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Abstract 

I propose to identify announcement-specific decompositions of asset price changes into monetary policy 

shocks exploiting heteroskedasticity in intraday data, accommodating both changes in the nature of 

shocks and the state of the economy across announcements. I compute decompositions with respect to fed 

funds, forward guidance, asset purchase, and Fed information shocks from 1996 to 2019. The 

decompositions illustrate which announcements of unconventional policy measures had significant effects 

during the Great Recession. Forward guidance and asset purchases have significant effects on yields, 

spreads, equities, and uncertainty. Positive shocks to all dimensions of monetary policy trigger 

macroeconomic contractions, while information shocks telegraph expansions. 

 

Key words: high-frequency identification, time-varying volatility, monetary policy shocks, forward 

guidance, quantitative easing 

 

 

 

 

 

 

 

 

 

 

 

_________________ 

 
Lewis: Federal Reserve Bank of New York (email: daniel.lewis@ny.frb.org). The author thanks Richard 
Crump, Raffaella Giacomini, Domenico Giannone, Simon Gilchrist, David Lucca, and Mikkel Plagborg-
Möller for feedback, Taeyoung Doh and Eric Swanson as discussants, three anonymous referees, Olivier 
Coibion as editor, seminar participants at the NBER Summer Institute 2019, Philadelphia Fed, Université 
de Montreal, University of Pennsylvania, the ECB, Oxford, UCL, and UBC Sauder, conference 
participants, and Mary Quiroga, Eric Qian, Christopher Simard, and Babur Kocaoglu for research 
assistance.  
 
This paper presents preliminary findings and is being distributed to economists and other interested 

readers solely to stimulate discussion and elicit comments. The views expressed in this paper are those of 

the author(s) and do not necessarily reflect the position of the Federal Reserve Bank of New York or the 

Federal Reserve System. Any errors or omissions are the responsibility of the author(s). 

 
To view the authors’ disclosure statements, visit 
https://www.newyorkfed.org/research/staff_reports/sr891.html. 



1 Introduction

Since Kuttner (2001), high-frequency movements in asset prices have been used to identify
monetary policy shocks. However, the presence of multiple dimensions of policy complicates
the task of identifying such shocks. Existing approaches either assume that each asset price
responds only to a single shock over a certain window (e.g., Krishnamurthy and Vissing-
Jorgensen (2011); Gertler and Karadi (2015)), or compute decompositions identified across
announcement dates (e.g., Gürkaynak et al. (2005) (hereafter GSS); Swanson (2021); Rogers
et al. (2018) (hereafter RSW); Nakamura and Steinsson (2018); Inoue and Rossi (2020)).

The former strategy either assumes the presence of a single shock or imposes exclusion
restrictions across assets. Faced by unconventional policy at the zero lower bound (ZLB),
this means that one price responds to target rate shocks and another to forward guidance
shocks, for example. The latter strategy, pooling price changes across announcements and
computing some time-invariant decomposition into structural shocks, follows the influential
work of Nelson and Siegel (1987) and GSS. Shocks can differ across announcements only in
scale, not in their relative impacts on different asset prices. For example, this means that
the asset purchase shock prompted by the announcements of QE1 and QE2 must have the
same impacts on all interest rates, despite targeting different securities. Assumptions are
also needed to recover shocks with structural interpretations, since the statistical factors
typically estimated are identified only up to orthogonal rotations. Swanson (2021) extends
the approach of GSS to distinguish forward guidance and asset purchase shocks, combining
exclusion and narrative restrictions. RSW impose a lower-triangular structure on futures
corresponding to interest rates of various maturities. However, the challenge of central
bank information shocks, highlighted by Jarociński and Karadi (2020), Lunsford (2020), and
Miranda-Agrippino and Ricco (2021), but questioned by Bauer and Swanson (2022), remains
unaddressed in models boasting the Fed Funds, guidance and asset purchase shocks.

I propose to identify announcement-specific decompositions of asset price movements to
recover monetary policy shocks without assuming time-invariance across announcements.
Instead of pooling data across announcements, I treat common movements in interest rates
and equities following monetary policy announcements as responses to a series of monetary
policy news shocks. This means that up to several hours of minute-by-minute data can
be used to identify a decomposition unique to any announcement. Figure 1 plots 10-minute
moving-averages of the squares of the first four principal components of a panel of asset prices
following the March 18, 2009 announcement, when the Federal Open Market Committee
(FOMC) strengthened forward guidance and expanded QE1. There are large movements in
asset prices outside of the conventional 30-minute window, which indeed suggest the presence
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Figure 1: Moving average of squared principal components on March 18, 2009

10-minute moving averages of squared principal components of a panel of 20 asset price changes on March
18, 2009, from the beginning of the conventional 30-minute window (10 minutes before the announcement)
through 4:01pm, immediately following market close. The y-axis is truncated to highlight relevant
variation. Plotting squared innovations to the principal components instead produces a plot with the same
dynamics.

of a more continuous stream of monetary policy news, or at least the continued processing
of previously-released news. This variation has yet to be exploited for identification.

I thus use intraday timeseries of asset price movements to identify up to four monetary
policy shocks following a given announcement: a “Fed Funds” shock, a “forward guidance”
shock, an “asset purchase” shock, and a “Fed information” shock.1 The latter is missing from
previous papers (e.g., Swanson (2021); RSW) that separately identify forward guidance and
asset purchase shocks. To identify the shocks from these intraday timeseries, I adapt an
identification argument based on time-varying volatility, developed in Lewis (2021). The
volatility patterns evident in Figure 1 make such an approach natural.

For each FOMC announcement from 1996-2019, I extract principal components of 20
intraday asset prices following the announcement. I use a test proposed in Lewis (2021)
to determine the maximum number of shocks identifiable based on time-varying volatility,
before adopting the identification scheme from that paper, a generalized version of identifi-
cation via heteroskedasticity. I thus recover intraday timeseries of that number of shocks –
the unique rotation of the principal components that is consistent with the observed volatil-
ity dynamics. I use an information criterion to determine the number of these shocks that
represent monetary policy shocks, discarding the remainder as noise. To measure the effects
of monetary policy on interest rates and equities following an announcement, I compute
historical decompositions with respect to the high-frequency shocks.

This framework is flexible in three important ways. First, I do not assume the nature
1While Kroencke et al. (2021) propose to identify a “risk shift” shock, which explains a greater share of

announcement-window variation in the prices of risky assets, such a dimension is outside the scope of this
paper.
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of monetary policy shocks is the same from one announcement to the next, as implied by a
constant decomposition (since relative effects of shocks on asset prices are fixed). There is
little reason to think that asset purchase announcements targeting different securities should
have identical effects on asset prices; Lunsford (2020) characterizes how forward guidance
evolved during the early 2000s, with further evolution coming during the Great Recession.
Second, even if the nature of shocks was constant over time, it is important to allow their
relative impacts on asset prices to vary, since the relationship between news and the public’s
expectations of the state variables in the economy may either be nonlinear, or otherwise
change over time, as argued by Faust et al. (2007). Finally, I do not require all shocks
to be active for each announcement, an important consideration when identifying several
dimensions of policy. This is particularly important, since asset purchase policies were not in
effect for the majority of the sample, yet arguably were a defining feature of monetary policy
at the end of the sample. This framework, which could easily be adapted to other types
of announcements, like macroeconomic releases or corporate news, is the methodological
contribution of this paper.

I use the historical decompositions of interest rates and equities to compare the effects
of key monetary policy announcements during the Great Recession. This comparison is
possible and meaningful because I have not assumed the relative effects of each shock to
be constant from one announcement to the next. My methodology combines attractive
features of several existing papers: the announcement-by-announcement comparison of the
event-studies of Krishnamurthy and Vissing-Jorgensen (2011) and the ability to disentangle
forward guidance and asset purchase shocks (with the addition of Fed information shocks)
from Swanson (2021) and RSW. I find that few monetary policy announcements sparked
significant shocks, but those that did can be characterized as the introduction of new policies
or the unexpected extension of existing policies. This marriage of carefully-measured shocks
with the narrative record is the second contribution of the paper.

I next form a timeseries of the four monetary policy shocks, measured by historical decom-
positions, and use them to estimate the responses of key financial variables. Contractionary
forward guidance and asset purchase shocks both raise corporate yields and uncertainty and
lower corporate spreads. Fed information shocks raise yields and lower uncertainty. These
results mirror existing papers including Krishnamurthy and Vissing-Jorgensen (2011), Swan-
son (2021), and Campbell et al. (2012), but establishing them jointly with those for Fed
information shocks constitutes a third contribution of this paper.

Finally, I use the timeseries to estimate the macroeconomic effects of the different di-
mension of monetary policy. While Swanson (2021) and RSW disentangle forward guidance
and asset purchase shocks, neither studies the impact on the real economy. Across the full
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sample, Fed Funds, forward guidance, and asset purchases all have significant, persistent
effects on inflation, unemployment, and industrial production in the direction predicted by
theory. During the Great Recession, asset purchases had stronger effects, and the impact of
forward guidance was attenuated. The results are quite similar to what one would obtain
using the Swanson (2021) shocks, but starkly different to those based on the RSW shocks. I
additionally find that Fed information shocks predict positive economic developments, par-
ticularly after 12 months. These findings, characterizing the real effects of unconventional
monetary policy, are the final contribution of the paper.

Cieslak and Schrimpf (2019) is, to my knowledge, the only other paper to examine in-
traday comovements of yields and stock prices by announcement to characterize monetary
policy news, but simply classifies each announcement as belonging to one of four discrete cat-
egories, rather than decomposing movements into different components. On the other hand,
Jarociński (2022) recently identifies the same quartet of shocks as I do, but using a time-
invariant decomposition and a different form of statistical identification, exploiting kurtosis
of the shocks. Although previous papers analyzing the effects of unconventional policy on
macroeconomic aggregates have not jointly identified forward guidance and asset purchase
shocks, especially in the presence of Fed information effects, a growing literature does exist.
Baumeister and Benati 2013, Gambacorta et al. (2014), and Lloyd (2018) identify a range of
asset purchase-related shocks (“spread compression”; “balance sheet”; “signaling” and “port-
folio balance”, respectively) in VARs using sign and exclusion restrictions. Baumeister and
Benati (2013) allow for the time-varying nature of shocks, using a time-varying parameters
model, as does Paul (2020), although he only estimates the effects of the Fed Funds shock.
The findings of Gambacorta et al. (2014) for their balance sheet shock and those of Bundick
and Smith (2020) for forward guidance align well with the significant macroeconomic effects I
estimate. Inoue and Rossi (2020) estimate local projections for two policy dimensions corre-
sponding to the slope and curvature factors from a Nelson and Siegel (1987) decomposition,
but these are not interpretable as particular dimensions of unconventional policy.

The remainder of the paper is organized as follows. Section 2 discusses the identification
problem in more detail and outlines my approach. Section 3 presents announcement-specific
results, discussing the findings for notable FOMC announcements in detail. Section 4 de-
scribes the timeseries of monetary policy shocks and computes the responses of financial
markets and macroeconomic aggregates to the measures. Section 5 concludes.
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2 Intraday identification of monetary policy shocks

In this section, I motivate the use of announcement-specific decompositions and argue that
they can, in principle, be identified using intraday data. I then discuss how time-varying
volatility can be used to do so. Finally, I describe my empirical approach.

2.1 The case for intraday identification

High-frequency identification of monetary policy shocks draws on the event-study method-
ology of empirical finance, as described by Campbell et al. (1997). Those authors write
abnormal returns, ηit,δ, for security i from t− δ to t as

ηit,δ = Rit,δ − E [Rit,δ | It−δ] , (1)

where Rit,δ = Pit − Pit−δ and It−δ is the information set available at t − δ , with t, t − δ ∈
[0, 1] indexing time-points during the day. In typical studies of monetary policy shocks,
E [Rit,δ | It−δ] = 0, so ηit,δ = Rit,δ = Pit − Pit−δ. If markets price all new information
immediately, then the change over the window t − δ to t represents all news during that
window. Monetary policy news can thus be measured as the change in an interest rate future,
Treasury yield, or some basket of such asset prices over an interval [t− δ, t] containing the
announcement, often 10 minutes prior to the announcement to 20 minutes following. This
measure can either be used directly (following Kuttner (2001)) or as an instrument for a
latent monetary policy shock (e.g., Gertler and Karadi (2015)).

However, if there are multiple dimensions of monetary policy, and thus multiple simul-
taneous monetary policy shocks, εjt,δ, they must be recovered in some way from an n × 1

vector of abnormal returns, ηt,δ:
ηt,δ = Hεt,δ,

where εt,δ is typically n× 1 and H is invertible. If exclusion restrictions are available, such
that for each shock j there exists some asset i that responds only to shock j, or if only
one dimension of policy is active at one time (the approach implicit in Krishnamurthy and
Vissing-Jorgensen (2011)), then monetary policy shocks can still be read as simple asset
price changes for each announcement. However, those are strong assumptions, particularly
during the ZLB period. Following GSS, it is more common to attempt to recover εt,δ by
pooling information across announcements to estimate moments of ηt,δ, which can then be
used to identify the decomposition, H. In particular, the econometrician works with

ηd = Hεd, d = 1, . . . , D, (2)
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where ηd is the return ηt,δ on announcement date d and similarly εd ≡ εt,δ for day d. While
second moments of (2) can now be estimated and used for identification, they provide only
(n2 + n) /2 identifying equations in n2 unknowns, so further assumptions are still required
(typically exclusion restrictions, as in GSS; Swanson (2021); RSW; Campbell et al. (2012);
Nakamura and Steinsson (2018)).

However, the problem posed by (2) already makes a strong assumption: H must be con-
stant from one announcement to the next. Implicitly, the nature of the shocks, εd, must
not change – otherwise there is little reason to assume constant relative effects, H, on ηd.
Indeed, during the Great Recession, the character of shocks did change from one announce-
ment to the next. Forward guidance evolved from vague to calendar-based to conditional,
and the composition of asset purchases varied between mortgage-backed securities (MBS)
and Treasuries, as well as in the maturities targeted. Moreover, even if the nature of the
shocks were fixed, Faust et al. (2007) argue that the linear relationship between news shocks
and asset prices in (2) almost certainly changes from one announcement to the next. They
explain that the coefficients in H represent a weighted average of the changes in expectations
of all relevant state variables in response to εd, where the weights are the derivative of asset
prices ηd with respect to each state variable. H will be constant if and only if both the
relationship between (market expectations of) all state variables and all shocks is linear and
asset prices are a linear function of all state variables. Thus, even if the mapping between
shocks and asset prices is constant, H will be time-varying in the face of non-linearities in
state variables and expectations. Not only does fixing H embed strong assumptions on the
nature of shocks and linearity, it also precludes potentially interesting questions of how the
effects of monetary policy shocks varied from one announcement to the next. Whether the
assumption of constant H impacts results is worth investigating.

I address these concerns with a novel methodology. Rather than only examining a single
change in asset prices (from t − δ to t) on each announcement date, I consider the path
of asset prices following an announcement to represent responses to a stream of monetary
policy news. Such news may either be new information revealed by the Federal Reserve
(in the FOMC statement or during a press conference), a delayed interpretation of existing
information (unpacking the implications of a change in forward guidance may take time),
or an innovation to the interpretation of previous news (perhaps in light of the response
of other agents). This re-framing of the problem provides an intraday timeseries for each
announcement that may be used to estimate moments and identify an announcement-specific
decomposition. In particular, for announcement d, I propose to study the model

ηm = Hdεm, m = 1, . . . ,M, (3)
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where ηm are high-frequency returns from (m− 1) /M to m/M over the period running
from 10 minutes prior to the announcement until market close, which I normalize to length
1. Hd is the announcement-specific relationship between asset prices and shocks. Using a
window extending to market close accounts for additional news or revision of initial reactions
during or following press conferences. Combined with a credible identification scheme, the
model (3) can recover a mapping between asset prices and monetary policy shocks unique
to any announcement, d. This insight is not limited to the study of monetary policy; the
methodology can be adapted to study any type of news shocks using suitable financial data.

