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Abstract 
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1 Introduction
Tick size, or the minimum price increment, is an important market design feature that influences

trading strategies and market outcomes. This is particularly true for limit order book markets,

which typically rely on price and time priority rules to determine which orders get executed first.

A smaller tick size makes it easier to obtain price precedence and facilitates price competition,

thereby reducing transaction costs for those needing to trade, but also reducing the compensation for

liquidity providers (see e.g., Harris, 1994). As a result, the interaction among market participants

with varying trading strategies, needs, and incentives gives rise to market outcomes that are specific

to the chosen tick size.

This paper provides an empirical analysis of how a change in the minimum price increment

affects market liquidity, price discovery, and the competition for liquidity provision in a highly

competitive limit order book market: the electronic inter-dealer broker (IDB) market for on-the-run

U.S. Treasury securities. Despite its vital role in the global financial system, there is still much to

be learned about the changing Treasury market structure, as noted by Federal Reserve Governor

Brainard (2018). Treasury securities are risk-free assets that serve as pricing benchmarks for

other securities and discount rates for asset valuation. They also serve as collateral and hedging

instruments and are key instruments of monetary policy and stores of value, especially during times

of market turmoil. Therefore, a change in market design that has the potential of affecting market

liquidity and price discovery is of great importance to a wide range of stakeholders.

A recent tick size change in the Treasury market presents a valuable opportunity to study this

important research topic. Starting with the November 19, 2018 trading day, electronic IDB platforms

for trading on-the-run Treasury securities halved the tick size on the 2-year note, from 1/4 to 1/8 of

a 32nd of a point (where a point equals one percent of par).1 Although the tick size varies from one

instrument to another, there has not been a market-wide change in tick size as in equity markets.

1Electronic IDB platforms with central limit order book that trade on-the-run Treasury securities are BrokerTec,
Nasdaq Fixed Income (formerly eSpeed), FENICS, and LiquidityEdge. To put the new tick size in perspective and
facilitate comparison with other asset classes, 1/8 of a 32nd is equivalent to a tick size of 0.390625 cents per $100 par.
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Prior to this event, the tick size on the 2-, 3-, and 5-year notes had been 1/4 of a 32nd since electronic

trading began in 1999, and 1/2 of a 32nd on the longer maturities (7, 10, and 30 years). A similar

tick size reduction on the parallel market for the 2-year Treasury note futures does not occur until

eight weeks later, starting with the January 14, 2019 trading day, creating a clean natural experiment

to identify how tick size affects a market’s contribution to price discovery.

Exploiting the fact that the tick size reduction applies only to the 2-year note and not other on-the-

run Treasury securities, we employ difference-in-differences (DiD) regressions to identify the effects

of tick size on spreads, trading activity, liquidity provision, price efficiency, and price discovery,

while controlling for other factors that might explain changes in these variables. Because the

previous tick size was constraining (with the bid-ask spread equal to the minimum price increment

about 99% of the time), the reduction relaxes this constraint and enables traders to compete more

easily on price. We observe an almost one-for-one reduction in the bid-ask spread. The spread faced

by large trades also narrows significantly. Clearly, the smaller tick size brings down transaction

costs for market participants, whether large or small.

With lower transaction costs, it is not surprising to observe increased trading volume. The

increase in trading volume is driven by an even larger increase in the frequency of trades, which

are smaller than before, on average. With lower transaction costs reducing the profitability of

liquidity provision (see e.g., Harris, 1997) and higher trading rates consuming more liquidity from

the book (see e.g., Goettler et al., 2005), market depth could be expected to decline and indeed it

does, at the new inside tier, the top five tiers, and collectively across all price levels. However, given

the increased granularity of the pricing grid, a fairer comparison is on depth within a given fixed

distance from the midpoint. This comparison indicates that cumulative depth within 2/256 (the old

tick size) of the best bid-ask midpoint is comparable with the pre-change inside depth. Moreover,

this level of depth continues to be many fold higher than the size of most trades. Accordingly, the

decrease in market depth does not substantially affect trading and transaction costs.

We enrich our analysis of liquidity provision by exploring the heterogeneity across market

participant types. Participants in the IDB market were traditionally limited to government securities

2



dealers, but recently expanded to include high-frequency trading (HFT) firms.2 Both dealers and

HFTs increasingly deploy technologies and algorithms to conduct their trading activities (see

Brainard, 2018). Thus, it is now largely a marketplace of “machines” rather than human traders.

However, there are important differences between dealers and HFTs. HFTs only trade on their own

account (not to facilitate customer trades), have little capital for carrying positions overnight or

longer, and tend to use high-frequency trading strategies to exploit short-term price dislocations. As

such, it is vital to HFTs’ profitability to invest in the fastest technologies, generating differential

response speed to market signals between dealers and HFTs. Exploiting this heterogeneity, we

identify liquidity provision activities by fast and slow traders, roughly mapping to technologically

sophisticated HFTs and traditional dealers, and study whether the new tick size has differential

impact on how they compete.

Contrary to the belief that a smaller tick size benefits fast traders in the competition for liquidity

provision given their speed advantage (e.g., see Harris, 1997), we find that the race to respond

to price changes in the order book and to restore the spread to its minimum level tilts in favor of

slow traders. Our evidence is consistent with the hypothesis that HFTs find liquidity provision

less appealing/profitable in the lower tick size environment. At the same time, slow traders (likely

representing dealers) who can offer a more competitive spread (e.g., due to inventory pressures

resulting from market making activities in the dealer-to-customer market) now find it easier to

compete. This is consistent with the intuition in Yao and Ye (2014) and O’Hara et al. (2019).

Our analysis also indicates a clear improvement in price efficiency across multiple metrics. We

find that the smaller tick size reduces price inertia, with price moves more frequent. The more

frequent price moves, however, do not increase price volatility because of a shrinking microstruc-

ture noise component, as evidenced by a significant decrease in the magnitude of pricing errors.

Moreover, the high frequency return autocorrelation and the variance ratio both point to the price

2The HFT firms in the Treasury IDB market are often referred to as “proprietary trading firms” or PTFs (see e.g.,
Brainard, 2018). Because low latency is the main characteristic that we use to differentiate between dealers and PTFs,
we use the HFT terminology and PTF terminology interchangeably throughout the paper.
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process getting closer to its efficient random walk benchmark. We conclude that, with a smaller tick

size, the observed price process becomes a more precise proxy of the underlying value process.

A related question is whether price becomes more informative following the tick size reduction.

We find a significant shift in price discovery toward the cash market during the period after its tick

size is lowered but before the futures market tick size catches up. In addition, the informational

advantage of the smaller tick size in the cash market is present only at very high frequencies (less

than one minute). These findings suggest that the finer pricing grid in the cash market allows traders

to act promptly on small information signals that are not profitable in the coarser pricing grid of the

futures market and contributes to the cash market leading futures market in price discovery.

We also use this tick size event as an opportunity to study how such a market design perturbation

in one market (for the 2-year note) permeates through the Treasury interest rate complex given the

tight connection among Treasury securities and between the cash and futures markets. Our analysis

indicates that only the 3-year note and 2-year Treasury futures experience spillovers of treatment

effects. Longer maturity notes and other futures contracts do not seem to be significantly affected.

The lack of effects on these other securities helps ease the concern of treatment spillovers for event

studies of regulatory or natural experiments as discussed in Boehmer et al. (2020). Excluding the

3-year note (which exhibits some spillover effects) from DiD regressions does not qualitatively

change our results or conclusions.

Our paper contributes to the rich literature on tick size and market quality, which is mainly

comprised of studies that examine tick size changes in the U.S. equity markets.3 While many

of our findings are consistent with evidence documented for equity markets (narrower bid-ask

spread, increased trading activity, improved price efficiency), our study also uncovers novel results,

especially on the link between tick size and price discovery. The parallel existence of a highly

3Studies of tick size changes in 1997 (from eighth to sixteenth) and 2001 (from sixteenth to decimal) include
Harris (1994), Chordia and Subrahmanyam (1995), Ahn et al. (1996), Bacidore (1997), Porter and Weaver (1997),
Bessembinder (2000), Goldstein and Kavajecz (2000), Jones and Lipson (2001), Ronen and Weaver (2001), Chung and
Chuwonganant (2002), Chakravarty et al. (2005), Biais et al. (2005), Aitken and Comerton-Forde (2005), Zhao and
Chung (2006), and others. Studies of the SEC tick size pilot program in 2016-2017 include Hansen et al. (2017), Rindi
and Werner (2019), Griffith and Roseman (2019), Albuquerque et al. (2020), Comerton-Forde et al. (2019), Bartlett and
McCrary (2019), and others.
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liquid futures market and of a highly substitutable Treasury security—the 3-year note—allows for a

rigorous analysis of such a link. This has not been easy for studies in equity markets, where tick size

changes are implemented uniformly across exchanges and a parallel counterfactual does not exist to

permit inferences about trading venue preferences when different tick sizes are available.4 Also

helpful is the fact that the Treasury tick size change occurs in a selective and staggered manner—for

only the 2-year note, and first in the cash market followed by the futures market eight weeks later.

Thus, we are able to observe whether the smaller tick size in one market shifts more price discovery

to that market. We provide evidence that there is greater price discovery in the smaller tick market,

but that the informational benefit of a smaller tick size prevails only at high frequencies.

Studying the effects of a tick size change using the Treasury market as a laboratory has addi-

tional advantages, mainly because the Treasury market structure is not as complex as that of equity

markets.5 First, the market is more concentrated, with BrokerTec (the platform studied) accounting

for roughly 80% of electronic interdealer market activities in on-the-run Treasury securities. Second,

there is no separate dark pool trading venue. Third, based on discussion with BrokerTec, the fee

structure on BrokerTec does not discriminate between liquidity consumption and provision. There-

fore, the impact of a tick size change can manifest in market outcome variables in a straightforward

fashion, allowing us to quantify the effects more cleanly and test relevant theories often built on

assumptions of minimal market frictions.

Most related to our work in a non-equity market setting is Chaboud et al. (2019). They study

a tick size reduction and subsequent reversal in the spot foreign exchange market and find that a

smaller tick size reduces long-run price discovery. They show that the tick size reduction results

4Single stock futures on a select number of stocks exist, but they are not comparable in liquidity to the underlying
stocks, thereby restricting the ability of traders to move between markets.

5The first waves of tick size changes in the U.S. equity markets occurred in 1997 (from eighth to sixteenth) and
2001 (from sixteenth to decimal), when equity exchanges were still following a hybrid structure with the presence of
both limit order books and specialists. The most recent wave of tick size changes in equity markets (the SEC tick size
pilot program in 2016-2017) occurs at a time when these markets have become highly fragmented with diverse fee
structures and other market design features intended to attract order flow (see, e.g., Comerton-Forde et al., 2019 who
document a significant shift to inverted fee venues to negate the adverse impact of the tick size increase). Adding to the
complexity is the availability of dark pool trading venues (see, e.g., Bartlett and McCrary, 2019, Farley et al., 2018, and
references therein) and the agency problems associated with order handling and routing decisions (see, e.g., Anand
et al., 2021 and references therein).
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in increased trading demand from HFTs, whose order flow contains less long-term fundamental

information. Thus, a smaller tick size does not benefit long-run price discovery. Complementing

their findings, we show that a smaller tick size is beneficial for short-run price discovery.

