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Abstract 

This paper studies the effects of a recent tick size reduction in the U.S. Treasury securities 

market. Employing difference-in-differences regressions, we find significantly narrower bid-ask 

spreads and increased trading activity. Market depth declines overall, but depth close to the top of 

the book changes little. The smaller tick size enables prices to adjust more easily to information 

and allows traders to quickly capture their information advantage, resulting in greater price 

efficiency and an information shift toward the smaller-tick cash market from the futures market. 

Overall, we conclude that the tick size reduction improves market quality and the information 

environment.  
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1 Introduction

Tick size, or the minimum price increment, is an important market design feature that

influences trading strategies and market outcomes. This is particularly true for limit order

book markets, which typically rely on price and time priority rules to determine which orders

get executed first. A smaller tick size makes it easier to obtain price precedence and facilitates

price competition, thereby reducing transaction costs for those needing to trade, but also

reducing the compensation for liquidity providers (see e.g., Harris, 1994). As a result, the

interaction among market participants with varying trading strategies, needs, and incentives

gives rise to market outcomes that are specific to the chosen tick size.

The fixed income markets still use fractional prices. Although the tick size varies from

one instrument to another, there has not been a market-wide change in tick size as in equity

markets. Only recently, BrokerTec — an interdealer platform for trading benchmark Treasury

securities — halved the tick size on the on-the-run 2-year note, from 1/4 to 1/8 of a 32nd

of a point (where a point equals one percent of par), starting with the November 19, 2018

trading day.1 Prior to this event, the tick size on the benchmark 2-, 3-, and 5-year notes had

been 1/4 of a 32nd since the platform’s inception in 2000, and 1/2 of a 32nd on the longer

maturities (7, 10, and 30 years). We note that a similar tick size reduction on the parallel

Treasury futures market does not occur until eight weeks later, on January 13, 2019.

This market change presents a valuable opportunity to shed light on the impact of tick

size in a high-speed trading environment, and in one of the most important financial markets.

Treasury securities are risk-free assets that serve as pricing benchmarks for other securities

and the base of discount rates for asset valuation. They also serve as collateral and hedging

instruments in numerous financial transactions. Moreover, they are key instruments of

monetary policy and stores of value, especially during times of market turmoil. Therefore,

1The new tick size was adopted by Nasdaq Fixed Income (formerly eSpeed), another major Treasury
interdealer trading platform, at the same time. To put the new tick size in perspective and facilitate
comparison with other asset classes, 1/8 of a 32nd is equivalent to a tick size of 0.390625 cents per $100 par.
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a change in market design that has the potential of affecting market liquidity and price

discovery is of great importance to a wide range of stakeholders, including market participants

and policy makers.

Our paper contributes to the renewed discussion of tick size following the U.S. Securities

and Exchange Commission’s recent tick size pilot program.2 After the blanket decimalization

of tick size in equity markets in 2001, many stocks experienced improved market liquidity

and efficiency.3 However, it also became apparent that too small a tick size can fail to attract

sufficient interest from liquidity providers,4 thereby harming market liquidity — especially for

smaller and emerging companies — and hindering firms’ access to capital. A key takeaway

is that the effects of a tick size change can vary across different trader types and market

structures (see also Goettler et al., 2005 and Werner et al., 2019). While the pilot program is

designed to assess the effects of tick size on market quality for small, illiquid stocks, we bring

to light the effects of tick size on market quality for Treasury securities, which are on the

other end of the liquidity spectrum and arguably more liquid than even the largest, most

liquid stocks. Therefore, our study helps paint a more complete picture of the effects of tick

size on financial markets and contributes the first empirical analysis of a tick size change in

the U.S. Treasury securities market.5

2The pilot program increased the minimum price increment from 1 to 5 cents for 1200 randomly chosen
(small) stocks, staggered over the month of October 2016, and running for two years. A number of studies
examine the program. Some focus on the change in market quality and trading activity after the tick size
increase and find that liquidity provision improved but trading volume worsened as the transaction costs
increased (e.g., Hansen et al., 2017, Rindi and Werner, 2019, Griffith and Roseman, 2019). Albuquerque et al.
(2018) find that the larger tick size resulted in value loss for the affected firms. Comerton-Forde et al. (2019)
document a significant shift to inverted fee venues to negate the adverse impact of the tick size increase.
Likewise, Bartlett and McCrary (2019) find migration to midpoint trading in dark venues.

3U.S. equity markets transitioned from a 1/8 dollar tick size to 1/16 in 1997, and from 1/16 to a penny
in 2001. Many studies find evidence that a smaller tick size leads to lower bid-ask spreads and transaction
costs (e.g., Harris 1994, Ahn et al. 1996, Bacidore 1997, Porter and Weaver 1997, and Bessembinder 2000),
lower adverse selection costs (e.g., Chakravarty et al. 2005), greater trading volume (e.g., Chordia and
Subrahmanyam 1995), and improved price efficiency (e.g., Chung and Chuwonganant 2002 and Zhao and
Chung 2006).

4Some studies find that a smaller tick size does not improve market depth (e.g., Ahn et al. 1996,
Bessembinder 2000, and Biais et al. 2005). Other studies even find that market depth is lower or can be
lower for certain stocks (e.g., Harris 1994, Bacidore 1997, Porter and Weaver 1997, Goldstein and Kavajecz
2000, Jones and Lipson 2001, and Aitken and Comerton-Forde 2005).

5Alampieski and Lepone (2009) analyze the impact of a tick size reduction in the Australian Treasury
futures market and find that the reduction improves liquidity and reduces execution costs.
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We also add new evidence on how the minimum price increment affects the information

environment in a financial market. This has not been easy for studies in equity markets,

because the tick size of a given security has been implemented uniformly across exchanges.

As a result, a parallel counterfactual does not exist to permit inferences of informed traders’

strategies when different tick sizes are available. The Treasury market allows for such an

exercise given the parallel existence of the cash and futures markets, which are both highly

liquid and tightly linked through arbitrage.6 The fact that the tick size change occurs in a

staggered manner — first in the cash market and then in the futures market eight weeks

later — allows us to observe whether the smaller tick size in one market helps attract more

information to that market.

In this regard, our paper is related to a study by Chaboud et al. (2019) who exploit a

similar setup around a tick size reduction and subsequent reversal in the spot foreign exchange

market to study the effect of tick size on HFTs’ liquidity demanding and supplying strategies.

However, in contrast to Chaboud et al. (2019), who find a less informative spot market

following its tick size reduction, our evidence indicates that the finer pricing grid results in

greater concentration of informed traders in the cash market in which small information

signals can be exploited quickly. The divergence of conclusions between the two studies

enriches the empirical literature on tick size and stresses the importance of taking into account

specific features of each market in interpreting results.

Studying the effects of tick size through the lens of the Treasury market has additional

advantages. To date, understanding of the effects of tick size on market quality is based on

the large literature that examines the history of tick size changes in U.S. equity markets.

However, it is difficult to cleanly assess the effects of tick size given the complexity of equity

market structure. U.S. equity markets are highly fragmented with diverse fee structures

and other market design features intended to attract order flow (see, e.g., Comerton-Forde

et al., 2019). Adding to the complexity is the availability of dark pool trading venues (see,

6Single stock futures on a select number of stocks exist, but they are not comparable in liquidity to the
underlying stocks, thereby restricting the ability of traders to move between markets.
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e.g., Farley et al. (2018) and references therein) and the agency problems associated with

order handling and routing decisions (see, e.g., Anand et al., 2019 and references therein).

Therefore, the documented effects of a tick size change are likely confounded by these frictions

(see also Bartlett and McCrary, 2019 who observe that the SEC tick size increase pilot does

not achieve the full potential of improving liquidity for small cap stocks). In contrast, we

have a much cleaner setting in the Treasury market in which: 1) the market is concentrated

rather than fragmented, with BrokerTec (the platform studied) accounting for roughly 80%

of electronic interdealer market activities, 2) there is no separate dark pool trading venue,

and 3) the fee structure on BrokerTec does not discriminate between liquidity consumption

and provision. Therefore, the impact of a tick size change can manifest in market outcome

variables in a straightforward fashion, allowing us to quantify the effects more cleanly and

test relevant theories often built on assumptions of minimal market frictions.

Exploiting the fact that the tick size reduction applies only to the 2-year note and not

other benchmark Treasury securities, we employ difference-in-differences (DiD) regressions to

identify the effects of tick size on spreads, trading activity, liquidity provision, price efficiency,

and the information environment, while controlling for other factors that might explain

changes in these market outcomes. Because the previous tick size was constraining (see

Fleming et al., 2018), the reduction relaxes this constraint and enables traders to compete

more easily on price. We observe an almost one-for-one reduction in the bid-ask spread. The

spread faced by large trades also narrows significantly. Clearly, the smaller tick size has

brought down transaction costs for market participants, whether large or small.

With lower transaction costs, it is not surprising to observe increased trading volume.

The increase in trading volume is driven by an even larger increase in the frequency of

trades, which are smaller than before, on average. The lower transaction costs also imply

lower profitability from liquidity provision and raise concerns about a possible reduction in

liquidity supply. Harris (1997) predicts that limit order traders might switch to using market

orders (given that the cost of doing so is smaller), reduce their liquidity provision, and have
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a greater incentive to hide their order sizes to avoid attracting competition. To some extent,

this prediction appears to bear out in the data: market depth at the new inside tier, the

top 5 tiers, and collectively across all price levels all decline. However, given the increased

granularity of the pricing grid after the tick size reduction, a fairer comparison is on depth

within a given fixed distance from the midpoint. This comparison indicates that cumulative

depth within 2/256 (the pre-change tick size) of the best bid-ask midpoint is comparable

with, or even slightly higher than, the pre-change inside depth. Moreover, this level of depth

continues to be many fold higher than the size of most trades. Accordingly, the lower market

depth away from the top of the book does not significantly affect trading.

Our analysis also indicates a clear improvement in price efficiency. We first establish

that the smaller tick reduces price inertia, with price moves more frequent after the tick size

reduction. Despite the increased frequency of price moves, realized volatility decreases due to

a shrinking microstructure noise component attributable to price discreteness, evidenced by

a significant decrease in pricing errors. Standard measures of price efficiency, such as high

frequency return autocorrelation and the variance ratio, all point to the price process getting

closer to its efficient random walk benchmark. We conclude that, with a smaller tick size,

the observed price process becomes a more precise proxy of the underlying value process.