The sample length in (3) is fixed: it runs from 10 minutes prior to the announcement until
market close. This makes a large−T asymptotic framework ill-suited. Rather, a continuous
time model for ε and an infill asymptotic framework are more appropriate given the use of
high-frequency financial data (see, e.g., Barndorff-Nielsen and Shephard (2002); Andersen
et al. (2003)). I adopt a simplified multivariate version of the standard continuous time
model of Barndorff-Nielsen and Shephard (2002) for t ∈ [0, 1], with instantaneous returns,
η (t), given by

dP (t) = η (t) = Hdε (t) , (4)

and instantaneous structural shocks ε (t) following the stochastic differential equation

ε (t) = diag (σ (t)) dW (t) , (5)

where σ (t) is the instantaneous (spot) volatility and W (t) is an n dimensional standard
Brownian motion. In this setting, structural shocks εm are defined on a 1/M−spaced grid,

εm = ε∗ (m/M)− ε∗ ((m− 1) /M) ,m = 1, . . .M, (6)

where

ε∗ (t) =

∫ t

0

ε (u) du =

∫ t

0

diag (σ (u)) dW (u) .

It follows that
εm | σ2

m ∼ N
(
0, diag

(
σ2
m

))
,

where

σ2
m = σ2∗ (m/M)− σ2∗ ((m− 1) /M) and σ2∗ (t) =

∫ t

0

σ2 (u) du.

This model does not explicitly incorporate jump behavior in asset prices (although σ (t) is
unspecified), but, as discussed below, I work with innovations to the common component of
asset prices, which I find do not generally exhibit jumps, even if the raw prices do.
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While the idea of studying the high-frequency mapping Hd is novel, there is a close
relationship between Hd and its event-study counterpart. In particular, let H inf

d be the
announcement-specific parameter infeasibly identified from hypothetical repeated samples of

ηd = H inf
d εd,

for a single day, d, using some valid identification scheme. Proposition 1 relates Hd to H inf
d :

Proposition 1. Under the model described by (4) and (5), H inf
d , infeasibly identified from

repeated samples of ηd, is identical to Hd.

This result shows that under the continuous time model described above, the announcement-
specific high-frequency response matrix, Hd, is equivalent to the desired, but infeasibly-
identified, event-study parameter for a given day. However, Hd can be feasibly recovered.

2.2 Identification via time-varying volatility

I have argued that Hd can in principle be identified from intraday data, but it remains to
propose a suitable identification scheme to do so. The same intuition and arguments used
for the conventional SVAR setting can still be applied, simply making reference to the infill
analogs of large−T moments. Indeed, given that actual observations remain discrete (and
evenly spaced), in practice unmodified estimators can be applied to the intraday observations,
just as they would be in traditional data (see Supplement B).

It is unappealing to impose assumptions on Hd (exclusion or sign restrictions) since Hd

is the object of interest and because it is hard to argue that some asset prices systematically
respond more slowly to forward guidance, asset purchase, or Fed information shocks, for
example. The Swanson (2021) narrative approach to distinguish forward guidance and asset
purchase shocks, based on the absence of asset purchase shocks prior to 2009, is not applicable
after 2009 given all shocks come from a single announcement day.

These factors lead me to consider statistical identification, in particular identification
based on time-varying volatility. Figure 1 demonstrates strong volatility patterns for an
example announcement date. Identification via heteroskedasticity has proven popular for
identifying asset price responses to news and policy shocks, as proposed by Rigobon (2003),
and implemented by Rigobon and Sack (2003), Rigobon and Sack (2004), and Gürkaynak
et al. (2020), for example. Previous approaches exploiting heteroskedasticity for identifica-
tion have largely relied on externally-specified variance regimes or highly specific functional
forms for the volatility process that facilitate identification (e.g., GARCH). Lewis (2021)
provides an entirely non-parametric identification argument based on time-varying volatility
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in a large−T framework, generalizing existing results. I reframe the argument below for the
infill framework, sketching intuition in a simple case and stating the general identification
result; further details can be found in Lewis (2021).

An important distinction given the infill context is that identification is a property of
population moments. In an infill setting, the analog to infinite sample size is an arbitrarily
fine 1/M grid of observations, converging to the continuous time process, η (m/M). Thus,
identification conditions apply to the underlying continuous time processes, although obser-
vations are discrete. In Supplement B, I show that simple sample averages of squared returns
can be consistent for these identifying moments of the underlying continuous time processes.

I henceforth suppress the d subscript on Hd for compactness, since each day’s data forms
a unique dataset. Assumption 1 imposes standard assumptions on H and σ2 (t).

Assumption 1. For t ∈ [0, 1],

1. H is fixed, full-rank, and has a unit diagonal,

2. σ2 (t) is an n×1 stationary stochastic process, has almost surely locally square integrable
sample paths, and is independent of W (t), with E

[
σ2 (t)σ2 (t)′

]
<∞.

The first assumption is standard in models of the form (2) or (4). σ2 (t) is required to
be independent of the structural shocks (common in continuous time settings, even those
accommodating ARCH effects, e.g., Brockwell et al. (2006)) and to have finite moments.
The model (5) already imposes orthogonality and a martingale difference sequence (MDS)
property for the structural shock processes and finite moments of the driving process, W (t).
As discussed in Lewis (2021), stationarity is not required for identification, but I impose it
here since it simplifies the derivation of limiting moments of ηm in terms of the underlying
continuous time process σ2 (t). These assumptions imply that εm is also vector of orthogonal
MDSs (with respect to σ2

m and information through (m− 1) /M) with conditional variances
σ2
m and finite fourth moments, satisfying the requirements in Lewis (2021).
Lewis (2021) argues that the autocovariance of squared innovations, ηm, can be used to

identify H. To build intuition, consider a simple case where n = 2, and the variance of the
first shock, σ2

1 (t), is constant, σ2
1 (t) ≡ σ2

1. Let H12 be the parameter of interest. Note that
taking the outer product of reduced-form innovations, ηm, yields

η1mη2m = H21ε
2
1m +H12ε

2
2m + ε1mε2m +H12H21ε1mε2m

η2
2m = H2

21ε
2
1m + 2H21ε1mε2m + ε22m.

It is clear that H12 could be identified from the ratio of the H12ε
2
2m and ε22m terms, but only

the values of ηm are observed, and not their separate components. However, a lagged value
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of η2
2m can be used as an instrument for ε22m. In particular, using the orthogonality and zero

serial correlation of shocks and the fact that σ2
1 is constant (so has zero autocovariance),

cov
(
η1mη2m, η

2
2(m−pM)

)
= H12cov

(
ε22m, ε

2
2(m−pM)

)
, cov

(
η2

2m, η
2
2(m−pM)

)
= cov

(
ε22m, ε

2
2(m−pM)

)
.

The lag is specified as pM so that the time distance between observations m and m − pM
remains fixed as M →∞. As shown in Supplement B.1, limM→∞M

2cov
(
ε22m, ε

2
2(m−pM)

)
=

cov (σ2
2 (t) , σ2

2 (t− p)). Then, H12 is identified as

limM→∞M
2cov

(
η1mη2m, η

2
2(m−pM)

)
limM→∞M2cov

(
η2

2m, η
2
2(m−pM)

) =
H12cov (σ2

2 (t) , σ2
2 (t− p))

cov (σ2
2 (t) , σ2

2 (t− p))
= H12.

This is an instrumental variables approach, where the dependent variable is η1mη2m, the
endogenous regressor is η2

2m, and the instrument is η2
2(m−pM). Provided that the time-varying

volatility σ2
2 (t) is persistent (cov (σ2

2 (t) , σ2
2 (t− p)) 6= 0 for some lag p), identification holds.

Of course, this example is simplified to recover H12 in closed-form. However, the intuition
extends to the general model described in Assumption 1. Define ζm = vech (ηmη

′
m), unique

elements of the outer product of innovations. Theorem 1 states the identification result.

Theorem 1. H is uniquely determined (up to column order) from limM→∞ME [ζm] and
limM→∞M

2cov
(
ζm, ζ

′
m−pM

)
, if at least n − 1 shocks display time-varying volatility with

non-zero autocovariance, provided that for no two shocks i, j, cov
(
σ2
i (t) , σ2 (t− p)′

)
=

cov
(
σ2
j (t) , σ2 (t− p)′

) E[σ2
i (t)]

E[σ2
j (t)]

.

Theorem 1 follows from Corollary 2 in Lewis (2021) and infill limits derived in Supple-
ment B.1. The condition that n − 1 shocks must exhibit heteroskedasticity mirrors that
for all other approaches based on heteroskedasticity, and indeed arguments based on higher
moments in general. The final proportionality assumption is a rank condition guarantee-
ing the autocovariances provide linearly independent information. Lewis (2021) details a
Cragg-Donald rank test for these identification conditions; testability has proven challenging
for previous heteroskedasticity-based arguments. Identification holds up to column order –
permutations of the columns of H are observationally equivalent. However, assigning labels
to the structural shocks pins down a column permutation. It is also important to distinguish
these results from simply computing principal components of ηm. Principal components
satisfy second-moment equations that provide only enough information for uniqueness up
to arbitrary orthogonal rotations, but the identification argument above recovers the unique
decomposition of ηm that additionally respects the dynamic properties of the shock variances.
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In the context of unconventional monetary policy shocks, the identification condition can
be motivated economically. It makes sense that shock variances are heteroskedastic: volatility
should increase around an announcement, as the FOMC statement is first published. This is a
“first reading” of basic details – a change to the Fed Funds target rate, or a new round of asset
purchases. However, this volatility likely dissipates, as less new information is available to
be incorporated into asset prices. Nevertheless, volatility likely remains elevated, as markets
continue to process the implications of details and wording of the FOMC statement, or in the
presence of a press conference. Thus, it is natural that the volatilities of each monetary policy
shock have some persistence. One way that the rank condition is satisfied is if each shock’s
own volatility is a stronger predictor of its future volatility than is the current volatility of
other shocks. This makes sense, since a large amount of news in one dimension (prompting
high volatility shocks) likely means a prolonged period of volatility in that shock, as markets
continue to unpack the relevant information (or as questions in a press conference focus on
a particular aspect of policy). On the other hand, the presence of much new information
for markets to process about forward guidance does not necessarily imply there is so much
to learn about asset purchases. If a shock’s own volatility matters more for predicting its
future values, then the autocovariance structure will be full-rank.

The identification argument, as presented in Lewis (2021), is entirely non-parametric;
although I illustrate it here in the standard context of a Gaussian driving process, σ2 (t)

is left unspecified. While this non-parametric character justifies non-parametric estima-
tors, it also frees the econometrician to choose from almost arbitrary parametric volatility
models, including many incompatible with previous approaches to identification based on
heteroskedasticity. Among these are state space models, and in particular stochastic volatil-
ity models, which have proven very popular for modeling financial returns (see e.g., Shephard
(1996) for an early review). However, prior to the argument in Lewis (2021), it had not been
proven that such models could be used to exploit the identifying information offered by
heteroskedasticity. Moreover, in a simulation study, Lewis (2021) finds that an estimator
based on a first-order autoregressive (AR(1)) SV model performs best out of a wide range of
non-parametric and previously-proposed parametric estimators based on heteroskedasticity,
proving robust to misspecification of the volatility process. For these reasons, and given
the long history of the model in modeling asset prices, I adopt the AR(1) SV estimator to
implement identification based on time-varying volatility in the present paper.
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2.3 Empirical model

The previous sections make a case for identifying announcement-specific decompositions of
asset prices into monetary policy shocks, and for using time-varying volatility to identify
such decompositions. I now lay out the specific empirical model I adopt for each intraday
dataset and highlight the important features of my approach.

Identifying intraday shocks

I use a panel of 20 asset prices. Minute-by-minute data, Ym, consist of the first 6 months
of Fed Funds futures contract rates, the first 8 quarters of Eurodollar (ED) contract rates,
3-month, 6-month, 2-year, 5-year, and 10-year Treasury yields, and the log of the S&P 500,
very similar to the dataset considered by Swanson (2021).2 My first step to minimize the role
of microstructure noise is to take as my observations the bid-ask midpoints for each price;
doing so eliminates bid-ask “bounce”, which Aït-Sahalia and Yu (2009) find is possibly the
most important component of such noise. I take first differences, ∆Ym, standardize to ∆Ỹm,
and then estimate the first four principal components, Fm, of the data from 10 minutes prior
to the announcement to 4:01pm, immediately following market close,

∆Ỹm = ΛFm + um, m = 1, . . . ,M.3

I recover the first four components to span up to four possible dimensions of monetary
policy shocks. Working with the first few principal components of the individual asset prices
further reduces the threat of microstructure noise. Several sources of microstructure noise,
like bid-ask bounce and discreteness of possible price changes, are inherently idiosyncratic
and need not be correlated across observed prices. Other sources, like differences in trade
sizes or informational content of price changes, as well as strategic aspects of the order
flow, could simultaneously impact related interest rates. However, even if there is some
common component to microstructure noise, results in Aït-Sahalia and Yu (2009) suggest
that, at least for liquid assets, like those in my panel, microstructure noise is considerably
smaller than fundamental volatility, which would make it unlikely to appear in the first few
principal components. Relative to focusing on a small number of representative interest

2While Swanson (2021) does not include all maturities in the panel to estimate his factors due to high
mechanical correlation for technical reasons, the correlations across contract rates and yields are much weaker
at minute-frequency, as opposed to Swanson’s 30-minute windows, so the role of mechanical correlation
appears lower. However, the value of a large panel is higher when noise is larger, as in minute-frequency
data. I include the S&P 500 in my estimation panel to help identify Fed information shocks.

3Following Nakamura and Steinsson (2018), for announcements included in the GSS sample, I use the
announcement times from their data Appendix. For later announcements, I use the timestamp of the first
headline appearing on Bloomberg’s news archive.
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rates, working with principal components also decreases the likelihood of mischaracterizing
the overall movement of Treasury yields when various maturities move in opposite directions
following announcements. Fm forms the data for subsequent analysis.

For each announcement of the 199 scheduled and unscheduled announcement dates in my
sample, I build my empirical model recursively, starting from n = 4 principal components,
until I find a model for which n shocks may be identified by time varying volatility:4

1. Set n = 4.

2. Estimate a VAR for the first n principal components to remove any residual predictabil-
ity from the series (since εm must be a MDS), using the Hannan-Quinn information
criterion to select L:

Fm = b+
L∑
l=1

BlFm−l + ηm. (7)

3. Test whether the condition for identification by time-varying volatility is satisfied for
the residuals, η̂m, using the test proposed in Lewis (2021). In particular, I test whether

rank
(
E
[
ζ̂mζ̂

′
m−1

])
= n,

where ζ̂m = vech (η̂mη̂
′
m), which indicates that the autocovariance process of σ2

m is full
rank, satisfying the condition in Theorem 1.

4. If the test is satisfied, proceed to step 5; otherwise, return to 2, replacing n with n− 1.

5. Set ks = n, the number of identifiable shocks. Implement the AR(1) SV estimator
developed in Lewis (2021) to estimate H and the ks intraday shocks, εm, from the
VAR in the first ks principal components.

