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Abstract 

I propose to identify announcement-specific decompositions of asset price changes into monetary policy 
shocks exploiting heteroskedasticity in intraday data. This approach accommodates both changes in the 
nature of shocks and the state of the economy across announcements, allowing me to explicitly compare 
shocks across announcements. I compute decompositions with respect to fed funds, forward guidance, 
asset purchase, and Fed information shocks for 2007-19. Only a handful of announcements spark 
significant shocks. Both forward guidance and asset purchase shocks lower yields and uncertainty and 
raise corporate spreads and equities; Fed information shocks raise yields and lower uncertainty. However, 
only asset purchase shocks significantly stimulate the macroeconomy, raising inflation and industrial 
production and lowering the unemployment rate. 
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1 Introduction

Since Kuttner (2001), high-frequency movements in asset prices have been used to identify
monetary policy shocks. However, the presence of multiple dimensions of policy complicates
the task of identifying such shocks. Existing approaches either assume that each asset price
responds only to a single shock over a certain window (e.g., Krishnamurthy and Vissing-
Jorgensen (2011); Gertler and Karadi (2015)), or compute decompositions identified across
announcement dates (e.g., Gürkaynak et al. (2005) (hereafter GSS); Swanson (2020); Rogers
et al. (2018) (hereafter RSW); Nakamura and Steinsson (2018); Inoue and Rossi (2020)).

The former strategy either assumes the presence of a single shock or imposes exclusion
restrictions across assets. Faced by unconventional policy at the zero lower bound (ZLB),
this means that one price responds to target rate shocks and another to forward guidance
shocks, for example. The latter strategy, pooling price changes across announcements and
computing some time-invariant decomposition into structural shocks, follows the influential
work of Nelson and Siegel (2002) and GSS. Shocks can differ across announcements only in
scale, not in their relative impacts on different asset prices. For example, this means that
the asset purchase shock prompted by the announcements of QE1 and QE2 must have the
same impacts on all interest rates, despite targeting different securities. Further assumptions
are also needed to recover shocks with structural interpretations, since the statistical factors
typically estimated are identified only up to orthogonal rotations. Swanson (2020) extends
the approach of GSS to distinguish forward guidance and asset purchase shocks, combining
exclusion and narrative restrictions. RSW impose a lower-triangular structure on futures
corresponding to interest rates of various maturities. However, the complication of central
bank information shocks, whose role has been highlighted by Jarociński and Karadi (2020)
and Miranda-Agrippino and Ricco (2020), remains unaddressed in models boasting the Fed
Funds target, guidance and asset purchase shocks.

I propose to identify announcement-specific decompositions of asset price movements to
recover monetary policy shocks without assuming time-invariance across announcements.
Instead of pooling data across announcements, I treat common movements in interest rates
and equities following monetary policy announcements as responses to a series of monetary
policy news shocks. This means that up to several hours of minute-by-minute data can
be used to identify a decomposition unique to any announcement. Figure 1 plots 10-minute
moving-averages of the squares of the first four principal components of a panel of asset prices
following the March 18, 2009 announcement, when the Federal Open Market Committee
(FOMC) strengthened forward guidance and expanded QE1. There are large movements in
asset prices outside of the conventional 30-minute window, which indeed suggest the presence
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Figure 1: Realized volatility of innovations on March 18, 2009

10-minute moving averages of squared principal components of a panel of 20 asset prices on March 18, 2009,
from the beginning of the conventional 30-minute window (10 minutes before the announcement) through
4:01pm, immediately following market close. The y-axis is truncated to highlight relevant variation.

of a more continuous stream of monetary policy news, or at least the continued processing
of previously-released news. This variation has yet to be exploited for identification.

I thus use intraday timeseries of asset price movements to identify up to four monetary
policy shocks following a given announcement: a “Fed Funds” shock, a “forward guidance”
shock, an “asset purchase” shock, and a “Fed information” shock. The latter is missing from
previous papers (e.g., Swanson (2020); RSW) that separately identify forward guidance and
asset; purchase shocks. To identify the shocks from these intraday timeseries, I adapt an
identification argument based on time-varying volatility, developed in Lewis (2020). The
volatility patterns evident in Figure 1 make such an approach natural.

For each scheduled announcement from 2007-2019, I extract principal components of 20
intraday asset prices following the announcement. I use a test proposed in Lewis (2020) to de-
termine the maximum number of shocks identifiable based on time-varying volatility, before
adopting the identification scheme from that paper, a generalized version of identification via
heteroskedasticity. I thus recover intraday timeseries of that number of shocks – the unique
rotation of the principal components that is consistent with the observed volatility dynam-
ics. I use an information criterion to determine the number of these shocks that represent
monetary policy shocks, discarding the remainder as noise. To measure the effects of mone-
tary policy on interest rates and equities throughout the hours following an announcement,
I compute historical decompositions with respect to the high-frequency shocks.

This framework is flexible in three important ways. First, I do not assume the nature
of monetary policy shocks is the same from one announcement to the next, as implied by a
constant decomposition (since relative effects of shocks on asset prices are fixed). There is
little reason to think that asset purchase announcements targeting different securities should
have identical effects on asset prices. Second, even if the nature of shocks was constant
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over time, it is important to allow their relative impacts on asset prices to vary, since the
relationship between news and the public’s expectations of the state variables in the economy
may either be nonlinear, or otherwise change over time, as argued by Faust et al. (2007). Such
assumptions are at least worth investigating. Finally, I do not require all shocks to be active
for each announcement, an important consideration when identifying several dimensions of
policy. This framework, which could easily be adapted to other types of announcements, like
macroeconomic releases or corporate news, is the methodological contribution of this paper.

I use the historical decompositions of interest rates and equities to compare the effects
of key monetary policy announcements during the Great Recession. This comparison is
possible and meaningful because I have not assumed the relative effects of each shock to
be constant from one announcement to the next. My methodology combines attractive
features of several existing papers: the announcement-by-announcement comparison of the
event-studies of Krishnamurthy and Vissing-Jorgensen (2011) and the ability to disentangle
forward guidance and asset purchase shocks (with the addition of Fed information shocks)
from Swanson (2020) and RSW. I find that few monetary policy announcements sparked
significant shocks, but those that did can be characterized as the introduction of new policies
or the unexpected extension of existing policies. This marriage of carefully-measured shocks
with the narrative record is the second contribution of the paper.

I next form a timeseries of the four monetary policy shocks, measured by historical
decompositions, and use them to estimate the responses of key financial variables. Both
forward guidance and asset purchase shocks lower Treasury and corporate yields, raise cor-
porate spreads, and lower uncertainty. Conversely, Fed information shocks raise yields and
lower uncertainty. The former results mirror existing papers including Krishnamurthy and
Vissing-Jorgensen (2011), Swanson (2020), and Campbell et al. (2012), but establishing them
jointly with those for Fed information shocks constitutes a third contribution of this paper.

Finally, I use the timeseries to estimate the macroeconomic effects of the different di-
mension of monetary policy. While Swanson (2020) and RSW disentangle forward guidance
and asset purchase shocks, neither studies the impact on the real economy. Asset purchases
have significant, persistent expansionary effects on inflation, unemployment, and industrial
production. In contrast, the forward guidance shock has no significant effect on the macroe-
conomy; the impact on financial markets detailed above does not transmit to real activity.
These responses are starkly different to what one would obtain using the RSW shocks, and
while there are similarities to estimates based on the Swanson (2020) shocks, there are also
important differences. These findings, characterizing the real effects of unconventional mon-
etary policy, are the final contribution of the paper.

Although previous papers analyzing the effects of unconventional policy on macroeco-
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nomic aggregates have not jointly identified forward guidance and asset purchase shocks,
especially in the presence of Fed information effects, a growing literature does exist. Baumeis-
ter and Benati 2013, Gambacorta et al. (2014), and Lloyd (2018) identify a range of asset
purchase-related shocks (“spread compression”; “balance sheet”; “signaling” and “portfolio
balance”, respectively) in VARs using sign and exclusion restrictions. Baumeister and Be-
nati (2013) is the only paper to possibly allow for the time-varying nature of shocks, using a
time-varying parameters model. The findings of Gambacorta et al. (2014) for their balance
sheet shock align well with the significant effects I find for my asset purchase shock. Inoue
and Rossi (2020) estimate local projections for two policy dimensions corresponding to the
slope and curvature factors from a Nelson and Siegel (2002) decomposition, but they do not
interpret these responses as corresponding to particular aspects of unconventional policy.

The remainder of the paper is organized as follows. Section 2 discusses the identification
problem in more detail and outlines my approach. Section 3 presents announcement-specific
results, discussing the findings for notable FOMC announcements in detail, and characterizes
the properties of the time-series of the implied shocks. Section 4 describes the timeseries of
monetary policy shocks and computes the responses of financial markets and macroeconomic
aggregates to the measures. Section 5 concludes.

2 Intraday identification of monetary policy shocks

In this section, I motivate the use of announcement-specific decompositions and argue that
they can, in principle, be identified using intraday data. I then discuss how time-varying
volatility can be used to do so. Finally, I describe my empirical approach.

2.1 The case for intraday identification

High-frequency identification of monetary policy shocks draws on the event-study method-
ology of empirical finance, as described by Campbell et al. (1997). Those authors write
abnormal returns, ηit,δ, for security i from t− δ to t as

ηit,δ = Rit,δ − E [Rit,δ | It−δ] , (1)

where Rit,δ = Pit − Pit−δ and It−δ is the information set available at t − δ , with t, t − δ ∈
[0, 1] indexing time-points during the day. In typical studies of monetary policy shocks,
E [Rit,δ | It−δ] = 0, so ηit,δ = Rit,δ = Pit − Pit−δ. If markets price all new information
immediately, then the change over the window t − δ to t represents all news during that
window. Monetary policy news can thus be measured as the change in an interest rate future,

4



Treasury yield, or some basket of such asset prices over an interval [t− δ, t] containing the
announcement, often 10 minutes prior to the announcement to 20 minutes following. This
measure can either be used directly (following Kuttner (2001)) or as an instrument for a
latent monetary policy shock (e.g., Gertler and Karadi (2015)).

However, if there are multiple dimensions of monetary policy, and thus multiple simul-
taneous monetary policy shocks, εjt,δ, they must be recovered in some way from an n × 1

vector of abnormal returns, ηt,δ:
ηt,δ = Hεt,δ,

where εt,δ is typically n× 1 and H is invertible. If exclusion restrictions are available, such
that for each shock j there exists some asset i that responds only to shock j, or if only
one dimension of policy is active at one time (the approach implicit in Krishnamurthy and
Vissing-Jorgensen (2011)), then monetary policy shocks can still be read as simple asset
price changes for each announcement. However, those are strong assumptions, particularly
during the ZLB period. Following GSS, it is more common to attempt to recover εt,δ by
pooling information across announcements to estimate moments of ηt,δ, which can then be
used to identify the decomposition, H. In particular, the econometrician works with

ηd = Hεd, d = 1, . . . , D, (2)

where ηd is the return ηt,δ on announcement date d and similarly εd ≡ εt,δ for day d. While
second moments of (2) can now be estimated and used for identification, they provide only
(n2 + n) /2 identifying equations in n2 unknowns, so further assumptions are still required
(typically exclusion restrictions, as in GSS; Swanson (2020); RSW; Campbell et al. (2012);
Nakamura and Steinsson (2018)).

However, the problem posed by (2) already makes a strong assumption: H must be con-
stant from one announcement to the next. Implicitly, the nature of the shocks, εd, must
not change – otherwise there is little reason to assume constant relative effects, H, on ηd.
Indeed, during the Great Recession, the character of shocks did change from one announce-
ment to the next. Forward guidance evolved from vague to calendar-based to conditional,
and the composition of asset purchases varied between mortgage-backed securities (MBS)
and Treasuries, as well as in the maturities targeted. Moreover, even if the nature of the
shocks were fixed, Faust et al. (2007) argue that the linear relationship between news shocks
and asset prices in (2) almost certainly changes from one announcement to the next. They
explain that the coefficients in H represent a weighted average of the changes in expectations
of all relevant state variables in response to εd, where the weights are the derivative of asset
prices ηd with respect to each state variable. H will be constant if and only if both the
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relationship between (market expectations of) all state variables and all shocks is linear and
asset prices are a linear function of all state variables. Thus, even if the mapping between
shocks and asset prices is constant, H will be time-varying in the face of non-linearities in
state variables and expectations. Not only does fixing H embed strong assumptions on the
nature of shocks and linearity, it also precludes potentially interesting questions of how the
effects of monetary policy shocks varied from one announcement to the next. Whether the
assumption of constant H impacts results is worth investigating.

I address these concerns with a novel methodology. Rather than only examining a single
change in asset prices (from t − δ to t) on each announcement date, I consider the path
of asset prices following an announcement to represent responses to a stream of monetary
policy news. Such news may either be new information revealed by the Federal Reserve
(in the FOMC statement or during a press conference), a delayed interpretation of existing
information (unpacking the implications of a change in forward guidance may take time),
or an innovation to the interpretation of previous news (perhaps in light of the response
of other agents). This re-framing of the problem provides an intraday timeseries for each
announcement that may be used to estimate moments and identify an announcement-specific
decomposition. In particular, for announcement d, I propose to study the model

ηm = Hdεm, m = 1, . . . ,M, (3)

where ηm are high-frequency returns from (m− 1) /M to m/M over the period running
from 10 minutes prior to the announcement until market close, which I normalize to length
1. Hd is the announcement-specific relationship between asset prices and shocks. Using a
window extending to market close accounts for additional news or revision of initial reactions
during or following press conferences. Combined with a credible identification scheme, the
model (3) can recover a mapping between asset prices and monetary policy shocks unique
to any announcement, d. This insight is not limited to the study of monetary policy; the
methodology can be adapted to study any type of news shocks using suitable financial data.