A more fundamental question with respect to price discovery is whether a smaller tick

size encourages or deters information acquisition. That is, instead of asking whether the

smaller tick size improves the timely incorporation of existing information into price (it does),

we ask whether the smaller tick size increases the amount of information in the market.

Anshuman and Kalay (1998) posit that a lower cost of price discreteness raises the net gain

from acquiring and trading on information. However, Davila and Parlatore (2019) argue that

a change in trading costs can increase or decrease price informativeness, depending on the

demand sensitivity to trading costs of informed traders versus liquidity traders. Therefore,

whether the smaller tick size is informationally beneficial is an empirical question. We find

that the smaller tick size does not result in increased information acquisition. Importantly,
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however, there is strong evidence of an information shift toward the cash market after its tick

size is lowered, illustrating the preference of informed participants for less price discreteness.

Furthermore, we find that the informational advantage of the smaller tick size in the cash

market is present only at very high frequencies (less than one minute) and diminishes with

longer return horizons. These findings support the notion that being informed is synonymous

with being fast in a high frequency market.

While many of our findings are consistent with evidence documented for equity markets,

our study also uncovers new and different results. We find that the tick size reduction does

not adversely affect the cost of large trades and does not discourage liquidity provision at

the top of the book. In addition, unique to our work is the opportunity to observe the

preference of informed traders who concurrently face two tick regimes and who evidently

prefer a smaller tick size. Intuitively, the smaller tick allows informed traders to act on even

small information signals, which would not have been profitable in a larger tick environment.

We conclude that tick size plays an important role in directing information flow to where

it is most cost effective and feasible to exploit value signals, even though it does little to

encourage information acquisition.

The paper proceeds as follows. Section 2 provides key institutional details about the

U.S. Treasury securities market and describes the data. We present a univariate analysis of

key market quality metrics around the tick size reduction in Section 3. Section 4 reports

multivariate analysis results. Section 5 analyzes the role of tick size on information acquisition

and price discovery based on a joint analysis of the cash and futures markets. Section 6

provides concluding remarks and outlines plans for future work.

2 Institutional Details and Data

U.S. Treasury securities are debt instruments of the U.S. government issued through

public auctions and subsequently traded in the secondary market. The secondary market

is structured as a multiple dealer, over-the-counter market, in which the dealers trade with
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their customers and one another. Inter-dealer trading prior to 1999 was based on a network

of voice-assisted brokers. Fully electronic trading started in 1999 with the introduction of

the eSpeed platform, followed by the BrokerTec platform in 2000. Nearly all inter-dealer

trading of on-the-run U.S. coupon securities occurs via electronic platforms among which

BrokerTec accounts for about 80% of trading.7 As of November 2, 2018, BrokerTec is under

the ownership of the CME Group, which operates the Treasury futures market.

Historically, participation in the two largest electronic platforms was limited to dealers.

However, as the platforms opened to other professional traders in recent years, the presence

of non-dealer participants increased significantly. According to the Joint Staff Report (2015),

principal trading firms (PTFs) account for 56% of trading volume in the on-the-run 10-year

note on BrokerTec, compared to bank-dealers’ share of 35%.8

Our sample consists of the five on-the-run Treasury notes, with the 2-year note being the

treatment security and the 3-, 5-, 7-, and 10-year notes the control securities. We exclude the

30-year bond due to the vast difference in duration and perhaps clientele from the 2-year

note. The sample period for most of the papers analyses is from Monday, September 24,

2018 to Friday, January 11, 2019, which covers the eight weeks before and eight weeks after

the 2-year note’s tick size reduction starting on Monday, November 19, 2018. We end the

sample on January 11, 2019 because the tick size reduction in the Treasury futures market

on January 14, 2019 can contaminate the effects of the tick size reduction in the cash market.

Our sample has 74 trading days in total, of which 38 are in the pre- and 36 are in the

7Electronic brokers account for 87% of trading in on-the-run coupon securities that oc-
curs through interdealer brokers; see https://libertystreeteconomics.newyorkfed.org/2018/11/

breaking-down-trace-volumes-further.html. According to Greenwich Associates, based on 2017 Q4
data, BrokerTec’s market share in the electronic inter-dealer market is 80%, that of Nasdaq Fixed Income
(formerly eSpeed) is 11%, and the rest of the market is split among Dealerweb, LiquidityEdge, FENICS, and
dealer-owned internalization/crossing platforms. For more details, see https://www.greenwich.com/blog/

does-cme-own-us-treasury-market.
8The remaining 9% is split among non-bank dealers and hedge funds. Statistics are based on data from

April 2-17, 2014.
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post-change subsample.9 Note that the sample period includes the last five trading days of

December 2018 (i.e., from December 24, 2018 until December 31, 2018, inclusive) during

which financial markets experienced high volatility in addition to the usual year-end decline

in trading activity and liquidity. In our regression analysis, we include a dummy for this

period to absorb abnormal year-end effects so as not to confound the effects of the tick size

reduction.

Our analysis is based on order message data from the BrokerTec platform, which operates

as a limit order book market. Trading spans 22-23 hours per day during the week, commencing

around the start of the trading day in Tokyo (at 18:30 EST or 19:30 EDT the previous day

in the U.S.) and concluding with the end of the trading day in New York (at 17:30 ET; see

Fleming 1997). All order messages sent to the platform are captured and time-stamped to

the microsecond. Each order specifies a quantity and a price, and whether it is for purchase

or sale. Aggressive orders are typically priced at the prevailing best price on the opposite side

and are immediately executed.10 Passive orders are queued in the order book according to

price and time priority until executed or cancelled. Even though the market operates almost

round the clock, the majority of activity occurs during New York trading hours. Thus, to

avoid the effects of potential irregularities during the overnight hours and around closing

time, we use data from 7:30 to 17:00 ET each day in our main analysis.11

From the order message data, we reconstruct the limit order book by accumulating order

changes at the appropriate price tiers from the beginning of each trading day. This results in

a tick-by-tick dataset with market depths measured in millions of dollars (par value), and

prices reported in 256ths of one percent of par. We also extract the complete transaction

9The bond markets were closed on the other six weekdays during our sample period, including five holidays
and December 5, 2018 on which financial markets were closed in honor of former President George H.W.
Bush; see https://www.sifma.org/resources/general/holiday-schedule/

10Aggressive orders are rarely priced beyond the best price on the opposite side because of the availability
of the workup protocol, which allows market participants to transact additional quantities at an existing
trade price. See Fleming and Nguyen (2018) for further details. Also note that we use the terms “aggressive
order” and “market order” interchangeably in this paper.

11Our end point of 17:00 is chosen also to ensure consistency in analysis involving both the cash and futures
markets, because Treasury futures trading ends at 17:00 ET.
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history for each security. The data clearly indicates which side initiates a given trade, the

traded quantity and price, and whether a trade is executed during a workup.

Data on 2-, 5-, and 10-year Treasury futures contracts are from Thomson Reuters Tick

History.12 The futures data are at the one-second frequency, and include last trade price,

best bid and ask prices, number of trades, and trading volume. Given the limited scope of

the futures data, we can only compute trading activity measures and price-based liquidity

measures. As is standard in the literature, we use the front-month contract (i.e., the contract

with the closest maturity) for each tenor until the first day of the delivery month, at which

point we switch to using data on the next maturity contract.13

While the paper focuses on the tick size reduction event in the cash market, the tick size

reduction in the futures market on January 13, 2019 provides a unique opportunity to study

the role of tick size and information in the cash versus the futures markets through the two

tick size events. Thus, for our cash-futures analysis, we extend the sample to include the

eight weeks following the futures tick size change, i.e., until March 8, 2019. On days when

either or both of the markets close early, we truncate the data at the earlier closing time.14

3 Univariate Analysis of Market Quality Changes

We first provide summary statistics of important market quality metrics before and after

the 2-year note’s tick size reduction. These metrics are computed from intraday data (mostly

at the 1-minute frequency unless otherwise noted) and then aggregated to the daily level. The

aggregation is by simple averaging for stock variables (such as spreads and depths) and by

summing for flow variables (such as trading volume) unless otherwise noted. From the daily

statistics, we compute the pre- and post-change averages, perform t-tests on the differences,

12There are not futures contracts on the 3- and 7-year Treasury notes.
13Front-month contracts are typically the most liquid contracts until just before the first day of the delivery

month when traders roll over their interests to the next maturity contracts.
14During our sample period, the cash market closes early at 14:00 ET on 11/23/2018, 12/24/2018, and

12/31/2018. The future market closes early at 13:15 ET on the first two dates, but closes at the regular time
on the last date. We therefore truncate the data at 13:15 and 14:00 respectively.
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and report the results in Table 1. Time series plots of several key metrics are in Figures

(1)–(5).

We start with measures of transaction costs. The inside bid-ask spread (BAS) is the

difference between the best ask price and the best bid price. We also compute the bid-ask

spread for executing a large trade (BAS L), where “large” is defined by the 99th percentile

of the trade size distribution prior to the tick size change ($50 million).15 To capture how

constraining the tick size is, we compute Pct1Tick, the percent of time the bid-ask spread is

at one tick (which is 2/256 before and 1/256 after).

Panel A of Figure 1 shows an immediate drop in spreads following the tick size reduction.

The inside bid-ask spread decreases by almost one half (45% decrease per Table 1) to just

slightly above the new tick size. The bid-ask spread faced by large trades BAS L decreases

as well, but to a lesser extent than that of small trades. The plot of Pct1Tick in Panel B

indicates that the new tick size is less constraining. As reported in Table 1, the fraction of

time the spread equals 1 tick decreases from roughly 99% for the old tick to about 90% for

the new tick. Overall, the evidence suggests that the market for the 2-year note is liquid

enough such that a reduction in the tick size does not adversely affect the cost of executing

large trades, and that a reduction in the tick size slightly eases the constraint on the spread.