Figure 7 in the Supplement summarizes the lag lengths and the explained variation (R2) for
the reduced-form VARs in the principal components, step 2. The median lag length is 2, and
ample unpredictable variation remains in the innovations. The parametric form of the esti-
mator adopted in Step 5 has been found to fit financial data well (see e.g., Shephard (1996),
Kim et al. (1998)). While asset prices may exhibit jumps around FOMC announcements,
calling into question whether this model is appropriate, I find that the principal components
of asset prices, Fm, exhibit much smoother behaviour than the raw prices, and the innova-
tions ηt I ultimately work with are smoother still. Simulations in Lewis (2021) find the AR(1)

4Note that while there are 202 announcements between 1996 and 2009, there are three announcement
dates relatively early in the sample, July 1 1998, April 18 2001, and August 21 2001, for which raw data
available from Eikon DataScope Select is missing. I have no choice but to drop these announcements from
my sample.
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SV estimator to be robust to misspecification of the volatility process. While the procedure
to estimate the shocks is more computationally intensive than a typical identification scheme
based on a single pooled sample of data, nearly all computation time is spent estimating the
state-space model in step 5 across a grid of start values, which can be trivially parallelized.5

Labelling and measuring the monetary policy shocks

The next step is to determine the number of monetary policy shocks active on a given
day, kmp. I assume that kmp equals the dimension of the common component, the number
of principal components driving the panel of asset prices jointly, as opposed to capturing
idiosyncratic noise. I estimate the dimension of the common component, kmp, using the
BIC2 information criterion of Bai and Ng (2002).6 Prior to December 2008, when asset
purchases were first mentioned in an FOMC statement, I consider candidate values 1 ≤
kmp ≤ 3, and from December 2008 onwards I consider 1 ≤ kmp ≤ 4. I estimate the model
dimension, ks, separately from the dimension of monetary policy, kmp, to first ensure the
dimension of the volatility process is actually adequate to identify the required number of
monetary policy shocks and second to potentially further reduce the role of (microstructure)
noise. In particular, ks ≥ kmp ensures that shocks to all dimensions of monetary policy
can indeed be identified (since ex ante innovations to the common component could be
purely homoskedastic) and allows the possibility that additional non-monetary policy shocks
also enter the innovations to the principal components, ηm (even those to the first kmp
components). Thus, I determine ks, the number of shocks identifiable via time-varying
volatility, and estimate a model including that number of shocks to allow me to potentially
discard some of the variation in the innovations ηm as noise. In other words, estimating a
model of weakly larger dimension than kmp is a check on any possible non-invertibility arising
from additional, non-monetary policy noise entering the equations for ηm. The shocks that
are least compatible with the theoretical economic properties of monetary policy shocks are
the ones discarded, using the labeling criterion described below. For all announcements, I find
that there are weakly more identifiable shocks than monetary policy shocks, ks ≥ kmp; Figure
8 in the Supplement plots the values of both over time. Figure 9 in the Supplement reports
forecast error variance decompositions (FEVDs), showing that noise shocks may explain
considerable variation in ηm, illustrating the importance of accounting for such potential
noise.

5After parallelization of start values (across 48 Intel(R) Xeon(R) Gold 6146 CPUs), decompositions can
be estimated for all 199 announcements in about 2 hours and 15 minutes using Matlab 2020a.

6I also considered the remaining 5 information criteria of Bai and Ng (2002). The BIC2 is the only
information criterion to choose interior solutions.
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To measure the shocks and their effects at conventional frequencies (windows), I use
historical decompositions of Ym with respect to each of the ks shocks to aggregate the intraday
shocks. I adapt the historical decompositions, as described in Supplement C, to account for
the deterministic drift introduced by standardizing ∆Ym to ∆Ỹm prior to taking principal
components. Doing so allows the counterfactual paths to actually track the trajectory of
Ym.7

I label the shocks based on these historical decompositions. I label kmp of the ks identi-
fied shocks using a quantitative labeling criterion, which I describe in detail in Supplement
D. For each possible combination of shocks and labels, I evaluate the criterion, and se-
lect the shock-label configuration most consistent with economic theory. This is the most
economically-driven feature of the identification approach, and the separation of forward
guidance and asset purchase shocks in particular hinges on these assumptions. The eco-
nomic basis of my identification approach is as follows. Prior to December 2008, when an
FOMC statement mentioned asset purchases for the first time, there is no asset purchase
shock. I designate as Fed Funds shocks those that shift at least the first two Fed Funds fu-
tures contracts; even if such a shock also moves longer yields, priority is given to labeling it
as a Fed Funds shock. I designate as forward guidance shocks those that shift at least the 6-
through 8-quarter ED rates, (proxying for interest rate expectations near the 2-year horizon
at which explicit forward guidance was generally targeted), while moving the S&P 500 in
the opposite direction, characteristic of an “Odyssean” guidance shock. From December 2008
onwards, I label as asset purchase shocks those that shift at least one of the 5- and 10-year
Treasury yields, while moving the S&P 500 in the opposite direction. The fact that I can
flexibly characterize asset purchases in this way is an advantage of my approach; allowing
asset purchase shocks to potentially move Treasury yields of different maturities to differing
degrees or directions reflects the targeted nature of many such announcements. Finally, Fed
information shocks are those that move the S&P 500 and interest rates in the same direction,
as in Jarociński and Karadi (2020). The quantitative criterion approach described in Sup-
plement D helps operationalize these intuitive characterizations of the shocks and determine
labels when multiple shocks match the features of a single label, or vice versa.

While it is true that the differentiation between forward guidance shocks and asset pur-
chase shocks is a partition of the yield curve, this is also true of RSW, for example. Moreover,
I label the forward guidance shock not by its impact on shorter Treasury yields, but on Eu-
rodollar rates around the 2-year horizon to focus specifically on expectations of short rates

7When reporting responses and decompositions of asset prices, I scale them for interpretability. For the
front Fed Funds future, I use the factor described by GSS to account for days remaining in the contract
month. For Treasury yields, I scale by the ratio of the constant-maturity Treasury yield at close to the value
of the intraday timeseries at close to maintain comparability of maturities across announcements.
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at the horizon at which most explicit forward guidance has been focused, as opposed to av-
erage expectations of future interest rates over the next two years. I additionally exploit the
fact that asset purchase shocks may have non-uniform effects on the yield curve as a further
distinguishing feature (while forward guidance should shift most rates/yields) and relative to
RSW I allow asset purchase shocks to impact medium-term expected rates, consistent with
the signaling channel (see, e.g., Krishnamurthy and Vissing-Jorgensen (2011)). Nevertheless,
at no point does my labeling approach preclude that forward guidance shocks may impact
the entire yield curve; however, to be designated as forward guidance, a shock must explain
movements in Eurodollar rates around the 2-year maturity at least as well as it does longer
Treasury yields. In further defense of this labeling approach, and in particular the separation
of forward guidance and asset purchases, Figure 9 in the Supplement reports the averages
across announcements of high-frequency FEVDs for the portion of asset prices explained by
the principal components, with the results validating the labeling: forward guidance shocks
explain considerable variation for both the 8-quarter ED rate and long Treasury yields, while
asset purchases explain relatively little variation in the 8-quarter ED rate. Section 3.2 shows
that the labeling of shocks matches the narrative record for key events very well. Addition-
ally, regressing the end-of-day decompositions of the 8-quarter ED rate on the asset purchase
shock series (following the exercise in Table 2 below) shows the effect is only significant at
the 10% level (consistent with the signaling channel); for comparison, the p−value for the
Fed information shock is 0.001, and the p−values for the effects of forward guidance shocks
on Treasury yields are smaller still. Figure 3 shows that the time series paths of the shock
series is qualitatively similar to those of both RSW and Swanson (2021). Moreover, Fig-
ure 15 in the Supplement shows that the impulse responses of various Treasury yields to
my forward guidance and asset purchase shocks are very similar to those for the RSW and
Swanson (2021) shocks. Finally, the local projections in Section 4.3 shows that the effects of
my shocks on macroeconomic aggregates are quite similar to those of the Swanson shocks.

3 Announcement-specific decompositions

In this section, I present announcement-specific results. I summarize high frequency rela-
tionships between shocks and asset prices; even at such frequencies, the results are credible.
I describe in detail the lessons historical decompositions illustrate for 12 key announcement
dates and how those conclusions extend to the full set of 199 announcement dates. Finally,
I outline heterogeneity in the relative impacts of the asset purchase shock across announce-
ments, affirming the importance of announcement-specific decompositions. Throughout this
section, I focus on the responses of 5 representative asset prices. In particular, I study
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the response of the front Fed Funds future rate, the 8-quarter ED rate, the 5- and 10-year
Treasury rates, and S&P 500 returns.

3.1 High frequency relationships

I first summarize (across announcements) the contemporaneous response of asset prices, Ym,
to monetary policy shocks εm, at minute-by-minute frequency. Such high-frequency responses
are not of macroeconomic interest in their own right, but the results I obtain largely align
with economic theory, and thus bolster the credibility of the following analysis. I measure
the contemporaneous responses to shock j as D (σ∆Y ) Λ1:ksHj, where Hj is the column of H
corresponding to the shock labeled as j (Fed Funds, etc.) and D (σ∆Y ) is the diagonal matrix
with σ∆Y , the standard deviation of ∆Ym, on the diagonal. For interpretability, I normalize
responses by the percentage point change in the front Fed Funds future rate for the Fed
Funds shock, the 8-quarter ED rate for the forward guidance shock, the 10-year Treasury
yield for the asset purchase shock, and the S&P 500 for the Fed information shock. Table 1
reports the median response to each shock across all 199 announcements. The results show
that, on average, even at such high frequency, a positive Fed Funds shock raises medium-
term expectations of short rates (8-quarter ED) and medium to long Treasury yields, and
lowers the S&P 500, in line with theory. A positive forward guidance shock has on average
zero effect on expectations of the current Fed Funds rate, strongly raises Treasury yields,
and lowers the S&P 500, as predicted for “Odyssean” guidance. A positive asset purchase
shock has no effect on current Fed Funds expectations, raises medium-term expectations of
short rates (the signaling channel) and Treasury yields, and lowers the S&P 500. Finally, a
Fed information shock has no effect on current Fed Funds expectations, but raises medium-
term expectations of short rates and Treasury yields with the S&P 500, as theory predicts.
While these characteristics may be imposed on historical decompositions for the purpose of
labeling the shocks, they are never required of the intraday shocks themselves. The scale
of some effects may appear large, particularly for the S&P 500; however, the magnitude of
the average high-frequency elasticity is not comparable to that of conventional event-study
regression results (e.g., Kuttner (2001); Gürkaynak et al. (2005); Swanson (2021)).8 Table 2
presents the relevant results for such comparisons.

8Despite the results of Proposition 1, the aggregation and averaging underlying Table 1 is not analogous
to inter-announcement regression analysis.
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Table 1: Contemporaneous responses of asset prices to high-frequency shocks

FF FG AP FI

FF1 1.00 0.00 0.00 0.00
ED8 0.10 1.00 0.68 1.08
T5 0.02 0.93 0.98 0.91
T10 0.04 0.71 1.00 0.76
SPX -9.60 -34.59 -29.93 1.00

Each column reports the median across 199 announcements of D (σY ) Λ1:ks
Hj , where Hj is the column

of H corresponding to the shock (if any) labeled as j (Fed Funds, etc.). Responses are normalized by
the percentage point change in the front Fed Funds future rate for the Fed Funds shock, the 8-quarter
Eurodollar rate for forward guidance, the 10-year Treasury yield for asset purchases, and the S&P 500 for
Fed information.

3.2 Historical decompositions

Major unconventional policy announcements during the Great Recession

I now present historical decompositions for 12 key monetary policy announcements during
the Great Recession. These announcements match those detailed in Table 1 of Swanson
(2021), with the addition of December 2008, when rates hit the ZLB for the first time,
and details of asset purchases were provided, and March 2015, which contained explicit
guidance about the timing of lift-off from the ZLB. Table 4 in Supplement E.2 details the
content of these announcements. A unique feature of my approach is that I can meaningfully
compare the decomposition of asset price movements into monetary policy shocks across
these announcement dates. In all comparable methodologies, the relationship is fixed over
time. For each date, I plot the decompositions of asset prices with respect to monetary
policy shocks in Figure 2. A blue line denotes the Fed Funds shock, red forward guidance,
gold asset purchases, and purple Fed information. For reference, I plot the observed path of
the relevant asset price with a dashed line. Decompositions begin 10 minutes prior to the
announcement; I indicate the timing of the announcement and 20 minutes following, the end
of the conventional 30-minute event study window, with dashed lines. Frequentist inference
on historical decompositions is not possible, since it would require inference on individual
realizations of structural shocks, which are random variables, not parameters. Instead, I
present a measure of “economic significance”, based on the average (across announcement
dates) standard deviation of the relevant interest rate in the hours following monetary policy
announcements. The shaded interval corresponds to 1.96 such standard deviations.

The December 2008 announcement brought the Fed Funds rate to the ZLB for the first
time. Accordingly, Figure 2 shows the Fed Funds shock significantly lowered all interest
rates. The guidance implicit about future rates also had significant effects on the 8-quarter
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ED rate. The purchases of agency debt announced (with the suggestion of Treasury purchases
to follow) had an insignificant impact on Treasury yields, but did raise S&P 500 returns.
This decomposition suggests that the finding in Krishnamurthy and Vissing-Jorgensen (2011)
that this QE1 announcement (containing little new information) had large effects on Treasury
yields may be due to their event-study not accounting for the effects of the Fed Funds shock.
The March 2009 announcement is one of the most notable of the sample, strengthening
forward guidance and detailing purchases of mortgage-backed securities (MBS), long-term
Treasuries, and agency debt (QE1). Accordingly, the forward guidance shock significantly
lowered all longer rates, the asset purchase shock significantly lowered Treasury yields, and
both significantly boosted the S&P 500. The November 2010 announcement introducing
further purchases of longer-term Treasuries, QE2, failed to register a significant effect on
any variable. However, this announcement illustrates the need for announcement-specific
decompositions. 5-year and 10-year Treasury yields moved in opposite directions throughout
the afternoon, so any decomposition of those rates treating the dominant shock as QE2 must
allow the asset purchase shock to have opposite signed effects on those variables. However,
after most asset purchase shocks, those yields move in the same direction. The disparity
is likely due to the different securities targeted by the announcements (see e.g., Anderson
and Englander (2010) for market reaction to the QE2 announcement). These facts cannot
be reconciled with a single, constant decomposition of asset prices into underlying shocks.
Consequently, both RSW and Swanson (2021) record the QE2 shock as contractionary.

August 2011 introduced calendar-based guidance, and accordingly the forward guidance
shock had significant effects on the 8-quarter ED rate, the 5-year Treasury yield, and the S&P
500. The following meeting in September 2011 announced “Operation Twist”, selling shorter-
term Treasuries to buy longer-term Treasuries; the asset purchase shock significantly lowered
the 10-year Treasury yield, while not significantly changing shorter rates. This dichotomy
presents another example of how a single decomposition cannot characterize the relationship
between interest rates and asset purchase shocks for all announcements. Calendar-based
guidance was extended in January 2012, but this did not significantly impact interest rates.

September 2012 again extended calendar-based guidance, as well as MBS purchases, but
the single shock registered on this day is actually a Fed information shock, since rates in-
creased for much of the afternoon along with the S&P 500. Indeed, the September statement
paints a more positive picture of the economy than at the preceding meeting. The December
2012 announcement introduced conditional forward guidance and extended Treasury pur-
chases. Again, however, neither of these shocks appears; instead, a Fed information shock
raised both rates and the S&P 500, significantly so for the 10-year Treasury. September
2013, following the “Taper Tantrum”, announced that the Fed would wait longer still to ta-
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per asset purchases, with the asset purchase shock accordingly lowering interest rates. The
announcement also appears to have included an expansionary forward guidance shock.

The December 2013 announcement began the tapering of asset purchases, as widely ex-
pected, resulting in no asset purchase shock. However, a modification to conditional guidance
does seem to have raised the S&P 500. December 2014 introduced language of “patience” with
respect to forward guidance, which had only insignificant effects on markets. Finally, March
2015 provided explicit guidance delaying lift-off from the ZLB, and accordingly sparked a
significant reduction in all rates and an increase in the S&P 500.
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Figure 2: Historical decompositions of key FOMC announcements

Historical decompositions for the rate series indicated in the left margin with respect to each of the four
shocks, in percentage points. Blue represents the Fed Funds shock, red the forward guidance shock, gold the
asset purchase shock, and purple the Fed information shock. The shaded interval corresponds to 1.96 times
the average standard deviation in the asset price following monetary policy announcements. The vertical
lines mark the time of the announcement and 20 minutes following the announcement. The black dashed
line is the path of the simple change from ten minutes prior to the announcement.
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Figure 2b: Historical decompositions of key FOMC announcements (cont’d)

See Figure 2 for notes.

While the bar for significance of these movements in interest rates is admittedly sub-
jective, I characterize the announcements that appear significant based on the measure I
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adopt. For forward guidance shocks, I focus on the response of 8-quarter ED rates, and for
asset purchases I consider both 5- and 10-year Treasury yields. The major forward guidance
announcement in March 2009, (“extended period”), the launch of calendar-based guidance
in August 2011, and the final March 2015 announcement of an additional FOMC cycle at
the ZLB pass the bar. On the asset purchase side, the QE1 announcement of March 2009,
Operation Twist in September 2011, and the September 2013 decision to delay tapering led
to significant decreases in long-term rates.

