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Abstract 

This paper studies how a tick size change affects market quality, price discovery, and the competition for 

liquidity provision by dealers and high-frequency trading firms (HFTs) in the U.S. Treasury market. 

Employing difference-in-differences regressions around the November 19, 2018 tick size reduction in the 

two-year Treasury note and a similar change for the two-year futures eight weeks later, we find 

significantly improved market quality. Moreover, dealers become more competitive in liquidity provision 

and price improvement, consistent with the hypothesis that HFTs find liquidity provision less profitable in 

the lower tick size environment. Lastly, we find a significant shift in price discovery toward the cash 

market, which then reverses when the futures market tick size is reduced, suggesting that the finer pricing 

grid in the cash market allows traders to act on small information signals that are not profitable to exploit 

in the coarser pricing grid of the futures market. Our findings suggest that reducing the tick size in tick-

constrained and highly liquid markets like the Treasury market is on balance beneficial.  
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1 Introduction
This paper exploits a recent tick size change in the U.S. Treasury securities market to shed light

on the role of tick size in market quality, price discovery, and the competition for liquidity provision.

The U.S. Treasury securities market is the “single most important financial market in the world”

(Group of Thirty, 2021), with $20.9 trillion in debt outstanding as of the end of 2020. Aside from

financing the U.S. government, Treasuries are used to manage interest rate risk, price offerings by

other issuers, collateralize financing transactions, implement monetary policy, and as a reserve asset

to foreign central banks. All of these uses depend on a highly liquid and well-functioning market.

Changes in market design that might affect market quality, price discovery, or the competition for

liquidity provision are therefore of great importance to a wide range of stakeholders.

At the core of the Treasury market is the electronic interdealer broker (IDB) market for on-the-

run coupon securities. With an average daily trading volume of roughly $190 billion, the electronic

IDB market accounts for 52% of all trading in on-the-run coupon securities (Brain et al., 2018).

Participants in the IDB market were traditionally limited to government securities dealers, but

expanded to include high-frequency trading (HFT) firms in the mid 2000s (Joint Staff Report,

2015).1 The more diverse participant base contributes to improved market liquidity, but may also

expose liquidity to greater fragility due to the voluntary nature of liquidity provision. As a result,

the question of how different types of market participants contribute to liquidity provision has taken

on increasing importance in analyses of the changing structure of the Treasury market (e.g., Joint

Staff Report, 2015; Inter-Agency Working Group, 2021).

The tick size change in the Treasury market presents a valuable opportunity to examine how the

minimum price increment influences market participants’ trading strategies and market outcomes.

Starting with the November 19, 2018 trading day, the largest electronic IDB platforms halved the

tick size on the benchmark 2-year note, from 1/4 to 1/8 of a 32nd of a point (where a point equals

1The HFT firms in the Treasury IDB market are often referred to as “principal trading firms” or PTFs. Because low
latency is the main characteristic that we use to differentiate dealers and PTFs, we use the HFT and PTF terminology
interchangeably in the paper.
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one percent of par).2 That the tick size reduction applies only to the 2-year note provides a natural

experiment to identify the role of tick size in determining market quality, price discovery, and

liquidity provision.3

Furthermore, a similar tick size change in the parallel market for 2-year Treasury note futures

(from 1/4 to 1/8 of a 32nd of a point) did not occur until eight weeks later, starting with the January

14, 2019 trading day.4 The staggered tick size reductions in the cash and then futures markets

allow us to disentangle effects that are due to the granularity of a given market’s pricing grid from

effects that are due to the mismatch in tick size of the parallel markets. The latter effects should

reverse upon the futures tick size reduction, whereas the former effects should not. The established

literature on equity tick size changes provide a plethora of evidence on the effects of a tick size

change in a given market, but the effects of mismatched pricing grids in parallel markets have not

been previously explored. This feature is unique to the U.S. Treasury market, where cash and futures

instruments are highly substitutable and cross-market trading (e.g., cash/futures basis arbitrage and

hedging) is highly active. Mismatched pricing grids could present impediments to cross-market

trading and influence traders’ venue choice, affecting market outcomes in both venues.

We employ differences-in-differences (DD) regressions to identify the effects of the aforemen-

tioned tick size changes. Our data for the cash market are from the BrokerTec platform, while

our data for the futures market are from the CME, accessed through Refinitiv. We find an almost

one-for-one change in the bid-ask spread of the 2-year note, with it narrowing by 0.967/256 when

the tick size is reduced by 1/256. This translates to a saving in transaction costs (half spread) of

roughly $94 million per year for market participants on the BrokerTec platform alone, or about

$118 million for the entire electronic interdealer cash market. The futures market’s bid-ask spread is

not affected by the cash market tick size reduction, because its tick size at the time was constraining

2Electronic IDB platforms with central limit order books that trade on-the-run Treasury securities are BrokerTec,
Nasdaq Fixed Income (formerly eSpeed and now part of Dealerweb), FENICS, and LiquidityEdge. To put the new tick
size in perspective, 1/8 of a 32nd is equivalent to a tick size of 0.390625 cents per $100 par. In the current penny tick
size environment in the U.S. equity markets, this is equivalent to a one-cent tick size on a $256 stock.

3Prior to this event, the tick size had been 1/4 of a 32nd on the 2-, 3-, and 5-year notes since electronic trading began
in 1999, and 1/2 of a 32nd on the longer maturity securities (7, 10, and 30 years).

4The tick size on other Treasury futures contracts remained the same: 1/4 of a 32nd for the 5-year note futures, 1/2
of a 32nd for the 10-year and ultra 10-year note futures, and one 32nd for the bond and ultra bond futures.
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(leaving little scope for the spread to narrow further), but drops by 0.951/256 when the futures

market tick size is subsequently reduced by 1/256, bringing an additional $594 million transaction

costs saving per year to futures market participants.

Similar to the prior literature on equity market tick size changes, we find that trading activity

increases, as the smaller tick size benefits liquidity demanders, while there is some weak evidence

of decreased market depth. However, different from the equity market literature in which tick size

reductions are often found to benefit smaller trades at the expense of large trades (e.g., Goldstein

and Kavajecz, 2000), we find that transaction costs for large trades also decline significantly, and

cumulative depth within 2/256 (the old tick) of the bid-ask midpoint continues to be many times

higher than the size of most trades. Accordingly, the decrease in market depth does not seem to

adversely affect transaction costs for trades, large and small, in this market.

We next examine the liquidity provision behavior of two key groups of participants in the

Treasury IDB market: technologically sophisticated HFTs and traditional dealers. We distinguish

HFTs from dealers based on their differential speed of response to market signals. Even though

both HFTs and dealers use algorithms, differences in their business models give rise to differences

in their latency. An important reason dealers trade in the wholesale IDB market is to facilitate

customer trades in the dealer-to-customer market. In contrast, HFTs, which only trade on their

own account and have little capital for carrying positions overnight or longer, trade in the market to

exploit short-term price dislocations using high-frequency trading strategies. As such, it is critical

for HFTs to invest in the fastest technologies to generate a speed advantage.

It is commonly believed that a smaller tick size benefits fast traders in the competition for

liquidity provision given their speed advantage (e.g., Harris, 1997). However, recent work by Yao

and Ye (2018) and O’Hara et al. (2019) finds that a smaller tick size could enhance slow traders’

competitiveness. The intuition is that HFTs find liquidity provision less appealing/profitable in the

smaller tick size environment. At the same time, as Li et al. (2021) posit, slow traders who have

lower opportunity costs and can offer a more competitive spread now find it easier to compete. We

ask whether dealers, the slow traders, compete better in providing liquidity and improving prices
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after the tick size becomes smaller.

To separate activities of HFTs from those of dealers without trader identity data, we consider a

number of latency thresholds and find that 10 millisecond (ms) is a reasonable choice. Moreover,

Salem et al. (2018) analyze the distribution of trade flows on BrokerTec by time since the last trade

and find that HFT trades in recent years have a latency of 10 ms or less. Using this threshold,

we construct two measures of liquidity provision and price competition by HFTs and non-HFTs.

The first, labeled “FirstLO”, attributes the fraction of limit orders submitted within 10 ms from a

change in the best bid-ask midpoint to HFTs, and the fraction of limit orders submitted between 10

ms and one second of the change to slow traders. The second, labeled “SprT ight”, attributes the

fraction of price-improving limit orders submitted within 10 ms of a widening bid-ask spread to

HFTs, and those submitted more than 10 ms after the change (but still within one second) to slow

traders. Thus, FirstLO reflects the extent to which each of these trader types provides liquidity to

the limit order book, while SprT ight focuses on each type’s price competitiveness.

Indeed, we find that a smaller tick size seems to benefit slow traders, with such traders more

likely to restore the spread to its minimum level and to be the first to respond to price changes. Our

evidence is consistent with the interpretation that slow traders in this market are dealers who, due

to inventory pressures resulting from market making activities in the dealer-to-customer market,

can offer more competitive pricing and now can better compete. Meanwhile, HFTs cut back their

liquidity provision due to lower profitability.

We also examine the impact of tick size on price discovery, an exercise possible due to the tight

link between the cash and futures markets and the staggered tick size reductions. Mizrach and Neely

(2008) show that the cash and futures markets are tightly linked through the no-arbitrage principle,

and Dobrev and Schaumburg (2018) find that this is even more so in recent years given the rise in

high frequency trading. Thus, the two markets are increasingly viewed as one, sharing a common

fundamental process. The variance of this process reflects the aggregate information affecting

Treasury benchmark rates. The contribution of each market to this variance in turn indicates its

share of the aggregate information. The staggered tick size reductions result in an eight-week period
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during which the cash market has a smaller tick size than the futures market, thereby allowing us to

identify the effects of tick size on price discovery.

We measure the informational role of the market for the 2-year note relative to its futures

counterpart using Hasbrouck (1995)’s information share. We find a significant shift in price

discovery toward the cash market after its tick size is halved. This shift then reverses when the

futures market tick size catches up. In addition, the informational advantage of the smaller tick size

in the cash market is present only at very high frequencies (less than one minute). These findings

suggest that the finer pricing grid in the cash market allows traders to act on small information

signals that are not profitable in the coarser pricing grid of the futures market and contributes to the

cash market leading the futures market in price discovery.

A potential concern with our empirical setup is that the tick size reduction in the 2-year note

was not random. It is possible that the change was a response to improvement in the note’s liquidity,

leading to a concern over possible reverse causality. That said, there are several reasons to believe

our results reflect the effects of the tick size change. First, the decision to change the tick size was

made and announced far in advance.5 In addition, we adopt a short window around the event so that

any immediate changes following the tick size change are more likely to be due to the event and

less likely to be due to longer-term trends. The DD regressions further help us control for market

movements around the change for cleaner identification of effects.6 Lastly, the reversal of the effects

on price discovery when the futures market’s tick size is subsequently reduced to the same level as

the cash market provides strong support for attributing the initial increase in price discovery to the

smaller tick size in the cash market.

Studying the effects of a tick size change using the Treasury market as a laboratory has additional

advantages beyond those discussed earlier. First, the market is quite concentrated, with BrokerTec

5The CME announced the January 14, 2019 tick size change in the 2-year futures on May 18, 2018 (https://www.
cmegroup.com/content/dam/cmegroup/notices/clearing/2018/05/Chadv18-192.pdf).