The paper proceeds as follows. Section 2 provides key institutional details and describes the

data. We discuss the effects of the tick size reduction on market liquidity in Section 3, and on

price discovery in Section 4. Section 5 presents additional analysis of the effects on other Treasury

securities and Treasury futures. Section 6 concludes.

2 Institutional Details, Data, and Methodology

2.1 Institutional Details

U.S. Treasury securities are debt instruments of the U.S. government issued through public

auctions and subsequently traded in the secondary market. The secondary market is structured as a

multiple dealer, over-the-counter market, in which the dealers trade with their customers and one

another. Inter-dealer trading prior to 1999 was based on a network of voice-assisted brokers. Fully

electronic trading started in 1999 with the introduction of the eSpeed platform, followed by the

BrokerTec platform in 2000. Nearly all inter-dealer trading of on-the-run U.S. coupon securities

occurs via electronic platforms among which BrokerTec accounts for about 80% of trading.6

Historically, participation in the two largest electronic platforms was limited to dealers. However,

as the platforms opened to other professional traders in recent years, the presence of non-dealer

participants—the HFTs—increased significantly. According to the Joint Staff Report (2015) on the

October 15, 2014 flash rally in the Treasury market, HFTs account for 56% of trading volume in the

on-the-run 10-year note on BrokerTec, compared to bank-dealers’ share of 35%.7 HFTs’ share of

trading volume has likely increased since 2014.

6Electronic brokers account for 87% of trading in on-the-run coupon securities that occurs through interdealer
brokers; see Brain et al. (2018). Further, according to Greenwich Associates, based on 2017 Q4 data, BrokerTec’s
market share in the electronic inter-dealer market is 80%, that of Nasdaq Fixed Income (formerly eSpeed) is 11%, and
the rest of the market is split among Dealerweb, LiquidityEdge, FENICS, and dealer-owned internalization/crossing
platforms; see McPartland (2018).

7The remaining 9% is split among non-bank dealers and hedge funds; shares are based on data from April 2-17,
2014.
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The tick size reduction in the 2-year note on major electronic IDB platforms (BrokerTec and

Nasdaq Fixed Income) on November 19, 2018 is the first such tick size change since the beginning

of electronic trading in on-the-run Treasury securities in 1999. Prior to this event, the tick size on

the on-the-run 2-, 3-, and 5-year notes had been 1/4 of a 32nd, and 1/2 of a 32nd on the longer

maturities (7, 10, and 30 years). Most noteworthy about this change is that it applies only to the

2-year note and only in the cash market. A similar tick size reduction in the companion market for

the 2-year Treasury futures does not occur until eight weeks later, starting January 14, 2019. The

staggered reduction of tick size in the cash and futures markets, and only for the 2-year maturity

segment, presents a clean setting to identify how tick size affects market liquidity and price quality.

In particular, the temporary mismatch in tick size between the cash and futures market between

November 19, 2018 and January 14, 2019 provides a unique opportunity to assess the cash market’s

contribution to price discovery while it is on a finer pricing grid than the futures market.

2.2 Data

Our sample consists of the five on-the-run Treasury notes, with the 2-year note being the

treatment security and the 3-, 5-, 7-, and 10-year notes the control securities. We also conduct our

analyses without the 3-year note among the control securities to address the concern that the 3-year

note might itself be affected by the tick size change given its close maturity to the 2-year note. We

exclude the 30-year bond due to the vast difference in duration and perhaps clientele from the 2-year

note. The full sample period is from Monday September 24, 2018 to Friday March 8, 2019 (112

trading days in total),8 divided into three 8-week sub-periods: 1) September 24, 2018 – November

16, 2018 (38 trading days); 2) November 19, 2018 (cash tick size change) – January 11, 2019 (36

trading days); and 3) January 14, 2019 (futures tick size change) – March 9, 2019 (38 trading days).

Data for the cash market are order message data from the BrokerTec platform. We reconstruct

the limit order book by accumulating order changes at the appropriate price tiers from the beginning

8The bond market was closed on the other nine weekdays during our sample period, including eight holidays
and December 5, 2018 on which financial markets were closed in honor of former President George H.W. Bush; see
https://www.sifma.org/resources/general/holiday-schedule/
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of each trading day.9 This results in a tick-by-tick dataset with market depths measured in millions

of dollars par value and prices in 256ths of one percent of par. We also extract the complete trade

history for each security. The data clearly indicate which side initiates a given trade, the traded

quantity and price, and whether a trade is executed during a workup.

Data on the 2-, 5-, 10-, and ultra 10-year Treasury futures contracts are from the CME (retrieved

from Refinitiv). The data are at the one-second frequency, and include last trade price, best bid and

ask prices, number of trades, and trading volume. In analyses of cash-futures pairs, we pair the

10-year cash instrument with the ultra 10-year futures, because the deliverable maturity range into

the latter (9 years and 5 months to 10 years) more precisely matches the maturity of the 10-year

note. The 10-year note futures is instead paired with the 7-year note because its deliverable maturity

ranges from 6.5 years to 10 years. During the sample period, Treasury futures contracts covering the

3-year tenor do not exist. Given the limited scope of the futures data, we can only compute trading

activity measures and price-based liquidity measures. As is standard in the literature, we use the

front-month contract (i.e., the one with the closest maturity) until its trading volume is overtaken by

the next maturity contract, at which point we switch to using data on the next maturity contract.10

The sample period includes three early market close days.11 The sample also includes the last

five trading days of December 2018 (i.e., from December 24, 2018 to December 31, 2018) during

which financial markets experienced high volatility in addition to the usual year-end decline in

trading activity and liquidity. In our regression analysis, we include a dummy for early close days

9The BrokerTec platform operates as a central limit order book market. Trading spans 22-23 hours per day during
the week, commencing around the start of the trading day in Tokyo (at 18:30 EST or 19:30 EDT the previous day in the
U.S.) and concluding with the end of the trading day in New York (at 17:30 ET; see Fleming 1997). All order messages
sent to the platform are captured and time-stamped to the microsecond. Each order specifies a quantity and a price, and
whether it is for purchase or sale. Aggressive orders are typically priced at the prevailing best price on the opposite side
and are immediately executed. Aggressive orders are rarely priced beyond the best price on the opposite side because
of the quoted depth typically available at the inside tier and because of the availability of the workup protocol. The
workup protocol allows market participants to transact additional quantities at an existing trade price (see Fleming and
Nguyen, 2019 for further details on the workup protocol).

10Front-month contracts are typically the most liquid contracts until one or two trading days before the first day of
the delivery month when traders roll over their interests to the next maturity contracts.

11During our sample period, the cash market closes early at 14:00 ET on November 23, 2018, December 24, 2018,
and December 31, 2018. The futures market closes early at 13:15 ET on the first two dates, but closes at the regular
time on the last date. We truncate the data at the earlier closing time of the two markets on these dates, i.e., at 13:15 and
14:00 respectively.
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to account for truncated market activity, and a dummy for the holiday period to absorb abnormal

year-end effects, so as not to confound the effects of the tick size reductions. Finally, even though

both the cash and futures markets operate almost round the clock, the majority of activity occurs

during New York trading hours. Thus, to avoid the effects of potential irregularities during the

overnight hours, our analyses use data from 7:30 to 17:00 ET.12

From these data, we construct key market quality metrics, the details of which are provided in

Table 1. These metrics are computed from intraday data (mostly at the 1-minute frequency unless

otherwise noted) and then aggregated to the daily level. The aggregation is by simple averaging for

stock variables (such as spreads and depths) and by summing for flow variables (such as trading

volume) unless otherwise noted. Several price efficiency measures (e.g., return autocorrelation,

variance ratio, and pricing errors) are computed from one-second midpoint returns.

Table 2 reports the means of these market quality metrics for all Treasury notes over the three

sub-sample periods previously described: SS1) before the cash tick size change, SS2) after the

cash tick size change but before the futures tick size change, and SS3) after the futures tick size

change. The second sub-sample period contains the volatile period of December 2018 coupled with

the usual end-of-year pattern of low activity, low liquidity, and high price impact. Thus, for most

securities, the second sub-sample period is characterized by wider bid-ask spreads, higher number

of trades but in smaller sizes, greater price impact, reduced market depth, and increased frequency

of price updates and volatility. It is therefore important to control for these general market trends in

our analysis in order to isolate the impact of the 2-year tick size reduction.

2.3 Empirical Methodology

To ascertain that market quality changes are attributable to the tick size change, we perform a

multivariate analysis that controls for changing market conditions and uses other Treasury securities

without any tick size change for identification. The regression model is specified as:

Yi,t = αi + β1Postt + β2Postt × Treatmenti + θ′Zt + εi,t, (1)

12While cash market trading continues until 17:30 ET, we use data only through 17:00 ET because Treasury futures
trading ends at that time.
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where Treatment is an indicator variable equal to 1 for the 2-year note and 0 otherwise, Post is an

indicator variable equal to 1 for the period following the tick size change event, i provides security

indexing, t provides day indexing, αi captures security fixed effects, and Zt are variables to control

for prevailing market conditions, intra-week seasonality, and low market activity during holidays

and on early market close days. The particular control variables for market conditions are: 1) market

wide volatility (as measured by the MOV E index), 2) market wide liquidity level (MKTLIQ1),

measured by the average total market depth across all on-the-run securities on BrokerTec, and 3)

total market trading volume across all on-the-run securities on BrokerTec (MKTLIQ2). All three

variables are lagged by one day and interacted with security dummies to allow for security-specific

responses. We drop Treatment from the regression model to avoid multicollinearity (between the

2-year fixed effect and Treatment). In this regression framework, β2 captures the effect of the tick

size reduction on a given market outcome variable.

3 Does a Smaller Tick Size Improve Liquidity?
The minimum price increment in a limit order market affects the economic incentives for

participants who demand or supply liquidity, thereby endogenously determining liquidity provision.

