling approaches will produce bootstrapped samples which do not satisfy economic relations

and identities. Thus, the conventional parametric framework can omit potentially important factors

and key aspects of their dynamics, and generate yields with internally inconsistent properties.
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In this paper, we introduce a novel nonparametric resampling procedure which is tailored to

assets with a finite maturity structure such as the nominal yield curve. Rather than resampling

yields or prices directly, we instead resample excess returns along with a single, far-in-the-future

forward rate. This can be thought of as an economically-motivated transformation of the original

price data that produces primitive objects with more appealing statistical properties which, in

turn, serve as the basis for bootstrapping the data. We stress that our proposed method differs

conceptually and practically from the typical approach (e.g., Giglio and Kelly (2017), Bauer and

Hamilton (2018)) that specifies yields as the primitive process, takes a stand on their factor structure

and its law of motion, and employs a fully parametric model of yields in terms of their assumed

pricing factors. In contrast, our method is nonparametric which enables valid resampling of yield

curves while remaining agnostic about the underlying data generating process. Our bootstrap

procedure does not require as an input either the correct factor structure or the true pricing model

which generated the data; moreover, it is robust to unaccounted forms of time-series and cross-

sectional dependence and presence of conditional heteroskedasticity. We prove that our bootstrap

procedure is asymptotically valid under mild assumptions. Importantly, our analyses and results

translate directly to all other assets with a finite maturity structure such as options, swaps, or

futures.

We assess the properties of our bootstrap in replicating some salient features of the data (such

the “tent shape” of Cochrane and Piazzesi (2005)) as well as conducting inference in the context of

bond return predictability regressions. A key feature of our bootstrap is that the resampled data

naturally satisfies term structure identities ensuring that any predictability in future returns from

past yields or forwards is retained. The Monte Carlo experiments illustrate the ability of our method

to retain the unknown factor structure in the data and show that the resulting bootstrap-based

inference controls size well for multi-period holding returns at various maturities. The simulation

evidence suggests that our bootstrap is well-suited for settings where the predictors of interest

are functions of the yield curve themselves (e.g., Fama and Bliss (1987), Campbell and Shiller

(1991), Cochrane and Piazzesi (2005, 2008)) or are augmented with other external (macroeconomic)

predictors (e.g., Cooper and Priestley (2008), Ludvigson and Ng (2009), Joslin et al. (2014), Cieslak

and Povala (2015), Ghysels et al. (2018), Haddad and Sraer (2020), Bauer and Rudebusch (2020)).

In the empirical analysis, we consider three main applications of our new bootstrap method.
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First, we revisit the regression-based tests of the expectations hypothesis. We show how to view all

of the existing specifications for testing the expectations hypothesis in terms of primitive objects

(difference returns) and introduce a novel regression formulation which is better suited to the

time-series properties of bond prices. Since our bootstrap is not model specific, it offers a unified

framework for evaluating the empirical relevance of the expectations hypothesis across different

specifications. Overall, we find some evidence against the expectations hypothesis but it is generally

weak.

The second application provides stronger evidence against the expectations hypothesis by in-

vestigating the predictability of bond risk premia using trend inflation as suggested by Cieslak and

Povala (2015). We show how our nonparametric bootstrap can accommodate the highly persistent

nature of trend inflation by preserving its potential relationship with bond data. Moreover, the

sampling uncertainty from the construction of trend inflation as a generated regressor is properly

reflected in our inference procedure. Our results support the conclusions of Cieslak and Povala

(2015) regarding the importance of trend inflation in driving the low-frequency movements in bond

yields, by further extending the sample until the end of 2022.

Finally, we use our new bootstrap procedure to construct bias-corrected estimates and confi-

dence intervals for the probability of recession driven by the slope of the yield curve. We show that

for small fitted probabilities – periods associated with a wider term spread – the bias-corrected

estimate is below the standard estimate; in contrast, for large fitted probabilities – periods asso-

ciated with a compressed term spread – the bias-corrected estimate is comfortably above it. The

direction of the bias correction closely aligns with the impressive forecasting record associated with

the term spread over the last 50 or so years and highlights the benefits of our bootstrap approach.

We find that, as of the first quarter of 2023, the probability of a contraction in real GDP growth

in 2023-2024 is elevated – even after taking the sampling uncertainty into account – and is above

the peaks in the last four cycles.

This paper is organized as follows. In Section 2 we summarize key properties of maturity-ordered

assets which highlight the pitfalls in committing to a tightly parameterized, finite-dimensional factor

structure to conduct inference. This section also provides additional motivation for a nonparametric

bootstrap procedure based on results in Cochrane and Piazzesi (2005) and associated simulation

experiments. In Section 3 we introduce the nonparametric bootstrap method; we establish its
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asymptotic validity under general assumptions and demonstrate its appealing finite-sample prop-

erties for inference in bond return predictability regressions with external regressors. Section 4

presents results from our empirical applications. In Section 4.1, we revisit regression-based tests

of the expectations hypothesis and use our bootstrap to uncover key statistical features of this

approach. We show how to tailor our bootstrap to applications with generated regressors in Sec-

tion 4.2 and investigate the predictive power of trend inflation as in Cieslak and Povala (2015).

In Section 4.3 we construct bootstrap-based, bias-corrected estimates and confidence intervals for

the probability of contractions in real GDP growth based on the term spread and other aspects

of the term structure of interest rates. Section 5 concludes. Proofs of the main results and data

description are collected in Appendices A and B, respectively. Additional results are presented in

a Supplemental Appendix (hereafter, “SA”).

2 The Need for Robust Inference: A Motivation

As argued in the introduction, when analyzing the term structure of interest rates, it is desirable

to resort to inference methods that exhibit robustness to uncertainty in the factor structure and

time-series properties of the bond data. We deal with both of these problems by deconstructing the

yield curve into primitive objects, characterized by weak cross-sectional and time-series dependence,

that represent the returns on a forward trade. Resampling of these primitive objects and then

reconstructing the forward and yield curves via definitional identities allows us to preserve the

main features of the original data. We illustrate the advantages of this approach in different setups

and contrast its properties to a parametric (model-based) bootstrap as well as standard asymptotic

methods for inference.

2.1 Uncertainty about Cross-Sectional Dependence

We start by highlighting some challenges in characterizing the underlying factor structure of bond

data. Define p
(n)
t as the time t log price of a zero-coupon bond with n periods to maturity which

pays $1 at time t+ n, where t = 1, . . . , T and n = 1, ..., N . The corresponding log yield is denoted

by y
(n)
t and satisfies p

(n)
t = −ny(n)t . The log forward rate corresponding to a one-period investment
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between t+ n− 1 and t+ n , f
(n)
t , is defined as

f
(n)
t ≡ p(n−1)t − p(n)t . (1)

Since p
(1)
t = 0, the one-period rate, y

(1)
t , may equivalently be written as f

(1)
t . Using the recursive

(in n) nature of equation (1) and the definition of yields, we have

p
(n)
t = −

∑n

i=1
f
(i)
t , y

(n)
t =

1

n

∑n

i=1
f
(i)
t . (2)

We observe that p
(n)
t and y

(n)
t are cross-sectional partial sums and partial averages of forward rates,

respectively. These formulas demonstrate that two yields, y
(n)
t and y

(m)
t , have min(m,n) forwards

in common (and the same for prices). This overlap, which arises solely from these term-structure

identities, implies differential behavior in the covariance or correlation matrix of forwards relative

to yields (or prices); in fact, prices, will always show stronger local correlation than forwards across

the same maturities.1

What are the implications of these cross-sectional restrictions for characterizing the true factor

space? To answer this question, it is instructive to contrast these definitional relationships with the

current practice of extracting principal components (PCs) from yields and some stylized facts about

the estimated factor loadings. It is now ubiquitous to estimate the factor structure of the term

structure by applying static principal components analysis to yields across maturities. The top

left plot of Figure 1 presents the factor loadings for yields that are widely documented in the term

structure literature.2 In this particular sample, these first 3 principal components explain almost

100% of the cross-sectional variation of yields with only the first principal component explaining

in excess of 98.6% of the variation. At first glance, this is suggestive of a low-dimensional factor

structure.

Moreover, a similar pattern appears to hold for any asset with a finite maturity structure. In

the top right and bottom left panel we show the associated PC loadings for oil futures and S&P 500

options returns.3 However, in the last panel we show the PC loadings from a panel data set of the

seasonal cycle of global surface temperature. Remarkably again, the loadings are very similar in

1This is true provided forwards are positively correlated across maturities (as is the case in practice).
2These results are based on yield curve data from Gurkaynak et al. (2007) as described in Appendix B. We thank

the authors for sharing these data.
3In Appendix B we provide full details on the data sources in the paper.
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shape to those estimated from maturity-ordered financial assets. This is preliminary evidence that

the high explained variation and the particular shape of PC loadings are reflective of the strong

local correlation (i.e., smooth curve) across these ordered data. We will show that this behavior

can be consistent with a much higher dimensional factor space.

Figure 1. Principal Component Loadings in Financial and Non-Financial Data. This figure presents the
loadings of the first three principal components for bond yields (top left), oil price futures (top right), S&P 500
options returns (bottom left) and global surface temperature (bottom right). For each panel, principal components
analysis is applied to the sample correlation matrix. A full description of the data and data sources is available in
Appendix B.
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An unappealing property of bond yields is that they are very persistent. Recent work by Uhlig

(2009) and Onatski and Wang (2021) argue that extracting principal components from factorless,

nonstationary data results in a spurious inference of a small number of factors that absorb almost all

of the variation in the data. To evade this spurious factor problem, the data should be transformed

to induce stationarity such as using first (time-series) differences, y
(n)
t − y

(n)
t−1, or bond returns.

In fact, this was precisely the approach taken in the seminal work of the literature (Litterman
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and Scheinkman (1991) and Garbade (1996)) on extracting principal components from bond data.

Define the one-period holding return on a bond of maturity n from time t to t+ 1 as

r
(n)
t,t+1 ≡ p

(n−1)
t+1 − p(n)t . (3)

The corresponding excess return is then

rx
(n)
t,t+1 ≡ r

(n)
t,t+1 − y

(1)
t = r

(n)
t,t+1 − r

(1)
t,t+1. (4)

The notation r
(n)
t,t+1 and rx

(n)
t,t+1 signifies that these returns are earned from period t to t + 1. In

the sequel, we will simplify notation to r
(n)
t+1 and rx

(n)
t+1, respectively. Observe that since returns are

defined based on changes in prices, they have two important properties: (i) the (approximate) time

differencing substantially reduces the degree of persistence; (ii) the overlapping nature of prices

relative to forward rates is directly inherited by returns. We can demonstrate the second property

in a straightforward way by defining the return on the following long/short trading strategy: buy

an n-maturity bond and short an (n− 1)-maturity bond (“difference return”)

dr
(n)
t+1 ≡

(
p
(n−1)
t+1 − p(n)t

)
−
(
p
(n−2)
t+1 − p(n−1)t

)
= r

(n)
t+1 − r

(n−1)
t+1 = f

(n)
t − f (n−1)t+1 . (5)

Then, it follows immediately that excess returns are a partial sum (along maturity) of dr
(i)
t+1,

rx
(n)
t+1 =

∑n

i=2
dr

(i)
t+1. (6)

If we stack excess returns and difference returns in the (N−1)×T matricesR andD, respectively,

then equation (6) implies

R = C1D or D = C−11 R, (7)

where C1 is a lower triangular matrix of ones. Thus, difference returns and excess returns are

related by a simple nonsingular transformation.

To illustrate the difficulties in determining the minimal dimension of the term structure, we

use a simplified example from Crump and Gospodinov (2021). The covariance matrix of R is
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VR = C1VDC
′
1, where VD is the covariance matrix of D. For simplicity, assume that VD ∝ IN−1

so that VR = σ2C1C
′
1. Principal components analysis (PCA) is based on the eigendecomposition

of VR. This is a non-factor model with difference returns being the driving primitive process (of

dimension N − 1). However, the factor structure is extracted from excess returns that exhibit

strong cross-sectional dependence due to the overlapping maturities in adjacent excess returns. To

see this, note that by equation (6), excess returns of maturities n1 and n2 will have min(n1, n2)− 1

differenced returns in common.

The factor loadings are the eigenvectors ψj = (ψ1,j , . . . , ψN−1,j)
′ of matrix VR given by

ψh,j =
2√

2N − 1
sin

(
h(2j − 1)π

2N − 1

)
. (8)

for h = 1, . . . , N − 1 and j = 1, . . . , N − 1. Note that the shape of these factor loadings is fully

characterized by only the order of the corresponding eigenvector and the time to maturity. Despite

the simplicity and unrealistic nature of the design, Figure 2 shows that these analytical factor

loadings mimic closely the highly structured polynomial pattern in the PC loadings for excess

returns in the data.4 In this example, the ordered eigenvalues of the VR matrix can be expressed

as

λj =
σ2

2− 2 cos
(
(2j−1)π
2N−1

) , λ1 > λ2 > · · · > λN−1, (9)

which, again, are only a function of time to maturity. Figure 2 shows that the first three eigenvalues

account for more than 93% of the sum of the eigenvalues, (N − 1)N/2.

The key takeaway from this example and the results in Figure 2 is that when VD ∝ IN−1, there

are N − 1 idiosyncratic factors which are driving bond returns. However, the standard outputs

from PCA suggests a much smaller dimension of the factor space. The intuition for this result is

that the overlapping sum that links difference and excess returns, induces strong cross-sectional

correlations which the PCA method interprets as evidence of only a small number of underlying

factors. Crump and Gospodinov (2021) provide further evidence with more realistic setups, but the

same conclusion applies; namely, that pinning down the dimension of the factor space is extremely

4The plots in the left column of Figure 2 use the same yield curve data from Gurkaynak et al. (2007) as the top
left plot in Figure 1 except for excess returns rather than yields. Note that the difference in the shape of the loadings
between Figures 1 and 2 is due to PCA applied to either the sample correlation matrix or the sample covariance
matrix.
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Figure 2. Empirical and Theoretical Principal Component Loadings of Bond Returns. The left column
of this figure presents the first three principal component loadings for excess returns and the associated scree plot
based on an eigendecomposition of the sample covariance matrix using data from Gurkaynak et al. (2007) for the
sample 1972:Q1–2022:Q4. The right column shows the theoretical counterparts based on equations (8) and (9).
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challenging.

