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Abstract 

We study a dynamic model of collateralized lending under adverse selection in which the quality 
of collateral assets is endogenously determined by hidden effort. Complementarities in incentives 
lead to non-ergodic dynamics: Asset quality and output grow when asset quality is high, but 
stagnate or deteriorate otherwise. Inefficiencies remain, even in the most efficient competitive 
equilibrium—investment and output are vulnerable to spells of lending market illiquidity, and 
these spells may persist because of suboptimal effort. Nevertheless, benevolent regulators without 
commitment can destroy welfare by prioritizing liquidity over incentives. Optimal interventions 
with commitment call for large, long-term subsidies in excess of what is required to restore 
liquidity. 
 
Key words: liquidity, government intervention, adverse selection, collateral 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
_________________ 
 
Lee: Federal Reserve Bank of New York (email: michael.j.lee@ny.frb.org). Neuhann: University 
of Texas at Austin (email: daniel.neuhann@mccombs.utexas.edu). The authors thank Andrea 
Attar, Vladimir Asriyan, William Fuchs, Florian Heider, Marie Hoerova, Yunzhi Hu, Gregor 
Matvos, and various seminar audiences for helpful comments. The views expressed in this paper 
are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of 
New York or the Federal Reserve System.  
 
To view the authors’ disclosure statements, visit 
https://www.newyorkfed.org/research/staff_reports/sr894.html. 



1 Introduction

When lenders are worried about default, they may ask borrowers to post collateral:
mortgages are secured by houses, corporate bonds are secured by firm assets, and secu-
ritized debt instruments are backed by pools of loans. While collateralization typically
increases capital market liquidity, negative shocks to collateral quality may lead to sharp in-
creases in borrowing costs and market breakdowns. This has motivated regulators around
the world to intervene in asset markets and lower policy rates to support lending activity.1

Existing theories study interventions in impaired markets under the assumption that
collateral quality is exogenously determined. Yet in many instances, collateral quality is a
choice: homeowners may shirk on maintenance, firms may pursue risky investments, and
issuers of asset-backed securities may pledge bad loans. This suggests that the resilience
of collateralized lending markets, as well as the effects of policy interventions, ultimately
depend on private incentives to maintain high-quality collateral. We develop a dynamic
model where lending is subject to adverse selection and collateral quality is persistent but
determined by hidden effort. Our framework offers both a tractable model of long-run asset
quality dynamics in collateralized lending markets, and a laboratory to study the dynamic
effects of regulatory interventions.

We arrive at three main insights, all of which are driven by borrowers taking into ac-
count expected future market conditions when choosing asset quality. First, markets can be
resilient: even without interventions, asset quality can recover from adverse shocks that lead
to market breakdowns. Second, a sufficiently severe shock may require intervention, but
interventions designed to restore market liquidity at minimal cost can impede the recovery
of asset quality and lower welfare relative to laissez-faire. At the same time, such policies
are uniquely optimal from the perspective of benevolent regulator without commitment, or
if asset quality is assume to be fixed. Third, the optimal intervention with commitment is
larger, longer-term, and not contingent on illiquidity, i.e. it may need to be offered even

1Interventions have come in various forms during times of financial stress, including asset purchases, credit
facilities, and securities lending facilities. Examples include the Federal Reserve’s Commercial Paper Funding
Facility and Troubled Asset Relief Program; the Bank of England’s Special Liquidity Scheme; the Bank of
Japan’s equity ETF purchases; the European Central Bank’s Securities Lending Programme and Targeted
Longer-term Refinancing Operations; and the U.S. Home Affordable Refinancing Program.
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when markets would be liquid on their own. These results provide a new perspective on
why certain markets recover from crises while others fail, and have implications for the
design of regulatory interventions in practice.

The basic structure of our infinite-horizon model is as follows. There is a continuum
of liquidity-constrained, long-lived borrowers who each own a durable productive asset
that is either good or bad. Types are persistent but evolve stochastically, with transition
probabilities determined by hidden effort. In every period, investment in the asset generates
an additional return. To capture this return, borrowers raise funds from short-lived lenders
subject to limited pledgeability and asymmetric information about asset quality. This creates
scope for adverse selection. In equilibrium, lenders require collateral to secure loans, and
only provide funds when the share of good borrowers is above an endogenous liquidity
threshold.

Our primary focus is on the evolution of asset quality. Private incentives to improve
asset quality depend on the relative value of good and bad assets. Because of the feedback
from asset quality to interest rates, however, asset values are endogenously determined by
the expected path of average asset quality, which is in turn determined by an aggregation of
effort across borrowers and time. Two economic forces shape incentives in equilibrium. The
first is a strategic complementarity that operates when markets are liquid. Borrowers pay a
lower interest rate and can pledge less collateral when there are many good borrowers. This
increases the relative value of good assets because good borrowers can retain more of their
collateral. Hence, effort incentives are stronger when the share of good assets are high. The
second is a local strategic substitutability in a neighborhood around the liquidity threshold.
At the liquidity threshold, borrowers can obtain funds only if they post all pledgeable cash
flows as collateral. Below the threshold, borrowers cannot obtain funding and retain all
collateral. Small increases in average asset quality that lead to market liquidity can thus
lead to a sharp decrease in the relative value of retained cash flows. This induces borrowers
to free-ride on others’ efforts.

The interaction between these forces gives rise to a dynamic coordination problem in
privately optimal effort strategies. We provide a tractable characterization, and show that
there exist multiple competitive equilibria, including cycles driven by self-fulfilling beliefs.
However, there exists a unique Pareto-dominant equilibrium that delivers the highest welfare
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among all competitive equilibria. We focus primarily on this equilibrium, which entails
selecting beliefs most conducive to effort, and show that dynamic coordination failures may
persist even in this most efficient equilibrium.

We fully characterize asset quality dynamics in this equilibrium and show that they
follow a cut-off rule: when the initial share of good assets is above a threshold, all bor-
rowers exert effort, asset quality grows, and the competitive equilibrium is efficient. When
the initial share of good assets is low, effort is less than efficient and asset quality either
deteriorates or stagnates. Hence, markets are resilient to moderate shocks but vulnerable
to large shocks. Moreover, there is positive co-movement between liquidity, asset quality,
and output. The key externality is that individual borrowers do not internalize their effect
on the path of future interest rates. As a result, liquidity can be fragile: small differences
in initial conditions, or small shocks to the discount factor or the persistence of types, may
generate discontinuous drops in long-run asset quality and welfare. Contrary to existing
models of adverse selection, these results are not due to contemporaneous breakdowns in
trade. Instead, they arise because declines in expected market conditions discourage ef-
fort today. Hence markets where asset quality is less persistent and borrowers have short
horizons are particularly prone to long-run inefficiencies.

The failure of markets to recover from large asset quality shocks motivates our policy
analysis. As in Tirole (2012) and Philippon and Skreta (2012), we introduce a benevolent
regulator who can provide subsidies to boost market liquidity. We go beyond their work by
studying how such interventions affect private incentives to maintain good collateral, and
how optimal policy responds to this feedback. Because the effort decision is the solution to
a dynamic problem, we distinguish between regulators with and without commitment.

The optimal policy under limited commitment is analogous to Tirole (2012) and Philip-
pon and Skreta (2012): because effort is sunk once capital must be injected, the regulator
intervenes only if the lending market inefficiently freezes, and does so using the smallest-
possible subsidy that restores liquidity. The resulting market interest rate is as if average
asset quality were at the liquidity threshold. This minimizes the total subsidy because it
forces borrowers to pay the highest feasible interest rate. But precisely because it maximally
expropriates good borrowers, it simultaneously weakens incentives to the greatest extent
possible. In the model, this effect may lead to intervention traps in which borrowers’ expec-
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tations of future interventions hamper private incentives, leading to sustained illiquidity
and continued interventions at increasing costs. Moreover, the share of good assets may fall
to zero even if it would have recovered otherwise, and the intervention may lower welfare
relative to laissez-faire.

One might conclude from this that regulators should avoid intervening at all cost. This
intuition is incomplete. The downside of not intervening is that markets remain illiquid
until asset quality has recovered. We show that an intervention aimed at improving market
liquidity can preserve incentives using a large per-capita subsidy that drives down interest
rates, thereby preserving the relative value of good assets. Interestingly, the total costs of
large per-capita subsidies may be lower than that of the minimal intervention under limited
commitment. This is due to a composition effect: there are now more good borrowers who
are less likely to default. We illustrate this result by showing that a regulator with commit-
ment can discontinuously improve long-run asset quality at infinitesimal cost if asset quality
stagnates in the competitive equilibrium. Additionally, such interventions can rejuvenate
markets that would otherwise remain illiquid indefinitely. The optimal commitment policy
also has a dynamic component: to ensure that asset quality recovers in the long-run, the
intervention must be maintained until effort is self-sustaining. This may entail providing
subsidies even if asset quality has recovered beyond the liquidity threshold.

While stylized, our model has important implications for the design and evaluation
of regulatory interventions in practice. The European Central Bank has recently engaged
in a number of long-term interventions designed to kickstart lending and boost liquidity
in collateralized markets. These programs include the Long-term Refinancing Operations
(LTRO) of 2011, the Outright Monetary Transactions (OMT) of 2012, and more conventional
monetary policy measures. Empirical studies have found that, while these programs have
indeed increased market liquidity, they have not boosted firm investment, and may have
triggered risk-shifting by affected banks via domestic sovereign bond purchases or zombie
lending (see Drechsler et al. (2016), Acharya et al. (2019), Carpinelli and Crosignani (2018),
and Daetz et al. (2019)). Indeed, Drechsler et al. (2016) argue that their findings are incon-
sistent with classical lender-of-last resort theory that predicts large positive effects, while
Daetz et al. (2019) point to concerns about future bank health as a plausible mechanism.
Both effects are consistent with our model where banks endogenously adjust the quality of
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their portfolios in response to interventions. Indeed, our focus on the long-run response
of market participants to regulation is particularly relevant given that the ECB’s Targeted
Longer-Term Refinancing Operations of 2014 were extended in 2016, with further extensions
discussed in 2019. A possible conclusion from our model is that the intervention failed not
because it was long-term, as commentators have suggested, but because it was too small.

Related mechanisms may be at play in other markets. For example, Melzer (2017) shows
that homeowners at risk of default strategically invest less in the collateral value of their
houses. In the aftermath of the recent housing crisis, the U.S. government introduced the
Home Affordable Refinance Program (HARP) to lower debt burdens and lower spillovers
among households. Agarwal et al. (2017) suggest that a re-design of this program could
have substantial welfare benefits.

1.1 Related Literature

The notion that limited availability of collateral hampers investment and output has
been studied extensively in previous work (e.g. Kiyotaki and Moore (1997)). Our paper
focuses on markets where the stock of collateral itself is subject to asymmetric information
and endogenously determined (see Stroebel (2016) for empirical evidence). Fluctuations in
information about collateral quality has been cited as a key catalyst of the recent financial
crisis (e.g. Gorton and Ordoñez (2014)). Our contribution lies in analyzing the endogenous
dynamics of collateral quality and the feedback between market liquidity and private incen-
tives. In this respect, our setting provides sharp predictions on how asset quality responds
to adverse shocks. This also differentiates our work from Bigio (2015), Kurlat (2013), and
Eisfeldt (2004), who study how exogenous shocks to asset quality can depress investment
and output in dynamic models with asymmetric information.

Our policy analysis relates to the theoretical literature on interventions in adversely-
selected asset markets, including work by Tirole (2012) and Philippon and Skreta (2012)
discussed above. Fuchs and Skrzypacz (2015) consider a model with dynamic trading but
fixed asset quality. Camargo and Lester (2014) study decentralized markets in which the
dynamics of trading are decided by selective exit of seller types. Chiu and Koeppl (2016)
provide a search framework that emphasizes the option value of waiting and arrives at dif-
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ferent implications for the optimal timing of interventions. Philippon and Schnabl (2013)
study how to best recapitalize a banking sector plagued by debt overhang. They do not con-
sider the endogenous response of asset quality. Camargo et al. (2016) study the design of
interventions in the presence of an information externality from trade. We do not consider
information externalities or dynamic trading, but focus on the endogenous determination
of effort incentives in a dynamic environment. Our result on the harmful effects of interven-
tions by a benevolent planner under limited commitment is related to Netzer and Scheuer
(2010) who find a similar result in a two-period model of moral hazard and insurance. We
consider a fully dynamic model with market freezes and discontinuous drops in output
and payoffs, and show how endogenous quality dynamics may lead to vicious cycles. To
the best of our knowledge, we are among the first papers to characterize optimal dynamic
policy in a long-run model of endogenous asset quality.

Previous work has argued that increasing asset prices and market liquidity can decrease
incentives to produce high-quality assets. Examples include Chemla and Hennessy (2014),
Vanasco (2017) Neuhann (2018), Caramp (2017) Fukui (2018), Daley et al. (forthcoming),
and Asriyan et al. (2018). These papers consider settings where agents are more likely to
sell their assets, or sell an increasing fraction, when asset prices rise. The resulting lack of
exposure to asset returns then reduces incentives. We study collateralized lending markets
where the opposite is true: when interest rates fall, agents can borrow the same amount
using less collateral. This increases exposure to asset quality, and generates positive co-
movement between asset quality and output. This highlights a distinction between markets
where cash flows are reallocated via asset sales, and those where collateral pledging allows
borrowers to retain part of the asset.

Our framework has similarities with other dynamic models of asymmetric information.
Zryumov (2015) and Hu (2018) study adversely-selected markets in which asset quality
fluctuates due to the entry of bad types (the entry rate of good types is exogenous). In
their work, asset quality dynamics are thus mainly determined by the extensive margin,
while we study the intensive margin and consider policy implications. As in Asriyan et al.
(2018), incentives in our setting model are determined by expectations over future market
conditions. They focus on sunspot fluctuations in a model with transient types, while the
dynamic considerations in our model arise from the persistence of types and endogenous
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fluctuations in fundamentals. To highlight this difference, we focus on the Pareto-dominant
equilibrium with the most favorable beliefs.

Because improving asset quality generates positive spillovers, market liquidity in our
model has features of a commons. This relates our framework to theories of collective
reputations such as Tirole (1996) and Levin (2009) in which shared histories can contribute
to persistent differences in effort across groups. In contrast to their work, we show that
effort can be sustained even without reputational motives. This also distinguishes our work
from Board and Meyer-ter Vehn (2013), who emphasize the role of learning in a single-firm
model of quality reputation. We abstract from learning and instead focus on the role of
expected liquidity and interest rates in determining incentives.

The remainder of the paper is organized as follows. In Section 2, we outline the model
environment. Section 3 characterizes the competitive equilibrium and analyzes efficiency.
In Section 4, we introduce a regulator and analyze the impact of policy interventions. We
conclude in Section 5. Proofs not provided in the main text can be found in Appendix A.

2 Model

2.1 Basic Environment.

Time is discrete and infinite. Periods are indexed by t = 1, 2, . . . ∞. There is a unit
mass of risk-neutral long-lived borrowers with discount factor β ∈ [0, 1). In addition, a mass
m > 1 of risk-neutral lenders is born with a per-capita endowment of one unit of capital each
period, and lives for one period. Lenders can invest their endowment in a risk-free storage
technology with gross return 1 + r f or offer funding to borrowers. Borrowers receive no
endowments, but own and operate long-lived investment opportunities called assets. At the
outset of each period, each asset has a type θ that is either good or bad, θ ∈ {g, b}.