For forward guidance, this suggests that the revision of calendar-based guidance, once in-
troduced, did not convey significant new information that markets did not already anticipate
in 2012, nor did the switch to conditional guidance change this relationship. Rather, the
introduction of explicit forward guidance, and its extension beyond the point where markets
expected rates to “lift-off” are two episodes that stand out. The latter accords with the
finding of Akkaya et al. (2015) that the potency of forward guidance grows as the distance
of the shadow rate from zero shrinks. With respect to the limited effects of changes in for-
ward guidance, Coenen et al. (2017) (in a cross-country study) find that differential effects
of different types of forward guidance disappear after omitting observations confounded by
simultaneous asset purchase policies.

For asset purchases, the interest rates affected vary across announcements as the nature of
announcements changes. The full-scale launch of the policy, its continuation (when markets
expected tapering), as well as announcements signaling a change in the focus of purchases,
are among the most impactful moves by the FOMC.

These results also illuminate heterogeneity in the response of stocks to monetary policy
shocks. Some significant policy shocks do not significantly impact equities (e.g., September
2011 and September 2013 asset purchase shocks) while some shocks with no significant
impact on interest rates do significantly affect equity prices, like the December 2008 asset
purchase shock or January 2012 forward guidance shock. These latter examples suggest that
equity markets may be more sensitive than interest rates to largely priced-in or subtle policy
revisions, which is consistent with the finding of Kroencke et al. (2021) that an additional
“risk shift” shock is needed to explain variation in stock prices when using a standard time-
invariant GSS decomposition. This heterogeneity demonstrates a strength of announcement-
specific decompositions, as well as a downside of using interest rate movements alone (as in
RSW and Swanson (2021)) to study unconventional monetary policy shocks.

Cieslak and Schrimpf (2019) also analyze the minute-by-minute comovement of yields
and stocks over a wide window to characterize monetary policy announcements. They label
each announcement’s news as conventional policy, unconventional policy, information, or
risk premia based on sign restrictions similar to those I use for labeling. Their goal is to
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analyze variation in these intraday covariances, rather than construct measures of different
policy dimensions. The variation they find in covariances across policies is consistent with
my analysis: QE1, especially announcements including forward guidance, had the largest
monetary policy effects, with smaller movements around tapering and QE2 and QE3.

Bauer et al. (2021) study the effects of monetary policy uncertainty, and argue that
changes in uncertainty around monetary policy shocks can explain why some strongly impact
asset prices, while others do not. Lower uncertainty amplifies the effects of shocks. Among
the key dates discussed above, the announcements that I find to be associated with significant
shocks are precisely those that the authors associate with large falls in monetary policy
uncertainty. This suggests that their story of uncertainty explaining which shocks are most
impactful is consistent with my results.

The preceding analysis highlights how my methodology merges appealing features of
preceding papers into a single approach. In particular, Krishnamurthy and Vissing-Jorgensen
(2011) compare the effects of QE1 and QE2 announcement-by-announcement, but do so
under the implicit assumption of a single shock dimension, since they examine simple changes
in asset prices. Often, the change in an asset price used by such approaches is larger than
that caused by any one shock, due both to the presence of multiple contributing shocks and
the fact that the prices generally contain idiosyncratic noise not contained in the common
component of the data. On the other hand, Swanson (2021) allows for simultaneous guidance
and asset purchase shocks during the ZLB period, but assumes constant relationships from
one announcement to the next. My results allow for up to four dimensions of monetary
policy news, including Fed information shocks, and time-varying effects.

These results also illustrate the relative merit of focusing on end-of-day responses, similar
to RSW, relative to the conventional 30-minute window.9 Not all movements in asset prices
significant at the 30-minute window remain significant by market close. For example, the
initial effect of the December 2014 forward guidance shock is reversed by the end of the day.
It is unlikely that interest rate responses that do not even persist to the close of markets
are relevant when studying macroeconomic effects, since there is simply no time for them to
be transmitted to the broader economy. Allowing for developments outside the conventional
30-minute window is also essential to account for additional revelation or interpretation
during and following press conferences. Historically, considering wider windows (to the end
of the day) is considered risky, due to potential contamination by noise from other news
sources. However, this concern is mitigated under my approach, since, after taking the first
ks principal components of the underlying data to remove idiosyncratic noise, I also discard

9RSW consider a 2-hour window from 15 minutes prior to an announcement to 1 hour and 45 minutes
following. For a typical 2:00pm announcement, this 1:45-3:45 window is similar to my 1:50-4:01 window.
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one or more identified “noise shocks” for many dates where ks > kmp.

Properties of decompositions in the full sample

In general, the preceding conclusions, based on the 12 key announcement dates, are borne
out over the remaining 187 announcements considered. Table 5 in Supplement E.2 presents
summary statistics across all 199 announcements in my sample. First, computing simple
changes in reference interest rates to measure shocks (a simple event study approach) would
be misleading, since these changes are considerably larger, on average, than the decompo-
sitions allowing for multiple shocks and removing idiosyncratic noise. Second, they affirm
that the horizon at which the effects of the shocks are evaluated matters. On average,
the effects are weakly larger by the end of the day, although there is heterogeneity across
announcements.

Table 2 computes the average relative effects of the different policy measures (across all
199 announcements). I regress the end-of-day decomposition with respect to each shock on
the relevant end-of–day decomposition for a reference price: the front Fed Funds future rate
for Fed Funds, the 8-quarter ED rate for forward guidance, the average of 5- and 10-year
Treasury yields for asset purchases, and the S&P 500 for Fed information. As expected,
contractionary Fed funds shocks raise all yields, with the effect falling with maturity, and
lower the S&P 500. Forward guidance has the strongest impact on medium-term yields,
with asset purchases most strongly impacting long term yields. Both have a negative effect
on the S&P 500: about 5 and 11% respectively for shocks lowering reference rates by 1%.
The Fed information effect has a moderate impact on medium and long-term yields, with a
shock that raises the S&P 500 by 1% increasing longer yields by 3-5 basis points (bps). The
effects of monetary policy on stock prices are of the same order of magnitude, but somewhat
larger, than those often found in the literature (e.g., Kuttner (2001); Gürkaynak et al. (2005);
Swanson (2021)), likely because my methodology accounts for the Fed information effect.
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Table 2: Average relative end-of-day effects

3-m
Treasury

6-m
Treasury

2-y
Treasury

5-y
Treasury

10-y
Treasury

S&P 500

εFF 0.61∗ 0.52∗∗∗ 0.38 0.29 0.05 -5.35
εFG 0.07∗ 0.13∗∗ 0.58∗∗∗ 0.75∗∗∗ 0.52∗∗∗ -4.77∗∗∗

εAP 0.07∗ 0.10 0.32∗∗ 0.94∗∗∗ 1.06∗∗∗ -11.04∗∗

εFI 0.00 0.01∗ 0.05∗∗∗ 0.05∗∗∗ 0.03∗∗∗ 1
Regressions of the end-of-day decomposition with respect to a given shock on the decomposition of the
reference price with respect to the same shock. The reference rates are the 8-quarter ED for forward guidance,
the average of 5- and 10-year Treasury yields for asset purchases, and S&P 500 returns for Fed information.
Coefficients can be interpreted as the response in percentage points to an expansionary shock that changes
the reference price by 1%. The sample spans 199 announcements from 2007-2019. HAC standard errors are
calculated following Lazarus et al. (2018). Significant results are starred at the 10%, 5% and, 1% levels.

Evidence of time variation in asset price decompositions

These results also support time-varying relationships between asset prices and shocks, un-
dercutting the traditional assumption of a time-invariant decomposition. Figure 12 in Sup-
plement E.2 plots the end-of-day impact of the asset purchase shock on the 5-year Treasury
yield, normalized by the impact on the 10-year Treasury yield, across announcements. The
relative impact can move dramatically from one announcement to the next, even taking
opposite signs. The opposite signs are largely clustered between August 2009 and October
2012, during QE1 and QE2. These results demonstrate that the character of shocks is not
necessarily consistent from one announcement to the next, and neither is their effect, as
argued by Faust et al. (2007).

I conduct more formal tests of the stability of relative responses of key asset prices to
monetary policy. If the decomposition of asset price movements into monetary policy shocks
is constant, then the relative responses of asset prices to the same shock are constant. I con-
duct rolling-window regressions of the responses of pairs of asset prices to a given shock, and
compare the coefficients to those from the homogeneous full-sample regressions, computing
confidence intervals for each. Figure 13 in the Supplement plots the results. I find evidence
rejecting the stability of relative responses for certain shocks. In particular, there is strong
time variation in the relative impacts of the asset purchase shock, with greater responsiveness
(relative to the effect on the 10-year Treasury) from late 2015 onwards (roughly, once Oper-
ation Twist drops out of the sample). There is also evidence of forward guidance having an
increased impact on Treasury yields and equities during the ZLB period (although generally
not significant), and of interest rates being more sensitive to Fed information shocks during
the worst of the Great Recession from 2008-2013. These results indicate that the assumption
of a time invariant decomposition of asset price movements into monetary policy shocks may
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be tenuous, but the development of a more rigourous test is left for future work.

3.3 Robustness and placebo tests

In this section, I describe robustness of the results for key announcement dates to an al-
ternative identification approach and the results of a placebo test based on days containing
important macroeconomic news, but no monetary policy announcement.

Alternative identification of key announcement dates

The baseline empirical approach relies on identification via time-varying volatility, exploiting
the variation in the volatility of monetary policy shocks from one minute to the next. By
virtue of relying on this particularly high-frequency information, this methodology may be
susceptible to noise, despite modeling choices to mitigate it. Thus, I consider an alternative
form of identification via heteroskedasticity, based on the average variance of shocks across
regimes, not minute-by-minute variation, following Rigobon (2003). I define two variance
regimes, the conventional 30-minute event window around the announcement, which should
be of highest volatility, and the remainder of the afternoon, which should generally be of
lower volatility, even as markets continue to process monetary policy news. With this new
approach, I repeat the analysis of my baseline model. For ease of comparison, I take ks to
be the same as under the baseline; note, however, that this regime-based approach generally
offers less identifying variation (since it leaves variation within regimes on the table), and
the identification test of Lütkepohl et al. (2020) indicates fewer identifiable shocks. Thus,
the results may not be reliable as stand-alone findings, but can still serve to corroborate my
baseline.

Figure 10 in the Supplement plots the results for the 12 key announcement dates. While
there are some minor differences in the paths, the shocks found to be significant in the
baseline model have virtually the same profiles under this alternative identification scheme.
The one exception is the asset purchase shock associated with the delay of tapering, in
September 2013, which now barely misses significance. The December 2012 shock is also
interpreted as a forward guidance shock instead of a Fed information shock, but remains far
from significant, in any case. These results suggest high-frequency noise has minimal impact
on identification in the baseline model, since the key findings are essentially unchanged using
this alternative approach, which does not exploit high-frequency variation in shock variances.
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Placebo test

My identification approach serves to decode movements in asset prices into monetary policy
shocks on announcement days, but it is possible that the shocks it recovers are false positives,
possibly reflecting other sources of news or noise. To investigate this possibility, I conduct
placebo tests by estimating my baseline model on days with no monetary policy shocks. To
make this as stern a test as possible, I select the days with the 10 largest macroeconomic
release surprises for advance GDP and ADP employment during my sample, as measured by
Bloomberg consensus forecasts. Markets are known to follow these releases closely (e.g., Law
et al. (2019)). Thus, these are days with very large macroeconomic news shocks, but no mon-
etary policy shocks. I compute decompositions from 10 minutes prior until 2 hours following,
broadly aligned with the most common window for the monetary policy announcements.

Table 6 in Supplement E.2 reports the hypothetical end-of-day responses of the front
Fed Funds future to the so-called “Fed Funds” shock, the 8-quarter ED rate to the “forward
guidance” shock, the 10-year Treasury yield to the “asset purchase” shock, and the S&P 500
return to the “Fed information” shock. Notably, 8 of the 10 labeled shocks across the 10 days
are deemed to be Fed information shocks, the criterion for which is, after all, compatible with
macroeconomic news in general. None of the releases spark a shock passing the threshold
for economic significance used for monetary policy announcements. The responses to the 2
putative forward guidance shocks round to 0.0 bps. for the 8-quarter ED rate. Figure 11
in the Supplement plots the full historical decompositions for each of these placebo dates.
These results show that even the largest non-monetary macroeconomic surprises generally
do not generate shocks that masquerade as active dimensions of monetary policy, instead
appearing as information shocks. Those that are nevertheless labeled as monetary policy
shocks are of negligible size.

4 The effects of unconventional monetary policy

In the previous section, I computed announcement-specific measures of the response of asset
prices to monetary policy shocks. My methodology allowed me to consider each date sepa-
rately. I now conduct more standard analysis of the effects of monetary policy, merging the
responses into a timeseries of shocks. I first discuss the properties of the series, compared
to leading alternatives. Next, I estimate the effects of the shocks on an array of financial
variables. Finally, I estimate the responses of macroeconomic aggregates to my shocks.
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4.1 A new monetary policy shock series

While the preceding comparison of the decompositions for notable announcements yields
interesting results, many questions can only be answered using an inter-announcement time-
series of shocks. To measure the shocks on each day, I use the decomposition at market close
for a relevant reference price: the front Fed Funds future rate for Fed Funds, the 8-quarter
ED rate for forward guidance, the average of the 5- and 10-year Treasury yields for asset
purchases, and the S&P 500 return for Fed information. As explained above, this choice
of window helps to capture responses likely to have economic effects, and for most dates
is very close or equivalent to that of RSW and Cieslak and Schrimpf (2019). These values
form a timeseries of 199 announcement dates. Over this sample, I recover 60 Fed Funds, 109
forward guidance, 29 asset purchase, and 72 Fed information shocks.

Figure 3 plots the timeseries from 2007 until the end of the sample to focus on the
period of greatest interest for unconventional policy, annotated with important events. For
comparison, I plot the shock series of RSW and Swanson (2021). The behaviour of the new
shocks accords with a narrative account. There are large realizations for the Fed Funds
shock prior to the ZLB, and then minimal movement until just before lift-off in December
2015. Subsequent movements appear to have been well telegraphed. The largest forward
guidance and asset purchase shocks generally correspond to the most notable episodes. The
most prominent Fed Information shocks also align with key statements about the state of the
economy. Examining the full time series of information shock shows little variation before
2000 and from 2003-2007, consistent with Lunsford (2020), who finds “Delphic” effects during
2000-2003 period, but not from 2003-2006.
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Figure 3: Time-series of shock measures

Timeseries of the monetary policy shocks based on end-of-day historical decompositions of reference prices
(blue), Swanson (2021) monetary policy shocks (red), and RSW shocks (gold). Units are percentage points
of the reference series. Large fluctuations that correspond to notable announcements or statement features
are labeled.

Broadly speaking, the shock series are similar to those estimated by Swanson (2021) and
RSW. Figures 14 and 15 in the Supplement further explore the time series properties of the
shocks, characterizing their autocorrelation functions and their dynamic effects on various
Treasury yields, on which basis the measures all appear qualitatively similar. Considering
the narrative properties, for the Fed Funds shock, the Swanson and RSW series register some
rate cuts in 2007 and 2008 as larger shocks. For forward guidance, the Swanson and RSW
series notably allocate most of the first key announcement, in March 2009, to asset purchases
instead; Swanson records his largest guidance shock of this period (and third largest overall)
two meetings earlier, December 2008, which I find to be well-characterized as a Fed Funds
shock. One of his largest forward guidance shocks is associated with the announcement of a
1-quarter extension of QE1 (September 2009); there is no guidance shock on that date in my
series. RSW register large shocks in April, June, and September 2008 missing from both other
series; the latter appears to be one I identify as a Fed information shock. The series agree
on a substantial forward guidance shock with the introduction of calendar guidance (August
2011). However, my series does not register the others’ puzzling contractionary shock at
the next meeting, which was dominated by Operation Twist. This is likely a distortion due
to the fact that time-invariant decompositions cannot reconcile Treasury yields moving in
opposite directions for this asset purchase shock. The series agree on a contractionary shock
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with updated guidance following unemployment reaching 6.5% in March 2014, with similar
shocks at subsequent meetings. Finally, the “increase unlikely” shock in May 2015 appears
across series.