However, the nature of the cross-sectional dependence is not the only uncertain characteristic

of the true data-generating process. Estimation and inference is also affected by the time-series

dynamics of the underlying series. We next show how these sources of uncertainty can hinder a

purely parametric approach to inference, whereas our newly proposed bootstrap remains effective.
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2.2 Illustrating Examples

2.2.1 Revisiting the “Tent Shape”

To motivate the need for a nonparametric bootstrap tailored to the term structure of interest rates,

we revisit the work of Cochrane and Piazzesi (2005, 2008). Cochrane and Piazzesi (2005, 2008)

investigate the relation between future one-year holding period returns and the current forward

curve which is characterized by a “tent-shape” pattern in the estimated regression coefficients.

Define f
(n,h)
t ≡ p(n−h)t −p(n)t as the log-forward rate corresponding to a h-period investment between

t + n − h and t + n, and rx
(n,h)
t+h ≡ p

(n−h)
t+h − p(n)t + p

(h)
t as the excess h-period holding return. We

follow Cochrane and Piazzesi (2005) and run monthly predictive regressions of excess 12-month

holding returns of the form

rx
(n,12)
t+12 = α(n) +β

(n)
1 ·y

(12)
t +β

(n)
2 ·f

(24,12)
t +β

(n)
3 ·f

(36,12)
t +β

(n)
4 ·f

(48,12)
t +β

(n)
5 ·f

(60,12)
t +vt, (10)

where n ∈ {24, 36, 48, 60}.

The black solid line in the left column of Figure 3 replicates the tent-shaped estimated regression

coefficients averaged across the four maturities as in Cochrane and Piazzesi (2005) using Fama-Bliss

discount bond data. The black solid line in the right column of the figure replicates the R2 for each

of the four regressions. A candidate resampling procedure should mimic these patterns that are

observed in the data. The multi-colored lines in the top row of Figure 3 represent the same estimated

quantities but from individual bootstrap replications based on the nonparametric bootstrap that

we formally introduce in the next section. In the top left chart we can see that the bootstrapped

estimates follow a similar contour as the original tent shape. Similarly, in the top right chart we

observe that the pattern of R2 is also similar showing a distinct kink at the 4-year maturity. It

is important to emphasize that the nonparametric bootstrap does not take a stand on the factor

structure or the exact time-series dynamics of the data. Despite this, these features in the data,

based on estimates of equation (10), are preserved in the bootstrapped samples.

As a comparison we also implement the parametric bootstrap of Bauer and Hamilton (2018)

which produces resampled yields based on an affine factor model using factors, estimated by princi-

pal components, that are assumed to follow a VAR(1). In the middle row we show the bootstrapped

regression coefficients and R2 based on a choice of 3 factors as originally proposed in Bauer and
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Hamilton (2018). In contrast to the nonparametric bootstrap, the parametric alternative fails to

capture the pronounced tent shape in the data. Moreover, the parametric bootstrap also misses

key features of the regression R2 and appears to be downward biased. As illustrated in the bottom

row of Figure 3, saturating the factor space by shifting to 5 principal components cannot rectify

these problems. Instead, the charts in the middle and bottom row are very similar. This is sugges-

tive evidence that the parametric restriction on the time-series dynamics can also be an important

source of misspecification.

2.2.2 Preliminary Simulation Evidence

We further investigate the properties of these bootstrapped methods using simulated data. Al-

though the results shown thus far imply that we should be uneasy making strong parametric

assumptions in the context of the yield curve, we will use these varied parametric-based Monte

Carlo experiments to generate data and highlight the robustness of our bootstrap. Specifically,

we will consider three different simulation designs. Informed by the application above, the factor

structure of the term structure can be characterized by individual forward rates. We have,

Ft = af + Bfgt + et, (11)

where Ft = (y
(12)
t , f

(24,12)
t , f

(36,12)
t , . . . , f

(108,12)
t , f

(120,12)
t )′, gt denotes a subset of forward rates that

are assumed to follow a Gaussian vector autoregression (VAR), af and Bf are affine parameters,

and et are independent (over time) Gaussian measurement error with a reduced-rank variance

matrix.5 Based on the simulated forwards, Ft, we can then construct simulated yields and returns

(using equations (2), (3), and (4)), run regressions of the form

rx
(n,12)
t+12 = α(n) + β(n)′gt + vt, (12)

and conduct inference on the elements of β(n). All our results are based on 1,000 simulations with

a sample size T = 600. The values of the true parameters, β(n), can be obtained analytically and

are given in Section 3.3. For power, we consider tests of H0 : β
(n)
i = 0, where β

(n)
i is the ith element

of β(n). We omit results for the constant term as it is not generally a parameter of interest in these

5All necessary parameters are calibrated using system OLS estimates based on Gurkaynak et al. (2007) data over
the sample period 1972:m1–2022:m12.
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Table 1. Simulations (VAR(1) Specification, 3 Forward Factors) This table presents empirical size and
power for the nonparametric and parametric bootstrap methods described in the main text. The nominal level is
10% and the sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t) = (y

(12)
t , f

(60,12)
t , f

(120,12)
t ). Based on 1,000 simulations and 399 bootstrap replications per simulation.

Nonparametric Bootstrap
Size Power

Maturity g1t g2t g3t g1t g2t g3t
2y 0.112 0.093 0.076 0.255 0.214 0.076
3y 0.099 0.110 0.082 0.415 0.335 0.090
4y 0.097 0.107 0.082 0.544 0.398 0.106
5y 0.102 0.102 0.090 0.617 0.419 0.110
6y 0.105 0.106 0.096 0.659 0.405 0.096
7y 0.107 0.103 0.102 0.687 0.368 0.096
8y 0.111 0.101 0.103 0.689 0.312 0.101
9y 0.113 0.098 0.102 0.683 0.258 0.134
10y 0.111 0.095 0.100 0.673 0.201 0.173

Parametric Bootstrap
Size Power

Maturity g1t g2t g3t g1t g2t g3t
2y 0.055 0.033 0.031 0.253 0.161 0.017
3y 0.054 0.035 0.023 0.416 0.240 0.033
4y 0.051 0.028 0.005 0.530 0.319 0.028
5y 0.041 0.025 0.002 0.599 0.336 0.018
6y 0.040 0.016 0.001 0.638 0.330 0.001
7y 0.044 0.011 0.000 0.649 0.291 0.000
8y 0.042 0.008 0.000 0.648 0.232 0.000
9y 0.043 0.013 0.000 0.641 0.172 0.000
10y 0.043 0.010 0.000 0.632 0.094 0.000

applications.

In Tables 1 and 2, we report both the empirical size and power of tests based on our nonpara-

metric bootstrap and the parametric approach exactly as detailed in Bauer and Hamilton (2018).

For both bootstrap methods, we use B = 399 bootstrap replications. We also investigate the

empirical size based on commonly-used heteroskedasticity and autocorrelation consistent/robust

(HAC/HAR) variance estimators (Newey and West (1987) and Lazarus et al. (2018)) which rely

on asymptotic approximations to conduct feasible inference. We relegate these results to the SA as

they fail to control size uniformly across all of our simulation designs.

For the first specification, we choose gt = (y
(12)
t , f

(60,12)
t , f

(120,12)
t )′ and assume that gt follows a

VAR(1) with parameters calibrated from the data. This setup aligns closely with the parametric

structure in Bauer and Hamilton (2018). Table 1 presents the results for this design. The empirical

size for our nonparametric bootstrap is very close to the nominal size (10%) uniformly across

maturities and for all three factors.6 It is important to note that the nonparametric bootstrap is

6In the main text and SA, we report results for a nominal size of 10%. Results for a nominal size of 5% are
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Table 2. Simulations (VAR(1) Specification, 5 Forward Factors) This table presents empirical size and
power for the nonparametric and parametric bootstrap methods described in the main text. The nominal level is
10% and the sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t, g4t, g5t) = (y

(12)
t , f

(36,12)
t , f

(60,12)
t , f

(84,12)
t , f

(120,12)
t ). Based on 1,000 simulations and 399 bootstrap

replications per simulation.

Nonparametric Bootstrap
Size Power

Maturity g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t
2y 0.097 0.081 0.099 0.089 0.093 0.353 0.511 0.560 0.570 0.488
3y 0.091 0.086 0.095 0.092 0.091 0.392 0.428 0.468 0.524 0.474
4y 0.086 0.087 0.102 0.092 0.091 0.384 0.352 0.400 0.494 0.483
5y 0.087 0.089 0.105 0.087 0.096 0.378 0.306 0.367 0.500 0.513
6y 0.093 0.089 0.108 0.091 0.104 0.380 0.288 0.359 0.515 0.535
7y 0.101 0.096 0.107 0.096 0.106 0.380 0.285 0.371 0.540 0.544
8y 0.101 0.100 0.107 0.095 0.100 0.392 0.284 0.388 0.549 0.546
9y 0.108 0.100 0.106 0.099 0.103 0.401 0.289 0.400 0.555 0.516
10y 0.111 0.104 0.110 0.098 0.110 0.405 0.292 0.404 0.544 0.478

Parametric Bootstrap
Size Power

Maturity g1t g2t g3t g4t g5t g1t g2t g3t g4t g5t
2y 0.043 0.022 0.016 0.018 0.027 0.023 0.000 0.000 0.000 0.000
3y 0.031 0.009 0.014 0.011 0.022 0.082 0.000 0.000 0.000 0.000
4y 0.024 0.002 0.018 0.009 0.024 0.125 0.000 0.000 0.000 0.000
5y 0.020 0.005 0.013 0.010 0.025 0.125 0.000 0.000 0.000 0.000
6y 0.016 0.006 0.019 0.010 0.018 0.151 0.000 0.000 0.000 0.000
7y 0.017 0.005 0.018 0.009 0.019 0.154 0.000 0.000 0.000 0.000
8y 0.019 0.009 0.011 0.010 0.020 0.147 0.000 0.000 0.000 0.000
9y 0.024 0.014 0.011 0.009 0.019 0.131 0.000 0.000 0.000 0.000
10y 0.023 0.012 0.013 0.010 0.017 0.138 0.000 0.000 0.000 0.000

completely agnostic about how the term structure data are generated. By contrast, the parametric

bootstrap of Bauer and Hamilton (2018) under-rejects relative to the nominal size and for some

maturities this under-rejection is severe. This is despite the fact that both the dimension of the

factor space and the time-series dynamics are correctly specified.

In terms of power, the rejection rates for the nonparametric bootstrap are relatively high for

the first factor and generally decline for the second and third factor. This can be explained by

the relative proximity of the true coefficients of the second and third factor to zero. Given the

under-rejections for the correctly centered test statistic, the power for the parametric bootstrap is

reasonably high for the first factor but meaningfully lower for the other two factors.

For the second design, we increase the number of factors to five by adding f
(36,12)
t and f

(84,12)
t .

This will induce a source of misspecification for the BH bootstrap as its prescription is to utilize

only three principal components of yields. However, this misspecification would not be easily

qualitatively similar and omitted to conserve space. These results are available upon request.
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detected as, averaging across simulations, the percentage of variation in yields explained by the

first three principal components is 97.39%, 2.48%, and 0.12%, respectively. Table 2 presents the

empirical size and power for this specification. Again, our nonparametric bootstrap has excellent

size properties while the parametric bootstrap is undersized for all factors. The power of the

parametric bootstrap is severely compromised by the misspecification due to a strong estimation

bias induced by the incorrect rotation of the factors. Although there is some power to discriminate

the coefficient associated with the first factor from zero, for all other factors, the test fails to reject

across all simulations. The intuition for this result is that, by bootstrapping based on a factor

space of dimension three, the bootstrapped second moments fail to reproduce their population

counterparts.

Another source of misspecification can arise from the time-series dynamics of the factors. In

our third specification, we consider again a three-factor model but now with factors following a

VAR(2). The results follow a very similar pattern as in Table 2 and are presented in the SA (see

Table SA.4).

In summary, it is preferable to avoid committing to a tightly parameterized, finite-dimensional

factor structure as it may result in the omission of important information embedded in the yield

curve. This insight informs our resampling approach.

3 Bootstrap Inference in Bond Return Predictive Regressions

In this section, we introduce our bootstrap procedure and study its theoretical and finite-sample

properties. The motivation for the bootstrap is to improve inference in common empirical settings in

the asset pricing literature such as predictive return regressions to test the expectations hypothesis

or estimate risk premia, or perform robust inference in parametric models of the term structure.

Our resampling procedure can also be used for generating conditional future paths of yields or other

yield-related variables as well as measures of sampling uncertainty around projected paths. This

can be employed, for example, in forecasting, policy analyses, or the computation of option-adjusted

spreads.

Our proposed bootstrap procedure is model-free and remains agnostic about the exact factor

structure in the data and the form of time-series dependence. We resample the primitive objects

dr
(n)
t , augmented with the longest horizon forward rate f

(N)
t . The intuition for our bootstrap
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method can be gleaned from the following identity,

f
(n)
t = f

(n)
t + f

(n+1)
t−1 − f (n+1)

t−1 + · · ·+ f
(N)
t−N+n − f

(N)
t−N+n (13)

= f
(N)
t−N+n + dr

(n+1)
t + dr

(n+2)
t−1 + · · ·+ dr

(N)
t−N+n+1. (14)

In particular, the relation between forwards across time informs the relations between future returns

and the current term structure. Equation (14) implies that if we observe the longest horizon forward

rate,
{
f
(N)
t

}T
t=2

, all difference returns,
{

(dr
(2)
t , . . . , dr

(N)
t )

}T
t=2

, along with an initial forward curve,(
f
(1)
1 , . . . , f

(N)
1

)
, we are able to construct the entire forward curve

{(
f
(1)
t , . . . , f

(N)
t

)}T
t=1

and yield

curve
{(
y
(1)
t , . . . , y

(N)
t

)}T
t=1

.7 Thus, conditional on an initial forward curve, we may jointly re-

sample the N -maturity forward and the difference returns to generate bootstrap samples of the

whole yield curve.8 A key feature of our bootstrap procedure is that we have chosen primitive

objects in such a way that the only persistent primitive object is the longest horizon forward rate

which is confined to a single dimension and is also less persistent than other yields or forwards.