Next, we measure liquidity demand and supply. For liquidity demand, TV and Tfreq are

the total trading volume and the total number of trades in a given time interval, supplemented

by the average trade size (AV SZ). To gain further details on the trade size distribution, we

report also the fraction of trades in the two smallest size categories: MinSz for $1 million

trades and Sz2m for $2 million trades.16

The pattern of trading activity plotted in Figure 2 indicates an upward trend in both

trading volume and trading frequency after the tick size reduction. Table 1 shows that the

15In multivariate analyses in Section 4, we compute BAS L for each security in the control group using
the 99th percentile of the trade size distribution of each security, which is $33, $23, $13, and $20 million for
the 3-, 5-, 7-, and 10-year notes respectively.

16The minimum order size and minimum quantity increment on BrokerTec is $1 million par.
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daily trading volume in the 2-year note increases by about $5.7 billion, or 28%. The number

of trades increases an even larger 84%. Consistent with both facts, the average trade size

decreases by about 32% from roughly $8.1 million to about $5.5 million. It is curious to

observe that the decrease in the average trade size is not driven by an increased use of the

smallest possible orders. The fraction of $1 million-sized trades remains quite similar after

the event. Panel A of Figure 3 compares the distributions of trade size before and after the

tick size reduction, and reveals a sharply increased prevalence of $2 million trades after the

tick size reduction. Moreover, the prevalence of extreme trade sizes (defined as trades of $20

million and above) decreases, contributing to the lower average trade size.

We measure liquidity supply by market depth (average of bid and ask depth) at various

levels in the book. D1 and D5 are depth at the inside tier and at the best five tiers

respectively.17 To facilitate a fairer comparison of the change in depth when the market

transitions to a finer pricing grid, we compute (for the 2-year note only) D1A and D5A as

the cumulative depth within one pre-change tick (2/256) and five pre-change ticks (10/256)

of the bid-ask midpoint respectively (corresponding to two and 10 post-change ticks). Thus,

D1A and D5A measure the amount of liquidity supply at a fixed spread cost to liquidity

demanders and help isolate the change in quantity from the effect of the increased granularity

of the price grid. To provide a complete view of the change in liquidity supply between the

two tick regimes, we also compute DT , the total depth across the whole book.

Figure 4 shows that market depth at the inside tier (D1) and at the best five tiers (D5)

drops abruptly. However, if one compares cumulative depth within one pre-change tick (D1A)

and five pre-change ticks of the midpoint (D5A), the drop in depth is much less dramatic.

The lower post-change averages of D1A and D5A shown in Table 1 are due to these measures

plunging during the holiday week in the post-change sample. Finally, the total depth across

the book is considerably lower after the tick size change (and this is true even excluding the

abnormally low depth level during the holiday week).

17Although market participants with API access to the platform can view the complete order book, many
market participants can only see the best five tiers within the live orderbook as they trade.
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Another way to evaluate market liquidity is through price impact. A small price impact

indicates that liquidity supply is sufficient to absorb trading demand without significantly

affecting price. Here, we measure price impact (PI V ) by the slope coefficient from the

regression of one-minute bid-ask midpoint changes on net order flow over the same minute.

We compute net order flow as the difference between buyer-initiated and seller-initiated trade

volume. We scale the coefficient so that it reflects the price impact in basis points (bps) per

$100 million in net order flow. The price impact in the post period is higher, but the change

is not statistically significant despite the reduction in market depth discussed above.

We next compute variables that capture order exposure strategies. The first set involves

the use of workups. Workups are helpful for concealing the intentions of traders who need

to move large blocks through the market. The protocol allows traders to initiate a trade

with a small initial size and subsequently work up the volume subject to available liquidity

(displayed and latent). We measure workup usage by the fraction of trading activity that

occurs in workups in terms of count (WKUP N) and volume (WKUP V ). Both measures

show a decrease after the tick size reduction (although only one decrease is statistically

significant).

The second set of variables that captures order exposure strategies concerns the charac-

teristics of limit orders. LOSZ is the average limit order size and NLO is the total number

of limit orders submitted each day. Like trades, the frequency of limit order submission

rises sharply after the tick size change, by about 30%, and the limit order size decreases

(albeit slightly). However, limit orders are also more fleeting: the median time to cancellation

Time2Can on a given day shortens by about 60% to 1.4 seconds in the post period. We also

compute the fraction of limit orders in the two smallest possible size categories: MinSz LO

and Sz2m LO are the fraction of $1 million and $2 million limit orders, respectively. Both

categories become more prevalent in the post period, contributing to the lower average order

size (see also Panel B of Figure 3).
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We next examine how the smaller tick size affects the flexibility and efficiency of prices,

with the following measures. ZeroBA is the fraction of zero one-minute midpoint returns

during a trading day. This measure captures the extent of price inertia. If quote revisions

are more frequent and price competition is more intense with a smaller tick size, we should

see this fraction decrease. ZeroT is computed similarly, except that the returns are based

on the last trade price of each minute. Another measure of price variation is the daily

realized volatility (RV ) based on one-minute changes in log midpoint price, i.e., RV =√∑N
t=1[ln(pt)− ln(pt−1)]2.

We compute the following measures of price efficiency. AR30 is the absolute autocorrelation

of 30-second midpoint returns (so that it is not contaminated by the bid ask bounce associated

with trade prices). V R10s,1m is the ratio of six times the daily variance of 10-second returns to

that of 1-minute returns. The efficient price process is a random walk with zero autocorrelation

and a unit variance ratio. Thus, a reduction in the magnitude of the autocorrelation or

the variance ratio approaching 1 indicates that the observed price process gets closer to its

random walk benchmark. In our tests, we use |V R− 1| because we are interested in seeing

whether the variance ratio gets closer to 1 after the tick size change.

The third price efficiency measure is the standard deviation of pricing errors, PErr,

developed by Hasbrouck (1993). He decomposes observed (log) price pt into an efficient

component mt and a zero-mean pricing error st: pt = mt + st. The standard deviation of

pricing errors indicates how precise the observed price reflects the efficient price: a smaller

PErr implies a more efficient (observed) price. To perform the decomposition and estimate

PErr, we follow Hasbrouck (1993) and estimate a vector autoregression (VAR) with five

lags: rt
xt

 =
5∑

j=1

Aj

rt−j
xt−j

 + εt (1)

where rt is the trade-by-trade log return, and xt is a vector of three trade-related variables: 1)

trade sign indicator (1 for buyer-initiated trades and −1 for seller-initiated trades), 2) signed
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volume (positive trade size for buyer-initiated trades and negative trade size for seller-initiated

trades), and 3) signed square root of volume (to capture any non-linearity in the trade-return

relationship). From the VAR model, in order to identify the decomposition model, we impose

Beveridge and Nelson (1981)’s restriction that st is entirely correlated with lag returns and

trade variables and compute a lower bound for the variance of st as in Equation (16) in

Hasbrouck (1993). We estimate the VAR model and compute PErr separately for each day.

Figure 5 shows the patterns of the fraction of zero-return intervals (ZeroBA), realized

volatility (RV ), return autocorrelation (|AR30|), and the standard deviation of intraday

pricing errors (PErr). The top left panel for ZeroBA shows a significant drop in price inertia:

prices move more frequently on the post-change finer pricing grid and thus can respond to

even small information shocks, thereby more accurately reflecting the true price. Supporting

the notion that more frequent price updating implies a more efficient price process, there is no

accompanied increase in price volatility (RV ), as shown in the top right panel. The decline

in the absolute value of 30-second return autocorrelation shown in the bottom left panel

provides further indication of a more efficient price process.18 Moreover, the PErr plot shows

an immediate drop in the magnitude of pricing errors (bottom right panel) suggesting that

the observed price is closer to the efficient price. Table 1 provides supporting t-test results

on these variables and other price efficiency measures, all indicating a clear improvement in

price efficiency.

4 Multivariate Analysis of Market Quality Changes

The minimum price increment in a limit order market affects the economic incentives

of participants in demanding and supplying liquidity. Tension exists between the need for

greater price competition versus the sufficiency of incentives to encourage liquidity provision.

Traders demanding liquidity (by submitting market orders) benefit from the increased price

competition enabled by a smaller tick size. In contrast, traders providing liquidity (by

18For our purpose, we are interested in the magnitude of the return autocorrelation, but note that in our
sample, the autocorrelation is always negative. It becomes less negative in the post-change period.
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submitting limit orders) suffer from the lower profit of such activity and the increased

probability of being price-improved by other traders when the tick size is smaller. In this

section, we investigate how the interactions of these opposing incentives give rise to changes

in liquidity demand, liquidity supply, order strategies, and price efficiency.

The univariate analysis presented in the previous section provides some initial evidence

on how market liquidity and price quality of the 2-year note change after its tick size is

halved. To better ascertain that these changes are attributable to the tick size change, we

perform a multivariate analysis that controls for changing market conditions and uses other

Treasury securities without any tick size change for identification. We describe our empirical

methodology and results below.

4.1 Empirical Methodology

The main empirical methodology is difference-in-differences regressions on each market

quality metric, estimated on a panel of data for all on-the-run nominal Treasury notes (2-, 3-,

5-, 7-, and 10-year securities):

Xi,t = αi + β1Postt + β2Postt × Treatmenti + θ′Zi,t + εi,t, (2)

where Treatment is an indicator variable equal to 1 for the 2-year note and 0 otherwise,

bevePost is an indicator variable equal to 1 for the period since the tick size reduction on

November 19, 2018, i provides security indexing, t provides day indexing, αi captures security

fixed effects, and Zi,t are variables to control for market conditions and security-specific

sensitivity to such conditions. The particular control variables we include are: 1) market

wide volatility (as measured by the MOV E index) interacted with security dummies to allow

for security-specific responses to changing market conditions, 2) day-of-week dummies to

absorb within-week seasonality, and 3) a holiday dummy for the last five trading days of 2018.

To avoid multicollinearity (between the 2-year fixed effect and the Treatment indicator), we
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drop the Treatment indicator from the regression model and include only its interaction

with the Post indicator. The causal effect of the tick size reduction is reflected in β2.