Turning to asset purchases, my series is zero by construction until December 2008, when
the first FOMC statement to mention asset purchases was issued. Because the other series
use a constant decomposition over time, they find non-zero shocks (some sizeable) during
this period. All three series agree that the March 2009 QE1 announcement was the most
significant. The November 2010 QE2 announcement registers as contractionary for both
Swanson and RSW, while expansionary for my shocks, as discussed in detail in the preceding
section. Operation Twist is also notable across series. Swanson and RSW pick up a large
contractionary “taper tantrum” shock in June 2013, puzzling since Bernanke’s testimony that
provoked the tantrum occurred on May 22nd. If anything, the June 19th announcement
should have provided final, expansionary confirmation of no taper. My series has no such
shock. Finally, the series agree on an expansionary shock with the announcement that there
would be no immediate taper in September 2013. While the series are largely similar, there
are several key differences for historically important episodes.

4.2 Daily responses of financial variables

I now use my shock series to estimate the effects of monetary policy on financial variables
not included in my intraday panel. Event study regressions take the form

∆rd = ν + ψεHFd + ud, d = 1, . . . , D, (8)

where d indexes announcement dates, ∆rd is the first difference in the asset price, and εHFd
is the vector of shocks described in Section 4.1, with HAC standard errors.

Table 3 reports the results for the full sample, with results for the ZLB period in Sup-
plement E.5. A contractionary Fed Funds shock has no significant effect on bond yields
and spreads, but does cause an appreciation of the dollar against the Yen. During the ZLB
sample, there are significant effects on yields and the TIPS spread, but these results must be
treated with caution given the extremely small sample of Fed Funds shocks during the pe-
riod. The forward guidance shock significantly raises yields and lowers spreads on corporate
debt and raises the VIX. The same is true during the ZLB subsample, with the TIPS spread
also falling and the dollar appreciating against the Yen. Turning to asset purchases, there
is a significant increase in corporate yields and a decrease in corporate spreads. In the ZLB
subsample, the effects are similar. The Fed information shock increases corporate yields and
lowers spreads and reduces the VIX. During the ZLB subsample, there is also an increase in
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Table 3: Financial market responses to monetary policy

AAA AAA Baa Baa TIPS JPY/ Euro/ VIX
yield spread yield spread spread USD USD

FF 0.06 0.14 0.01 0.08 -0.11 5.57∗∗ 0.74 -7.47
FG 0.42∗∗∗ -0.36∗∗∗ 0.40∗∗∗ -0.38∗∗∗ -0.19 -1.61 -0.40 61.08∗∗∗

AP 1.02∗∗∗ -1.35∗∗∗ 1.31∗∗∗ -1.06∗∗ -0.39 8.04 4.64 -60.31
FI 0.03 -0.03∗∗ 0.05∗∗ -0.02 0.02 -0.32∗ 0.04 -11.17∗∗∗

Coefficients are estimated following equation (8) . Coefficients can be interpreted as the response in percent-
age points to an expansionary shock that changes the reference price by 1%. The sample spans 1996-2019.
HAC standard errors are calculated following Lazarus et al. (2018). Significant results are starred at the
10%, 5% and, 1% levels.

the TIPS spread, and the effect on spreads becomes insignificant. While not reported in the
table for brevity, I also estimate the effects of the shocks on MBS option-adjusted spreads.
In general, the coefficients for the spreads are insignificant, suggesting that the underlying
MBS rates rise with Treasury yields (discussed above).

These results largely accord with the existing literature. Swanson (2021) similarly finds
limited effects of Fed Funds shocks on corporate bonds, with significant effects on exchange
rates. He further observes that (contractionary shocks to) asset purchases significantly raise
corporate yields and lower spreads. Additionally, he estimates a negative effect of (con-
tractionary) forward guidance on corporate spreads; however, he recovers an insignificant
relationship between forward guidance and corporate yields, in contrast to my result. This
response of corporate yields to forward guidance matches results for the “path factor” in
Campbell et al. (2012); that of yields to asset purchases aligns with Krishnamurthy and
Vissing-Jorgensen (2011). The finding that the response of corporate spreads to asset pur-
chases is positive at longer horizons matches the evidence for conventional policy in Gertler
and Karadi (2015). Finally, the finding that forward guidance causes the dollar to appreciate
in the ZLB sample is consistent with Swanson (2021) and Rogers et al. (2018). Examining
further subsamples, I also observe support for the finding of Paul (2020) that the effect of
Fed Funds shocks on stock prices fell in the years preceding the Great Recession. Finally, the
finding that contractionary shocks to forward guidance raise the VIX uncertainty measure
mirrors results in Coenen et al. (2017).

4.3 Low-frequency effects on the macroeconomy

While financial series are available at high frequency, the macroeconomic aggregates of ulti-
mate importance to central banks are only available at lower frequencies. As a result, little
previous work has examined the real effects of unconventional policy shocks in a unified
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manner. Indeed, neither Swanson (2021) nor RSW examine the response of non-financial
variables. In this section, I compute the dynamic responses of key macroeconomic variables
to unconventional policy shocks.

I focus my analysis on PCE inflation, unemployment, and industrial production growth.
To this point, relatively little work has assessed these impacts, with Baumeister and Benati
(2013), Gambacorta et al. (2014), Lloyd (2018), and Inoue and Rossi (2020) being notable
exceptions. However, as discussed in the introduction, none of these papers has separated
and simultaneously identified interpretable forward guidance and asset purchase shocks.

I aggregate my announcement-frequency shock measures to a monthly timeseries, yielding
288 observations, indexed by r. For a dependent variable, x, I compute impulse response
functions using local projections of the form

xr+h − xr−1 = αh + πh0 ε
HF
r +

3∑
l=1

πhl ε
HF
r−l +

3∑
s=1

κh∆Xr−s + uhr , h = 0, 1, . . . , 12, (9)

controlling for the previous quarter’s values of monetary policy shocks and monthly macroe-
conomic aggregates in ∆Xr−s (inflation, changes in unemployment, industrial production
growth, and S&P 500 returns).10,11 I consider two sample periods: the full sample, 1996-
2019, and a Great Recession (and recovery) sample, 2008-2017.12 The parameter of interest
is the vector πh0 , the effects of month r shocks at r+ h. I estimate horizons up to two years,
and compute HAC standard errors. I assume constant parameters (e.g., πh0 ), as does virtu-
ally the entire extant literature; doing so is necessary due the exercise and sample length.
However, my shocks, εHFr , were recovered without imposing similar assumptions.

10I estimate “reduced form” projections as opposed to LP-IV for two reasons. First, IV is generally
preferred to a reduced-form regression to achieve an appropriate scaling of the coefficient(s) and address
measurement error. However, the process of constructing my shocks already achieves both of these goals,
since the shock series measures the impact of the raw minute-by-minute shocks on the asset prices of interest
that would form the endogenous regressors. The computation of historical decompositions from the intraday
shocks plays the role of a first-stage regression, scaling the shock measures to the relevant asset prices and
computing “predicted values”, without imposing constant first-stage parameters. Moreover, the effects of a
set of several policies, like those I wish to estimate, cannot be simultaneously estimated from a single IV
regression without additional assumptions, since the instrumented values in the second stage will be linear
combinations of all four shocks, see recent discussions in Mertens and Ravn (2013), Mertens and Montiel Olea
(2018), and Arias et al. (2021). While the shock series of RSW and Swanson do not have the same pre-scaled
“predicted value” interpretation as mine, IV implementations using those series would still need to confront
this challenge, meaning they could not be directly compared to my estimates.

11I include the S&P 500 as a control since it has been shown that high-frequency measures of monetary
policy shocks are typically not unconditionally orthogonal to lagged information (see., e.g., Barakchian and
Crowe (2013); Ramey (2016); Cieslak (2018); Miranda-Agrippino and Ricco (2021)), and S&P 500 returns
are a parsimonious proxy for market expectations of future economic outcomes.

12The effective full sample starts in April 1996 (due to lags) and both effective samples end in February
2017 (for the longest horizon) in order to omit pandemic data.
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Figure 4 plots the dynamic responses of inflation, unemployment, and industrial produc-
tion to a one standard deviation contractionary impulse to each shock, with 68% and 90%
confidence intervals. For the full sample period, all shocks have essentially the expected
effects on each variable. The Fed Funds shock does not have a significant effect on inflation,
with a delayed decline, consistent with the price puzzle, but significantly increases unem-
ployment (up to 17 bp) and decreases industrial production (IP, up to -94 bp). The forward
guidance shock significantly decreases inflation and IP and raises unemployment within the
first year, with effects peaking at -4, -33, and 6 bps, respectively. The asset purchase shock
has little effect on inflation, but significantly and persistently increases unemployment and
decreases industrial production, 10 and -26 bps, respectively. The Fed information shock (sig-
naling positive news) is associated with higher inflation, lower unemployment, and higher IP
(significant except for unemployment), particularly at longer horizons, peaking at -5, 8, and
-75 bps, respectively, mirroring findings in Jarociński and Karadi (2020). These results sug-
gest that, in general, conventional policy has larger effects than unconventional policy, while
the Fed information shock contains relevant information about the path of the economy.

Turning to the the Great Recession sample, the Fed Funds shock still has significant
effects, reducing inflation and IP by up to 6 and 95 bps, respectively, and increasing un-
employment by up to 20 bps. These strong responses are the result of a small number of
substantial shocks either side of the ZLB, so must be treated with caution. Turning to
forward guidance, the results are attenuated relative to the full sample. There are at best
marginally significant effects on inflation and unemployment peaking at -3 and 12 bps, and
essentially no effect on IP. The story is different for the asset purchase shock, which was not
active outside of this subsample. There are highly significant effects on all three variables,
peaking at -5, 19, and -70 bps, respectively. There is greater uncertainty around the effects
of the Fed Information shock. The increase in inflation after a year is no longer significant,
while there is now a significant decrease during the first year. Effects peak at -5, -9, and 53
bps, respectively. The reduced efficacy of forward guidance does not appear to stem from
a dearth of shocks or a limited sample, since Figure 3 displays far more notable guidance
shocks than asset purchase shocks during this period. The comparatively greater efficacy of
asset purchases during this period is supported by recent theoretical work: Sims and Wu
(2021) find that asset purchases are considerably more effective than forward guidance, while
Hagedorn et al. (2019) find the effects of forward guidance to be negligible.

34





in the front Fed Funds future rate, the 4-quarter ED rate, and 10-year Treasury yield to re-
cover Fed Funds, forward guidance, and asset purchase shocks, respectively. The top panels
of Figure 5 plot responses to these shocks, with the black dash-dot line my baseline responses;
each sample ends in 2015, dictated by the availability of the shock series. The results for
the Fed Funds shock and forward guidance are very different. During normal times, a con-
tractionary Fed Funds shock increases inflation and decreases unemployment and negligibly
effects IP. During the Great Recession, the effects are slightly more standard, with cuts in
inflation and IP at short horizons, although unemployment still puzzlingly falls. In the full
sample, forward guidance has little effect on inflation, but does raise unemployment and re-
duce IP. However, during the Great Recession, it puzzlingly appears to have a small positive
effect on inflation and a small negative effect on unemployment – the opposite of what theory
predicts. On the other hand, the effects of the RSW asset purchase shock are more similar
to those using my shocks, with even larger effects during the full sample and comparable
effects during the Great Recession. As discussed previously, the time series properties of the
RSW shocks are comparable to those of my baseline series. The fact that the RSW series
ends in 2015 plays little role, since the results using my shock series are largely unchanged
when the same sample is used. However, the RSW impulse responses are quite similar to
those for my alternative shock series identified assuming no information effect, Figure 17
in the Supplement, where I also find paradoxically-signed effects of the Fed Funds shock in
particular. This comparison suggests that allowing for an information effect may be impor-
tant in recovering true "Odyssean" monetary policy shocks. Additionally, Krishnamurthy
and Vissing-Jorgensen (2011) highlight the signaling channel through which asset purchases
impact expectations of future short rates, but this identification approach assumes that all
movements in such expectations (orthogonal to the Fed Funds shock) are forward guidance.
Since asset purchases appear more expansionary, while forward guidance appears contrac-
tionary, these results suggest that doing so may allocate some variation in rates associated
with worsening conditions to forward guidance, instead of to asset purchases.

I next consider the Swanson (2021) shocks, bottom panels of Figure 5. Broadly speaking,
the results are much more similar to my baseline results in the full sample. In the full
sample, the signs are the same, except that there is a significant price puzzle for the Fed
Funds shock, and its impact on unemployment is considerably smaller. The responses of
unemployment and IP to forward guidance are more persistent. The effects of asset purchases
are considerably larger, -4, 16, and -79 bps, respectively. During the Great Recession, the
effects of the Fed Funds shock are more muted and less precisely estimated than for my shock
series. The effects of forward guidance are very similar to my baseline, but less precisely
estimated, rendering them insignificant. Finally, the effects of asset purchases are quite close
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results are fairly robust to dropping key LSAP dates. This is consistent with my finding
that forward guidance is in general effective, but less so during the Great Recession.

Finally, Gertler and Karadi (2015) find suggestive evidence that forward guidance serves
to amplify shocks to the current policy rate. They do so by comparing responses using the
front Fed Funds future as an instrument for the Fed Funds rate to their baseline, which
uses three-month ahead futures to instrument for the 1-year Treasury yield. However, their
sample runs from 1991-2012, so is dominated by observations outside of the ZLB. Thus,
their evidence that forward guidance can offer additional stimulus may be compatible with
my finding that it had only a modest impact during the Great Recession. Indeed, since
they argue that forward guidance may be effective by augmenting policy rate shocks, the
discrepancy accords with the fact that the Fed Funds rate was at the ZLB, so policy rate
shocks were not forthcoming.

Previous work has additionally examined the effect of unconventional policy shocks on
the expectations of professional forecasters (e.g., Campbell et al. (2012); Nakamura and
Steinsson (2018)); the expectations channel is theoretically important to the transmission
of unconventional monetary policy (see e.g., Eggertsson and Woodford (2003); McKay et al.
(2016)). A companion paper, Lewis et al. (2019), conducts similar analysis, focused instead
on consumer sentiment. My results also offer some early evidence of whether the effects that
Campbell et al. (2012) and Nakamura and Steinsson (2018) find for Fed information shocks
on forecasts extends to real activity. I find that the Fed information shock has a significant
positive effect on industrial production, an insignificant but pronounced negative effect on
unemployment, and a positive and significant effect on inflation at longer horizons in the full
sample.

5 Conclusion

I use intraday data on asset prices to recover high frequency timeseries of monetary policy
shocks on announcement days using announcement-specific decompositions. This flexible
approach to identifying the effects of news shocks could be adapted to many other contexts,
including macroeconomic releases or corporate news. I identify the decompositions based
on time-varying volatility. I recover four dimensions of monetary policy shocks: Fed Funds,
forward guidance, asset purchase, and Fed information. Because I am able to identify differ-
ent decompositions for each announcement, I can compare the effects of shocks directly from
one announcement to the next. Focusing on the Great Recession period, I find that a small
handful of notable FOMC announcements of unconventional measures sparked significant
monetary policy shocks. In particular, the leading announcements are the strengthening of
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forward guidance (March 2009), the introduction of calendar-based guidance (August 2011),
forward guidance prolonging the ZLB (March 2015), the dramatic expansion of QE1 (March
2009), Operation Twist (September 2011), and the decision to delay tapering (September
2013). The fact that these announcements are dominated by the launch of new policies
or unexpected extension of existing policies indicates that the utilization of these tools, as
opposed to more subtle adjustments of policies or statement language, is what matters to
markets. I also find that conclusions based on simple event-studies or standard 30-minute
changes in asset prices may be unreliable, on some days overstating effects, and on some
days understating them.

Contractionary forward guidance and asset purchase shocks raise corporate yields, lower
spreads, and raise uncertainty, while forward guidance also raised the TIPS spread and
appreciated the dollar against the Yen during the ZLB period. Fed information shocks raise
yields and lower uncertainty. Most importantly, I find substantial macroeconomic effects.
In the full sample, inflation, unemployment, and industrial production display significant
dynamic responses to Fed Funds, forward guidance, and asset purchase shocks, but during
the Great Recession, the effects of asset purchases are much more pronounced than those
of forward guidance. I obtain similar results using the Swanson (2021) shocks, supporting
the robustness of these findings. However, using the simpler RSW measures leads to very
different impulse responses with puzzling signs. Taken together, these results offer novel
evidence on the macroeconomic effects of the Federal Reserve’s unconventional monetary
policy, stratified by policy dimension, while controlling for information effects. They suggest
that both forward guidance and asset purchase policies have been effective with regard to
a number of macroeconomic outcomes, with the latter proving more effective during the
Great Recession. I additionally offer novel support for the Fed information effect, finding it
is crucial to explaining the movement of stock returns on announcement days and ensuring
that macroeconomic responses represent “Odyssean” effects.
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A Proof of Proposition 1

Proposition 1. Under the model described by (4) and (5), H inf
d , infeasibly identified from

repeated samples of ηd, is identical to Hd.