Assets generate two types of cash flows: a fixed cash flow Lθ that requires no additional
investment, and an investment return Rθ that accrues only if the borrower invests one unit
of capital. There is no saving: cash flows are consumed at the end of each period.
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Assumption 1 (Payoffs). Asset cash flows satisfy the following inequalities:

Lg ≥ 1 + r f > Lb (1)

Rθ > Lθ ∀θ (2)

Rg > 1 + r f . (3)

Condition (1) ensures that the fixed cash flow Lθ alone is enough to pay back a loan
of one unit of capital at interest rate 1 + r f if the asset is good, but not if the asset is bad.
Condition (2) implies that all borrowers would offer fixed cash flow Lθ to obtain private
return Rθ. Condition (3) ensures that investing in good assets is socially efficient.

Asset types are persistent but not fixed, and transition probabilities are determined
by unobservable borrower effort. Given current type θ and effort intensity µ ∈ [0, 1], the
probability that the asset becomes a good type is

pθ(g|µ) = (1− π) · 1(θ = g) + π · µ, (4)

where pθ(θ
′|µ) denotes the probability that an asset of type θ becomes type θ′ given an

effort intensity µ. Both the persistence and the marginal value of effort are determined
by π ∈ (0, 1], with types being more persistent when π is low. Effort is privately costly
according to cost function C(µ). To transparently discuss the main economic mechanisms,
we assume linear costs, C(µ) = cµ. We discuss general convex costs in Online Appendix
B.6. We refer to µ = 1 as “full effort”, and µ ∈ (0, 1) as “partial effort”.

The evolution of types occurs within a period. The fraction of good assets at the begin-
ning of period t is λt−1, and λt is the updated fraction once borrowers have exerted effort.
If all agents of a given type choose effort intensity µt,θ in period t, then

λt = µt,gλt−1 + (1− µt,g)(1− π)λt−1 + µt,bπ(1− λt−1). (5)

The share of good assets at time zero is exogenously determined and denoted by λ0. We
view this initial condition as the result of an aggregate shock outside of the model, and
characterize how asset quality evolves as a function of λ0.
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2.2 Lending Market

In every period, each borrower offers a debt contract to lenders specifying a promised
repayment B ≤ Lg in exchange for the required unit of capital. Each borrower can agree to
a contract with at most one lender. Following Tirole (2012), we assume that borrowing and
lending is hampered by financial frictions. While the precise form of friction is not essential,
it is important that there is limited pledgeability and private benefits from investment.

Assumption 2 (Financial Friction). Lθ is pledgeable and contractible. Rθ is not pledgeable.

Because of limited pledgeability, lenders understand that they will ultimately receive
min{B, Lθ} from a borrower of type θ. Since Lb < 1 + r f , bad types do not have enough
pledgeable cash flows to sustain borrowing. While good types may want to separate from
bad types by offering different contracts, bad types thus always strictly prefer to pool with
good types. Hence it is without loss of generality to restrict attention to a single contract
indexed by the promised payment B, which is also the class of contract that minimizes the
adverse selection discount faced by good borrowers.2

Lemma 1 (Pooling). There does not exist a separating equilibrium in which at least one borrower
obtains funding with positive probability. Moreover, bad types default with probability 1 if they
obtain funding.

To isolate the interaction between market liquidity and incentives, we assume that do
not learn from borrowers’ repayment histories. Relaxing this assumption, while cumber-
some to characterize incentives, would not alter the main feature that lower borrowing
costs disproportionately benefit good borrowers, who are less likely to default. For this
reason, we also opt for a simple formulation where the cash flows earned by the two types
have distinct support. It is straightforward to extend the model to stochastic cash flows
with common support but type-dependent distributions.

2This argument extends to a broader set of contracts, e.g. when a borrower can offer any contract {Bb, Bg}
that promises a payment Bθ ≤ Lg conditional on the realization Lθ , which is ex-ante unknown but contractible.
Since a borrower, regardless of type, strictly prefers a contract with smaller Bθ , single-crossing condition is
generically violated for the set of contracts under which funding is obtained with probability 1. For any
equilibrium in which multiple contracts co-exist, both types must be indifferent between either contract.
However, a good type will necessarily prefer contracts with Bg = Bb = B to any type-specific contract, since it
maximally expropriates the bad type and thus lowers the required payment for good types.
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2.3 Timing of Events

Figure 1 summarizes the timing of events from the perspective of a generic borrower.
A new generation of lenders is born at the beginning of each period.

Enter period t

with θt−1 given λt−1.

Effort decision. θt and λt realized. Lending market. Accounts settled. Proceed to t + 1

with θt given λt.

Figure 1: Timing of Events in period t.

The assumption that lending takes place after asset quality simplifies notation. If the
order were reversed, lenders would form beliefs about realized asset quality that would be
required to be correct in equilibrium. The equilibria we study would continue to exist, and
the welfare ranking would be unchanged.

2.4 Decision Problems and Equilibrium Definition

Let λt = (λ0, λ1, . . . , λt) denote the public history of length t + 1 summarizing the path
of average asset quality. Analogously, let ht to denote a borrower’s private history of events
from period 0 to t, summarizing private effort as well as the evolution of individual and
average asset quality. We use the following definition of feasible histories.

Definition 1. Public history λt is feasible given λt−1 if it can be reached on the path of play given
some effort strategy µt(λt−1). Public history λt is feasible if it is feasible given λτ for all τ ≤ t− 1.

The definition of a feasible private history is analogous. We use Lt and Ht to denote
the set of all feasible public and private histories of length t + 1, respectively. The strategy
of a borrower is a sequence of contract offers and effort decisions {Bt(ht), µt(ht−1)}∞

t=1,ht∈Ht

mapping private histories into the real line and the unit interval, respectively. A strategy for
a lender in generation t is an acceptance probability φt : Lt → [0, 1] mapping public histories
into the unit interval. Aggregating over all generations yields the sequence {φt(λt)}∞

t=1,λt∈Lt .
Lender’s Problem. Lemma 1 establishes that we can restrict attention to a single pool-

ing contract in every period. Let Bt denote the contract offered in period t. Then the decision
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problem of a lender in generation t given λt is

max
φt(λt)

φt(λ
t)
(

λBt + (1− λt)Lb

)
+ (1− φt(λ

t))
(

1 + r f

)
(6)

Borrower’s Problem. Let θt(ht) and λt(ht) denote the borrowers type and average asset
quality in period t associated with private history ht, respectively. The cash flows accruing
to the lender in period t given history ht are then given by

uθt(ht)(Bt(ht), λt(ht)) = φt(λ
t)
(

Rθt(ht) + Lθt(ht) −min{Bt(ht), Lθt(ht)}
)
+ (1− φt)Lθt(ht). (7)

Transitions across types (and thus private histories) depend on effort. We denote the prob-
ability of feasible history ht given effort strategy {µt(ht−1)}∞

t=1,ht∈Ht and initial condition
h0 = {θ0, λ0} by f0(ht|µt(ht−1)). Given the sequence of lenders’ acceptance probabilities
{φt(λt(ht))}∞

t=1,λt(ht)∈Lt(ht), the borrower’s problem is

max
{Bt(ht),µt(ht−1)}∞

t=1,ht∈Ht

∞

∑
t=1

∑
ht∈Ht

f0(ht|µt(ht−1))βt−1uθt(ht)(Bt(ht), λt(ht)). (8)

We are now ready to define a competitive equilibrium.

Definition 2 (Competitive Equilibrium). A competitive equilibrium is (i) a sequence of contract
offers and effort strategies {Bt(ht), µt(ht−1)}∞

t=1,ht∈Ht for each borrower and each feasible history,
and (ii) a sequence {φt(λt)}∞

t=1,λt∈Lt collecting the acceptance strategies of each lender generation
and each feasible public history such that:

1. φt(λt) solves (6) given Bt(λt) for all feasible public histories λt.

2. Each borrower’s sequence of contract offers and effort strategies solves (8) given {φt(λt)}∞
t=1,λt∈Lt

and the effort strategies of all borrowers.

3. The set of feasible public and private histories is consistent with {µt(ht−1)}∞
t=1,ht∈Ht given λ0.

4. Lenders’ beliefs are consistent with Bayes’ Rule wherever possible.
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3 Equilibrium

We solve for the equilibrium in two steps. First, we characterize the lending market
equilibrium, and show that it satisfies a Markov property: λt is a sufficient statistic for all
equilibrium outcomes in period t. Second, we use this result to analyze the optimal effort
decision using a recursive representation of the borrower’s problem with aggregate state
variable λ.

3.1 Lending Market Equilibrium

By Equation (6), generation-t lenders are willing to accept contract Bt given λt only if

λtBt + (1− λt)Lb ≥ 1 + r f (9)

Without loss, restrict attention to contracts with Bt ≤ Lg. Then (9) can be satisfied only if

λt ≥ λ̄ ≡
1 + r f − Lb

Lg − Lb
. (10)

Since Rθ > Lθ, all borrowers strictly prefer to borrow if doing so is feasible. We say that
the market is liquid if (10) is satisfied, and call λ̄ the liquidity threshold. Judiciously chosen
off-equilibrium beliefs can sustain a number of equilibria in the lending market. We select
the perfectly competitive outcome in which lenders’ participation constraint (9) holds with
equality.3 This is the selection criterion that is most conducive to effort.

Proposition 1. Define B̄(λt) =
1+r f−(1−λt)Lb

λt
. Then the equilibrium of the lending game condi-

tional on public history λt is such that:

1. (Illiquid) If λ < λ̄, then φ∗(λt) = 0.

2. (Partially Liquid) If λ = λ̄ then B∗t (λ
t) = B̄(λt) and φ∗(λt) ∈ [0, 1].

3. (Liquid) If λ > λ̄ then B∗t (λ
t) = B̄(λt) and φ∗(λt) = 1.

3For example, this equilibrium can be sustained if lenders believe that they face a good borrower with
probability λt conditional on an off-equilibrium offer.
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Since B̄(λt) is decreasing, it is cheaper to borrow when there are many good borrowers.
Moreover, the lending market equilibrium is a function of λt only, and the evolution of
asset quality is first-order Markov. Hence we can collapse borrowers’ sequence problem to
a recursive representation with state variable s = (θ, λ), where θ denotes the borrower’s
private type at the beginning of the period, and λ is average asset quality at the beginning
of the period. The updated state is s′ = (θ′, λ′), where λ′ is the relevant share of good
assets when the lending market opens. We use this recursive formulation to characterize
the equilibrium going forward.

3.2 Optimal Effort

Given that all borrowers of type θ are symmetric, it is without loss for aggregate out-
comes to focus on symmetric effort strategies by type. Denote these strategies by µθ(λ), and
let µ = {µg(λ), µb(λ)}. Define the recursive version of law of motion (5) by

λ′ = Γ (λ, µ) ≡ µg(λ)λ + (1− µg(λ))(1− π)λ + µb(λ)π(1− λ). (11)

We use ΓT (λ, µ) to denote average asset quality after T iterations, and define Γ−1(λ, µ) to
be an inverse law of motion if Γ

(
Γ−1(λ, µ), µ

)
= λ for all λ. The smallest λ for which liquidity

threshold λ̄ is reached within a period given µ is

λ̄−1(µ) = min{λ ∈ [0, 1] : Γ (λ, µ) ≥ λ̄}. (12)

If average asset quality converges to a unique limit, we denote this limit by

λ∞(µ) = lim
T→∞

ΓT(λ0, µ). (13)

We say that λ is on the path of play given µ if λ = ΓT(λ0, µ) for some positive integer T.
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By Proposition 1, the cash flows earned by a type-θ borrower given λ are

uθ(λ) =


Rθ + Lθ −min{B̄(λ), Lθ} if λ > λ̄

φ∗(λ)Rθ + (1− φ∗(λ))Lθ if λ = λ̄

Lθ if λ < λ̄.

(14)

Hence the value function of a borrower of type θ at the beginning of a period satisfies

Vθ(λ) = max
µθ

pθ(g|µθ)
(

ug(λ
′) + βVg(λ

′)
)
+ pθ(b|µθ)

(
ub(λ

′) + βVb(λ
′)
)

(15)

s.t. λ′ = Γ (λ, µ∗(λ)) ,

where µ∗(λ) is the equilibrium effort strategy that is taken as given by an individual bor-
rower. We can then formally state the borrowers’ incentive-compatibility constraint.

Lemma 2 (Incentive Compatibility). Let ∆u(λ) = ug(λ)− ub(λ) and ∆V(λ) = Vg(λ)−Vb(λ).
Then the incentive-compatibility constraint for all borrowers given λ and λ′ is

∆(λ) ≡ ∆u(λ′) + β∆V(λ′) ≥ c
π

(16)

Hence the incentive-compatibility constraint depends only the relative value of good
and bad assets. Going forward, we refer to ∆(λ) as incentives and to ∆u(λ) as the cash
flow difference. Since (16) is independent of θ, it is without loss of generality with respect to
aggregate outcomes to restrict attention to symmetric effort strategies across types, µg(λ) =

µb(λ) = µ(λ). We use bold-face letters denote constant effort strategies: if µ(λ) = a for all λ,
then µ = a. The next observation states that the cash flow difference need not be monotone
in λ. We will later use this fact to demonstrate that incentives may also be non-monotonic.

Observation 1. Let ∆L = Lg − Lb and ∆R = Rg − Rb. Then

∆u(λ) =


∆R + Lg − B̄(λ) if λ > λ̄

φ∗(λ)∆R + (1− φ∗(λ))∆L if λ = λ̄

∆L if λ < λ̄.
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Hence ∆u(λ) is constant on [0, λ̄) and strictly increasing on (λ̄, 1]. If ∆R ≥ ∆L, then ∆u(λ) is
monotonically increasing. If ∆L > ∆R, then ∆u(λ) falls discontinuously at λ̄.

The cash flow difference thus features a complementarity: if markets are liquid, bor-
rowing costs decrease in the fraction of good types, making it relatively more valuable to
own a good asset. (Bad types do not care about borrowing costs since they always default.)
This complementarity is absent if the market is illiquid, in which case each borrower only
consumes the asset’s collateral value.

If ∆L > ∆R, the difference in collateral values is higher than the difference in investment
returns, and so the cash flow difference drops at λ̄. This is similar to the parameter specifi-
cation in Tirole (2012). In this case, the cash flow difference is not globally monotonic in λ.
The discontinuity occurs at λ̄ because the adverse selection discount suffered by good types
is maximal at λ̄ and because borrowers retain all pledgeable cash flows by default if the
market is illiquid. (Both types surrender all their collateral when borrowing at λ̄ because
B̄(λ̄) = Lg, eliminating ∆L as a source of relative value.)

Since average asset quality is endogenous, solving for the equilibrium requires finding
a fixed point in privately optimal effort and the aggregate law of motion. The next result
shows that incentives ∆(λ) may inherit the non-monotonicity of the cash flow difference at
λ̄. For this reason, effort may be a local strategic substitute in a neighborhood around λ̄

and a strategic complement if λ is sufficiently high. This feature of the model will allow for
equilibria with stagnant, increasing, and decreasing asset quality.

Lemma 3. Let µ be such that Γ (λ, µ) is weakly increasing in λ on [0, 1]. Then:

1. Vθ is increasing on [0, 1], and continuous and strictly increasing on [λ̄−1(µ), 1].

2. ∆(λ) is continuous and strictly increasing on [λ̄−1(µ), 1].