The sample length in (3) is fixed: it runs from 10 minutes prior to the announcement until
market close. This makes a large−T asymptotic framework ill-suited. Rather, a continuous
time model for ε and an infill asymptotic framework are more appropriate given the use of
high-frequency financial data (see, e.g., Barndorff-Nielsen and Shephard (2002); Andersen
et al. (2003)). I adopt a multivariate simplified version of the standard continuous time
model of Barndorff-Nielsen and Shephard (2002) for t ∈ [0, 1], with instantaneous returns,
η (t), given by

dP (t) = η (t) = Hdε (t) , (4)
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and instantaneous structural shocks ε (t) following the stochastic differential equation

ε (t) = diag (σ (t)) dW (t) , (5)

where σ2 (t) is the instantaneous (spot) volatility and W (t) is an n dimensional standard
Brownian motion. In this setting, structural shocks εm are defined on a 1/M−spaced grid,

εm = ε∗ (m/M)− ε∗ ((m− 1) /M) ,m = 1, . . .M, (6)

where

ε∗ (t) =

∫ t

0

ε (u) du =

∫ t

0

diag (σ (u)) dW (u) .

It follows that
εm | σ2

m ∼ N
(
0, diag

(
σ2
m

))
,

where

σ2
m = σ2∗ (m/M)− σ2∗ ((m− 1) /M) and σ2∗ (t) =

∫ t

0

σ2 (u) du.

While the idea of studying the high-frequency mapping Hd is novel, there is a very close
relationship between Hd and its event-study counterpart. In particular, let H inf

d be the
announcement-specific parameter infeasibly identified from hypothetical repeated samples of

ηd = H inf
d εd,

for a single day, d, using some valid identification scheme. Proposition 1 relates Hd to H inf
d :

Proposition 1. Under the model described by (4) and (5), H inf
d , infeasibly identified from

repeated samples of ηd, is identical to Hd.

This result shows that under the continuous time model described above, the announcement-
specific high-frequency response matrix,Hd, is equivalent to the ideal, but infeasibly-identified,
event-study parameter for a given day. However, Hd can be feasibly recovered.

2.2 Identification via time-varying volatility

I have argued that Hd can in principle be identified from intraday data, but it remains to
propose a suitable identification scheme to do so. The same intuition and arguments used
for the conventional SVAR setting can still be applied, simply making reference to the infill
analogs of large−T moments. Indeed, given that actual observations remain discrete (and

7



evenly spaced), in practice unmodified estimators can be applied to the intraday observations,
just as they would be in traditional data (see Appendix B).

It is unappealing to impose assumptions on Hd (exclusion or sign restrictions) since Hd

is the object of interest and because it is hard to argue that some asset prices systematically
respond more slowly to forward guidance, asset purchase, or Fed information shocks, for
example. The Swanson (2020) narrative approach to distinguish forward guidance and asset
purchase shocks, based on the absence of asset purchase shocks prior to 2009, is not applicable
given all shocks come from a single announcement day, mostly post-2009.

These factors lead me to consider statistical identification, in particular identification
based on time-varying volatility. Figure 1 demonstrates strong volatility patterns for a rep-
resentative announcement date. Identification via heteroskedasticity has proven popular for
identifying asset price responses to news and policy shocks, as proposed by Rigobon (2003),
and implemented by Rigobon and Sack (2003), Rigobon and Sack (2004), and Gürkaynak
et al. (2020), for example. Previous approaches exploiting heteroskedasticity for identifica-
tion have largely relied on externally-specified variance regimes or highly specific functional
forms for the volatility process that facilitate identification (e.g., GARCH). Lewis (2020)
provides an entirely non-parametric identification argument based on time-varying volatility
in a large−T framework, generalizing existing results. I reframe the argument below for the
infill framework, sketching intuition in a simple case and stating the general identification
result; further details can be found in Lewis (2020).

An important distinction given the infill context is that identification is a property of
population moments. In an infill setting, the analog to infinite sample size is an arbitrarily
fine 1/M grid of observations, converging to the continuous time process, η (m/M). Thus,
identification conditions apply to the underlying continuous time processes, although obser-
vations are discrete. In Appendix B, I show that simple sample averages of squared returns
can be consistent for these identifying moments of the underlying continuous time processes.

I henceforth suppress the d subscript on Hd for compactness, since each day’s data forms
a unique dataset. Assumption 1 imposes standard assumptions on H and σ2 (t).

Assumption 1. For t ∈ [0, 1],

1. H is fixed, full-rank, and has a unit diagonal,

2. σ2 (t) is an n×1 stationary stochastic process, has almost surely locally square integrable
sample paths, and is independent of W (t), with E

[
σ2 (t)σ2 (t)′

]
<∞.

The first assumption is standard in models of the form (2) or (4). σ2 (t) is required to
be independent of the structural shocks (common in continuous time settings, even those

8



accommodating ARCH effects, e.g., Brockwell et al. (2006)) and to have finite moments.
The model (5) already imposes orthogonality and a martingale difference sequence (MDS)
property for the structural shock processes and finite moments of the driving process, W (t).
As discussed in Lewis (2020), stationarity is not required for identification, but I impose it
here since it simplifies the derivation of limiting moments of ηm in terms of the underlying
continuous time process σ2 (t). These assumptions imply that εm is also vector of orthogonal
MDSs (with respect to σ2

m and information through (m− 1) /M) with conditional variances
σ2
m and finite fourth moments, satisfying the requirements in Lewis (2020).
Lewis (2020) argues that the autocovariance of squared innovations, ηm, can be used to

identify H. To build intuition, consider a simple case where n = 2, and the variance of the
first shock, σ2

1 (t), is constant, σ2
1 (t) ≡ σ2

1. Let H12 be the parameter of interest. Note that
taking the outer product of reduced-form innovations, ηm, yields

η1mη2m = H21ε
2
1m +H12ε

2
2m + ε1mε2m +H12H21ε1mε2m

η2
2m = H2

21ε
2
1m + 2H21ε1mε2m + ε22m.

It is clear that H12 could be identified from the ratio of the H12ε
2
2m and ε22m terms, but only

the values of ηm are observed, and not their separate components. However, a lagged value
of η2

2m can be used as an instrument for ε22m. In particular, using the orthogonality and zero
serial correlation of shocks and the fact that σ2

1 is constant (so has zero autocovariance),

cov
(
η1mη2m, η

2
2(m−pM)

)
= H12cov

(
ε22m, ε

2
2(m−pM)

)
, cov

(
η2

2m, η
2
2(m−pM)

)
= cov

(
ε22m, ε

2
2(m−pM)

)
.

The lag is specified as pM so that the time distance between observations m and m − pM
remains fixed as M → ∞. As shown in Appendix B.1, limM→∞M

2cov
(
ε22m, ε

2
2(m−pM)

)
=

cov (σ2
2 (t) , σ2

2 (t− p)). Then, H12 is identified as

limM→∞M
2cov

(
η1mη2m, η

2
2(m−pM)

)
limM→∞M2cov

(
η2

2m, η
2
2(m−pM)

) =
H12cov (σ2

2 (t) , σ2
2 (t− p))

cov (σ2
2 (t) , σ2

2 (t− p))
= H12.

This is an instrumental variables approach, where the dependent variable is η1mη2m, the
endogenous regressor is η2

2m, and the instrument is η2
2(m−pM). Provided that the time-varying

volatility σ2
2 (t) is persistent (cov (σ2

2 (t) , σ2
2 (t− p)) 6= 0 for some lag p), identification holds.

Of course, this example is simplified to recover H12 in closed-form. However, the intuition
extends to the general model described in Assumption 1. Define ζm = vech (ηmη

′
m), unique

elements of the outer product of innovations. Theorem 1 states the identification result.
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Theorem 1. H is uniquely determined (up to column order) from limM→∞ME [ζm] and
limM→∞M

2cov
(
ζm, ζ

′
m−pM

)
, if at least n − 1 shocks display time-varying volatility with

non-zero autocovariance, provided that for no two shocks i, j, cov
(
σ2
i (t) , σ2 (t− p)′

)
=

cov
(
σ2
j (t) , σ2 (t− p)′

) E[σ2
i (t)]

E[σ2
j (t)]

.

Theorem 1 follows from Corollary 2 in Lewis (2020) and infill limits derived in Appendix
B.1. The condition that n − 1 shocks must exhibit heteroskedasticity mirrors that for all
other approaches based on heteroskedasticity, and indeed arguments based on higher mo-
ments in general. The final proportionality assumption is a rank condition guaranteeing
the autocovariances provide linearly independent information. Lewis (2020) details a Cragg-
Donald rank test for these identification conditions; testability has proven challenging for
previous heteroskedasticity-based arguments. Identification holds up to column order – per-
mutations of the columns of H are observationally equivalent. However, assigning labels to
the structural shocks pins down a column permutation. It is also important to distinguish
these results from simply computing principal components of ηm. Principal components
satisfy second-moment equations that provide only enough information for uniqueness up
to arbitrary orthogonal rotations, but the identification argument above recovers the unique
decomposition of ηm that additionally respects the dynamic properties of the shock variances.

In the context of unconventional monetary policy shocks, the identification condition can
be motivated economically. It makes sense that shock variances are heteroskedastic: volatility
should increase around an announcement, as the FOMC statement is first published. This is a
“first reading” of basic details – a change to the Fed Funds target rate, or a new round of asset
purchases. However, this volatility likely dissipates, as less new information is available to
be incorporated into asset prices. Nevertheless, volatility likely remains elevated, as markets
continue to process the implications of details and wording of the FOMC statement, or in the
presence of a press conference. Thus, it is natural that the volatilities of each monetary policy
shock have some persistence. One way that the rank condition is satisfied is if each shock’s
own volatility is a stronger predictor of its future volatility than is the current volatility of
other shocks. This makes sense, since a large amount of news in one dimension (prompting
high volatility shocks) likely means a prolonged period of volatility in that shock, as markets
continue to unpack the relevant information (or as questions in a press conference focus on
a particular aspect of policy). On the other hand, the presence of much new information
for markets to process about forward guidance does not necessarily imply there is so much
to learn about asset purchases. If a shock’s own volatility matters more for predicting its
future values, then the autocovariance structure will be full-rank.

The identification argument, as presented in Lewis (2020), is entirely non-parametric;
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while I illustrate it here in the standard context of a Gaussian driving process, σ2 (t) is left
unspecified. While this non-parametric character justifies non-parametric estimators, it also
frees the econometrician to choose from almost arbitrary parametric volatility models, in-
cluding many incompatible with previous approaches to identification based on heteroskedas-
ticity. Among these are state space models, and in particular stochastic volatility models,
which have proven very popular for modeling financial returns (see e.g., Shephard (1996)
for an early review). Moreover, in a simulation study, Lewis (2020) finds that an estimator
based on a first-order autoregressive (AR(1)) SV model performs best out of a wide range of
non-parametric and previously-proposed parametric estimators based on heteroskedasticity,
proving robust to misspecification of the volatility process. For these reasons, and given
the long history of the model in modeling asset prices, I adopt the AR(1) SV estimator to
implement identification based on time-varying volatility in the present paper.

2.3 Empirical model

The previous sections make a case for identifying announcement-specific decompositions of
asset prices into monetary policy shocks, and for using time-varying volatility to identify
such decompositions. I now lay out the specific empirical model I adopt for each intraday
dataset and highlight the important features of my approach, in particular those that address
the threat of noise in such high frequency data.

I base my analysis on a panel of 20 asset prices. Specifically, the minute-by-minute data,
Ym, consist of the first 6 months of Fed Funds futures contract rates, the first 8 months
of Eurodollar (ED) contract rates, 3-month, 6-month, 2-year, 5-year, and 10-year Treasury
yields, and the log of the S&P 500, very similar to the panel considered by Swanson (2020).
The first step I take to minimize the role of microstructure noise is to take as my observations
the bid-ask midpoints for each price; doing so eliminates bid-ask “bounce”, which Aït-Sahalia
and Yu (2009) find is possibly the most important component of such noise. I take first
differences, ∆Ym, standardize to ∆Ỹm, and then estimate the first four principal components,
Fm, of the data from 10 minutes prior to the announcement (using the timestamp from the
first headline appearing on Bloomberg) to 4:01pm, immediately following market close,

∆Ỹm = ΛFm + um, m = 1, . . . ,M.

I recover the first four components to span up to four possible dimensions of monetary
policy shocks. Working with the common component of the individual asset prices further
reduces the threat of microstructure noise. Several sources of microstructure noise, like bid-
ask bounce and discreteness of possible price changes, are inherently idiosyncratic and need
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not be correlated across observed prices. Other sources, like differences in trade sizes or
informational content of price changes, as well as strategic aspects of the order flow, could
simultaneously impact related interest rates. However, even if there is some common com-
ponent to microstructure noise, results in Aït-Sahalia and Yu (2009) suggest that, at least
for liquid assets, like those in my panel, microstructure noise is considerably smaller than
fundamental volatility, which would make it unlikely to appear in the first few principal
components. Relative to focusing on a small number of representative interest rates, work-
ing with principal components also decreases the likelihood of mischaracterizing the overall
movement of Treasury yields when various maturities move in opposite directions following
announcements. Fm forms the data for subsequent analysis.