6We use other Treasury securities as controls in our empirical analysis but acknowledge that these are not perfect.
Even though these securities are highly related, they differ in their duration and clientele. This issue could also happen
with a randomized experiment, but would be mitigated by a large number of treatment and control securities. We do not
have a large cross section of Treasuries to completely address this issue. Nevertheless, the small number of benchmark
Treasuries that trade in the electronic IDB market should not hinder studies of this important market. Furthermore, the
small number of securities reduces statistical power of tests, biasing us against finding significant results.
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(the platform studied) accounting for roughly 80% of electronic interdealer market activity in

on-the-run Treasury securities. Second, there is no separate dark pool trading venue. Third, the

fee structure on BrokerTec (during our sample period) does not discriminate between liquidity

consumption and provision. Therefore, the impact of a tick size change can manifest itself in market

outcome variables in a straightforward fashion, allowing us to cleanly quantify the effects and test

relevant theories which are often built on assumptions of minimal market frictions.

Our paper relates to several strands of literature. First and foremost, our analysis of the tick

size change in the Treasury market fits in the rich literature on tick size and market quality. This

literature is heavily based on previous tick size changes in the U.S. equity markets. Studies of

tick size changes in 1997 (from eighth to sixteenth) and 2001 (from sixteenth to decimal) include

Harris (1994), Bessembinder (2003), Goldstein and Kavajecz (2000), Jones and Lipson (2001),

Ronen and Weaver (2001), and others as surveyed in Biais et al. (2005). Studies of the SEC Tick

Size Pilot Program in 2016-2017 include Rindi and Werner (2019), Griffith and Roseman (2019),

Albuquerque et al. (2020), Comerton-Forde et al. (2019), Chung et al. (2020), and Lee and Watts

(2021), among others.

We add to this literature novel results related to the role of tick size on price discovery and the

competition between dealers and HFTs for liquidity provision in the much less studied, but highly

important, U.S. Treasury market. While some of our findings are consistent with prior evidence

(narrower bid-ask spread, increased trading activity, improved price efficiency), we provide many

new results, including those that arise from unique features of the Treasury market structure.

Specifically, in a marketplace where fast and slow “machines” (HFTs and dealers, respectively)

compete, we find that a reduction in tick size enhances dealers’ competition for liquidity provision

even though they do not have a speed advantage. We also find that the temporary mismatch in

the pricing grids between the cash and futures markets shifts price discovery toward the finer-grid

market, supporting the idea that the finer grid allows traders to transact at prices closer to true values

and act on small information signals otherwise unprofitable to exploit in a larger tick environment.

Our evidence from the highly liquid Treasury market provides an interesting contrast to recent
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evidence from the equity market’s Tick Size Pilot Program. Chung et al. (2020) find that a tick size

increase improves liquidity especially for small and illiquid stocks and affects small and large trades

differentially. The divergence of conclusions implies that the impact of a tick size change depends

on the characteristics of the security and market where the change occurs.

Most related to our work in a non-equity market setting is Chaboud et al. (2019).7 They study

a tick size reduction and subsequent reversal in the spot foreign exchange market and find that a

smaller tick size reduces long-run price discovery. They show that the tick size reduction results

in increased trading demand from HFTs, whose order flow contains less long-term fundamental

information. Thus, a smaller tick size does not benefit long-run price discovery. Complementing

their findings, we show that a smaller tick size is beneficial for short-run price discovery.

Our paper also belongs to the literature on U.S. Treasury market microstructure. The Joint Staff

Report (2015) analyzes the October 2014 Treasury flash rally and documents the increased role of

HFTs on electronic IDB platforms. Fleming et al. (2018) examine price discovery in the market and

document a significant informational role of liquidity providers. Dobrev and Schaumburg (2018)

study high-frequency trading in both cash and futures markets. Adrian et al. (2020) examine intraday

market making and inventory patterns, especially by non-bank PTFs, and highlight key differences

in how dealers and PTFs operate with respect to liquidity provision. We contribute to this literature

evidence on how tick size affects the competition for liquidity provision between dealers and HFTs

and the information share of the cash market relative to the futures market. Overall, we find that

reducing the tick size is on balance beneficial, especially in regard to price discovery, and provides a

useful preview of the potential effects of any future tick size reductions in other Treasury securities.

The paper proceeds as follows. Section 2 provides key institutional details and describes the

data and methodology. Section 3 describes how key market quality metrics change after the cash

market tick size reduction. We investigate the effects of a smaller tick size on the competition for

liquidity provision in Section 4, and on price discovery in Section 5. Section 6 presents additional

analysis of the effects on other Treasury securities and Treasury futures. We discuss our robustness

7A narrowly related study in a non-equity setting is Martinez and Tse (2019), who examine the impact of tick size
reductions on market quality in the FX futures markets for the Mexican peso, the Japanese yen, and the euro.
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checks in Section 7. Section 8 summarizes our key findings and concludes.

2 Institutional Details, Data, and Methodology

2.1 Institutional details

U.S. Treasury securities are debt instruments of the U.S. government issued through public

auctions and subsequently traded in the secondary market. The secondary market is structured as a

multiple dealer, over-the-counter market, in which the dealers trade with their customers and one

another. Interdealer trading prior to 1999 was based on a network of voice-assisted brokers. Fully

electronic trading began in 1999 with the introduction of the eSpeed platform, followed by the

BrokerTec platform in 2000. Nearly all interdealer trading of on-the-run U.S. coupon securities

occurs via electronic platforms among which BrokerTec has a roughly 80% share.8

Historically, participation on the electronic platforms was limited to dealers. However, as

the platforms opened to other professional traders in the mid 2000s, the presence of non-dealer

participants—the HFTs—increased significantly. According to the Joint Staff Report (2015) on the

October 15, 2014 flash rally in the Treasury market, HFTs account for 56% of trading volume in the

on-the-run 10-year note on BrokerTec, compared to bank-dealers’ share of 35%.9 HFTs’ share of

trading volume has likely increased since 2014.

The tick size reduction from 1/4 to 1/8 of a 32nd in the 2-year note on BrokerTec and Nasdaq

Fixed Income starting with the November 19, 2018 trading day is the first such change since the

beginning of electronic trading in Treasuries in 1999. Prior to this, the tick size had been 1/4 of

a 32nd for the the on-the-run 2-, 3-, and 5-year notes, and 1/2 of a 32nd for the longer maturity

securities (7, 10, and 30 years). Most noteworthy about this change is that it applies only to the

2-year note and only in the cash market. A similar tick size change from 1/4 to 1/8 of a 32nd in the

companion market for the 2-year Treasury futures does not occur until eight weeks later, starting

8Electronic brokers account for 87% of trading in on-the-run coupon securities that occurs through interdealer
brokers (Brain et al., 2018). Further, according to Greenwich Associates, based on 2017 Q4 data, BrokerTec’s market
share in the electronic interdealer market is 80%, that of Nasdaq Fixed Income (which is now part of Dealerweb) is 11%,
and the rest of the market is split among Dealerweb, LiquidityEdge, FENICS, and dealer-owned internalization/crossing
platforms (McPartland, 2018).

9The remaining 9% is split among non-bank dealers and hedge funds; shares are based on data for April 2-17, 2014.
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with the January 14, 2019 trading day.10 The staggered reductions of tick size in the cash and futures

markets, and only for the 2-year maturity segment, presents a clean setting to identify how tick

size affects market quality and price discovery. In particular, the temporary mismatch in tick size

between the cash and futures markets between November 19, 2018 and January 14, 2019 provides a

unique opportunity to assess the cash market’s contribution to price discovery while it is on a finer

pricing grid than the futures market.

2.2 Data

Our sample for the cash market analysis consists of the five on-the-run Treasury notes, with the

2-year note being the treatment security and the 3-, 5-, 7-, and 10-year notes the control securities.

We exclude the 30-year bond due to the vast difference in duration and clientele from the 2-year

note. The sample used in the futures market analysis consists of the 2-, 5-, 10-, and ultra 10-year

note futures. Our sample period covers 24 weeks (112 trading days) between September 24, 2018

and March 9, 2019, divided into three eight-week sub-periods.11 The first sub-sample period (SS1)

runs from Monday, September 24, 2018 to Friday, November 16, 2018 (38 trading days), covering

the eight-week period before the tick size change in the 2-year note. The second sub-sample period

(SS2) runs from Monday, November 19, 2018 to Friday, January 11, 2019, covering the eight-week

period from the tick size change in the 2-year note to just before the tick size change in the 2-year

futures. The third sub-sample period (SS3) runs from Monday, January 14, 2019 to Friday, March

9, 2019, covering the eight-week period from the tick size change in the 2-year futures.

For the cash market, we rely on order message data from the BrokerTec platform, which accounts

for roughly 80% of the electronic IDB market (McPartland, 2018).12 We reconstruct the tick-by-tick

limit order book for each of the notes by accumulating order changes at the appropriate price tiers

10The CME, which operates the marketplace for Treasury futures, also owns the BrokerTec platform. Thus, the
subsequent tick size change in the futures market is not likely due to venue competition in response to the cash market
tick size change. Moreover, as previously mentioned, the futures tick size change decision was announced prior to the
cash tick size change and therefore unlikely made based on what was learned from the cash market change.

11The bond market was closed on the other eight weekdays during our sample period, including seven holidays
and December 5, 2018 on which financial markets were closed in honor of former President George H.W. Bush; see
https://www.sifma.org/resources/general/holiday-schedule/

12We do not have data for the other electronic IDB platforms nor interest rate swap trading venues. Thus, our data
coverage is incomplete, but nonetheless accounts for the majority of IDB market activity in benchmark Treasuries.
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from the beginning of each trading day.13 We also extract the complete trade history for each

security. The data clearly indicate which side initiates a given trade, the traded quantity and price,

and whether a trade is executed during a workup.

Data for the futures market are from the CME (accessed through Refinitiv). The data are at the

one-second frequency, and include last trade price, number of trades, trading volume, best bid and

ask prices, and market depth for the top 25 price tiers. In analyses of cash-futures pairs, we couple

the 10-year cash instrument with the ultra 10-year futures, because the deliverable maturity range

into the latter (9 years 5 months to 10 years) more precisely matches the maturity of the 10-year

note. The regular 10-year futures is instead paired with the 7-year note because its deliverable

maturity ranges from 6.5 years to 10 years and because the average maturity of the CTD underlying

the 10-year future contract during the two-year period enclosing our sample period (2018–2019)

is 6.95 years. Treasury futures contracts covering the 3-year tenor do not exist during our sample

period. As is standard in the literature, we use the front-month contract (i.e., the one with the closest

maturity) until its trading volume is overtaken by the next maturity contract, at which point we

switch to using data on the next maturity contract.14

From these data, we construct key market quality metrics, the details of which are provided

in Table 1. These metrics are computed from intraday data from 7:30 to 17:00 ET (mostly at the

1-minute frequency unless otherwise noted) and then aggregated to the daily level.15 The aggregation

is by simple averaging for stock variables (such as spreads and depths) and by summing for flow

13BrokerTec operates as a central limit order book market. Trading spans 22-23 hours per day during the week,
commencing around the start of the trading day in Tokyo (at 18:30 EST or 19:30 EDT the previous day in the U.S.) and
concluding with the end of the trading day in New York (at 17:30 ET; see Fleming 1997). All order messages sent
to the platform are captured and time-stamped to the microsecond. Each order specifies a quantity and a price, and
whether it is for purchase or sale. Aggressive orders are typically priced at the prevailing best price on the opposite side
and are immediately executed. Aggressive orders are rarely priced beyond the best price on the opposite side because
of the quoted depth typically available at the inside tier and because of the availability of the workup protocol. The
workup protocol allows market participants to transact additional quantities at an existing trade price (see Fleming and
Nguyen, 2019 for further details on the workup protocol).