3. ∆(λ) is non-monotonic (i) only if ∆L > ∆R, and (ii) if π < min
{ (

λ̄
1−λ̄

) (
∆L
∆R − 1

)
, λ̄
}

.

4. If µ = 1, then ∆(λ) is non-monotonic if and only if ∆L > ∆R and π < λ̄. If these conditions
are satisfied, then λ̄−1(1) = arg minλ ∆(λ).

Because effort is a both a strategic complement and substitute in different regions of
the state space, it is not surprising that the model admits a plethora of equilibrium paths
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for average asset quality driven by self-fulling beliefs regarding future asset quality. Online
appendix B.1 provides the intuition for this result in a simplified model with β = 0, while
online appendix B.2 provides an example of equilibrium multiplicity with deterministic
cycles, stagnation, and growth. To eliminate avoidable coordination failures that reduce
welfare, we select among equilibria by focusing on the equilibrium that delivers the highest
possible welfare to all borrowers and show that it is unique.4

Definition 3. µ(λ) Pareto-dominates µ′(λ) given λ0 if Vθ(λ0|µ) ≥ Vθ(λ0|µ′) for all θ.

Definition 4. A competitive equilibrium with effort strategy µ∗ is a Pareto-dominant compet-
itive equilibrium (PCE) given initial condition λ0 if µ∗ Pareto-dominates all other competitive
equilibrium effort strategies µ′ 6= µ∗ given λ0.

The next result establishes existence and uniqueness of the PCE for each λ0 and shows
that equilibrium dynamics are not ergodic: fixing parameters, long-run asset quality de-
pends on initial condition λ0.

Proposition 2. For each λ0, there exists a unique PCE in which ΓT(λ0, µ∗) is monotone in T and
there exist thresholds λs and λe ≥ λs such that:

1. If λ0 < λs, then λ∞(µ∗) = 0 and µ∗(λ) = 0 for all λ < λs.

2. If λ0 ∈ [λs, λe], then λ∞(µ∗) ∈ {λ̄, 1} and µ∗(λ) ∈ (0, 1] for all λ ∈ [λs, λe], with at least
one inequality strict.

3. If λ0 > λe, then λ∞(µ∗) = 1 and µ∗(λ) = 1 for all λ > λe.

The proof is by construction and proceeds in three steps. First, we restrict attention
to monotone equilibria, i.e. equilibria in which ΓT(λ0, µ∗) is monotone in T for ∀T > 0,
and characterize the equilibrium with the highest equilibrium effort within this class. We
are aided in this characterization by the result from Lemma 6 that incentives are strictly
increasing in λ on [λ̄−1, 1]. This step eliminates all equilibria in which effort is low just
because borrowers do not expect other borrowers to exert effort. Second, we show that this

4Eliminating fluctuations driven purely self-fulfilling beliefs also contrasts our work from other dynamic
models of asymmetric information with coordination failures (e.g. Asriyan et al. (2018)).
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maximum effort monotone equilibrium Pareto-dominates any other monotone equilibrium.
Finally, we establish that it Pareto-improves on any other candidate effort profile µ′ that
satisfies incentive compatibility.

Because Pareto-optimality requires maximum incentive-compatible effort, the equilib-
rium follows a simple threshold structure: if λ0 is sufficiently high, long-run asset quality
converges to 1; if λ0 is low, asset quality may never grow beyond the liquidity threshold,
and may even deteriorate to 0. To whittle down the set of relevant parametric cases, we im-
pose two minimal restrictions. The first ensures that effort is incentive compatible if λ = 1
indefinitely; the second implies that there exists an initial condition λ0 such that markets
are not liquid immediately even if all borrowers exert effort. The latter boils down to a
restriction on π, the parameter that determines the persistence of types.

Assumption 3. ∆(1|1) = ∆R+Lg−(1+r f )

1−β(1−π)
> c

π and π < λ̄.

Corollary 1 further characterizes the threshold structure of the PCE. In particular, we
show that, conditional on the relative size of ∆L and ∆R, the dynamics of asset quality and
effort can characterized by comparing incentives ∆ under full effort (µ = 1) and no effort
(µ = 0), where for a constant effort profile µ = a, ∆ satisfies the recursion

∆(λ|a) = ∆u
(

λ(1− π) + aπ
)
+ β(1− π)∆

(
λ(1− π) + aπ

)
(17)

The reason we can focus on µ = 1 and µ = 0 in constructing the thresholds is that the
PCE is the monotone equilibrium with maximum effort. Since incentives are increasing in
λ on [λ̄−1, 1], the first step in its construction is thus checking whether effort is incentive
compatible if all other borrowers are expected to exert effort (µ = 1). To construct the
upper bound on the initial condition λ0 for which effort is not incentive-compatible, we
must likewise check if shirking is privately optimal if all other borrowers are expected to
shirk (µ = 0). In this latter case, because ∆u(λ) = ∆L for all λ < λ̄, we can characterize in
closed form the threshold incentives ∆(λ̄|0) = ∆L

1−β(1−π)
. The following result characterizes

equilibrium dynamics as a function of the initial condition and the cost of effort.

Corollary 1. Suppose that ∆R ≥ ∆L, so that incentives are monotonic given µ = 1. Then:

(a) λs = λe, λe satisfies ∆(λe|1) = c
π , and λe = 0 if and only if ∆V(0|1) ≥ c

π .
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Next, suppose that ∆L > ∆R, so that incentives are non-monotonic given µ = 1. Then:

(b) if c
π ≤ min

{
∆(λ̄|0), ∆(λ̄|1)

}
, then λs = 0 and λ∞(µ∗) = 1 for all λ0, and:

(i) if c
π ≤ ∆(λ̄−1|1), then λe = 0 and there is full effort in every period.

(ii) if c
π > ∆(λ̄−1|1), then λe > 0 and there is partial effort for all λ ∈ [λs, λe).

(c) if c
π ∈

(
∆(λ̄|1), ∆(λ̄|0)

)
, then λe > λs = 0 and λ∞(µ∗) = λ̄ for all λ0 ≤ λe.

(d) if c
π > ∆(λ̄|0), then λs > 0.

3.3 Graphical Illustration of Equilibrium

Figures 2 to 4 graphically illustrates three key cases from Corollary 1. The graphs are
organized as follows. The left panel shows the value functions of good types (in blue)
and bad types (in red). Hypothetical value functions conditional on µ = 1 are depicted in
thin lines, while actual PCE value functions are shown using thick lines. Value functions
are discontinuous at the vertical dashed lines because there are discontinuous changes in
the number of periods required to reach λ̄. The green shaded region depicts the region
in which the market is liquid. The dashed vertical lines depict the number of periods
required to reach the liquidity region if all borrowers exert effort. The second panel shows
equilibrium incentives in the PCE (in thick blue), under the assumption that µ = 1 (in thin
blue), and under the assumption that markets are illiquid and µ = 0) (in cyan). The cost
of effort is shown in red. The solid vertical line depicts λe. The third panel illustrates the
equilibrium effort strategy µ∗ in thick blue, the law of motion for asset quality given µ∗ in
thick green, and the hypothetical law of motion given µ = 1 in thin green. The upward-
sloping dashed line is the 45-degree line. The horizontal dashed line is λ̄. The fourth panel
shows simulated paths for asset quality for various initial conditions λ0 (in dashed lines).
The solid horizontal lines show the cutoffs λe, λs and λ̄.

Figure 2 corresponds to case (a) in Corollary 1. Incentives are monotone conditional on
µ = 1, but c is such that full effort cannot be sustained for all λ. Hence λs = λe > 0, and
the equilibrium is such that no farmer exerts effort if λ < λe and all farmers exert effort if
λ ≥ λe. Accordingly, there is a discontinuous drop in the equilibrium value functions at λe.
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Shirking is incentive compatible for all λ < λe because c
π > ∆(λe|0). The simulated paths

for effort in the fourth panel highlight this non-ergodicity: long-run asset quality differs
sharply depending on the initial condition.
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Figure 2: Case (a). Monotone incentives and effort. Parameters: Rg = 2, Rb = 1, Lg = 1.4, Lb = 0.5, β = 0.8, π = 0.15, r f = 0, c
π = 3.2.

Figure 3 corresponds to Case (b,ii) in Corollary 1. The only parameters that differ
from Figure 2 are Rg (1.5 instead of 2) and c

π (1.975 instead of 3.2). Given that ∆L > ∆R,
incentives are now non-monotonic conditional on µ = 1. Since c

π < ∆(λ̄|0), there does not
exist an equilibrium in which no borrower exerts effort; hence asset quality must weakly
improve for all λ < λ̄. Since c

π < ∆(λ̄|1), moreover, there are strict incentives to exert effort
once λ̄ is reached. Hence asset quality asymptotes to 1 for all initial conditions. However,
not all borrowers exert effort in every period since c

π > ∆(λ̄−1|1), which implies that there
is incentive to free-ride on others’ effort close to the liquidity threshold. As a result, the
unique PCE is such that borrowers choose partial effort when close to λ̄, and full effort once
λ̄ is reached. The simulations in the fourth panel reflect this slowdown in effort close to λ̄,
and the convergence to 1 thereafter.

Figure 4 corresponds to Case (c) in Corollary 1. As in Figure 3, incentives are non-
monotonic conditional on µ = 1. The only change parameters is c

π (2.3 instead of 1.975). As
in the previous case, asset quality must weakly improve for all λ < λ̄ because c

π < ∆(λ̄|0).
The difference now is that c

π > ∆(λ̄|1), which implies that individual borrowers have no
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Figure 3: Case (b, ii). Non-monotonic incentives. is required on the equilibrium path, but asset quality asymptotes to 1 for all λ0.
Parameters: Rg = 1.5, Rb = 1, Lg = 1.4, Lb = 0.5, β = 0.8, π = 0.15, r f = 0, c

π = 1.975.

incentives to exert effort once λ̄ is reached. As a result, the PCE features partial effort and
partial liquidity near λ̄. Incentives are such that average asset quality is able to reach, but
not “jump” beyond, the liquidity threshold λ̄. As a result, asset quality remains stuck at the
liquidity threshold forever for all λ0 ≤ λ̄, and a fraction of borrowers fail to obtain funding
in every period.
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Figure 4: Case (c). Non-monotonic incentives, partial effort is required on the path of play, and λ∞ = λ̄ for all λ0 ≤ lb. Parameters:
Rg = 1.5, Rb = 1, Lg = 1.4, Lb = 0.5, β = 0.8, π = 0.15, r f = 0, c

π = 2.3.
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3.4 Comparative Statics

In Figure 5, we consider the comparative statics of the incentive thresholds ∆(λ̄|0),
∆(λ̄|1), and ∆(λ̄−1|1) with respect to two key parameters, π (left panel) and β (right panel).
Recall, π captures the transience of types (or equivalently, 1− π captures the persistence of
types). If π → 1, types are purely determined by effort within any given period; if π → 0,
effort is irrelevant and types are almost perfectly persistent. β measures borrower patience.
To disentangle the effects of persistence from changes in the effective cost of effort, we set
c = c̄π so that c

π is a constant. The horizontal lines then plot two potential effective costs of
effort.
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Figure 5: Comparative statics of ∆(λ̄|0), ∆(λ̄|1), and ∆(λ̄−1|1) w.r.t to π (left panel ) and β (right panel).

Equation 17 shows that π affects incentives through two mechanisms. The first is that,
conditional on a > 0, average asset quality λ′ is increasing in π. Since the per-period
cash flow difference ∆u is weakly increasing in λ, this effect increases the value of effort.
The second is that lower persistence reduces the expected future value of effort, thereby
lowering incentives to exert effort today. In our numerical example, the second mecha-
nism dominates and all three incentive thresholds are strictly decreasing in π. Because the
incentive-compatibility constraint requires that ∆ ≥ c̄, the figure shows that small shocks to
π may lead to a discontinuous change in long-run average asset quality. If the effective cost
of effort is c̄−, for example, then a small decrease in π may imply that ∆(λ̄|1) < c̄−, so that
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λ∞ = λ̄ rather than 1 for all λ0 ≤ λ̄. If the effective cost of effort is c̄+, a small decrease in
π may imply that ∆(λ̄|0) < c̄+, so that λ∞ = 0 rather than λ̄ for all λ0 ≤ λ̄.

The effects of the discount factor β can be understood similarly. Given that types are
persistent, an increase in β raises the dynamic benefit of exerting effort today. As such,
increases in β operate analogously to increases in type persistence 1− π. As a result, small
negative shocks to β may reduce long-run average asset quality from 1 to λ̄ or from λ̄ to 0.
In both cases, a small shock to parameters may thus discontinuously alter equilibrium asset
quality dynamics. (It is clear that similar results apply with respect to ∆R and ∆L, also.)

3.5 Efficiency

To assess whether competitive equilibrium is efficient, we now consider a benevolent
social planner who maximizes welfare by assigning effort profiles borrowers without having
to respect the incentive compatibility constraint. We show that the social planner may
want to assign higher effort than obtains under PCE. The difference between a competitive
equilibrium outcome and the social planner’s problem is that borrowers in a competitive
equilibrium take the evolution of asset quality as given. The social planner internalizes this
externality.

Proposition 3. µ(λ) = 1 Pareto-dominates any µ∗ such that λ∞(µ∗) = {λ̄, 1}, and strictly if
µ∗(λ) ∈ (0, 1) for some λ on the equilibrium path. If λ∞(µ∗) = 0 and Assumption 3 is satisfied,
there exists β̄ < 1 such that µ(λ) = 1 strictly Pareto-dominates µ∗ if β ≥ β̄.

The result can be verified using Figures 2-4. In all three cases, the hypothetical value
functions under the assumption that all borrowers exert effort (plotted in thin lines) lie above
the PCE value functions. Figure 2 shows a dynamic coordination failure: because the per-
period payoff under illiquidity is too low, no borrower wants to exert effort for low values of
λ. If borrowers could jointly commit to exerting effort for a number of periods, average asset
quality would improve, and the cumulative benefits from liquidity and falling borrowing
costs would be enough to outweigh the present value of increased effort. Notably, this
coordination failure persists even though we have selected the Pareto-dominant competitive
equilibrium, which circumvents any static coordination failures. An additional inefficiency
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is present in Figures 3 and 4. Here PCE is such that there is partial effort on the equilibrium
path, which is sustained by liquidity rationing at λ̄ (that is φ∗(λ̄) < 1). This leads to
suboptimally low output and slow asset quality growth. The social planner eliminates these
inefficiences by assigning full effort to all borrowers throughout. Importantly, inefficiencies
obtain only if λ0 is sufficiently low; for good initial conditions, the strategic complementarity
under market liquidity is sufficient to induce efficient effort.

4 Policy Interventions

The previous section showed that effort and market liquidity may be inefficiently low
even in the Pareto-dominant competitive equilibrium. Similar to Philippon and Skreta
(2012) and Tirole (2012), we now introduce a benevolent regulator that can provide sub-
sidies in order to restore liquidity or lower borrowing costs. Different from their work, we
focus not just on alleviating market breakdowns, but also consider the impact on asset qual-
ity via private incentives. This is an important consideration because policy interventions
have increasingly been used for extended periods of time, giving market participants time
to adapt. (See online appendix B.3 for details.) Because the effort decision is a dynamic
problem, we distinguish between limited and full commitment on the part of the regulator.