I assume that the number of orthogonal monetary policy shocks on a given day equals the
dimension of the common component, the number of principal components driving the panel
of asset prices jointly, as opposed to capturing idiosyncratic noise. I estimate the dimension
of the common component, kmp, using the BIC2 information criterion of Bai and Ng (2002).1

For each announcement date, I build my empirical model recursively, starting from n = 4

principal components, until I find a model for which n shocks may be identified by time
varying volatility:

1. Set n = 4.

2. Estimate a VAR for the first n principal components to remove any residual predictabil-
ity from the series (since εm must be a MDS), using the Hannan-Quinn information
criterion to select L:

Fm = b+
L∑
l=1

BlFm−l + ηm. (7)

3. Test whether the condition for identification by time-varying volatility is satisfied for
the residuals, η̂m, using the test proposed in Lewis (2020). In particular, I test whether

rank
(
E
[
ζ̂mζ̂

′
m−1

])
= n,

where ζ̂m = vech (η̂mη̂
′
m), which indicates that the autocovariance process of σ2

m is full
rank, satisfying the condition in Theorem 1.

4. If the test is satisfied, proceed to step 5; otherwise, return to 2 replacing n with n− 1.
1I also considered the remaining 5 information criteria of Bai and Ng (2002) as well as the two rank tests

of Onatski (2009). The BIC2 is the only information criterion to choose interior solutions and chooses a
weakly greater dimension than the two rank tests (and is thus conservative for my purposes) for all but one
of the 104 announcement dates.
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5. Set ks = n, the number of identifiable shocks. Implement the AR(1) SV estimator
developed in Lewis (2020) to estimate H and the ks intraday shocks, εm.

The parametric form of the estimator adopted in Step 5 has been found to fit financial data
well (see e.g., Shephard (1996), Kim et al. (1998)). Unfortunately, it is not straightforward
to test the suitability of the model directly in this setting, since the reduced-form innovations
ηm are linear combinations of the shocks, εm, whose volatility is modeled. However, simple
regressions of squared innovations η2

m on η2
m−1 do yield significant AR(1) parameters for

many announcement dates. Moreover, simulations in Lewis (2020) find this estimator to be
robust to misspecification of the volatility process; while calibrated to macroeconomic data,
the DGPs in that paper do exhibit high persistence and other properties typical of financial
timeseries, making them informative for the present setting.

For all announcements, ks ≥ kmp. I estimate the full ks shocks, however, as a final check
on high-frequency noise. If the first ks principal components remain contaminated by noise,
estimating ks > kmp shocks potentially allows the monetary policy shocks to be separated
from that noise, captured by the remaining shocks (since microstructure noise is known to
have intraday volatility patterns, rendering it potentially identifiable by my approach).

It is straightforward to compute historical decompositions of Ym with respect to each of
the ks shocks in ε1:M . However, I work with an augmented form of historical decomposition,
described in Appendix C, to account for the deterministic drift introduced into historical
decompositions of Ym by standardizing ∆Ym to ∆Ỹm prior to taking principal components.
Doing so allows the counterfactual paths to actually track the trajectory of Ym.2

I label the shocks based on these historical decompositions. I label kmp of the ks identified
shocks based on a statistical labeling criterion, which I describe in detail in Appendix D.
I designate as Fed Funds shocks those that shift at least the first two Fed Funds futures
contracts, and especially those that move all rates. I designate as forward guidance shocks
those that shift 6- through 8-quarter ED rates, (proxying for interest rate expectations near
the 2-year horizon at which forward guidance was generally targeted), while moving the S&P
500 in the opposite direction, characteristic of an “Odyssean” guidance shock. I label as asset
purchase shocks those that shift at least one of the 5- and 10-year Treasury yields, while
moving the S&P 500 in the opposite direction. Allowing asset purchase shocks to potentially
move Treasury yields of different maturities in opposite directions reflects the targeted nature
of many such announcements and helps to distinguish such shocks from forward guidance.
Finally, Fed information shocks are those that move the S&P 500 and interest rates in the

2When reporting responses and decompositions of asset prices, I scale them for interpretability. For the
front Fed Funds future, I use the factor described by GSS to account for days remaining in the contract
month. For Treasury yields, I scale by the ratio of the constant-maturity Treasury yield at close to the value
of the intraday timeseries at close to maintain comparability of maturities across announcements.
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same direction, as in Jarociński and Karadi (2020). While it is true that the differentiation
between forward guidance shocks and asset purchase shocks is largely a partition of the yield
curve, that is also true of the shocks identified by Swanson (2020) and RSW. However, I
additionally exploit the fact that asset purchase shocks may have non-uniform effects on the
yield curve as a further distinguishing feature (while forward guidance should shift all rates),
and relative to the latter I allow asset purchase shocks to impact medium-term expected
rates, consistent with the signaling channel. The quantitative criterion approach described
in Appendix D helps determine labels when multiple shocks match the characteristics of a
single label, or vice versa.

3 Announcement-specific decompositions

In this section, I present announcement-specific results. I summarize high frequency rela-
tionships between shocks and asset prices; even at such frequencies, the results are credible.
I describe in detail the lessons historical decompositions illustrate for 12 key announcement
dates. I characterize the historical decompositions across the full set of 104 announcement
dates. Finally, I outline heterogeneity in the relative impacts of the asset purchase shock
across announcements, affirming the importance of announcement-specific decompositions.
Throughout this section, I focus on the responses of 5 representative asset prices. In partic-
ular, I study the response of the front Fed Funds future rate, the 8-quarter ED rate, the 5-
and 10-year Treasury rates, and S&P 500 returns.

3.1 High frequency relationships

I first report summary statistics (across announcements) of the contemporaneous response of
asset prices, Ym, to monetary policy shocks εm, at minute-by-minute frequency. Such high-
frequency responses are not of macroeconomic interest in their own right, but the results I
obtain largely align in with economic theory, and thus bolster the credibility of the following
analysis. I measure the contemporaneous responses to shock j as σ∆Y Λ1:kmpHj, where Hj

is the column of H corresponding to the shock labeled as j (Fed Funds, etc.) and σ∆Y is
the standard deviation of ∆Ym. For interpretability, I normalize responses by the front Fed
Funds future rate for the Fed Funds shock, the 8-quarter ED rate for the forward guidance
shock, the 10-year Treasury yield for the asset purchase shock, and the percentage point
change in the S&P 500 for the Fed information shock. Table 1 reports the median response
to each shock across all 104 announcements. The results show that, on average, even at
such high frequency, a positive Fed Funds shock raises medium-term expectations of short
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Table 1: Contemporaneous responses of asset prices to high-frequency shocks

FF FG AP FI

FF1 1.00 0.00 0.00 0.00
ED8 0.03 1.00 0.78 0.69
T5 0.01 0.95 0.99 0.69
T10 0.03 0.80 1.00 0.77
SPX -0.03 -0.39 0.08 1.00

Each column reports the median across 104 announcements of σY Λ1:kmp
Hj , where Hj is the column of H

corresponding to the shock (if any) labeled as j (Fed Funds, etc.). I normalize responses by the front Fed
Funds future rate for the Fed Funds shock, the 8-quarter Eurodollar rate for forward guidance, the 10-year
Treasury yield for asset purchases, and the percentage point change in the S&P 500 for Fed information.

rates (8-quarter ED) and medium to long Treasury yields, and lowers the S&P 500, in
line with theory. Likewise, a positive forward guidance shock has on average zero effect
on expectations of the current Fed Funds rate, strongly raises Treasury yields, and lowers
the S&P 500, as expected for Odyssean guidance. A positive asset purchase shock has no
effect on current Fed Funds expectations, raises medium-term expectations of short rates
(the signaling channel) and Treasury yields, but also slightly increases the S&P 500. This
last point is the one anomaly, but recall that these are very high-frequency relationships
and longer-run dynamics can exhibit different signs. Finally, a Fed information shock has
no effect on current Fed Funds expectations, but raises medium-term expectations of short
rates and Treasury yields with the S&P 500, as theory predicts. Overall, even these very
high-frequency relationships between asset prices and shocks accord with theory.

3.2 Historical decompositions

I now present historical decompositions for 12 key monetary policy announcements. These
announcements match those detailed in Table 1 of Swanson (2020), with the addition of
December 2008, when rates hit the ZLB for the first time, and details of asset purchases
were provided, and March 2015, which contained explicit guidance about the timing of lift-
off from the ZLB. Table 3 in Appendix E.1 details the content of these announcements. A
unique feature of my approach is that I can meaningfully compare the decomposition of
asset price movements into monetary policy shocks across these announcement dates. In all
previous methodologies, the relationship is fixed over time. For each of these dates, I plot the
decompositions of asset prices with respect to monetary policy shocks in Figure 2. A blue
line denotes the Fed Funds shock, red forward guidance, gold asset purchases, and purple
Fed information. For reference, I plot the observed path of the relevant asset price with
a dashed line. Decompositions begin 10 minutes prior to the announcement; I indicate the
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timing of the announcement and 20 minutes following, the end of the conventional 30-minute
event study window, with dashed lines. Frequentist inference on historical decompositions is
not possible, since it would require inference on individual realizations of structural shocks,
which are random variables, not parameters. Instead, I present a measure of “economic
significance”, based on the average (across announcement dates) standard deviation of the
relevant interest rate in the hours following monetary policy announcements. The shaded
interval corresponds to 1.96 such standard deviations.

The December 2008 announcement brought the Fed Funds rate to the ZLB for the first
time. Accordingly, Figure 2 shows the Fed Funds shock significantly lowered all interest
rates. The guidance implicit about future rates also had significant effects on the 8-quarter
ED rate and S&P 500 returns. The purchases of agency debt announced (with the sugges-
tion of Treasury purchases to follow) had an insignificant impact on Treasury yields, but did
raise S&P 500 returns. This decomposition suggests that the finding in Krishnamurthy and
Vissing-Jorgensen (2011) that this QE1 announcement (containing little new information)
had large effects on Treasury yields may be due to their event-study not accounting for the
effects of the Fed Funds shock. The March 2009 announcement is one of the most notable
of the sample, strengthening forward guidance and detailing purchases of mortgage-backed
securities (MBS), long-term Treasuries, and agency debt (QE1). Accordingly, the forward
guidance shock significantly lowered all longer rates, the asset purchase shock significantly
lowered Treasury yields, and both significantly boosted the S&P 500. The November 2010
announcement introducing further purchases of longer-term Treasuries, QE2, failed to reg-
ister a significant effect on any variable. However, this announcement illustrates the need
for announcement-specific decompositions. 5-year and 10-year Treasury yields moved in
opposite directions throughout the afternoon, so any decomposition of those rates treating
the dominant shock as QE2 must allow the asset purchase shock to have opposite signed
effects on those variables. However, after most asset purchase shocks, those yields move in
the same direction. The difference is likely due to the different securities targeted by the
announcements (see e.g., Anderson and Englander (2010) for market reaction to the QE2
announcement). These facts cannot be reconciled with a single, constant decomposition of
asset prices into underlying shocks. Consequently, both RSW and Swanson (2020) record
the QE2 shock as contractionary.

August 2011 introduced calendar-based guidance, and accordingly the forward guidance
shock had significant effects on the 8-quarter ED rate, the 5-year Treasury yield, and the S&P
500. The following meeting in September 2011 announced “Operation Twist”, selling shorter-
term Treasuries to buy longer-term Treasuries; the asset purchase shock significantly lowered
the 10-year Treasury yield, while not significantly changing shorter rates. This dichotomy
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presents another example of how a single decomposition cannot characterize the relationship
between interest rates and asset purchase shocks for all announcements. Calendar-based
guidance was extended in January 2012, but this did not significantly impact interest rates.

September 2012 again extended calendar-based guidance, as well as MBS purchases, but
the single shock registered on this day is actually a Fed information shock, since rates in-
creased for much of the afternoon along with the S&P 500. Indeed, the September statement
paints a more positive picture of the economy than at the preceding meeting. The December
2012 announcement introduced conditional forward guidance and extended Treasury pur-
chases. Again, however, neither of these shocks appears; instead, a Fed information shock
raised both rates and the S&P 500, significantly so for the 10-year Treasury. September
2013, following the “Taper Tantrum”, announced that the Fed would wait longer still to ta-
per asset purchases, with the asset purchase shock accordingly lowering interest rates . The
announcement also appears to have included an expansionary forward guidance shock.

The December 2013 announcement began the tapering of asset purchases, as widely ex-
pected, resulting in no asset purchase shock. However, a modification to conditional guidance
does seem to have raised the S&P 500. December 2014 introduced language of “patience” with
respect to forward guidance, which had only insignificant effects on markets. Finally, March
2015 provided explicit guidance delaying lift-off from the ZLB, and accordingly sparked a
significant reduction in all rates and an increase in the S&P 500.

While the bar for significance of these movements in interest rates is subjective, I charac-
terize the announcements that appear significant based on the measures I adopt. For forward
guidance shocks, I focus on the response of 8-quarter ED rates, and for asset purchases I
consider both 5- and 10-year Treasury yields. The major forward guidance announcement
in March 2009, (“extended period”), the launch of calendar-based guidance in August 2011,
and the final March 2015 announcement of an additional FOMC cycle at the ZLB pass the
bar. On the asset purchase side, the QE1 announcement of March 2009, Operation Twist
in September 2011, and the September 2013 decision to delay tapering led to significant
decreases in long-term rates.