Proof. By definition, it follows that

Pt − Pt−δ =

∫ t

0

η (s) ds−
∫ t−δ

0

η (s) ds = Hd

∫ t

t−δ
ε (s) ds = Hdεd.

Any valid identification scheme for H inf
d based on moments of ηd

(
= H inf

d εd

)
(computed

from infeasible repeated samples) must necessarily recover a unique linear mapping between
ηd and εd; since Hd provides such a mapping, it must be that H inf

d = Hd.
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B Identification results in continuous time

In this section, I derive population moments for returns under the model (4) and (5) as
limits of discrete moments, following an infill argument. I then show that simple sample
averages of discrete returns converge almost surely to the same moments of the continuous
return process. Together, these results show that the moments used for identification (the
population continuous time moments) are consistently estimable by simple non-parametric
sample averages. To establish consistency, I additionally assume that σ2 (t) is ergodic.

B.1 Limiting moments of discrete returns

In a simple generalization from a univariate to multivariate model, it follows from Barndorff-
Nielsen and Shephard (2002) that

E [Mεmε
′
m] = M × E

[
D
(
σ2
m

)]
= M ×D (ξ) /M = D (ξ) ,

where ξ is the n× 1 unconditional mean of σ2 (t). It is immediate that E [Mηmη
′
m] = HξH ′.

Turning to the other moment used in the identification argument,

cov
(
σ2
m, σ

2
m−pM

)
= Ω

1/2
D ♦R

∗∗ (pM × 1/M) Ω
1/2
D

where ΩD is a diagonal matrix containing the diagonal of Ω = var (σ2 (t)),

♦R∗∗ (p) = R∗∗ (p+ 1/M)− 2R∗∗ (p) +R∗∗ (p− 1/M) ,

and

R∗ (t) =

∫ t

0

R (u) du and R∗∗ (t) =

∫ t

0

R∗ (u) du,

where R (u) is the n × n autocorrelation function of σ2 (t). The use of lag pM ensures a
constant time distance, p, even as the distance between observations decreases in M . Using
a Taylor expansion of R∗∗ (s+ t) around s yields

R∗∗ (s+ t) = R∗∗ (s) +R∗ (s) t+
R (s)

2
t2 + o

(
t2
)
.
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Then

♦R∗∗ (p) =

(
R∗∗ (p) +R∗ (p)

1

M
+
R (p)

2

(
1

M

)2
)
− 2R∗∗ (p)

+

(
R∗∗ (p)−R (p)

1

M
+
R (p)

2

(
−1

M

)2
)

+ o

((
1

M

)2

+

(
−1

M

)2
)

=
R (p)

2

2

M2
+ o

(
1/M2

)
= R (p) /M2 + o

(
1/M2

)
.

Thus,
cov
(
σ2
m, σ

2
m−pM

)
= Ω

1/2
D R (0) Ω

1/2
D /M2 + o

(
1/M2

)
,

so

cov
(
Mσ2

m,Mσ2
m−pM

)
= Ω

1/2
D R (p) Ω

1/2
D + o (1) = cov

(
σ2 (t) , σ2 (t− p)′

)
+ o (1) ,

and
lim
M→∞

cov
(
Mσ2

m,Mσ2
m−pM

)
= cov

(
σ2 (t) , σ2 (t− p)′

)
.

Applying Proposition 1 from Lewis (2021), it is immediate that

lim
M→∞

cov
(
Mζm,Mζ ′m−pM

)
= L (H ⊗H)G

(
Ω

1/2
D R (p) Ω

1/2
D

)
G′ (H ⊗H)′ L′,

where ζm = vech (ηmη
′
m) and L and G are elimination and selection matrices of zeros and

ones.
A similar approach, instead taking an expansion around s = 0, shows that

lim
M→∞

var
(
Mσ2

m

)
= Ω.

B.2 Consistent estimation of continuous time moments

In this section, I show that simple (rescaled) sample averages of equally spaced returns
are consistent for the population moments used for identification, as in large−T settings.
In particular, it is not necessary to use a stratified approach, first estimating variances
using a local average, and then estimating moments of those estimated variances (as in e.g.,
Barndorff-Nielsen and Shephard (2002)).

A (rescaled) sample average of M 1/M−spaced squared returns converges almost surely
to HD (ξ)H ′, the mean of η (t) η (t)′. Since ηm = Hεm, and H is invertible, it suffices to
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show that a sample average of εmε′m converges almost surely to D (ξ). In particular,

1

M

M∑
m=1

Mεmε
′
m =

1

M

M∑
m=1

MD
(
E
[
σ2
m

])
+

1

M

M∑
m=1

M
(
εmε

′
m −D

(
E
[
σ2
m

]))
= D (ξ) +

1

M

M∑
m=1

M
(
εmε

′
m −D

(
E
[
σ2
m

]))
.

The summand in the final expression is mean-zero since it consists of a random variable minus
its unconditional expectation. The variance of Mεmε

′
m is finite as limM→∞ var (Mσ2

m) = Ω

and, conditional on σ2
m, εm is random normal with variance σ2

m. Since σ2 (t) is assumed to be
ergodic and increments of Brownian motion are independent, applying the ergodic theorem
(e.g., Karlin and Taylor (1975)) to the sample average shows that it converges almost surely
to 0. Thus,

1

M

M∑
m=1

Mεmε
′
m

a.s.→ D (ξ) + 0 = D (ξ) .

Therefore,
1

M

M∑
m=1

Mηmη
′
m

a.s.→ HD (ξ)H ′.

Next, noting that vec (ηmη
′
m) = vec (Hεmε

′
mH

′) = (H ⊗H) vec (εmε
′
m), I show that a

sample autocovariance of εmε′m converges almost surely to the autocovariance of σ2 (t) at
distance p, Ω

1/2
D R (p) Ω

1/2
D . Consider the (rescaled) pM sample autocovariance of vec (εmε

′
m),

1

M

M∑
m=pM+1

M2vec (εmε
′
m) vec

(
εm−pMε

′
m−pM

)′−( 1

M

M∑
m=1

Mvec (εmε
′
m)

)(
1

M

M∑
m=1

Mvec (εmε
′
m)

)′
.

The sample average in the second term converges almost surely to vec (diag (ξ)), so the
second term converges to Gξξ′G′. The first term can be decomposed as

1

M

M∑
m=pM+1

M2vec (εmε
′
m) vec

(
εm−pMε

′
m−pM

)′
=

1

M

M∑
m=pM+1

M2E
[
vec (εmε

′
m) vec

(
εm−pMε

′
m−pM

)′]
.

+
1

M

M∑
m=pM+1

M2
{
vec (εmε

′
m) vec

(
εm−pMε

′
m−pM

)′
−E

[
vec (εmε

′
m) vec

(
εm−pMε

′
m−pM

)′]}
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The first of these summands can be further decomposed as

M2E

[
vec (εmε

′
m) vec

(
εm−pMε

′

m−pM

)′]
= M2GE

[
σ2
mσ

2′

m−pM

]
G′ �

(
vec
(
E
[
zmz

′

m

])
vec
(
E
[
zm−pMz

′

m−pM

])′)
= M2GE

[
σ2
mσ

2′

m−pM

]
G′ �

(
vnv

′

n

)
= M2GE

[
σ2
mσ

2′

m−pM

]
G′

= Gcov
(
Mσ2

m,Mσ2′

m−pM

)
G′ +Gξξ′G′,

where zj is an n × 1 standard normal random variable and vn = vec (In). The second
summand is mean zero. It follows that it has finite variance since σ2 (t) is assumed to have
finite fourth moments and, conditional on σ2

m, εm is random normal with variance σ2
m.13

Using the ergodicity of σ2 (t) and the independence of increments of Brownian motion, the
second sample average converges to zero almost surely. Thus,

1

M

M∑
m=pM+1

M2vec (εmε
′
m) vec

(
εm−pMε

′
m−pM

)′
a.s.→ lim

M→∞
Gcov

(
Mσ2

m,Mσ2
m−pM

)
G′ +Gξξ′G′ + 0

= GΩ
1/2
D R (p) Ω

1/2
D G′ +Gξξ′G′.

Finally,

1

M

M∑
m=pM+1

M2vec (εmε
′
m) vec

(
εm−pMε

′
m−pM

)′ −( 1

M

M∑
m=1

Mvec (εmε
′
m)

)(
1

M

M∑
m=1

Mvec (εmε
′
m)

)′
a.s.→ GΩ

1/2
D R (p) Ω

1/2
D G′ +Gξξ′G′ −Gξξ′G′

= GΩ
1/2
D R (p) Ω

1/2
D G′.

This immediately implies that

1

M

M∑
m=pM+1

M2ζmζ
′
m−pM −

(
1

M

M∑
m=1

Mζm

)(
1

M

M∑
m=1

ζm

)′
a.s.→ L (H ⊗H)G

(
Ω

1/2
D R (p) Ω

1/2
D

)
G′ (H ⊗H)′ L′,

13In particular, taking fourth moments of the integral yielding σ2
m and recognizing that the entries of R (t)

are bounded by ±1 delivers the result.
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as required.

C Details on augmented historical decompositions

It is straightforward to compute historical decompositions of each asset price, Ym, to each
of the ks shocks, εj·. In particular, let the impulse response matrix of Fm to εm at horizon h
be φh. Then the historical decomposition of Fm with respect to εj· is

∑m
h=0 φhιjεm−h, where

ιj is the jth column of the ks × ks identity matrix, and the decomposition of the differenced
data ∆Ỹm is given by Λ

∑m
h=0 φhιjεm−h. Finally, rescaling by D (σ∆Y ), which diagonalizes

σ∆Y (the standard deviation of ∆Ym), and cumulating the decomposition gives the value for
the data in levels, Ym,

Ψjm =
m∑
s=1

D (σ∆Y ) Λ
s∑

h=0

φhιjεs−h. (10)

However, I work with a modified historical decomposition, Ψ̄jm, in order to obtain counter-
factual paths that actually sum to the trajectory of the data in levels, Ym.14 First differences
∆Ym are standardized to ∆Ỹm before computing principal components. While multipli-
cation by σ∆Y in (10) undoes the scaling, it is also necessary to undo the demeaning of
∆Ym. When summing across m to compute Ψjm, cumulating ∆Ỹm responses introduces a
mechanical −µm “wedge”, where µ is the mean of ∆Ym (which was subtracted to compute
∆Ỹm), between Ψjm and Ym. This wedge implies a mechanical drift towards zero, since∑M

m=1 ∆Ỹm = 0. Without adjustment, every historical decomposition would pass near zero
at M , regardless of the value of YM . I thus add a drift term into the decompositions so that,
in sum, they match the path of Ym. It is desirable that adding decompositions across shocks
j should sum to the movement in Ym explained by the first ks principal components and that
shocks on which Ym places zero weight (through Λ, H, or both) should have a decomposition
value of zero. Simply adding µm back in to all Ψ̄jm would violate both of these conditions.
Instead, I add a total of µm across all shocks j, adding wijmµm to each decomposition Ψijm,
where wijm =

∣∣Ψij(m−1)

∣∣ /∑ks
l=1

∣∣Ψil(m−1)

∣∣. This allocates a portion of the deterministic drift
at each 1-minute interval to each shock path commensurate with its role up to that point in
explaining the movement of Ym.

14More precisely, I refer to summing to the path of Ym explained by the first ks principal components,
since the exact path of a given variable, Yim, will not be traced out by the first ks ≤ 4 principal components
of Ym, regardless of what transformations are adopted prior to computation.
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D Details on shock labeling

Having estimated the ks identifiable shocks, it remains to label the kmp monetary policy
shocks. Recall that the dimensions ks and kp are estimated separately first to ensure that
there is in fact adequate heteroskedasticity to identify the monetary policy shocks and second
to account for the fact that innovations to the common component (the first kmp principal
components) may also include the influence of noise shocks (see main text for further dis-
cussion). I label kmp of the ks shocks based on the augmented historical decompositions
of the 20 data series with respect to the ks identifiable shocks. To overview the exercise,
suppose that ks = kmp = 4. There are 4 possible labels for each shock, leading to 4! = 24

possible labelings in total. Suppose instead that kmp = 3. There will still be 24 possible
labelings, since it remains to determine which label goes unused. In the case of ks = 2, there
are 12 possible labelings (no order is assigned to unused labels) and, for ks = 1, there are
only 4. Below I describe a quantitative criterion that will separately measure the “economic
reasonableness” of each candidate labeling and select the one most aligned with economic
theory. The criterion also determines which shocks are discarded when kmp < ks, and also
which labels go unused when kmp < 4, retaining the kmp shocks that best fit the economic
properties of monetary policy shocks, and the labels for which the most appropriate shocks
are found, respectively.

Let Aij = M−1
∑M

m=1 Ψijm be the integral of the path traced out by the historical de-
composition of series i with respect to shock j, and Āi = M−1

∑M
m=1 Yim the integral of the

observed path of series i. I measure the share of movement in series i explained by shock j
as

Θij = min
(
Aij/Āi, 1

)
,

bounded above at 1 (which is very rarely a binding condition). I also compute Sij, a measure
of the sign of the response of each series to each shock,

Sij = Sign (Ψij31 + ΨijM) ,

considering both the end of the conventional 30-minute event study window as well as the
market close. I apply a sequence of rules based on Θ and S to evaluated the economic
reasonableness of each shock-label pairing and ultimately label kmp of the ks shocks.

I define a 4× ks matrix-valued criterion function, C (S,Θ), taking values on (−∞, 1] for
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each candidate shock and label as follows. For the Fed Funds shock,

CFF,j (S·j,Θ·j) =


1 if ∀i 6= SPX,Θij > 2/3

1
2

∑
i∈{FF1,FF2}

Θij otherwise.

In the first case, if shock j explains over 2/3 of movements in all interest rate series, CFF,j
is set to the maximum possible value to virtually ensure labeling as the Fed Funds shock;
otherwise, CFF,j is the average of Θij over the two first Fed Funds futures contracts.

For the forward guidance shock,

CFG,j (S·j,Θ·j) =


1 if ∀i ∈ sR,Θij > 2/3

mini∈sED

(
1
[
S

ij
6= SSPXj

])
1
4

∑
i∈{sED,SPX}

Θij otherwise,

where sED = {ED6, ED7, ED8} denotes the set of longer Eurodollar (ED) rates and
sR = {sED, T5, T10}, adding longer Treasury yields. In the first case, if shock j explains
over 2/3 of movements of longer-term interest rates (as proxied by sR), CFG,j is set to the
maximum value. Otherwise, provided that interest rate expectations around the two-year
horizon (proxying for forward guidance) all move in the opposite direction to the S&P 500,
as expected for “Odyssean” guidance, CFG,j is the average of Θij across ED rates near the
two-year horizon and the S&P 500. If rates and the S&P 500 move in the same direction,
CFG,j is set to zero.

For the asset purchase shock, I allow for the fact that such policies may move Treasury
yields of different maturities in different directions. If both the 5- and 10-year Treasury move
in the same direction, sT = {T5, T10}. Otherwise, let sT be whichever has larger Θij. Then,

CAP,j (S·j,Θ·j) = max
i∈sT

(
1
[
S

ij
6= SSPXj

]) 1

|sT |+ 1

∑
i∈{sT ,SPX}

Θij,

which, provided that the Treasury yields in sT move in opposite directions to the S&P 500,
as expected for an asset purchase shock, takes the average of Θij over sT and the S&P 500,
and otherwise is equal to zero.