To establish a benchmark for liquidity interventions, we say that a market breakdown
in competitive equilibrium is inefficient if not all borrowers are funded and λ′ is such that
total output is strictly increasing in the fraction of funded borrowers.

Lemma 4. Market breakdowns are inefficient if and only if φ∗(λ̄) < 1 and λ ∈ (λ, λ̄], where

λ =
1 + r f − Rb

∆R
.

Proof. In competitive equilibrium, φ∗(λ) = 1 for all λ > λ̄. If φ∗ < 1, aggregate output
strictly increases in the fraction of funded borrowers if λ′Rg + (1− λ′)Rb > 1 + r f .

Assumption 4. λ < λ̄.

The regulator has no informational advantage or disadvantage over lenders: he ob-
serves λ but not θ. Based on this information, he decides on a subsidy rule s(λ′) determining
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a payment made by the regulators to any lender whose borrower defaults when the real-
ized asset quality within a given period is λ′. Such a subsidy makes lending less risky, and
thereby fosters liquidity and reduces borrowing costs for borrowers. The subsidy can be
chosen to deliver any feasible equilibrium interest rate. Since Philippon and Skreta (2012)
show that the equilibrium interest rate is the sufficient statistic for assessing the real effects
of any policy in environments such as this one, it is without loss of generality to study
this policy only. Alternative policy implementations with the same aggregate consequences
include changes to the risk-free rate r f , outright asset purchases, or collateral exchanges.

Borrowers may react to the policy by changing their effort strategy. We let µ̃(s) denote
the effort strategy given the policy, and let Ṽ(λ) denote the associated borrower value
functions, defined analogously to the case without interventions. We use D(λ) to denote
the deficit associated with the subsidy (that is, the total discounted sum of funds injected by
the regulator). As in Tirole (2012) we assume that deficits have a social dead weight cost
δ > 0. Letting Π(λ) denote the expected utility (or equivalently, gross returns) earned by
lenders, utilitarian welfare is

W(λ) = λṼg(λ) + (1− λ)Ṽb(λ) + Π(λ′)− (1 + δ)D(λ) (18)

We focus mainly on the limit δ→ 0, where the deadweight loss acts as a selection device that
chooses the “smallest possible” intervention among those that deliver a particular market
allocation.

The regulator’s objective is to choose a subsidy rule s(λ) to maximize time-zero wel-
fare W(λ0). The rule is announced at the date zero. We consider two scenarios. Under
limited commitment, s(·) has to be such that the regulator finds it ex-post optimal to deliver
the promised subsidy given realized asset quality λ′. That is, it must be ex-post welfare-
maximizing to deliver the promised subsidy given borrowers’ sunk effort decisions. Under
full commitment, the regulator can credibly commit to any subsidy rule chosen at date zero,
and s need not satisfy an ex-post optimality requirement.

Given deadweight cost δ, the regulator will never find it optimal to offer a subsidy so
generous that good borrowers will prefer defaulting on their loans.5 Hence we can take as

5To see why, observe that the lending market equilibrium is as if all borrowers were high quality if the
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given that only bad borrowers default, so that the deficit satisfies the recursion

D(λ) = (1− λ′)s(λ′) + βD(λ′) s.t. λ′ = Γ(λ, µ̃(s)) (19)

Lenders’ break-even condition under the subsidy is λ′B + (1 − λ′)(Lb + s(λ′)) ≥ 1 + r f .
Borrowers continue to offer a contract such that this constraint holds with equality. Hence
the face value is

B̃(λ′, s) =
1 + r f − (1− λ′)(Lb + s(λ′))

λ′

Observation 2. Borrowers obtain funding if and only if B̃(λ′, s) ≤ Lg. Hence the minimum subsidy
required to ensure that borrowers can obtain funding is

s(λ′) =
1 + r f − λ′Lg − (1− λ′)Lb

1− λ′
. (20)

4.1 Limited Commitment

Under limited commitment, the subsidy rule s(λ′) must be statically welfare-maximizing
for all λ′. Since effort is sunk at the time of the intervention, moreover, continuation val-
ues are independent of the current policy. Because it is efficient for all borrowers to obtain
funding if λ = λ̄ (and this can be achieved by the regulator at zero cost), the per-period
utility earned by borrower θ given s(λ′) is

ũθ(λ
′, s) =

Rθ + Lθ −min{B̃(λ′, s), Lθ} if B̃(λ′, s) ≤ Lg

Lθ if B̃(λ′, s) > Lg
(21)

Since lenders earn 1 + r f in every period, and the within-period deficit is (1 − λ′)s(λ′),
ex-post optimality can be defined as follows.

Definition 5. s(λ′) is ex-post optimal if and only if

s(λ′) = arg max
s′

λ′ũg(λ
′, s′) + (1− λ′)ũb(λ

′, s′) + (1 + r f )− (1 + δ)(1− λ′)s′.

regulator offers subsidy ∆L. Under such a subsidy, effort incentives are maximal, all borrowers obtain funding,
and yet there are no gains from good borrowers defaulting.
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Proposition 4. There exists a unique ex-post optimal subsidy rule s̃(λ′) satisfying

s̃(λ′) =

s(λ′) if λ ∈ (λ̃(δ), λ̄)

0 otherwise
where

∂λ̃(δ)

∂δ
> 0 and lim

δ→0
λ̃(δ) = λ

and all borrowers are financed if λ = λ̄.

The ex-post optimal subsidy is such that the regulator intervenes minimally only if
there are inefficient market breakdowns under laissez-faire. In the limit δ → 0, the subsidy
is offered if and only if there is an inefficient market breakdown. The regulator does not
need to intervene at λ̄, but the promise of a vanishingly small intervention is enough to
eliminate all statically inefficient equilibria of the lending game with φ∗(λ̄) < 1.

Since λ′ is taken as given, the ex-post optimal subsidy rule focuses only on restoring
liquidity, and ignores effort incentives. While this unambiguously increases welfare condi-
tional given λ′, it may reduce welfare once the feedback to effort is taken into account.

Proposition 5. Let PCE be such that λ∞(µ∗) ∈ {λ̄, 1} and µ∗(λ) ∈ (0, 1) for some λ on the
equilibrium path. Then average asset quality converges to max{λ, 0} < µ∗(λ) ∈ (0, 1) under the
ex-post optimal subsidy. There exist parameters such that the ex-post optimal subsidy strictly lowers
welfare relative to PCE.

The intuition is that the intervention creates a region of the state space where incen-
tives are “as if” λ = λ̄. Since the adverse selection discount is highest at λ̄, this hampers
per-period incentives relative to the laissez-faire equilibrium. In online appendix B.4, we
provide a parametric example where the ex-post optimal intervention strictly reduces out-
put and welfare relative to PCE in every period.

Figures 6 and 7 illustrate the mechanism more broadly by comparing outcomes in PCE
(in dotted black) and under the ex-post optimal subsidy in the limit δ → 0 (in dashed red)
using the parameters from Figures 3 and Figures 4. The first panel plots the evolution of
average asset quality for various initial conditions λ0 ≤ λ̄, while the second panel plots the
associated total net cash flows in PCE.6 The third panel plots the per-period deficit d(λ′) =

6Net cash flows in PCE and under the subsidy are CFPCE
t−1 = φ∗(λ∗t )

(
λ∗t Rg + (1− λ∗t )Rb − 1

)
+ λ∗t Lg +
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(1− λ′)s(λ′), while the fourth panel plots welfare as a function of the initial condition λ0.
In both cases, parameters are such that λ = 0.
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Figure 6: Welfare comparison between PCE and the ex-post optimal subsidy. Case (b,ii) from Corollary 1. Parameters: Rg = 1.5, Rb = 1,
Lg = 1.4, Lb = 0.5, β = 0.8, π = 0.15, r f = 0, c

π = 1.975. Parameters are such that λ = 0.

Figure 6 corresponds to Case (b,ii) in Corollary 1, where the PCE features partial effort
along the equilibrium path and λ∞ = 1. By Proposition 5, asset quality declines under the
subsidy (first panel). If λ0 is low, this concern is mitigated by the fact that the policy allows
all borrowers to obtain funding, thereby boosting net cash flows. Eventually, however, asset
quality improves and markets become liquid in PCE, and cash flows are higher without the
subsidy. Moreover, the fact that asset quality declines under the subsidy implies that the
per-period subsidy rises, further lowering welfare. Since the number of periods in which
markets are liquid is falling in λ0, the welfare difference is increasing in λ0.

Figure 7 corresponds to Case (c) in Corollary 1, where the PCE is such that there
is partial effort and asset quality remains stuck at the liquidity threshold, λ∞ = λ̄. The
equilibrium under the subsidy is unchanged, and the basic mechanisms are the same as
in the previous case. The key difference is that asset quality never improves beyond λ̄

in PCE, and that only a fraction of borrowers obtain funding at the the liquidity threshold

(1− λ∗t )Lb and CFsubsidy
t−1 = λ̃t(Rg + Lg) + (1− λ̃t)(Rb + Lb) − 1, respectively, where λ∗t and λ̃t denote the

respective asset quality. Note that all borrowers get funded in every period under the subsidy because λ = 0.
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Figure 7: Welfare comparison between PCE and the ex-post optimal subsidy. Case (c) from Corollary 1. Parameters: Rg = 1.5, Rb = 1,
Lg = 1.4, Lb = 0.5, β = 0.8, π = 0.15, r f = 0, c

π = 2.3. Parameters are such that λ = 0.

(φ∗(λ̄) < 1). This long-run inefficiency of the PCE increases the relative value of the subsidy.
As a result, the welfare difference is smaller than in Case (b,ii). The discounted deficit is
decreasing in λ0 because good borrowers do not default. As a result, the welfare difference
decreases in the initial condition λ0.

Remark 1. The ex-post optimal subsidy need not lower welfare. For example, it is easy to see that
there exists parameters such that subsidy is welfare-improving for β sufficiently small, since the
adverse effects on future asset quality are then irrelevant.

4.2 Full Commitment

Under full commitment, the regulator chooses a subsidy rule s(λ′) at time zero and
remains committed to it for all realizations of λ′. Our goal is to demonstrate how the
policy under commitment differs qualitatively from the ex-post optimal rule, and how this
difference manifests in welfare. For simplicity, we focus on the case where full effort is
efficient but not attained in PCE, and λ ≤ 0 (that is, it is efficient to fund all borrowers).
Consider a subsidy rule ŝ under which effort is privately optimal for all λ. Given that only
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bad borrowers default, the difference in per-period cash flows under ŝ is

∆u(λ′, ŝ) = ∆R + ∆L + ŝ(λ′)−
1 + r f − Lb − ŝ(λ′)

λ′
,

and is strictly increasing in ŝ(λ′). Let µ̂ and V̂θ(λ) denote the value functions associated
with ŝ, and define ∆V̂(λ) and ∆̂(λ) accordingly. The IC constraint given λ and ŝ is

∆u(λ′, ŝ) + β∆V̂(λ′) ≥ c
π

. (22)

Proposition 6. There exists a unique optimal subsidy rule ŝ such that all borrowers exert effort in
all periods and all borrowers are able to obtain funding under ŝ whenever they obtain funding under
the ex-post optimal subsidy rule s̃. ŝ is such that

1. ŝ(λ′) = 0 for all λ′ ≥ λ̄ such that µ∗(Γ−1(λ′, µ∗)) = 1.

2. Constraint (22) holds with equality for any λ such that ŝ(Γ(λ, 1)) > 0.

3. ŝ(λ′) ≥ s̃(λ′) for all λ′.

Hence the regulator does not intervene if the market is liquid and the PCE already
features full effort, and provides the smallest effort-inducing subsidy otherwise. The next
result shows that the optimal effort-inducing policy differs qualitatively the optimal policies
in Philippon and Skreta (2012) and Tirole (2012). In particular, the regulator may need to
intervene even if asset quality is high enough to sustain liquidity in the absence of interven-
tions. While this is ex-post inefficient, it is ex-ante efficient because borrowers respond by
exerting more effort. It may also lead to lower total costs. (Online Appendix B.5 provides
an example in which the regulator can induce effort with an infinitesimal subsidy.) The
value of commitment thus is the ability to intervene in excess of what is required to restore
liquidity. We also show that, while ŝ must be weakly larger than s to induce effort, the total
deficit (1− λ)s̃ may be lower than under the minimal subsidy. This is because an increase in
good borrowers leads to lower total subsidy payout even if the per-capita subsidy is higher.

Proposition 7. ŝ(Γ(λ, 1)) > 0 for all λ such that Γ(λ, 1) ≥ λ̄ and µ∗(λ) ∈ (0, 1). There exist
parameters such that ŝ generates smaller per-period deficits than s̃ in every period.
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5 Conclusion

We propose a tractable dynamic framework to study liquidity and efficiency in collat-
eralized lending markets with uninformed lenders. Our key innovation is that collateral
quality is persistent but determined by hidden effort. Private effort imposes an externality
on other borrowers because loans are priced based on average asset quality. We prove exis-
tence and uniqueness of a Pareto-dominant equilibrium that delivers strictly higher utility
to all borrowers than any other competitive equilibrium but may remain inefficient. The
dynamics of collateral quality and liquidity are non-ergodic: the fraction of good collateral
asymptotes to one if it is high initially, but may deteriorate to zero or the liquidity thresh-
old otherwise. Liquidity is fragile: small shocks to the persistence of collateral quality or
borrower patience may trigger discontinuous drops in long-run collateral quality. These
comparative statics may help to assess which markets are particularly prone to freezes:
these are asset classes whose payoffs are easy to alter by originators, or whose market par-
ticipants are relatively short-termist. Competitive equilibria are inefficient given poor initial
conditions, but regulators without commitment may further reduce welfare by prioritizing
ex-post liquidity provision over effort incentives. Regulators with commitment offer large
per-capita subsidies, and may optimally intervene even if the market is liquid. These results
contrasts sharply with existing policy prescriptions. The tractability of our framework may
permit further applications.

References

Acharya, V. V., T. Eisert, C. Eufinger, and C. Hirsch (2019): “Whatever It Takes: The
Real Effects of Unconventional Monetary Policy,” Review of Financial Studies.

Agarwal, S., G. Amromin, S. Chomsisengphet, T. Landvoigt, T. Piskorski, A. Seru, and

V. W. Yao (2017): “Mortgage Refinancing, Consumer Spending, and Competition: Evi-
dence from the Home Affordable Refinancing Program,” Columbia Business School Research
Paper No. 15-85.

Asriyan, V., W. Fuchs, and B. Green (2018): “Liquidity Sentiments,” Working Paper.

30



Bigio, S. (2015): “Endogenous Liquidity and the Business Cycle,” American Economic Review,
105, 1883–1927.

Board, S. and M. Meyer-ter Vehn (2013): “Reputation for Quality,” Econometrica, 81, 2381–
2462.

Camargo, B., K. Kim, and B. Lester (2016): “Information Spillovers, Gains from Trade, and
Interventions in Frozen Markets,” Review of Financial Studies, 29, 1291–1329.

Camargo, B. and B. Lester (2014): “Trading Dynamics in Decentralized Markets with
Adverse Selection,” Journal of Economic Theory, 153, 534–568.

Caramp, N. (2017): “Sowing the Seeds of Financial Crises: Endogenous Asset Creation and
Adverse Selection,” UC Davis Working Paper.

Carpinelli, L. and M. Crosignani (2018): “The Design and Transmission of Central Bank
Liquidity Provisions,” Working Paper.