For forward guidance, this suggests that the revision of calendar-based guidance, once in-
troduced, did not convey significant new information that markets did not already anticipate
in 2012, nor did the switch to conditional guidance change this relationship. Rather, the
introduction of explicit forward guidance, and its extension beyond the point where markets
expected rates to “lift-off” are two episodes that stand out. The latter accords with the
finding of Akkaya et al. (2015) that the potency of forward guidance grows as the distance
of the shadow rate from zero shrinks. With respect to the limited effects of changes in for-
ward guidance, Coenen et al. (2017) (in a cross-country study) find that differential effects
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Figure 2: Historical decompositions of key FOMC announcements

Historical decompositions for the rate series indicated in the left margin with respect to each of the four
shocks. Blue represents the Fed Funds shock, red the forward guidance shock, gold the asset purchase shock,
and purple the Fed information shock. The shaded interval corresponds to 1.96 times the average standard
deviation in the asset price following monetary policy announcements. The vertical lines mark the time of
the announcement and 20 minutes following the announcement, the end of the conventional analysis window.
The black dashed path is the path of the simple change from ten minutes prior to the announcement, the
event study estimate. Units are percentage points. 18



Figure 2b: Historical decompositions of key FOMC announcements (cont’d)

See Figure 2 for notes.
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of different types of forward guidance disappear after omitting observations confounded by
simultaneous asset purchase policies.

For asset purchases, the interest rates affected vary across announcements as the nature of
announcements changes. The full-scale launch of the policy, its continuation (when markets
expected a taper), as well as announcements signaling a change in the focus of purchases,
are among the most impactful moves by the FOMC.

These results also illuminate heterogeneity in the response of equity markets to monetary
policy shocks. Some significant monetary policy shocks do not significantly impact equities
(e.g., September 2011 and September 2013 asset purchase shocks) while some shocks with
no significant impact on interest rates do significantly affect equity prices, like the December
2008 asset purchase shock or January 2012 forward guidance shock. These latter exam-
ples suggest that equity markets may be somewhat more sensitive than interest rates to
largely priced-in or subtle policy revisions. This heterogeneity demonstrates a strength of
announcement-specific decompositions, as well as a downside of using interest rate move-
ments alone (as in RSW) to study unconventional monetary policy shocks.

Bauer et al. (2019) study the effects of monetary policy uncertainty, and argue that
changes in uncertainty around monetary policy shocks can explain why some strongly impact
asset prices, while others do not. Lower uncertainty amplifies the effects of shocks. Among
the key dates discussed above, the announcements that I find to be associated with significant
shocks are precisely those that the authors associate with large falls in monetary policy
uncertainty. This suggests that their story of uncertainty explaining which shocks are most
impactful is consistent with my results.

The preceding analysis highlights how my methodology merges appealing features of
preceding papers into a single approach. In particular, Krishnamurthy and Vissing-Jorgensen
(2011) compare the effects of QE1 and QE2 announcement-by-announcement, but do so
under the implicit assumption of a single shock dimension, since they examine simple changes
in asset prices. Often, the change in an asset price used by such approaches is larger than
that due to any one shock, due both to the presence of multiple contributing shocks and
the fact that the prices generally contain idiosyncratic noise not contained in the common
component of the data. On the other hand, Swanson (2020) allows for simultaneous guidance
and asset purchase shocks during the ZLB period, but assumes constant relationships from
one announcement to the next. My results allow for up to four dimensions of monetary
policy news, including Fed information shocks, and time-varying effects.

These results also illustrate the relative merit of focusing on end-of-day responses, similar
to RSW, relative to the conventional 30-minute window.3 Not all movements in asset prices

3RSW consider a 2-hour window from 15 minutes prior to an announcement to 1:45 following. For a
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significant at the 30-minute window remain significant by market close. For example, the
initial effect of the December 2014 forward guidance shock is reversed by the end of the day.
It is unlikely that interest rate responses that do not even persist to the close of markets
are relevant when studying macroeconomic effects, since there is simply no time for them to
be transmitted to the broader economy. Allowing for developments outside the conventional
30-minute window is also essential to account for additional revelation or interpretation
during and following press conferences. Historically, considering wider windows (to the end
of the day) is considered risky, due to the potential of contamination by noise from other
news sources. However, this concern is mitigated under my approach, since, after taking the
common component of the underlying data to remove idiosyncratic noise, I also discard one
or more identified “noise shocks” for many dates where ks > kmp.

In general, these conclusions are borne out over the remaining 92 announcements con-
sidered. Table 4 in Appendix E.1 presents summary statistics across all 104 scheduled
announcements. The results confirm the conclusions noted above. First, computing simple
changes in reference interest rates to measure shocks (a simple event study approach) would
be misleading, since these changes are considerably larger, on average, than the decomposi-
tions allowing for multiple shocks and removing idiosyncratic noise. Second, they affirm that
the horizon at which the effects of the shocks are evaluated matters. On average, the effects
are larger by the end of the day, although there is heterogeneity across announcements.

These results also re-affirm that the assumption of time-invariant relationships between
asset prices and shocks should be avoided. Figure 7 in Appendix E.1 plots the end-of-
day impact of the asset purchase shock on the 5-year Treasury yield, normalized by the
impact on the 10-year Treasury yield, across announcements. The relative impact can move
dramatically from one announcement to the next, even taking opposite signs. The opposite
signs are largely clustered between August 2009 and January 2019, during QE1 and QE2.
These results demonstrate that the character of shocks is not necessarily consistent from one
announcement to the next, and neither is their effect, as argued by Faust et al. (2007).

3.3 Robustness and placebo tests

In this section, I describe robustness of the results for key announcement dates to an al-
ternative identification approach and the results of a placebo test based on days containing
important macroeconomic news, but no monetary policy announcement.

typical 2:00pm announcement, this 1:45-3:45 window is similar to my 1:50-4:01 window.
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Alternative identification of key announcement dates

The baseline empirical approach relies on identification via time-varying volatility, exploiting
the variation in the volatility of monetary policy shocks from one minute to the next. By
virtue of relying on this particularly high-frequency information, this methodology may
be susceptible to contamination by noise, even though several checks are detailed above.
Thus, I consider an alternative form of identification via heteroskedasticity, based on the
average variance of shocks across regimes, not minute-by-minute variation, following Rigobon
(2003). I define two variance regimes, the conventional 30-minute event window around the
announcement, which should be of highest volatility, and the remainder of the afternoon,
which should generally be of lower volatility, even as markets continue to process monetary
policy news. With this new approach, I repeat the analysis of my baseline model. For ease
of comparison, I take ks to be the same as under the baseline; note, however, that this
regime-based approach generally offers less identifying variation (since it leaves variation
within regimes on the table), and the identification test of Lütkepohl et al. (2020) indicates
fewer identifiable shocks. Thus, the results may not be reliable as stand-alone findings, but
can still serve to corroborate my baseline.

Figure 8 in the Appendix plots the results for the 12 key announcement dates. While there
are some minor differences in the paths, the shocks found to be significant in the baseline
model have virtually the same profiles under this alternative identification scheme. The one
exception is the asset purchase shock associated with the delay of tapering, in September
2013, which now barely misses significance. The December 2012 shock is also interpreted as a
forward guidance shock instead of a Fed information shock, but remains far from significant,
in any case. These results suggest high-frequency noise has minimal impact on identification
in the baseline model, since the key findings are essentially unchanged using this alternative
approach, which does not exploit high-frequency variation in shock variances.

Placebo test

My identification approach serves to decode movements in asset prices into monetary policy
shocks on announcement days, but it is possible that the shocks it recovers are false positives,
possibly reflecting other sources of news or noise. To investigate this possibility, I conduct
placebo tests by estimating my baseline model on days with no monetary policy shocks. To
make this as stern a test as possible, I select the days with the 10 largest macroeconomic
release surprises, as measured by Bloomberg consensus forecasts, during my sample. Thus,
these are days with very large macroeconomic news shocks, but no monetary policy shocks.
I estimate the model from 10 minutes prior to the relevant release until market close, as if
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the release were a monetary policy shock.
Table 5 in Appendix E.1 reports the hypothetical end-of-day responses of the front Fed

Funds future to the so-called “Fed Funds” shock, the 8-quarter ED rate to the “forward
guidance” shock, the 10-year Treasury yield to the “asset purchase” shock, and the S&P 500
return to the “Fed information” shock. Notably, 5 of the 12 labeled shocks across the 10 days
are deemed to be Fed information shocks, the criterion for which is, after all, compatible with
macroeconomic news in general. These include the only significant shock. The responses
to the putative policy shocks (Fed Funds, forward guidance, and asset purchases) are very
small, below 3 basis points (bp), lower than the average across all actual monetary policy
announcements, and insignificant. Note that on some of these dates there were multiple
major news events, and it is plausible that some combination of the news from these releases
could have the profile of a monetary policy shock (driving interest rates and the S&P 500
in opposite directions). Figure 9 in the Appendix plots the full historical decompositions
for each of these placebo dates. Overall, these results show that even the largest non-
monetary macroeconomic surprises generally do not generate shocks that masquerade as
active dimensions of monetary policy, instead appearing as news shocks. Those that are
nevertheless labeled as monetary policy shocks are almost always of negligible size.

4 The effects of unconventional monetary policy

In the previous section, I computed announcement-specific measures of the response of asset
prices to monetary policy shocks. My methodology allowed me to consider each date sepa-
rately. I now turn to more conventional analysis of the effects of monetary policy, merging
the responses into a timeseries of monetary policy shocks. I first discuss the properties of this
timeseries, comparing it to leading alternatives. Next, I estimate the effects of the shocks
on an array of financial variables. Finally, I estimate the response of macroeconomic aggre-
gates to my shocks and investigate the features that drive differences relative to previous
approaches.

4.1 A new monetary policy shock series

While the preceding comparison of the decompositions for notable announcements yields
interesting results, many questions can only be answered after aggregating these findings
into a timeseries of inter-announcement shocks. To measure the shocks on each day, I use
the decomposition at market close for a relevant reference price: the front Fed Funds future
rate for Fed Funds, the 8-quarter ED rate for forward guidance, the average of the 5- and
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Figure 3: Time-series of shock measures

Timeseries of the monetary policy shocks based on end-of-day historical decompositions of reference prices
(blue) and Swanson (2020) monetary policy shocks (red). Units are percentage points of the reference series.
Large fluctuations that correspond to notable announcements or statement features are labeled.

10-year Treasury yields for asset purchases, and the S&P 500 return for Fed information.
These values form a timeseries of 104 announcement dates.

Figure 3 plots the timeseries, annotated with important historical events. For comparison,
I plot the shock series of RSW and Swanson (2020).4 The behaviour of the new shocks
accords with a narrative account. There are large realizations for the Fed Funds shock prior
to the ZLB, and then minimal movement until just before lift-off in December 2015. The
largest forward guidance shocks generally correspond to the most notable episodes. The
most puzzling feature is some fluctuation in the asset purchase shock immediately prior to
asset purchases entering the policy discourse in the fall of 2008. However, the Treasury had
begun to purchase MBS at the beginning of September 2008, with some calling on the Fed
to enter asset markets, in the midst of the Lehman collapse.

Broadly speaking, the shock series are similar to those estimated by Swanson (2020) and
RSW. For the Fed Funds shock, the Swanson and RSW series register some rate cuts in
2007 and 2008 as larger shocks. For forward guidance, the Swanson and RSW series notably
allocate most of the first key announcement, in March 2009, to asset purchases instead;
Swanson records his largest guidance shock two meetings earlier, December 2008, which I find

4I compute the RSW shock series based on those authors’ methodology and replication data using the
sample 2007-2015.

24



to be well-characterized as a Fed Funds shock. One of his largest forward guidance shocks is
associated with the announcement of a 1-quarter extension of QE1 (September 2009); there
is no guidance shock on that date in my series. RSW register large shocks in June and
September 2008 missing from both other series; the latter appears to be one I identify as
a Fed information shock. The results agree on a substantial forward guidance shock with
the introduction of calendar guidance (August 2011). However, my series does not register
the others’ puzzling contractionary shock at the next meeting, which was dominated by
Operation Twist. This is likely a distortion due to the fact that time-invariant decompositions
cannot reconcile Treasury yields moving in opposite directions for this asset purchase shock.
The series agree on a contractionary shock with updated guidance following unemployment
reaching 6.5% in March 2014, with similar shocks at subsequent meetings. Finally, the
“increase unlikely” shock in May 2015 appears across series.

Turning to asset purchases, my series registers the aforementioned possibly surprising
contractionary shock in September 2008, before the launch of QE1, which appears to a
lesser extent in RSW, but is absent from the Swanson series.5 All three series agree that
the March 2009 QE1 announcement was the most important. The November 2010 QE2
announcement registers as contractionary for both Swanson and RSW, while expansionary
for my shocks, as discussed in detail in the preceding section. Operation Twist is also notable
across series. Swanson and RSW pick up a large contractionary “taper tantrum” shock in
June 2013, puzzling since Bernanke’s testimony that provoked the tantrum occurred on May
22nd. If anything, the June 19th announcement should have provided final, expansionary
confirmation of no taper. My series has no such shock. Finally, the series agree on an
expansionary shock with the announcement that there would be no immediate taper in
September 2013. While the series are largely similar, there are several key differences for
narratively important episodes.

4.2 Daily responses of financial variables

I now employ my shock series to explore the effects of monetary policy on financial variables
at daily frequency. For variables not included in Ym, regressions take the form

∆rd = ν + ψεHFd + ud, d = 1, . . . , D, (8)

where d indexes announcement dates, ∆rd is the daily change in the asset price, and εHFd are
the shocks described in Section 4.1, with HAC standard errors. For asset prices included in

5This shock appears the day after the Lehman bankruptcy, so may represent some dimension of news
that does not fit the quartet I study.
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Ym, the historical decompositions already provide an end-of-day identified response to each
shock on a given day; I simply regress these on the shocks εHFjd separately. Table 2 reports
the results for the full sample, with results for the ZLB period in Appendix E.2. I henceforth
flip the sign of the Fed Funds, forward guidance, and asset purchase shocks, so a positive
shock is expansionary, lowering the reference rate, and leave the sign of the Fed information
shock unchanged, so a positive shock represents optimistic news, raising the S&P 500.