14Front-month contracts are typically the most liquid contracts until one or two trading days before the first day of
the delivery month when traders roll over their interests to the next maturity contracts.

15Although the cash and futures markets both operate almost round the clock, the majority of activity occurs during
New York trading hours. Thus, to avoid the effects of potential overnight hour irregularities, our analyses use data from
7:30 to 17:00 ET (while the cash market trading continues until 17:30 ET, we use data only through 17:00 ET because
Treasury futures trading ends at that time). For the three early market close days in our sample period (November 23,
December 24, and December 31, 2018), we truncate the data at the earlier closing time of the two markets.

10



variables (such as trading volume) unless otherwise noted. Because market depths are highly

variable, we winsorize intraday depth observations at the 2.5 and 97.5 percentiles before taking the

average for the day to reduce the effects of outliers. Several price efficiency measures (e.g., return

autocorrelation, variance ratio, and pricing errors) are computed from 1-second midpoint returns.

Figure 1 illustrates the impact of the cash market tick size change on the level and tightness of

the bid-ask spread. The upper plot shows an immediate narrowing for not just the inside bid-ask

spread but also the bid-ask spread faced by a large trade. The lower plot indicates that the tick size

constraint on the spread lessens: the average percent of time the bid-ask spread is at exactly one tick

is 99% before the event, but drops to the low nineties after.

Table 2 reports summary statistics by security for our key market quality metrics over the three

sub-sample periods previously described. The second sub-sample period contains December 2018,

when the market was unusually volatile, and when there was the usual end-of-year decrease in

activity and in liquidity. Thus, for most securities, the second sub-sample period is characterized

by wider bid-ask spreads, higher number of trades, smaller trade sizes, reduced market depth, and

increased frequency of price updates and volatility.

2.3 Empirical methodology

We employ the standard DD regression model to quantify the effects of the tick size reductions

on various outcome variables as follows:

Yi,t = αi + γt + βPostt × Treatmenti + εi,t, (1)

where Treatment is an indicator variable equal to 1 for the 2-year note and 0 otherwise, Post is

an indicator variable equal to 1 for the period following the tick size change, i provides security

indexing, t provides day indexing, and αi and γt are security and day fixed effects, respectively. The

inclusion of day fixed effects absorbs confounding effects including those due to changing market

conditions, intra-week seasonality, and low market activity around holidays and on early market

close days. The coefficient of interest is β, which captures the effect of the tick size reduction on a

given market outcome variable Y . For robustness, we discuss an alternative model in Section 7.2 in
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which, instead of day fixed effects, we control explicitly for market wide liquidity, volatility, day-of-

week effects, holiday effects, and early market close effects, with security-specific coefficients. Key

results are qualitatively similar.

For DD empirical designs, it is important to cluster standard errors to account for possible error

correlation within clusters, as pointed out in Bertrand et al. (2004). One further complication is

that when the number of clusters is small, clustered standard errors are shown to over-reject (see

Cameron and Miller, 2015 for an in-depth survey on cluster-robust inference). Given the small

number of clusters used in this analysis (with only five securities), we follow Cameron and Miller

(2015)’s suggestion to use the wild cluster bootstrap method with the six-point weight distribution

devised by Webb (2013) to obtain robust p-values for clustered t-statistics. Our inferences are then

based on these bootstrapped p-values.

3 How Does Tick Size Change Affect the Treasury Market?
In this section, we discuss how key measures of market quality change as a result of the tick

size reductions to provide some perspective for our main empirical results in Sections 4 and 5. We

estimate the regression model in Equation (1) for each market quality metric around each of the two

tick size events and report the coefficient of interest (β) in Table 3.

3.1 Trading activity and transaction costs

Panel A of Table 3 shows measures of bid-ask spreads and trading activity. The cash market’s

tick size reduction immediately narrows the inside bid-ask spread almost one-for-one. Based on the

pre-change average daily trading volume of about $20 billion par in the 2-year note, this spread

reduction translates to a transaction cost saving (half spread) of roughly $94 million per year for

liquidity demanders on BrokerTec alone (1
2
× −0.967

256
× 0.01× $20 billion × 250 trading days).

Notably, the bid-ask spread faced by large trades (BAS L) drops by almost as much; this differs

from what is often found in studies of equity tick size reductions: reduced transaction costs for

smaller trades but higher transaction costs for large trades (e.g., Goldstein and Kavajecz, 2000). The

tick size change loosens the tick size constraint (OneT ick) by about seven percentage points, but
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overall the bid-ask spread still remains tight around the new tick. After the subsequent tick size

reduction in the futures market, the tick size constraint tightens modestly, whereas changes in the

level of the spread are mixed and statistically insignificant.

Trading activity clearly increases after the tick size change, more strongly in the number of

trades than in trading volume, as trade sizes are significantly smaller (by about $2.3 million). Prior

theories (e.g., Goettler et al., 2005) posit that a smaller tick size improves welfare for market order

submitters at the expense of limit order submitters. Consequently, some traders who otherwise

would have submitted limit orders (or would not have traded at all) are now more likely to trade,

leading to higher trading volume and frequency.16 Our evidence offers support for this view, and

also indicates a change in order strategy in the smaller tick environment in which traders split their

orders into smaller ones and layer into the limit order book at smaller price increments, consistent

with Goldstein and Kavajecz (2000).17 After the futures market tick size reduction, the average trade

size becomes even smaller, but changes in trading volume and trading frequency are insignificant.

3.2 Price efficiency

Panel B of Table 3 shows the effects of the smaller tick size on several measures of price

efficiency. Both measures of price-updating activity (NonZeroBA and NonZeroT ) show signifi-

cantly decreased inertia after the tick size change, by roughly 13–20 percentage points. Importantly,

the tick size reduction does not have a significant impact on volatility (we obtain similar results

when we compute volatility from trade prices instead of midpoint prices). The evidence implies that

the shrinking microstructure noise component of realized volatility due to lower price discreteness

balances out with the increased frequency of price updates, thereby leaving realized volatility largely

unchanged. This is corroborated by the significantly lower standard deviation of intraday pricing

errors. While some other measures of price efficiency do not show statistically significant changes,

16The empirical literature generally finds consistent evidence, with a smaller tick size benefiting liquidity demanders
(e.g., Harris, 1994, Bacidore, 1997, Porter and Weaver, 1997, and Bessembinder, 2000) and a larger tick size harming
liquidity demanders (e.g., Albuquerque et al., 2020).

17We also examine whether trading activity via the workup protocol changes (see Fleming and Nguyen, 2019 for
more details on the workup protocol). We find that traders are less likely to use workups in the new smaller tick
environment, especially for small trades. This finding supports the interpretation that it is now less costly to trade
through to the next price point, thereby disincentivizing the use of workups, particularly for smaller trading interests.
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the overall evidence points to improved price efficiency as a result of the tick size change in the

cash market. No further improvement is observed after the tick size change in the futures market.

3.3 Liquidity supply

With data on the full limit order book, we are able to thoroughly analyze how liquidity supply

responds to a tick size change in a liquid market. We first examine depth at the inside tier (D1), at

the best five tiers (D5), and across the whole book (DT ).18 Panel C of Table 3 shows that inside

depth declines significantly after the tick size change, indicating that not all liquidity providers who

supplied liquidity at one old tick are now willing to supply liquidity at half that tick. Although

lacking in statistical significance, depth at the best five price levels and total depth also decline. Still,

at the new shallower inside tier, depth is more than sufficient to absorb easily even large trades: the

post-change depth at the inside tier (D1) averages $237 million per Table 2, which is many times

higher than the 99th percentile of the trade size distribution ($50 million). Consequently, traders

with large trading interests do not seem to be adversely affected by the reduced market depth. This

is in contrast to equity market evidence whereby the combination of narrower spreads and reduced

depth makes liquidity demanders with small orders better off while those with large orders worse

off (e.g., Goldstein and Kavajecz, 2000). The difference highlights the high level of liquidity in the

Treasury market compared to even the most liquid stocks.

Because the pricing grid changes, market depth by tier is not comparable before and after the

tick size reduction. To provide a more complete picture of how liquidity supply responds to the

change and to isolate the change in quantity from the effect of the increased granularity of the

price grid, we examine the amount of liquidity supplied within a fixed distance from the bid-ask

midpoint. Specifically, we consider the cumulative depth within one through five pre-change ticks

(D1A–D5A) (corresponding to two, four, six, eight, and 10 post-change ticks for the 2-year note).

Panel D of Table 3 shows that the cumulative depth changes are of mixed sign and insignificant.

This is consistent with Biais et al. (2005) who predict that a tick size reduction should result in a

18Although market participants with API access to the platform can view the complete order book, many market
participants can only see the best five tiers within the live order book.
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mere redistribution of depth on a finer pricing grid. Overall, there is limited evidence of decreased

market depth after the tick size reduction, and even at the significantly lower inside depth, liquidity

supply still outweighs liquidity demand, resulting in lower execution costs for even large trades.

4 How Does Tick Size Affect Fast and Slow Liquidity Providers?
Even though our analysis of the limit order book in Section 3 does not find support for a

significant change in liquidity supply, the tick size change might have differential effects on different

types of liquidity providers. As previously discussed, from a traditional dealer-only marketplace, the

Treasury electronic IDB market has became much more diverse with direct and rising participation

of HFTs. Moreover, with a business model different from that of traditional dealers (principal trading

to exploit price dislocations at high frequency and little capital for carrying inventory positions

overnight), HFTs need to invest in the fastest trading technologies to stay competitive. Dealers also

increasingly rely on sophisticated trading technologies but do not face the same pressures as the

HFTs to invest in the very fastest technologies. This creates a natural separation of speed between

HFTs and dealers, which we refer to as fast and slow traders. In this section, we seek to understand

how the behavior of each type of liquidity provider changes with the tick size.

4.1 Liquidity provision by fast and slow traders

Prior literature suggests that the tick size can play an important role in how different types

of traders compete in a limit order book market. On the one hand, Harris (1997) argues that a

smaller tick size benefits fast traders in the competition for liquidity provision. A smaller tick size

makes it easier for traders to exploit small information signals and should disproportionately benefit

fast traders due to their speed advantage, suggesting a negative relationship between tick size and

HFTs’ involvement. On the other hand, Yao and Ye (2018) and O’Hara et al. (2019) find that

liquidity provision by HFTs increases in tick size. They reason that fast traders exploit their speed

advantage to establish time precedence when the tick size is large because it is more expensive

to obtain price priority. When the tick size is small, the reward for liquidity provision shrinks,

thereby disincentivizing fast traders while allowing slower traders with more competitive pricing to
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compete.

Li et al. (2021) provide a theoretical model to illuminate the importance of tick size on liquidity

provision by HFTs and slower algorithmic traders (“EAs”). EAs provide liquidity primarily to

minimize transaction costs, unlike HFTs which provide liquidity to capture bid-ask spreads. In

providing liquidity, HFTs balance the reward (the spread) with the risk of being sniped when the

market moves. When the tick size is large and constrains market moves, the adverse selection risk

is low, thereby encouraging more liquidity provision by HFTs. In contrast, when the tick size is

small, the sniping risk is greater (the market is more likely to move) while the spread is narrower,

both of which discourage HFT liquidity provision. Meanwhile, the smaller tick size makes it easier

for EAs to price improve, and they can do so because they have lower opportunity costs than HFTs.