Werner et al. (2019) provide a helpful conceptual framework for understanding the potential impact

of a tick size reduction on liquidity. Such a reduction generates three equilibrium effects. First, a

smaller tick size makes it easier to undercut existing limit orders (the “undercutting” effect), which

should disincentivize limit orders. Second, with limit orders spreading over more price queues on a

finer pricing grid, the probability of execution of limit orders at a given queue increases, thereby

encouraging more liquidity provision (the “queuing effect”). Whether the “undercutting” effect or

the “queuing” effect dominates depends on how tick-constrained the market is.13 The third effect is

a mechanical decrease in the inside spread, which makes it cheaper for traders to cross the spread

and take liquidity. This third effect is consistent with Goettler et al. (2005) who also predict a switch

13To be more precise, these effects depend on the dispersion of beliefs around the mean valuation of the asset as
formulated in Werner et al. (2019). A high dispersion implies that traders are more eager to trade and therefore the
fraction of willing liquidity suppliers is small. Conversely, a low dispersion of beliefs implies a high fraction of willing
liquidity suppliers, with the competition among them keeping the spread tick-constrained.
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from limit to market orders because fewer traders are willing to provide liquidity given the lower

profitability. Moreover, as the fraction of market order traders increases relative to that of limit

order traders, faster execution of limit orders results in fewer limit orders standing in the book.

In this section, we first present evidence that the Treasury market is tick-constrained and that

the tick size reduction in the 2-year note immediately results in a narrower bid-ask spread. We then

assess whether the tick size reduction helps or hurts liquidity given the countervailing undercutting

and queuing effects, using a battery of liquidity measures. Given the tightness of the spread even

around the new tick size, we hypothesize that the undercutting effect is weak relative to the queuing

effect and that the tick size reduction does not seriously harm, and may improve, liquidity.

3.1 Tick Size and the Bid-ask Spread

The percent of time the bid-ask spread is at exactly one tick, as measured by Pct1Tick, is

about 99% for the 2-year note in the pre-event period (see Table 2 and Figure 1), indicating that the

tick size is highly constraining. Compared to the 95% reported by Fleming et al. (2018) based on

2010-2011 data, the tick size appears to have become even more constraining in recent years. A

tick size reduction should ease the constraint and enable traders to compete more easily on price,

resulting in a narrower bid-ask spread (see Harris, 1997). This is indeed the case, as seen in the

immediate drop in the inside bid-ask spread BAS as well as the bid-ask spread hypothetically faced

by a large trade BAS L (upper plot in Figure 1). Furthermore, the drop in Pct1Tick (lower plot in

Figure 1) indicates that the new tick size becomes less constraining.

Regression results reported in Table 3 show that, controlling for market conditions and the

behavior of spreads of other securities, the inside bid-ask spread decreases by 0.977/256, reflecting

a nearly one-for-one change with the tick size change. Likewise, the bid-ask spread faced by large

trades narrows by nearly as much. The narrowing of the spreads accompanies a lower incidence of

1-tick spreads (a reduction of nearly five percentage points from a pre-change level of about 99%).

Overall, the evidence suggests that the old tick size of the 2-year note was constraining and that the

tick size reduction immediately narrows the spreads and slightly eases the tick size constraint.
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3.2 Effects of Tick Size on Trading Activity

A direct consequence of a tighter bid-ask spread is lower transaction costs for aggressive orders.

Goettler et al. (2005) show theoretically that a smaller tick size improves welfare for market order

submitters at the expense of limit order submitters. Consequently, some traders who otherwise

would have submitted limit orders may choose market orders instead, leading to higher trading

volume and frequency. The empirical literature generally finds consistent evidence, with a smaller

tick size benefiting liquidity demanders (see e.g., Harris, 1994, Ahn et al., 1996, Bacidore, 1997,

Porter and Weaver, 1997, and Bessembinder, 2000) or vice versa (e.g., Albuquerque et al., 2020).

Figure 2 visualizes the evolution of trading activity through the tick size reduction and shows

an increase in trading volume accompanied by a higher trade frequency but lower average trade

size. To test the hypothesis that a smaller tick size is beneficial to demanders of liquidity, we

estimate the regressions for outcome variables that reflect liquidity demand (logged volume of

trades LogV , logged number of trades LogN , and average trade size AV SZ). The last three

columns of Table 3 contain the coefficient estimates from these regressions. With transaction costs

being cut nearly in half, it is not surprising to see a sizable and positive impact on the quantity of

liquidity demanded. The total daily trading volume and number of trades both increase significantly.

Exponentiating the Post× Treatment coefficients for these variables indicates an increase from

their pre-change level of about 53% and 90% respectively, holding all else constant. The increase

in trade frequency exceeds the increase in trading volume, indicating that trades occur in smaller

sizes. The Post× Treatment coefficient for AV SZ confirms that the tick size change reduces the

average trade size by about $1.57 million.

Because a large portion of trading on the BrokerTec platform occurs in workups (see Fleming

and Nguyen, 2019), we ask next whether the new tick size has any impact on the propensity to trade

in workups.14 We find no significant change in the fraction of trading volume executed in workups,

but a statistically significant reduction in the number of trades executed in workups. This finding
14Workups are helpful for concealing the intentions of traders who need to move large blocks through the market.

The protocol allows traders to initiate a trade with a small initial size and subsequently work up the volume subject to
available liquidity (displayed and latent).
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(not tabulated for brevity) implies that the reduction occurs mainly among smaller workups. With a

finer pricing grid, it is less costly to trade through to the next price point (especially for traders with

smaller trading interests), thereby resulting in fewer workup sessions.

3.3 Effects of Tick Size on Market Depth

With data on the full limit order book, we are able to analyze how liquidity supply responds to a

tick size change in a liquid market. Specifically, we assess whether depth decreases 1) at specific

tiers on the new pricing grid, 2) at a fixed distance from the best bid-ask midpoint, and 3) across

the whole book. For specific tiers, D1 and D5 are depth at the inside tier and at the best five tiers

respectively.15 For depth within a fixed distance, we consider the cumulative depth within one

(D1A) and five (D5A) pre-change ticks of the midpoint respectively (corresponding to two and 10

post-change ticks for the 2-year note). Essentially, D1A and D5A measure the amount of liquidity

supplied at a fixed spread cost to liquidity demanders and help isolate the change in quantity from

the effect of the increased granularity of the price grid. Lastly, DT is the total depth across the

whole book.

Figure 2 shows the evolution of market depth measures over the sample period. Depth at the

inside tier (D1) and at the best five tiers (D5) drops abruptly with the tick size change. However,

cumulative depth within a given fixed distance (D1A and D5A) does not exhibit such a drop

immediately after the change, but appears to trend down around the end-of-year holiday season.

Finally, total depth across the book is considerably lower after the tick size change (which remains

true even after excluding the abnormally low depth level during the holiday week).

Table 4 reports the regression results for log depth measures. The evidence indicates a significant

reduction of depth at specific tiers. In particular, depth at the inside tier (D1) and the top five tiers

(D5) drops by roughly 55% and 32%.16 However, if we look at depth at a fixed price distance

from the midpoint, the evidence is different. Depth available within 2/256th of the midpoint (D1A)

actually increases (by about 45% based on the coefficient estimate of 0.374). Depth available within
15Although market participants with API access to the platform can view the complete order book, many market

participants can only see the best five tiers within the live orderbook as they trade.
16These are computed by exponentiating the coefficient estimates, −0.808 and −0.387 respectively.
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10/256th (D5A) also increases by nearly 14% as implied by the 0.127 coefficient estimate. These

findings are consistent with the “queuing effect” (whereby the faster execution speed at or near

the top of the book encourages more liquidity provision) dominating the “undercutting effect” as

explained in Werner et al. (2019). Nevertheless, we do find a large (and robust) reduction in total

depth across the whole book, by nearly 20% based on a −0.216 coefficient estimate. The reduction

in overall depth (and inside depth) seems to support the idea in Goettler et al. (2005) that a smaller

tick size increases the fraction of market order traders relative to that of limit order traders.

To complement our analysis of market depth, we also examine price impact (PI). A deep market

is able to absorb trading demand shocks without significantly affecting price. Thus, the smaller the

price impact, the deeper the market. Here, we measure PI by the slope coefficient from a regression

of one-minute bid-ask midpoint changes on net order flow over the same minute. Net order flow is

the difference between buyer-initiated and seller-initiated trade volume. We scale the coefficient

so that it reflects the price impact in basis points (bps) per $100 million in net order flow. The last

column of Table 4 shows the effects of the tick size reduction on PI . Because price impact varies

with maturity due to duration differences, we estimate the regression using log PI and interpret

the coefficients (after some transformation) as the percentage change in PI . The coefficient on

Post × Treatment is −0.234, implying that price impact shrinks by nearly 21%. One caveat is

that the price impact of the 2-year note is usually very small relative to that of other securities (e.g.,

0.19 bps compared to 1.5 bps for the 10-year note over the pre-change period as reported in Table 2).

An untabulated regression using raw PI gives a negative but statistically insignificant coefficient

because the decrease in PI in the 2-year note is minuscule compared to that in other securities.

Overall, despite lower market depth at each price on the new finer pricing grid, the amount of

liquidity available at or near the top of the book within a fixed price distance from the midpoint

improves. It appears that a finer pricing grid improves the probability of execution at each new price

point, especially at or near the market, resulting in greater concentration of liquidity there despite

lower total market depth across the whole book. This finding is consistent with the “queuing effect”

dominating the “undercutting effect” and the switch from limit to market orders in a lower spread
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environment as laid out in Werner et al. (2019). Furthermore, liquidity at the new inside tier is more

than sufficient to absorb easily even large trades. The post-change depth at the inside tier (D1) is

$237 million and depth within 2/256 of the bid-ask midpoint is $792 million per Table 2, both of

which are many times higher than the 99th percentile of the trade size distribution ($50 million).

Consequently, price impact shrinks from an already small magnitude, and traders with large trading

interests are not adversely affected. This is different from earlier empirical evidence associated with

equity market tick size reductions in which the combination of smaller spreads and reduced depth

makes liquidity demanders with small orders better off while those with large orders worse off (see

e.g., Goldstein and Kavajecz, 2000). The difference highlights the extremely high level of liquidity

in the Treasury market compared to even the most liquid stocks.

3.4 Effects of Tick Size on Competition for Liquidity Provision

A natural question of interest is whether the tick size change affects how different trader types

compete in liquidity provision. On the one hand, Harris (1997) argues that a smaller tick size

benefits fast traders in the competition for liquidity provision given their speed advantage. Thus,

faster traders might become more competitive in liquidity provision after the tick size reduction. On

the other hand, Yao and Ye (2014) and O’Hara et al. (2019) argue that fast traders exploit their speed

advantage to establish time precedence when the tick size is large, because it is more expensive to

obtain price priority. When the tick size is small, the reward for liquidity provision shrinks, thereby

reducing the competition from fast traders while allowing slower traders with more competitive

pricing to compete. In this section, we test whether the tick size reduction makes fast traders or

slow traders more competitive.

We identify limit order activities by fast and slow traders based on the latency of response to

market information signals.17 Responding time of 10 milliseconds (ms) or less indicates a fast

trader, whereas responding time of more than 10 ms indicates a slow trader. The 10 ms threshold

is adopted to reflect the physical limit which only sophisticated trading technologies used by high

17The data do not provide any identification information of market participants, so we have to rely on order activities
to distinguish activities of fast and slow traders.
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frequency traders can achieve. In our classification of fast vs. slow order activities, we exclude

orders that arrive after one second following a market signal, because it is not clear which trader

type sends such orders and whether such orders actually respond to the given market signal.