The Fed Funds shock significantly lowers Treasury rates from 6-month to 10-year ma-
turities, but has little effect on other financial variables, except reducing economic policy
uncertainty (EPU, Baker et al. (2016)) with marginal significance. This is unsurprising,
given that even the full sample is dominated by the ZLB. The forward guidance shock has
significant effects almost across the board. It increases TIPS-implied inflation expectations,
lowers yields and raises spreads on corporate debt, lowers the VIX and raises economic policy
uncertainty, lowers Treasury yields for all maturities over 2 years, and boosts the S&P 500.
The same is true during the ZLB subsample, except that there is now a significant effect even
on shorter Treasury yields, but no longer a significant effect on either uncertainty measure.
Turning to asset purchases, there is a significant increase in corporate spreads, a reduction
in economic policy uncertainty, a decrease in all Treasury yields, and an increase in the S&P
500. In the ZLB subsample, there is also a significant reduction in corporate yields. The Fed
information shock significantly increases both corporate and Treasury yields, while reducing
both uncertainty measures, the VIX significantly so. During the ZLB subsample, there is
also a significant increase in TIPS-implied inflation expectations, but no longer a significant
response of Aaa yields.

All of these results largely accord with the expected effects of the policies and the ex-
isting literature. For the ZLB period, Swanson (2020) also finds significant effects for asset
purchases on corporate yields and spreads and Treasury yields for maturities over 2 years.
He finds an effect of forward guidance on corporate spreads and all Treasury yields; however,
he estimates an insignificant relationship between forward guidance and corporate yields, in
contrast to my result. My responses to asset purchases, particularly those for Treasury and
corporate yields, generally also align with those of Krishnamurthy and Vissing-Jorgensen
(2011). The effects of forward guidance on Treasury and corporate yields match those for
the “path factor” of Campbell et al. (2012).

The finding that both forward guidance and asset purchases lower uncertainty mirror
results in Coenen et al. (2017). It is interesting that forward guidance appears to lower
the VIX, a market-based measure of expected volatility, while asset purchases lower EPU,
which is a more “macro” measure, including newspaper coverage and forecast disagreement.
This distinction suggests that the effects of forward guidance might be more concentrated
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Table 2: Financial market responses to monetary policy

TIPS
spread

Aaa yield Baa yield Aaa
spread

Baa
spread

VIX EPU

εFF 0.47 –0.34 –0.28 –0.10 –0.04 –12.46 −1368.02∗

εFG 0.17∗ −0.41∗∗ −0.41∗∗ 0.53∗∗∗ 0.53∗∗∗ −17.20∗∗ 359.01∗

εAP 0.66 –0.55 –0.70 0.72∗∗∗ 0.57∗ 14.92 −1463.81∗∗∗

εFI 0.02 0.05∗ 0.06∗∗ –0.01 0.00 −2.95∗ –5.33

3-m
Treasury

6-m
Treasury

2-y
Treasury

5-y
Treasury

10-y
Treasury

S&P 500

εFF –0.23 −0.79∗∗∗ −1.57∗∗∗ −1.52∗∗ −1.11∗∗ –0.20
εFG –0.06 –0.12 −0.54∗∗∗ −0.84∗∗∗ −0.59∗∗∗ 5.07∗∗∗

εAP −0.04∗∗ −0.12∗ −0.51∗∗∗ −1.00∗∗∗ −1.00∗∗∗ 6.02∗∗∗

εFI 0.00∗ 0.02∗ 0.05∗∗ 0.06∗∗∗ 0.04∗∗∗ –

For the external variables (first row) in each panel, coefficients are estimated following equation (8). For
the asset prices included directly in the model (second row), I regress the end-of-day decomposition with
respect to a given shock on the respective shock value, εHF

jd . Coefficients can be interpreted as the response
in percentage points to an expansionary shock that changes the reference price by 1%. The sample spans
2007-2019. HAC standard errors are calculated following Lazarus et al. (2018). Significant results are starred
at the 10%, 5% and, 1% levels.

in financial markets than those of asset purchases, as I explore in the next section.
The fact that forward guidance, and not asset purchases, increases implied inflation

expectations is also of interest, given the widespread media coverage of inflationary risks
to large-scale balance sheet expansion. Finally, the results for the Fed information shock,
identified in a way that separately controls for all relevant dimensions of monetary policy,
are original, and all accord with theory, boosting indicators tracking economic expectations
and lowering uncertainty, while raising interest rates.

4.3 Low-frequency effects on the macroeconomy

While financial series are available at high frequency, the macroeconomic aggregates of ulti-
mate importance to central banks are only available at lower frequencies. As a result, little
previous work has examined the real effects of unconventional policy shocks in a unified
manner. Indeed, neither Swanson (2020) nor RSW examine the response of non-financial
variables. In this section, I compute the dynamic responses of key macroeconomic variables
to unconventional policy shocks.

I focus my analysis on PCE inflation, unemployment, and industrial production growth.
To this point, relatively little work has assessed these impacts, with Baumeister and Benati
(2013), Gambacorta et al. (2014)), Lloyd (2018), and Inoue and Rossi (2020) being notable
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exceptions. However, as discussed in the introduction, none of these papers has separated
and simultaneously identified interpretable forward guidance and asset purchase shocks.

I adapt my announcement-frequency shock measures to a monthly timeseries, yielding
156 observations, indexed by r. For a dependent variable, x, I compute impulse response
functions using local projections of the form

xr+h − xr−1 = αh + πh0 ε
HF
r +

6∑
l=1

πhl ε
HF
r−l +

3∑
s=1

κh∆Xr−s + uhr , h = 0, 1, . . . , 12, (9)

controlling for the previous six months’ worth of monetary policy shocks and the prior
quarter’s monthly macroeconomic aggregates in ∆Xr−s (inflation, unemployment changes,
industrial production growth, and changes in the Fed Funds rate). To focus on the period
during which unconventional policy was most active, my baseline sample spans 2008-2017,
120 observations. The coefficient of interest is the vector πh0 , the effects of month r shocks at
r+h. I focus on horizons up to one year, given the limited sample length, and compute HAC
standard errors. I now assume constant parameters (e.g., πh0 ), as does virtually the entire
extant literature; doing so is necessary due to the nature of the exercise and the sample
length. However, my shocks, εHFr , were recovered without imposing similar assumptions.

Figure 4 plots the dynamic responses of inflation, unemployment, and industrial produc-
tion to a one standard deviation expansionary impulse to each shock, with 95% confidence
intervals. Neither the Fed Funds nor forward guidance shock has a significant effect on
inflation. In contrast, an asset purchase shock (one that raises 10-year Treasury yields by
about 3 bp) significantly increases inflation from the second month onwards by up to about
7 bp. The Fed information shock has no significant effect. Turning to unemployment, the
Fed Funds shock again has no significant effect, and the forward guidance shock is on the
edge of significance at a single horizon. As before, the asset purchase shock has a significant
effect, lowering unemployment by up to 17 bp with a persistent effect from 3 months out. As
for inflation, the Fed information shock has no significant effect. Finally, a Fed Funds shock
(one that changes expectations of the Fed Funds rate by about 2 bp) does have an impact
on industrial production, significant with a maximum effect of about 36 bp from 10 months.
This effect is driven by the transition to the ZLB and later rate hikes included in the baseline
sample; the effect disappears using a strict ZLB sample. The forward guidance shock has no
effect. On the other hand, the asset purchase shock significantly raises industrial production
from impact through 10 months, with an effect peaking at about 24 bp. As before, the Fed
information shock has no significant effect. The finding that the effects of forward guidance
do not extend from financial markets to the real economy was possibly foreshadowed by the
earlier finding that it impacted the VIX but not the EPU index.
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Figure 4: Dynamic response of macroeconomic aggregates

Impulse responses are calculated via local projection as in equation (9) using monthly data and the sample
January 2008 to December 2017 and the baseline shocks. Responses are scaled to a one standard deviation
expansionary impulse. 95% HAC confidence intervals are calculated following Lazarus et al. (2018).

I explore the sensitivity of these findings along several dimensions. These results are
available in Appendix E.3. Extending the estimation sample to span 2007-2019 reduces
the impact of the asset purchase shock on inflation, such that it becomes insignificant,
while the impacts on unemployment and industrial production are essentially unchanged.
The Fed information shock also significantly increases industrial production in this longer
sample. Adding unscheduled announcements leaves the effects of asset purchase shocks
qualitatively similar, although the impact on industrial production is larger. Omitting the
asset purchase shock in September 2008, discussed above, (or treating it as forward guidance)
leaves the results largely unchanged, although the industrial production response is less
significant. I also consider shocks based on the decompositions identified using a regime-
based heteroskedasticity argument described in Section 3.3. Recall that these decompositions
look quite similar to the baseline on the key dates analyzed above. However, that is not
the case for less prominent announcements, where the volatility changes are smaller and
thus do not properly identify the model. As a result, the impulse responses do look quite
different, with the effects of asset purchases vanishing. This discrepancy demonstrates that
the additional identifying variation within variance regimes can have important consequences
for estimates.

I have proposed an econometrically and computationally intensive approach to recovering
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Figure 5: Dynamic response of macroeconomic aggregates: Rogers et al. (2018) shocks

Impulse responses are calculated via local projection as in equation (9) using monthly data, the sample
January 2008 to December 2015, and shocks computed using the methodology of Rogers et al. (2018) and
their replication data. Responses are scaled to a one standard deviation expansionary impulse. 95% HAC
confidence intervals are calculated following Lazarus et al. (2018). The dash-dot line is the baseline response.

monetary policy shocks, so it is natural to ask what has been gained relative to simpler
approaches. I first consider the RSWmethodology, recursively ordering wide-window changes
in the front Fed Funds future rate, the 4-quarter ED rate, and 10-year Treasury futures
over a wide window similar to mine to recover Fed Funds, forward guidance, and asset
purchase shocks. Figure 5 plots responses to these shocks, with the black dash-dot line my
baseline responses. Using this simple recursive identification approach, the effects of asset
purchase shocks disappear, with an inflation increase following Fed Funds shocks the only
significant effect. Augmenting these shocks with my Fed information series leaves the effects
of unconventional policies little changed, but does eliminate the Fed Funds response. These
results show that allowing asset purchase shocks to impact expectations of future short rates,
to accommodate the signaling channel highlighted by Krishnamurthy and Vissing-Jorgensen
(2011), may be important. My previous findings on the time-varying effects of asset purchase
shocks across the yield curve also suggest that focusing only on the 10-year rate may miss-
measure some key announcements. Although the shock series appear similar in Figure 3, the
discrepancies discussed for notable announcements seem to strongly impact responses.

I next consider the Swanson (2020) shocks, with responses in Figure 6. The results are
similar in some respects, but expose important differences. First, the role of asset purchases
broadly aligns, although the point estimates are generally larger, up to a factor of more than
2 for industrial production. However, the response of unemployment is no longer significant.
Further, the forward guidance shock is shown to have a puzzling contractionary effect on
industrial production, significant through 5 months, at a 23 bp reduction. The Swanson
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Figure 6: Dynamic response of macroeconomic aggregates: Swanson (2020) shocks

Impulse responses are calculated via local projection as in equation (9) using monthly data, the sample
January 2008 to December 2017, and the Swanson (2020) shocks. Responses are scaled to a one standard
deviation expansionary impulse. 95% HAC confidence intervals are calculated following Lazarus et al. (2018).
The dash-dot line is the baseline response.

responses are not as robust to an extended sample (January 2007 - June 2019), for which
the effect of asset purchases on inflation and industrial production loses significance at most
horizons, and the Fed Funds shock has a significant impact on inflation from one month
onwards. Adding unscheduled announcements, the response of inflation to asset purchases
is diminished, and the Fed Funds shock appears to have significant contractionary effects,
unlike using my shocks. These additional specifications are reported in Appendix E.3.

A major difference in the methodologies is my inclusion of a Fed information shock. Sim-
ply augmenting the three Swanson shocks with my Fed information shock does little to align
the responses, as shown in Appendix E.3. I thus investigate which particular episodes drive
the difference in responses, by determining the dates for which substituting my shocks for
Swanson’s shocks has the largest effect. September 2015 and March 2016 are most influential
for the puzzling contractionary effect of forward guidance on industrial production. Septem-
ber 2015 provided an expansionary Fed Funds shock, with no lift-off from the ZLB when
many expected it. There was no revision to forward guidance-related language. However,
despite longer interest rates and equities both falling, Swanson’s decomposition characterizes
the remaining variation in this episode as an expansionary forward guidance shock (of nearly
2 standard deviations), while I classify it, more naturally, as a Fed information shock. In
March 2016, in the absence of any revisions to forward guidance, my historical decomposi-
tions make clear that the paths of long interest rates are well-explained by the Fed Funds
shock (no rate hike materialized), while Swanson registers a more than 2 standard deviation
forward guidance shock. The other major discrepancy is the scale of the industrial produc-
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tion response to asset purchases, with the Swanson shock’s effect twice the size of mine;
this result is driven by two key announcements, March 2009 and September 2013. While
March 2009 constitutes one of the largest forward guidance and asset purchase shocks for
both approaches, Swanson finds the asset purchase shock to be about three times the size
of the forward guidance shock (in standard deviation terms), while I find them to be of
comparable magnitude. Thus, his shocks allocate more of the following stimulus to asset
purchases. September 2013 delayed the widely-expected tapering of asset purchases; our
shocks differ on how large a forward guidance effect accompanied this shock, with Swanson
again finding a smaller guidance shock, and thus attributing more of any subsequent stim-
ulus to asset purchases. These episodes highlight how differences in the interpretation of
key announcements have strong impacts on estimates of their macroeconomic effects. Which
characterization of these announcements is more credible is largely subjective. However, the
preceding forward guidance results provide evidence that accounting for the Fed information
effect while computing the shocks can be important and that my time-varying approach can
help to minimize spurious shocks.