Chemla, G. and C. A. Hennessy (2014): “Skin in the Game and Moral Hazard,” The Journal
of Finance, 69, 1597–1641w.

Chiu, J. and T. V. Koeppl (2016): “Trading Dynamics with Adverse Selection and Search:
Market Freeze, Intervention and Recovery,” The Review of Economic Studies, 83, 969–1000.

Daetz, S. L., M. G. Subrahmanyam, D. Y. Tang, and S. Q. Wang (2019): “Can Central Banks
Boost Corporate Investment? Evidence from the ECB Liquidity Injections,” Working Paper.

Daley, B., B. Green, and V. Vanasco (forthcoming): “Securitization, Ratings, and Credit
Supply,” The Journal of Finance.

Drechsler, I., T. Drechsel, D. Marques-Ibanez, and P. Schnabl (2016): “Who Borrows
from the Lender of Last Resort?” The Journal of Finance, 71, 1933–1974.

Eisfeldt, A. L. (2004): “Endogenous Liquidity in Asset Markets,” Journal of Finance, 59,
1–30.

31



Fuchs, W. and A. Skrzypacz (2015): “Government Interventions in a Dynamic Market with
Adverse Selection,” Journal of Economic Theory, 158, 371–406.

Fukui, M. (2018): “Asset Quality Cycles,” Journal of Monetary Economics, 95, 97–108.
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A Proofs

A.1 Proof of Lemma 1

Since Lb < 1 + r f , bad borrowers cannot obtain funding in any separating equilibrium.
Hence lenders are willing to accept the good type’s contract only if B ≥ 1 + r f . A bad
borrower who offers the same contract thus defaults on the promise with probability one
and repays Lb rather than B. Since Rg > Lb, doing so yields a strictly higher return than
offering any other contract.

A.2 Proof of Lemma 2

Use (4) in (15), and difference the value functions given µθ = 1 and µθ = 0.

A.3 Proof of Lemma 3

1. Observe that Rθ > Lθ for all θ. Moreover, ub(λ) is a constant for λ ≥ λ̄, while ug(λ) is
strictly increasing and continuous. The result then follows from Theorem 4.7 in Stokey
et al. (1989).
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2. Observe that ∆V(λ) and ∆(λ) satisfy the recursions ∆V(λ) = (1−π) [∆u(λ′) + β∆V(λ′)]
and ∆(λ) = ∆u(λ′) + β(1 − π)∆(λ′). Since ∆u(λ′) is strictly increasing, the result
again follows from Theorem 4.7 in Stokey et al. (1989).

3. Observe that ∆u(λ) is non-monotonic only if ∆L > ∆R, and that λ̄−1(µ) > 0 for all µ
if and only if π < λ̄. Given this, establishing sufficiency is equivalent to showing that
there does not exist µ such that ∆u(Γ(λ, µ)) ≥ ∆L for all λ such that λ = ΓT(λ0, µ) for
some T ≥ 1 and λ0. Conditional on λ ≥ λ̄, ∆u(λ) ≥ ∆L if and only if λ ≥ λL = λ̄ ∆L

∆R .
Hence we require that λL cannot be reached from λ̄ under any µ such that Γ (λ, µ) is
weakly increasing in λ. This is the case if λ̄ + π(1− λ̄) < λL, which is equivalent to
the stated condition. To prove the fourth statement, observe that π < λ̄ implies that
there exists a unique λ0 > 0 such that Γ(λ0, µ) = λ̄. By continuity of the law of motion
on [0, 1] , and the discontinuity in ∆u(λ) at λ̄, there exists a unique λ′0 < λ0 arbitrarily
close to λ0 such that Γ(λ′0, µ) < λ̄ and limλ′0→λ0 ΓT(λ′0, µ) = ΓT(λ0, µ) for all T ≥ 2.
By the discontinuity in ∆u(λ) at λ̄ and the continuity of ∆(λ) on [λ̄−1(µ), 1], ∃λ′0 such
that ∆(λ′0) > ∆(λ0).

4. If µ(λ) = 1 for all λ, then there exists a unique inverse law of motion. Hence there
exists a unique λ̄−1 such that Γ(λ̄−1, 1) = λ̄, and Γ(λ, 1) < λ̄ for all λ < λ̄−1. π < λ̄
ensures that λ̄−1 > 0. By Part 3 of this Lemma, moreover, ∆(λ̄−n) < ∆(λ̄−n − ε) for
ε ≈ 0. This proves the first part of the claim. Next, we show that λ̄−1 = arg minλ ∆(λ)
given ∆L > ∆R and π < λ̄. First, observe that there exist discontinuities ∆(λ) at a
sequence of points {λ̄−n, . . . , λ̄}N

n=1, where n is an integer, λ̄−n is defined to be such
that Γn(λ−n, µ = 1) = λ̄, and N denotes the maximum number of steps required to
reach λ̄ given that all borrowers exert effort. Since uθ = Lθ for all θ and all λ ≤ λ̄,
the fact that ∆(λ) is strictly increasing on [λ̄−1, 1] immediately implies ∆(λ) is strictly
increasing on [λ̄−(n−1), λ̄−n) for all n ≥ 1. Hence the minimum over ∆(λ) is attained
at a point of discontinuity. By an abuse of notation, let ∆−n = ∆(λ̄−n). Then

∆−n = ∆u(λ̄−(n−1)) + β(1− π)∆−(n−1)

= ∆u(λ̄−(n−1)) + β(1− π)∆u(λ̄−(n−2)) +
(

β(1− π)
)2

∆−(n−2)

Since the market is illiquid for all n ≥ 1, continuing to iterate gives

∆−n = ∆L

(
n−1

∑
i=0

(1− π)iβi

)
+ (1− π)nβn

[
∆R + β∆V(λ̄)

]
(23)
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We proceed by induction. Suppose ∆−2 > ∆−1. Then

∆L + (1− π)β
[
∆R + β∆V(λ̄)

]
> ∆R + β∆V(λ̄) (24)

For all n > 2, the difference in incentives at the points of discontinuity is ∆−n −
∆−(n−1) = ∆L ((1− π)β)n−1 +((1− π)β)n [∆R + β∆V(λ̄)

]
− ((1− π)β)n−1 [∆R + β∆V(λ̄)

]
.

Hence ∆−n−∆−(n−1) > 0 for any n > 2 if and only if ∆L+(1−π)β
[
∆R + β∆V(λ̄)

]
>

∆R + β∆V(λ̄), which is equivalent to the first induction Step (see Equation 24). More-
over, it follows immediately that we cannot have ∆−2 ≤ ∆−1, since the above argu-
ments would then imply the contradiction that ∆V is globally monotone.

A.4 Proof of Proposition 2

Proof. Our proof is organized as follows. Let us refer to an equilibrium as a monotone
equilibrium if ΓT(λ0, µ∗) is monotone in T for ∀T > 0. First, we show the existence of a
monotone equilibrium with λ∞ ∈ {1, λ̄, 0} given λ0 for the entire parameter space. For
shorthand, we refer to a monotone equilibrium with λ∞ = x , as an x-monotone equilibrium.
Second, we identify the Pareto monotone equilibrium given λ0, i.e. the monotone equi-
librium that Pareto-dominates any other monotone equilibrium that may co-exist. Third,
we show that Pareto monotone equilibrium Pareto-dominates any competitive equilibrium,
which establishes that it is the Pareto competitive equilibrium. In addition, we show that
for the Pareto monotone equilibrium, there exists cutoffs λs and λe, where

• µ∗(λ) = 0 for λ < λs;

• µ∗(λ) ≤ 1 for λ ∈ [λs, λe] with the inequality strict for at least one λ ∈ [λs, λe];

• µ∗(λ) = 1 for λ ≥ λe.

Step 1. We first show existence of a monotone equilibrium for the entire parameter
space. We show by characterizing the conditions under which a 1-monotone equilibrium
exists, followed by λ̄, and 0. Then, we establish that the superset of the three spans the
parameter space.

First, note that under Assumption 3, there exists a 1-monotone equilibrium if λ0 = 1.
This is because given ∆u(1)

1−β(1−π)
> c

π , for a sequence λt = 1 for t = 0, 1, 2, ..., individual
borrowers find it optimal to exert effort, since Γ(1, 1) = 1. Similarly, if Assumption 3 does
not hold, there exists an equilibrium with λ∞ = 0, since for all λ ∈ [0, 1], borrower’s
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incentive compatibility condition does not hold, i.e. a necessary condition for a 1- or λ̄-
monotone equilibrium to exist is ∆u(1)

1−β(1−π)
> c

π . For the remainder of the proof, we assume
so.

Following a similar argument, we can show that more generally, there exists some
cutoff λl < 1 such that for any λ0 > λl, there exists a 1-monotone equilibrium. Since a
1-monotone equilibrium exists for λ0 = 1, for some small ε:

∆u(1)
1− β(1− π)

−
(

∆u(1− ε) + ∑
t

βt∆u(Γt(1− ε, µ = 1)

)
=

[
1 + r f −

1 + r f − εLb

1− ε

]

+ β

[
1 + r f −

1 + r f − ε(1− π)Lb+

1− ε + επ

]
+ ...

which approaches 0 as ε→ 0. Hence, for some ε̄ > 0, 1−ε̄−π
1−π is such that limT→∞ ΓT

(
1−ε̄−π

1−π , µ = 1
)
=

1 and where µ = 1 is incentive compatible, i.e. there exists a 1-monotone equilibrium. Go-
ing forward, let λl be the minimum value in [λ̄, 1] for which given λ0 ≥ λl−π

1−π , there exists a
1-monotone equilibrium with µ∗ = 1.

So far, we established that there exists some nonempty set of λ0 ∈ [0, 1] such that
there exists a 1-monotone equilibrium. This implies that there exists some λl such that
for λ0 ∈ [λl−π

1−π , 1], there exists a 1-monotone equilibrium in which µ∗(λ) = 1. We now
proceed by identifying the necessary and sufficient conditions under which it exists for the
remaining set of λ0. We do so by splitting it into two cases, when (1) λ̄+ (1− λ̄)π ≥ λl, and
when (2) λ̄ + (1− λ̄)π < λl. Consider Case (1), and suppose that λ̄ + (1− λ̄)π ≥ λl. This
means that λ̄ > λl−π

1−π , i.e. there exists values of λ0 < λ̄ for which there exists a 1-monotone
equilibrium. To pin down the set of λ0 for which there exists a 1-monotone equilibrium, we
consider two subcases, where given µ(λ) = 1, ∆(λ) is (a) monotonic or (b) non-monotonic.
This corresponds to when (a) ∆L < ∆R or π > λ̄ and (b) ∆L > ∆R and π < λ̄, as given by
Lemma 3.

First consider Subcase (a), and suppose that ∆(λ) is monotonic. Given some λ ≤ λ̄, let
τ be the smallest integer such that Γτ(λ, µ = 1) ≥ λl. We can express borrowers’ gains from
effort at λ conditional on µ = 1 as:

∆L + β(1− π)∆L + ... + βτ−1(1− π)τ−2 ((1− π)∆u(Γτ(λ, µ = 1)) + β∆V(Γτ(λ, µ = 1)))
(25)

Effort is incentive compatible at λ if the above expression is greater than c
π . Since ∆(λ) is

monotonic, ∆u(Γτ(λ, µ = 1)) ≥ ∆L. This implies that the above expression increases in λ.
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Hence, there exists some λe < λ̄ (and consequently λe < λl) such that ∆(λ, µ = 1) ≥ c
π

if and only if λ ≥ λe. If, in addition, c
π < ∆L

1−β(1−π)
, then ∆(0, µ = 0) > c

π . Since ∆(λ) is

monotonic, this implies that λe = 0. Instead, if c
π > ∆L

1−β(1−π)
, then λe = 0 if ∆(0, µ = 1) ≥ c

π ,
and λe ∈ (0, λ̄) otherwise. Finally, note that there exists a monotone equilibrium with
λ∞(µ∗) = 0 for λ0 < λe, since c

π > ∆L
1−β(1−π)

implies that a decreasing Γ(λ, µ) is consistent
with borrowers’ incentives not to exert effort.

Next, consider Subcase (2) where ∆(λ) is non-monotonic, i.e. there exists a discon-
tinuity in ∆u(λ) at λ = λ̄. This implies that for µ = 1, ∆(λ̄ − ε) > ∆(λ̄) for some
ε > 0. Consider the set ∈ [Γ−1(λ̄, µ = 1), Γ−1(λl, µ = 1)]. Since given µ = 1, for some
x ∈ [Γ−1(λ̄, µ = 1), Γ−1(λl, µ = 1)], ∆(λ) is increasing, effort is not incentive compatible
since ∆(Γ(x, µ = 1)) < c

π = ∆(λl). Given µ(x) such that Γ(x, µ) = λ̄, i.e. µ(x) = λ̄−x(1−π)
π

and µ(λ) = 1 for λ ≥ Γ−1(λl, µ = 1), the incentive constraint is given by

∆u(λ̄) + β(1− π)∆Γ(λ̄, µ = 1) ≥ c
π

. (26)

Since ∆Γ(λ̄, µ = 1) > c
π , the condition holds as long as ∆u(λ̄) ≥ (1 − β(1 − π) c

π . If
c
π < ∆L

1−β(1−π)
, then there exists some φ < 1 such that:

(1− φ)∆L + φ∆R = (1− β(1− π))
c
π

. (27)

Hence, borrowers’ indifference holds between effort and no effort. This implies that for
λ0 < λl−π

1−π , there exists a 1-monotone equilibrium where µ∗(λ) = 1 for λ /∈
[

λ̄−π
1−π , λl−π

1−π

]
and µ∗(λ) = λ̄−λ(1−π)

π for λ ∈
[

λ̄−π
1−π , λl−π

1−π

]
. Let λs be defined as the threshold value where

µ∗(λ) < 1 for some λ along the equilibrium path. Then, here λs = 0. In contrast, if c
π >

∆L
1−β(1−π)

, then given that Γ(λ, µ) weakly increases, it follows that ∆u(λ̄) < (1− β(1− π)) c
π

for any φ ∈ [0, 1]. Hence, a 1-monotone equilibrium exists if only if λ0 ≥ Γ−1(λl, µ = 1).
Furthermore, since there does not exist any φ such that ∆u(λ̄)

1−β(1−π)
= c

π , there can not exist
a λ̄-monotone equilibrium. Finally, conditional on Γ(λ, µ) weakly decreasing, there exists
a 0-monotone equilibrium for λ0 < Γ−1(λl, µ = 1), since c

π > ∆L
1−β(1−π)

implies that a
decreasing Γ(λ, µ) is consistent with borrowers’ incentives not to exert effort.