The characteristics of the Treasury IDB market are quite close to those of the setup in Li et al.

(2021) (a market featuring machine-to-machine interactions, in which slow traders, i.e., dealers,

have lower opportunity costs in providing liquidity at better prices than HFTs due to their client

market-making business). Thus, it provides an appropriate laboratory to test the model’s prediction

against the alternative hypothesis that a smaller tick size benefits HFTs more. Our earlier results

that bid-ask spreads narrow significantly (suggesting decreased reward) and prices move more

frequently (suggesting increased sniping risk) lead us to expect that HFTs will cut back on their

liquidity provision and become less price competitive in the new environment.

4.2 Identification of fast traders

An important part of our analysis is the identification of liquidity provision activities by fast and

slow traders. Unfortunately, the BrokerTec data, like most message-level datasets, do not provide

any identification information of market participants.19 As a result, we have to infer HFT activities

based on some salient characteristics.

The prior literature on HFTs provides helpful guidance in developing our identification scheme.

A seemingly natural identification method for HFT activity is measuring general market speed

19The only datasets with clear HFT identification flags that we are aware of are the NASDAQ October 2010 dataset
covering 120 randomly selected stocks used in studies such as Yao and Ye (2018), and the EBS data for the foreign
exchange market used in Chaboud et al. (2014) and Chaboud et al. (2019).

16



through measures like the message-to-trade ratio as in Hendershott et al. (2011). However, recent

studies with access to HFT identifiers such as Yao and Ye (2018) find that these measures do

not satisfactorily identify trading by HFTs. SEC (2014) further notes that general market speed

proxies for HFT activity are poor because non-HFT firms also engage in algorithmic activity. Some

studies, like Aquilina et al. (2022), use trader or firm identifiers to more accurately classify HFTs

by analyzing trading patterns or net positions and activity on a per ID basis. However, without these

identifiers (which is the case for most commercially available datasets), it is extremely difficult if

not impossible to classify individual trades as HFT initiated or not.

The blurry line between HFTs and other fast traders explains the prevalence of the “algorithmic”

and “low-latency” classifications used in much of the literature. For example, Brogaard et al. (2014)

divide firms into “fast” and “slow” traders using subscription to colocation services as their proxy.

Hasbrouck and Saar (2013) develop a measure of low-latency activity based on “strategies that

respond to market events in the millisecond environment. They use quote updates as their market

signal, and link submissions and cancellations within 100 ms as part of a strategic run. Chordia et al.

(2018) explore activity after macroeconomic announcements and find markedly increased trading

intensity within 5 ms of news releases. Dobrev and Schaumburg (2018) analyze cross-market

activity between the Treasury cash and futures markets and observe a 5 ms offset between the

markets, consistent with the fastest information transfer speeds currently available to HFTs. In

similar spirit, we classify fast traders based on their low-latency response to market signals.

Fortunately, in the Treasury market, latency seems to provide a good separation of HFTs from

dealers. Salem et al. (2018) analyze the distribution of trade flows by the time since the last trade on

BrokerTec and find two clear separate masses along the latency dimension. They also find that the

speed of the market has increased markedly in recent years. Co-location HFTs can respond in 5

ms or less. HFTs that trade the basis (cash/futures) can respond in under 10 ms, which is roughly

the round-trip latency between New York and Chicago at the speed of light. Thus, the key to our

identification is an appropriate threshold that reflects the physical limit which only sophisticated

trading technologies used by HFTs can achieve.
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We further validate our chosen latency threshold for categorizing fast traders using Trade

Reporting and Compliance Engine (TRACE) data for U.S. Treasury securities. Effective April 1,

2019 (after the end of our sample period), the Financial Industry Regulatory Authority (FINRA)

requires that large IDBs report the identity of all of their counterparties, including PTFs, in their

Treasury TRACE reports. The data allow for the extent of PTF trading in the electronic IDB market

to be quantified, and provide a good benchmark (albeit out of sample) to judge which latency

threshold gives rise to the most accurate measure of HFT activities. We consider the following

thresholds that are close to what have been used by prior researchers: 1 ms, 5 ms, 10 ms, 25 ms,

50 ms, and 100 ms. Using BrokerTec data from April 1, 2019 to December 31, 2020, we identify

trades that occur within a given latency threshold following a market signal, defined as a change in

the best bid or offer prices. The resultant share of daily trading volume attributable to fast traders

is then compared with PTFs’ share of daily trading volume on electronic IDBs as calculated from

FINRA TRACE Treasury data.20

We report the correlations in Panel A of Internet Appendix Table A1. The correlations are quite

similar but generally decreasing in latency. The average correlation, weighted by securities’ average

daily trading volume over the same period, indicates that the HFT trading activity identified by the 1

ms threshold is most correlated with the PTF trading volume share (0.421). However, as discussed

above, adopting the 1 ms threshold would exclude HFTs that trade the cash/futures basis due to the

time it takes for information to travel from New York to Chicago, resulting in these HFTs being

incorrectly classified as slow traders. To assess the extent to which HFTs are misclassified as slow

traders, we report in Panel B of Table A1 the correlations of the PTFs’ trading volume share with

the volume share of slow traders (trades occurring with a latency outside of a given threshold). The

best classification threshold should have the least, or most negative, correlation with the PTF trading

volume share. Along this dimension, 1 ms appears the worst, while 25 ms appears the best with the

10 ms and 50 ms thresholds coming closely behind. Overall, the analysis in Table A1 suggests that

10 ms and 25 ms may be the best thresholds overall. We feature the 10 ms threshold in our main

20The TRACE Treasury data is collected for regulatory use by the official sector. The PTF volume shares calculated
from these data are plotted in, and provided to us by, Fleming et al. (2021).
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analysis, but provide the results for other thresholds in the Internet Appendix.

After determining the appropriate latency threshold, we next measure liquidity provision by

fast and slow traders using two different metrics. The first measure, denoted by FirstLO, captures

the fraction of the first limit orders reaching the book following a market signal, defined as any

change in the best bid or offer prices. If such an order arrives within 10 ms, we classify it as coming

from a fast trader. If the order arrives more than 10 ms after the signal but still within one second,

we consider it as coming from a slow trader. We exclude orders that arrive more than one second

following a market signal because it is not clear which trader type sends such orders and whether

such orders are even responses to the given market signal. For each day, we calculate the measure

separately for each trader type. The denominator is the number of market signals during the day.

The numerator is the number of first responding limit orders submitted by a given trader type.21

The second measure, denoted by SprT ight, is the fraction of time a given trader type is the

first to restore the bid-ask spread to one tick. So while FirstLO captures just the general liquidity

provision activities (which may or may not improve price), SprT ight specifically reflects price

improvement in liquidity provision. We attribute the first order that restores the bid-ask spread back

to one tick to either fast or slow traders again based on the latency threshold of 10 ms as previously

discussed. The denominator is the number of times the bid-ask spread is greater than one tick,

representing the number of opportunities for price improvement. The numerator is the number of

spread-tightening limit orders submitted by a given trader type.

We plot the time series of FirstLO and SprT ight for slow and fast traders in Figure 2. Fast

traders appear to dominate the competition for liquidity provision, as indicated by the substantially

higher magnitudes of both FirstLO and SprT ight for fast traders as compared to slow traders.

However, both measures increase for slow traders and decrease for fast traders following the tick

size change in the cash market. Furthermore, there appears to be some reversal in the FirstLO

measure after the futures market’s tick size change eight weeks later, but such a reversal is less

evident in the SprT ight measure.
21These two fractions do not add up to 100% because of the exclusion of order activities that arrive more than one

second after a market signal.
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4.3 Effects of tick size on fast and slow liquidity provision

Based on the DD regression model in Equation (1), we identify the effects of tick size on the

liquidity provision behavior of fast versus slow traders and report the results in Table 4. Panel

A shows the effects of the cash market’s tick size change. The Post× Treatment coefficient is

positive for slow traders in both the FirstLO and the SprT ight measures, with the latter being

statistically significant at the 5% level. Specifically, slow traders price improve more, as reflected in

an increase of 4.3 percentage points in the fraction of time such traders step in to restore a widened

spread to its minimum level of one tick. Meanwhile, liquidity provision by fast traders declines

significantly along both the general and the price-improvement dimensions.

Our empirical evidence supports the intuition in Yao and Ye (2018) and O’Hara et al. (2019) that

a shrinking spread and decreased value of time precedence—when it is easier/cheaper to obtain price

precedence—diminish the incentive for fast traders to rush to the front of the queue. To see how

this intuition bears out in the Treasury market, it is helpful to revisit how fast and slow traders map

into the two major participant groups in the Treasury market’s electronic interdealer marketplace.

HFTs utilize high speed trading technologies primarily to take advantage of very short-term price

dislocations and/or provide liquidity to capture the bid-ask spreads. It is therefore critical that they

have the fastest trading infrastructure. On the other hand, dealers have client-facing business outside

of the interdealer trading platforms, so it is less critical for them to invest heavily in the fastest

trading technologies. That is, the different business models of HFTs and dealers naturally give

rise to their differential response speeds, which correspond to the “fast” and “slow” classifications.

When the tick size is reduced, thereby shrinking the spread, the HFTs pull back on their liquidity

provision, giving way to an increased role for dealers.

The Li et al. (2021) model also explains well our finding, especially with regard to the increased

price competitiveness of dealers. Their model predicts that participants with lower (higher) op-

portunity costs will price improve more (less) often in a smaller tick size environment. Due to

dealers’ market-making business with clients, their use of liquidity provisioning limit orders in

the interdealer market is more likely to economize on transaction costs rather than to collect the
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spreads as a major source of their revenues. Furthermore, inventory pressures from customer trading

activities might allow for more competitive pricing by the dealers in the interdealer market. These

features imply that dealers have lower opportunity costs to price improve on their submitted limit

orders than HFTs, and therefore become more competitive in a lower tick environment.

Panel B of Table 4 shows how the competition for liquidity provision in the cash market is

affected by the later tick size reduction in the futures market. The fraction of limit orders submitted

(FirstLO) by slow traders significantly decreases, while it increases for fast traders. These changes

are a reversal of the changes associated with the initial cash market’s tick size reduction. A possible

explanation for these findings is that some HFTs that trade the cash/futures basis do not find it

profitable to respond to small market signals in the cash market when there is a tick size mismatch

with the futures market, but return when the two markets’ tick size equalizes. The return of cross-

market trading HFTs after the futures change probably lower HFTs’ opportunity costs of price

improving, but perhaps not enough to significantly change the price competition behavior relative to

dealers, as seen in the insignificant reversal of earlier changes in the SprT ight measure. Overall,

our results suggest that fast traders’ limit order submissions depend on the relative tick size of the

cash versus the futures market whereas their propensity to improve price is tied to the absolute tick

size.

4.4 Sensitivity analysis

As discussed earlier, our choice of the 10 ms latency threshold is grounded in guidance from

the prior literature combined with our validation exercise using a direct measure of HFTs’ share of

activity available out of sample. Nevertheless, to ensure that our conclusions are not driven by this

particular threshold, we repeat the analyses for other thresholds that are within the range used in

earlier research and find qualitatively similar results (see Internet Appendix Table A2).