Finally, I examine the role of the end-of-day horizon versus the standard 30-minute
window in measuring my shocks (Appendix E.3). With this shorter window, the Fed Funds
shock becomes more prominent, during a period dominated by the ZLB, with significant
expansionary effects on both inflation and industrial production. Asset purchases retain some
effect on industrial production and unemployment, although significant at fewer horizons.
The point estimates are also smaller for inflation and unemployment. As was the case for
the Swanson shocks, there is a significant contractionary effect for forward guidance on
industrial production for 4 months. Examining the shocks themselves, the Fed Funds shocks
are far more similar to those under the baseline than are the unconventional policy shocks.
Given that the Fed Funds decision is generally a very discrete, well-anticipated, up-or-down
announcement, it is much easier for markets to fully process and incorporate that shock
within the 30-minute window. On the other hand, unconventional policy instruments are
much more complicated and evolution from one announcement to the next often depended on
the precise text of a statement or discourse of a press conference. Indeed, the longer window
is essential to capture revelations or reinterpretations during or following press conferences,
and accurately measure these shocks.

The preceding analysis relates my findings to hypothetical results using existing shocks,
but it remains to compare my results to those actually obtained in the literature. Inoue and
Rossi (2020) do not report mean responses for the “unconventional” period, instead plotting
responses for selected announcements. They break down the overall effects of monetary
policy as responses to slope and curvature shocks identified using Nelson and Siegel (2002)

32



loadings. For both output and inflation, they find that the slope factor drives responses,
except in 2012, when the influence of the curvature factor increases. The authors argue
that the curvature factor can be seen as a forward guidance shock. These findings do not
align with my results, which indicate that, over the same period, a single shock (the asset
purchase shock) has pronounced economic effects, while the others do not. It is difficult
to compare the results further, since their statistically-identified factors do not have clear
economic interpretations along the lines of the four dimensions of monetary policy I consider.

Gambacorta et al. (2014) focus on identifying the effects of balance sheet size shocks in a
cross-country panel VAR. Their findings indicate significant stimulatory effects for the asset
purchase dimension of policy, peaking around six months. The output response is about
three times that of inflation, roughly according with my finding of an up to four times larger
response of industrial production.

Finally, Gertler and Karadi (2015) find suggestive evidence that forward guidance serves
to amplify shocks to the current policy rate. They do so by comparing responses using the
front Fed Funds future as an instrument for the Fed Funds rate to their baseline, which
uses three-month ahead futures to instrument for the 1-year Treasury yield. However, their
sample runs from 1991-2012, so is dominated by observations outside of the ZLB. Thus, their
evidence that forward guidance can offer additional stimulus may be compatible with my
finding that it did not have a pronounced impact during the Great Recession. Indeed, since
they argue that forward guidance may be effective by augmenting policy rate shocks, the
discrepancy accords with the fact that the Fed Funds rate was at the ZLB, so policy rate
shocks were not forthcoming.

Previous work has additionally examined the effect of unconventional policy shocks on
the expectations of professional forecasters (e.g., Campbell et al. (2012); Nakamura and
Steinsson (2018)); the expectations channel is theoretically important to the transmission
of unconventional monetary policy (see e.g., Eggertsson and Woodford (2003); McKay et al.
(2016)). A companion paper, Lewis et al. (2019), conducts similar analysis, focused instead
on consumer sentiment. My results also offer some early evidence of whether the effects that
Campbell et al. (2012) and Nakamura and Steinsson (2018) find for Fed information shocks
on forecasts extends to real activity. While my results are generally null, I do find that the
Fed information shock has a robustly positive effect on industrial production. This effect is
significant at the 90% level for several specifications.

33



5 Conclusion

I use intraday data on asset prices to recover high frequency timeseries of monetary policy
shocks on announcement days using announcement-specific decompositions. This flexible
approach to identifying the effects of news shocks could be adapted to many other con-
texts, incuding macroeconomic releases or corporate news. I identify the decompositions
based on time-varying volatility. I recover four dimensions of monetary policy shocks: Fed
Funds, forward guidance, asset purchase, and Fed information. Because I am able to iden-
tify different decompositions for each announcement, I can compare the effects of shocks
directly from one announcement to the next. I find that a small handful of notable FOMC
announcements of unconventional measures sparked significant monetary policy shocks. In
particular, the leading announcements are the strengthening of forward guidance (March
2009), the introduction of calendar-based guidance (August 2011), forward guidance pro-
longing the ZLB (March 2015), the dramatic expansion of QE1 (March 2009), Operation
Twist (September 2011), and the decision to delay tapering (September 2013). The fact that
these announcements are dominated by the launch of new policies or unexpected extension
of existing policies indicates that the utilization of these tools, as opposed to more subtle
adjustments of policies or statement language, is what matters to markets. I also find that
conclusions based on simple event-studies or standard 30-minute changes in asset prices may
be unreliable, on some days overstating effects, and on some days understating them.

At the daily frequency, Treasury and corporate yields fall significantly, corporate spreads
rise, the S&P 500 increases, and measures of uncertainty fall with both forward guidance
and asset purchase shocks. Fed information shocks raise yields and lower uncertainty. Most
importantly, I find substantial macroeconomic effects. Inflation, unemployment, and indus-
trial production display significant dynamic responses to asset purchase shocks, but not to
Fed Funds or forward guidance shocks. While I obtain broadly similar responses using the
Swanson (2020) shocks, there are key differences, attributable to novel features of my identi-
fication approach. Taken together, these results offer novel evidence on the macroeconomic
effects of the Federal Reserve’s unconventional monetary policy, stratified by policy dimen-
sion, while controlling for information effects. They suggest that asset purchase policies in
particular were effective with regard to a number of macroeconomic outcomes.
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A Proof of Proposition 1

Proposition 1. Under the model described by (4) and (5), H inf
d , infeasibly identified from

repeated samples of ηd, is identical to Hd.

Proof. By definition, it follows that

Pt − Pt−δ =

∫ t

0

η (s) ds−
∫ t−δ

0

η (s) ds = Hd

∫ t

t−δ
ε (s) ds = Hdεd.

Any valid identification scheme for H inf
d based on moments of ηd

(
= H inf

d εd

)
(computed

from infeasible repeated samples) must necessarily recover a unique linear mapping between
ηd and εd; since Hd provides such a mapping, it must be that H inf

d = Hd.

B Identification results in continuous time

In this section, I derive population moments for returns under the model (4) and (5) as
limits of discrete moments, following an infill argument. I then show that simple sample
averages of discrete returns converge almost surely to the same moments of the continuous
return process. Together, these results show that the moments used for identification (the
population continuous time moments) are consistently estimable by simple non-parametric
sample averages. To establish consistency, I additionally assume that σ2 (t) is ergodic.

B.1 Limiting moments of discrete returns

In a simple generalization from a univariate to multivariate model, it follows from Barndorff-
Nielsen and Shephard (2002) that

E [Mεmε
′
m] = M × E

[
diag

(
σ2
m

)]
= M × ξ/M = ξ,

where ξ is the n× 1 unconditional mean of σ2 (t). It is immediate that E [Mηmη
′
m] = HξH ′.

Turning to the other moment used in the identification argument,

cov
(
σ2
m, σ

2
m−pM

)
= Ω

1/2
D ♦R

∗∗ (pM × 1/M) Ω
1/2
D

where ΩD is a diagonal matrix containing the diagonal of Ω = var (σ2 (t)),

♦R∗∗ (p) = R∗∗ (p+ 1/M)− 2R∗∗ (p) +R∗∗ (p− 1/M) ,
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and

R∗ (t) =

∫ t

0

R (u) du and R∗∗ (t) =

∫ t

0

R∗ (u) du,

where R (u) is the n × n autocorrelation function of σ2 (t). The use of lag pM ensures a
constant time distance, p, even as the distance between observations decreases in M . Using
a Taylor expansion of R∗∗ (s+ t) around s yields

R∗∗ (s+ t) = R∗∗ (s) +R∗ (s) t+
R (s)

2
t2 + o

(
t2
)
.

Then

♦R∗∗ (p) =

(
R∗∗ (p) +R∗ (p)

1

M
+
R (p)

2

(
1

M

)2
)
− 2R∗∗ (p)

+

(
R∗∗ (p)−R (p)

1

M
+
R (p)

2

(
−1

M

)2
)

+ o

((
1

M

)2

+

(
−1

M

)2
)

=
R (p)

2

2

M2
+ o

(
1/M2

)
= R (p) /M2 + o

(
1/M2

)
.

Thus,
cov
(
σ2
m, σ

2
m−pM

)
= Ω

1/2
D R (0) Ω

1/2
D /M2 + o

(
1/M2

)
,

so

cov
(
Mσ2

m,Mσ2
m−pM

)
= Ω

1/2
D R (p) Ω

1/2
D + o (1) = cov

(
σ2 (t) , σ2 (t− p)′

)
+ o (1) ,

and
lim
M→∞

cov
(
Mσ2

m,Mσ2
m−pM

)
= cov

(
σ2 (t) , σ2 (t− p)′

)
.

Applying Proposition 1 from Lewis (2020), it is immediate that

lim
M→∞

cov
(
Mζm,Mζ ′m−pM

)
= L (H ⊗H)G

(
Ω

1/2
D R (p) Ω

1/2
D

)
G′ (H ⊗H)′ L′,

where ζm = vech (ηmη
′
m) and L and G are elimination and selection matrices of zeros and

ones.
A similar approach, instead taking an expansion around s = 0, shows that

lim
M→∞

var
(
Mσ2

m

)
= Ω.
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B.2 Consistent estimation of continuous time moments

In this section, I show that simple (rescaled) sample averages of equally spaced returns
are consistent for the population moments used for identification, as in large−T settings.
In particular, it is not necessary to use a stratified approach, first estimating variances
using a local average, and then estimating moments of those estimated variances (as in e.g.,
Barndorff-Nielsen and Shephard (2002)).

A (rescaled) sample average of M 1/M−spaced squared returns converges almost surely
to HξH ′, the mean of σ2 (t). Since ηm = Hεm, and H is invertible, it suffices to show that
a sample average of εmε′m converges almost surely to diag (ξ). In particular,

1

M

M∑
m=1

Mεmε
′
m =

1

M

M∑
m=1

Mdiag
(
E
[
σ2
m

])
+

1

M

M∑
m=1

M
(
εmε

′
m − diag

(
E
[
σ2
m

]))
= diag (ξ) +

1

M

M∑
m=1

M
(
εmε

′
m − diag

(
E
[
σ2
m

]))
.

The summand in the final expression is mean-zero since it consists of a random variable minus
its unconditional expectation. The variance of Mεmε

′
m is finite as limM→∞ var (Mσ2

m) = Ω

and, conditional on σ2
m, εm is random normal with variance σ2

m. Since σ2 (t) is assumed to be
ergodic and increments of Brownian motion are independent, applying the ergodic theorem
(e.g., Karlin and Taylor (1975)) to the sample average shows that it converges almost surely
to 0. Thus,

1

M

M∑
m=1

Mεmε
′
m

a.s.→ diag (ξ) + 0 = diag (ξ) .

Therefore,
1

M

M∑
m=1

Mηmη
′
m

a.s.→ Hdiag (ξ)H ′.

Next, I show that a sample autocovariance of εm converges almost surely to the autoco-
variance of σ2 (t) at distance p, Ω

1/2
D R (p) Ω

1/2
D . Note that vec (ηmη

′
m) = vec (Hεmε

′
mH

′) =

(H ⊗H) vec (εmε
′
m). Thus, consider the (rescaled) pM sample autocovariance of vec (εmε

′
m),

1

M

M∑
m=pM+1

M2vec (εmε
′
m) vec

(
εm−pMε

′
m−pM

)′−( 1

M

M∑
m=1

Mvec (εmε
′
m)

)(
1

M

M∑
m=1

Mvec (εmε
′
m)

)′
.

The sample average in the second term converges almost surely to vec (diag (ξ)), so the
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second term converges to Gξξ′G′. The first term can be decomposed as

1

M

M∑
m=pM+1

M2vec (εmε
′
m) vec

(
εm−pMε

′
m−pM

)′
=

1

M

M∑
m=pM+1

M2E
[
vec (εmε

′
m) vec

(
εm−pMε

′
m−pM

)′]
.

+
1

M

M∑
m=pM+1

M2
{
vec (εmε

′
m) vec

(
εm−pMε

′
m−pM

)′
−E

[
vec (εmε

′
m) vec

(
εm−pMε

′
m−pM

)′]}
The first of these summands can be further decomposed as

M2E

[
vec (εmε

′
m) vec

(
εm−pMε

′

m−pM

)′]
= M2GE

[
σ2
mσ

2′

m−pM

]
G′ �

(
vec
(
E
[
zmz

′

m

])
vec
(
E
[
zm−pMz

′

m−pM

])′)
= M2GE

[
σ2
mσ

2′

m−pM

]
G′ �

(
vnv

′

n

)
= M2GE

[
σ2
mσ

2′

m−pM

]
G′

= Gcov
(
Mσ2

m,Mσ2′

m−pM

)
G′ +Gξξ′G′,

where zj is an n × 1 standard normal random variable and vn = vec (In). The second
summand is clearly mean zero. It follows it has finite variance since σ2 (t) is assumed to
have finite fourth moments and, conditional on σ2

m, εm is random normal with variance σ2
m.6

Using the ergodicity of σ2 (t) and the independence of increments of Brownian motion, the
second sample average converges to zero almost surely. Thus,

1

M

M∑
m=pM+1

M2vec (εmε
′
m) vec

(
εm−pMε

′
m−pM

)′
a.s.→ lim

M→∞
Gcov

(
Mσ2

m,Mσ2
m−pM

)
G′ +Gξξ′G′ + 0

= GΩ
1/2
D R (p) Ω

1/2
D G′ +Gξξ′G′.