Maximizing the regression sample size by including all Treasury notes is not without

cost. A possible concern is that the other notes are not perfect controls for the 2-year note,

especially the 7- and 10-year notes, which have a substantially longer duration and a tick size

that is twice as large as the pre-change tick size of the 2-year note. Thus, we also estimate

the regressions using only the 3-year note, and the 3-year and 5-year notes, as controls to

ensure our results are robust. These shorter-term notes are more similar to the 2-year note

in duration and liquidity conditions and thus the assumption of parallel trends is more likely

to hold.

4.2 Effects of Tick Size on Liquidity Demand

We hypothesize that a smaller tick size reduces the bid-ask spread, which in turn encourages

greater consumption of liquidity. We note that the effect of the tick size on the bid-ask

spread only prevails if the pre-change tick size is constraining, which is indeed the case for

the 2-year note. Fleming et al. (2018) show that the note’s bid-ask spread equals one tick

nearly 95% of the time, based on the 2010-2011 sample period. Figure 1 and Table 1 also

provide ample evidence for the tightness of the pre-change tick in late 2018. The tick size

reduction relaxes the constraint and should enable traders to compete more easily on price,

resulting in a tighter bid-ask spread (see Harris, 1997).

A direct consequence of a tighter bid-ask spread is lower transaction costs for aggressive

orders. Goettler et al. (2005) show theoretically that a smaller tick size improves welfare for

market order submitters at the expense of limit order submitters. Consequently, some traders

who otherwise would have submitted limit orders may choose market orders instead, leading

to higher trading volume and frequency. The empirical literature generally finds consistent

evidence, with a smaller tick size benefiting liquidity demanders (see e.g., Harris, 1994, Ahn
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et al., 1996, Bacidore, 1997, Porter and Weaver, 1997, and Bessembinder, 2000) or vice versa

(e.g., Albuquerque et al., 2018).

To evaluate the view that a smaller tick size is beneficial to demanders of liquidity, we

estimate the DiD regressions for a multitude of variables capturing liquidity demand. Table

2 contains the coefficient estimates from these regressions. Each column is for one outcome

variable, and the coefficient on Post x Treatment reveals the impact of the tick size reduction

on that outcome variable. Security fixed effects, their interactions with the MOV E index,

and day-of-week effects are included in the model but not reported for brevity.

Consistent with our descriptive statistics in section 3, the bid-ask spread decreases by

nearly a full 1/256 (i.e., nearly one-for-one with the tick size change). The bid-ask spread

applicable for large trades also decreases significantly, by roughly 0.9/256. Meanwhile, the

tightness of spreads around the tick size, as captured by Pct1Tick, lessens. The coefficient

indicates a reduction of nearly seven percentage points (from a pre-change level of about 99%)

in the percent of times the spread equals one tick. That said, the bid-ask spread remains

tight around the new tick size, being at exactly one tick over 90% of the time.

With transaction costs being cut in half, it is not surprising to see a sizable and positive

impact on liquidity demand. The number of trades and the total daily trading volume both

increase significantly, by about 56% and 27% respectively. The increase in trade frequency

exceeds the increase in trading volume, indicating that trades occur in smaller size. The

Post×Treatment coefficient on AV SZ suggests that the tick size change reduces the average

trade size by $2 million. In untabulated tests into how the distribution of trade size has

changed, we find that the smaller average trade size in the post period is driven by a lower

prevalence of extremely large trades and a greater prevalence of small ($2 million), but not

the smallest ($1 million), trades.

To check the robustness of our findings, we report in the lower panel of Table 2 the

coefficient on Post x Treatment if we include only the 3-year note, or the 3- and 5-year notes,
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as the control group. The results are highly similar, suggesting that our main results are not

compromised by the control group selection.

4.3 Effects of Tick Size on Liquidity Supply

We next consider the liquidity supply side. Traders who submit limit orders provide

liquidity to the market. They trade off the speed of execution and the exposure of trading

intention for earning the bid-ask spread (see Harris 1997). If narrower bid-ask spreads prevail

after the tick size reduction, then the profitability of the limit order submission strategy is

reduced. Goettler et al. (2005) predict a general reduction in depth because fewer traders are

willing to provide liquidity given the lower profitability. Furthermore, the fraction of market

order traders increases relative to that of limit order traders, resulting in faster execution

of limit orders and consequently fewer limit orders in the book. However, while Biais et al.

(2005) also predict that depth at each price on the new pricing grid is lower, they contend

that this is merely a redistribution of cumulative market depth on a finer pricing grid and

that the total depth should not change.

More recently, Werner et al. (2019) propose a new model of limit order markets with

less restrictive assumptions than that in Goettler et al. (2005). They find that traders do

not necessarily switch from limit orders to market orders following a tick size reduction as

in Goettler et al. (2005). Instead, in an already liquid market, a reduction in the tick size

increases competition among liquidity providers, resulting in increased aggregate depth. This

prediction is opposite to the prediction in Goettler et al. (2005), although both models predict

a narrower spread and lower inside depth.

Empirically, studies by Harris (1994), Bacidore (1997), Porter and Weaver (1997), Gold-

stein and Kavajecz (2000), Jones and Lipson (2001), and Bacidore et al. (2003) all document

an overall reduction in depth, not just the depth at the new, narrower bid-ask spread. The

evidence in these studies suggests that limit order traders reduce their liquidity provision
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(relative to the liquidity consumption by market order traders), rather than just redistributing

liquidity on the new finer pricing grid.

With our data on the full limit order book, we are able to analyze the nuances in the

response of liquidity supply to tick size. That is, we test whether liquidity supply decreases

1) at each tier on the new pricing grid, 2) at a fixed distance from the best bid-ask midpoint,

and 3) across the whole book. Our findings can therefore contribute to the above literature by

delineating whether there is just a redistribution of depth in the book or an overall reduction

in liquidity. Table 3 presents the causal impact of the smaller tick size on liquidity provision.

The main results are based on the level of depth, but we also estimate the regressions using

logged depth and report the corresponding results in the lower panel.

If we look at depth at a specific tier (or tiers) on the new pricing grid, the evidence does

indicate a significant reduction as predicted by theory. Specifically, depth at the inside tier

(D1) and the top five tiers (D5) drop by roughly $537 million and $2.2 billion – a significant

drop in liquidity supply. The log specification indicates a 96% and 49% drop, respectively.

This result is hardly surprising given that the distance between the best price (likewise, the

fifth best price) and the midpoint is shorter in the smaller tick regime.

However, if we look at depth at a fixed price distance from the midpoint, the evidence

is different. Depth available within 2/256th (the old tick) of the midpoint (D1A) actually

increases (by roughly $94 million), controlling for market developments and the time variation

in market depth of other securities. Cumulative depth within five pre-change ticks (equivalent

to 10 post-change ticks) of the midpoint (D5A) declines (by roughly $340 million), but unlike

the D1A increase that is robust, this decline is not. The coefficient on Post× Treatment

is not significant if the regression includes only the most comparable securities (the 3- and

5-year notes) as the control group. Likewise, the log specification reported in the lower panel

indicates that the decline in percentage terms is not significant. Nevertheless, we do find a

large (and robust) reduction in total depth across the whole book, by $2.9 billion or 29%.
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The last column of Table 3 reveals the impact of the tick size reduction on PI V – the

price impact of trades. The coefficient on Post× Treatment is negative but not statistically

significant, indicating that the post-change market depth still has similar ability to absorb

trading demand. Compared to just the 3- and the 3- and 5-year notes, the price impact

of the 2-year note appears lower, but the estimate is only weakly significant. In terms of

percentage change, the decline is not statistically different from zero.

Overall, despite the lower liquidity supply at each price on the new pricing grid and across

the whole book, the amount of liquidity available at or near the top of the book within a fixed

price distance from the midpoint remains comparable. In fact, the increased competition

induced by the smaller tick size seems to push greater liquidity closer to the top of the

book. This liquidity is more than sufficient to absorb easily even large trades, resulting in no

significant change in price impact. The post-change depth at the inside tier is $237 million

and depth within 2/256 of the bid-ask midpoint is $792 million per Table 1, both of which

are many times higher than the 99th percentile of the trade size distribution ($50 million).

The results imply that traders with large trading interests are not adversely affected by the

reduced liquidity brought about by the tick size reduction.

4.4 Effects of Tick Size on Order Strategies

To supplement our analysis of the quantity of liquidity presented above, we zoom in at

the order level to obtain more detailed insight into whether the tick size reduction alters

order strategies with respect to sizing, frequency, and exposure. As a natural response to the

increased risk of attracting competition in a smaller tick size environment, traders are likely

to reduce their order exposure through the use of less transparent order types and/or through

a reduction in order size. The issue of order exposure strategies varying with tick size is

extensively discussed in Harris (1994, 1996, 1997). Empirically, Harris (1996) investigates the

unconditional relation between order exposure and tick size using data from the Paris Bourse

and the Toronto Stock Exchange, and finds that traders are more likely to display orders

when the tick size is larger. Likewise, Bacidore et al. (2003) find that traders reduce limit
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order size following the NYSE’s decimalization. Based on this earlier work, we expect to see

an increase in the use of less transparent order types and smaller sized orders.

On the BrokerTec platform, less transparent order types include orders submitted in

workups and iceberg orders. Fleming and Nguyen (2018) report that orders submitted and

executed in workups make up a sizable portion of trading activity in this market. Conversely,

the percentage of iceberg orders is tiny (typically less than 0.5% of the order flow). Moreover,

BrokerTec no longer makes available data on the hidden size of iceberg orders. Therefore, we

study only workups, the more commonly used type of less transparent order.

Table 4 reports the effects of the tick size reduction on the use of workup orders in the first

two columns. Both the volume-based and count-based measures of workup activity decrease

in the smaller tick environment. While this result is contrary to the theoretical prediction

that traders have greater incentive to use less transparent order types to better cope with

increased competition, an opposing force might be at work. Fleming and Nguyen (2018)

find that traders use workups more frequently to lock in an existing trade price in volatile

markets, because subsequent price swings can result in significantly worse execution prices

for trading interests that are left over from a workup. In a smaller tick environment, this

is less of a concern (i.e., prices swing by smaller increments), thereby lessening the need to

lock in existing trade price in a workup and allowing for more flexible trading strategies. Our

evidence indicates that the latter force outweighs the motive to use workups for order exposure

management. In addition, a finer pricing grid allows prices to change more frequently, which

results in workups ending more quickly due to price changes.