Importantly, reconstructing the yield curve via these identities allows the bootstrap procedure to

mimic the salient features, such as time-series and cross-sectional dependence, of the bond data

that we observe in practice.

A natural question that might arise is why not resample
{(
f
(1)
t , . . . , f

(N)
t

)}T
t=1

directly? Al-

though using forward rates avoids the mechanical cross-sectional dependence discussed in Section

2, the strong time-series dependence is retained across all maturities. Instead, by using difference

returns we can avoid both strong cross-sectional and time-series dependence.

7For t ≤ N + 1, we can obtain forwards by directly relying on the recursive relationship, f
(n)
t = f

(n+1)
t−1 − dr(n+1)

t .
8Observe that by equation (6) we can equivalently think of the bootstrap as resampling

{
(rx

(2)
t , . . . , rx

(N)
t )

}T
t=2

instead of the difference returns,
{

(dr
(2)
t , . . . , dr

(N)
t )

}T
t=2

.
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3.1 Bootstrapping the Yield Curve

Assume that f
(1)
1 , f

(2)
1 , ..., f

(N)
1 are given. Next, we stack f

(N)
t+1 and dr

(n+1)
t+1 , n = 1, ..., N − 1 and

t = 1, ..., T − 1, into the matrix

Z =



f
(N)
2 dr

(2)
2 dr

(3)
2 ... dr

(N)
2

f
(N)
3 dr

(2)
3 dr

(3)
3 ... dr

(N)
3

... ... ... ... ...

f
(N)
t dr

(2)
t dr

(3)
t ... dr

(N)
t

... ... ... ... ...

f
(N)
T dr

(2)
T dr

(3)
T ... dr

(N)
T


.

We impose regularity conditions (stationarity and ergodicity) on the multivariate process zt =

(f
(N)
t , dr

(2)
t , ..., dr

(N)
t )′ that would guarantee validity of the block bootstrap. The bootstrap samples

{z∗t } for t = 2, ..., T are then obtained by drawing with replacement blocks of M = MT ∈ Z+ (1 ≤

M < T ) rows (time-series dimension) from the matrix Z, jointly for all cross-sectional observations.

This resampling structure allows for unknown forms of (possibly strong) cross-sectional dependence.

Importantly, while the bootstrap can capture and preserve a strong common factor structure in

the data, it remains agnostic about the precise source of cross-sectional dependence. It also deals

with general forms of serial correlation provided that the time-series dependence is of mixing type.

Furthermore, since the bootstrap is model-free, it is robust to possible model misspecification.

Let zt be the t-th row of the data matrix Z above. Also, let Zt,M = (zt, zt+1, ..., zt+M−1) denote

a block of M consecutive observations of zt, k = [T/M ], where [a] signifies the largest integer that

is less than or equal to a, and T = kM . We resample with replacement k blocks from (Z1,M , Z2,M ,

..., ZT−M+1,M ) by drawing k iid uniform random variables [u1], ..., [uk] on (1, k + 1). Then, the

bootstrap sample is given by Z∗ = [(z∗1 , z
∗
2 , ..., z

∗
M ), (z∗M+1, z

∗
M+2, ..., z

∗
2M ), ..., (z∗

T−M , z
∗
T−M+1

,

..., z∗
T

)] = (Z[u1],M , Z[u2],M , ..., Z[uk],M ). To induce stationarity in the bootstrap world, we use

the circular block bootstrap that “wraps” the data (Politis and Romano (1994)). This is intended

to rectify the heterogeneous nature of the distribution of z∗t . For a given block size M , we then

construct the blocks {Zt,M}T/Mt=1 .

Given the bootstrap sample {f (N)∗
t , dr

(2)∗
t , ..., dr

(N)∗
t } and the initial forward curve,9 the boot-

9In all numerical results we initialize the forward curve with the first sample observation. However, there may
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strap forward rates with maturities 1 to N − 1 periods are constructed for t = 1, ..., T − 1 as

f
(N−1)∗
t+1 = f

(N)∗
t − dr(N)∗

t+1 (15)

f
(N−2)∗
t+1 = f

(N−1)∗
t − dr(N−1)∗t+1 (16)

...

f
(1)∗
t+1 = f

(2)∗
t − dr(2)∗t+1 . (17)

Finally, the bootstrap returns and yields are obtained, respectively, as rx
(n)∗
t =

∑n
i=2 dr

(i)∗
t and

y
(n)∗
t = 1

n

∑n
i=1 f

(i)∗
t for n = 1, ..., N and t = 2, ..., T .10

Because the resampled Z∗ could be used for simulating the entire yield curve, it is desirable to

establish first that the bootstrap approximates accurately the key moments of the true distribution.

Given the panel structure of the data, the conditions for bootstrap validity follow closely those in

Goncalves and White (2002) and Goncalves (2011). These conditions are collected in Assumption

A1 in Appendix A.1. Since in term structure data the cross-sectional dimension N is generally a

nontrivial fraction of the sample size T , it is convenient to allow N to be a function of T (see also

Valkanov (1998) for a similar parameterization). Moreover, this informs our choice of M which is

guided by a simple rule-of-thumb setting M = (TN)2/5.

In what follows, P ∗ denotes the probability measure induced by the bootstrap resampling,

conditional on the data. Also, for a sequence of bootstrap statistics Z∗NT , Z∗NT
P ∗→ 0 in probability

signifies that for any ε > 0, δ > 0, limN,T→∞ P [P ∗(|Z∗NT | > δ) > ε] = 0. Finally, let VNT =

1
NT

∑N
n=1

∑T
t=1E[(znt − E(znt))(znt − E(znt))

′].

Lemma 1. Under Assumption A1, (a) 1
NT

∑N
n=1

∑T
t=1(z

∗
nt − znt)

P ∗→ 0 in probability, and (b)

limN,T→∞ P [P ∗(|V̂ ∗NT − VNT | > δ) > ε] = 0 for any ε > 0, δ > 0.

The result in Lemma 1 is to demonstrate that the proposed model-free bootstrap approximates

well the first two moments of the true distribution of the data. This is useful when bootstrapping

the unconditional distribution of the entire yield curve.

be circumstances where it is desirable to conduct inference conditional on a different initial condition. Our results
accommodate such a case.

10Since f
(N)
t is typically a persistent process, we discuss below the option of prewhitening f

(N)
t (and any other

persistent variables) via an approximate AR(1) or VAR(1) model. See Remark 3 below.
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To visualize how well our resampling procedure mimics the actual dynamics of various yield

curve-based variables, Figure 4 plots a typical bootstrap realization against the observed data. It

is reassuring to see that not only are the time-series dynamics of all these variables quite reason-

able, but also that the bootstrap preserves and replicates the cross-sectional dependence across

maturities.11

Remark 1. In some cases, data sets of bond prices do not have a short-rate (n = 1) available or

begin at some maturity n0 where n0 > 2. For example, the German Bund yield curve published

by the Bundesbank does not have a short-rate directly available (see Speck (2021) for further

discussion). Alternatively, depending on the application at hand, it might be desirable to only

resample a specific segment of the maturity spectrum. In this case, we can straightforwardly

modify the recursive relationships in equations (15)–(17) for this setting. In particular, we can

simply replace the terminal recursion in equation (17) by

f
(n0)∗
t+1 = f

(n0+1)∗
t − dr(n0+1)∗

t+1 ,

and generate bootstrap samples for
{(
y
(n0)
t , y

(n0+1)
t , . . . , y

(N)
t

)}T
t=1

. �

Remark 2. Some data sets of bond prices do not include a sequence of adjacent maturities up to N .

The most prominent example is the Fama-Bliss discount bond data, used in Section 2.2, which are

available at monthly frequency in the time series but only annual data in the cross-sectional dimen-

sion. In this case, we can follow a similar design to the procedure described above. When the data

are monthly observations with annual maturities, we observe
{(
p
(12)
t , p

(24)
t , p

(36)
t , p

(48)
t , p

(60)
t

)}T
t=1

.

Then, the analog of f
(N)
t in this setting is

z1t =
(
p
(48)
t − p(60)t

)
.

Similarly, the analog to the difference returns in this setting is

z2t = p
(36)
t − p(48)t −

(
p
(48)
t−1 − p

(60)
t−1

)
z3t = p

(24)
t − p(36)t −

(
p
(36)
t−1 − p

(48)
t−1

)
11Our bootstrap can be further modified by adjusting for yield level dependence of volatility (see Rebonato and

Zanetti (2023)) but we do not pursue this possibility further in this paper.
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z4t = p
(12)
t − p(24)t −

(
p
(24)
t−1 − p

(36)
t−1

)
z5t = p

(0)
t − p

(12)
t −

(
p
(12)
t−1 − p

(24)
t−1

)
= −p(12)t −

(
p
(12)
t−1 − p

(24)
t−1

)
.

We can bootstrap (z1t, z2t, . . . , z5t)
′, conditional on the first observation, to obtain {(z∗1t, z∗2t, . . . , z∗5t)}

T
t=2

recursively, e.g.,

p
(36)∗
2 − p(48)∗2 = z∗22 +

(
p
(48)
1 − p(60)1

)
,

and so on. �

3.2 Predictive Regression Inference

In addition to simulating the yield curve, we are often interested in testing hypotheses related to

the term structure of interest rates: testing the expectations hypothesis, running predictive return

regressions to estimate or study risk premia, etc. For example, suppose that interest lies in a

predictive regression of an individual excess return, rx
(n,h)
t+h on a k-vector of predictors xt, where

the predictor vector xt is partitioned as xt = (g′t, w
′
t)
′ with gt denoting yield-based predictors and

wt being macro or other financial predictors. More explicitly, we focus on inference in the following

predictive regression model

rx
(n,h)
t+h = α(n) + β(n)′xt + ε

(n)
t+h (18)

= α(n) + β
(n)′
1 gt + β

(n)′
2 wt + ε

(n)
t+h, (19)

where ε
(n)
t+h denote predictive regression errors. Following Cochrane and Piazzesi (2005), we also

consider a cross-sectional average of bond returns, rxt+h = 1
#Ns

∑
n∈Ns rx

(n,h)
t+h , Ns ⊆ {2, . . . , N},

by replacing rx
(n,h)
t+h with rxt+h in the above model.

The vector of yield-based predictors may include a long-maturity interest rate or forward rate,

the spread between a long-maturity and short maturity yield or forward (e.g., Fama and Bliss

(1987), Campbell and Shiller (1991)), a linear combination of yields (e.g., Joslin et al. (2011)) or

forwards (e.g., Cochrane and Piazzesi (2005, 2008)).

We augment the matrix Z with wt and denote the new matrix by Z̃ so that its t-th row is given

by z̃t = (f
(N)
t , dr

(2)
t , ..., dr

(N)
t , w′t)

′. This matrix is resampled using a moving block bootstrap

19



as described above to obtain Z̃∗. The bootstrap sample {f (N)∗
t , dr

(2)∗
t , ..., dr

(N)∗
t } is used for

reconstructing forwards f
(n)∗
t , yields y

(n)∗
t and bond returns rx

(n)∗
t and rx

(n,h)∗
t . The bootstrap

yield-based predictors g∗t are formed from the resampled y
(n)∗
t which guarantees that all yield curve

identities between variables hold in each bootstrapped sample. This internal consistency is vital to

ensure that bootstrap-based estimation and inference can successfully approximate the stochastic

behavior of the particular object of interest in each application.

The bootstrapped external predictors W ∗ are the last columns of Z̃∗, constructed as W ∗ = [(w∗1,

w∗2, ..., w
∗
M ), (w∗M+1, w

∗
M+2, ..., w

∗
2M ), ..., (w∗

T−M , w
∗
T−M+1

, ..., w∗
T

)]. The bootstrap OLS estimator

in the predictive regression is given by

β̂(n)∗ =

(
T−h∑
t=1

(x∗t − x̄∗)(x∗t − x̄∗)′
)−1(T−h∑

t=1

(x∗t − x̄∗)(rx
(n,h)∗
t+h − rx(n,h)∗t+h )′

)
,

where x̄∗ = (T − h)−1
∑T−h

t=1 x∗t and rx
(n,h)∗
t+h = (T − h)−1

∑T−h
t=1 rx

(n,h)∗
t+h .

To show that the quantiles of the bootstrap distribution of
√
T (β̂(n)∗−β̂(n)) approximate well, in

some metric, the quantiles of
√
T (β̂(n)−β(n)), we need to strengthen Assumption A1 and expand it

to include ε
(n)
t+h and xt. This is done in Assumption A2 in Appendix A.1. Furthermore, Assumption

A3 in Appendix A.1 provides sufficient conditions for HAC estimation of the variance matrices of

β̂(n) and β̂(n)∗: Ω̂T and Ω̂∗T , respectively. More specifically, Ω̂T = Â−1T B̂T Â
−1
T , where Â−1T =

T−1
∑T−h

t=1 (xt− x̄)(xt− x̄)′ and B̂T is the HAC estimator of the variance matrix of (xt− x̄)ε̂
(n)
t+h (see

the Appendix). The bootstrap analog Ω̂∗T = Â∗−1T B̂∗T Â
∗−1
T is obtained by using the bootstrapped

predictors x∗t and residuals ε̂
(n)∗
t+h in these expressions. With this notation, define the t-statistics

t̂i = (β̂
(n)
i − β(n)i )/se(β̂

(n)
i ), where se(β̂(n)) =

√
diag(Ω̂T ), and t∗i = (β̂

(n)∗
i − β̂(n)i )/se(β̂∗i ), where

se(β̂(n)∗) =
√

diag(Ω̂∗T ). The next theorem establishes the validity of the bootstrap method.