6In particular, taking fourth moments of the integral yielding σ2
m and recognizing that the entries of R (t)

are bounded by ±1 delivers the result.
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Finally,

1

M

M∑
m=pM+1

M2vec (εmε
′
m) vec

(
εm−pMε

′
m−pM

)′ −( 1

M

M∑
m=1

Mvec (εmε
′
m)

)(
1

M

M∑
m=1

Mvec (εmε
′
m)

)′
a.s.→ GΩ

1/2
D R (p) Ω

1/2
D G′ +Gξξ′G′ −Gξξ′G′

= GΩ
1/2
D R (p) Ω

1/2
D G′.

This immediately implies that

1

M

M∑
m=pM+1

M2ζmζ
′
m−pM −

(
1

M

M∑
m=1

Mζm

)(
1

M

M∑
m=1

ζm

)′
a.s.→ L (H ⊗H)G

(
Ω

1/2
D R (p) Ω

1/2
D

)
G′ (H ⊗H)′ L′,

as required.

C Details on augmented historical decompositions

It is straightforward to compute historical decompositions of each asset price, Ym, to each
of the ks shocks, εj·. In particular, let the impulse response matrix of Fm to εm at horizon h
be φh. Then the historical decomposition of Fm with respect to εj· is

∑m
h=0 φhιjεm−h, where

ιj is the jth column of the ks × ks identity matrix, and the decomposition of the differenced
data ∆Ỹm is given by Λ

∑m
h=0 φhιjεm−h. Finally, rescaling by σ∆Y (standard deviation of

∆Ym) and cumulating the decomposition gives the value for the data in levels, Ym,

Ψjm =
m∑
s=1

σ∆Y Λ
s∑

h=0

φhιjεs−h. (10)

However, I work with a modified historical decomposition, Ψ̄jm, in order to obtain counter-
factual paths that actually sum to the trajectory of the data in levels, Ym.7 First differences
∆Ym are standardized to ∆Ỹm before computing principal components. While multipli-
cation by σ∆Y in (10) undoes the scaling, it is also necessary to undo the demeaning of
∆Ym. When summing across m to compute Ψjm, cumulating ∆Ỹm responses introduces a
mechanical −µm “wedge”, where µ is the mean of ∆Ym (which was subtracted to compute
∆Ỹm), between Ψjm and Ym. This wedge implies a mechanical drift towards zero, since

7More precisely, I refer to summing to the common component of the path of Ym, since the exact path
of a given variable, Yim, will not be traced out by the first n ≤ 4 principal components of Ym, regardless of
what transformations are adopted prior to computation.
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∑M
m=1 ∆Ỹm = 0. Without adjustment, every historical decomposition would pass near zero

at M , regardless of the value of YM . I thus add a drift term into the decompositions so that,
in aggregate, they match the path of Ym. It is desirable that adding decompositions across
shocks j should sum to the movement in Ym explained by the common component and that
shocks on which Ym places zero weight (through Λ, H, or both) should have a decomposition
value of zero. Simply adding µm back in to all Ψ̄jm would violate both of these conditions.
Instead, I add a total of µm across all shocks j, adding wijmµm to each decomposition Ψijm,
where wijm =

∣∣Ψij(m−1)

∣∣ /∑ks
l=1

∣∣Ψil(m−1)

∣∣. This allocates a portion of the deterministic drift
at each 1-minute interval to each shock path commensurate with its role up to that point in
explaining the movement of Ym.

D Details on shock labeling

Having estimated the ks identifiable shocks, it remains to label the kmp monetary policy
shocks. I do so based on the augmented historical decompositions of the 20 data series
with respect to the ks identifiable shocks. Let Aij = M−1

∑M
m=1 Ψijm be the area under the

the path traced out by the historical decomposition of series i with respect to shock j, and
Āi = M−1

∑M
m=1 Yim the area under the observed path of series i. I measure the share of

movement in series i explained by shock j as

Θij = min
(
Aij/Āi, 1

)
,

bounded above at 1 (which is very rarely a binding condition). I also compute Sij, a measure
of the sign of the response of each series to each shock,

Sij = Sign (Ψij31 + ΨijM) ,

considering both the end of the conventional 30-minute event study window as well as the
market close. I apply a sequence of rules based on Θ and S to label kmp of the ks shocks.

I define a 4× ks matrix-valued criterion function, C (S,Θ), taking values on (−∞, 1] for
each candidate shock and label as follows. For the Fed Funds shock,

CFF,j (S·j,Θ·j) =


1 if ∀i 6= SPX,Θij > 2/3

1
2

∑
i∈{FF1,FF2}

Θij otherwise.

In the first case, if shock j explains over 2/3 of movements in all interest rate series, CFF,j
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is set to its maximum value to strongly favour labeling as the Fed Funds shock; otherwise,
CFF,j is the average of Θij over the two first Fed Funds futures contracts.

For the forward guidance shock,

CFG,j (S·j,Θ·j) =


1 if ∀i ∈ sR,Θij > 2/3

mini∈sED

(
1
[
S

ij
6= SSPXj

])
1
4

∑
i∈{sED,SPX}

Θij otherwise,

where sED = {ED6, ED7, ED8} denotes the set of longer Eurodollar (ED) rates and sR =

{sED, T5, T10}, adding longer Treasury yields. In the first case, if shock j explains over 2/3 of
movements of longer-term interest rates (as proxied by sR), CFG,j is set to its maximum value.
Otherwise, provided that interest rate expectations around the two-year horizon (proxying
for forward guidance) all move in the opposite direction to the S&P 500, as expected for
“Odyssean” guidance, CFG,j is the average of Θij across ED rates near the two-year horizon
and the S&P 500. If rates and the S&P 500 move in the same direction, CFG,j is set to zero.

For the asset purchase shock, I allow for the fact that such policies may move Treasury
yields of different maturities in different directions. If both the 5- and 10-year Treasury move
in the same direction, sT = {T5, T10}. Otherwise, let sT be whichever has larger Θij. Then,

CAP,j (S·j,Θ·j) = max
i∈sT

(
1
[
S

ij
6= SSPXj

]) 1

|sT |+ 1

∑
i∈{sT ,SPX}

Θij,

which, provided that the Treasury yields in sT move in opposite directions to the S&P 500,
as expected for an asset purchase shock, takes the average of Θij over sT and the S&P 500,
and otherwise is equal to zero.

For the Fed information shock,

CFI,j (S·j,Θ·j) = min
i∈sR

(
1
[
S

ij
= SSPXj

]) 1

6

∑
i∈{sR,SPX}

Θij,

which, provided the S&P 500 and all long rates move in the same direction, as expected
for a Fed information shock (see e.g., the identification approach of Jarociński and Karadi
(2020)), is equal to the average of Θij over all long rates and the S&P 500, and otherwise
equal to zero.

Having computed C (S,Θ), I search for the combination of kmp shocks and labels for which
the sum of the corresponding elements of C is maximized, under two additional restrictions.
First, if the front Fed Funds future rate varies by less than a basis point, I restrict there to
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be no Fed Funds shock.8 Second, any selected label-shock pair must correspond to a strictly
positive value of C. In the rare case that this restriction is violated (C does not contain kmp
strictly positive entries in unique row-column pairs), I first label as many shocks as possible
without selecting combinations with weakly negative entries. I then compute an alternative
criterion for the remaining label-shock combinations identical to that above except that it
omits the indicator functions on the sign of rate and equity movements, replacing ΘSPXj with
zero when computing CFG,j and CAP,j (penalizing for the fact that the movement of equities
is in the wrong direction for those shocks) and replaces Θij with zero for those interest rates
moving in the opposite direction to the S&P 500 when computing CFI,j (again penalizing for
the fact that their movement is in the wrong direction). I then label however many shocks
remain using this modified criterion.

E Additional empirical results

This section reports additional empirical results covering the announcement-specific decom-
positions and the responses of financial variables and macroeconomic aggregates to the time-
series of shocks.

E.1 Announcement-specific decompositions

In this section I report details of key announcement dates, provide additional summary of the
decompositions across announcements, and present sensitivity analysis of the decompositions
for key announcement dates.

Table 3 reports details of the content of the 12 key announcements covered in detail in
the text. It is largely copied from Swanson (2020), with 2 announcements added.

Table 4 reports summary statistics across the full set of 104 announcements. The first
panel reports results for the conventional 30-minute window and the second for 10 minutes
prior to an announcement through market close. The results document the fact that examin-
ing simple event-study style changes in relevant asset prices (δYi) would generally overstate
the size of shocks, relative to decompositions taking seriously the role of multiple shocks
for a single asset price, by conflating such shocks. These results also suggest that the scale
of decompositions is generally comparable whether the 30-minute or end-of-day window is
considered. However, this obscures considerable heterogeneity across announcements. The
final columns of each panel indicate the number of announcements passing thresholds of

8If the announcement date is within 5 business days of the expiry of the front contract, I consider the next
month’s contract instead. I make an exception to the “no Fed Funds shock” restriction for two announcements,
for which kmp = 4, despite only very small movements in short Fed Funds futures.
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“economic significance” (using standard deviations of the respective asset prices in the hours
following monetary policy announcements instead of standard errors, given the difficulty of
inference on historical decompositions). This exercise shows that in general there are few
significant shocks, even during this period of novel monetary policy.

Figure 7 displays the relative end-of-day response of 5-year and 10-year Treasury yields to
the asset purchase shock. The 5-year response is normalized by the 10-year response, which
is fixed at 1. This plot shows that there is considerable variation in the relative responses,
including sign changes, commensurate with the different focuses of announcements from one
cycle to the next, often with different impacts on different points on the yield curve.

Figure 8 plots the historical decompositions for the 12 key announcement dates with
respect to intraday shocks identified using the Rigobon (2003) regime-based identification
approach. For ease of comparison, for each announcement I assume that the number of iden-
tifiable shocks is the same as in the baseline; however, formal tests based on Lütkepohl et al.
(2020) suggest that this may not be the case. Broadly speaking, the results are very similar
to the baseline. The key differences are that the asset purchase shock in September 2013,
when tapering was delayed, is no longer significant, and the December 2012 Fed information
shock is relabeled as a forward guidance shock (the introduction of calendar based guidance).

Figure 9 plots historical decompositions for 10 placebo dates. These dates are chosen to
correspond to the 10 largest macroeconomic release surprises (measured using Bloomberg
consensus forecasts) during the sample. This poses a stern test, as these are certainly major
news events, which may impact interest rates and equities, but not monetary policy shocks.
One would expect that shocks will exist on these days, but they should either be labeled as
“Fed information shocks”, which after all share the characteristics of macroeconomic news
shocks more broadly, or else be insignificant. This is indeed the case. Table 5 reports the
hypothetical end-of-day responses of the front Fed Funds future to the Fed Funds shock, the
8-quarter ED rate to the forward guidance shock, the 10-year Treasury yield to the asset
purchase shock, and the S&P 500 return to the so-called Fed information shock. 5 of the 12
identified shocks across the 10 days are labeled as Fed information shocks. No other shock
has a significant effect on its reference price.

E.2 Responses of financial variables during the ZLB period

Table 6 repeats the regressions of Table 2 in the main text for the ZLB period, as defined
in Swanson (2020), 2009-2015. The results largely accord with those for the full sample, as
noted in the text.
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Table 3: Key FOMC announcements 2008-2015

December 2008 FOMC announces that it has cut the FFR to between 0 and 25 basis points (bp), will
purchase large quantities of agency debt and will evaluate purchasing long-term Treasuries

March 2009 FOMC announces it expects to keep the federal funds rate between 0 and 25 bp for “an
extended period”, and that it will purchase $750B of mortgage-backed securities, $300B of
longer-term Treasuries, and $100B of agency debt (a.k.a. “QE1”)

November 2010 FOMC announces it will purchase an additional $600B of longer-term Treasuries (a.k.a.
“QE2”)

August 2011 FOMC announces it expects to keep the federal funds rate between 0 and 25 bp “at least
through mid-2013”

September 2011 FOMC announces it will sell $400B of short-term Treasuries and use the proceeds to buy
$400B of long-term Treasuries (a.k.a. “Operation Twist”)

January 2012 FOMC announces it expects to keep the federal funds rate between 0 and 25 bp “at least
through late 2014”

September 2012 FOMC announces it expects to keep the federal funds rate between 0 and 25 bp “at least
through mid-2015”, and that it will purchase $40B of mortgage-backed securities per
month for the indefinite future

December 2012 FOMC announces it will purchase $45B of longer-term Treasuries per month for the
indefinite future, and that it expects to keep the federal funds rate between 0 and 25 bp at
least as long as the unemployment remains above 6.5 percent and inflation expectations
remain subdued

September 2013 FOMC announces that it will wait to taper asset purchases
December 2013 FOMC announces it will start to taper its purchases of longer-term Treasuries and

mortgage-backed securities to paces of $40B and $35B per month, respectively
December 2014 FOMC announces that “it can be patient in beginning to normalize the stance of monetary

policy”
March 2015 FOMC announces that “an increase in the target range for the federal funds rate remains

unlikely at the April FOMC meeting”

This table is replicated from Swanson (2020), with the addition of details on the December 2008 and Septem-
ber 2013 announcements.