In attributing order activities to fast vs. slow traders based on response speed, we have two

alternative measures. The first measure, denoted by FirstLO, captures the fraction of the first limit

orders reaching the book following changes in the best bid or offer prices (“market signals”). If

such an order arrives within 10 ms, we classify it as coming from a Fast trader. If the order arrives

more than 10 ms after the signal, it is considered as coming from a Slow trader. For each day, we

calculate the measure separately for each trader type. The denominator is the number of market

signals of the day. The numerator is the number of first responding limit orders submitted by a

given trader type.18

The second measure, denoted by SprT ight, is the fraction of time a given trader type is the first

to restore the bid-ask spread to one tick. For this measure, the bid-ask spread being wider than one

tick is considered a “market signal”. We attribute the first order that restores the bid-ask spread back

to one tick to either fast or slow traders again based on the latency threshold of 10 ms as previously

discussed. The denominator is the number of times the bid-ask spread is greater than one tick,

representing the number of opportunities for price improvement. While FirstLO captures just the

general liquidity provision activities (which may or may not improve price), SprT ight specifically

reflects price improvement in liquidity provision.

We plot FirstLO and SprT ight for slow and fast traders in Figure 3. Fast traders appear to

dominate the competition for liquidity provision, as indicated by the substantially higher magnitude

of both FirstLO and SprT ight for fast traders compared to slow traders. However, it is remarkable

to see that both measures increase for slow traders and decrease for fast traders following the tick

size reduction. We follow with formal regression results, reported in Table 5. Consistent with the

graphical evidence, we observe that the race to respond to price changes in the order book and to

18These two fractions do not add up to 100% because of the exclusion of order activities that arrive more than one
second after a market signal.

16



restore spreads to the minimum level tilts in favor of slow traders and against fast traders. The

Post × Treatment coefficient is significantly positive for slow traders, showing an increase of

roughly five percentage points in the fraction of first responding limit orders submitted by these

traders. They also price-improve more, as reflected in the increased fraction of time a slow trader

steps in to restore a widened spread to its minimum level of one tick.

Our empirical evidence supports the intuition in Yao and Ye (2014) and O’Hara et al. (2019)

that a shrinking spread and decreased value of time precedence—when it is easier/cheaper to obtain

price precedence—diminish the incentive for fast traders to rush to the front of the queue. It is

helpful to think about how fast and slow traders map into the types of market participants in the

Treasury market’s electronic interdealer marketplace. In addition to dealers, there are HFT firms

utilizing high speed trading technologies to trade and provide liquidity. The HFTs are more likely to

correspond to the fast traders in our analysis due to their speed advantage, whereas the dealers are

more likely to be the slow traders. Unlike the HFTs, dealers have client-facing business outside of

the interdealer trading platforms. Inventory pressures from customer trading activities might induce

more competitive pricing by the dealers in the interdealer market. With a smaller tick size, which

reduces the incentive for fast traders to exploit their speed advantage, dealers can better compete

and improve pricing more frequently than before.

4 The Impact of Tick Size Reduction on Price Discovery

4.1 Effects of Tick Size on Price Efficiency

After addressing market liquidity, we next study whether the tick size reduction improves price

quality in terms of the speed and precision with which prices incorporate information. Such an

improvement might come from the greater flexibility with which prices can move and the greater

price competition enabled by a smaller tick size, and can occur even in the absence of increased

information acquisition. This is one of the insights of Goettler et al. (2005) who contend that a

smaller tick size increases the precision of observed prices as a proxy for the true value. Harris

(1997) posits that a smaller tick size makes it easier to price improve. With the diminished value
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of time precedence, traders can submit and cancel orders more frequently in response to changing

market conditions and news arrival. In consequence, we expect the observed price process to exhibit

properties that approach those of a random walk of the efficient price process.

To examine how the smaller tick size affects the flexibility and efficiency of prices, we consider

several measures. NonZeroBA is the fraction of non-zero one-minute midpoint returns during

a trading day. If quote revisions are more frequent and price competition is more intense with a

smaller tick size, we should see this fraction increase. NonZeroT is computed similarly, except

that the returns are based on the last trade price of each minute. Another measure of price variation

is the daily realized volatility (RV ) based on one-minute changes in log midpoint price, i.e., RV =√∑N
t=1[ln(pt)− ln(pt−1)]2. AR30 is the absolute autocorrelation of 30-second midpoint returns

(we use midpoint returns so that the measure is not contaminated by the bid ask bounce associated

with trade prices). V R10s,1m is the ratio of six times the daily variance of 10-second returns to

that of 1-minute returns. The efficient price process is a random walk with zero autocorrelation

and a unit variance ratio. Thus, a reduction in the magnitude of the autocorrelation or the variance

ratio approaching 1 indicates convergence of the observed price process toward its random walk

benchmark. In our tests, we use |V R− 1| because we are interested in seeing whether the variance

ratio gets closer to 1 after the tick size change. The last price efficiency measure is Hasbrouck

(1993)’s standard deviation of intraday pricing errors, PErr (see Table 1 for further details).

Figure 4 shows the time series variation of NonZeroBA, RV , |AR30|, and PErr. The top left

plot for NonZeroBA shows that prices change more frequently on the post-change finer pricing

grid, allowing for quicker incorporation of even small information shocks, so that quoted prices more

accurately reflect the true price. Despite the more frequent price moves, there is no accompanied

increase in price volatility (RV ), as shown in the top right plot. Providing further indication of a

more efficient price process, the magnitude of the 30-second return autocorrelation declines (bottom

left plot), and so does the magnitude of pricing errors (bottom right plot).19

19For our purpose, we are interested in the magnitude of the return autocorrelation, but note that in our sample, the
autocorrelation is always negative. It becomes less negative in the post-change period.

18



Regression results with each of the above measures as the outcome variable are reported in

Table 6. Consistent with the visual evidence, the significant and negative coefficients on Post x

Treatment for NonZeroBA and NonZeroT suggest that the degree of price inertia decreases

significantly after the tick size is halved, by roughly 15–20 percentage points. However, the tick size

reduction does not have a significant impact on RV (we obtain similar results when we compute

volatility from trade prices instead of midpoint prices). The evidence implies that the shrinking

microstructure noise component of realized volatility due to lower price discreteness balances out

with the increased frequency of price updates, thereby leaving realized volatility largely unchanged.

The last three columns in Table 6 report our estimates of the effects of the tick size reduction

on price efficiency. The high-frequency return autocorrelation gets closer to zero and the variance

ratio closer to 1, both of which are properties of a random walk process. These results support

the hypothesis that a finer pricing grid allows prices to incorporate even small information shocks

and hence converge closer to the true value. The significant reduction in the standard deviation of

intraday pricing errors strengthens this finding further.

Overall, after the tick size change, the observed price process exhibits clear signs of improvement:

it updates more frequently, becomes more accurate (less pricing errors), and exhibits less return

predictability. This finding is consistent with studies of equity tick size changes, suggesting that the

positive effect of a smaller tick size on price efficiency is robust to different market structures.20

4.2 Effects of Tick Size on Price Discovery

Separate from the question of whether price becomes more efficient (it does) is the question

of whether price becomes more informative. We have a unique opportunity to shed light on this

challenging question. The cash Treasury market operates alongside a highly liquid Treasury futures

market. Mizrach and Neely (2008) establish that the cash and futures markets are tightly linked

through the no-arbitrage principle, and Dobrev and Schaumburg (2018) find that this is even more

20Chung and Chuwonganant (2002) study the effect of tick size reduction on quote revisions in U.S. equity markets,
first from 1/8 to 1/16 in 1997, and then from 1/16 to 0.01 in 2001. They find that as the tick size becomes smaller,
price competition increases, and prices become less rigid and more efficient. Albuquerque et al. (2020)’s study on the
SEC tick size pilot program finds a decline in price efficiency for stocks whose tick size increases.
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so in recent years given the rise in high frequency trading. Thus, the two markets are increasingly

viewed as one, sharing a common random walk fundamental process. The variance of this process

reflects the aggregate information affecting Treasury benchmark rates. The contribution of each

market to this variance in turn indicates its share of the aggregate information.

We employ Hasbrouck (1995)’s methodology to extract the underlying efficient price process

from the cash and futures prices with a vector error correction model (VECM). The variance of the

efficient price changes reflects the amount of information impounded into prices. The contribution

of each market to this variance indicates its role in price discovery. The model is:

∆Pt = αzt−1 +
k∑

s=1

As∆Pt−s + εt (2)

where Pt =
[
P c
t , P

f
t

]′
is a vector of cash and futures prices at time t. We use the best bid-ask

midpoint price from each market. In the main analysis, we sample the prices at the one-second

frequency (the highest frequency available for futures price data) to capture price discovery at a

reasonably granular time scale, so t indexes seconds in the trading day. zt equals the difference

between cash and future prices and serves as the error correction term. We estimate the model with

five lags and separately for each day (allowing us to largely sidestep issues related to the variation in

the “cheapest-to-deliver” security underlying the futures contract and coupon-related price changes

in the cash instrument).

Hasbrouck (1995)’s information share relies on two ingredients derived from the model. The

first is the permanent impact of the shock vector on the cointegrated prices in the system (i.e., the

long-run multipliers based on the moving average representation of the VECM). The second is the

vector of orthogonalized shocks, which we obtain via a Cholesky decomposition of the covariance

matrix of the residuals Ω = E[εtε
′
t]. The information share of price series j is then computed as:

ISj =

[∑n
i=j γimij

]2
γΩγ′

, (3)
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where γ = [γ1, γ2] is the permanent price impact of innovations in the cash and futures price series

respectively, andmij is the (i, j) element of the lower triangular matrixM such thatMM ′ = Ω. The

denominator is the variance of the random walk component of price changes. Thus, the information

share of a given price series is the contribution of its variation to the total variation of the efficient

price updates. The information share estimates depend on the ordering of the prices in the system.

We estimate the information shares using both orderings and take the average.

In Figure 5, we plot the information share of the cash market over the extended sample period

from September 24, 2018 to March 8, 2019, with two dashed lines marking the cash and futures

tick size events (from left to right). An increase in the cash market’s information share is clearly

visible in the 2-year tenor after the cash tick size reduction, a pattern that does not exist in the other

tenors with unchanged tick size. When the tick size in the futures market is halved and becomes

again comparable with the tick size in the cash market, we observe a reversal of the earlier increase

in the cash market’s information share. Again, such a reversal is not apparent in the other tenors.

The figure thus provides evidence that tick size plays a meaningful role in shifting price discovery

to the smaller tick market.