Table 4 also reports the effects of the tick size reduction on limit order strategies. Unlike

the reduction in average trade size (reported in Section 4.2), the average size of limit orders

LOSZ does not change. This lack of change is robust to the definition of the control group.

Likewise, the prevalence of minimum-sized limit orders MinSz LO also does not increase.

The significant and positive coefficient of 0.034 on Post indicates that there is an overall

increase in the fraction of minimum-sized orders in the post period. Thus, the increase in
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MinSz LO of the 2-year note reported in the univariate analysis in Table 1 and Figure 3 is

in line with this general trend and not due to the tick size change.

In our robustness analysis reported at the bottom of Table 4, the fraction of minimum-sized

limit orders actually decreases when we benchmark the 2-year note with its close controls

(the 3- and 5-year notes). However, this decrease is not enough to result in a meaningful

change in the average limit order size. We conclude that the tick size change does little to

alter order sizing strategies. Aitken and Comerton-Forde (2005) also find no evidence of order

exposure changes in response to a minimum tick size change in 1995 on the Australian Stock

Exchange.

Despite no change in order sizing strategies, the evidence points to a change in the frequency

with which limit orders are submitted and cancelled. The coefficient on Post× Treatment

for LogNLO implies a 32% increase in order submissions each day. However, orders are also

cancelled much faster: the median time to cancellation shortens by roughly 1.435 seconds,

which is economically large relative to the pre-tick size change median of 3.530 seconds. We

also run the regression for the cancellation rate (i.e., the ratio of cancelled orders to submitted

orders) and find that the cancellation rate barely changes (roughly a 0.1 percentage point

decline, not tabulated). It seems that the faster cancellation speed is in line with the rise in

order submissions.

Overall, the results in this section point to a change in order strategies, not in terms of

order sizing and exposure as predicted by earlier work, but in the higher frequency of order

submissions and cancellations. This departure coincides with the rising speed of market

activities in recent years, which opens up alternative options for order exposure management,

one of which is by fast submission and cancellation of orders.

4.5 Effects of Tick Size on Price Efficiency

After addressing market liquidity, we next study whether the tick size reduction improves

price quality in terms of the speed and precision with which prices incorporate information.
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Such an improvement could derive from the greater flexibility with which prices can move

and the greater price competition enabled by a smaller tick size, and can occur even in the

absence of increased information acquisition. This is one of the insights of Goettler et al.

(2005)’s work, which concludes that a smaller tick size increases the precision of observed

prices as a proxy for the true value. Harris (1997) argues that a smaller tick size benefits

fast traders the most. They can price-improve more easily, and, with the diminished value of

time precedence, they can submit and cancel orders more frequently in response to changing

market conditions and news arrival. In consequence, we expect the observed price process to

exhibit properties that approach those of a random walk of the efficient price process.

Empirical evidence to date provides support for the above predictions. Chung and

Chuwonganant (2002) study the effect of tick size reduction on quote revisions in U.S. equity

markets, first from 1/8 to 1/16 in 1997, and then from 1/16 to 0.01 in 2001. They find that

as the tick size becomes smaller, price competition increases, and prices become less rigid and

more efficient. Consistent with this finding, Albuquerque et al. (2018)’s study on the SEC

tick size pilot program finds a decline in price efficiency for stocks whose tick size increases.

We therefore expect that price efficiency improve after the tick size reduction. We first

establish evidence of increased price updating activity. In Table 5, the coefficients on Post x

Treatment for ZeroBA and ZeroT are significantly negative. That is, the degree of price

inertia decreases significantly due to the tick size change, by roughly 15-20 percentage points.

One might argue that more frequent price moves can also be a symptom of an inefficient price

process continually searching for the correct underlying price. However, our evidence rules

out this possibility, because the increased frequency of price updates is not accompanied by a

rise in price volatility. The impact of the tick size reduction on RV is insignificant (similar

results obtain when we compute volatility from trade prices in place of midpoint prices). In

fact, when benchmarked against only the 3- and 3- and 5-year notes, the tick size reduction

actually lowers the volatility of the 2-year note. This is consistent with a shrinking market

microstructure noise component of realized volatility due to smaller price discreteness.
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The last three columns in Table 5 report our estimates of the effects of the tick size

reduction on price efficiency. We argue that a finer pricing grid allows prices to incorporate

even small information shocks and hence converge more closely to the true value. We see this

intuition borne out in all three price efficiency measures. The results indicate that return

autocorrelation is getting closer to 0 and the variance ratio closer to 1, both of which are

properties of a random walk process. The significant reduction in the standard deviation of

intraday pricing errors only strengthens this finding further. Importantly, the findings on

AR30 and PErr remain robust to our control group selection (the coefficient on the variance

ratio consistently has the correct sign but is not significant). In sum, after the tick size

change, the price process exhibits clear signs of improvement: it updates more frequently,

becomes more accurate (less pricing errors), and exhibits less return predictability.

5 Tick Size and Information

Aside from the question of whether the price becomes more efficient (it does), a separate

question is whether the tick size change alters incentives for information acquisition, resulting

in a change in the amount of information being incorporated into prices through trades.

Anshuman and Kalay (1998) argue that when the tick size is smaller, the cost of price

discreteness is lower, thereby raising the net gain from acquiring and trading on private

information. They predict that informed traders will invest more in information acquisition,

which results in more information being subsequently incorporated into prices. That said,

a countervailing force is that a smaller tick size also makes price-improving easier and less

costly, which can encourage free-riding. The prospect of being free-riden can dampen the

incentive to acquire information. Empirically, Zhao and Chung (2006) find that a tick size

reduction increases information-based trading, suggesting that the free-riding concern is not

strong enough to outweigh the information acquisition incentive.

Recent work by Davila and Parlatore (2019) posits that a change in trading costs can

increase or decrease price informativeness, depending on the nature of heterogeneity among
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market participants. More specifically, a reduction in trading costs increases (decreases) price

informativeness if the overall demand of informed traders is more (less) sensitive to trading

costs than that of liquidity traders. If market participants are ex-ante identical, trading costs

are irrelevant to price informativeness. In consequence, the effect of the tick size reduction

on information acquisition can be ambiguous and is an open empirical question.

However, testing the effects of tick size on information acquisition is challenging in practice.

In equity markets, a tick size change applies to the trading of a security across all exchanges,

depriving researchers of a counterfactual market to study whether the tick size change alters

the amount of information in the affected market. Thus, most studies of equity tick size

changes rely on cross-sectional inferences based on relative tick sizes. The SEC’s recent tick

size pilot program is carefully designed to provide a control group for stocks whose tick size is

increased during the pilot. While the control stocks are similar in market capitalization, price

level, and level of trading activity, there might be other differences that are not accounted

for and that might contaminate empirical results.

We have a unique opportunity to shed light on this challenging question. The cash

Treasury market operates alongside a highly liquid Treasury futures market. Mizrach and

Neely (2008) establish that the cash and futures markets are tightly linked through the no-

arbitrage principle. More recent work by Dobrev and Schaumburg (2018) shows that the rise

of high frequency trading in recent years further blurs the line between the cash and futures

markets. Thus, the two markets are increasingly viewed as one, sharing a common random

walk fundamental process. The variance of this process reflects the aggregate information

affecting U.S. Treasury benchmark rates. The contribution of each market to this variance in

turn indicates its share of the aggregate information.

Critical to our analysis is the fact that the tick size change occurs first in the cash market,

followed by a similar tick size change in the futures market eight weeks later. During this

eight-week period, the cash and futures instruments trade at different tick sizes, and changes

in their respective shares of information flow, controlling for prevailing market dynamics, can

25



be reasonably attributed to the tick size change. Furthermore, any reversal of the change in

information shares after the reduction in the futures market’s tick size would lend further

credibility to our findings.

We employ Hasbrouck (1995)’s methodology to extract the underlying efficient price

process from the cash and futures prices with a vector error correction model (VECM). The

variance of the efficient price changes reflects the amount of information impounded into

prices. An increase in this variance indicates increased information acquisition and vice versa.

The contribution of the cash and futures markets to this variance indicates the informational

role of each. The model is:

∆Pt = αzt−1 +
k∑

s=1

As∆Pt−s + εt (3)

where Pt =
[
P c
t , P

f
t

]′
is a vector of cash and futures prices at time t. We use the best

bid-ask midpoint price from each market. In the main analysis, we sample the prices at the

one-second frequency (the highest frequency available for futures price data) to capture price

discovery at a reasonably granular time scale, so t indexes seconds in the trading day. zt

equals the difference between cash and future prices and serves as the error correction term.

We estimate the model with 10 lags and separately for each day (allowing us to sidestep issues

related to the variation in the “cheapest-to-deliver” security underlying futures contracts).

Hasbrouck (1995)’s information share relies on two ingredients derived from the model.

The first is the permanent impact of the shock vector on the cointegrated prices in the system

(i.e., the long-run multipliers based on the moving average representation of the VECM). The

second is the vector of orthogonalized shocks, which we obtain via a Cholesky decomposition

of the covariance matrix of the residuals Ω = E[εtε
′
t]. The information share of price series j

is then computed as:

ISj =

[∑n
i=j γimij

]2
γΩγ′

, (4)
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where γ = [γ1, γ2] is the permanent price impact of innovations in the cash and futures price

series respectively, and mij is the (i, j) element of the lower triangular matrix M such that

MM ′ = Ω. The denominator is the variance of the random walk component of price changes.

Thus, the information share of a given price series is the contribution of its variation to the

total variation of the efficient price updates.

In Figure 6, we plot the information share of the cash market over the extended sample

period from September 24, 2018 to March 8, 2019, with two dashed lines marking the cash

and futures tick size events (from left to right). An increase in the cash market’s information

share is clearly visible in the 2-year tenor after the cash tick size reduction, a pattern that

does not exist in the other two tenors with unchanged tick size. When the tick size in the

futures market is halved and becomes again comparable with the tick size in the cash market,

we observe a partial reversal of the earlier increase in the cash market’s information share.