Consider Case (2), where λ̄+(1− λ̄)π < λl. Since it has been shown that a 1-monotone
equilibrium exists for λ0 ≥ Γ−1(λl, µ = 1), we focus on the remaining interval where
λ0 < Γ−1(λl, µ = 1). First, we establish that there does not exist a 1-monotone equilibrium
for λ0 < Γ−1(λl, µ = 1). Given λ̄+(1− λ̄)π < λl we have that there exists some λe ∈ (λ̄, λl)
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such that some λ ∈ [λ̄, λe), individual borrowers’ effort decision is such that no effort is
strictly dominating strategy at conditional on beliefs that all other borrowers exert effort in
the current and all future periods. From this, we can infer that there does not exist feasible
transition path to 1: any candidate path with λ0 < λl−π

1−π , must have some T at which
ΓT(λ0, µ) ∈ [λ̄, λe), as there does not exist a λ ≤ λ̄ where λ+(1−λ)π ≥ λe. However, effort
is not incentive compatible given any λ ∈ [λ̄, λe), so we are done. Given this, we proceed
by identifying the conditions under which there exists a λ̄-monotone equilibrium. We show
existence requires that c

π ≥
∆R

1−β(1−π)
by contradiction. To see this, note that ∆R

1−β(1−π)
, which

corresponds to the marginal value of effort conditional on a sequence of repeated λ̄ and
φ = 1. Since given φ = 1, ∆R

1−β(1−π)
< ∆(λ̄, µ = 1) under Lemma 3, if c < ∆R

1−β(1−π)
, then

a 1-monotone equilibrium exists. Given this, suppose that ∆L
1−β(1−π)

> c
π > ∆R

1−β(1−π)
. We

maintain our attention to λ0 < Γ−1(λl, µ = 1). Consider the following µ:

µ(λ) =



{
λ̄−λ(1−π)

π for λ ∈ ( λ̄−π
1−π , λl−π

1−π )

1 for λ < λ̄−π
1−π

if λ0 < λ̄{
λ̄−λ(1−π)

π for λ ∈ (λ̄, λ̄
1−π )

0 for λ > λ̄
1−π

if λ0 ∈ (λ̄, λl−π
1−π )

(28)

Given µ, there exists some T such that for t > T, Γt(λ0, µ) = λ̄, i.e. λ∞ = λ̄. As such, it
suffices to show that µ is incentive compatible. Consider a borrower’s incentive constraint
given Γ(λ, µ) = λ̄. Note, there exists some φ < 1 such that:

(1− φ)∆L + φ∆R = (1− β(1− π))
c
π

(29)

This implies that borrowers are indifferent between effort and no effort, since (1−φ)∆L+φ∆R
1−β(1−π)

=
c
π . Hence, we show incentive compatibility for the cases where µ < 1. Next, consider when
Γ(λ, µ) < λ̄. It follows from c

π ≤
∆L

1−β(1−π)
that ∆L + βV(Γ(λ, µ)) > c

π . Finally, for any λ ∈
(λ̄, λl−π

1−π ), since ∆R
1−β(1−π)

and Γ(λ) > λ̄, no effort is consistent since ∆R + βV(Γ(λ, µ)) < c
π .

Hence, a λ̄-monotone equilibrium for λ0 < λl−π
1−π if ∆L

1−β(1−π)
> c

π .

Within Case (2), it remains to consider when ∆L
1−β(1−π)

< c
π . We show that a λ̄-monotone

equilibrium does not exist. Recall that we showed that a λ̄-monotone equilibrium does not
exist if ∆R

1−β(1−π)
≥ c

π . Let ∆R
1−β(1−π)

< c
π . Then, it holds that max{∆L,∆R}

1−β(1−π)
< c

π . Since
(1− φ)∆L + φ∆R < (1− β(1− π)) c

π , for any φ ∈ [0, 1], there does not exist an incentive
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compatible µ such that Γ(λ̄, µ) = λ̄. This rules out a λ̄-monotone equilibrium.
To complete the existence of a monotone equilibrium, consider instead a 0-monotone

equilibrium. Let µ = 0 for λ < λl−π
1−π , which means Γ(λ, µ = 0) = (1− π)λ. Since c

π >
∆L

1−β(1−π)
= ∆u(0)

1−β(1−π)
, the law of motion is consistent with borrower’s individual decision

not to exert effort for the path of λ. Hence, for ∆L
1−β(1−π)

< c
π , a 0-monotone equilibrium

exists given λ0 < λl−π
1−π .

We have shown general existence of a monotone equilibrium. We summarize equi-
librium characteristics over the parameter space. Formally, let λe be a threshold at which
for λ > λe, µ = 1 is incentive compatible, and let λs be a threshold at which for λ > λs,
µ ∈ (0, 1]. For λ̄ + (1− λ̄)π ≥ λl:

• If ∆(λ) monotonic, then a 1-monotone equilibrium with µ∗ = 1 exists for λ0 > λe,
where λe ∈ [0, λ̄). Otherwise, a 0-monotone equilibrium with µ∗ = 0 exists.

• if ∆(λ) non-monotonic, then a 1-monotone equilibrium with µ∗ = 1 exists for λ0 > λe;
a 1-monotone equilibrium with µ∗ ≤ 1 exists for λ0 ∈ (λs, λe), where λs = 0 if

∆L
1−β(1−π)

> c
π and λs = λe if ∆L

1−β(1−π)
≤ c

π ; a 0-monotone equilibrium with µ∗ = 0
exists if λ0 < λs.

For λ̄ + (1− λ̄)π < λl:

• A 1-monotone equilibrium with µ∗ = 1 exists for λ0 ≥ λe, where λe ∈ (λ̄, 1].

• A λ̄-monotone equilibrium exists for λ0 ∈ [λs, λe) if ∆L
1−β(1−π)

> c
π , where λs = 0.

• A 0-monotone equilibrium with µ∗ = 0 for λ0 < λs exists if ∆L
1−β(1−π)

> c
π , where

λs = λe.

Step 2. We proceed to show that the above set of monotone equilibria Pareto-dominates
any other monotone equilibrium whenever they co-exist. To do so, first we recognize a suf-
ficient condition under which one competitive equilibrium dominates another. Since Vθ(λ)
strictly increases in λ, an equilibrium with greater ΓT(λ0, µ) for all T Pareto-dominates:

Lemma 5. Given initial condition λ0, a competitive equilibrium with effort profile µ Pareto-dominates
a competitive equilibrium with effort profile µ′ if ΓT(λ0, µ) ≥ ΓT(λ0, µ′) for ∀T.

We apply Lemma 5 to the set of monotone equilibria. First, note that under the con-
ditions for which a 1-monotone equilibrium with µ∗ = 1 exists, it is trivially a Pareto
monotone equilibrium. Next, consider the conditions under which a 1-monotone equilib-
rium with µ∗(λ) < 1 for some λ exists. It is straightforward to see that the equilibrium
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explicitly characterized in the existence proof dominates any λ̄- or 0-monotone equilibrium
if it exists. Hence, is suffices to show whether it is dominated by a different 1-monotone
equilibrium. This equilibrium is dominated by some equilibrium with effort profile µ′ only
if µ′(λ) > µ∗(λ) for λ ∈

[
λ̄−π
1−π , λl−π

1−π

]
. This requires that for some λ ∈

[
λ̄, λl], it must hold

that ∆(λ) > c
π . However, no such λ exists given the definition of λl. Hence, it is a Pareto

monotone equilibrium. Consider the remaining cases, when a 1-monotone equilibrium does
not exist, but when a λ̄-monotone equilibrium exists as outlined above. It follows from the
proof that the λ̄-monotone equilibrium shown to exist above also Pareto dominates any
other λ̄- or 0-monotone equilibrium given Lemma 5. For the remaining cases when only a
0-monotone equilibrium exists, it is trivially the Pareto monotone equilibrium.

Step 3. What remains is to compare the Pareto monotone equilibrium to any other
potential competitive equilibrium. We do so by showing that there cannot exist any other
incentive compatible effort profile that improves on the Pareto monotone equilibrium. Sup-
pose that for some λ0, the Pareto monotone equilibrium is a 1-monotone equilibrium. Ear-
lier, we showed that there exists some threshold λe, for which if λ0 ≥ Γ−1(λe, µ = 1), then
there exists a 1-monotone equilibrium. Note the following:

Lemma 6. Suppose that an equilibrium effort profile µ is such that µ(λ) = 1 for λ ≥ λ0. Then,
given initial condition λ0, it is a Pareto competitive equilibrium.

This follows directly from Lemma 5. Since a full effort profile obtains the period-by-
period largest feasible λ, it is Pareto dominant. In addition, since limt Γt(λ, µ = 1) = 1, this
equilibrium asymptotes to 1.

The remaining set of Pareto 1-monotone equilibrium is one in which µ∗(λ) < 1 for
some λ. We show that there does not exist any incentive compatible effort profile µ′ that
Pareto dominates µ∗. Note that for λ0 < Γ−1(λ̄, µ = 1), the sequence of Γ(λ0, µ∗) to
Γ−1(λ̄, µ∗) satisfy the condition under Lemma 5 since µ∗(λ) = 1. Now, consider when
λ = Γ−1(λ̄, µ∗). It suffices to show that given some initial value Γ−1(λ̄, µ∗), there does not
exist an alternative incentive compatible effort profile µ′ such that Γ−1(λ̄, µ∗) < Γ−1(λ̄, µ′).
Recall, µ(λ) = 1 for λ ≥ λ̄, i.e. µ is such that full effort is exerted for λ > λ̄ along the path.
By Lemma 3, ∆(λ) increases in this region. Hence, µ induces the largest incentives. This
implies that there does not exist any µ′ that can improve on µ.

Next, suppose that given λ0, the Pareto monotone equilibrium is a λ̄-monotone equi-
librium. Note that in this equilibrium, along the equilibrium path, µ(λ) = 1 for λ < λ̄−π

1−π

and µ(λ) < 1 for λ ∈ λ̄−π
1−π . Existence of the equilibrium requires c

π < ∆L
1−β(1−π)

. As before,

note that for the sequence of Γ(λ0, µ∗) to Γ−1(λ̄, µ∗) satisfy the condition under Lemma 5
when µ∗ = 1. Consider when λ > λ̄. From earlier, we showed that effort is not incentive
compatible conditional on full effort. Since ∆u(λ) increases in λ for λ > λ̄, this implies that
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there does not exist any incentive compatible µ′(λ) > µ(λ).
Hence, it suffices to show that there does not exist some incentive compatible effort

profile µ′ for which given Γ−1(λ̄, µ∗), it holds that Γ(Γ−1(λ̄, µ∗), µ′) > λ̄. Consider incentives
when λ = λ̄−1(µ). Without loss of generality, we focus on when λ0 < λ̄. Suppose by
contradiction there does exist such µ′. This requires that under effort profile µ′,

∆u(Γ(Γ−1(λ̄, µ∗), µ′)) + β∆V(Γ(Γ−1(λ̄, µ∗), µ′)) ≥ c
π

(30)

In a λ̄-monotone equilibrium we require ∆u(λ̄) + β∆V(λ̄) = c
π . We can further explic-

itly express this as ∆u(λ̄) + β
∆u(λ̄)

1−β(1−π)
= c

π . We claim that ∆u(Γ(Γ−1(λ̄, µ∗), µ′)) ≤ (1−
β(1− π) c

π . Suppose by contradiction, that ∆u(Γ(Γ−1(λ̄, µ∗), µ′)) > (1− β(1− π)) c
π . Under

Lemma 3, this implies that ∆(Γ−1(λ̄, µ∗), µ′), µ = 1) > c
π , since ∆(Γ−1(λ̄, µ∗), µ′), µ = 1) >

∆u(Γ(Γ−1(λ̄,µ∗),µ′))
1−β(1−π)

. However, this implies that there exists a 1-monotone equilibrium.

Since ∆u(Γ(Γ−1(λ̄, µ∗), µ′)) ≤ (1− β(1−π)) c
π , combined with Inequality 30 we get the

following:

∆u(Γ(Γ−1(λ̄, µ∗), µ′)) ≤ ∆u(λ̄) (31)

∆V(Γ(Γ−1(λ̄, µ∗), µ′)) > ∆V(λ̄) (32)

In the Pareto monotone equilibrium, a constant partial effort strategy is used by borrowers
at λ̄, which implies that ∆V(λ̄) = (1− π) c

π . Using this in the above inequality, we get:

∆V(Γ(Γ−1(λ̄, µ∗), µ′)) > (1− π)
c
π

(33)

This implies that given Γ2(Γ−1(λ̄, µ∗), µ′), individual borrowers must strictly prefer to exert
effort. It follows that Γ2(Γ−1(λ̄, µ∗), µ′) > Γ(Γ−1(λ̄, µ∗), µ′). Writing out Inequality 33:

∆u(Γ2(Γ−1(λ̄, µ∗), µ′)) + β∆V(Γ2(Γ−1(λ̄, µ∗), µ′)) >
c
π

(34)

Suppose that ∆V(Γ2(Γ−1(λ̄, µ∗), µ′)) > (1−π) c
π . Then, by the same argument, Γ3(Γ−1(λ̄, µ∗), µ′) >

Γ2(Γ−1(λ̄, µ∗), µ′). If ∆V(ΓT(Γ−1(λ̄, µ∗), µ′)) > (1−π) c
π for T > 2, then limt→∞ Γt(Γ−1(λ̄, µ), µ′)) =

1, i.e. λ∞ = 1. We reach a contradiction. Suppose instead that T is the minimum integer at
which ∆V(ΓT(Γ−1(λ̄, µ), µ′)) < (1− π) c

π . This implies that:

∆u(ΓT(Γ−1(λ̄, µ∗), µ′)) > (1− β(1− π))
c
π

(35)
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However, given Lemma 3, ∆u(λ) > ∆u(ΓT(Γ−1(λ̄, µ∗), µ′)) for λ > ΓT(Γ−1(λ̄, µ∗), µ′),
which means:

∆u(ΓT(Γ−1(λ̄, µ∗), µ = 1)) > ∆u(ΓT(Γ−1(λ̄, µ∗), µ′)) (36)

> (1− β(1− π))
c
π

. (37)

The above condition, combined with the fact that ∆V(Γt(Γ−1(λ̄, µ∗), µ′)) ≥ (1− π) c
π for

t ∈ (1, T) satisfies the conditions for there to exist a 1-monotone equilibrium. We reach a
contradiction. Hence, we show that there does not exist any such µ′ that dominates the
λ̄-monotone equilibrium outlined in the existence proof.

Finally, consider when the Pareto monotone equilibrium is a 0-monotone equilibrium.
This holds when c

π < ∆L
1−β(1−π)

and λ0 < λs. Suppose that c
π < ∆L

1−β(1−π)
and λ0 < λs. First,

note that c
π < ∆L

1−β(1−π)
implies that for any µ′ such that Γt(λ0, µ′) < λ̄ for all t, effort is

not incentive compatible in any period. Hence, a necessary (but not sufficient) condition for
effort to be incentive compatible, is if given λ0, effort profile µ′ induces an equilibrium path
whereby Γt(λ0, µ′) > λ̄ for some t. Suppose that such incentive compatible effort profile µ′

exists. This implies that

∆u(Γ−1(λ, µ′)) + β∆V(Γ−1(λ, µ′)) >
c
π

(38)

for some λ ≥ λ̄. Note that under Lemma 3,

∆u(Γ(λ0, µ = 1)) + β∆V(Γ(λ0, µ = 1)) > ∆u(Γ(λ0, µ′)) + β∆V(Γ(λ0, µ′)) (39)

and λ0 < λs implies that effort is not incentive compatible conditional on a full effort profile,
i.e. ∆u(Γ(λ0, µ = 1)) + β∆V(Γ(λ0, µ = 1)) < c

π . Hence, no such µ′ can exist.

A.5 Proof of Proposition 3

Proof. We first show that a full-effort profile µ = 1 (weakly) Pareto-dominates PCE if λ∞ ∈
{1, λ̄}.