5 Effects of Tick Size on Price Discovery
In this section, we consider whether price becomes more informative with a smaller tick size. As

previously discussed, we have a unique opportunity to shed light on this challenging question. The
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cash Treasury market operates alongside a highly liquid futures market. Mizrach and Neely (2008)

establish that the cash and futures markets are tightly linked through the no-arbitrage principle, and

Dobrev and Schaumburg (2018) find that this is even more so in recent years given the rise in high

frequency trading. Thus, the two markets are increasingly viewed as one, sharing a common random

walk fundamental process. The variance of this process reflects the aggregate information affecting

Treasury benchmark rates. The contribution of each market to this variance in turn indicates its

share of the aggregate information. We examine if the contribution to price discovery of each market

changes with the tick size changes.

5.1 Measuring contribution to price discovery

We employ Hasbrouck (1995)’s methodology to extract the underlying efficient price process

from the cash and futures prices with a vector error correction model (VECM). The variance of the

efficient price changes reflects the amount of information impounded into prices. The contribution

of each market to this variance indicates its role in price discovery. The model is:

∆Pt = αzt−1 +
k∑
s=1

As∆Pt−s + εt (2)

where Pt =
[
P c
t , P

f
t

]′
is a vector of cash and futures prices (best bid-ask midpoints) at time t. In

the main analysis, we sample prices at the 1-second frequency (the highest frequency available for

our futures data) to capture price discovery at a reasonably granular time scale, so t indexes seconds

in the trading day. zt equals the difference between the cash and future prices and serves as the error

correction term. We estimate the model with five lags and separately for each day. Daily model

estimation using intraday data implies that periodic changes in the on-the-run cash security, which

only occur between days, do not affect our results. Moreover, changes in the cheapest-to-deliver

(CTD) security underlying the futures contract are infrequent and hence unlikely to occur within a

day and affect our results.22

We also note that the mismatch between the on-the-run cash instrument and the CTD security

22In fact, over our sample period, the CTD security underlying each of the 2-, 5-, and ultra 10-year contracts remains
the same throughout each contract life cycle. Only the 10-year contract sees the CTD security change within a given
contract life cycle over our sample period.
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(given that the CTD is rarely the on-the-run security) is not a concern for our analysis. It is absorbed

by the error correction term in the model above. Furthermore, it is standard in the literature on the

price discovery of Treasury cash and futures markets to pair on-the-run cash instruments with futures

contracts of corresponding tenors for several reasons. First, Treasury securities in the same maturity

bucket are highly correlated, with the on-the-run security being the most liquid representative of

that maturity segment and hence the most responsive to new information. Second, traders who

pursue strategies to arbitrage price mismatch between the cash and futures markets (basis trades)

trade on-the-run Treasury securities and futures instruments, because only on-the-run Treasuries are

currently traded electronically, like futures contracts, on central limit order book platforms.

Hasbrouck (1995)’s information share relies on two ingredients derived from the model. The

first is the permanent impact of the shock vector on the cointegrated prices in the system (i.e., the

long-run multipliers based on the moving average representation of the VECM). The second is the

vector of orthogonalized shocks, which we obtain via a Cholesky decomposition of the covariance

matrix of the residuals Ω = E[εtε
′
t]. The information share of price series j is then computed as:

ISj =

[∑n
i=j γimij

]2
γΩγ′

, (3)

where γ = [γ1, γ2] is the permanent price impact of innovations in the cash and futures price series

respectively, andmij is the (i, j) element of the lower triangular matrixM such thatMM ′ = Ω. The

denominator is the variance of the random walk component of price changes. Thus, the information

share of a given price series is the contribution of its variation to the total variation of the efficient

price updates. The information share estimates depend on the ordering of the prices in the system.

We estimate the information shares using both orderings and take the average.

In Figure 3, we plot the information share of the cash market over the extended sample period

from September 24, 2018 to March 8, 2019, with two dashed lines marking the cash and futures tick

size events (from left to right). An increase in the cash market’s information share is clearly visible

in the 2-year tenor after the cash tick size change, a pattern that does not exist in the other tenors

with unchanged tick size. When the tick size in the futures market is halved to the same level as in
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the cash market, we observe a reversal of the earlier increase in the cash market’s information share.

Again, such a reversal is not apparent in the other tenors. The figure thus provides evidence that the

tick size change plays a meaningful role in shifting price discovery to the smaller tick market.

5.2 Does a smaller tick size increase price discovery?

To formally test the effects of tick size on price discovery, we estimate the DD regression model

for two outcome variables of interest: the cash market’s information share and the efficient return

variance V arRW . We first estimate these variables based on one-second returns and report the

associated coefficients on Post × Treatment in the first row of Table 5, separately for the cash

tick size change on November 18, 2018 and futures tick size change on January 14, 2019.23 The

period between these two events is when the cash market operates with a tick size half that of the

futures market. During this period, the information share of the cash market IS Cash increases by

about 23 percentage points relative to the pre-cash-event period. Moreover, the efficient variance is

significantly lower, consistent with earlier descriptive evidence of a more continuous price updating

process through which small information signals get incorporated into prices quickly.

If the increased contribution of the cash market to price discovery is indeed due to its smaller

tick size, this information advantage should reverse and we should observe a decrease in the cash

market’s information share once the futures market’s tick size is reduced to the same level. The

coefficient on Post × Treatment around the futures tick size event indicates exactly that: the

information share of the cash market indeed decreases—by about 17 percentage points—once it

loses its smaller tick size advantage. The variance of the efficient return does not change significantly,

consistent with it being driven by the absolute tick size level of the cash market, which does not

change through the futures tick size event.

Table 5 clearly shows that the market with a smaller tick size attracts greater price discovery,

with increased price leadership by the cash market during the brief period it has a smaller tick size.

The finer pricing grid makes it easier for traders to exploit their information advantage, especially

23There is no futures contract on the 3-year note during the sample period; thus the cash-futures analysis does not
include the 3-year tenor.
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small information signals that would otherwise be unprofitable to exploit in a larger tick environment.

To put this finding in context, it is worth discussing in greater depth the nature of information in

the Treasury market. Different from stocks, the concept of “private information” does not apply to

the U.S. Treasury market. Treasury prices are driven by fundamental macroeconomic information,

which is publicly available, and by differential interpretation of that information. Information

advantage therefore comes from better capability to process public news or from proprietary client

order flow information (e.g., Fleming and Nguyen, 2019). The latter source of information arises

somewhat exogenously due to clients’ trading demand whereas the former (better capability to

process public news) is within the realm of traders’ optimization. That said, there is little scope for

additional information acquisition because Treasury market participants are highly sophisticated; it

is not likely that a macroeconomic announcement remains imperceptible for an extended period of

time. Thus, any information advantage tends to be small and diminish quickly. This is consistent

with our evidence of traders tilting more toward the smaller-tick-size cash market—to presumably

trade on these small information advantages—when the cash market tick size is narrower.

To explore this hypothesis further, we analyze the information share of the cash market at

various return frequencies. The idea is that if the smaller tick size is beneficial for quickly exploiting

small information signals, then the cash market’s information advantage should lessen as the return

measurement horizon increases. To this end, we estimate the VECM in Equation (2) using prices

sampled at various frequencies, ranging from one second (used in our main analysis) to 10 minutes.

We then compute the cash market’s information share corresponding to these frequencies and show

their time series in Internet Appendix Figure A1. The rise in the information share after the cash

tick size change and the reversal after the futures tick size change are only evident for the very

short-horizon returns (the 1- and 10-second frequencies). Beyond these horizons, the tick size

changes have little apparent effect on information shares.

The regression results reported in Table 5 formally confirm the above observation. For returns

over very short horizons (1-second and 10-second), we observe an increased information share after

the cash tick size change, followed by a reversal after the tick size in the futures market catches
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up. This pattern weakens as the return sampling frequency increases. These results suggest that the

smaller tick size is most informationally beneficial at very high frequencies when it enables traders

to capture their (small) information advantage quickly.

A related study by Chaboud et al. (2019) finds that the spot foreign exchange market has a

reduced price discovery role relative to the futures market—despite an increased trading volume—

after the spot market’s tick size reduction. They attribute the decreased price discovery role of the

smaller-tick spot market to increased liquidity demand by HFTs. They argue that HFTs can improve

very short-run price efficiency but decrease long-run price efficiency because HFTs’ order flow

contains less long-run fundamental information. Their findings pertain to long-run price discovery,

however, while the focus of our study is on very short-run price discovery. In the extremely

liquid and tick-constrained Treasury market, our evidence suggests that tick size matters most for

exploiting price dislocations at very high frequencies.

6 Effects on the U.S. Treasury Complex
U.S. Treasury securities are different from stocks in that they share the same fundamentals and

essentially differ only in their maturity and coupon rates. That is, Treasuries are highly substitutable,

especially among those close in maturity. Furthermore, this substitutability applies not only among

Treasuries, but also with Treasury futures. That said, Treasuries can also be complementary to the

extent that traders seek exposure across the yield curve, or conduct basis trades involving both cash

and futures instruments. It is therefore plausible that a microstructure perturbation in the market

for one security (specifically, the 2-year note) might have significant effects not only in its own

market, but also in the markets for other segments of the yield curve or the associated futures market.

Substitutability would predict opposite-sign effects on other securities compared to the effects on

the 2-year note, whereas complementarity would imply same-sign effects. In the previous sections,

we use other securities as controls in the identification of the effects in the 2-year note following its

tick size change. In this section, we analyze whether there are spillover effects on the other Treasury

notes in order to understand better the microstructure linkages across the yield curve and to interpret

our earlier results with care. We then analyze the microstructure linkages with the futures market.
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6.1 Microstructure linkages across the yield curve

To assess whether market liquidity and price efficiency metrics of the other on-the-run Treasury

notes change significantly in the period after the 2-year note’s tick size change, we estimate the

following time-series regression:

Yt = α+ β1Postt + β2MOV Et−1 + β3MKTDEPTHt−1 + β4MKTV OLt−1 + θ′Dt + εt, (4)

where Yt is a market quality metric of interest. Post is an indicator variable equal to 1 for the

period after the tick size reduction. MOV E is a measure of aggregate bond market volatil-

ity.24 MKTDEPTH is the average total market depth across all on-the-run securities on Bro-

kerTec. MKTV OL is the total trading volume across all on-the-run securities on BrokerTec.

MKTDEPTH and MKTV OL control for the overall Treasury market liquidity level. Dt are

dummies for day-of-week effects, the holiday period, and early market closes. For this analysis,

it is not possible to have a DD regression setup, because we do not have the so-called “treatment”

on these other securities. Our main objective in this analysis is to see if market quality in other

Treasury securities along the yield curve changes after the tick size reduction of the 2-year note,

controlling for prevailing market conditions. Non results would imply that there is no spillover of

treatment effects from the 2-year note to other notes, and alleviate the concern of DD results being

contaminated because the control group is affected by the treatment.

We estimate the regression separately for each of the other notes and report the results in Table 6.

The 3-year note seems to be most affected by the 2-year note’s tick size change, whereas evidence of

potential spillover effects on the 5-, 7-, and 10-year notes is far weaker. The 3-year note’s liquidity

slightly worsens, with wider bid-ask spreads and lower market depth at or near the top of the book.

However, the 3-year note (as well as the 5-year note) seems to benefit from the increased price

efficiency of the 2-year note: its return autocorrelation and variance ratio both change significantly

toward the random walk benchmark. This result is consistent with the idea that traders in one

security learn value-relevant information from closely related securities.

24The ICE BofA MOVE Index is a measure of U.S. Treasury yield volatility implied by the prices of one-month
options on 2-, 5-, 10-, and 30-year Treasury futures.