Theorem 1. Under Assumptions A1, A2, and A3, we have that for any ε > 0,

P

(
sup
x∈Rk

∣∣∣P ∗ (√T (β̂(n)∗ − β̂(n)) ≤ x
)
− P

(√
T (β̂(n) − β(n)) ≤ x

)∣∣∣ > ε

)
→ 0

where ≤ applies to each component of the relevant vector and

P

(
sup
x∈R

∣∣P ∗ (t∗i ≤ x)− P
(
t̂i ≤ x

)∣∣ > ε

)
→ 0
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for i = 1, . . . , k.

Proof. See Appendix A.

The result in Theorem 1 allows the construction of bootstrap confidence intervals for β
(n)
i with

asymptotically correct coverage probabilities. We construct 100(1 − α)% confidence intervals for

β
(n)
i using the symmetric percentile-t method, based on B bootstrap replications, defined as

Cα(β
(n)
i ) =

[
β̂
(n)
i − se(β̂(n)i )q∗t (1− α) , β̂

(n)
i + se(β̂

(n)
i )q∗t (1− α)

]
,

where q∗t (1− α) denotes the (1 − α)-th quantile of the bootstrap distribution of t∗i . The p-values

for the symmetric percentile-t bootstrap method, that we report in the empirical section below, are

obtained as

p∗|ti| =
1

B

B∑
j=1

I
{
|t∗i,j | > |t̂i|

}
, (20)

where I {·} denotes the indicator function and t∗i,j is t∗i for the jth bootstrapped sample.

Remark 3. While the long forwards tend to exhibit less persistence than the short rates, f
(N)
t

can still be very persistent depending on the frequency of the data and the time period. Similarly,

some external predictors may also exhibit strong serial correlation. At the very least, it may be

convenient to transform the data in such a way that all variables in the matrix Z̃ are characterized

by similar degree of time-series dependence. In this case, we “pre-whiten” jointly the processes f
(N)
t

and wt using a VAR(1) model (or an AR(1) for f
(N)
t when there are no additional variables, wt) for

approximating their dynamics and perform the block bootstrap on the residuals from this model (see

Remark 7). This is a version of the hybrid bootstrap of Davison and Hinkley (1997) and Niebuhr

et al. (2017) which combines the autoregressive and nonparametric block bootstrap approaches.

It is important to underscore that the AR(1) or VAR(1) models are likely to be misspecified and

they are intended to only weaken the underlying persistence so that any remaining time-series

dependence is handled by the block bootstrap resampling. To outline the main steps in this hybrid

bootstrap, let f̃
(N)
t and w̃t denote the pre-whitened processes that are the residuals from fitting

a joint VAR(1) model of f
(N)
t and wt with projection coefficient matrix Ψ̂.12 These pre-whitened

12In all empirical applications and simulation experiments we use the bootstrap bias correction as suggested by
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processes are used in the matrix Z̃ which is resampled by the block bootstrap to obtain their

bootstrap versions f̃
(N)∗
t and w̃∗t . The bootstrap series f̃

(N)∗
t and w̃∗t are in turn used to construct

(“re-whiten”) the original predictors recursively as

f (N)∗
t

w∗t

 = µ̂+ Ψ̂

f (N)∗
t−1

w∗t−1

+

f̃ (N)∗
t−1

w̃∗t−1

 (21)

for t = 2, ..., T , f
(N)∗
1 = f

(N)
1 and w∗1 = w1. We then proceed as above. Note that the regularity

conditions in Assumptions A1 and A2 in Appendix A.1 need to be strengthened to ensure the

validity of this hybrid bootstrap procedure. For details, see Niebuhr et al. (2017). �

Remark 4. The h-period predictive setup in our paper implies a particular (quasi-overlapping)

structure for the regression errors which is known to be poorly approximated by the standard HAC

estimators. A possible alternative is to utilize larger-than-usual bandwidth/truncation parameter

in the HAC estimation in an effort to reduce the size distortions of the off-the-shelf HAC variance

estimators (Lazarus et al. (2018)). Our setting appears to feature too much time-series persistence

for the effectiveness of such an approach. Another possibility is to resort to the percentile boot-

strap method which does not require an estimate of the variance matrix. Instead, we rely on the

moving block bootstrap to correct the size distortions induced by the HAC estimator. For example,

Goncalves and Vogelsang (2011) show that this “naive” block bootstrap achieves the same first-

order accuracy as the fixed-b asymptotic distribution (Kiefer and Vogelsang (2005)) of the original

statistic. Having said that, we acknowledge that the complex serial correlation structure of the

errors and the potential high persistence of the predictors call for a careful approach to choosing

kernel shape and truncation parameters in this setup. �

Remark 5. While some yield-based predictors (yields, forwards, spreads) are possibly persistent

processes, they are generated via identities of the primitive objects that we bootstrap.13 As a result,

the persistence of these predictors arises naturally from the maturity relationships embedded in

the term structure of interest rates. Thus, the bootstrap is expected to approximate well the

Kilian (1998). Similar bootstrap-based bias correction has been utilized in the context of term structure applications
before. See for example, Bauer et al. (2012) and Bauer et al. (2014).

13Recall that the dependent variable rx
(n,h)
t+h and the predictors gt are both obtained from the same underlying

data, y
(n)
t for n = 1, ..., N . However, conventional resampling of rx

(n,h)
t+h and gt within a regression framework would

violate the definitional relationships described in Section 2.
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finite-sample distribution of the estimates corresponding to these persistent predictors although

alternative representations (such as lag-augmentation; see, for example, Olea and Plagborg-Møller

(2021)) may further insulate the inference method from the persistent properties of the predictors.

�

Remark 6. The coverage rates of the bootstrap can be further improved by an equal-tailed double

bootstrap. Suppose the first-stage bootstrap uses B1 bootstrap replications and for a given β
(n)
i (i =

1, ..., k), let C∗λi(β
(n)
i ) =

[
β̂
(n)∗
i,(1−λi), β̂

(n)∗
i,(λi)

]
for some 1/2 < λi < 1, where β̂

(n)∗
i,(λ) is the λth percentile

of the bootstrap distribution of β̂
(n)
i . For each first-stage bootstrap replication j (j = 1, ..., B1) and

using the same resampling procedure, generate a vector of B2 estimates β̂
(n)∗∗
i,j = (β̂

(n)∗∗
i,j,1 , ..., β̂

(n)∗∗
i,j,B2

)

and construct the corresponding interval C∗∗λi,j(β
(n)
i ) =

[
β̂
(n)∗∗
i,j,(1−λi), β̂

(n)∗∗
i,j,(λi)

]
. Then, solve for

λ̂i = arg minλi
1

B1

B1∑
j=1

I
{
β̂
(n)
i ∈ C∗∗λi,j(β

(n)
i )
}
> 1− α.

The adjusted double bootstrap confidence interval is then constructed as C∗
λ̂i

(β
(n)
i ) =

[
β̂
(n)∗
i,(1−λ̂i)

, β̂
(n)∗
i,λ̂i

]
(see McCarthy et al. (2018)). This is repeated for all β

(n)
i (i = 1, ..., k). �

The advantages of our proposed bootstrap method can be better appreciated by pointing out

some of the empirical regularities of bond prices (and their transformations) that make mimicking

the original data so challenging. First, there is high time-series and cross-sectional persistence

in yields. While transformations of bond yields, such as bond returns, remove the strong serial

correlation in the yield data, they are still strongly cross-sectionally correlated.

A bigger challenge, in our view, for statistically modeling and bootstrapping yields directly

is their extreme cross-sectional dependence. Part of this dependence is mechanistic (arising from

telescoping sums and averages of primitive processes) but so strong that it could overwhelm and

obscure the relevant information in the primitive objects. Instead, our bootstrap procedure operates

on the primitive objects and then recovers the time-series and cross-sectional characteristics of the

original data. The consequences of this strong cross-sectional dependence in yields and bond

returns are illustrated analytically in Crump and Gospodinov (2021). Crump and Gospodinov

(2021) also argue that characterizing the true factor space in the term structure of interest rates

is quite challenging and committing to a low-dimensional parametric structure can result in large

hedging and portfolio allocation errors. In contrast, our resampling method retains the underlying
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factor structure in the primitive processes and reconstructs the entire yield curve in a model-free,

identity-preserving fashion.

Finally, as argued above, bond returns exhibit substantial predictability using past yield and

forward rate information. A standard model-based bootstrap procedure faces a number of difficul-

ties in bootstrapping data in an internally consistent fashion that will replicate this predictability

as well as the other time-series and cross-sectional properties of the yield data. Our proposed

bootstrap method provides this internal consistency in mimicking the salient properties of the data

by accommodating unknown forms of factor structure, time-series persistence and cross-sectional

dependence.

3.3 Further Simulation Evidence

In this section, we provide further simulation evidence based on return predictability regressions

featuring yield-based factors and external predictors as in equation (19). We use the same maturities

(1-year to 10-year) as in Section 2.2.2 and h = 12. We assume that the yield-based factors follow

a Gaussian VAR(1),

gt = µg + Ψggt−1 + νg,t, t = 1, . . . , T. (22)

We choose gt to be the one-year, 5-year and 10-year bond yields and calibrate the necessary pa-

rameters using system OLS estimates based on GSW data over the sample 1972:m1–2022:m12.

The external predictors also follow a Gaussian VAR(1),

wt = µw + Ψwwt−1 + νw,t, t = 1, . . . , T. (23)

Thus, we have that the true coefficients associated with the variables wt, β
(n)
2 , are identically zero.

The true value of the coefficients associated with gt is

β
(n)
1 = C1

(
Ξ1B

f − Ξ2B
f
h−1∑
i=0

Ψh
gµg

)
, (24)

where Ξ1 and Ξ2 can be obtained as the conformable identity matrix with the first row removed

and last row removed, respectively. As before, C1 is a conformable lower triangular matrix of ones.
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We choose two standard macroeconomic predictors: the 3-month percentage change in core

CPI inflation and the 3-month percentage change in industrial production.14 We then calibrate

the necessary parameters for the VAR(1) model using system OLS estimates over the same sample

period as for yields. We estimate the joint variance matrix of the innovations to the yield factors

and the external predictors to replicate correlations observed in the data. Note that these predictors

are quite persistent with the maximum eigenvalue of the autoregressive matrix equal to 0.93.

We generate 1, 000 replications for a sample size of T = 600. We report empirical size for the

null hypothesis that each element in β
(n)
2 is equal to zero along with the (infeasible) empirical size

for the three coefficients in β
(n)
1 .

Our proposed bootstrap method is implemented as described in Section 3 in a fully nonpara-

metric and data-driven way by block resampling the matrix Z and then reconstructing the yield

curve
{
y
(n)∗
t

}
for t = 1, ..., T and n = 1, ..., N . We pre-whiten f

(N)
t and wt jointly using a VAR(1)

specification. We use the symmetric percentile-t bootstrap method to conduct inference based on

Newey-West standard errors with lag length of h. Specifically, we use the resampled data to con-

struct bootstrapped t-statistics for the coefficients of interest and construct p-values as discussed

in Section 3 (equation (20)). We use the “rule of thumb” choice for the block size, M .

We compare the results using our bootstrap to the parametric bootstrap of Bauer and Hamilton

(2018). We follow their implementation exactly. We use the first three principal components of

yields along with system OLS estimates to generate bootstrap samples. The external predictors

are bootstrapped under the null hypothesis of no return predictability. Note that this method is

parametric in nature as it exploits the factor structure in yields, the specific parametric form of

the dynamics, and proceeds under the null which holds in our design. In contrast, we emphasize

that our resampling procedure is agnostic about how the simulated data were generated; we remain

fully nonparametric. For both bootstrap methods, we use B = 399.

Table 3 presents results for inference on the coefficients β
(n)
1 and β

(n)
2 . We first discuss the

properties of the different inference procedures for the coefficients associated with the yield pre-

dictors. Our method controls size very well across maturities and the three different predictors.

The parametric bootstrap, on the other hand, appears to be much more conservative with empir-

ical size comfortably below the nominal size of 10%. For the external predictors, both methods

work very well with empirical size very close to nominal size across maturities. We emphasize

14FRED mnemonics: CPILFESL and INDPRO, respectively.
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Table 3. Simulations (VAR(1) Specification, 3 Yield Factors & 2 External Predictors) This table
presents empirical size and power for the nonparametric and parametric bootstrap methods described in the main
text. The nominal level is 10% and the sample size is T = 600. Each column reports results for the t-test associated
with the regressor (g1t, g2t, g3t) = (y

(12)
t , y

(60)
t , y

(120)
t ). For the bivariate external regressors, wt, only empirical size is

reported. Based on 1,000 simulations and 399 bootstrap replications per simulation.

Nonparametric Bootstrap
Size Power

Maturity g1t g2t g3t w1t w2t g1t g2t g3t
2y 0.088 0.073 0.068 0.085 0.089 0.137 0.065 0.141
3y 0.087 0.082 0.067 0.089 0.094 0.199 0.065 0.116
4y 0.079 0.079 0.065 0.092 0.097 0.232 0.071 0.118
5y 0.081 0.083 0.066 0.089 0.097 0.238 0.066 0.151
6y 0.087 0.083 0.069 0.080 0.098 0.238 0.067 0.206
7y 0.092 0.083 0.070 0.080 0.099 0.225 0.085 0.267
8y 0.094 0.083 0.068 0.085 0.102 0.209 0.110 0.339
9y 0.098 0.084 0.076 0.085 0.100 0.189 0.130 0.405
10y 0.097 0.084 0.076 0.089 0.105 0.165 0.151 0.478

Parametric Bootstrap
Size Power

Maturity g1t g2t g3t w1t w2t g1t g2t g3t
2y 0.016 0.029 0.030 0.110 0.093 0.065 0.018 0.085
3y 0.014 0.033 0.031 0.102 0.096 0.119 0.020 0.056
4y 0.014 0.030 0.029 0.106 0.101 0.151 0.020 0.067
5y 0.012 0.028 0.028 0.105 0.107 0.171 0.018 0.107
6y 0.015 0.027 0.022 0.107 0.112 0.166 0.014 0.194
7y 0.014 0.022 0.023 0.108 0.110 0.144 0.023 0.256
8y 0.018 0.020 0.020 0.110 0.110 0.126 0.037 0.351
9y 0.018 0.018 0.025 0.106 0.110 0.106 0.069 0.445
10y 0.018 0.016 0.025 0.110 0.114 0.087 0.116 0.513

that the overlapping nature of these returns (for h > 1) produces strong serial correlation in the

left-hand side variable.15 With predictors which are also persistent, minimizing size distortion be-

comes increasingly difficult. Despite this challenging predictive regression design, both bootstrap

procedures appear to provide a very accurate approximation to the finite-sample distribution of

the t-statistics associated with β
(n)
2 . In Section SA-1 of the SA we report the corresponding results

based on HAC/HAR estimators which rely on asymptotic approximations to the distribution of

the test statistic. These methods uniformly fail to control empirical size, especially for the external

predictors.