Again, such a reversal is not apparent in the other two tenors. The figure thus provides

evidence that tick size plays a role in attracting information into a market. We follow with

a formal test for the causal effects of the tick size change using the DiD regression model

specified in Equation (2) and report the results in Table 6. The dependent variables of

interest are the cash market’s information share and the efficient return variance V arRW .

Panel A shows the effects of the cash tick size change based on the 16-week window

around the event, from September 24, 2018 to January 11, 2019 — just before the futures

tick size change on January 14, 2019. The post-event eight week period is when the cash

market operates with a tick size equal to one half of the futures market tick size. During this

period, the information share of the cash market IS Cash increases by over 23 percentage

points, and this increase is robust when we use only the 5-year note as the control group.

Another notable result in Panel A is that the variance of the efficient return does not change

in a smaller tick environment. Taken together, the results in Panel A suggest that a smaller

tick size does not increase the aggregate amount of information being incorporated into the
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underlying efficient price process, but increases the informational importance of the cash

market.

To lend further credibility to the documented effects of the cash tick size reduction, we

test whether these effects reverse when the futures market reduces its tick size to the same

level as in the cash market. Panel B reports the results of this test based on the 16-week

window from November 19, 2018 to March 8, 2019 during which the cash tick size is constant.

The coefficient on Post× Treatment does indicate that the information share of the cash

market decreases by about 19 percentage points when it loses its smaller tick size advantage.

Like in Panel A, the efficient return variance does not change significantly.

Thus, it is clear from Table 6 that tick size does not affect information acquisition but

a smaller tick environment is more attractive to informed traders. The finer pricing grid

enabled by a smaller tick size makes it easier for traders to exploit their information advantage,

especially small information signals that would otherwise be unprofitable to exploit in a larger

tick environment. The greater concentration of informed traders in the cash market following

its tick size reduction is consistent with this intuition.

The nature of information in the Treasury market is worth further discussion. Different

from stocks, the concept of “private information” to be acquired does not apply to the U.S.

Treasury market. Treasury securities are driven by fundamental macroeconomic variables,

which are publicly available. Information advantage therefore comes from better capability

to process public news or proprietary client order flow information (see e.g., Fleming and

Nguyen, 2018). The latter source of information arises somewhat exogenously due to clients’

trading demand. It seems that only the former source of information (better capability to

process public news) is within the realm of traders’ optimization. However, there is little

scope for additional information acquisition because Treasury market participants are highly

sophisticated; it is not likely that a macroeconomic announcement remains imperceptible

for an extended period of time. We therefore interpret the lack of change in information
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acquisition as being consistent with a saturated information environment arising in a market

populated by a small number of highly sophisticated participants.

The preceding discussion also implies that information advantage, if any, tends to be small

and diminishes very quickly as other traders catch up. This explains our evidence of informed

traders tilting more toward the smaller-tick-size cash market. To explore this hypothesis

in greater depth, we analyze the information share of the cash market at various return

frequencies. The idea is that if the smaller tick size is beneficial for quickly exploiting small

information signals, then the cash market advantage should lessen as the return measurement

horizon increases. To this end, we estimate the VECM in Equation (3) using prices sampled

at 1-second, 10-second, 30-second, 1-minute, and 5-minute frequencies. We then compute

the cash market’s information share corresponding to these frequencies and plot their time

series in Figure 7. The rise in the information share after the cash tick size change and the

reversal after the futures tick size change are only evident for the very short-horizon returns

(the 1- and 10-second frequencies). Beyond the one-minute frequency, it seems that the tick

size changes have little effect on information shares.

The DiD regression reported in Table 7 confirms the above observation. Panel A tabulates

the effects of the cash tick size change, while Panel B reports the results for the futures tick

size change. We continue to observe an increase in information share after the cash tick size

reduction, followed by a reversal after the tick size in the futures market catches up. However,

the effect declines monotonically with the return horizon, and becomes insignificant at the

5-minute frequency. Similar results (untabulated) obtain when we use only the 5-year note

as the control group, confirming the robustness of our finding. We conclude that the smaller

tick size is informationally beneficial only at very high frequencies as it enables traders to

capture their information rent quickly.
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6 Conclusion

We study a recent tick size reduction in the U.S. Treasury securities market and identify

the effects of this market design change on the market’s liquidity and price discovery. Based

on difference-in-differences regressions, we find that the bid-ask spread narrows significantly,

even for large trades, coupled with increased trading activity and smaller trade sizes. Market

depth is markedly lower at the inside tier and decreases across the whole book, but cumulative

depth at the previous tick size (2/256) remains comparable to the pre-change inside depth.

Additional evidence points to an increase in the frequency of limit order submissions and a

faster speed of order cancellations without a significant change in order sizes.

We also find that the smaller tick size unambiguously improves price quality. Prices move

more frequently without raising volatility and can respond to smaller information shocks,

resulting in greater price efficiency. Based on an analysis of the cash and futures markets’

joint price discovery around the tick size event, we provide novel evidence that the tick size

reduction does not translate to more information acquisition. Rather, the change attracts a

greater fraction of informed traders to the cash market, in which a finer pricing grid enables

faster capture of information rent. The informational effect of tick size is present only at very

high frequencies (less than one minute) and diminishes with longer return horizons.

In future work (subject to data availability), we plan to quantify the economic importance

of this market microstructure shock. In particular, we will measure the extent to which

narrower spreads in the interdealer market affect transaction costs in the dealer-to-customer

(DtC) market. That is, how much of the transaction cost savings in the interdealer market

gets passed on to Treasury investors. We will also examine the extent to which the more

efficient prices in the interdealer market help improve price efficiency in the DtC market.
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Table 1: Market Quality Metrics of 2-Year Note Around Tick Size Reduction

Statistic Pre Post Post-Pre % Diff t-stat

Spread Measures:

BAS 2.014 1.097 −0.917∗∗∗ −45.523 88.883
BAS L 2.080 1.388 −0.692∗∗∗ −33.279 17.106
Pct1Tick 0.994 0.908 −0.085∗∗∗ −8.558 11.042

Trading Activity Measures:

TV 20006 25662 5656∗∗∗ 28.274 −3.401
Tfreq 2561 4722 2162∗∗∗ 84.403 −7.768
AV SZ 8.095 5.471 −2.624∗∗∗ −32.415 9.729
MinSz 0.293 0.301 0.008 2.632 −0.742
Sz2m 0.185 0.271 0.086∗∗∗ 46.417 −11.089

Liquidity Supply Measures:

D1 907 237 −669∗∗∗ −73.828 17.715
D5 5461 2513 −2948∗∗∗ −53.984 17.535
DT 10423 6287 −4136∗∗∗ −39.683 12.474
D1A 907 792 −115∗ −12.673 1.858
D5A 5461 4180 −1280∗∗∗ −23.447 5.288
PI V 0.189 0.201 0.011 6.031 −0.741

Order Strategy Measures:

WKUP V 0.694 0.683 −0.011 −1.652 1.195
WKUP N 0.857 0.800 −0.057∗∗∗ −6.620 10.256
LOSZ 9.577 9.161 −0.416 −4.345 0.876
MinSz LO 0.171 0.216 0.044∗∗∗ 25.902 −2.721
2mLO 0.169 0.198 0.030∗∗ 17.524 −2.394
NLO 96807 124796 27989∗∗ 28.912 −2.593
Time2Can 3.530 1.403 −2.126∗∗∗ −60.244 7.570

Price Variation and Efficiency Measures:

ZeroBA 0.879 0.629 −0.250∗∗∗ −28.410 15.462
ZeroT 0.924 0.751 −0.173∗∗∗ −18.739 12.399
RV (%ann.) 0.988 0.937 −0.051 −5.178 0.910
|AR30| 0.221 0.146 −0.075∗∗∗ −33.846 4.621
V R10s,1m 1.812 1.534 −0.278∗∗∗ −15.350 4.429
PErr 0.043 0.023 −0.020∗∗∗ −46.962 8.288

This table reports summary statistics of market quality metrics for the 2-year note on the BrokerTec
platform before and after the tick size change on November 19, 2018. Description of the metrics is in Section
3 in the text. The sample period is from September 24, 2018 to January 11, 2019 inclusive. Variables are
based on data over New York trading hours (7:30 to 17:00 Eastern time). *p < .1; **p < .05; ***p < .01.
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Table 2: Effects of Tick Size Reduction on Transaction Costs and Liquidity Demand

BAS BAS L Pct1Tick LogN LogV AV SZ

Post 0.018∗∗ 0.080∗∗ −0.005∗ 0.001 −0.015 −0.046
(0.009) (0.033) (0.003) (0.038) (0.039) (0.070)

Post x Treatment −0.955∗∗∗ −0.889∗∗∗ −0.066∗∗∗ 0.560∗∗∗ 0.274∗∗∗ −2.000∗∗∗

(0.020) (0.073) (0.006) (0.085) (0.087) (0.155)

Security Fixed Effects Yes Yes Yes Yes Yes Yes
Security x MOV E Yes Yes Yes Yes Yes Yes
Day-of-week Effects Yes Yes Yes Yes Yes Yes
Holiday Dummy Yes Yes Yes Yes Yes Yes

Adj R2 0.901 0.541 0.566 0.394 0.274 0.630
Nobs 370 370 370 370 370 370

Robustness 1: 3-year Note as Control

Post x Treatment −0.956∗∗∗ −0.871∗∗∗ −0.063∗∗∗ 0.523∗∗∗ 0.207∗ −2.110∗∗∗

(0.017) (0.054) (0.009) (0.106) (0.108) (0.286)

Robustness 2: 3- and 5-year Notes as Control

Post x Treatment −0.952∗∗∗ −0.861∗∗∗ −0.065∗∗∗ 0.558∗∗∗ 0.249∗∗∗ −2.073∗∗∗

(0.014) (0.052) (0.007) (0.092) (0.094) (0.209)