First, consider the conditions under which the PCE where λ∞ = 1. It suffices to con-
sider the case where µ∗(λ) < 1 for some λ along the equilibrium path. (Otherwise µ∗ = 1).
Consider when λ ∈

(
λ̄−π
1−π , λe

)
. Given µ(λ) = 1, the payoffs of a good and bad type of
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borrower is given by:

ug(Γ(λ, µ(λ) = 1)) + βVg(Γ(λ, µ(λ) = 1))− c
1− β

and (40)

π
[
ug(Γ(λ, µ(λ) = 1)) + βVg(Γ(λ, µ(λ) = 1))

]
+ (1− π) [ub(Γ(λ, µ(λ) = 1)) + βVb(Γ(λ, µ(λ) = 1))]− c

1− β
(41)

The payoff of a good and bad type under µ∗ can be written as:

ug(Γ(λ, µ∗)) + βVg(Γ(λ, µ∗))− c
1− β

and (42)

π
[
ug(Γ(λ, µ∗)) + βVg(Γ(λ, µ∗))

]
+ (1− π) [ub(Γ(λ, µ∗)) + βVb(Γ(λ, µ∗))]− c

1− β
(43)

By Lemma 3, both type’s payoff under µ(λ) = 1 is strictly larger than µ∗.
Next, consider when the PCE where λ∞ = λ̄. If the PCE is a λ̄-monotone equilibrium,

this means ∆L
1−β(1−π)

> c
π . For Γ(λ, µ∗) = λ̄, the payoff of a good and bad type under µ∗ is:

ug(λ̄)

1− β
− c

1− β
and (44)

π
[
ug(λ̄) + βVg(λ̄)

]
+ (1− π)

[
ub(λ̄) + βVb(λ̄)

]
− c

1− β
(45)

Note that Rθ > Lθ for θ = g, b. This implies that

ug(λ̄ + ε)

1− β
>

ug(λ̄)

1− β
and (46)

π
[
ug(λ̄ + ε) + βVg(λ̄ + ε)

]
+ (1− π)

[
ub(λ̄ + ε) + βVb(λ̄ + ε)

]
(47)

> π
[
ug(λ̄) + βVg(λ̄)

]
+ (1− π)

[
ub(λ̄) + βVb(λ̄)

]
(48)

For some arbitrarily small ε > 0. It follows that given µ = 1, the payoffs of a good and bad
type of borrower is given by:

ug(Γ(λ, µ = 1)) + βVg(Γ(λ, µ = 1))− c
1− β

and (49)

π
[
ug(Γ(λ, µ = 1)) + βVg(Γ(λ, µ = 1))

]
+ (1− π) [ub(Γ(λ, µ = 1)) + βVb(Γ(λ, µ = 1))]− c

1− β
(50)

43



Under Lemma 3, note that both type’s payoff under µ = 1 is strictly larger than µ∗. In
addition, note that since Vθ increases on [0, 1], if µ = 1 dominates for some λ, then it also
holds for λ′ > λ.

Second, we show under Assumption 3 that there exists some threshold β̄ < 1 such that
a full-effort profile µ = 1 Pareto-dominates the PCE as long as β < β̄. It suffices to show
that as β approaches 1, full effort is Pareto dominant, and the PCE does not always have
full effort.

Under full effort, λ∞ = 1. Recall, we’ve already shown that µ = 1 dominates any
PCE with λ∞ = 1, λ̄. Suppose that the PCE is such that λ∞ = 0. Note that the long-run
per-period payoff difference between µ = 1 and µ∗ is given by u(1) − c − Lg > 0. Let
ũt

θ(µ) be the expected one-period payoff in period t of a borrower that is type θ at time
0 conditional on µ. Note that for any λ0, there exists some t sufficiently large such that
Γt(λ0, µ = 1) > λ̄ > Γt(λ0, µ = 0). For such t, the expected one-period payoffs of each type
is under µ = 1:

ũt
g(µ = 1) = ug(Γt(λ0, µ = 1)) + βVg(Γt(λ0, µ = 1)) (51)

ũt
b(µ = 1) = (1− (1− π)t)

[
ug(Γt(λ0, µ = 1)) + βVg(Γt(λ0, µ = 1))

]
(52)

+ (1− π)t [ub(Γ
t(λ0, µ = 1)) + βVb(Γ

t(λ0, µ = 1))
]

(53)

As t→ ∞, ũt
θ(µ = 1)→ Rg+Lg−(1+r f )−c

π for both θ = g, b. Under µ = 0, it is given by

ũt
g(µ = 0) = (1− π)t [ug(Γt(λ0, µ = 0)) + βVg(Γt(λ0, µ = 0))

]
(54)

+ (1− (1− π)t)
[
ub(Γ

t(λ0, µ = 0)) + βVb(Γ
t(λ0, µ = 0))

]
(55)

ũt
b(µ = 0) = ub(Γ

t(λ0, µ = 0)) + βVb(Γ
t(λ0, µ = 0)) (56)

As t → ∞, ũt
θ(µ = 0) → Lb

π for both θ = g, b. Given Assumption 3, Rg + Lg − (1 +
r f ) − c = ∆R + Lg − (1 + r f ) − c + Rb > Lb. Given that ũt

θ(µ = 1) increases in t, and
ũt

θ(µ = 0) (weakly) deceases in t, there exists some τ period at which ũt
θ(Γ

τ(λ0, µ = 1)) >
ũt

θ(Γ
τ(λ0, µ = 0)). Furthermore, this implies that ũt

θ(µ = 1) < ũt
θ(µ = 0) for θ = g, b and

all t > τ. Since the differential payoffs between µ = 1 and µ∗ = 0 for t > τ is an increasing
sequence, the sum is infinite. Hence, full effort is Pareto dominant for sufficiently large β.

What remains is to show that full effort is not generally obtained in a PCE even as
β → 1. We prove by example. Set β = 1. It suffices to show that there exists a set of
parameters under which for some λ0, the PCE does not admit full effort. Consider some
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λ0 = λ̄−π
1−π . Note that under µ = 1,

∆u(Γ(λ, µ = 1)) = ∆R + Lg −
1 + r f − (1− Γ(λ, µ = 1))Lb

Γ(λ, µ = 1)
(57)

= ∆R + ∆L−
1 + r f − Lb

Γ(λ, µ = 1)
(58)

Let us use f (λ) =
1+r f−Lb

λ . Effort at λ0 is incentive compatible conditional on full effort if:

∞

∑
a=1

(1− π)a−1π(∆R + ∆L− f (Γa(λ0, µ = 1))− c) > 0 (59)

Given Lemma 3, note that the LHS of Inequality 59 is strictly less than the incentives asso-
ciated with a sequence of λt = λ̄, 1, 1, 1, 1, .... Hence, a sufficient condition is to show that
effort is not incentive compatible given a sequence λt = λ̄, 1, 1, 1, 1, ...:

π(∆R + ∆L− f (λ0(1− π) + π)− c) + (1− π)(∆R + ∆L− f (1)− c) ≤ 0 (60)

Given that we require u(1) > c for β = 1, i.e. ∆R + ∆L− f (1)− c > 0, c must be such that

∆R + Lg − (1 + r f ) > c > ∆R + (1− π)(Lg − (1 + r f )) (61)

Since π < λ̄, parameters exist such that the relevant interval is non-empty.

A.6 Proof of Proposition 4

Given that cash flows are constant in the region of illiquidity, the regulator either does
not offer a subsidy or offers a subsidy that induces liquidity. If markets are illiquid, static
welfare

w = λ′Lg + (1− λ′)Lb + (1 + r f ).

If the regulator intervenes and markets are liquid, static welfare is

w̄(s(λ′)) = λ′(Rg + Lg − B̃(λ′, s)) + (1− λ′)Rb + (1 + r f )− (1 + δ)(1− λ′)s(λ′)

= λ′(Rg + Lg) + (1− λ′)(Rb + Lb)− δ(1− λ′)s(λ′).

Since w̄(s(λ′)) is strictly decreasing in s(λ′), the regulator never intervenes if markets are
liquid in competitive equilibrium, and chooses a subsidy no higher than s(λ′). Intervening

45



minimally is optimal if and only if w̄(s(λ′)) > w or, equivalently, if

λ′Rg + (1− λ′)Rb − (1 + r f ) > δ
(

1 + r f − λ′Lg − (1− λ′)Lb

)
.

In the limit as δ → 0, this condition is satisfied if and only if λ′ ≥ λ. To see why there
cannot exist a competitive equilibrium with φ∗(λ̄) < 1, observe that the regulator would
find it strictly optimal to intervene, and could induce funding for all borrowers by offering
a subsidy of size ε.

A.7 Proof of Proposition 5

Let λm be such that µ∗(λm) ∈ (0, 1). For partial effort to be consistent with PCE, it must
be the case that (i) ∆L > ∆R, (ii) Γ(λm, µ∗) = λ̄, and (iii) that the incentive constraint is
violated at µ(λm) = 1. (If the incentive constraint were weakly satisfied at given µ(λm) = 1,
full effort would strictly Pareto-dominate µ∗(λm)). It then follows that the IC constraint at
λm is

φ∗(λ̄)∆R + (1− φ∗(λ̄))∆L + β∆V(λ̄) =
c
π

for some φ∗(λ̄) < 1. ∆u(λ̄) = ∆R < φ∗(λ̄)∆R + (1− φ∗(λ̄))∆L under the optimal subsidy,
while continuation values are unaffected. Hence the IC constraint is violated at λm, and
Γ(λm, µ̃) < λ̄. Since payoffs are constant under the subsidy on (λ, λ̄), the IC constraint is
violated for all λ : Γ(λ, 0) ≥ λ̄, and asset quality asymptotes to max{λ, 0}.

We prove the second part of the statement by construction. Let λ ≤ 0. Consider a PCE
such that λ∞(µ∗) = λ̄ and Γ(λ0, µ∗) = λ̄ where µ∗(λ0) < 1. (That is, the steady state is
reached within the initial period, and borrowers choose a partial effort strategy.) In any
such PCE, we must have c > π∆(λ̄, µ = 1), φ∗(λ̄) = 1, and µ∗(λ̄) = λ̄ by Corollary 1. Since
the IC constraint holds with equality, borrowers are indifferent between effort and shirking.
Hence value functions can be equivalently written as if borrowers always shirk. Then value
functions in competitive equilibrium satisfy

Vb(λ0) = Vb(λ̄) =
φ∗(λ̄)Rb + (1− φ∗(λ̄))Lb

1− β

Vg(λ0) = Vg(λ̄) =
(1− π)

[
φ∗(λ̄)Rg + (1− φ∗(λ̄)Lg)

]
+ πVb(λ0)

1− β(1− π)
.
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The value difference and incentives in the PCE with partial effort are given by

∆V(λ̄) =
(1− π) (φ∆R + (1− φ)∆L)

1− β(1− π)
⇒ ∆(λ̄) =

φ∆R + (1− φ)∆L
1− β(1− π)

Lender profits are Π(λ0) =
1+r f
1−β , and the government runs no deficit. Hence welfare is

WPCE(λ0) = λ0Vg(λ̄) + (1− λ0)Vb(λ̄) +
1 + r f

1− β
= Vb(λ̄) + λ0∆V(λ̄) +

1 + r f

1− β

Now consider the equilibrium given the subsidy. We have already shown that the
incentive constraint is violated given s. Since λ ≤ 0, the government intervenes indefinitely,
and the per-period cash flow is uθ = Rθ for all future periods. Hence value functions
under subsidy are constants and satisfy Ṽb(λ0) = Ṽb(λ̄) = Rb

1−β and Ṽg(λ0) = Ṽg(λ̄) =
(1−π)Rg+πṼb(λ0)

1−β(1−π)
. The difference in values and incentives under the intervention are given

by ∆Ṽ = (1−π)∆R
1−β(1−π)

and ∆̃ = ∆R
1−β(1−π)

. The per-period deficit is d(λ′) = (1− λ′)s(λ′) =

1+ r f − Lb− λ′∆L, and the law of motion satisfies λ′ = (1−π)λ. Hence the deficit satisfies
the recursion

D(λ) = 1 + r f − Lb − (1− π)λ∆L + βD((1− π)λ)

Since this expression is linear in λ, it can be solved in closed-form to give

D(λ0) =
1 + r f − Lb

1− β
− λ0

(1− π)∆L
1− β(1− π)

> 0.

Since lender profits are unchanged, welfare under the optimal subsidy given δ→ 0 is

W(λ0) = λ0Ṽg + (1− λ0)Ṽb +
1 + r f

1− β
− D(λ0)

= Ṽb + λ0∆Ṽ +
1 + r f

1− β
− D(λ0)

Hence the welfare difference is

WPCE(λ0)−W(λ0) = −
1− φ

1− β
(Rb − Lb) + λ0

(1− π)(1− φ)

1− β(1− π)
(∆L− ∆R) + D(λ0)
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In PCE, φ =
∆L− c

π (1−β(1−π))
∆L−∆R and so 1− φ =

c
π (1−β(1−π))−∆R

∆L−∆R . Using this gives

WPCE(λ0)−W(λ0) =
1 + r f − Rb + φ(Rb − Lb)

1− β
+ (1− π)λ0

(
c
π
− ∆R + ∆L

1− β(1− π)

)
The first term may be positive, while the second term is unambigously negative. Consider
the limit as β → 1. The limit of the second term is 1−π

π (c − (∆L + ∆R)), which is finite.
For Rb ≤ 1 , the first term is strictly positive, and asymptotes to +∞. Hence the welfare
difference is positive in the limit. The conjectured PCE is feasible starting at λ0 = λ̄ if
c ∈ (∆u(1), ∆L).

A.8 Proof of Proposition 6

Proof. Parts (i) and (ii)Part (ii) follow directly from the presence of deadweight costs δ and
the fact that incentives are monotonically increasing in the subsidy for each λ′. Part (iii)
follows from noting that the minimal subsidy provides the smallest incentives conditional
on liquidity. Uniqueness follows from Part (ii) and because incentives are strictly increasing
in the s.

A.9 Proof of Proposition 7

Proof. µ∗(λ) ∈ (0, 1) only if ∆ is non-monotonic conditional on µ = 1, and Γ(λ, µ∗) = λ̄
if µ∗(λ) ∈ (0, 1). Hence λ′ = Γ(λ, 1) > λ̄ for any such λ, and ∆(λ′) < c

π . Hence the IC
constraint is satisfied at λ′ only if ŝ(λ′) > 0. µ = 1. The second statement is proven by
construction. See Example 4 in the main text.
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B Online Appendix – Not For Publication

B.1 Example with β = 0.

We begin by studying a simple example that highlights the basic mechanisms.

Example 1 (β = 0). Let β = 0. Then borrowers’ decision problem is static, and incentives are
∆(λ) = ∆u(λ′). Observe that λ′ and thus ∆(λ), are endogenously determined by borrowers’ effort.
If borrowers exert effort (µ∗ = 1), then λ′ = π + λ(1− π) and

∆(λ|µ∗ = 1) =

{
∆R + Lg − B̄(π + λ(1− π)) if π + λ(1− π) ≥ λ̄

∆L if π + λ(1− π) < λ̄.

If no borrower exerts effort (µ∗ = 0), then λ′ = λ(1− π) and

∆(λ|µ∗ = 0) =

{
∆R + Lg − B̄(λ(1− π)) if λ(1− π) ≥ λ̄

∆L if λ(1− π) < λ̄.