Figure 7: Variation in the effects of the asset purchase shock

The end-of-day impact of the asset purchase shock on the 5-year Treasury yield is normalized by its impact
on the 10-year Treasury yield, which is fixed at one.
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Table 4: Summary statistics for historical decompositions

30-minute window end-of-day window
mean
|δYi|

median
|δY |

mean
de-

comp.

median
de-

comp.

1.96
s.d.

2.58
s.d.

mean
|δYi|

median
|δYi|

mean
de-

comp.

median
de-

comp.

1.96
s.d.

2.58
s.d.

FF1, FF 0.01 0.00 0.01 0.01 7 6

0.01 0.00

0.01 0.01 7 6
FF1, FG 0.00 0.00 1 1 0.00 0.00 1 1
FF1, AP 0.00 0.00 1 1 0.00 0.00 1 1
FF1, F I 0.00 0.00 0 0 0.00 0.00 0 0

ED8, FF 0.02 0.01 2 2

0.06 0.04

0.03 0.01 3 3
ED8, FG 0.05 0.03 0.04 0.02 17 11 0.04 0.02 20 16
ED8, AP 0.01 0.01 0 0 0.02 0.01 2 0
ED8, F I 0.02 0.01 3 0 0.02 0.01 8 1

T5, FF 0.02 0.01 2 2

0.06 0.04

0.02 0.01 3 2
T5, FG 0.03 0.02 15 9 0.03 0.02 17 12
T5, AP 0.04 0.02 0.01 0.01 1 0 0.02 0.01 5 2
T5, F I 0.02 0.01 4 1 0.02 0.02 6 3

T10, FF 0.01 0.00 2 2

0.04 0.03

0.02 0.00 3 3
T10, FG 0.02 0.01 10 5 0.02 0.01 11 7
T10, AP 0.03 0.02 0.01 0.01 3 2 0.02 0.01 5 4
T10, F I 0.01 0.01 2 1 0.02 0.01 5 2

SPX,FF 0.20 0.07 3 3

0.68 0.41

0.26 0.12 3 3
SPX,FG 0.20 0.12 4 2 0.29 0.12 11 6
SPX,AP 0.14 0.09 1 1 0.26 0.11 4 3
SPX,FI 0.37 0.24 0.12 0.06 0 0 0.22 0.11 5 4

Summary statistics for the historical decompositions of each rate with respect to the three shocks; the left
panel considers the decomposition based on shocks occurring between 10 minutes prior to the announcement
and 20 minutes following, and the bottom considers 10 minutes prior until 4:01pm. The units are percentage
points. The first two columns summarize the absolute values of the simple change in the asset price over the
window. The next two columns repeat the exercise for the absolute value of the historical decompositions.
The final two columns report the number of decompositions with respect to the given shock that exceed
multiples of the average standard deviation in the interest rate following monetary policy announcements.
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Figure 8: Historical decompositions of key FOMC announcements: regime approach

Historical decompositions for the rate series indicated in the left margin with respect to each of the four
shocks, identified using the Rigobon (2003) variance regimes approach. Blue represents the Fed Funds shock,
red the forward guidance shock, gold the asset purchase shock, and purple the Fed information shock. The
shaded interval corresponds to 1.96 times the average standard deviation in the asset price following monetary
policy announcements. The vertical lines mark the time of the announcement and 20 minutes following the
announcement, the end of the conventional analysis window. The black dashed path is the path of the simple
change from ten minutes prior to the announcement, the event study estimate. Units are percentage points.49



Figure 8b: Historical decompositions of key FOMC announcements: regime approach
(cont’d)

See Figure 8 for notes.
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Figure 9: Historical decompositions for placebo dates

Historical decompositions for the rate series indicated in the left margin with respect to each of the four
shocks for placebo dates corresponding to the hours following the 10 largest macroeconomic release surprises
from 2007-2019 (as measured by Bloomberg consensus forecasts). Blue represents shocks labeled as a Fed
Funds shock, red a forward guidance shock, gold an asset purchase shock, and purple a Fed information
shock. The shaded interval corresponds to 1.96 times the average standard deviation in the asset price
following monetary policy announcements. The vertical lines mark the time of the announcement and 20
minutes following the announcement, the end of the conventional analysis window. The black dashed path is
the path of the simple change from ten minutes prior to the announcement, the event study estimate. Units
are percentage points.
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Table 5: Responses of reference prices on placebo days

7/16/09 1/31/13 12/11/08 12/31/08 6/27/08 7/13/17 10/16/08 12/10/09 1/8/09 8/24/10

FF1, FF – – – 0.00 – – – 0.01 – –

ED8, FG −0.03 – 0.02 – – – –0.02 – – 0.00

T10, AP – – – – – – – – 0.00 –

SPX,FI – –0.03 – 0.06 0.00 0.30 – 1.39∗∗∗ – –

End-of-day responses computed using historical decompositions following the baseline model for placebo
dates corresponding the the 10 largest macroeconomic release surprises (based on Bloomberg consensus
forecasts) from 2007-2019. Results are starred based on economic significance, corresponding to 1.96 and
2.58 times the average standard deviation of the relevant asset prices in the hours following monetary policy
announcements.

Table 6: Financial market responses to monetary policy

TIPS
spread

Aaa yield Baa yield Aaa
spread

Baa
spread

VIX EPU

εFG 0.23∗∗ −0.44∗∗ −0.38∗ 0.52∗∗∗ 0.58∗∗∗ –18.20 72.98
εAP 0.23 −1.02∗ −1.31∗ 1.02∗∗∗ 0.72 21.65 −717.09∗∗

εFI 0.06∗∗ 0.05 0.07∗ 0.00 0.02 −2.98∗∗∗ –15.58

3-m
Treasury

6-m
Treasury

2-y
Treasury

5-y
Treasury

10-y
Treasury

S&P 500

εFG −0.01∗ −0.04∗∗ −0.45∗∗∗ −0.88∗∗∗ −0.63∗∗ 4.56∗∗∗

εAP –0.01 –0.02 −0.22∗∗∗ −0.91∗∗∗ −1.09∗∗∗ 10.33∗∗∗

εFI 0.00∗∗ 0.00∗∗ 0.02∗∗ 0.03∗∗ 0.03∗∗ –

For the external variables (first row) in each panel, coefficients are estimated following equation (8). For
the asset prices included directly in the model (second row), I regress the end-of-day decomposition with
respect to a given shock on the respective shock value, εHF

jd . Coefficients can be interpreted as the response
in percentage points to an expansionary shock that changes the reference price by 1%. The sample spans
the ZLB period, 2009-2015. HAC standard errors are calculated following Lazarus et al. (2018). Significant
results are starred at the 10%, 5% and, 1% levels.
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E.3 Alternative impulse responses

In this section, I present sensitivity analysis for the baseline impulse responses of macroeco-
nomic aggregates, as well as results under alternative identification schemes.

Figure 10 plots responses using a sample running the length of of my full timeseries of
shocks, 2007-2019.

Figure 11 augments the sample with five unscheduled announcements, constituting the
four over this time period considered by Swanson (2020), plus one in October 2019. For
months with unscheduled announcements, I take the simple sum of shocks across those
announcements.

Figure 12 replaces the large September 2008 asset purchase shock with zero, on the basis
that asset purchase policies did not formally begin until the next FOMC cycle. However, as
discussed in the text, the Treasury had begun MBS purchases at this time, and some had
begun to call for the Fed to do the same. There are also asset purchase shocks during early
2008 in the Swanson timeseries. Treating the shock instead as a forward guidance shock
leaves the responses largely unchanged.

Figure 13 considers shocks recovered using the alternative Rigobon (2003) regime-based
identification scheme described in Section 3.3. I fix the number of identifiable shocks to
be the same as under the baseline. However, for the majority of announcement dates, the
Lütkepohl et al. (2020) test suggests that there is not adequate variation across regimes to
fully identify the model, so the shock measures are unreliable. This issue illustrates the
value of using identification based on time-varying volatility instead, using the continuous
variation in volatilities, as opposed to discrete variance regimes.

Figure 14 uses shocks based on a simple event-study approach, taking changes in reference
prices (front Fed Funds future, 8-quarter ED, 10-year Treasury, and S&P 500, respectively)
from 10 minutes prior to the announcement through market close. Figure 15 does the same
using the conventional 30-minute event-study window instead.

Figure 16 uses shocks computed using the Rogers et al. (2018) methodology and replica-
tion data, augmented with my Fed information shock.

Figure 17 uses the Swanson (2020) shocks for an extended sample, January 2007 to June
2019. Figure 18 adds the unscheduled announcements from Swanson’s sample. Figure 19
augments the Swanson shocks with my Fed information shock.

Figure 20 measures shocks using my methodology but the conventional 30-minute win-
dow. The responses are quite different to the baseline, with the Fed Funds shock being the
dominant shock, despite the ZLB. Examining the shocks suggest that the Fed Funds shock
is relatively well-measured using 30-minute windows, but the unconventional policy shocks
are not, contributing to this finding.
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Figure 10: Dynamic response of macroeconomic aggregates: extended sample

Impulse responses are calculated via local projection as in equation (9) using monthly data and the sample
January 2007 to December 2019. Responses are scaled to a one standard deviation expansionary impulse.
95% HAC confidence intervals are calculated following Lazarus et al. (2018). The dash-dot line is the baseline
response.

Figure 11: Dynamic response of macroeconomic aggregates: unscheduled announcements

Impulse responses are calculated via local projection as in equation (9) using monthly data and the sample
January 2008 to December 2017, including unscheduled announcements. Responses are scaled to a one
standard deviation expansionary impulse. 95% HAC confidence intervals are calculated following Lazarus
et al. (2018). The dash-dot line is the baseline response.
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Figure 12: Dynamic response of macroeconomic aggregates: no September 2008 AP shock

Impulse responses are calculated via local projection as in equation (9) using monthly data and the sample
January 2008 to December 2017, setting the September 2008 asset purchase shock to zero. Responses are
scaled to a one standard deviation expansionary impulse. 95% HAC confidence intervals are calculated
following Lazarus et al. (2018). The dash-dot line is the baseline response.

Figure 13: Dynamic response of macroeconomic aggregates: regime identification

Impulse responses are calculated via local projection as in equation (9) using monthly data, the sample
January 2008 to December 2017, and shocks identified using the Rigobon (2003) regime-based approach.
Responses are scaled to a one standard deviation expansionary impulse for each shock. 95% HAC confidence
intervals are calculated following Lazarus et al. (2018). The dash-dot line is the baseline response.
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Figure 14: Dynamic response of macroeconomic aggregates: end-of-day simple event-study

Impulse responses are calculated via local projection as in equation (9) using monthly data, the sample
January 2008 to December 2017, and a simple event-study approach taking changes to market close in refer-
ence prices. Responses are scaled to a one standard deviation expansionary impulse. 95% HAC confidence
intervals are calculated following Lazarus et al. (2018). The dash-dot line is the baseline response.

Figure 15: Dynamic response of macroeconomic aggregates: 30-min simple event-study

Impulse responses are calculated via local projection as in equation (9) using monthly data, the sample
January 2008 to December 2017, and a simple event-study approach taking 30-minute changes in reference
prices. Responses are scaled to a one standard deviation expansionary impulse. 95% HAC confidence
intervals are calculated following Lazarus et al. (2018). The dash-dot line is the baseline response.
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Figure 16: Dynamic response of macroeconomic aggregates: Rogers et al. (2018) shocks with
Fed information

Impulse responses are calculated via local projection as in equation (9) using monthly data, the sample
January 2007 to June 2019, and shocks computed using the methodology of Rogers et al. (2018) and their
replication data, augmented with a Fed information shock. Responses are scaled to a one standard deviation
expansionary impulse. 95% HAC confidence intervals are calculated following Lazarus et al. (2018). The
dash-dot line is the baseline response.

Figure 17: Dynamic response of macroeconomic aggregates: Swanson shocks with extended
sample

Impulse responses are calculated via local projection as in equation (9) using monthly data, the sample
January 2007 to June 2019, and the Swanson (2020) shocks. Responses are scaled to a one standard deviation
expansionary impulse. 95% HAC confidence intervals are calculated following Lazarus et al. (2018). The
dash-dot line is the baseline response.
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Figure 18: Dynamic response of macroeconomic aggregates: Swanson shocks with unsched-
uled announcements

Impulse responses are calculated via local projection as in equation (9) using monthly data, the sample
January 2008 to December 2017, and the Swanson (2020) shocks including unscheduled announcements.
Responses are scaled to a one standard deviation expansionary impulse. 95% HAC confidence intervals are
calculated following Lazarus et al. (2018). The dash-dot line is the baseline response.

Figure 19: Dynamic response of macroeconomic aggregates: Swanson shocks with Fed infor-
mation

Impulse responses are calculated via local projection as in equation (9) using monthly data, the sample
January 2008 to December 2017, and the Swanson (2020) shocks augmented with a Fed information shock.
Responses are scaled to a one standard deviation expansionary impulse. 95% HAC confidence intervals are
calculated following Lazarus et al. (2018). The dash-dot line is the baseline response.
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Figure 20: Dynamic response of macroeconomic aggregates: 30-minute shocks

Impulse responses are calculated via local projection as in equation (9) using monthly data, the sample
January 2008 to December 2017, and shocks based on the 30-minute historical decompositions. Responses
are scaled to a one standard deviation expansionary impulse. 95% HAC confidence intervals are calculated
following Lazarus et al. (2018). The dash-dot line is the baseline response.
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