This table shows the effects of the tick size reduction on bid-ask spreads and liquidity demand. The
regression model is Xi,t = αi + β1Postt + β2Postt × Treatmenti + θ′Zi,t + εi,t, where Treatment is an
indicator variable equal to 1 for the 2-year note and 0 otherwise, and Post is an indicator variable equal to 1
for the period after the tick size reduction on November 19, 2018. The dependent variable is shown in each
column header. BAS is the difference between the best ask price and the best bid price. BAS L is the
bid-ask spread for executing a large trade ($50 million). Pct1Tick is the percent of time the bid-ask spread
is at one tick. LogV and LogN are the natural log of the total trading volume and the total number of
trades. AV SZ is the average trade size. αi is security fixed effects. Zi,t are variables to control for
security-specific variation over time due to changing market conditions, including market wide volatility
measured by the MOV E index interacted with security dummies, day-of-week dummies, and a holiday
dummy for the holiday period from December 24, 2018 to December 31, 2018 inclusive. Variables are
measured at the daily frequency for all on-the-run nominal Treasury notes traded on the BrokerTec platform
(2-, 3-, 5-, 7-, and 10-year securities). The sample period is from September 24, 2018 to January 11, 2019.
Variables are based on data over New York trading hours (7:30 to 17:00 Eastern time). Standard errors of
coefficient estimates are reported in parentheses. *p < .1; **p < .05; ***p < .01.
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Table 3: Effects of Tick Size Reduction on Liquidity Supply

D1 D5 D1A D5A DT PI V

Post −36.57∗∗∗ −221.43∗∗∗ −34.72∗∗∗ −214.30∗∗∗ −297.28∗∗∗ 0.04
(8.13) (34.89) (11.46) (43.81) (67.15) (0.05)

Post x Treatment −536.80∗∗∗ −2209.52∗∗∗ 94.59∗∗∗ −340.65∗∗∗ −2873.25∗∗∗ −0.05
(18.08) (77.59) (25.49) (97.42) (149.31) (0.10)

Security Fixed Effects Yes Yes Yes Yes Yes Yes
Security x MOV E Yes Yes Yes Yes Yes Yes
Day-of-week Effects Yes Yes Yes Yes Yes Yes
Holiday Dummy Yes Yes Yes Yes Yes Yes

Adj R2 0.870 0.888 0.524 0.707 0.838 0.078
Nobs 370 370 370 370 370 370

Robustness 1: 3-year Note as Control

Post x Treatment −494.73∗∗∗ −1851.55∗∗∗ 136.66∗∗∗ 17.27 −2316.78∗∗∗ −0.06∗

(34.19) (136.87) (48.91) (168.99) (231.03) (0.04)

Robustness 2: 3- and 5-year Notes as Control

Post x Treatment −518.67∗∗∗ −2068.83∗∗∗ 112.72∗∗∗ −199.95 −2668.46∗∗∗ −0.06∗

(24.85) (103.25) (35.32) (128.79) (186.94) (0.03)

Robustness 3: Logged Dependent Variable

Post x Treatment −0.963∗∗∗ −0.486∗∗∗ 0.252∗∗∗ 0.025 −0.293∗∗∗ −0.051
(0.054) (0.042) (0.051) (0.041) (0.038) (0.102)

This table shows the effects of the tick size reduction on market depth. The regression model is
Xi,t = αi + β1Postt + β2Postt × Treatmenti + θ′Zi,t + εi,t, where Treatment is an indicator variable equal
to 1 for the 2-year note and 0 otherwise, and Post is an indicator variable equal to 1 for the period after the
tick size reduction on November 19, 2018. The dependent variable is shown in each column header. D1 is the
depth at the inside tier. D5 is the cumulative depth at the top five tiers in the book. DT is the total depth
across the whole book. D1A and D5A are the cumulative depth at 1 pre-change tick and 5 pre-change ticks
respectively (corresponding to 2 and 10 post-change ticks for the 2-year note). PI V is the price impact of
trade per $100 million net order flow (in bps). αi are security fixed effects. Zi,t are variables to control for
security-specific variation over time due to changing market conditions, including market wide volatility
measured by the MOV E index interacted with security dummies, day-of-week dummies, and a holiday
dummy for the holiday period from December 24, 2018 to December 31, 2018 inclusive. Variables are
measured at the daily frequency for all on-the-run nominal Treasury notes traded on the BrokerTec platform
(2-, 3-, 5-, 7-, and 10-year securities). The sample period is from September 24, 2018 to January 11, 2019.
Variables are based on data over New York trading hours (7:30 to 17:00 Eastern time). Standard errors of
coefficient estimates are reported in parentheses. *p < .1; **p < .05; ***p < .01.
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Table 4: Effects of Tick Size Reduction on Order Strategies

WKUP V WKUP N LOSZ MinSz LO LogNLO Time2Can

Post 0.006 0.001 0.063 0.034∗∗∗ −0.182∗∗∗ −0.243∗∗∗

(0.004) (0.003) (0.120) (0.007) (0.042) (0.092)

Post x Treatment −0.025∗∗∗ −0.051∗∗∗ 0.323 −0.010 0.317∗∗∗ −1.441∗∗∗

(0.008) (0.006) (0.267) (0.016) (0.093) (0.204)

Security Fixed Effects Yes Yes Yes Yes Yes Yes
Security x MOV E Yes Yes Yes Yes Yes Yes
Day-of-week Effects Yes Yes Yes Yes Yes Yes
Holiday Dummy Yes Yes Yes Yes Yes Yes

Adj R2 0.111 0.345 0.142 0.324 0.355 0.449
Nobs 370 370 370 370 370 370

Robustness 1: 3-year Note as Control

Post x Treatment −0.023∗ −0.051∗∗∗ 0.464 −0.075∗∗∗ 0.341∗∗∗ −1.091∗∗∗

(0.013) (0.009) (0.524) (0.023) (0.119) (0.394)

Robustness 2: 3- and 5-year Notes as Control

Post x Treatment −0.018∗ −0.050∗∗∗ 0.322 −0.038∗∗ 0.352∗∗∗ −1.344∗∗∗

(0.010) (0.007) (0.373) (0.018) (0.104) (0.283)

This table shows the effects of the tick size reduction on order exposure strategies. The regression model is
Xi,t = αi + β1Postt + β2Postt × Treatmenti + θ′Zi,t + εi,t, where Treatment is an indicator variable equal
to 1 for the 2-year note and 0 otherwise, and Post is an indicator variable equal to 1 for the period after the
tick size reduction on November 19, 2018. The dependent variable is shown in each column header.
WKUP V is the fraction of volume traded in workups. WKUP N is the fraction of trades that occur in
workups. LOSZ is the average limit order size. MinSz LO is the percentage of minimum-sized limit orders.
LogNLO is the natural log of the total number of limit orders submitted to the book each day. Time2Can
is the median time to cancellation of limit orders (in seconds). αi are security fixed effects. Zi,t are variables
to control for security-specific variation over time due to changing market conditions, including market wide
volatility measured by the MOV E index interacted with security dummies, day-of-week dummies, and a
holiday dummy for the holiday period from December 24, 2018 to December 31, 2018 inclusive. Variables are
measured at the daily frequency for all on-the-run nominal Treasury notes traded on the BrokerTec platform
(2-, 3-, 5-, 7-, and 10-year securities). The sample period is from September 24, 2018 to January 11, 2019.
Variables are based on data over New York trading hours (7:30 to 17:00 Eastern time). Standard errors of
coefficient estimates are reported in parentheses. *p < .1; **p < .05; ***p < .01.
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Table 5: Effects of Tick Size Reduction on Price Variation and Efficiency

ZeroBA ZeroT RV |AR30| |V R− 1| PErr

Post −0.003 −0.001 0.010 −0.017∗∗ −0.067∗∗ 0.004∗∗

(0.009) (0.008) (0.089) (0.007) (0.028) (0.002)

Post x Treatment −0.213∗∗∗ −0.148∗∗∗ −0.115 −0.060∗∗∗ −0.187∗∗∗ −0.023∗∗∗

(0.019) (0.018) (0.198) (0.016) (0.063) (0.004)

Security Fixed Effects Yes Yes Yes Yes Yes Yes
Security x MOV E Yes Yes Yes Yes Yes Yes
Day-of-week Effects Yes Yes Yes Yes Yes Yes
Holiday Dummy Yes Yes Yes Yes Yes Yes

Adj R2 0.582 0.515 0.253 0.161 0.152 0.171
Nobs 370 370 370 370 370 370

Robustness 1: 3-year Note as Control

Post x Treatment −0.189∗∗∗ −0.123∗∗∗ −0.261∗∗ −0.045∗∗ −0.074 −0.026∗∗∗

(0.021) (0.018) (0.103) (0.022) (0.090) (0.004)

Robustness 2: 3- and 5-year Notes as Control

Post x Treatment −0.201∗∗∗ −0.136∗∗∗ −0.231∗ −0.048∗∗∗ −0.117 −0.023∗∗∗

(0.020) (0.018) (0.120) (0.018) (0.074) (0.003)

This table shows the effects of the tick size reduction on price revision and efficiency. The regression model is
Xi,t = αi + β1Postt + β2Postt × Treatmenti + θ′Zi,t + εi,t, where Treatment is an indicator variable equal
to 1 for the 2-year note and 0 otherwise, and Post is an indicator variable equal to 1 for the period after the
tick size reduction on November 19, 2018. The dependent variable is shown in each column header. ZeroBA
is the fraction of zero minute-by-minute midpoint returns during a trading day. ZeroT is computed similarly,
except that the returns are based on the last trade price of each minute. RV is the annualized realized

volatility based on one-minute changes in log midpoint price, calculated as RV =
√∑N

t=1[ln(pt)− ln(pt−1)]2.

|AR30| is the absolute autocorrelation of 30-second mid-point returns. V R is six times the ratio of the daily
variance of 10-second returns to that of one-minute returns. PErr is the daily standard deviation of intraday
pricing errors. αi are security fixed effects. Zi,t are variables to control for security-specific variation over
time due to changing market conditions, including market wide volatility measured by the MOV E index
interacted with security dummies, day-of-week dummies, and a holiday dummy for the holiday period from
December 24, 2018 to December 31, 2018 inclusive. Variables are measured at the daily frequency for all
on-the-run nominal Treasury notes traded on the BrokerTec platform (2-, 3-, 5-, 7-, and 10-year securities).
The sample period is from September 24, 2018 to January 11, 2019. Variables are based on data over New
York trading hours (7:30 to 17:00 Eastern time). Standard errors of coefficient estimates are reported in
parentheses. *p < .1; **p < .05; ***p < .01.
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Table 6: Tick Size and Information