27



Another noteworthy result from Table 6 is that despite the 2-year note becoming the cheapest

on-the-run instrument to trade, trading activity in other notes does not seem to be affected. There is

no evidence of order flow migration nor spillover across the yield curve as a result of the 2-year

note’s tick size change. Likewise, the event is inconsequential to price impact in the other notes.

Overall, it seems that there is little spillover of treatment effects—a concern for event studies of

regulatory experiments as discussed in Boehmer et al. (2020). This provides some assurance for the

identified effects we discuss in our main analysis, with two cautions. First, the 3-year note exhibits

some evidence of being affected by the 2-year note’s tick size event. We conduct robustness checks

on our earlier results by excluding the 3-year note from the DD regressions and obtain qualitatively

similar results. Second, D1A and D5A of other Treasury notes are significantly lower in the post

period. When these other notes are used as controls in the DD regression (Equation 1), the effects

on the 2-year note’s market depths as reported in Table 3 might be biased upward, negating the

underlying depth reduction due to a smaller tick size. Nonetheless, when we take into account

the effects on all market liquidity measures, the conclusion that the tick size reduction improves

liquidity remains robust.

6.2 Price discovery at the short end of the yield curve

Given the high substitutability between the 2- and 3-year notes, we next examine the 2-year

note’s role in price discovery at the short end of the yield curve when its tick size is halved while

that of the 3-year note remains unchanged. We estimate the information share split between the two

notes in a similar fashion to how we estimate the information share split between the 2-year cash

and futures instruments as described in Section 5. As before, the information share estimation is

done for varying return sampling frequencies. Using the 2-year note’s information share (versus the

3-year note’s) as the outcome variable of interest, we estimate the time-series regression model in

Equation 4 for the cash tick size change on November 19, 2018 and separately for the futures tick

size change on January 14, 2019.

Table 7 reports the Post coefficient estimates for the 2-year note’s information share at various

horizons. We again find that once the 2-year note’s tick size is reduced, its role in price discovery

28



rises, in this case relative to that of the 3-year note. However, unlike the cash-futures price discovery

results, this rise in price discovery does not reverse around the futures tick size change—an event

that is unrelated to the mismatch in tick size between the 2- and 3-year notes. This additional

evidence lends strong support to our conclusion that price discovery shifts toward the smaller-tick

market. Again, such a shift occurs only at very high return sampling frequencies and dissipates at

lower frequencies. It seems that the informational benefit of a smaller tick size is mainly due to

timely incorporation of small and short-lived information signals. The tick size change does little to

affect the balance of price discovery with respect to more fundamental, long-term information.

6.3 Microstructure linkages with the futures market

While our main focus in this paper is on the cash Treasury market, the futures market is an

integral part of the U.S. Treasury complex. More importantly, the cash and futures instruments for a

given tenor are highly linked through the no arbitrage principle and the high level of cross-market

trading, so much so that they are often viewed as one security in multiple markets in standard

price discovery analyses. Therefore, it is natural to ask if the 2-year futures is affected by the cash

market’s tick size change in addition to its own market tick size change. To answer this question,

we estimate the same DD regression as specified in Equation (1) but in which the treatment security

is the 2-year futures and the control group consists of other Treasury note futures contracts (5-year,

10-year, and ultra 10-year).

As Table 8 shows, there is no significant change in the 2-year futures’ bid-ask spread associated

with the cash market event (in terms of either the level or the tightness around one tick). This is not

surprising, given that the futures market is also highly liquid with the bid-ask spread equaling one

tick most of the time. Therefore, the tick size reduction in the cash market cannot tighten the futures’

spread any further. It follows that trading volume does not increase significantly, as it does for the

cash instrument. While it is plausible that the increased trading activity in the cash market around

its tick size reduction could spill over to the futures market because many market participants trade

in both, such a spillover effect is not sufficient to significantly change the level of trading activity

in the futures market. In the same vein, the cash tick size change has no significant impact on the
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futures’ price efficiency measures.

Only after the tick size reduction in its own market do we see the futures’ bid-ask spread narrow

(also almost one-for-one) and the frequency of one-tick spreads decline. The narrower spread

results in significant transaction cost savings for futures market participants. Based on the average

daily trading volume of roughly 640,000 contracts or $128 billion par notional amount in the

2-year futures over the eight-week period before the futures market tick size change, a decrease

of 0.951/256 in the bid-ask spread implies that liquidity demanders save $594 million per year

(1
2
× −0.951

256
× 0.01× $128 billion × 250 trading days). Trading activity increases significantly,

through the increased number of now smaller trades, and prices update more frequently.

The only futures market metric that appears to be affected by both tick size changes is market

depth, which declines significantly. One caveat with the market depth results is that the order

precedence rule for the 2-year futures is not first-in first-out (FIFO) like other Treasury futures,

but a mix of FIFO and pro-rata, the latter of which may cause market participants to over-quote.25

It is therefore not clear if the drop in market depth indicates decreased liquidity supply or simply

a reduced need to over-quote. Considering other market quality metrics, it seems reasonable to

conclude that 1) the tick size change in the cash market has minimal impact on the futures market,

and 2) futures market quality improves after its own tick size change, as expected.

7 Robustness checks

7.1 Placebo tests

To check the robustness of our results, we perform placebo tests by repeating our main regres-

sions around a date without a tick size change. To control for time-of-year effects and secular trends,

we choose the placebo date as the same day of week of the relevant tick size change one year earlier.

Thus, for the cash tick size reduction, the placebo event date is Monday, November 20, 2017. The

8-week window prior to this date starts on Monday, September 25, 2017. The 8-week window after

25Field and Large (2008) hypothesize that market participants rationally choose to over-quote under pro-rata
precedence rules. Haynes and Onur (2020) examine an episode in which the order precedence rule for the 2-year futures
contract temporarily changed to 100% FIFO and find that the pro-rate rule is associated with higher and more variable
depth.
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this date ends on Friday, January 12, 2018. For the futures tick size reduction, the placebo event

date is Monday, January 15, 2018, with the before and after period running from November 20,

2017 to March 10, 2018.

The effects of the placebo tick size reductions on market quality are reported in Internet Appendix

Table A3. None of the market quality metrics exhibit any significant change through the placebo

events in either the cash or futures markets. Likewise, we do not observe any significant change in

the liquidity provisioning behavior of fast and slow traders nor in the contribution to price discovery

of the cash market, as shown in Internet Appendix Table A4. The absence of significant changes

in our placebo results validates the equal-trend assumption needed for DD regression results and

provides support for the effects identified around the real tick size reductions.

7.2 Alternative multivariate regression model

While the main empirical model used in the paper, based on the standard DD setup with security

and day fixed effects, is clean and easy to interpret, it does not allow for possible differential

responses of each security to time-varying market conditions. Many researchers, including Vayanos

and Vila (2021), subscribe to the preferred-habitat view of the yield curve, which implies that

Treasury securities at different maturity segments might have differential clienteles and thus might

respond differently to the same market developments. To consider this possibility, we estimate the

following alternative regression model in which we control explicitly for market condition variables

with security-specific coefficients on those variables:

Yi,t = αi + β1Postt + β2Postt × Treatmenti + θ′Zt + εi,t. (5)

In this specification, Treatment is an indicator variable equal to 1 for the 2-year note and 0

otherwise, Post is an indicator variable equal to 1 for the period following the tick size change, i

provides security indexing, t provides day indexing, αi captures security fixed effects, and Zt are

variables to control for intra-week seasonality, low market activity around holidays and on early

market close days, and prevailing market conditions. These market condition variables are: 1)

aggregate bond market volatility (the MOV E index), 2) average total market depth across all on-
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the-run securities on BrokerTec (MKTDEPTH), and 3) total trading volume across all on-the-run

securities on BrokerTec (MKTV OL). All three variables are lagged by one day and interacted with

security dummies to allow for security-specific responses. We drop Treatment from the regression

model to avoid multicollinearity (between the 2-year fixed effect and Treatment). The coefficient

of interest is β2, capturing the effect of the tick size change on a given market outcome variable.

We report the main results from this alternative specification in Tables A5 – A8 in the Internet

Appendix. Our key findings are robust: 1) increased (decreased) competition for liquidity provision

from slow (fast) traders following the cash tick size change, 2) an increased price discovery role for

the cash market when its tick size is smaller, with this increase showing up most strongly for very

high frequency returns, 3) overall improved market quality (transaction costs, trading volume, and

price efficiency), and 4) minimal impact of the cash tick size change on the futures market given

that the latter is constrained by its own tick size, which does not change at the same time as the cash

market’s tick size. The robustness of the results lends further credibility to our main conclusions.

8 Conclusion
This paper studies the role of the minimum price increment on liquidity provision and price

discovery in the U.S. Treasury securities market. Exploiting a recent tick size reduction for the 2-

year note, followed eight weeks later by a commensurate change for the 2-year futures contract, we

observe how tick size affects market quality, price discovery, and liquidity provision by traditional

dealers (slow traders) and HFTs (fast traders). Based on DD regressions, we find an almost one-

for-one decrease in bid-ask spreads and increased trading activity, similar to the evidence in many

earlier equity tick size studies. However, different from those studies, we find that the improvement

in liquidity for small trades does not seem to come at the expense of large trades, with depth near

the top of the book remaining many times higher than the size of most trades.

We also find that slow traders become more competitive relative to fast traders in liquidity

provision when the tick size is halved, evidenced by the former’s increased propensity to tighten

spreads in response to changing market conditions. An improved ability of dealers to compete in

providing liquidity at better prices is potentially beneficial to price discovery because trading in the
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dealer-to-customer segment likely confers dealers with fundamental information on order flow and

demand for Treasury securities. Such information is not as readily available to HFTs, which do not

have customer-facing businesses.

We further find that the smaller tick size unambiguously improves price quality. Prices move

more frequently without raising realized volatility and can respond to smaller information shocks,

resulting in greater price efficiency. Based on an analysis of the cash and futures markets’ joint

price discovery around the tick size change, we provide novel evidence that the smaller tick size

concentrates greater price discovery in the cash market, in which a finer pricing grid enables faster

capture of information rents. The cash tick size change induces increased trading in both markets,

but disproportionately so in the cash market, indicating a preference for trading in the smaller tick

market, consistent with the increased price discovery result.

We also use the 2-year note tick size change to study how such a market design perturbation

in one security permeates through the Treasury interest rate complex given the tight connection

among Treasury securities and between the cash and futures markets. Our analysis suggests that the

3-year note experiences some spillover of treatment effects from the 2-year note, whereas longer

maturity notes are not significantly affected. The lack of effects on these other securities helps

ease the concern of treatment spillovers often expressed for event studies of regulatory or natural

experiments. We also find minimal impact of the cash market’s tick size change on the 2-year

futures, but significantly narrower bid-ask spreads and increased trading frequency when the future’s

own tick size is subsequently reduced.

Overall, we contribute to the literature new evidence from the Treasury market on the liquidity

provision of two major groups of market participants—dealers and HFT firms—and how the tick

size affects their competition. Our study also illuminates the role of tick size in price discovery,

showing that a smaller tick size encourages more timely incorporation of information signals at high

frequency, thereby improving short-term price discovery. Finally, our study suggests that reducing

the tick size in tick-constrained and highly liquid markets is on balance beneficial, and provides a

useful preview for the potential effects of any future tick size reductions in other Treasury securities.
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Table 1: Variable Descriptions

BAS Difference between the best bid and the best ask price, sampled at 1-minute frequency
and averaged for each day. Expressed in 256ths of a percent of par.