More formally, Table 7 reports the regression results for the cash market’s information share

and the efficient return variance V arRW as the dependent variables of interest. Panel A shows the

effects of the cash tick size change based on the 16-week window around the cash market event,

from September 24, 2018 to January 11, 2019—just before the futures market’s tick size change on

January 14, 2019. The post-event eight-week period is when the cash market operates with a tick

size equal to one half of the futures market tick size. During this period, the information share of

the cash market IS Cash increases by nearly 20 percentage points.

If the increased contribution of the cash market to price discovery is indeed due to its smaller

tick size, this information advantage should reverse and we should observe a reduction in the cash

market’s information share once the futures market’s tick size is reduced to the same level. Panel

B reports the results of this test based on the 16-week window around the futures market’s tick

size reduction. The coefficient on Post× Treatment indicates that the information share of the
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cash market indeed decreases—by nearly 12 percentage points—once it loses its smaller tick size

advantage. Another notable result from both Panels A and B is that the variance of the efficient

return does not change significantly through both events.

Thus, it is clear from Table 7 that tick size does not affect fundamental volatility (the efficient

return variance) but that the market with a smaller tick size attracts greater price discovery. The finer

pricing grid enabled by a smaller tick size makes it easier for traders to exploit their information

advantage, especially small information signals that would otherwise be unprofitable to exploit in

a larger tick environment. Furthermore, prices in the smaller tick market move more freely and

frequently, resulting in that market being more likely to lead the larger tick market. The increased

leadership in price discovery by the cash market during the brief period of having a smaller tick size

is consistent with this intuition.

The nature of information in the Treasury market is worth further discussion. Different from

stocks, the concept of “private information” does not apply to the U.S. Treasury market. Treasury

security pries are driven by fundamental macroeconomic information, which is publicly available,

and by differential interpretation of that information. Information advantage therefore comes from

better capability to process public news or from proprietary client order flow information (see

e.g., Fleming and Nguyen, 2019). The latter source of information arises somewhat exogenously

due to clients’ trading demand whereas the former (better capability to process public news) is

within the realm of traders’ optimization. That said, there is little scope for additional information

acquisition because Treasury market participants are highly sophisticated; it is not likely that a

macroeconomic announcement remains imperceptible for an extended period of time. In this

context, any information advantage tends to be small and diminish very quickly. This is consistent

with our evidence of traders tilting more toward the smaller-tick-size cash market—to presumably

trade on these small information advantages—when the cash market tick size is narrower.

To explore this hypothesis in greater depth, we analyze the information share of the cash market

at various return frequencies. The idea is that if the smaller tick size is beneficial for quickly

exploiting small information signals, then the cash market’s information advantage should lessen as
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the return measurement horizon increases. To this end, we estimate the VECM in Equation (2) using

prices sampled at 1-second, 10-second, 30-second, 1-minute, 5-minute, and 10-minute frequencies.

We then compute the cash market’s information share corresponding to these frequencies and plot

their time series in Figure 6. The rise in the information share after the cash tick size change and

the reversal after the futures tick size change are only evident for the very short-horizon returns (the

1- and 10-second frequencies). Beyond these horizons, it seems that the tick size changes have little

effect on information shares.

The regression results reported in Table 8 formally confirm the above observation. Panel A

tabulates the effects of the cash tick size change, while Panel B reports the results for the futures

tick size change. We continue to observe an increase in information share after the cash tick size

reduction, followed by a reversal after the tick size in the futures market catches up, only for very

short horizon returns (one second and 10 seconds). There is little evidence to indicate that the cash

market plays a greater price discovery role when it comes to longer-horizon returns. These results

suggest that the smaller tick size is informationally beneficial only at very high frequencies when it

enables traders to capture their (small) information advantage quickly.

A related study by Chaboud et al. (2019) finds that the spot foreign exchange market has a

reduced price discovery role relative to the futures market—despite an increased trading volume—

after the spot market’s tick size reduction. They attribute the decreased price discovery role of

the smaller-tick spot market to increased liquidity demand by HFTs. They argue that HFTs can

improve very short-run price efficiency but decrease long-run price efficiency because HFTs’ order

flow contains less long-run fundamental information. Note that their findings pertain to long-run

price discovery, however, while the focus of our study is on very short-run price discovery. In the

extremely liquid and tick-constrained Treasury market, evidence suggests that tick size only matters

for exploiting price dislocations at very high frequencies.
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5 Additional Analysis
Treasury securities are different from stocks in that they all share the same fundamentals and

differ only in their maturity and coupon rates. That is, Treasury securities are highly substitutable,

especially among those closer in maturities. Furthermore, this substitutability applies not only

among Treasury securities, but also with Treasury futures. That said, Treasury securities can also

be complementary to the extent that traders seek exposure across the yield curve, or conduct basis

trades involving both cash and futures instruments. It is therefore plausible that a microstructure

perturbation in the market for one security (specifically, the 2-year note) might have significant

effects not only in its own market, but also in the markets for other segments of the yield curve or

the associated futures market. Substitutability would predict opposite-sign effects on other securities

compared to the effects on the 2-year note, whereas complementarity would imply same-sign effects.

In the previous sections, we use other securities as controls in the identification of the effects in the

2-year note following its tick size reduction. In this section, we analyze whether there are spillover

effects on the other Treasury notes in order to understand better the microstructure linkages across

the yield curve and to interpret our earlier results with care. We then analyze the microstructure

linkages with the futures market.

5.1 Microstructure Linkage Across the Yield Curve

To assess whether market liquidity and price efficiency metrics of the other on-the-run Treasury

notes change significantly in the period after the 2-year note’s tick size change, we estimate the

following regression with similar controls for market conditions and known seasonality as in

Equation 1:

Yt = α + β1Postt + β2MOV Et−1 + β3MKTLIQ1t−1 + β4MKTLIQ2t−1 + θ′Dt + εt, (4)

where Yt is a market quality metric of interest and Dt are dummies for day-of-week effects, the

holiday period, and early market closes. We estimate this regression separately for each of the other

notes and report the results in Table 9.
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The 3-year note appears most directly affected by the 2-year note’s tick size change, whereas

there is barely any significance in the effects for the 5-, 7-, and 10-year notes. The 3-year note’s

liquidity appears to slightly worsen, with wider bid-ask spreads and lower market depth at or near

the top of the book. However, the 3-year note seems to benefit from the increased price efficiency

of the 2-year note: its return autocorrelation and variance ratio both change significantly toward the

random walk benchmark. This result is consistent with the idea that traders in one security learn

value-relevant information from closely related securities.

Another noteworthy result from Table 9 is that despite the 2-year note becoming the cheapest

on-the-run instrument to trade, trading activity in other notes does not seem to be affected. There is

no evidence of order flow migration nor spillover across the yield curve as a result of the 2-year

note’s tick size change. Likewise, the event is inconsequential to price impact in other notes. Overall,

it seems that there is little spillover of treatment effects—a concern for event studies of regulatory

experiments as discussed in Boehmer et al. (2020). This provides some assurance for the identified

effects we discuss in our main analysis, with two cautions. First, the 3-year note exhibits some

evidence of being affected by the 2-year note’s tick size event. We conduct robustness checks on our

earlier results by excluding the 3-year note from the DiD regressions and obtain qualitatively similar

results. Second, D1A and D5A of other Treasury notes are significantly lower in the post period.

When these other notes are used as controls in the DiD regression (Equation 1), the treatment effects

on the 2-year note as reported in Table 4 might be biased upward. Nonetheless, when we take into

account the effects on all market liquidity measures, the conclusion that the tick size reduction

improves liquidity remains robust.

5.2 Price Discovery at the Short End of the Yield Curve

Given the high substitutability between the 2- and 3-year notes, we next examine the 2-year

note’s role in price discovery at the short end of the yield curve when its tick size is halved while

that of the 3-year note remains unchanged. We estimate the information share split between the

two notes in a similar fashion to how we estimate the information share split between the 2-year

cash and futures instruments as described in Section 4. As before, the information share estimation
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is done for varying return sampling frequencies. Using the 2-year note’s information share as the

outcome variable of interest, we estimate a regression as specified in Equation 4, separately for the

cash tick size reduction on November 19, 2018 and futures tick size reduction on January 14, 2019.

Table 10 reports the Post coefficient estimate for the 2-year note’s information share at various

horizons. We again find that once the 2-year note’s tick size is reduced, its role in price discovery

rises relative to that of the 3-year note. However, unlike the cash-futures price discovery results,

this rise in price discovery does not reverse around the futures tick size change—an event that is

completely unrelated to the mismatch in tick size between the 2- and 3-year notes. This additional

evidence lends strong support for our conclusion that price discovery shifts toward the smaller-tick

market. Again, such a shift occurs only at very high return sampling frequencies and dissipates at

lower frequencies. It seems that the informational benefit of a smaller tick size is mainly due to

timely incorporation of small and short-lived information signals. The tick size reduction does little

to affect the balance of price discovery with respect to more fundamental, long-term information.

5.3 Microstructure Linkage with the Futures Market

We now repeat the same analysis as in Section 5.1 but for Treasury note futures. We extend the

regression model in Equation 4 to include aggregate futures market liquidity and a dummy for the

futures roll period.21 We report the results in Table 11 for trading and price efficiency variables that

we can compute from our available futures data. There are no significant effects on longer-tenor

futures contracts (10-year and ultra 10-year), highlighting the disconnect between these contracts

with the 2-year note, similar to the disconnect between the 2-year note and the long end of the yield

curve. However, some effects are evident for the 2-year futures: the bid-ask spread slightly widens,

trading volume increases, and price updates become more frequent after the 2-year note’s tick size

reduction. Interestingly, the 5-year futures also exhibits some connection, mainly in terms of the

bid-ask spread (widening) and improved price efficiency, perhaps as a result of cross-asset learning.

21The aggregate futures market liquidity is computed as the total trading volume across all front-month contracts (2-,
5-, 10-, ultra 10-, and 30-year tenors). The futures roll period is the last five business days of November 2018, when
futures traders switch out of the December 2018 contract and into the March 2019 contract.
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We also regress the ratio of cash to futures trading volume in the 2-year tenor on the same set of

control variables and find that this ratio increases significantly in the period after the cash market

tick size reduction. It appears that this tick size reduction induces more trading in both markets, but

disproportionately increases volume in the cash market, suggesting some evidence of substitutability

between the cash and futures instruments and the preference for the cash instrument when its tick

size is lower. The disproportionate increase in trading volume in the cash market corroborates our

evidence of an increased price discovery role for the cash market.

6 Conclusion
We study a recent tick size reduction in the U.S. Treasury securities market and identify the

effects of this market design change on the market’s liquidity and price discovery. Based on

difference-in-differences regressions, we find that the bid-ask spread narrows significantly, even for

large trades. Both trading volume and trading frequency increase. While market depth is markedly

lower at the inside tier and decreases across the whole book, cumulative depth at the previous tick

size (2/256) improves. We also find that slow traders become more competitive relative to fast

traders in liquidity provision, evidenced by the former’s increased probability to be the first to

submit limit orders and tighten spreads in response to changing market conditions.