For the Fed information shock,

CFI,j (S·j,Θ·j) = min
i∈sR

(
1
[
S

ij
= SSPXj

]) 1

6

∑
i∈{sR,SPX}

Θij,

which, provided the S&P 500 and all long rates move in the same direction, as expected
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for a Fed information shock (see e.g., the identification approach of Jarociński and Karadi
(2020)), is equal to the average of Θij over all long rates and the S&P 500, and otherwise
equal to zero.

Having computed C (S,Θ), I search across all combinations of shock-label pairs for the
combination of kmp shocks and labels for which the sum of the corresponding elements of C
is maximized, under three additional restrictions. First, there are no asset purchase shocks
prior to December 2008, when such purchases were first mentioned in an FOMC statement.
Second, if the front Fed Funds future rate varies by less than a basis point and kmp < 4,
I restrict there to be no Fed Funds shock.15 Third, any selected label-shock pair must
correspond to a strictly positive value of C. In the rare case that this restriction is violated
(C does not contain kmp strictly positive entries in unique row-column pairs), I first label
as many shocks as possible without selecting combinations with weakly negative entries. I
then compute an alternative criterion for the remaining label-shock combinations identical
to that above except that it omits the indicator functions on the sign of rate and equity
movements, replacing ΘSPXj with zero when computing CFG,j and CAP,j (still effectively
penalizing for the fact that the movement of equities is in the wrong direction for those
shocks) and replaces Θij with zero for those interest rates moving in the opposite direction
to the S&P 500 when computing CFI,j (again penalizing for the fact that their movement
is in the wrong direction). I then label remaining shocks up to kmp using this modified
criterion.

E Additional empirical results

This section reports additional empirical results covering the reduced-form factor models,
announcement-specific decompositions, evidence of time-variation in the decompositions, the
timeseries properties of the monetary policy shock series the responses of financial variables
to the timeseries of shocks, and the Fed information effect.

E.1 Specification details of the reduced-form factor models

In this section, I report statistics on the specifications selected for the reduced form factor
models. The left panel of Figure 7 plots a histogram of the lag lengths selected in the
VAR models fitted to the factors to remove any remaining predictability, across the 199
datasets. Typically, the selected lags are relatively short, with a median of 2 and mean of

15If the announcement date is within 5 business days of the expiry of the front contract, I consider the
next month’s contract instead.
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Figure 7: Specification details from the factor VARs

The left panel displays the distribution of the lag lengths selected by the HQ information criterion in the
reduced-form VARs fitted to the factors across the 199 datasets considered. The right panel displays the
average R2 from the same VARs, with a simple average taken across the R2 for each individual factor. The
bottom panel plots the selected lag length over time.

2.52, reflecting low predictability of high-frequency asset price movements. However, there
are some days in the sample for which the selected lag length is considerably longer, reflecting
greater predictability. The second panel reports the average R2 in the reduced-form VARs
fitted to the sets of ks factors across the 199 datasets. The R2 is generally quite low, with
a median of 0.21 and mean 0.25, reflecting that the majority of variation in the factors is
in fact unpredictable, leaving rich information from which to recover the monetary policy
shocks. The bottom panel plots the selected lag length over time. The distribution of lag
lengths does not appear to have changed dramatically over the sample, with the exception
that the models with particularly long lag lengths seem to be concentrated at the beginning,
in the late 1990s.

Figure 8 plots the dimension of the estimated VAR in principal components and the
dimension of monetary policy across announcements. The former is ks, the number of iden-
tifiable shocks (up to four), based on a Cragg-Donald test for the information contained in
the time-varying volatility. The latter is determined by the dimension of the common com-
ponent of the asset prices, kmp, estimated using the BIC2 criterion of Bai and Ng (2002).
For all announcements, ks ≥ kmp, meaning all monetary policy shocks are identifiable. The
reason for then estimating models of size ks, and not just kmp, is to allow for the possibil-
ity that additional non-monetary policy shocks, for example microstructure noise, may be
driving the innovations to the principal components, ηm. If that is the case, but a model
of dimension kmp was assumed, the model would be non-invertible. In essence, this allows
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Figure 8: The dimension of estimated models and dimension of monetary policy

The blue line plots the dimension of the model (number of principal components entering the VAR) for each
announcement, which is determined by the number of identifiable shocks (with an upper bound of four), ks.
The red line plots the dimension of monetary policy, equal to the dimension of the common component, kmp.

one final check on the role of (microstructure) noise, by allowing some of the variation in ηm
to be discarded as not relevant to monetary policy. The number of total identifiable shocks
in the model is fairly stable over the sample, most often at 4, the maximum allowed. As a
consequence, the number of noise shocks is highest earlier in the sample, when the dimension
of monetary policy is lower.

Finally, I further illustrate the role of “noise shocks”, in comparison to the labelled mon-
etary policy shocks, in explaining variation in the principle components. In particular,
I compute forecast error variance decompositions (FEVDs) for the innovations in the ks-
dimensional principal component VAR (1-step ahead forecast errors). Since there is no
natural interpretation of one principal component versus another, I report FEVDs scaled to
various asset prices, using the loadings on the principal components. In other words, the
results reported can be viewed as FEVDs for the 1-step ahead forecast errors of the portion
of the asset prices explained by the first ks principal components. Note, however, that this
variation is not generally the same as that explained by the common component of the asset
prices, since in most cases ks is strictly greater than kmp, meaning that the ks principal
components contain some idiosyncratic variation. Figure 9 plots the results. For each asset
price, the first set of stacked bars represents the overall FEVD across all announcements.
The second set represents the FEVD for the subset of dates when the Fed Funds shock was
active, the third when the forward guidance shock was active, the fourth when the asset pur-
chase shock was active, and the fifth when the Fed information shock was active. The role
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of noise shocks is clear: across all asset prices and announcements, they explain about 55%
of variation in the forecast errors to the ks principal components at the minute by minute
frequency. While this number may seem high, as noted above, for most announcements
some of the principal components represent idiosyncratic noise, since ks ≥ km (accordingly,
the majority of variation in the first principal component, which is always part of the com-
mon component, remains explained by the monetary policy shocks). Moreover, the story
is quite different when considering the subsets of announcements for which shocks impact-
ing a particular asset price were active. For example, the variation in the front Fed Funds
future contract rate explained by noise shocks unsurprisingly declines from nearly 60% to
34% on days when a Fed Funds shock actually occurs, with the majority of the remaining
high-frequency variation explained by the high-frequency Fed Funds shocks. Elsewhere, on
days when forward guidance shocks occur, about 65% of variation in the 8-quarter ED rate
is explained by monetary policy shocks, and when asset purchase shocks occur, around 70%
of variation in each of the 8-quarter ED rate, 5-year Treasury yield, and 10-year Treasury
yield is explained by monetary policy shocks.

This analysis demonstrates three points. First, the role of noise shocks is non-trivial, such
that ignoring the possibility that not all of the variation in the first ks principal components
is driven by monetary policy shocks could prevent accurate identification of monetary policy
shocks (since related asset prices could be impacted by related sources of microstructure
noise). Second, these high-frequency FEVDs help to validate the labeling of the monetary
policy shocks, which is based on the aggregated shocks via historical decompositions, and
not the 1-step ahead forecast errors entering the FEVDs. In particular, each monetary policy
shock has the expected FEVD profile, with the Fed Funds shock driving short Fed Funds
futures, but also impacting all other asset prices; forward guidance driving the 8-quarter
ED rate, but also impacting long Treasury yields and the S&P 500; asset purchases driving
Treasury yields, when active, while having a small effect on the 8-quarter ED rate (consistent
with the signaling channel); and the Fed information shock contributing strongly to all prices
except for short Fed Funds futures. Finally, to the extent that the share attributed to noise
shocks is still considered to be high, these results suggest that my monetary policy shock
series may be seen as conservative, with shocks that do not have a strong enough effect across
the panel of asset prices discarded as noise.

E.2 Announcement-specific decompositions

In this section I report details of the key announcement dates considered in the text, provide
additional summary statistics for the decompositions across announcements, present sensi-
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Figure 9: Forecast error variance decompositions of the principal components

Each stacked bar represents a forecast error variance decomposition (FEVD) for the one-step ahead forecast
error of the ks principal components, scaled by the loadings of the various indicated asset prices. For each
asset price, the first set of stacked bars represents the overall FEVD across all announcements. The second
set represents the FEVD for the subset of dates when the Fed Funds shock was active, the third when the
forward guidance shock was active, the fourth when the asset purchase shock was active, and the fifth when
the Fed information shock was active.

tivity analysis of the decompositions for key announcement dates, and conduct a placebo
test of my identification approach.

Table 4 reports details of the content of the 12 key announcements covered in detail in
the text. It is largely copied from Swanson (2021), with 2 announcements added.

Table 5 reports summary statistics across the full set of 199 announcements. The first
panel reports results for the conventional 30-minute window and the second for 10 minutes
prior to an announcement through market close. The results document the fact that examin-
ing simple event-study style changes in relevant asset prices (δYi) would generally overstate
the size of shocks, relative to decompositions taking seriously the role of multiple shocks for
a single asset price, by conflating such shocks. These results also suggest that the scale of de-
compositions is generally weakly larger when the end-of-day window is considered. However,
this obscures considerable heterogeneity across announcements. The final columns of each
panel indicate the number of announcements passing thresholds of “economic significance”
(using standard deviations of the respective asset prices in the hours following monetary pol-
icy announcements instead of standard errors, given the difficulty of inference on historical
decompositions).

Figure 10 plots the historical decompositions for the 12 key announcement dates with
respect to intraday shocks identified using the Rigobon (2003) regime-based identification
approach. For ease of comparison, for each announcement I assume that the number of
identifiable shocks is the same as in the baseline; however, formal tests based on Lütkepohl
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et al. (2020) suggest that this may not be the case. Broadly speaking, the results are
very similar to the baseline. The main differences are that the asset purchase shock in
September 2013, when tapering was delayed, is no longer significant, and the December 2012
Fed information shock is relabeled as a forward guidance shock (the introduction of calendar
based guidance).

Figure 11 plots historical decompositions for 10 placebo dates. These dates are chosen
to correspond to the 10 largest macroeconomic surprises for advance GDP and ADP em-
ployment releases (measured using Bloomberg consensus forecasts) during the sample. This
poses a stern test, as these are certainly major news events, followed closely by markets,
so may impact interest rates and equities, but are not monetary policy shocks. One would
expect that shocks will exist on these days, but they should either be labeled as “Fed infor-
mation shocks”, which after all share the characteristics of macroeconomic news shocks more
broadly, or else be insignificant. This is indeed the case. Table 6 reports the hypothetical
end-of-day responses of the front Fed Funds future to the Fed Funds shock, the 8-quarter ED
rate to the forward guidance shock, the 10-year Treasury yield to the asset purchase shock,
and the S&P 500 return to the so-called Fed information shock. 8 of the 10 identified shocks
across the 10 days are labeled as Fed information shocks. No other shock has a non-trivial
effect on its reference price.

E.3 Time-variation in the decompositions

Figure 12 displays the relative end-of-day response of 5-year and 10-year Treasury yields to
the asset purchase shock. The 5-year response is normalized by the 10-year response, which
is fixed at 1. This plot shows that there is considerable variation in the relative responses,
including sign changes, commensurate with the different focuses of announcements from one
cycle to the next, often with different impacts on different points on the yield curve.

Figure 13 goes a step further to provide more formal support for the use of announcement
specific decompositions. It assesses the stability of the relative impacts of the monetary pol-
icy shocks at the end-of-day horizon. These end of day responses represent the object of
interest in a typical pooled-data event study methodology. Under the assumption of stable
relative impacts through time, the relative responses should be identical from one announce-
ment to the next. To test this hypothesis, I conduct rolling-window regressions of pairs of
responses to a given shock. If the relative impacts are constant over time, the rolling win-
dow regression coefficients should be fixed and identical to the homogeneous (full sample)
regression coefficients. I report the results of a set of such regressions in Figure 13, using
40-announcement rolling windows (approximately 5 years) along with 68% heteroskedastic-
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Table 4: Key FOMC announcements 2008-2015

December 2008 FOMC announces that it has cut the FFR to between 0 and 25 basis points (bp), will
purchase large quantities of agency debt and will evaluate purchasing long-term Treasuries

March 2009 FOMC announces it expects to keep the federal funds rate between 0 and 25 bp for “an
extended period”, and that it will purchase $750B of mortgage-backed securities, $300B of
longer-term Treasuries, and $100B of agency debt (a.k.a. “QE1”)

November 2010 FOMC announces it will purchase an additional $600B of longer-term Treasuries (a.k.a.
“QE2”)

August 2011 FOMC announces it expects to keep the federal funds rate between 0 and 25 bp “at least
through mid-2013”

September 2011 FOMC announces it will sell $400B of short-term Treasuries and use the proceeds to buy
$400B of long-term Treasuries (a.k.a. “Operation Twist”)

January 2012 FOMC announces it expects to keep the federal funds rate between 0 and 25 bp “at least
through late 2014”

September 2012 FOMC announces it expects to keep the federal funds rate between 0 and 25 bp “at least
through mid-2015”, and that it will purchase $40B of mortgage-backed securities per
month for the indefinite future

December 2012 FOMC announces it will purchase $45B of longer-term Treasuries per month for the
indefinite future, and that it expects to keep the federal funds rate between 0 and 25 bp at
least as long as the unemployment remains above 6.5 percent and inflation expectations
remain subdued

September 2013 FOMC announces that it will wait to taper asset purchases
December 2013 FOMC announces it will start to taper its purchases of longer-term Treasuries and

mortgage-backed securities to paces of $40B and $35B per month, respectively
December 2014 FOMC announces that “it can be patient in beginning to normalize the stance of monetary

policy”
March 2015 FOMC announces that “an increase in the target range for the federal funds rate remains

unlikely at the April FOMC meeting”

This table is replicated from Swanson (2021), with the addition of details on the December 2008 and Septem-
ber 2013 announcements.
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Table 5: Summary statistics for historical decompositions

30-minute window end-of-day window
mean
|δYi|

median
|δYi|

mean
de-

comp.

median
de-

comp.

1.96
s.d.

2.58
s.d.

mean
|δYi|

median
|δYi|

mean
de-

comp.

median
de-

comp.

1.96
s.d.

2.58
s.d.

FF1, FF 0.01 0.00 0.01 0.01 9 6 0.02 0.00 0.02 0.01 17 12
FF1, FG 0.00 0.00 1 1 0.00 0.00 3 1
FF1, AP 0.00 0.00 1 1 0.00 0.00 1 1
FF1, F I 0.00 0.00 0 0 0.00 0.00 0 0

ED8, FF 0.02 0.01 5 3 0.03 0.02 5 4
ED8, FG 0.04 0.03 0.04 0.02 25 14 0.06 0.04 0.04 0.02 29 18
ED8, AP 0.01 0.01 0 0 0.01 0.01 1 0
ED8, F I 0.02 0.01 6 0 0.02 0.01 10 5

T5, FF 0.02 0.01 6 2 0.02 0.01 5 4
T5, FG 0.03 0.02 21 15 0.03 0.02 26 18
T5, AP 0.04 0.02 0.01 0.00 1 0 0.05 0.04 0.02 0.01 3 1
T5, F I 0.01 0.01 5 3 0.02 0.01 9 6

T10, FF 0.01 0.01 4 3 0.02 0.01 7 5
T10, FG 0.02 0.01 19 9 0.02 0.01 17 11
T10, AP 0.03 0.02 0.01 0.00 3 2 0.43 0.03 0.02 0.01 4 3
T10, F I 0.01 0.01 5 3 0.01 0.01 7 4

SPX,FF 0.20 0.09 4 3 0.35 0.16 11 8
SPX,FG 0.19 0.11 5 4 0.29 0.14 13 8
SPX,AP 0.14 0.08 1 0 0.27 0.11 3 3
SPX,FI 0.37 0.24 0.11 0.05 0 0 0.75 0.47 0.21 0.11 6 3

Summary statistics for the historical decompositions of each rate with respect to the three shocks; the left
panel considers the decomposition based on shocks occurring between 10 minutes prior to the announcement
and 20 minutes following, and the bottom considers 10 minutes prior until 4:01pm. The units are percentage
points. The first two columns summarize the absolute values of the simple change in the asset price over the
window. The next two columns repeat the exercise for the absolute value of the historical decompositions.
The final two columns report the number of decompositions with respect to the given shock that exceed
multiples of the average standard deviation in the interest rate following monetary policy announcements.
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Figure 10: Historical decompositions of key FOMC announcements: regime approach

Historical decompositions for the rate series indicated in the left margin with respect to each of the four
shocks, identified using the Rigobon (2003) variance regimes approach. Blue represents the Fed Funds shock,
red the forward guidance shock, gold the asset purchase shock, and purple the Fed information shock. The
shaded interval corresponds to 1.96 times the average standard deviation in the asset price following monetary
policy announcements. The vertical lines mark the time of the announcement and 20 minutes following the
announcement, the end of the conventional analysis window. The black dashed line is the path of the simple
change from ten minutes prior to the announcement, the event study estimate. Units are percentage points.59



Figure 10b: Historical decompositions of key FOMC announcements: regime approach
(cont’d)

See Figure 10 for notes.
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Figure 11: Historical decompositions for placebo dates

Historical decompositions for the rate series indicated in the left margin with respect to each of the four shocks
for placebo dates corresponding to the hours following the 10 largest macroeconomic surprises for advance
GDP and ADP employment releases from 1996-2019 (as measured by Bloomberg consensus forecasts). Blue
represents shocks labeled as a Fed Funds shock, red a forward guidance shock, gold an asset purchase shock,
and purple a Fed information shock. The shaded interval corresponds to 1.96 times the average standard
deviation in the asset price following monetary policy announcements. The vertical lines mark the time of
the announcement and 20 minutes following the announcement, the end of the conventional analysis window.
The black dashed line is the path of the simple change from ten minutes prior to the announcement, the
event study estimate. Units are percentage points.
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Table 6: Responses of reference prices on placebo days

ADP

Emp.