BAS L Difference between the bid and the ask price applicable for executing a large trade,
defined as the 99th percentile of the trade size distribution of each security ($50,
$33, $23, $13, and $20 million for the 2-, 3-, 5-, 7-, and 10-year notes respectively).
Sampled at 1-minute frequency and averaged for each day. Expressed in 256ths.

OneT ick Fraction of time the inside bid-ask spread (sampled at 1-minute frequency) equals
one tick.

TV ol Total volume traded, in $ billion par.
TFreq Number of trades.
TSize Average trade size in $ million par.
D1 (D5) Sum of bid and ask depth at the inside tier (best five tiers), sampled at 1-minute

frequency and averaged for each day. Expressed in $ million par.
DT Sum of bid and ask total depth across the whole book, sampled at 1-minute frequency

and averaged for each day. Expressed in $ million par.
DxA Sum of bid and ask cumulative depth within x ticks of the best bid-ask midpoint,

sampled at 1-minute frequency and averaged for each day. Expressed in $ million
par. For the 2-year note, we use the pre-change tick size (i.e., 2/256th).

FirstLO Slow Fraction of the first limit orders reaching the book between 10 milliseconds and 1
second after a change in the best bid or ask prices.

FirstLO Fast Similar to FirstLO Slow but with a response speed of below 10 milliseconds.
SprT ight Slow Fraction of the first limit order restoring the bid-ask spread to one tick between 10

milliseconds and 1 second of a spread widening.
SprT ight Fast Similar to SprT ight Slow but with a response speed of below 10 milliseconds.
NonZeroBA Fraction of minutes with non-zero midpoint returns.
NonZeroT Fraction of minutes with non-zero returns based on trade prices.
RV Realized volatility based on 1-minute log midpoint returns, calculated as RV =√∑N

t=1[ln(pt)− ln(pt−1)]2 and annualized by a factor of
√

250. Expressed in %.
|AR30| Absolute autocorrelation of 30-second midpoint returns.
V R Six times the ratio of the daily variance of 10-second midpoint returns to that of

1-minute midpoint returns.
PErr Hasbrouck (1993) standard deviation of intraday pricing errors based on a VAR(5)

of trade-by-trade log return, trade sign, signed volume, and signed square root of
volume.

IS Cash Hasbrouck (1995) information share of the cash market (see calculation details in
Section 5.1). This is computed for return sampling frequencies of 1 second, 10
seconds, 30 seconds, 1 minute, 5 minutes, and 10 minutes. The 7-year note is paired
with the 10-year futures, and the 10-year note is paired with the ultra 10-year futures.

V arRW Variance of the random walk of the underlying price process, computed for various
sampling frequencies as in IS Cash (see calculation details in Section 5.1). In
percent squared.

Notes: All variables are computed on a daily basis using data from the BrokerTec platform over New York trading
hours (7:30 to 17:00 Eastern time). The sample period is from September 24, 2018 to March 9, 2019.
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Table 2: Summary Statistics

2-Year 3-Year 5-Year 7-Year 10-Year

Variable SS1 SS2 SS3 SS1 SS2 SS3 SS1 SS2 SS3 SS1 SS2 SS3 SS1 SS2 SS3

Panel A: Means

BAS 2.01 1.10 1.06 2.06 2.10 2.08 2.03 2.06 2.06 4.12 4.19 4.12 4.06 4.11 4.08
BAS L 2.08 1.39 1.32 2.22 2.43 2.31 2.19 2.36 2.24 4.38 4.59 4.33 4.34 4.70 4.31
OneT ick 0.99 0.91 0.94 0.97 0.95 0.96 0.98 0.97 0.97 0.97 0.96 0.97 0.99 0.97 0.98
TV ol 20 26 20 18 19 16 47 47 40 14 14 12 38 36 32
TFreq 2561 4722 3894 3843 4383 3548 13003 14044 10932 5721 6258 5016 12940 13582 11245
D1 907 236 209 302 181 190 170 122 150 115 89 120 135 101 147
D1A 907 793 654 302 181 190 170 122 150 115 89 120 135 101 147
D5 5473 2519 2179 2700 1809 1669 1302 1049 1215 797 680 799 956 748 1034
D5A 5473 4192 4009 2700 1810 1669 1302 1049 1215 797 681 799 956 748 1034
DT 10314 6290 6195 5819 4377 3960 3095 2751 3096 1734 1598 1840 2345 1979 2704
NonZeroBA 0.12 0.37 0.30 0.25 0.31 0.25 0.40 0.45 0.39 0.34 0.37 0.29 0.41 0.44 0.36
RV 0.99 0.94 0.81 1.41 1.67 1.46 2.22 2.56 2.15 3.57 3.97 3.28 4.51 4.68 3.99
|AR30| 0.22 0.15 0.16 0.21 0.17 0.19 0.15 0.12 0.14 0.20 0.17 0.18 0.16 0.15 0.15
V R10s,1m 1.81 1.53 1.61 1.84 1.65 1.78 1.61 1.49 1.57 1.78 1.71 1.70 1.61 1.58 1.55
PErr 0.04 0.02 0.02 0.03 0.04 0.04 0.03 0.03 0.03 0.05 0.05 0.05 0.05 0.06 0.06
IS Cash 0.45 0.69 0.52 0.48 0.48 0.47 0.43 0.45 0.44 0.42 0.42 0.44
V arRW 1.00 1.07 0.70 5.70 7.57 5.38 14.17 16.92 12.29 22.68 24.77 18.38

Panel B: Standard deviations

BAS 0.01 0.06 0.02 0.03 0.08 0.02 0.02 0.06 0.02 0.05 0.19 0.05 0.04 0.09 0.05
BAS L 0.04 0.24 0.09 0.08 0.40 0.07 0.08 0.35 0.06 0.12 0.45 0.12 0.13 0.69 0.10
OneT ick 0.01 0.05 0.02 0.01 0.03 0.01 0.01 0.02 0.01 0.01 0.03 0.01 0.01 0.02 0.01
TV 6 8 5 6 7 5 15 17 9 4 5 4 13 14 7
Tfreq 1009 1350 945 1245 1584 804 4599 5109 2621 1986 2146 1192 4944 5094 2434
D1 190 132 70 55 68 46 26 31 18 15 20 12 19 28 13
D1A 190 323 140 55 68 46 26 31 18 15 20 12 19 28 13
D5 536 866 289 244 612 204 96 222 94 54 139 44 77 177 69
D5A 536 1360 468 244 611 204 96 221 94 54 139 44 77 177 69
DT 713 1817 824 380 1377 408 209 519 264 100 293 123 149 419 189
NonZeroBA 0.04 0.09 0.06 0.08 0.08 0.04 0.10 0.10 0.06 0.08 0.09 0.06 0.08 0.09 0.06
RV 0.19 0.28 0.16 0.27 0.50 0.28 0.48 0.76 0.41 0.62 1.56 0.53 0.82 1.22 0.61
|AR30| 0.06 0.08 0.05 0.05 0.06 0.07 0.05 0.05 0.05 0.05 0.06 0.06 0.04 0.06 0.05
V R10s,1m 0.27 0.27 0.21 0.23 0.21 0.21 0.21 0.22 0.18 0.18 0.25 0.24 0.15 0.23 0.17
PErr 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02
IS Cash 0.11 0.16 0.08 0.05 0.11 0.07 0.04 0.06 0.04 0.03 0.05 0.04
V arRW 0.49 0.52 0.29 2.66 4.23 1.91 5.46 7.21 3.93 8.73 10.66 4.71

This table reports the means (Panel A) and standard deviations (Panel B) of key variables for on-the-run Treasury notes
based on data from the BrokerTec platform over New York trading hours (7:30 to 17:00 Eastern time). Variables are as
defined in Table 1. The sample period is from September 24, 2018 to March 9, 2019. SS1 is the first sub-sample period
from September 24, 2018 to November 16, 2018, covering the 8-week period before the tick size reduction in the 2-year
note on November 19, 2018. SS2 is the second sub-sample period from November 19, 2018 to January 11, 2019,
covering the 8-week period from the tick size reduction in the 2-year note to just before the tick size reduction in the
2-year futures on January 14, 2019. SS3 is the third sub-sample period from January 14, 2019 to March 9, 2019,
covering the 8-week period from the tick size reduction in the 2-year futures. Statistics for IS Cash and V arRW are
not available for the 3-year note because the 3-year futures contract did not exist during our sample period.

38



Table 3: Effects of Tick Size Reductions on Market Quality

Cash Tick Size Reduction Futures Tick Size Reduction

Outcome Variable Coef Adj R2 Coef Adj R2

Panel A: Trading Activity and Transaction Costs

BAS −0.967∗∗∗ 0.945 −0.008 0.576
BAS L −0.930∗∗ 0.804 0.152 0.755
OneT ick −0.072∗∗ 0.722 0.028∗ 0.557
LogTV ol 0.234∗ 0.799 −0.082 0.778
LogTfreq 0.548∗∗ 0.876 0.011 0.833
TSize −2.301∗∗ 0.695 −0.464∗ 0.457

Panel B: Price Efficiency

NonZeroBA 0.203∗∗ 0.923 0.002 0.909
NonZeroT 0.133∗∗ 0.897 0.011 0.913
RV −0.344 0.668 0.369 0.680
|AR30| −0.047 0.536 0.002 0.626
V R10s,1m −0.171 0.638 0.030 0.694
PErr −0.023∗ 0.445 −0.007 0.340

Panel C: Liquidity Supply within Select Price Tiers

LogD1 −1.076∗∗ 0.906 −0.298 0.757
LogD5 −0.558 0.891 −0.249 0.788
LogDT −0.360 0.830 −0.109 0.730

Panel C: Liquidity Supply within Fixed Price Distances

LogD1A 0.183 0.854 −0.391 0.799
LogD2A 0.121 0.863 −0.281 0.796
LogD3A 0.039 0.854 −0.218 0.781
LogD4A −0.007 0.858 −0.176 0.792
LogD5A −0.046 0.860 −0.149 0.795

Observations 370 370

This table reports the effects of tick size reductions on various market quality metrics based on the regression model
Yi,t = αi + γt + βPostt × Treatmenti + εi,t, where Y is the outcome variable of interest (shown in column 1 and
defined in Table 1), Treatment is an indicator variable equal to 1 for the 2-year note and 0 otherwise, Post is an
indicator variable equal to 1 for the period following the tick size change, i provides security indexing, t provides day
indexing, and αi and γt are security and day fixed effects, respectively. Columns “Coef” show the estimates of β.
Columns “Adj. R2” report the adjusted R2 of each regression for a given outcome variable. Variables are measured at
the daily frequency using data from the BrokerTec platform over New York trading hours (7:30 to 17:00 Eastern time).
The sample includes 2-, 3-, 5-, 7-, and 10-year notes. For regressions around the cash tick size reduction, the sample
period is from September 24, 2018 to January 11, 2019, with the Post period starting on November 19, 2018. For
regressions around the futures tick size reduction, the sample period is from November 19, 2018 to March 9, 2019, with
the Post period starting from January 14, 2019. Standard errors are clustered by security. Statistical significance is
based on wild cluster bootstrap p-values (with 9999 reps and using six-point weight distribution). *p < .1; **p < .05;
***p < .01. 39