We further find that the smaller tick size unambiguously improves price quality. Prices move

more frequently without raising volatility and can respond to smaller information shocks, resulting

in greater price efficiency. Based on an analysis of the cash and futures markets’ joint price discovery

around the tick size reduction, we provide novel evidence that the tick size reduction concentrates

greater price discovery in the cash market, in which a finer pricing grid enables faster capture

of information rents. The cash tick size change induces increased trading in both markets, but

disproportionately so in the cash market, indicating a preference for trading in the smaller tick

market, consistent with the increased price discovery result.

We also use this tick size event as an opportunity to study how such a market design perturbation

in one market (for the 2-year note) permeates through the Treasury interest rate complex given the
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tight connection among Treasury securities and between the cash and futures markets. Our analysis

indicates that only the 3-year note and 2-year futures contract experience spillovers of treatment

effects. Longer maturity notes and futures contracts are not significantly affected. The lack of

effects on these other securities helps ease the concern of treatment spillovers often expressed for

event studies of regulatory or natural experiments. Excluding the 3-year note from DiD regressions

does not qualitatively affect our results or conclusions.

Overall, we conclude that a smaller tick size in the Treasury market improves market quality,

encourages more competition in liquidity provision and pricing from dealers relative to HFTs, and

enhances high-frequency price discovery. One caveat to note is that our conclusion pertains only to

electronic trading platforms in the interdealer market for Treasury securities and their linkage with

the electronic futures market. The lack of data on other segments of the Treasury market precludes

a study of how the tick size change filters down to other parts of the Treasury intermediation chain,

especially dealer-to-customer trading. We reserve this question for future research when such data

become available.
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Table 1: Variable Description

BAS Difference between the best ask and the best bid price, sampled at 1-minute
frequency and averaged for each day. Expressed in 256ths of a percent of par.

BAS L Difference between the ask and the bid price applicable for executing a large
trade, sampled at 1-minute frequency and averaged for each day. Expressed in
256ths. Large trade is defined as the 99th percentile of the trade size distribution
of each security, which is $50, $33, $23, $13, and $20 million for the 2-, 3-, 5-,
7-, and 10-year notes respectively).

Pct1Tick Percent of time, sampled at 1-minute frequency, that the inside bid-ask spread
equals one tick.

TV Total par volume traded, in $ million.
TN Number of trades.
AV SZ Average trade size, computed as the total trading volume divided by the number

of trades.
D1 Depth (average of bid and ask depth) at the inside tier, sampled at 1-minute

frequency and averaged for each day. Expressed in $ million par.
D1A Cumulative depth (average of bid and ask depth) within X 256ths of the best

bid-ask midpoint, where X = 2 for the 2-, 3-, and 5-year notes and X = 4 for
the 7- and 10-year notes, sampled at 1-minute frequency and averaged for each
day. Expressed in $ million par.

D5 Cumulative depth (average of bid and ask depth) at the best five tiers, sampled
at 1-minute frequency and averaged for each day. Expressed in $ million par.

D5A Similar to D1A, with X = 10 for the 2-, 3-, and 5-year notes and X = 20 for
the 7- and 10-year notes

DT Total depth (average of bid and ask depth) across the whole book, sampled at
1-minute frequency and averaged for each day. Expressed in $ million par.

PI The slope coefficient from the regression of one-minute returns on net order flow
(buy volume minus sell volume), estimated separately for each day. Expressed
in bps per $100 million in net order flow.

NLO Number of limit orders submitted to the order book, expressed in thousands.
WKUP N Fraction of number of trades that execute in workups.
WKUP V Fraction of volume of trades that execute in workups.
Time2Can Daily median time to cancellation of limit orders, in seconds.
FirstLO Slow Fraction of the first limit order reaching the book following any change in the

best bid or ask prices within 10 milliseconds to 1 second of the change.
FirstLO Fast Similar to FirstLO Slow but with a response speed of below 10 milliseconds.
SprT ight Slow Fraction of the first limit order restoring the bid-ask spread to one tick within

10 milliseconds to 1 second of spread widening.
SprT ight Fast Similar to SprT ight Slow but with a response speed of below 10 milliseconds.
NonZeroBA Fraction of minutes with non-zero midpoint returns.
RV Realized volatility based on one-minute log midpoint returns, calculated as

RV =
√∑N

t=1[ln(pt)− ln(pt−1)]2 and annualized by a factor of
√

250.

continued on next page
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Table 1 (continued from previous page)

|AR30| Absolute autocorrelation of 30-second midpoint returns.
V R Six times the ratio of the daily variance of 10-second midpoint returns to that of

one-minute midpoint returns.
PErr Hasbrouck (1993) standard deviation of intraday pricing errors based on a

VAR(5) of trade-by-trade log return, trade sign, signed volume, and signed
square root of volume and Beveridge and Nelson (1981)’s restriction for variance
decomposition.

IS Hasbrouck (1995) information share (see calculation details in Section 4.2).

Notes: All variables are computed based on data from the BrokerTec platform over New York trading hours (7:30 to
17:00 Eastern time). The sample period is from September 24, 2018 to March 9, 2019.
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Table 3: Effects of Tick Size Reduction on Transaction Costs and Trading Activity

BAS BAS L Pct1Tick LogV LogN AV SZ

Post 0.037∗∗∗ 0.087∗∗ −0.010∗∗∗ 0.097∗ 0.088∗ 0.037
(0.012) (0.039) (0.004) (0.050) (0.049) (0.100)

Post x Treatment −0.977∗∗∗ −0.962∗∗∗ −0.047∗∗∗ 0.426∗∗∗ 0.638∗∗∗ −1.573∗∗∗

(0.025) (0.079) (0.007) (0.100) (0.099) (0.203)
Security Fixed Effects Yes Yes Yes Yes Yes Yes
Security x MOV Et−1 Yes Yes Yes Yes Yes Yes
Security x MKTLIQ1t−1 Yes Yes Yes Yes Yes Yes
Security x MKTLIQ2t−1 Yes Yes Yes Yes Yes Yes
Day-of-week Effects Yes Yes Yes Yes Yes Yes
Holiday Dummy Yes Yes Yes Yes Yes Yes
Early Close Dummy Yes Yes Yes Yes Yes Yes

Adj R2 0.917 0.698 0.630 0.451 0.534 0.643
Nobs 370 370 370 370 370 370

This table shows the effects of the tick size reduction on bid-ask spreads and liquidity demand. The regression model is
Xi,t = αi + β1Postt + β2Postt × Treatmenti + θ′Zi,t + εi,t. Treatment is an indicator variable equal to 1 for the
2-year note and 0 otherwise, and Post is an indicator variable equal to 1 for the period after the tick size reduction on
November 19, 2018. αi is security fixed effects. Zi,t include variables to control for security-specific variation over
time due to aggregate bond market volatility (the MOV E index) and Treasury market liquidity (measured by aggregate
market depth and trading volume across all on-the-run securities traded on BrokerTec, denoted by MKTLIQ1 and
MKTLIQ2 respectively), day-of-week dummies, a dummy for early market close days, and a holiday dummy for the
holiday period (December 24, 2018 – December 31, 2018). The dependent variable is shown in each column header.
BAS is the difference between the best ask price and the best bid price. BAS L is the bid-ask spread for executing a
large trade (99th percentile). Pct1Tick is the percent of time the bid-ask spread equals one tick. LogV and LogN are
the natural log of trading volume and number of trades. AV SZ is the average trade size. Variables are measured at the
daily frequency using data from the BrokerTec platform over New York trading hours (7:30 to 17:00 Eastern time). The
sample consists of on-the-run nominal Treasury notes (2-, 3-, 5-, 7-, and 10-year notes) over the period from September
24, 2018 to January 11, 2019. Standard errors of coefficient estimates are reported in parentheses. *p < .1; **p < .05;
***p < .01.
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Table 4: Effects of Tick Size Reduction on Market Depth

D1 D1A D5 D5A DT PI

Post −0.172∗∗∗ −0.168∗∗∗ −0.092∗∗∗ −0.096∗∗∗ −0.041∗ 0.028
(0.033) (0.030) (0.023) (0.022) (0.021) (0.053)

Post x Treatment −0.808∗∗∗ 0.374∗∗∗ −0.387∗∗∗ 0.127∗∗∗ −0.216∗∗∗ −0.234∗∗

(0.066) (0.061) (0.047) (0.045) (0.042) (0.108)

Security Fixed Effects Yes Yes Yes Yes Yes Yes
Security x MOV Et−1 Yes Yes Yes Yes Yes Yes
Security x MKTLIQ1t−1 Yes Yes Yes Yes Yes Yes
Security x MKTLIQ2t−1 Yes Yes Yes Yes Yes Yes
Day-of-week Effects Yes Yes Yes Yes Yes Yes
Holiday Dummy Yes Yes Yes Yes Yes Yes
Early Close Dummy Yes Yes Yes Yes Yes Yes

Adj R2 0.872 0.786 0.877 0.849 0.865 0.181
Nobs 370 370 370 370 370 370

This table shows the effects of the tick size reduction on market depth. The regression model is
Xi,t = αi + β1Postt + β2Postt × Treatmenti + θ′Zi,t + εi,t. Treatment is an indicator variable equal to 1 for the
2-year note and 0 otherwise, and Post is an indicator variable equal to 1 for the period after the tick size reduction on
November 19, 2018. αi is security fixed effects. Zi,t include variables to control for security-specific variation over
time due to aggregate bond market volatility (the MOV E index) and Treasury market liquidity (measured by aggregate
market depth and trading volume across all on-the-run securities traded on BrokerTec, denoted by MKTLIQ1 and
MKTLIQ2 respectively), day-of-week dummies, a dummy for early market close days, and a holiday dummy for the
holiday period (December 24, 2018 – December 31, 2018). The dependent variable is shown in each column header. D1
is the depth at the inside tier. D5 is the cumulative depth at the top five tiers in the book. DT is the total depth across
the whole book. D1A and D5A are the cumulative depth within 1 pre-change tick and 5 pre-change ticks respectively
(corresponding to 2 and 10 post-change ticks for the 2-year note). PI is the price impact of trade per $100 million net
order flow (in bps). All outcome variables are log-transformed. Variables are measured at the daily frequency using
data from the BrokerTec platform over New York trading hours (7:30 to 17:00 Eastern time). The sample consists of
on-the-run nominal Treasury notes (2-, 3-, 5-, 7-, and 10-year notes) over the period from September 24, 2018 to
January 11, 2019. Standard errors of coefficient estimates are reported in parentheses. *p < .1; **p < .05; ***p < .01.
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Table 5: Effects of Tick Size Reduction on Competition for Liquidity Provision

Slow Traders Fast Traders

FirstLO SprT ight F irstLO SprT ight

Post −0.000 0.019∗∗∗ 0.006 −0.034∗∗∗

(0.003) (0.006) (0.006) (0.009)