Since the true value of β
(n)
2 is zero, we only report power for the yield predictors. In this design,

discriminating the null hypothesis is challenging as it depends on the relative proximity of the true

coefficients, that are calibrated to the actual data, to zero. That said, despite the relatively low

power, the nonparametric bootstrap generally outperforms the parametric bootstrap.

15For a heuristic example, note that an h-period moving average of a white noise process has first-order autocor-
relation coefficient of h−1

h
.
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4 Empirical Analyses

In this section, we introduce three empirical applications which highlight the versatility of our

proposed bootstrap procedure. We first revisit regression-based tests of the expectations hypothesis

and use our bootstrap to better understand the sampling properties of the corresponding estimators.

We next investigate the predictive properties of trend inflation for future bond returns based on the

work of Cieslak and Povala (2015). Finally, we construct bias-corrected estimates and confidence

intervals for the probability of a future recession, based on information in the current yield curve.

4.1 Regression-Based Tests of the Expectations Hypothesis

Our methodological approach, which favors difference returns as the primitive object in a nonpara-

metric bootstrap procedure, can be used to revisit existing analyses of the term structure of interest

rates. Here, we investigate the properties of regression-based tests of the expectations hypothesis

and introduce a new, alternative specification which is better suited to the realized properties of

bond prices. Furthermore, because our bootstrap is not model specific, we can directly compare

the statistical properties of the different specifications that have been used in the literature.

Our focus on difference returns as a primitive object allows us to unify and generalize the various

regression-based tests of the expectations hypothesis (Fama and Bliss (1987), Campbell and Shiller

(1991)). By the definition of forward rates and h-period returns, we have that

f
(n−m)
t+m = f

(n)
t −

(
rx

(n,m)
t+m − rx

(n−1,m)
t+m

)
(25)

so that, under rational expectations, a regression-based implementation of a test of the expectations

hypothesis can be based on the specification

f
(n−m)
t+m = α+ β · f (n)t + ε

(n,m)
t+m . (26)

Following Fama and Bliss (1987), under the null hypothesis that β = 1, we can subtract the

contemporaneous short rate from either side to obtain,

f
(n−m)
t+m − y(1)t = α+ β ·

(
f
(n)
t − y(1)t

)
+ ε

(n,m)
t+m . (27)
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We refer to this regression-based test of the expectations hypothesis as the CG test. Equation

(27) forms the basis for all existing tests of the expectations hypothesis; specifically, under the

null hypothesis, any existing test can be obtained through linear combinations of equation (27) for

different n and m. To see this, note first that the test of Fama and Bliss (1987), denoted by FB,

is implemented exactly as in equation (27) in the special case where m = n− 1, i.e.,

y
(1)
t+n−1 − y

(1)
t = α+ β ·

(
f
(n)
t − y(1)t

)
+ ε

(n,n−1)
t+n−1 . (28)

Furthermore, a time-series average of equation (28) gives

1

n

n∑
s=1

y
(1)
t+s−1 − y

(1)
t = α+ β ·

(
1

n

n∑
s=1

f
(n)
t − y(1)t

)
+

1

n

n∑
s=1

ε
(s,s−1)
t+s−1 , (29)

and using that y
(n)
t = n−1

∑
s f

(s)
t , we obtain the first test of Campbell and Shiller (1991), denoted

CS1,

1

n

n−1∑
s=0

(
y
(1)
t+s − y

(1)
t

)
= α+ β

[
y
(n)
t − y(1)t

]
+ v

(n)
CS1,t+n−1, (30)

where v
(n)
CS1,t+n−1 = 1

n

∑n
s=1 ε

(s,s−1)
t+s−1 . The second specification considered in Campbell and Shiller

(1991), denoted CS2, is

y
(n−m)
t+m − y(n)t = α+ β

m

n−m

(
y
(n)
t − y(m)

t

)
+ v

(n)
CS2,t+n−1. (31)

This can be obtained by taking a cross-sectional average of equation (27). To see this, note that

1

n−m

n−m∑
s=1

f
(n−m)
t+m = y

(n−m)
t+m ,

1

n−m

n−m∑
s=1

f
(s+m)
t = y

(n)
t +

m

n−m

(
y
(n)
t − y(m)

t

)
,

and v
(n)
CS2,t+n−1 = 1

n−m
∑n−m

s=1 ε
(s,m)
t+m .

Although FB, CS1, CS2 can all be derived from CG, the statistical properties may be very

different. In fact, it has been well established in the literature that the results of tests of the expecta-

tions hypothesis can vary sharply depending on which regression specification is used (see Campbell

(2017) for a comprehensive discussion). It is also well known that inference on the coefficient of

interest in these regression-based tests is fraught with difficulties (see Bekaert et al. (1997) or Rossi
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(2007), among others). In particular, statistical challenges arise from the high persistence of yields

and forwards, the “unbalancedness” of some of the specifications,16 the overlapping nature of some

variables, and the unusual property that the dependent and explanatory variables are both derived

from the same underlying yield curve. Our bootstrap is uniquely situated to better understand

the statistical properties of the different versions of the regression-based tests of the expectations

hypothesis. More specifically, we nonparametrically resample the entire yield curve, rather than

the specific maturities used in a specification, which allows us to make comparisons across all of

these formulations in a cohesive way. Any parametric resampling approach would necessarily be a

model-specific approach which either imposed the expectations hypothesis or its failure.

To implement these tests, we use quarterly bond yield data from Gurkaynak et al. (2007) for

maturities up to ten years for the sample period 1972Q1 to 2022Q4. Figure 5 provides the OLS

estimates (black line) across different maturities for the four tests above, along with a horizontal

line at β = 1 (dashed black line). For the CS2 and CG tests, we require a choice of m. We present

results for m = 4 (one year) and m = 20 (5 years). The top row shows the results for CS2. For

small m, we observe the well-known result that estimates of β are negative and large in magnitude

providing strong counterfactual evidence against the expectations hypothesis.17 When m = 20,

the point estimate of β rises but is close to zero for most maturities. The results of 999 bootstrap

draws are presented in grey.18 Despite the point estimates being far away from one, in general,

the bootstrapped OLS estimates are subject to a high degree of variability. In fact, the statistical

evidence against the expectations hypothesis for the CS2 test is generally weak with most bootstrap

draws above the OLS estimates. Figure 6 sheds some light on why this might be the case. The CS2

test features a highly unbalanced specification, especially when m is small. The top left chart of

Figure 6 shows that when m = 4, the dependent and explanatory variables have strikingly different

persistence and volatility properties. A key advantage of our bootstrap is that we do not resample

these variables directly but instead we resample primitive objects with better statistical properties

while still mimicking the important features of the data. Thus, the top row of Figure 5 provides a

translation of the statistical problems, identified by the time-series plots, mapped to the sampling

16We define an unbalanced regression as a specification where the dependent and explanatory variables are char-
acterized by meaningfully different degrees of persistence and variability.

17See, for example, Campbell (2017, p. 239): “...an estimated slope coefficient that not only fails to equal one but
is actually negative.”

18We deliberately choose the same scale for all graphs to demonstrate the different sampling behavior of the OLS
estimator in each specification.
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variability of the OLS estimator.

Conversely, the CS1 and FB tests, in the middle row of Figure 5, have very different proper-

ties. First, the point estimates are much closer to one and are comfortably positive. Second, the

variability – as judged by the bootstrap draws of the OLS estimate – is modulated substantially

relative to the top row. However, the estimate of β appears unstable across maturities: a feature

that our bootstrap mimics and is thus likely to be inherent to the test itself.

We can improve further upon all of these tests by using equation (27) directly. In the bottom

row, we present results for m = 4 and m = 20 using CG. We observe that the OLS coefficient is

substantially more stable across maturities. We also observe that the sampling uncertainty is lower

than in the CS1 and FB tests and significantly smaller than in the CS2 test. We can link these

results to the much more balanced dependent and explanatory variables as shown in Figure 6.

We now provide additional evidence by explicitly testing the null hypothesis that β = 1, i.e., a

test of the expectations hypothesis. The CS2 test for m = 1 is the most popular implementation in

the literature and has been documented to provide the strongest evidence against the expectations

hypothesis (for a recent example, see Farmer et al. 2022). This is performed using an asymptotic

approximation to the t-statistic based on HAC/HAR standard errors. The top left chart in Figure

7 compares the p-values from this standard approach (labelled “Asymp. Approx.”) as compared to

those using the nonparametric bootstrap (labelled “Nonpar. Bootstrap”), for each n and m = 1.

For the standard approach, we use the test statistic of Lazarus et al. (2018) with the equal-weighted

cosine variance estimator. It is then straightforward to construct the corresponding p-values as the

limiting distribution is Student’s-t. Figure 7 shows that, in line with the existing literature, tests

based on asymptotic distributional approximations overwhelmingly reject the expectations hypoth-

esis across all maturities. In contrast, our bootstrap method provides a more mixed picture with

most maturities featuring p-values above 5% and longer maturities well over 10%. In the right plot,

we show the analogous p-values for the choice of m = 4. We observe that the gap between the two

sets of p-values remains large although there is modestly more evidence against the expectations

hypothesis in this specification. In the bottom two charts of Figure 7, we observe a similar pat-

tern but for the CG test. The evidence against the expectations hypothesis is much stronger at

shorter maturities than longer maturities. As mentioned above, an advantage of our nonparametric

bootstrap is that we resample the entire yield curve in a uniform way which should better ensure
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consistency across different specifications. In particular, we come to similar conclusions – evidence

is weakest at longer maturities – using either the CS2 or CG bootstrap-based tests.

Overall, even with the improved sampling properties, our bootstrap finds only weak evidence

against the expectations hypothesis. In the next section, we show that we can sharpen our

bootstrap-based inference and find stronger evidence against the expectations hypothesis by al-

ternative means using predictive return regressions with additional external predictors.

4.2 Trend Inflation and Bond Returns

The co-movement of inflation and nominal yields is a well established empirical fact in the United

States and other economies. In addition, the dynamics of inflation have been shown to feature

a time-varying, low-frequency component (e.g., Stock and Watson (2007)). Cieslak and Povala

(2015) construct a measure of trend inflation, based on an exponentially smoothed moving average

of year-over-year core consumer price index (CPI) inflation, and find that the inclusion of this

variable substantially improves upon bond return predictability using only yields. However, the

resulting trend inflation variable is highly persistent which complicates inference on its associated

coefficient and the other regression coefficients in the model. Our proposed bootstrap is flexible

enough to accommodate such a challenging setup, with yield and external predictors and very

high persistence in at least one regressor. In fact, we can straightforwardly construct a resampling

procedure that is tailored exactly to Cieslak and Povala (2015).

Cieslak and Povala (2015) run monthly regressions of the form given by equation (19) with

h = 12 and

wt =
1− φ

1− φ119
119∑
s=0

φsπyoyt−s, (32)

where πyoyt is the year-over-year growth rate in the core CPI and φ = 0.987 is the choice of

exponential smoothing parameter. We construct the necessary 12-month holding period returns for

annual maturities from two years to ten years. As our choice for gt, we use principal components

of yields extracted from one-year to ten-year annual maturities. In the subsequent analysis, we use

either the first two principal components (similar to the setup in Cieslak and Povala (2015)) or the

first three principal components (as in Bauer and Hamilton (2018)).

To bootstrap the data in this setting, we follow the approach given in Section 3. We utilize a
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bivariate VAR(1) to accommodate the strong joint dynamics (as shown in the left plot of Figure

8),

f (N)
t

πyoyt

 = µ+ Ψ

f (N)
t−1

πyoyt−1

+ vt. (33)

We estimate this VAR(1) via bias-corrected OLS (Kilian (1998)) and jointly block bootstrap v̂t

with the difference returns. This ensures that the bootstrapped data replicate the key features

of the actual data. In the right plot of Figure 8, we show trend inflation (black line) along with

bond yields (grey lines) for a particular bootstrap sample. We observe the strong co-movement

in low-frequency dynamics between trend inflation and yields, just as in the actual data, which is

shown in the left plot of Figure 8.

Also, because we require a ten-year burn-in period to construct wt as in equation (32) we

base our bootstrap on the sample starting ten years before the main sample. Then, for each

bootstrap sample we obtain πyoy∗t and calculate w∗t using equation (32). Finally, we drop the

first 120 observations when constructing bootstrapped OLS coefficients and standard errors. By

following these steps, we exactly mimic the steps being taken when estimating equation (19) on

the actual data.

Table 4 presents the in-sample regression results using our nonparametric bootstrap for each

individual maturity and the duration-weighted average return. For each of the two sample periods,

1971:m11–2022:m12 and 1983:m1–2022:m12, we report results using either two or three control

variables. We omit the estimated coefficients on wt for simplicity of presentation but note that

they are all negative in sign and increasing in magnitude with maturity. For the full sample period

and both specifications, we find that the bootstrap p-values associated with the coefficient of wt

are below 10% for bond returns based on maturities above five years. This suggests that the role

of trend inflation for bond return predictability is most influential for longer maturity bonds.