Table 4: Effects of Tick Size Reductions on Competition for Liquidity Provision

Slow Traders Fast Traders

FirstLO SprT ight F irstLO SprT ight

Panel A: Cash Tick Size Reduction

Post × Treatment 0.044 0.043∗∗ −0.083∗ −0.112∗∗

(0.006) (0.003) (0.008) (0.005)
Security Fixed Effects Yes Yes Yes Yes
Day Fixed Effects Yes Yes Yes Yes
Adj. R2 0.416 0.615 0.495 0.617
Observations 370 370 370 370

Panel B: Futures Tick Size Reduction

Post × Treatment −0.041∗∗ −0.035 0.060∗∗ 0.018
(0.003) (0.010) (0.004) (0.016)

Security Fixed Effects Yes Yes Yes Yes
Day Fixed Effects Yes Yes Yes Yes
Adj. R2 0.475 0.399 0.481 0.344
Observations 370 370 370 370

This table reports the effects of tick size reductions on the competition for liquidity provision between fast and slow
traders. The regression model is Yi,t = αi + γt + βPostt × Treatmenti + εi,t, where Y is the outcome variable of
interest, Treatment is an indicator variable equal to 1 for the 2-year note and 0 otherwise, Post is an indicator
variable equal to 1 for the period following the tick size change, i provides security indexing, t provides day indexing,
and αi and γt are security and day fixed effects, respectively. Slow and fast traders are identified by the latency of
response to market signals, with longer than 10 ms for slow traders and less than 10 ms for fast traders. FirstLO is the
fraction of the first limit orders reaching the book submitted by a given trader type following a market price change.
SprT ight is the fraction of time a given trader type is the first to restore the bid-ask spread to one tick. Variables are
measured at the daily frequency using data from the BrokerTec platform over New York trading hours (7:30 to 17:00
Eastern time). The sample includes 2-, 3-, 5-, 7-, and 10-year notes. For regressions around the cash tick size reduction
in Panel A, the sample period is from September 24, 2018 to January 11, 2019, with the Post period starting on
November 19, 2018. For regressions around the futures tick size reduction in Panel B, the sample period is from
November 19, 2018 to March 9, 2019, with the Post period starting from January 14, 2019. Standard errors are
clustered by security and reported in parentheses. Statistical significance is based on wild cluster bootstrap p-values
(with 9999 reps and using 6-point weight distribution). *p < .1; **p < .05; ***p < .01.
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Table 5: Tick Size Reductions and Term Structure of Information Share

Cash Tick Size Reduction Futures Tick Size Reduction

Sampling Frequency IS Cash V arRW IS Cash V arRW

1 second 0.230∗∗ −2.160∗ −0.172∗ 4.029
(0.006) (0.291) (0.014) (1.325)

10 seconds 0.194∗ −2.217∗ −0.155∗ 4.150
(0.008) (0.279) (0.014) (1.384)

30 seconds 0.128∗ −1.871 −0.106 4.002
(0.009) (0.338) (0.016) (1.401)

1 minute 0.068∗ −2.244 −0.055 4.073
(0.006) (0.426) (0.016) (1.341)

5 minutes 0.035 −2.197 0.035 4.950
(0.005) (0.712) (0.007) (1.258)

10 minutes 0.078∗ −15.693 −0.014 17.900∗

(0.004) (3.835) (0.006) (2.031)

This table shows the effects of tick size reductions on price informativeness of the cash market relative to the futures
market at various return horizons. The numbers reported in the table are the estimates of β from the following
regression model Yi,t = αi + γt + βPostt × Treatmenti + εi,t, where Y is the outcome variable of interest,
Treatment is an indicator variable equal to 1 for the 2-year note and 0 otherwise, Post is an indicator variable equal
to 1 for the period following the tick size change, i provides security indexing, t provides day indexing, and αi and γt
are security and day fixed effects, respectively. The dependent variable is the information share of the cash market
based on midpoint returns at a given sampling frequency. Information shares are computed from a VECM(5) estimated
separately for each day using cash and futures prices sampled at each given horizon for the 2-, 5-, 7-, and 10-year
maturities (with the 7-year note paired with the 10-year Treasury futures and the 10-year note paired with the ultra
10-year Treasury futures). Cash data are from the BrokerTec platform and futures data are from the CME. The sample
includes 2-, 3-, 5-, 7-, and 10-year notes. For regressions around the cash tick size reduction, the sample period is from
September 24, 2018 to January 11, 2019, with the Post period starting on November 19, 2018. For regressions around
the futures tick size reduction, the sample period is from November 19, 2018 to March 9, 2019, with the Post period
starting from January 14, 2019. Standard errors are clustered by security and reported in parentheses. Statistical
significance is based on wild cluster bootstrap p-values (with 9999 reps and using six-point weight distribution).
*p < .1; **p < .05; ***p < .01.
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Table 6: Spillovers to Other Segments of the Yield Curve

Outcome Variable 3-Year 5-Year 7-Year 10-Year

Panel A: Trading Activity and Transaction Costs

BAS 0.048∗∗ 0.019 0.053 0.028
BAS L 0.082 0.024 0.091 0.117
OneT ick −0.019∗∗ −0.005 −0.010 −0.006
LogTFreq 0.133 0.041 0.050 0.034
LogTV ol 0.184 0.070 0.028 0.007

Panel B: Price Efficiency

NonZeroBA 0.041 0.012 −0.016 −0.002
RV 0.223 0.192 0.023 −0.057
|AR30| −0.053∗∗∗ −0.050∗∗ −0.030 −0.004
|V R10s,1m − 1| −0.213∗∗ −0.138 −0.072 0.051
PErr 0.008 0.004 0.002 0.009

Panel C: Liquidity Supply

LogD1A −0.253∗∗∗ −0.124∗∗ −0.142∗∗∗ −0.149∗∗

LogD5A −0.133∗∗ −0.065∗ −0.045 −0.123∗∗∗

LogDT −0.062 0.011 −0.001 −0.063

Panel D: Competition for Liquidity Provision

FirstLO Slow −0.013∗ 0.005 −0.002 0.009∗

SprT ight Slow 0.030∗∗ 0.004 0.021 0.022
FirstLO Fast 0.014 0.011 0.004 −0.005
SprT ight Fast −0.066∗∗∗ −0.005 −0.028 −0.032∗∗

This table shows the effects of the 2-year note’s tick size reduction on other on-the-run Treasury notes. The regression
model is Xt = α+ βPostt + θ′Zt + εt. Post is an indicator variable equal to 1 for the period after the cash market’s
tick size reduction on November 19, 2018. Zt include variables to control for aggregate bond market volatility (the
MOV E index), Treasury market liquidity (measured by the average total market depth MKTDEPTH and aggregate
trading volume MKTV OL across all on-the-run securities traded on BrokerTec), day-of-week dummies, a dummy for
early market close days, and a dummy for the holiday period (December 24, 2018 – December 31, 2018). The table
reports the estimate of β for outcome variables indicated in the first column (see Table 1 for variable description).
Variables are measured at the daily frequency using data from the BrokerTec platform over New York trading hours
(7:30 to 17:00 Eastern time). The sample period is from September 24, 2018 to January 11, 2019. *p < .1; **p < .05;
***p < .01.
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Table 7: Tick Size Reductions and Information Share of 2-Year Note (vs. 3-Year Note)

Sampling Frequency Cash Tick Size Reduction Futures Tick Size Reduction

1 second 0.188∗∗∗ 0.042
(0.043) (0.051)

10 seconds 0.273∗∗∗ 0.019
(0.063) (0.078)

30 seconds 0.277∗∗∗ −0.025
(0.076) (0.096)

1 minute 0.244∗∗∗ 0.022
(0.082) (0.098)

5 minutes 0.051 −0.054
(0.073) (0.081)

10 minutes 0.067 −0.015
(0.062) (0.058)

This table shows the effects of tick size reductions on the price informativeness of the 2-year note relative to the 3-year
note. The table reports the estimate of β from the regression model Xt = α+ βPostt + θ′Zt + εt, where the
dependent variable is the 2-year note’s information share at various sampling frequencies. Post is an indicator variable
equal to 1 for the period following the tick size change. Zt include variables to control for aggregate bond market
volatility (the MOV E index), Treasury market liquidity (measured by the average total market depth MKTDEPTH
and aggregate trading volume MKTV OL across all on-the-run securities traded on BrokerTec), day-of-week
dummies, a dummy for early market close days, and a dummy for the holiday period (December 24, 2018 – December
31, 2018). The information share is computed from a VECM(5) estimated separately for each day using the best
bid-ask midpoints of the 2-year note and 3-year note at each given sampling frequency. The data are from the
BrokerTec platform over New York trading hours (7:30 to 17:00 Eastern time). For regressions around the cash tick
size reduction, the sample period is from September 24, 2018 to January 11, 2019, with the Post period starting on
November 19, 2018. For regressions around the futures tick size reduction, the sample period is from November 19,
2018 to March 9, 2019, with the Post period starting from January 14, 2019. Standard errors of estimates are reported
in parentheses. *p < .1; **p < .05; ***p < .01.
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Table 8: Effects of Tick Size Reductions on Treasury Futures Market

Cash Tick Size Reduction Futures Tick Size Reduction

Outcome Variable Coef Adj R2 Coef Adj R2

Panel A: Trading Activity and Transaction Costs

BAS −0.003 0.292 −0.951∗∗ 0.982
OneT ick −0.011 −0.002 −0.047∗ 0.448
LogTV ol 0.190 0.758 0.074 0.799
LogTFreq 0.133 0.856 0.448∗ 0.859
TSize 9.674 0.501 −16.845 0.555

Panel B: Price Efficiency

NonZeroBA 0.019 0.854 0.169∗∗ 0.906
RV 0.086 0.771 0.106 0.814
|AR30| 0.003 0.402 −0.028 0.609
V R10s,1m 0.068 0.410 −0.056 0.623

Panel C: Liquidity Supply

D1 −2.027∗∗ 0.689 −1.582∗∗ 0.503
D5 −1.059∗ 0.721 −1.189∗∗ 0.637
D1A −2.022∗∗ 0.688 −0.752∗ 0.410
D2A −1.499∗∗ 0.707 −0.651∗ 0.472
D3A −1.268∗ 0.712 −0.589∗ 0.500
D4A −1.141∗ 0.716 −0.544∗ 0.518
D5A −1.055∗ 0.720 −0.516∗∗ 0.539

This table reports the effects of tick size reduction on various market quality metrics in the futures market based on the
regression model Yi,t = αi + γt + βPostt × Treatmenti + εi,t, where Y is the outcome variable of interest (shown
in column 1 and defined in Table 1), Treatment is an indicator variable equal to 1 for the 2-year futures and 0
otherwise, Post is an indicator variable equal to 1 for the period following the tick size change, i provides security
indexing, t provides day indexing, and αi and γt are security and day fixed effects, respectively. Columns “Coef” show
the estimates of β. Columns “Adj. R2” report the adjusted R2 of each regression for a given outcome variable. The
sample includes 2-, 5-, 10-year, and ultra 10-year Treasury futures. Variables are measured at the daily frequency using
data from the CME over New York trading hours (7:30 to 17:00 Eastern time). For regressions around the cash tick size
reduction, the sample period is from September 24, 2018 to January 11, 2019, with the Post period starting on
November 19, 2018. For regressions around the futures tick size reduction, the sample period is from November 19,
2018 to March 9, 2019, with the Post period starting from January 14, 2019. Standard errors are clustered by security.
Statistical significance is based on wild cluster bootstrap p-values (with 9999 reps and using six-point weight
distribution). *p < .1; **p < .05; ***p < .01.
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