Post x Treatment 0.066∗∗∗ 0.077∗∗∗ −0.107∗∗∗ −0.106∗∗∗

(0.007) (0.013) (0.013) (0.019)

Security Fixed Effects Yes Yes Yes Yes
Security x MOV Et−1 Yes Yes Yes Yes
Security x MKTLIQ1t−1 Yes Yes Yes Yes
Security x MKTLIQ2t−1 Yes Yes Yes Yes
Day-of-week Effects Yes Yes Yes Yes
Holiday Dummy Yes Yes Yes Yes
Early Close Dummy Yes Yes Yes Yes

Adj R2 0.394 0.476 0.406 0.459
Nobs 370 370 370 370

This table shows the effects of the tick size reduction on liquidity provision by different trader types. The regression
model is Xi,t = αi + β1Postt + β2Postt × Treatmenti + θ′Zi,t + εi,t. Treatment is an indicator variable equal
to 1 for the 2-year note and 0 otherwise, and Post is an indicator variable equal to 1 for the period after the tick size
reduction on November 19, 2018. αi is security fixed effects. Zi,t include variables to control for security-specific
variation over time due to aggregate bond market volatility (the MOV E index) and Treasury market liquidity
(measured by aggregate market depth and trading volume across all on-the-run securities traded on BrokerTec, denoted
by MKTLIQ1 and MKTLIQ2 respectively), day-of-week dummies, a dummy for early market close days, and a
holiday dummy for the holiday period (December 24, 2018 – December 31, 2018). The dependent variable is shown in
each column header. Slow and fast traders are identified by the latency of response to market signals, with longer than
10 ms for slow traders and less than 10 ms for fast traders. FirstLO is the fraction of the first limit order reaching the
book submitted by a given trader type following a market price change. SprT ight is the fraction of time a given trader
type is the first to restore the bid-ask spread to one tick. Variables are measured at the daily frequency using data from
the BrokerTec platform over New York trading hours (7:30 to 17:00 Eastern time). The sample consists of on-the-run
nominal Treasury notes (2-, 3-, 5-, 7-, and 10-year notes) over the period from September 24, 2018 to January 11, 2019.
Standard errors of coefficient estimates are reported in parentheses. *p < .1; **p < .05; ***p < .01.
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Table 6: Effects of Tick Size Reduction on Price Variation and Efficiency

NonZeroBA NonZeroT RV |AR30| |V R− 1| PErr

Post 0.013 0.009 0.096 −0.034∗∗∗ −0.102∗∗ 0.005∗

(0.012) (0.011) (0.122) (0.010) (0.041) (0.002)

Post x Treatment 0.206∗∗∗ 0.142∗∗∗ −0.098 −0.057∗∗∗ −0.157∗ −0.024∗∗∗

(0.024) (0.022) (0.248) (0.021) (0.083) (0.005)

Security Fixed Effects Yes Yes Yes Yes Yes Yes
Security x MOV Et−1 Yes Yes Yes Yes Yes Yes
Security x MKTLIQ1t−1 Yes Yes Yes Yes Yes Yes
Security x MKTLIQ2t−1 Yes Yes Yes Yes Yes Yes
Day-of-week Effects Yes Yes Yes Yes Yes Yes
Holiday Dummy Yes Yes Yes Yes Yes Yes
Early Close Dummy Yes Yes Yes Yes Yes Yes

Adj R2 0.630 0.579 0.331 0.156 0.166 0.197
Nobs 370 370 370 370 370 370

This table shows the effects of the tick size reduction on price revision and efficiency. The regression model is
Xi,t = αi + β1Postt + β2Postt × Treatmenti + θ′Zi,t + εi,t. Treatment is an indicator variable equal to 1 for the
2-year note and 0 otherwise, and Post is an indicator variable equal to 1 for the period after the tick size reduction on
November 19, 2018. αi is security fixed effects. Zi,t include variables to control for security-specific variation over
time due to aggregate bond market volatility (the MOV E index) and Treasury market liquidity (measured by aggregate
market depth and trading volume across all on-the-run securities traded on BrokerTec, denoted by MKTLIQ1 and
MKTLIQ2 respectively), day-of-week dummies, a dummy for early market close days, and a holiday dummy for the
holiday period (December 24, 2018 – December 31, 2018). The dependent variable is shown in each column header.
NonZeroBA is the fraction of nonzero minute-by-minute midpoint returns during a trading day. NonZeroT is
computed similarly using last trade prices. RV is the annualized realized volatility based on one-minute changes in log

midpoint price, calculated as RV =
√∑N

t=1[ln(pt)− ln(pt−1)]2. |AR30| is the absolute autocorrelation of 30-second
mid-point returns. V R is six times the ratio of the daily variance of 10-second returns to that of one-minute returns.
PErr is the daily standard deviation of intraday pricing errors. Variables are measured at the daily frequency using
data from the BrokerTec platform over New York trading hours (7:30 to 17:00 Eastern time). The sample consists of
on-the-run nominal Treasury notes (2-, 3-, 5-, 7-, and 10-year notes) over the period from September 24, 2018 to
January 11, 2019. Standard errors of coefficient estimates are reported in parentheses. *p < .1; **p < .05; ***p < .01.
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Table 7: Tick Size and Price Discovery Role of the 2-Year Note

A. Cash Tick Size Reduction B. Futures Tick Size Reduction

IS Cash V arRW IS Cash V arRW

Post −0.011 0.120 −0.052∗∗ 2.112∗∗

(0.023) (1.215) (0.024) (1.038)
Post x Treatment 0.194∗∗∗ 0.498 −0.117∗∗ −1.927

(0.041) (2.217) (0.047) (2.063)

Security Fixed Effects Yes Yes Yes Yes
Security x MOV Et−1 Yes Yes Yes Yes
Security x MKTLIQ1t−1 Yes Yes Yes Yes
Security x MKTLIQ2t−1 Yes Yes Yes Yes
Day-of-week Effects Yes Yes Yes Yes
Holiday Dummy Yes Yes Yes Yes
Early Close Dummy Yes Yes Yes Yes

Adj. R2 0.268 0.285 0.163 0.433
Nobs 296 296 296 296

This table shows the effects of tick size on price informativeness of the cash market relative to the futures market. The
regression model is Xi,t = αi + β1Postt + β2Postt × Treatmenti + θ′Zi,t + εi,t. Treatment is an indicator
variable equal to 1 for the 2-year note and 0 otherwise. Post is an indicator variable equal to 1 for the period after the
corresponding tick size reduction, which is November 19, 2018 for the cash market and January 14, 2019 for the futures
market. αi is security fixed effects. Zi,t include variables to control for security-specific variation over time due to
aggregate bond market volatility (the MOV E index) and Treasury market liquidity (measured by aggregate market
depth and trading volume across all on-the-run securities traded on BrokerTec, denoted by MKTLIQ1 and
MKTLIQ2 respectively), day-of-week dummies, a dummy for early market close days, and a holiday dummy for the
holiday period (December 24, 2018 – December 31, 2018). The dependent variable is shown in each column header.
IS Cash is the information share of the cash market. V ar RW is the variance of one-second efficient price
increments (annualized by a factor of 60× 60× 9.5× 250 and shown in %2). Both measures are computed from a
VEC(5) model estimated separately for each day using one-second cash and futures prices for the 2-, 5-, 7-, and 10-year
maturities (with the 7-year note paired with the 10-year Treasury note futures and the 10-year note paired with the ultra
10-year Treasury note futures). Cash data is from the BrokerTec platform and futures data is from the CME. The
sample period in Panel A is from September 24, 2018 to January 11, 2019. The sample period in Panel B is from
November 19, 2018 to March 8, 2019. Model estimation is based on data over New York trading hours (7:30 to 17:00
Eastern time). Standard errors of coefficient estimates are reported in parentheses. *p < .1; **p < .05; ***p < .01.
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Table 8: Tick Size Change and Term Structure of Information Share

A. Cash Tick Size Reduction

IS 1s IS 10s IS 30s IS 1m IS 5m IS 10m

Post −0.011 −0.030 −0.017 0.002 0.024 0.030
(0.023) (0.034) (0.039) (0.040) (0.034) (0.028)

Post x Treatment 0.194∗∗∗ 0.198∗∗∗ 0.131∗ 0.044 −0.001 0.021
(0.041) (0.061) (0.070) (0.072) (0.063) (0.051)

Security Fixed Effects Yes Yes Yes Yes Yes Yes
Security x MOV Et−1 Yes Yes Yes Yes Yes Yes
Security x MKTLIQ1t−1 Yes Yes Yes Yes Yes Yes
Security x MKTLIQ2t−1 Yes Yes Yes Yes Yes Yes
Day-of-week Effects Yes Yes Yes Yes Yes Yes
Holiday Dummy Yes Yes Yes Yes Yes Yes
Early Close Dummy Yes Yes Yes Yes Yes Yes

Adj R2 0.268 0.119 0.053 0.004 −0.035 −0.006
Nobs 296 296 296 296 296 296

continued on next page

40



Table 8 (continued from previous page)

B. Futures Tick Size Reduction

IS 1s IS 10s IS 30s IS 1m IS 5m IS 10m

Post −0.052∗∗ −0.059 −0.080∗ −0.056 −0.036 0.016
(0.024) (0.036) (0.042) (0.041) (0.033) (0.026)

Post x Treatment −0.117∗∗ −0.196∗∗∗ −0.138 −0.080 0.131∗∗ −0.031
(0.047) (0.072) (0.084) (0.082) (0.065) (0.053)

Security Fixed Effects Yes Yes Yes Yes Yes Yes
Security x MOV Et−1 Yes Yes Yes Yes Yes Yes
Security x MKTLIQ1t−1 Yes Yes Yes Yes Yes Yes
Security x MKTLIQ2t−1 Yes Yes Yes Yes Yes Yes
Day-of-week Effects Yes Yes Yes Yes Yes Yes
Holiday Dummy Yes Yes Yes Yes Yes Yes
Early Close Dummy Yes Yes Yes Yes Yes Yes

Adj R2 0.163 0.059 0.008 −0.021 −0.025 −0.035
Nobs 296 296 296 296 296 296

This table shows the effects of tick size on price informativeness of the cash market relative to the futures market at
various return horizons. The regression model is Xi,t = αi + β1Postt + β2Postt × Treatmenti + θ′Zi,t + εi,t.
Treatment is an indicator variable equal to 1 for the 2-year note and 0 otherwise. Post is an indicator variable equal
to 1 for the period after the corresponding tick size reduction, which is November 19, 2018 for the cash market and
January 14, 2019 for the futures market. αi is security fixed effects. Zi,t include variables to control for
security-specific variation over time due to aggregate bond market volatility (the MOV E index) and Treasury market
liquidity (measured by aggregate market depth and trading volume across all on-the-run securities traded on BrokerTec,
denoted by MKTLIQ1 and MKTLIQ2 respectively), day-of-week dummies, a dummy for early market close days,
and a holiday dummy for the holiday period (December 24, 2018 – December 31, 2018). The dependent variable is the
information share based on return computed over the following horizons: 1 second (IS 1s), 10 seconds (IS 10s), 30
seconds (IS 30s), 1 minute (IS 1m), 5 minutes (IS 5m), and 10 minutes (IS 10m). Information shares are
computed from a VEC(5) model estimated separately for each day using cash and futures prices sampled at the
corresponding horizon for the 2-, 5-, 7-, and 10-year maturities (with the 7-year note paired with the 10-year Treasury
note futures and the 10-year note paired with the ultra 10-year Treasury note futures). Cash data is from the BrokerTec
platform and futures data is from the CME. The sample period in Panel A is from September 24, 2018 to January 11,
2019. The sample period in Panel B is from November 19, 2018 to March 8, 2019. Model estimation is based on data
over New York trading hours (7:30 to 17:00 Eastern time). Standard errors of coefficient estimates are reported in
parentheses. *p < .1; **p < .05; ***p < .01.