A. Cash Tick Size Reduction B. Futures Tick Size Reduction

IS Cash V arRW IS Cash V arRW

Post 0.037∗ 0.007 −0.013 0.027∗

(0.019) (0.011) (0.030) (0.014)

Post x Treatment 0.234∗∗∗ −0.005 −0.191∗∗∗ −0.023
(0.033) (0.018) (0.050) (0.024)

Security Fixed Effects Yes Yes Yes Yes
Security x MOV E Yes Yes Yes Yes
Day-of-week Effects Yes Yes Yes Yes
Holiday Dummy Yes Yes Yes Yes

Adj R2 0.373 0.272 0.204 0.342
Nobs 222 222 222 222

Robustness: 5-year Note as Control

Post x Treatment 0.243∗∗∗ −0.008 −0.154∗∗∗ −0.012
(0.032) (0.009) (0.051) (0.012)

This table shows the effects of tick size on market informativeness. The regression model is
Xi,t = αi + β1Postt + β2Postt × Treatmenti + θ′Zi,t + εi,t, where Treatment is an indicator variable equal
to 1 for the 2-year note and 0 otherwise, and Post is an indicator variable equal to 1 for the period after the
tick size reduction, which is November 19, 2018 for the cash market and January 13, 2019 for the futures
market. The dependent variable is shown in each column header. IS Cash is the information share of the
cash market. V ar RW is the variance of efficient price increments. Both measures are computed from a
VEC(10) model estimated using one-second cash and futures prices for the 2-, 5-, and 10-year maturities. αi

are maturity fixed effects. Zi,t are variables to control for maturity-specific variation over time due to
changing market conditions, including market wide volatility measured by the MOV E index interacted with
maturity dummies, day-of-week dummies, and a holiday dummy for the holiday period from December 24,
2018 to December 31, 2018 inclusive. Cash data is from the BrokerTec platform and futures data is from
Thomson Reuters Tick History database. The sample period for the regressions in Panel A is from September
24, 2018 to January 11, 2019. The sample period for the regressions in Panel B is from November 19, 2018 to
March 8, 2019. Model estimation is based on data over New York trading hours (7:30 to 17:00 Eastern time).
Standard errors of coefficient estimates are reported in parentheses. *p < .1; **p < .05; ***p < .01.
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Table 7: Tick Size Change and Term Structure of Information Share

A. Cash Tick Size Reduction

IS 1s IS 10s IS 30s IS 1m IS 5m

Post 0.037∗ 0.072∗∗ 0.055 0.036 0.043
(0.019) (0.033) (0.035) (0.033) (0.029)

Post x Treatment 0.234∗∗∗ 0.207∗∗∗ 0.159∗∗∗ 0.099∗ −0.029
(0.033) (0.057) (0.060) (0.057) (0.050)

Security Fixed Effects Yes Yes Yes Yes Yes
Security x MOV E Yes Yes Yes Yes Yes
Day-of-week Effects Yes Yes Yes Yes Yes
Holiday Dummy Yes Yes Yes Yes Yes

Adj R2 0.373 0.152 0.058 0.013 −0.026
Nobs 222 222 222 222 222

B. Futures Tick Size Reduction

IS 1s IS 10s IS 30s IS 1m IS 5m

Post −0.013 0.004 0.048 0.083∗ −0.004
(0.030) (0.050) (0.051) (0.047) (0.037)

Post x Treatment −0.191∗∗∗ −0.268∗∗∗ −0.281∗∗∗ −0.244∗∗∗ −0.058
(0.050) (0.084) (0.087) (0.079) (0.063)

Security Fixed Effects Yes Yes Yes Yes Yes
Security x MOV E Yes Yes Yes Yes Yes
Day-of-week Effects Yes Yes Yes Yes Yes
Holiday Dummy Yes Yes Yes Yes Yes

Adj R2 0.204 0.069 0.030 0.016 −0.018
Nobs 222 222 222 222 222

This table shows the effects of tick size on market informativeness at various return horizons. The regression
model is Xi,t = αi + β1Postt + β2Postt × Treatmenti + θ′Zi,t + εi,t, where Treatment is an indicator
variable equal to 1 for the 2-year note and 0 otherwise, and Post is an indicator variable equal to 1 for the
period after the tick size reduction, which is November 19, 2018 for the cash market and January 13, 2019 for
the futures market. The dependent variable is the information share based on return computed over the
following horizons: 1 second (IS 1s), 10 seconds (IS 10s), 30 seconds (IS 30s), 1 minute (IS 1m), and 5
minutes (IS 5m). Information shares are computed from a VEC(10) model estimated using cash and futures
prices sampled at the corresponding horizon for the 2-, 5-, and 10-year maturities. αi are maturity fixed
effects. Zi,t are variables to control for maturity-specific variation over time due to changing market
conditions, including market wide volatility measured by the MOV E index interacted with maturity
dummies, day-of-week dummies, and a holiday dummy for the holiday period from December 24, 2018 to
December 31, 2018 inclusive. Cash data is from the BrokerTec platform and futures data is from Thomson
Reuters Tick History database. The sample period for the regressions in Panel A is from September 24, 2018
to January 11, 2019. The sample period for the regressions in Panel B is from November 19, 2018 to March
8, 2019. Model estimation is based on data over New York trading hours (7:30 to 17:00 Eastern time).
Standard errors of coefficient estimates are reported in parentheses. *p < .1; **p < .05; ***p < .01.
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Figure 1: Bid-Ask Spreads Around Tick Size Reduction.
Panel A shows the evolution of daily average bid-ask spreads of the 2-year note on the BrokerTec platform.
BAS is the difference between the best bid and best ask prices. BAS L is the bid-ask spread for executing a
large trade, defined as the 99th percentile of the trade size distribution prior to the tick size change ($50
million par). Panel B shows the fraction of time in a day at which the spread is at one tick (which equals
2/256 in the pre- and 1/256 in the post-change period). In the post-change period, we also plot the fraction
of time at which the spread is at the pre-change tick size of 2/256 or better. Data is from BrokerTec. The
sample period is from September 24, 2018 to January 11, 2019. The vertical line separates the pre-change
period (through November 16, 2018) and the post-change period (starting November 19, 2018).
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Figure 2: Daily Trading Activity Around Tick Size Reduction.
Panel A shows the daily trading volume. Panel B shows the daily number of trades. Panel C shows the daily
average trade size. Data is from BrokerTec. The sample period is from September 24, 2018 to January 11,
2019. The vertical line separates the pre-change period (through November 16, 2018) and the post-change
period (starting November 19, 2018).
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A) Histogram of Trade Size
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B) Histogram of Limit Order Size
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Figure 3: Distribution of Trade Size and Limit Order Size Around Tick Size Reduction.
This figure shows the histogram of the 2-year note’s trade size (Panel A) and limit order size (Panel B) before
and after the tick size reduction. The horizontal axis shows trade or order size in $million par. The vertical
axis shows the relative frequency. Data is from BrokerTec. The sample period is from September 24, 2018 to
January 11, 2019.
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Figure 4: Market Depth Around Tick Size Reduction.
Panel A shows the daily average of depth at the inside tier D1. Also plotted in the post-change period is D1A,
the cumulative depth at one pre-change tick (corresponding to two post-change ticks). Panel B shows the
daily average of cumulative depth at the top five tiers D5. Also plotted in the post-change period is D5A, the
cumulative depth at five pre-change ticks (corresponding to 10 post-change ticks). Panel C shows the daily
average of cumulative depth across all tiers. Data is from BrokerTec. The sample period is from September
24, 2018 to January 11, 2019. The vertical line separates the pre-change period (through November 16, 2018)
and the post-change period (starting November 19, 2018).
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Figure 5: Price Efficiency Around Tick Size Reduction.
Panel A shows the percent of minutes with zero mid-point returns for each day in the sample. Panel B shows
the daily realized volatility computed from one-minute midpoint returns. Panel C shows the absolute value
of the autocorrelation of 30-second midpoint returns. Panel D shows the standard deviation of pricing errors
computed from a VAR(5) model of midpoint returns, trade sign, signed trade volume, and signed square root
of trade volume. Data is from BrokerTec. The sample period is from September 24, 2018 to January 11,
2019. The vertical line separates the pre-change period (through November 16, 2018) and the post-change
period (starting November 19, 2018).
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Figure 6: Information Share of Cash Market Around Tick Size Changes.
This figure shows the information share of the cash market for each cash-futures pair. The information share
is the fraction of the efficient return variance explained by the price variation in the cash market. Efficient
return variance and information share are computed from a VECM (10) of cash and futures prices sampled
at the one-second frequency. Data for cash instruments is from BrokerTec. Data for futures instruments
is from Thomson Reuters Tick History. The sample period is from September 24, 2018 to March 8, 2019.
Model estimation is based on data over New York trading hours (7:30 to 17:00 Eastern time). The left
vertical line separates the cash market’s pre-change period (through November 16, 2018) and its post-change
period (starting November 19, 2018). The right vertical line separates the futures market’s pre-change period
(through January 11, 2019) and its post-change period (starting January 14, 2019).
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Figure 7: Information Share of Cash Market Across Different Sampling Frequencies.
This figure shows the information share of the cash market for the 2-year note across different return sampling
frequencies. The information share is the fraction of the efficient return variance explained by the price
variation in the cash market. Efficient return variance and information share are computed from a VECM
(10) of cash and futures prices sampled at a given frequency. Data for cash instruments is from BrokerTec.
Data for futures instruments is from Thomson Reuters Tick History. The sample period is from September
24, 2018 to March 8, 2019. Model estimation is based on data over New York trading hours (7:30 to 17:00
Eastern time). The left vertical line separates the cash market’s pre-change period (through November 16,
2018) and its post-change period (starting November 19, 2018). The right vertical line separates the futures
market’s pre-change period (through January 11, 2019) and its post-change period (starting January 14,
2019).
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