For the shorter sample, 1983:m1–2022:m12, the bootstrap p-values are below 10% for all matu-

rities and below 5% for the longest maturities. It appears that the results are weaker for the full

sample because of the more complicated dynamics arising from multiple hump-shaped periods in

the inflation process in the 1970s. Consequently, the bootstrap samples based on the longer sample

exhibit more variability than those of the shorter sample which is dominated by the downward
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Table 4. Bond Return Predictability of Trend Inflation This table presents bootstrap p-values for the
coefficient of interest and 90% confidence intervals for R2 based on the regression specification given by equation
(19) with h = 12. The choice of wt is the trend inflation estimate in equation (32) and the choice of gt is either the
first two (2 Factors) or the first three (3 Factors) principal components of yields. The sample period is
1971:m11–2022:m12 (full sample) or 1983:m1–2022:m12 (recent sample).

Full Sample Recent Sample
2 Factors 3 Factors 2 Factors 3 Factors

Maturity P-val R2 Conf. Int. P-val R2 Conf. Int. P-val R2 Conf. Int. P-val R2 Conf. Int.

2y 0.228 [-0.001, 0.186] 0.198 [0.001, 0.251] 0.079 [0.000, 0.240] 0.086 [0.003, 0.322]
3y 0.189 [-0.001, 0.200] 0.168 [0.002, 0.271] 0.075 [0.001, 0.268] 0.076 [0.006, 0.346]
4y 0.151 [0.000, 0.218] 0.142 [0.003, 0.286] 0.071 [0.002, 0.291] 0.069 [0.010, 0.362]
5y 0.128 [0.000, 0.235] 0.122 [0.004, 0.300] 0.064 [0.004, 0.308] 0.062 [0.012, 0.379]
6y 0.108 [0.001, 0.247] 0.107 [0.006, 0.310] 0.060 [0.005, 0.324] 0.057 [0.015, 0.396]
7y 0.090 [0.002, 0.258] 0.096 [0.006, 0.318] 0.055 [0.007, 0.339] 0.052 [0.018, 0.410]
8y 0.077 [0.002, 0.267] 0.086 [0.008, 0.328] 0.049 [0.009, 0.356] 0.049 [0.020, 0.420]
9y 0.073 [0.003, 0.274] 0.080 [0.009, 0.333] 0.046 [0.011, 0.363] 0.048 [0.021, 0.430]
10y 0.068 [0.004, 0.279] 0.079 [0.009, 0.340] 0.046 [0.012, 0.370] 0.048 [0.021, 0.437]
Avg. 0.110 [0.001, 0.247] 0.112 [0.006, 0.313] 0.053 [0.005, 0.326] 0.057 [0.014, 0.400]

trend in inflation and yields. Moreover, the range of p-values obtained from our bootstrap proce-

dure is consistent with the highly-persistent nature of trend inflation which should result in larger

standard errors (Müller and Watson (2008)).

Table 4 also shows the bootstrap-based 90% confidence interval for the difference in adjusted

R2 with and without the external predictor (trend inflation). For almost all maturities and across

both specifications, the confidence interval does not contain zero. Moreover, the length and distance

from zero of the intervals generally agree with the magnitude of the p-values, providing a reassuring

consistency of the results. This stands in contrast to the results in Bauer and Hamilton (2018,

Table 2), whose bootstrap-based intervals all have a lower bound of zero regardless of the strength

of evidence in favor of the external predictor based on the t-statistic.

In general, the results are supportive of the role of trend inflation as a bond risk factor, as argued

by Cieslak and Povala (2015), as future returns are driven by deviations of the yield curve from a

time-varying reference point determined by inflation (Rebonato and Hatano (2022)). In principle,

there may be other variables that capture the trend in yields such as long-term survey forecasts of

inflation expectations (Bauer and Rudebusch (2020), Crump et al. (2023)) or variables with similar

trending behavior over the last 50 years. This prompts the question: is there something special

about inflation (expectations)? It appears there is. As an additional exercise we considered one-

sided (real-time) trend estimates based on the effective federal funds rate as a natural alternative.

In unreported results, we fail to find evidence in favor of these yield-based trend estimates for bond
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return predictability (p-values comfortably above 10%) for the full sample.19 This points to the

possibility that inflation provides a unique (at least over this historical period) and effective real-

time characterization of the low-frequency properties of bond yields up to an affine transformation.

Remark 7. There are other applications outside of trend inflation where wt may itself represent

a transformation of one or more underlying variables. For example, Cooper and Priestley (2008)

utilize estimates of the output gap and Bauer and Rudebusch (2020) use estimates of the natural

rate of interest. Following similar steps as above, our nonparametric bootstrap can easily accom-

modate such applications, including both reduced-form and structural macro-finance models. This

ensures that the uncertainty arising from the generated regressors is properly accounted for in the

estimated standard errors. �

4.3 Probability of Recession

The term spread – the difference between the yield on a long maturity bond and a short maturity

bond – has been shown to have strong predictive power for future recessions (Harvey (1988),

Estrella and Hardouvelis (1991), Chen (1991)). Historically, when the term spread is particularly

compressed, this tends to be associated with a NBER-defined recession in the subsequent 2–8

quarters; of course, recessions occur relatively infrequently in the data. Against this backdrop, it

is well established that limited dependent variable methods suffer from finite-sample biases when

specific outcomes occur infrequently in the data (e.g., King and Zeng (2001)). We utilize our

bootstrap procedure to bias-correct a probit model of future activity based on past values of the

term spread.

Rather than working directly with the NBER definition of recession, we follow Rudebusch and

Williams (2009) and define a recession by a real GDP contraction (negative GDP growth).20 Let

Gt be real GDP growth at time t measured at a quarterly annualized rate. To avoid any look-ahead

bias, we use a time series of the third release of GDP (often referred to as the “final” release21)

available toward the end of the subsequent quarter, rather than the current, revised series. Our zt

19Full-sample detrending, which has the drawback of a look-ahead bias, performs similarly well as trend inflation
measures as shown by Rebonato and Hatano (2022).

20This definition produces similar, but not the same, definitions of US recessions. However, along with its simplicity,
it also has the advantage that this information is available toward the end of the following quarter whereas the NBER
dating committee announces the designation of peaks or troughs with a considerably longer lag. See Rudebusch and
Williams (2009) for additional discussion about this measure of recessions.

21Data are obtained from the Federal Reserve Bank of Philadelphia: https://www.philadelphiafed.org/

surveys-and-data/real-time-data-research/first-second-third.
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then becomes zt =
{
f
(N)
t , dr

(2)
t , . . . , dr

(N)
t , Gt

}
and we can easily block bootstrap this augmented

matrix as detailed in Section 3.

The most common specification in the literature is a probit model of the form,

P (Ht+h = 1|xt) = Φ
(
x′tβ
)

(34)

for some h ≥ 1, where Ht is a transformation of Gt. We work with two choices for Ht: first, we define

H1,t+h = 1 {Gt+h ≤ 0}; second, we define H2,t+h = 1

{⋃t+h
r=t+1 {Gr ≤ 0}

}
. The latter measure is

then set equal to one when there is a contraction in real GDP in any of the next h quarters.

Let β̂ be the maximum-likelihood estimator of the coefficient β in equation (34). To construct

the bootstrap-based bias correction, we block resample the matrix Z which is comprised of the

stacked vectors zt (with a pre-whitening step). In each bootstrapped sample, (b = 1, . . . , B), we

first calculate H∗t+h,b and the requisite term structure variables, and finally β̂∗b . We can then form

d̂∗b = β̂∗b − β̂ for b = 1, . . . , B. To obtain a bias-corrected estimate, we utilize

β̂bc = β̂ − 1

B

∑B

b=1
d̂∗b . (35)

We can also form bootstrap-based confidence intervals by

Cα(β) =
[
β̂ − d̂∗(1−α), β̂ − d̂

∗
(α)

]
, (36)

where d̂∗(α) denotes the α-th quantile of the bootstrap distribution of d̂∗. Note that when α = 0.5,

we obtain the bootstrap-based median unbiased estimator. For the choice of xt, we consider two

specifications. The first specification uses only the ten-year yield less the 3-month yield, which

is the most common formulation used (Estrella and Hardouvelis 1991, Rudebusch and Williams

2009). The second specification then adds the 3-month yield as a separate regressor as advocated

by Wright (2006). In order to be less constrained by the effective lower bound after 2008, which

is not explicitly imposed in our bootstrap data, we use the deviation of the 3-month yield from its

3-year moving average.22 This transformation also reduces the extreme persistence of the short rate

and renders the dynamic properties of this predictor similar to those of the term spread. Finally, in

22The addition of this variable can potentially provide information on the nature (“bull” versus “bear”) of the
flattening or steepening of the yield curve.
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order to robustify the results, we use a leave-out approach: for each t we estimate β by omitting the

t-th observation and then obtain the fitted value; we follow the exact same steps in the bootstrap

procedure.

Figure 9 presents the results from this exercise. We choose h = 4 and use B = 999 bootstrap

samples. We use quarterly yield curve data from Gurkaynak et al. (2007) and real GDP data for

the sample period 1971:Q3–2023:Q1. The top chart shows the time series of the fitted conditional

probability that H1t = 1 based on the value of the term spread. The black line depicts the estimated

probability utilizing the bias-correction discussed above. We observe that the estimated probability

tends to peak around the beginning of NBER recessions (grey shading). The estimate as of the

beginning of 2023, is about 50% which is the highest value since the early 1980s – higher than both

the 2001 and 2007-09 recessions. The second chart reflects the addition of the 3-month yield, less

its 3-year moving average, as a predictor. The fitted probability is largely similar to the baseline

case, although this specification is more prone to ostensibly false positives (e.g., late 1980s and

1998). Moreover, the bootstrap-based uncertainty measure around the estimated probability is

wider with the extra regressor. In both specifications, the probability of recession appears elevated

relative to historical levels. Finally, in the Supplemental Appendix (Section SA-2) we show the full-

sample estimate versus its bias-corrected counterpart. We observe that for small fitted probabilities

– periods associated with a wider term spread – the bias-corrected estimate is below the sample

estimate; in contrast, for large fitted probabilities – periods associated with a compressed term

spread – the bias-corrected estimate is comfortably above the sample estimate. The upward shift

in the fitted probability more closely aligns with the impressive forecasting record associated with

the term spread over the last 50 or so years and suggests the appropriateness of our bootstrap

approach.

The bottom two charts in Figure 9, instead, show the time series of the fitted conditional

probability that H2t = 1. The third chart uses only the term spread as a predictor. The estimated

probability of a contraction in real GDP occurring some time in 2023 or early 2024 is almost

90%, above the peaks in the last four cycles. The final chart shows the corresponding model

with the 3-month yield deviation from its 3-year moving average as an additional predictor. The

results are similar, with the upper bound of the 68% confidence interval now exceeding 90% for

both specifications at the end of the sample. Finally, note that the width of the bootstrap-based
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confidence intervals in the top two charts is shorter than the bottom two charts. This is an appealing

result of our inference approach and is consistent with the intuition that H2t represents a more

serially correlated process than H1t, making accurate inference more challenging.

5 Conclusion

In this paper, we propose a new method for resampling the yield curve that is agnostic to the

true underlying factor structure and the correct specification of the pricing model, and robust to

unknown forms of serial correlation, conditional heteroskedasticity, and cross-sectional dependence.

We establish the asymptotic validity of this bootstrap method under general assumptions. The

primitive objects we use for resampling, excess returns and a single far-in-the-future forward rate,

have more appealing statistical properties than bond prices or yields. Our approach is motivated by

the fact that determining the minimal dimension of the data generating process from bond yields

and returns – which is common practice in empirical work – is challenging (Crump and Gospodinov

(2021)). Thus, our approach stands in sharp contrast to the conventional approach of committing

to a specific parametric form for how the data were generated.

We explore the applicability of the bootstrap in the context of four empirical applications.

First, we demonstrate that our nonparametric bootstrap method appears to capture accurately

the “tent shape” of forward rates that was documented by Cochrane and Piazzesi (2005). Second,

the model-free nature of the proposed resampling provides a unifying framework for assessing the

empirical validity of the expectations hypothesis based on various regression specifications. We

show how our primitive objects – obtained from deconstructing the yield curve – can be used to

rewrite all of the existing specifications and propose a new regression formulation that balances

the persistence properties of the dependent variable and the regressor. The empirical results across

specifications offer only weak evidence against the expectations hypothesis. Third, we illustrate

how to extend our bootstrap approach to bond predictive regressions with external predictors and

provide support to the trend inflation factor, proposed by Cieslak and Povala (2015), in driving

the low-frequency movements in bond yields. Finally, we use our bootstrap procedure to produce

bias-corrected estimates and confidence intervals in probability of recession models, based on the

shape of the yield curve. We observe elevated probabilities of a contraction in real GDP growth at

the end of our sample.
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The proposed resampling scheme can be used for generating conditional future paths of yields

or other yield-related variables to obtain measures of sampling uncertainty around projected paths.