41



Table 9: Spillovers to Other Segments of the Yield Curve

3-Year 5-Year 7-Year 10-Year

BAS 0.048∗∗ 0.019 0.053 0.028
BAS L 0.082 0.024 0.091 0.117
Pct1Tick −0.019∗∗ −0.005 −0.010 −0.006
LogN 0.133 0.041 0.050 0.034
LogV 0.184 0.070 0.028 0.007
LogD1A −0.253∗∗∗ −0.124∗∗ −0.142∗∗∗ −0.149∗∗

LogD5A −0.133∗∗ −0.065∗ −0.045 −0.123∗∗∗

LogDT −0.062 0.011 −0.001 −0.063
PI −0.002 0.044 0.082 −0.086
WKUP V −0.001 −0.007 0.024∗∗ 0.002
WKUP N −0.006 0.001 0.006 −0.001
FirstLO Slow −0.013∗ 0.005 −0.002 0.009∗

SprT ight Slow 0.030∗∗ 0.004 0.021 0.022
FirstLO Fast 0.014 0.011 0.004 −0.005
SprT ight Fast −0.066∗∗∗ −0.005 −0.028 −0.032∗∗

NonZeroBA 0.041 0.012 −0.016 −0.002
RV (%ann.) 0.223 0.192 0.023 −0.057
|AR30| −0.053∗∗∗ −0.050∗∗ −0.030 −0.004
|V R10s,1m − 1| −0.213∗∗ −0.138 −0.072 0.051
PErr 0.008 0.004 0.002 0.009

This table shows the effects of the 2-year note’s tick size reduction on other on-the-run Treasury notes. The regression
model is Xt = α+ βPostt + θ′Zt + εt. Post is an indicator variable equal to 1 for the period after the tick size
reduction on November 19, 2018. Zt include variables to control for aggregate bond market volatility (the MOV E
index), Treasury market liquidity (measured by aggregate market depth and trading volume across all on-the-run
securities traded on BrokerTec), day-of-week dummies, a dummy for early market close days, and a dummy for the
holiday period (December 24, 2018 – December 31, 2018). The table reports the estimate of β for outcome variables
indicated in the first column (see Table 1 for variable description). Variables are measured at the daily frequency using
data from the BrokerTec platform over New York trading hours (7:30 to 17:00 Eastern time). The sample period is from
September 24, 2018 to January 11, 2019. *p < .1; **p < .05; ***p < .01.
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Table 10: Information Share of 2-year Note (vs. 3-year Note) Through Cash and Futures Tick Size
Reduction

Sampling Freq Cash Event Futures Event

1 second 0.188∗∗∗ 0.042
(0.043) (0.051)

10 seconds 0.273∗∗∗ 0.019
(0.063) (0.078)

30 seconds 0.277∗∗∗ −0.025
(0.076) (0.096)

1 minute 0.244∗∗∗ 0.022
(0.082) (0.098)

5 minutes 0.051 −0.054
(0.073) (0.081)

10 minutes 0.067 −0.015
(0.062) (0.058)

This table shows the effects of tick size on price informativeness of the 2-year note relative to the 3-year note. The
regression model is Xt = α+ βPostt + θ′Zt + εt. Post is an indicator variable equal to 1 for the period after the
corresponding tick size reduction, which is November 19, 2018 for the cash market (“Cash Event”) and January 14,
2019 for the futures market (“Futures Event”). Zt include variables to control for aggregate bond market volatility (the
MOV E index), Treasury market liquidity (measured by aggregate market depth and trading volume across all
on-the-run securities traded on BrokerTec), day-of-week dummies, a dummy for early market close days, and a dummy
for the holiday period (December 24, 2018 – December 31, 2018). The table reports the estimate of β for the 2-year
note’s information share at various sampling frequencies. The information share is computed from a VECM(5) model
estimated separately for each day using the best bid-ask midpoint prices of the 2-year note and 3-year note at each
given sampling frequency. The data is from the BrokerTec platform over New York trading hours (7:30 to 17:00
Eastern time). The sample period for the cash event regression is from September 24, 2018 to January 11, 2019. The
sample period for the futures event regression is from November 19, 2018 to March 8, 2019. Standard errors of
estimates are reported in parentheses. *p < .1; **p < .05; ***p < .01.
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Table 11: Effects of 2-Year Note’s Tick Size Reduction on Treasury Futures

2-Year 5-Year 10-Year Ultra 10-Year

BAS 0.022∗∗∗ 0.016∗∗∗ −0.000 0.019
Pct1Tick −0.011∗∗∗ 0.008∗∗∗ 0.000 −0.005
LogN 0.183 −0.014 −0.059 0.089
LogV 0.234∗∗ 0.068 −0.072 0.181
NonZeroBA 0.038∗∗∗ 0.020 −0.006 −0.010
RV (%ann.) 0.209∗∗ 0.081 −0.076 −0.211
|AR30| −0.007 −0.059∗∗ −0.036 −0.033
|V R10s,1m − 1| 0.036 −0.152∗ −0.055 −0.051

This table shows the effects of the 2-year note’s tick size reduction on Treasury note futures. The regression model is
Xt = α+ βPostt + θ′Zt + εt. Post is an indicator variable equal to 1 for the period after the tick size reduction on
November 19, 2018. Zt include variables to control for aggregate bond market volatility (the MOV E index), Treasury
market liquidity (measured by aggregate market depth and trading volume across all on-the-run securities traded on
BrokerTec), Treasury futures market liquidity, day-of-week dummies, a dummy for early market close days, a dummy
for the holiday period (December 24, 2018 – December 31, 2018), and a dummy for futures roll period (the last 5
business days of November 2018). The table reports the estimate of β for outcome variables indicated in the first
column (see Table 1 for variable description). Variables are measured at the daily frequency using data from the CME
over New York trading hours (7:30 to 17:00 Eastern time). The sample period is from September 24, 2018 to January
11, 2019. *p < .1; **p < .05; ***p < .01.
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Figure 1: Bid-Ask Spreads Around Tick Size Reduction.
The top plot shows the evolution of daily average bid-ask spreads of the 2-year note on the BrokerTec platform. BAS
is the difference between the best bid and best ask prices. BAS L is the bid-ask spread for executing a large trade,
defined as the 99th percentile of the trade size distribution prior to the tick size change ($50 million par). The bottom
plot shows the fraction of time in a day at which the spread is at one tick (which equals 2/256 in the pre- and 1/256
in the post-change period). In the post-change period, we also plot the fraction of time at which the spread is at the
pre-change tick size of 2/256 or better. Data is from BrokerTec. The sample period is from September 24, 2018 to
January 11, 2019. The vertical line separates the pre-change period (through November 16, 2018) and the post-change
period (starting November 19, 2018).
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Figure 2: Market Liquidity Around Tick Size Reduction.
This figure plots trading activity measures (left column) and market depth measures (right column) around the tick
size reduction, which is marked with the dashed vertical line. Data is from BrokerTec. D1 (D5) is depth at the inside
tier (best five tiers). D1A (D5A) is the cumulative depth at one (five) pre-change tick corresponding to two (ten)
post-change ticks. All depth variables reflect daily averages computed from 1-minute snapshots.
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Figure 3: Competition for Liquidity Provision.
This figure shows measures of competition for liquidity provision by trader type. Trader type is based on the latency of
response to market information signals, with longer than 10 ms for slow traders and faster than 10 ms for fast traders.
The upper plots show the fraction of first limit orders submitted in response to changes in the best bid or offer prices
for slow and fast traders respectively. The lower plots show the fraction of first limit orders that restore the spread to
one-tick for slow and fast traders respectively. The sample period is from September 24, 2018 to January 11, 2019.
The vertical line separates the pre-change period (through November 16, 2018) and the post-change period (starting
November 19, 2018).
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Figure 4: Price Efficiency Around Tick Size Reduction.
This figure show the time series variation in four price efficiency measures. NonZeroBA is the fraction of time the
1-minute midpoint return is non-zero. RV is the daily realized volatility (annualized and shown in percent). |AR30| is
the absolute value of the autocorrelation of 30-second midpoint returns. PErr is the standard deviation of pricing errors.
See Table 1 for more detailed variable description. Data is from BrokerTec. The sample period is from September 24,
2018 to January 11, 2019. The vertical line separates the pre-change period (through November 16, 2018) and the
post-change period (starting November 19, 2018).
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Figure 5: Information Share of Cash Market Around Tick Size Changes.
This figure shows the information share of the cash market for each cash-futures pair. The information share is the
fraction of the efficient return variance explained by the price variation in the cash market. Efficient return variance and
information share are computed from a VECM (5) of cash and futures prices sampled at the one-second frequency.
Data for cash instruments is from BrokerTec. Data for futures instruments is from the CME. The sample period is from
September 24, 2018 to March 8, 2019. Model estimation is based on data over New York trading hours (7:30 to 17:00
Eastern time). The left vertical line separates the cash market’s pre-change period (through November 16, 2018) and its
post-change period (starting November 19, 2018). The right vertical line separates the futures market’s pre-change
period (through January 11, 2019) and its post-change period (starting January 14, 2019).
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Figure 6: Information Share of Cash Market Across Different Sampling Frequencies.
This figure shows the information share of the cash market for the 2-year note across different return sampling
frequencies. The information share is the fraction of the efficient return variance explained by the price variation in the
cash market. Efficient return variance and information share are computed from a VECM (5) of cash and futures prices
sampled at a given frequency. Data for cash instruments is from BrokerTec. Data for futures instruments is from the
CME. The sample period is from September 24, 2018 to March 8, 2019. Model estimation is based on data over New
York trading hours (7:30 to 17:00 Eastern time). The left vertical line separates the cash market’s pre-change period
(through November 16, 2018) and its post-change period (starting November 19, 2018). The right vertical line separates
the futures market’s pre-change period (through January 11, 2019) and its post-change period (starting January 14,
2019).
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