1/7/2009

ADP

Emp.

1/5/2011

ADP

Emp.

1/3/2007

ADP

Emp.

6/5/2019

ADP

Emp.

5/6/2009

ADP

Emp.

6/1/2011

ADP

Emp.

1/5/2012

ADP

Emp.

12/5/2007

Adv.

GDP

1/27/2006

Adv.

GDP

1/30/2009

FF1, FF -- -- -- -- -- -- -- -- -- --

ED8, FG -- -- -- -- 0.00 -- -- -- 0.00 --

T10, AP -- -- -- -- -- -- -- -- -- --

SPX,FI -0.11 0.11 0.00 -0.01 -- -0.18 0.04 0.37 -- -0.13

End-of-day responses computed using historical decompositions following the baseline model for placebo
dates corresponding the 10 largest macroeconomic release surprises to advance GDP and ADP employment
(based on Bloomberg consensus forecasts) from 2007-2019.

ity robust confidence intervals for both rolling window and homogeneous coefficients. The
value for a given date corresponds to the coefficient based on the previous 40 observations,
inclusive. The first column of plots considers responses to the forward guidance shock, rel-
ative to that of the 8-quarter ED rate. In general, the responses do not deviate too far
from the homogeneous coefficients. However, there is evidence of stronger relative effects
on both Treasury yields and the S&P 500 during the early 2000s and an increase in the
responsiveness of Treasury yields during the ZLB period (although these changes are gen-
erally not statistically significant). There is more considerable time variation in the effects
of asset purchases, reported in the second column relative to the response of the 10-year
Treasury yield. The relative responses of both the 8-quarter ED rate and 5-year Treasury
yield rise steadily over the course of the sample, and the 68% confidence intervals do not
overlap with that of the homogeneous coefficients after late 2016. This break coincides with
the pre-Operation Twist period dropping out of the rolling windows. While less dramatic,
the relative impact on the S&P 500 also increases over the same period. The third column
considers the impact of information shocks, relative to the response of the S&P 500. The
effects of the Fed information shock appear to be more volatile. Impacts are large on the
8-quarter ED and 5-year Treasury in the early 2000s. The responsiveness of all three asset
prices rises following the onset of the Great Recession, before falling from 2013 through
2015 and rising again subsequently. This is consistent with markets paying greater attention
to any indication about the state of the economy contained in FOMC statements during
the height Great Recession. At various points, the confidence intervals do not overlap with
those of the homogenous coefficients. These preliminary tests provide some evidence of time
variation in the relative impacts of monetary policy shocks on various asset prices, and thus
call into question the standard assumption of a single time-invariant decomposition of asset
prices movements into monetary policy shocks.
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Figure 12: Variation in the effects of the asset purchase shock

The end-of-day impact of the asset purchase shock on the 5-year Treasury yield is normalized by its impact
on the 10-year Treasury yield, which is fixed at one.

Additionally, policy discussions have speculated whether the effects of asset purchases
may have decreased over time. To explore this possibility, I compute an R2−type measure of
the share of variation explained by asset purchase shocks based on the historical decompo-
sitions. In particular, I take the historical decomposition of the 10-year Treasury yield with
respect to the asset purchase shock as the predicted value, compute the error relative to the
actual path of yields, and use these errors and actual values to compute an R2. Conditional
on the sample of dates for which asset purchase shocks actually occurred, the R2 is 0.41. For
the December 2008-2013 subsample , the value is 0.42, and for 2014-2019, the value is 0.25.
Thus, there is evidence that asset purchases have indeed become less effective over time,
although the number of observations in these subsamples is small, so the results should be
treated with caution.

E.4 Additional comparison of shock series

In this section, I report additional properties of my shock series, compared to the Swanson
and RSW shocks. Figure 14 reports the autocorrelation functions of each shock series. The
main features of each series are qualitatively similar, with relatively low persistence from the
first lag onwards. These properties do not provide an obvious explanation for the different
responses found for the RSW series in Section 4.3. Figure 15 plots impulse response of
Treasury yields to each shock series at horizons from 0-20 business days, essentially a month.
The effects of the shocks on Treasury yields appear remarkably similar, suggesting similar
transmission to interest rates. Moreover, the effects of the various shocks across different
maturities accord well with theory. Any differences in the macroeconomic effects do not
appear to stem from this channel.
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Figure 13: Time variation in relative effects of shocks

Each panel plots the evolution of the relative effects of the stated shock on two asset prices over time. The
blue line plots the 40-announcement (approximately 5-year) rolling-window regression ending at the given
date of the end-of-day response of the first asset price to the end-of-day response of the second asset price.
The dashed red lines indicate the 68% confidence interval based on HAC standard errors. For reference, the
bold dashed black lines plot the full sample homogeneous coefficient and the light dashed black line plots its
68% heteroskedasticity-robust confidence interval.

Figure 14: Autocorrelation functions of alternative shock series

Autocorrelations of the baseline shocks, alongside those of Swanson (2021) and Rogers et al. (2018). The
sample spans January 1996 until the last available period for the respective series.
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Figure 15: Impulse responses of Treasury yields to alternative shock series

Impulse responses estimated for horizons ranging from zero to 20 business days estimated via local projection
without controls, as in Swanson (2021), for 1 standard deviation shocks. The sample spans 1996-2019, or
the last period available for the alternative shock measures.

E.5 Responses of financial variables during the ZLB period

Table 7 repeats the regressions of Table 3 in the main text for the ZLB period, as defined
in Swanson (2021), 2009-2015. The results largely accord with those for the full sample, as
noted in the text.

E.6 The role of the Fed information effect

In this section, I use an alternative model to establish the role of the Fed information effect,
documented by Campbell et al. (2012), Nakamura and Steinsson (2018), Jarociński and
Karadi (2020), and Lunsford (2020), amongst others. The presence of an information effect
has recently been questioned by Bauer and Swanson (2022), who argue that evidence based
on the response of survey expectations is consistent with both the Fed and private forecasters
reacting to the same public information, rather than the Fed revealing new information via
its statements. The alternative model that I consider omits the S&P 500 from the panel of
data used to extract the principal components and allows only up to three dimensions of
monetary policy: the Fed Funds, forward guidance, and asset purchase shocks. In doing so,
it assumes that there is no Fed information effect. Comparing these results to those under
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Table 7: Financial market responses to monetary policy

AAA AAA Baa Baa TIPS JPY/ Euro/ VIX
yield spread yield spread spread USD USD

FF 4.64∗∗∗ 0.47 3.16∗∗∗ -1.00 -1.80∗∗ 6.69 1.93 -215.71
FG 0.44∗∗ -0.52∗∗∗ 0.38∗ -0.58∗∗∗ -0.23∗∗ 1.20 1.47∗∗ 53.27∗

AP 1.02∗ -1.02∗∗∗ 1.32∗ -0.72 -0.23 2.63 0.00 -59.75
FI 0.05 0.00 0.07∗∗ 0.02 0.06∗∗ -0.34 -0.10 -16.20∗∗∗

Coefficients are estimated following equation (8) . Coefficients can be interpreted as the response in percent-
age points to a shock that changes the reference price by 1%. The sample spans the ZLB period, 2009-2015.
HAC standard errors are calculated following Lazarus et al. (2018). Significant results are starred at the
10%, 5% and, 1% levels.

the baseline model, I show support for the presence of the Fed information effect.
While the S&P 500 is not included in the panel of data used to estimate the principal

components, I can still construct historical decompositions for equities by projecting the
path of stock returns on the extracted components. The first panel of Figure 16 displays
scatter plots of the end-of-day decompositions of the S&P 500 against the values of the
three monetary policy shocks, which are themselves end-of-day decompositions for various
interest rates. The blue circles plot observations that are consistent with “Odyssean” policy
shocks – moving equities and interest rates in opposite directions – while the red circles plot
observations that are consistent with "Delphic" policy, or information effects. For all three
dimensions of policy, not just forward guidance, there are numerous instances whose signs
are characteristic of an information effect. This exercise and its results parallel the findings
of Lunsford (2020), who observes that the effects of forward guidance appear time-varying
when “Delphic” effects are included. This analysis can be formalized in a regression of end-
of-day decompositions on the shock measures, as in Table 2. Table 8 compares the impacts
to those in the baseline model. For all three dimensions of policy, the previously large,
negative effects are attenuated. The average effect of the Fed Funds shock remains negative,
but becomes insignificant. The forward guidance shock retains a significant negative effect,
but the magnitude is smaller. The point estimate for the asset purchase shock is the most
dramatically changed, now positive, and insignificant. Not allowing for the presence of
information effects significantly reduces the measured effects of monetary policy on equities.
These results contrast with regressions in Bauer and Swanson (2022), where the sign and
magnitude of the S&P 500 response to the Nakamura and Steinsson (2018) monetary policy
news shock are not sensitive to whether observations characterized by information effects,
on the basis of Blue Chip forecast responses, are included. While the Blue Chip forecast
response to announcements has long been used to characterize information effects, the well-
known survey timing issues described by Bauer and Swanson (2022) introduce considerable
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Figure 16: The role of the Fed information effect

(a) Impact of monetary policy on equities and interest rates

(b) Share of S&P 500 movement explained
The first panel plots the end-of-day responses of the S&P 500 to monetary policy shocks in the model
estimated without a Fed information effect against the monetary policy measures, which are end-of-day
decompositions of interest rates. Events matching "Odyssean" policy are marked in blue, and those matching
"Delphic" policy are in red. The second panel plots the distributions of the difference between the realized
path of the S&P 500 and the paths predicted by various historical depositions: based on all shocks for the
model with no Fed information shocks (blue), excluding the Fed information shock in the baseline model
(red), and including the Fed information shock in the baseline model (gold). The scale of these errors
is standardized to an R2−type measure, as described in the text (so a value of 1 corresponds to perfect
explanatory power). The vertical lines plot the medians of each distribution. The x -axis is to the left
truncated for readability.

noise and potentially important additional public information, forming the basis for that
paper’s alternative explanation. Bauer and Swanson (2022) find that the survey response
often contradicts the high-frequency S&P 500 response, and the conflicting results here
based instead on the S&P 500 further suggest higher-frequency market-based measures of
information effects may be desirable.

Next, I examine how allowing for an information effect affects the explanatory power
of interest rate movements for equities. For each announcement, I compute the histori-
cal decomposition of S&P 500 returns with respect to all three monetary policy shocks to
measure the total explained movement at market close, subtract it from the total observed
movement over the same window, and divide the square of this error by the square of the
observed movement. Finally, I subtract this unexplained share from 1, obtaining an R2-like
measure. If the shocks perfectly explain the movements of equities, the value should be
equal to 1 for each announcement. The second panel of Figure 16 plots the distribution
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Table 8: End of day effects on the S&P 500

No Fed
Information

With Fed
Information

εFF -2.16 -5.35
εFG -3.90∗∗∗ -4.77∗∗∗

εAP 0.24 -11.04∗∗

εFI — 1
Regressions of the end-of-day decomposition of S&P 500 returns with respect to a given shock on the
decomposition of the reference price with respect to the same shock. The reference rates are the 8-quarter
ED for forward guidance, the average of 5- and 10-year Treasury yields for asset purchases, and S&P 500
returns for Fed information. The left column uses decompositions from a model where the S&P 500 is not
included in the panel of asset prices used to estimate principal components and where it is assumed there
are at most 3 monetary policy shocks, with no information effect. The right panel replicates the baseline
model from Table 3. Coefficients can be interpreted as the response in percentage points to an expansionary
shock that changes the reference price by 1%. The sample spans 199 announcements from 2007-2019. HAC
standard errors are calculated following Lazarus et al. (2018). Significant results are starred at the 10%, 5%
and, 1% levels.

of this measure across announcements. Without allowing for information shocks, in blue,
mass is concentrated near zero, with a median of 0.11, so that almost none of the observed
movement of equities is explained by the shocks, although there are considerable outliers,
for which the monetary policy shocks predict large movements in equities that did not ma-
terialize. A substantial mass is negative, indicating the predicted movements are larger than
the realized movements. I compare these results to those from my baseline estimates, in
red. I do not include the predicted impact of the Fed information shock, but only consider
the movement in equities predicted by the same three shocks contained in the first model.
The mass is now centered around a median of 0.57 (rising to 0.67 if variation predicted
by the Fed information shock is included, plotted in gold), and entirely contained in the
[0,1] interval, except for a single outlier. As a more parsimonious summary, I also compute
a single R2-type measure across the sample. Instead of estimating a regression model to
produce predicted movements for each announcement, I take the movements predicted by
the announcement-specific decompositions, and compute an R2 comparing these to the re-
alized movements. For the model without information effects, I obtain -0.23; the variance of
the predicted movements is actually higher than the realized movements. For the baseline
model, with information effects, the R2 is 0.61 (rising to 0.72 if variation predicted by the
Fed information shock is included). Taken together, these results indicate that allowing for
information effects leads to monetary policy shocks that better explain variation of equity
prices. The number for the baseline model, 0.72, is also considerably higher than the 20%
reported by Kroencke et al. (2021) for the two GSS factors, suggesting that allowing for a
Fed information shock and announcement-specific decompositions may greatly increase the
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actual improvements in economic conditions, entirely apart from the effects on expectations,
asset prices, and survey respondents on which most of the literature has previously focused.
Even if it is the case that professional forecasters do not pay attention to Fed statements and
the Fed reacts to similar public information to private forecasters, there appears to be some
content in the statements that passes through to equity prices and subsequently predicts
positive macroeconomic developments. This finding parallels that of Jarociński and Karadi
(2020) in a model with a single dimension of policy, plus an information effect.

To address their “Fed Response to News” channel, Bauer and Swanson (2022) recommend
orthogonalizing monetary policy shocks to macroeconomic releases from the month of the
announcement to purge them of any information effect. If their explanation is correct, then
there should no longer be any information effect-type content in the shocks. The preceding
local projections specification already include lagged macroeconomic releases, like those that
Bauer and Swanson (2022) suggest, as controls. However, to further test their hypothesis,
I reestimated the baseline local projections adding the values of inflation, the change in
unemployment, and IP growth for the announcement reference month as controls, which
reflect contemporaneous conditions, but were not available to markets at announcement time
due to the release lag. Using both the baseline shocks and those constructed assuming no Fed
information effect, the responses are essentially unchanged (apart from the initial impacts,
which are now mechanically zero). For the baseline shock series, this is expected for the
first three shocks: they were already purged of information effects during construction. For
the information shock, however, this indicates additional information content beyond that
contained in that month’s macroeconomic releases. Under the Bauer and Swanson (2022)
explanation, the responses for the shocks constructed assuming no information effects should
now align with theory after including recent macroeconomic releases, which is no more the
case than in Figure 17.
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