Since B̄(λ) is strictly increasing, incentives are weakly higher if other borrowers are believed to exert
effort. This mechanism is shown in Figure 8 for the case where ∆u is monotone, and in Figure 9 for
the case where ∆u is non-monotonic. The third panel plots incentives under the conjectured effort,
with µ = 1 shown in blue, and µ = 0 shown in cyan. The horizontal red line depicts the right-hand
side of the incentive constraint, c

π . A conjectured effort strategy is an equilibrium if the incentive
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Figure 8: Monotone cash flow differences and incentives: ∆R ≥ ∆L.

is satisfied (if µ = 1) or violated (if µ = 0). Blue and cyan shadings represent values of λ for which
µ = 1 and µ = 0 are consistent with equilibrium. There are regions in which the effort externality
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Figure 9: Non-monotone cash flow differences and incentives: ∆L > ∆R.

leads to self-fulfilling incentives: if all agents exert effort, asset quality rises sufficiently to make effort
worthwhile; if asset quality is expected to fall, shirking is privately optimal. Effort equilibria may fail
to exist if λ0 is too small.

If ∆(λ) is non-monotonic and c < ∆L, no pure strategy equilibrium may exist near the liquidity
threshold. In particular, it may be privately optimal to exert effort if markets are expected to be
illiquid, and optimal to shirk if asset quality is expected to be just above λ̄ and borrowing costs are
expected to be high. In this case, the equilibrium requires partial effort effort µ and lenders’ acceptance
probability such that λ′ = λ̄ and ∆(λ) = c

π . That is, µ∗ = λ̄ and φ∗∆R + (1− φ∗)∆L = c
π . We

depict this equilibrium in thick green in Figure 10.
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Figure 10: Non-existence of pure strategy equilibrium
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B.2 Equilibrium Multiplicity with β > 0

The following example shows how expectations about future asset quality shape in-
centives by constructing three different equilibria for the same fundamentals. In the first
equilibrium, stagnation is self-fulfilling because borrowers cannot be sure they will obtain
funding, lowering the value of owning a good asset (and consequently the private value of
effort). In the second equilibrium, all borrowers exert effort initially, but the belief that asset
quality will fall back to λ̄ (leading to an increase in borrowing costs) is self-fulfilling – as a
consequence, the economy cycles between a lower and higher average asset quality forever.
In the third equilibrium, the belief that all borrowers will always exert effort provides incen-
tives to exert effort – as a result, asset quality continually improves. In all three cases, the
mechanism that sustains the belief is that the equilibrium interest rate is decreasing in the
fraction of good borrowers so that the incentive to become a good borrower is increasing in
average asset quality.

Example 2 (Multiplicity with β > 0). Let Lb = π = β = 1
2 , and Lg = 3

2 , so that λ̄ = 1
2 . Let

Rb = 1, Rg = 5
3 , and c = 22

45 . If λ0 = 1
2 , the following three equilibria exist:

1. An equilibrium in which average asset quality remains at λ̄ = 1
2 forever, µ

(
1
2

)
= 1

2 , and only

a fraction φ(1
2) =

4
5 of farmers obtains funding in every period.

2. A cyclical equilibrium in which average asset quality jumps back and forth between λ0 = 1
2

and λ1 = 3
4 forever, all farmers always obtain funding, and µ

(
1
2

)
= 1 and µ

(3
4

)
= 1

4 .

3. An equilibrium in which µ(λ) = φ(λ) = 1 for all λ ≥ λ0 and asset quality converges to 1.

Since equilibrium effort strategies are privately optimal and value functions are increas-
ing in θ by Lemma 3, it is easy to verify that the third equilibrium generates strictly higher
values for all borrowers than the first two.

Construction. We first construct a cyclical equilibrium with duration two where asset
quality moves from some λ0 ≥ 1

2 ≥ λ̄ to λ1 and back to λ0 indefinitely. Conjecture and
verify that µ(λ0) = 1 and µ(λ1) = µ∗ ∈ (0, 1). Then λ1 = π + λ0(1− π). To return to λ0 in
the second period, µ∗ must solve λ0 = λ1(1− π) + µ∗π = (π + λ0(1− π)) (1− π) + µ∗π.
Hence µ∗ = λ0(2− π)− (1− π) and µ∗ > 0 for all π ∈ (0, 1) if and only if λ ≥ 0.5. Define

B0 =
1+r f−(1−λ0)Lb

λ0
and B1 =

1+r f−(1−λ1)Lb
λ1

. Let superscript t denote dependence on λt.
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Then value functions satisfy

V0
g = Rg + Lg − B1 + βV1

g − c (62)

V1
g =

(
1− π(1− µ∗)

)[
Rg + Lg − B0 + βV0

g

]
+ π(1− µ∗)

[
Rb + βV0

b

]
− µ∗c (63)

V0
b = π

[
Rg + Lg − B1 + βV1

g

]
+ (1− π)

[
Rb + βV1

b

]
− c (64)

V1
b = µ∗π

[
Rg + Lg − B0 + βV0

g

]
+ (1− µ∗π)

[
Rb + βV0

b

]
− µ∗c (65)

Define the following four constants denoting expected cash flows net of costs: ũ0
g = Rg +

Lg − B1 − c, ũ1
g =

(
1− π(1− µ∗)

)[
Rg + Lg − B0

]
+ π(1− µ∗)Rb − µ∗c, ũ0

b = π
[

Rg + Lg −

B1
]
+(1−π)Rb− c, and ũ1

b = µ∗π
[

Rg + Lg− B0
]
+(1−µ∗π)Rb−µ∗c. Then V0

g = ũ0
g + βV1

g ,

V1
g = ũ1

g + βV0
g − βπ(1− µ∗)∆V0, V0

b = ũ0
b + βV1

b + βπ∆V1, and V1
b = ũ1

b + βV0
b + βµ∗π∆V0.

Differencing V0
g −V0

b and V1
g −V1

b and substituting gives

∆V0 =
ũ0

g − ũ0
b + β(1− π)

(
ũ1

g − ũ1
b

)
1− β2(1− π)2 and ∆V1 =

ũ1
g − ũ1

b + β(1− π)
(

ũ0
g − ũ0

b

)
1− β2(1− π)2

By definition of the constants, ũ0
g − ũ0

b = (1 − π)
(

∆R + Lg − B1
)

and ũ1
g − ũ1

b = (1 −

π)
(

∆R + Lg − B0
)

. Hence ũ0
g − ũ0

b > ũ1
g − ũ1

b. Next verify the incentive constraint. By
Lemma 2 we have

∆0 =
(

∆R + Lg − B1
)
+ β∆V1 and ∆1 =

(
∆R + Lg − B0

)
+ β∆V0.

For our construction to be valid, we need c
π = ∆1 < ∆0. Rearranging gives

∆0 =

(
∆R + Lg − B1

)
+ (1− π)β

(
∆R + Lg − B0

)
1− β2(1− π)2

and

∆1 =

(
∆R + Lg − B0

)
+ β(1− π)

(
∆R + Lg − B1

)
1− β2(1− π)2

Since B1 < B0, we have that ∆0 > ∆1 if β, π ∈ (0, 1), as is necessary. Hence the construction
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is valid if c is such that c
π = ∆1. Plugging in the stated parameters then gives the desired

result.
To construct the equilibrium in which asset quality remains at λ̄ indefinitely, observe

that incentives with constant asset quality satisfy

∆(λ̄) =
φ∆R + (1− φ)∆L

1− β(1− π)

For asset quality to remain constant, we must have µ(λ̄) = λ̄. Partial effort is determined
such that the IC constraint to hold with equality. Given c, we can then solve for φ such that
∆(λ̄) = c

π . The stated result then follows.
The construction of the equilibrium with µ(λ) = 1 follows directly from Lemma 3 and

observing that incentives must be strictly higher than in the cyclical equilibrium at λ = λ̄.

B.3 Policy Interventions in Practice

In recent years, regulatory authorities have increasingly relied on asset purchase pro-
grams and liquidity injections to stimulate economic activity and rejuvenate lending mar-
kets in times of stress. These programs, which initially focused on short-term purchases
of government debt, have recently been expanded to include long-running purchases of
broader set of privately-produced financial assets, such as corporate bonds, mortgage-
backed securities, or bank-originated asset-backed securities. The European Central Bank
began exchanging investment grade corporate bonds for government debt under the Eu-
rosystem’s Corporate Sector Purchase Programme starting in 2016. Other recent policies,
including the Feds Term Securities Lending Facility (stopped in 2010) and the ECBs Secu-
rities Lending Programme (continued), were explicitly aimed at upgrading the collateral
available to private borrowers by providing downside insurance to lenders or by engaging
in swaps for low-quality collateral prone to adverse selection.

B.4 Example: Interventions Strictly Lower Output and Welfare

The following example illustrates Proposition 5 by providing parameters under which
a regulator with limited commitment strictly reduces output and welfare relative to the PCE
in every period. This results from the fact that the ex-post optimal subsidy destroys effort
incentives, lowering asset quality period-by-period and forcing the regulator to intervene
time and again. As a result, asset quality continues to fall and the deficit increases over
time.

53



Example 3. Let λ0 ∈
(
λ̄−1(1), λ̄

)
and assume that c

π ∈
(
∆(λ̄−1(1)), ∆(λ̄)

)
. By Corollary 1, the

unique PCE is then such that µ∗(λ0) ∈ (0, 1), Γ(λ0, µ∗) = λ̄, φ∗(λ̄) =
∆L−∆R+∆(λ̄−1(1))− c

π
∆L−∆R , and

µ∗(λ) = 1 for all λ ≥ λ̄. That is, borrowers exert partial effort so that asset quality reaches λ̄ in
the initial period, supported by a lending market equilibrium in which only a fraction of borrowers
receive funding given λ̄. From then on, all borrowers exert effort and receive funding in every period,
and asset quality converges to 1. Under the ex-post optimal subsidy, the cash flow is ũθ = Rθ

forever. Hence, incentives under the subsidy are ∆̃ = ∆R
1−β(1−π)

≤ ∆(λ̄−1(1)), borrowers do not
exert effort in any period, asset quality asymptotes to zero, and the government provides a strictly
positive subsidy in every period. Now consider the limit as c → π∆(λ̄−1(1)). Then φ∗(λ̄) → 1,
and so uθ → Rθ in the initial period of the PCE. It follows that the PCE generates approximately the
same cash flows as under the subsidy in the initial period, strictly higher cash flows in every period
thereafter, and does not require the regulator to run a deficit in any period. Consequently, the PCE
generates strictly higher welfare than under the ex-post optimal subsidy for any β.

B.5 Example: Subsidy with Infinitesimal Cost

Example 4 (Example 3 continued). Consider the same equilibrium as in Example 3, and let the
initial condition be as small as possible, λ0 → λ̄−π

1−π = Γ1(λ̄, 1). If all borrowers were to exert effort,
then λ1 = λ̄ + ε for ε small and positive. Since c

π > ∆(λ̄−1(1)), not all borrowers exert effort at λ0
in the unique PCE. Guess and verify that ŝ(λ1) > 0 and ŝ(λ) = 0 for all λ ≥ λ1. By Proposition ??,
the subsidy rule ŝ(λ1) must then satisfy ∆(λ0) +

λ1
1−λ1

ŝ(λ1) =
c
π , where ∆(λ0) denotes incentives

at λ0 in PCE. As in Example 3, now consider the limit c→ π∆(λ̄−1(1)). Then ∆(λ0)→ c
π , which

implies that ŝ(λ1) → 0. Since c
π ≤ ∆(λ̄), it follows that c

π < ∆(λ1), and all borrowers exert effort
in every period. No subsidies are required in any period but the initial one.

B.6 Extension to General Cost Functions

In this extension, we consider the robustness of our results to general convex cost
functions. Since the effort problem is symmetric, take as given that optimal effort is also
symmetric across types. The first-order condition for an interior optimum is

π
[
∆u(λ′) + β∆V(λ′)

]
= C′(µ) (66)

where λ′ = λ(1− π) + π · µ. Relative to the benchmark model with linear costs, convex
costs introduce two additional channels. The first is technical: since both the left-hand side
and right-hand side of (66) depend on µ, there is an additional fixed point that needs to be
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solved for in every period in addition to the value function iteration. While this introduces
no substantial computational complexity, it obscures the basic patterns of substitutability
and complementarity that is the focus of our paper. In particular, in the baseline model
we could guess and verify that µ = 1, µ = 0, or that the IC constraint holds with equality.
With convex costs, we would have to guess and verify whether asset quality is increasing
or decreasing, where both the costs and benefits are now a function of the current state.

The second is more substantive: since asset quality grows if only if µ ≥ λ, sustained
growth requires increasing effort over time. Sufficiently convex costs of effort may therefore
reduce the scope for high long-run asset quality. We provide two examples to argue that the
basic mechanisms remain even with convex costs. First, we consider the β = 0 with simple
quadratic costs. This a useful benchmark because the shape of the general incentive function
∆ is inherited from the per-period cash flow difference ∆u (see Lemma 3 and Example 1
in Online Appendix B.1). We show that the same non-monotonicity around the liquidity
threshold obtains as in the baseline model; hence the fundamental model dynamics are
unchanged. They key difference is that increasing marginal costs make it more difficult to
sustain high levels of effort. Hence asset quality may not converge to 1, but rather to an
interior steady state λss ∈ (λ̄, 1]. However, this does not change the fundamental policy
implication that the feedback of interventions to asset quality induces larger subsidies that
must be offered even if the market is liquid on its own.

Example 5 (β = 0 and C(µ) = c
2 µ2). If the market is expected to be illiquid, the interior solution

is µ∗ = ∆L
γ . If the market is expected to be liquid, an interior optimum satisfies γµ = ∆L + ∆R−

1+r f−Lb
λ(1−π)+πµ

. The solution is

µ∗ =
∆L + ∆R− cλ(1− π) +

√(
∆L + ∆R− cλ(1− π)

)2
+ 4c

(
λ(1− π)(∆L + ∆R)− (1 + r f ) + Lb

)
2c

Figure 11 plots the implied evolution of asset quality as a function of the λ for parameters that deliver
the non-monotonicity of incentives at λ̄. The left panel plots optimal effort conditional on guessing
that the market is illiquid and liquid, respectively. The implied law of motion is on the right-hand
side. An equilibrium requires that the conjectured degree of market liquidity is verified. The upper
steady state is given by the intersection of the green line and the 45 degree line. In this example, the
model would therefore again feature inefficient convergence to λ̄ from poor initial conditions.

In the second example, we introduce aggregate returns to scale in effort by consider-
ing cost functions of the form C(µ, λ) with C convex in µ and decreasing in λ. Such a
cost structure could be motivated by information spillovers among borrowers in identifying
high-quality collateral, or by a complementarity among real assets. In the context of mort-
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Figure 11: Non-monotonicity of incentives and the equilibrium law of motion around λ̄. Parameters: Rg = 2, Rb = 1, Lg = 1.5, Lb = 0.25,
β = 0.5, π = 0.15, r f = 0, c = 1.15.

gages, for example, it is well-known that defaults are contagious. A higher percentage of
good borrowers may thus make it easier to originate additional mortgages with low default
risk.

Example 6 (Returns to Scale). Assume that the cost function is of the form C(µ, λ) = cµ2

2γ(1+λ)
.

Then the first-order condition for an interior optimum is

π
[
∆u(λ′) + β∆V(λ′)

]
=

cµ

γ(1 + λ)

Then µ∗ is strictly increasing in λ, and µ∗ ≥ λ for all λ ≥ 1 if γ is sufficiently large. Hence
aggregate economies of scale circumvent the result that it becomes increasingly difficult to increase
growth as λ grows large, and permits convergence of λ to 1.
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