This can be employed for policy analysis as well as an improved computation for option-adjusted

spreads. Another advantage of our bootstrap method is in a multi-asset setup. For example, the

original data matrix can be augmented with other asset returns, possibly in excess of the short

rate, to ensure that the data is bootstrapped in an internally consistent manner for the purposes

of predictive regressions, extracting the common factor structure of expected returns across asset

classes, and other applications. These extensions are currently under investigation by the authors

(Crump et al. (2021a), Crump et al. (2021b)).
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Figure 3. Resampling the Tent Shape of Cochrane and Piazzesi (2005). This figure shows the results of
the nonparametric bootstrap procedure introduced in Section 3 and the parametric procedure of Bauer and
Hamilton (2018). Monthly bond prices are obtained from the Fama-Bliss data set from the Center for Research in
Security Prices (CRSP) and the regression specification is given in equation (10). The sample period is 1964-2003.
The left column presents the sample OLS estimates (black line) and associated bootstrap estimates (multi-colored

lines) for 1
4

∑
n∈{24,··· ,60}(β̂

(n)
1 , . . . , β̂

(n)
5 ). The right column presents the sample R2 (black line) and associated

bootstrap estimates (multi-colored lines) across maturities.
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Figure 4. Realized Sample versus Bootstrapped Sample. The left column of this figure shows the time
series of yields, forwards, and excess returns from Gurkaynak et al. (2007) for the sample 1972:Q1–2022:Q4. The
right column of this figure shows the corresponding bootstrapped time series for these same objects.
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Figure 5. Expectations Hypothesis Tests: OLS Sampling Properties. This figure presents the in-sample
OLS estimator and bootstrapped draws. The top row presents the time series for the CS2 test, the middle-left plot
for the CS1 test, the middle-right plot for the FB test, and the bottom row for the CG test. The sample period is
1972:Q1–2022:Q4.
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Figure 6. Expectations Hypothesis Tests: Time-Series Properties. This figure presents the dependent and
explanatory variables from different regression-based tests of the expectations hypothesis. The top row presents the
time series for the CS2 test, the middle-left plot for the CS1 test, the middle-right plot for the FB test, and the
bottom row for the CG test. The sample period is 1972:Q1–2022:Q4.
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Figure 7. Expectations Hypothesis Tests: Bootstrap versus Standard Inference. This figure presents
p-values for the null hypothesis of β = 1 based on the nonparametric bootstrap (“Nonpar. Bootstrap”) and one
based on an asymptotic approximation (“Asymp. Approx.”). The latter p-values are obtained using the test
statistic of Lazarus et al. (2018) with the equal-weighted cosine variance estimator. Dotted horizontal lines are
placed at 1%, 5% and 10% for reference. The sample period is 1972:Q1–2022:Q4.
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Figure 8. Realized Yields and Trend Inflation versus Bootstrapped Sample. The left chart of this figure
shows the time series of yields (grey lines) and the trend inflation factor (black line) of Cieslak and Povala (2015)
for the sample 1971:m11-2022:m12. The right chart of this figure shows the corresponding bootstrapped time series
for these same objects.
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Appendix

A Assumptions and Proofs

A.1 Assumptions

Using the notation in the main text, we first provide a definition of {znt} as a mixing process. Let Fn,t−∞ =

σ(..., Zn,t−1, Zn,t) and Fn,∞t+k = σ(Zn,t+k, Zn,t+k+1, ...) denote the sigma-fields generated by the corresponding set

of random variables and, for each n,

αn(k) = sup
t

sup
A∈Fn,t

−∞,B∈F
n,∞
t+k

|P (A ∩B)− P (A)P (B)|

Then, for each n, the random process {znt} is α-mixing if αn(k) → 0 as k → ∞. Let ‖znt‖p ≡ (E|znt|p)1/p denote

the Lp norm of a random vector, where |znt| is its Euclidean norm.

Assumption A1. Assume that

(A1.a) for each n = 1, ..., N , {znt : t = 1, ..., T} are the realizations of a stationary α-mixing process with mixing

coefficients αn(k) such that supn αn(k) ≤ α(k), where α(k) = O(k−λ) for some λ > (2 + δ)(r + δ)/(r − 2),

r > 2 and ε > 0;

(A1.b) for some r > 2 and ε > 0, ‖znt‖r+ε ≤ ∆ <∞ for all n and t;

(A1.c) VNT = 1
NT

∑N
n=1

∑T
t=1E[(znt − E(znt))(znt − E(znt))

′] is positive definite uniformly in N,T ;

(A1.d) N is a fixed;

(A1.e) MT →∞ and MT = o(T 1/2).

Assumption (A1.a) imposes restrictions on the time-series dependence without any constraints on the cross-

sectional dependence. It allows for heterogeneous, but uniformly bounded, serial dependence across the different

series. Stationarity along the time-series dimension can be further relaxed by allowing for some types of time

heterogeneity. Assumption (A1.b) requires uniform moment bounds. While the cross-sectional (maturity) dimension

N could be large relative to T and it may be convenient to allow N to be a function of T (see, for example, Valkanov

(1998)), Assumption (A1.d) maintains that N is a fixed constant. Nevertheless, we use the notation N,T → ∞ to

accommodate the more general case when N is possibly a nondecreasing function of T . Assumption (A1.e) states

that the block size MT is allowed to grow with T but at a slower rate than T 1/2.

Assumption A2. Assume that

(A2.a) {(x′t, ε
(n)
t+h) : t = 1, ..., T} are the realizations of a stationary α-mixing process with mixing coefficients α(k) =

O(k−λ) for some λ > 4/(r − 2), r > 2;

(A2.b) for some r > 2 and ε > 0, ‖xt‖2(r+ε) ≤ ∆ <∞ and
∥∥∥ε(n)t+h

∥∥∥
2(r+ε)

≤ ∆ <∞ for all t;

45



(A2.c) AT = 1
T

∑T−h
t=1 (xt − E(xt))(xt − E(xt))

′ is positive definite uniformly in T ;

(A2.d) BT ≡ Var
(
T−1/2∑T−h

t=1 (xt − x̄)ε
(n)
t+h

)
is O(1) and det(B) > ε for any ε > 0 and

B ≡ limT→∞Var
(
T−1/2∑T−h

t=1 (xt − x̄)ε
(n)
t+h

)
is positive definite.

Assumption (A2.a) imposes stationarity on the predictors and the errors. Stationary but highly persistent

predictors, such as the level factor, present challenges to statistical inference as discussed in the main text. Assumption

(A2.b) provides regularity conditions that need to be strengthened further when xt is subjected to pre-whitening by a

VAR(1) model. Assumptions (A3.c) and (A3.d) are standard for the matrices AT and BT . Letting ξt+h = (xt−x̄)ε
(n)
t+h,

we can rewrite BT as

BT = Γ(0) +

T−h∑
j=1

ω(j/b)
(
Γ(j) + Γ(j)′

)
,

where Γ(j) = E(ξt+hξ
′
t+h−j), ω(.) is a kernel function and b is a bandwidth parameter. The population ana-

log of this matrix is given by B = limT→∞Var
(
T−1/2∑T−h

t=1 ξt+h
)

and its HAC estimator as B̂T = Γ̂T (0) +∑T−1
j=1 ω(j/b)(Γ̂T (j) + Γ̂T (j)′), where Γ̂T (·) is a consistent estimator of Γ(·). The next assumption imposes sufficient

conditions (see, for example, Newey and West (1987) and Andrews (1991)) for establishing consistency of the HAC

estimator that is used for constructing the robust t-statistic.

Assumption A3. Assume that

(A3.a) ω(x) satisfies (i) |ω(x)| ≤ 1 and ω(x) = ω(−x) for all x ∈ R, (ii) ω(0) = 1, (iii)
∫∞
−∞ |ω(x)|dx <∞, (iv) ω(x) is

continuous at zero and almost all x ∈ R, and (v) ω(x) has a characteristic exponent k ≥ 1 which is the largest

real number such that limx→0
1−ω(x)
|x|k = ck for some ck ∈ (0,∞).

(A3.b) b = bT satisfies (i) bT = o(T 1/2), (ii) bT →∞ as T →∞.

Assumption (A3.a) is satisfied for popular kernels such as the Bartlett, Parzen and quadratic spectral kernels

that yield positive semi-definite estimators. Assumption (A3.b) states the rate of increase for bT that ensures the

consistency of the HAC estimator (Andrews (1991)).

A.2 Proofs

Proof of Theorem 1: The limiting behavior of some terms in Theorem 1 can be inferred from the following lemma

(see Goncalves (2011) for details).

Lemma A.1. Under Assumptions A.1, A 2, and A.3,

Â−1
T −A

−1
T

P→ 0,

Â∗−1
T − Â−1

T
P∗→ 0,

B̂∗T −BT
P∗→ 0,

46



in probability, and

B
−1/2
T

1√
T

T−h∑
t=1

(x∗t − x̄∗)ε
(n)∗
t+h

d∗→ N(0k, Ik),

where X∗T
d∗→ X denotes that, conditional on the sample, X∗T weakly converges to X under P ∗.

Next, let

Â∗T =
1

T

T−h∑
t=1

(x∗t − x̄∗)(x∗t − x̄∗)′

and

ε
(n)∗
t+h = rx

(n)∗
t+h − α̂

(n) − x∗′t β̂(n).

Then, we can rewrite the expression for
√
T (β̂(n)∗ − β̂(n)) as

√
T (β̂(n)∗ − β̂(n)) = Â∗−1

T

1√
T

T−h∑
t=1

(x∗t − x̄∗)ε
(n)∗
t+h

=
[
A−1
T + (Â∗−1

T −A−1
T )
] 1√

T

T−h∑
t=1

(x∗t − x̄∗)ε
(n)∗
t+h

= A−1
T B

1/2
T B

−1/2
T

1√
T

T−h∑
t=1

(x∗t − x̄∗)ε
(n)∗
t+h

+
[
(Â∗−1

T − Â−1
T )− (Â−1

T −A
−1
T )
] 1√

T

T−h∑
t=1

(x∗t − x̄∗)ε
(n)∗
t+h .

The limiting behavior of the terms on the right-hand side is inferred from Lemma A.1. Pre-multiplying both sides

by B
−1/2
T AT and invoking the results in Lemma A.1, we have that

B
−1/2
T ATA

−1
T B

1/2
T B

−1/2
T

1√
T

T−h∑
t=1

(x∗t − x̄∗)ε
(n)∗
t+h

d∗→ N(0k, Ik)

and

B
−1/2
T AT

[
(Â∗−1

T − Â−1
T )− (Â−1

T −A
−1
T )
] 1√

T

T−h∑
t=1

(x∗t − x̄∗)ε
(n)∗
t+h = oP∗(1),

using that 1√
T

∑T−h
t=1 (x∗t − x̄∗)ε

(n)∗
t+h = OP∗(1). The first result in Theorem 1 follows from noting that, under the

stated assumptions,

B
−1/2
T AT

√
T (β̂(n) − β(n))

d→ N(0k, Ik)

as T →∞. The result for the t-statistic in Theorem 1 follows from Lemma A.1 and similar arguments. �
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B Data Sources and Description

The primary data set we use is continuously-compounded, zero-coupon Treasury yields from Gurkaynak et al. (2007).23

In our applications we use either monthly or quarterly data up to the ten-year maturity. In Section 2.2.1 we use the

Fama-Bliss zero-coupon Treasury yields available from CRSP.24

Figure 1 utilizes additional data sets. First, the data on oil futures consists of WTI oil prices in USD of futures

contracts (traded on NYMEX) with monthly maturities from 1 to 12 months for the period January 2000 to December

2018. The source of these data is Bloomberg. The data for the S&P500 index options is from Constantinides

et al. (2013), and aggregated and sorted by maturity as in He et al. (2017).25 The sample period is 1986:Q4 to

2012:Q1. Finally, the data on global surface temperature (measured as deviations from annual mean in Celsius) for

the period 1880-2017 are obtained from the Goddard Institute for Space Studies (National Aeronautics and Space

Administration) website.26

23Data are available at https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.
24The description of the data is available at https://www.crsp.org/products/documentation/

fama-bliss-discount-bonds-%E2%80%93-monthly-only.
25We thank the authors for making the data available.
26https://data.giss.nasa.gov/gistemp/graphs/
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SA-1 Additional Simulation Results

This appendix provides additional simulation results exploring the properties of our bootstrap procedure and com-

paring to alternatives in the literature.

Tables SA.1, SA.2, SA.4, SA.6, and SA.7 present results from HAR approaches based on asymptotic approxima-

tions of the corresponding test statistics. We include results using the variance estimator of Newey and West (1987)

with lag length h (labelled “NW”) along with the two inference procedures discussed in Lazarus et al. (2018). The

first approach uses the variance estimator of Newey and West (1987) and fixed-b asymptotic approximation (labelled

“LLSW-NW”). The second approach uses the equal-weighted cosine (EWC) estimator of the long-run variance and

a limiting t distribution (labelled “LLSW-EWC”). We implement both of these tests exactly as described in Lazarus

et al. (2018). We do note that Lazarus et al. (2018, p. 542) do not recommend the use of these tests for high degrees

of persistence as in our case. Instead, we include these results as a benchmark comparison only.

The first two tables in this appendix, Tables SA.1 and SA.2, present the NW, LLSW-NW, and LLSW-EWC

results for the designs presented in Tables 1 and 2 in the main text, respectively. Table SA.7 presents the NW,

LLSW-NW, and LLSW-EWC results for the design presented in Table 3 in the main text.

Tables SA.3 and SA.4 present the results for the nonparametric bootstrap, the parametric bootstrap of Bauer

and Hamilton (2018), NW, LLSW-NW, and LLSW-EWC for the case of three forward factors which follow a VAR(2)

as discussed in Section 2.2.

Tables SA.5 and Table SA.6 present the results for the nonparametric bootstrap, the parametric bootstrap of

Bauer and Hamilton (2018), NW, LLSW-NW, and LLSW-EWC for the case of three yield factors which follow a

VAR(1) as discussed in Section 2.2.
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Table SA.1. Simulations (VAR(1) Specification, 3 Forward Factors) This table presents empirical size for
the methods based on asymptotic approximations as described in the main text. The nominal level is 10% and the
sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t) = (y

(12)
t , f

(60,12)
t , f

(120,12)
t ). Based on 1,000 simulations and 399 bootstrap replications per simulation.

NW LLSW-NW LLSW-EWC
Size Size Size

Maturity g1t g2t g3t g1t g2t g3t g1t g2t g3t
2y 0.244 0.197 0.206 0.182 0.135 0.143 0.197 0.147 0.155
3y 0.254 0.194 0.212 0.193 0.143 0.147 0.204 0.156 0.158
4y 0.247 0.201 0.202 0.179 0.145 0.150 0.194 0.158 0.162
5y 0.245 0.204 0.220 0.179 0.152 0.150 0.189 0.164 0.165
6y 0.238 0.208 0.214 0.171 0.147 0.157 0.182 0.161 0.168
7y 0.240 0.211 0.217 0.174 0.143 0.157 0.182 0.161 0.163
8y 0.238 0.210 0.225 0.174 0.139 0.158 0.185 0.159 0.166
9y 0.239 0.203 0.214 0.171 0.144 0.158 0.182 0.162 0.170
10y 0.238 0.200 0.210 0.172 0.142 0.158 0.181 0.160 0.163
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Table SA.2. Simulations (VAR(1) Specification, 5 Forward Factors) This table presents empirical size and
power for the methods based on asymptotic approximations as described in the main text. The nominal level is 10%
and the sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t, g4t, g5t) = (y

(12)
t , f

(36,12)
t , f

(60,12)
t , f

(84,12)
t , f

(120,12)
t ). Based on 1,000 simulations and 399 bootstrap

replications per simulation.

NW
Size

Maturity g1t g2t g3t g4t g5t
2y 0.209 0.169 0.167 0.172 0.187
3y 0.195 0.170 0.163 0.171 0.179
4y 0.183 0.175 0.169 0.168 0.185
5y 0.187 0.176 0.176 0.180 0.195
6y 0.201 0.184 0.187 0.177 0.198
7y 0.206 0.184 0.188 0.183 0.198
8y 0.216 0.190 0.193 0.191 0.199
9y 0.214 0.196 0.198 0.194 0.198
10y 0.208 0.194 0.191 0.193 0.192

LLSW-NW
Size

Maturity g1t g2t g3t g4t g5t
2y 0.160 0.146 0.136 0.143 0.152
3y 0.153 0.136 0.134 0.150 0.156
4y 0.146 0.141 0.144 0.148 0.159
5y 0.159 0.139 0.161 0.147 0.163
6y 0.160 0.148 0.163 0.149 0.164
7y 0.171 0.143 0.162 0.153 0.162
8y 0.168 0.147 0.161 0.166 0.164
9y 0.170 0.152 0.163 0.167 0.161
10y 0.173 0.156 0.165 0.167 0.161

LLSW-EWC
Size

Maturity g1t g2t g3t g4t g5t
2y 0.155 0.137 0.130 0.139 0.141
3y 0.140 0.131 0.121 0.130 0.143
4y 0.138 0.138 0.141 0.131 0.150
5y 0.143 0.133 0.147 0.138 0.158
6y 0.148 0.138 0.149 0.145 0.160
7y 0.153 0.138 0.158 0.149 0.157
8y 0.152 0.138 0.156 0.151 0.153
9y 0.157 0.147 0.158 0.153 0.153
10y 0.163 0.148 0.159 0.158 0.152
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Table SA.3. Simulations (VAR(2) Specification, 3 Forward Factors) This table presents empirical size and
power for the nonparametric and parametric bootstrap methods described in the main text. The nominal level is
10% and the sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t, g4t, g5t, g6t) = (y

(12)
t , f

(60,12)
t , f

(120,12)
t , y

(12)
t−1 , f

(60,12)
t−1 , f

(120,12)
t−1 ). Based on 1,000 simulations and 399

bootstrap replications per simulation.

Nonparametric Bootstrap
Size Power

Maturity g1t g2t g3t g4t g5t g6t g1t g2t g3t g4t g5t g6t
2y 0.119 0.132 0.101 0.097 0.076 0.073 0.228 0.226 0.100 0.119 0.080 0.074
3y 0.117 0.133 0.112 0.098 0.084 0.073 0.378 0.324 0.123 0.114 0.089 0.070
4y 0.120 0.130 0.118 0.107 0.085 0.075 0.474 0.399 0.141 0.108 0.092 0.071
5y 0.115 0.132 0.121 0.109 0.089 0.071 0.534 0.415 0.130 0.103 0.092 0.072
6y 0.115 0.126 0.122 0.111 0.090 0.072 0.577 0.389 0.124 0.103 0.090 0.073
7y 0.114 0.127 0.122 0.110 0.091 0.072 0.605 0.346 0.129 0.102 0.092 0.074
8y 0.114 0.127 0.129 0.102 0.088 0.072 0.612 0.306 0.147 0.098 0.094 0.074
9y 0.113 0.123 0.126 0.104 0.092 0.072 0.614 0.245 0.173 0.095 0.097 0.072
10y 0.108 0.118 0.125 0.106 0.095 0.074 0.606 0.195 0.226 0.092 0.100 0.073

Parametric Bootstrap
Size Power

g1t g2t g3t g4t g5t g6t g1t g2t g3t g4t g5t g6t
2y 0.039 0.054 0.011 0.026 0.000 0.000 0.063 0.138 0.007 0.000 0.000 0.000
3y 0.033 0.055 0.009 0.030 0.000 0.000 0.182 0.196 0.025 0.000 0.000 0.000
4y 0.036 0.041 0.001 0.030 0.000 0.000 0.266 0.259 0.023 0.000 0.000 0.000
5y 0.031 0.049 0.001 0.021 0.000 0.000 0.359 0.267 0.007 0.000 0.000 0.000
6y 0.033 0.031 0.000 0.021 0.000 0.000 0.381 0.303 0.000 0.000 0.000 0.000
7y 0.032 0.023 0.001 0.020 0.000 0.000 0.399 0.276 0.000 0.000 0.000 0.000
8y 0.033 0.019 0.000 0.019 0.000 0.000 0.411 0.217 0.000 0.000 0.000 0.000
9y 0.032 0.023 0.001 0.020 0.000 0.000 0.411 0.182 0.000 0.000 0.000 0.000
10y 0.032 0.011 0.000 0.015 0.000 0.000 0.402 0.096 0.000 0.000 0.000 0.000
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Table SA.4. Simulations (VAR(2) Specification, 3 Forward Factors) This table presents empirical size and
power for the methods based on asymptotic approximations as described in the main text. The nominal level is 10%
and the sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t, g4t, g5t, g6t) = (y

(12)
t , f

(60,12)
t , f

(120,12)
t , y

(12)
t−1 , f

(60,12)
t−1 , f

(120,12)
t−1 ). Based on 1,000 simulations and 399

bootstrap replications per simulation.

NW
Size

Maturity g1t g2t g3t g4t g5t g6t
2y 0.160 0.168 0.167 0.134 0.124 0.152
3y 0.156 0.168 0.167 0.131 0.136 0.152
4y 0.150 0.169 0.177 0.138 0.141 0.146
5y 0.146 0.166 0.186 0.141 0.139 0.148
6y 0.147 0.163 0.180 0.141 0.138 0.147
7y 0.147 0.168 0.179 0.147 0.139 0.151
8y 0.140 0.161 0.176 0.150 0.137 0.152
9y 0.140 0.159 0.169 0.145 0.138 0.153
10y 0.135 0.156 0.168 0.145 0.142 0.157

LLSW-NW
Size

Maturity g1t g2t g3t g4t g5t g6t
2y 0.155 0.150 0.138 0.133 0.116 0.131
3y 0.151 0.152 0.146 0.140 0.118 0.129
4y 0.144 0.151 0.153 0.142 0.123 0.131
5y 0.141 0.147 0.156 0.136 0.118 0.137
6y 0.136 0.146 0.154 0.135 0.121 0.133
7y 0.135 0.143 0.159 0.137 0.130 0.135
8y 0.129 0.142 0.155 0.141 0.129 0.134
9y 0.126 0.139 0.153 0.141 0.131 0.134
10y 0.129 0.140 0.152 0.143 0.127 0.137

LLSW-EWC
Size

Maturity g1t g2t g3t g4t g5t g6t
2y 0.151 0.145 0.137 0.133 0.107 0.124
3y 0.145 0.147 0.149 0.131 0.109 0.129
4y 0.140 0.150 0.157 0.131 0.118 0.133
5y 0.140 0.146 0.159 0.134 0.114 0.133
6y 0.134 0.144 0.157 0.137 0.113 0.130
7y 0.138 0.141 0.157 0.136 0.120 0.130
8y 0.130 0.137 0.153 0.136 0.121 0.130
9y 0.127 0.136 0.151 0.140 0.123 0.129
10y 0.126 0.138 0.151 0.138 0.122 0.136
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Table SA.5. Simulations (VAR(1) Specification, 3 Yield Factors) This table presents empirical size and
power for the nonparametric and parametric bootstrap methods described in the main text. The nominal level is
10% and the sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t) = (y

(12)
t , y

(60)
t , y

(120)
t ). Based on 1,000 simulations and 399 bootstrap replications per simulation.

Nonparametric Bootstrap
Size Power

Maturity g1t g2t g3t g1t g2t g3t
2y 0.095 0.069 0.067 0.133 0.080 0.192
3y 0.105 0.083 0.075 0.198 0.071 0.169
4y 0.099 0.087 0.075 0.259 0.079 0.171
5y 0.095 0.092 0.074 0.273 0.074 0.203
6y 0.096 0.088 0.077 0.264 0.077 0.260
7y 0.098 0.085 0.088 0.250 0.083 0.327
8y 0.098 0.087 0.085 0.226 0.113 0.398
9y 0.098 0.089 0.093 0.206 0.148 0.459
10y 0.095 0.089 0.093 0.187 0.179 0.519

Parametric Bootstrap
Size Power

Maturity g1t g2t g3t g1t g2t g3t
2y 0.023 0.032 0.038 0.080 0.025 0.121
3y 0.023 0.035 0.036 0.144 0.026 0.099
4y 0.021 0.034 0.034 0.196 0.023 0.119
5y 0.021 0.029 0.030 0.215 0.026 0.163
6y 0.021 0.029 0.031 0.200 0.022 0.233
7y 0.020 0.026 0.033 0.182 0.039 0.329
8y 0.019 0.023 0.038 0.145 0.069 0.419
9y 0.020 0.022 0.043 0.116 0.107 0.487
10y 0.015 0.022 0.051 0.095 0.158 0.540

Table SA.6. Simulations (VAR(1) Specification, 3 Yield Factors) This table presents empirical size and
power for the methods based on asymptotic approximations as described in the main text. The nominal level is 10%
and the sample size is T = 600. Each column reports results for the t-test associated with the regressor
(g1t, g2t, g3t) = (y

(12)
t , y

(60)
t , y

(120)
t ). Based on 1,000 simulations and 399 bootstrap replications per simulation.

NW
Size

Maturity g1t g2t g3t
2y 0.214 0.193 0.212
3y 0.207 0.210 0.210
4y 0.204 0.224 0.221
5y 0.202 0.219 0.227
6y 0.198 0.221 0.227
7y 0.202 0.218 0.229
8y 0.203 0.216 0.230
9y 0.199 0.201 0.227
10y 0.201 0.197 0.226

LLSW-NW
Size

Maturity g1t g2t g3t
2y 0.163 0.154 0.169
3y 0.154 0.163 0.172
4y 0.152 0.161 0.172
5y 0.158 0.164 0.174
6y 0.162 0.163 0.181
7y 0.160 0.163 0.174
8y 0.158 0.156 0.175
9y 0.159 0.148 0.181
10y 0.161 0.150 0.183

LLSW-EWC
Size

Maturity g1t g2t g3t
2y 0.137 0.141 0.159
3y 0.131 0.149 0.149
4y 0.134 0.149 0.160
5y 0.140 0.153 0.166
6y 0.144 0.149 0.166
7y 0.144 0.145 0.164
8y 0.146 0.143 0.162
9y 0.145 0.135 0.160
10y 0.144 0.136 0.162
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Table SA.7. Simulations (VAR(1) Specification, 3 Yield Factors, 2 Macro Predictors) This table
presents empirical size and power for the methods based on asymptotic approximations as described in the main
text. The nominal level is 10% and the sample size is T = 600. Each column reports results for the t-test associated
with the regressor (g1t, g2t, g3t) = (y

(12)
t , y

(60)
t , y

(120)
t ). For the bivariate external regressors, wt, only empirical size is

reported. Based on 1,000 simulations and 399 bootstrap replications per simulation.

NW
Size

Maturity g1t g2t g3t w1t w2t

2y 0.224 0.178 0.194 0.230 0.170
3y 0.224 0.184 0.202 0.233 0.166
4y 0.209 0.191 0.200 0.233 0.168
5y 0.218 0.196 0.198 0.240 0.170
6y 0.216 0.197 0.196 0.238 0.168
7y 0.214 0.198 0.195 0.250 0.166
8y 0.221 0.194 0.205 0.250 0.168
9y 0.219 0.197 0.207 0.245 0.170
10y 0.213 0.199 0.215 0.244 0.171

LLSW-NW
Size

Maturity g1t g2t g3t w1t w2t

2y 0.172 0.147 0.150 0.184 0.130
3y 0.168 0.147 0.150 0.184 0.134
4y 0.162 0.154 0.150 0.182 0.142
5y 0.162 0.163 0.153 0.186 0.140
6y 0.161 0.159 0.151 0.193 0.139
7y 0.169 0.164 0.161 0.197 0.135
8y 0.168 0.165 0.165 0.196 0.146
9y 0.167 0.162 0.166 0.200 0.147
10y 0.173 0.165 0.168 0.197 0.146

LLSW-EWC
Size

Maturity g1t g2t g3t w1t w2t

2y 0.157 0.134 0.146 0.174 0.131
3y 0.159 0.143 0.140 0.173 0.122
4y 0.160 0.142 0.139 0.173 0.128
5y 0.153 0.148 0.138 0.181 0.131
6y 0.152 0.148 0.137 0.177 0.129
7y 0.159 0.147 0.149 0.182 0.133
8y 0.152 0.147 0.150 0.186 0.135
9y 0.152 0.145 0.153 0.188 0.140
10y 0.154 0.147 0.157 0.192 0.138
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SA-2 Probability of Recession Based on the Term Spread

Figure SA.1 compares the full-sample (leave-one-out) standard probit estimator (red line) along with the bootstrap-

bias corrected (leave-one-out) probit estimator (black line). Across both specifications and choices of horizon we

observe that the bias-corrected estimate is lower when the probability of recession is estimated to be low but it is

higher when the probability of recession is estimated to be high. This results in more variation of the bias-corrected

estimate with much more prominent peaks in the estimated probability of recession before NBER recessions. As

noted in the main text, this upward shift in the fitted probabilities more closely aligns with the impressive forecasting

record associated with the term spread over the last 50 or so years and suggests the appropriateness of our bootstrap

approach.
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