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Abstract 

We estimate the distribution of marginal propensities to consume (MPCs) using a novel 

clustering approach that generalizes the fuzzy C-means algorithm to regression settings. We 

apply the estimator to the 2008 stimulus payments, exploiting the randomized timing of 

disbursements, and find considerable heterogeneity in MPCs that varies by consumption good. 

We document observable determinants of this heterogeneity, without imposing ex ante 

assumptions on such relationships; MPCs correlate positively with income and the average 

propensity to consume, but much heterogeneity remains unexplained. The partial equilibrium 

response to the stimulus is twice that based on homogeneous estimates, highlighting the 

quantitative importance of heterogeneity.  
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1 Introduction

Recent work highlights the importance of heterogeneity in the marginal propensity to
consume (MPC) out of transitory income shocks for fiscal policy, the transmission of mon-
etary policy, and welfare.1 Despite its importance, estimates of the distribution of MPCs
are largely elusive. Even with plausibly identified transitory income shocks, estimat-
ing individual-level MPCs requires panel data with long horizons, which are typically
not available; it also usually requires the unappealing assumption that an individual’s
marginal propensity to consume (MPC) is time invariant.2 The existing literature, there-
fore, has followed one of two avenues: estimating a fully structural model and simulating
a distribution of MPCs, or grouping observations by some presupposed observable char-
acteristics and estimating group-specific MPCs out of transitory income shocks.3 How-
ever, because both of these approaches require taking a stance on the source of MPC het-
erogeneity, they may fail to uncover the true degree of heterogeneity, miss other relevant
dimensions of heterogeneity that predict an individual’s MPC, or both.

In this paper, we propose a novel methodology to estimate the distribution of MPCs
directly. We develop an estimator based on the fuzzy C-means (FCM) clustering algo-
rithm (Dunn (1973), Bezdek (1973)), which jointly (i) groups households together that
have similar latent consumption responses to the 2008 tax rebate and (ii) provides es-
timates of the MPCs within these groups. Specifically, the algorithm takes a standard
regression of consumption changes on basic controls and the tax rebate receipt (Johnson,
Parker, and Souleles (2006), Parker, Souleles, Johnson, and McClelland (2013)), but allows
the coefficient on the rebate to be heterogeneous across unknown groups; the groups as
well as their rebate coefficients are jointly estimated. The approach is appealing because
it allows us to estimate the unconditional distribution of MPCs directly, without taking
a stand on its correlates. Moreover, it does not require the assumption that an individ-
ual’s MPC is time-invariant, or, in fact, any panel structure. We can therefore “let the data
speak” by investigating ex post which observables predict the recovered individual MPCs,

1The MPC distribution is a crucial object in Heterogeneous Agent New Keynesian (HANK) models of
monetary policy (see Kaplan, Moll, and Violante (2018)). For example, Auclert (2019) shows that the re-
sponse of aggregate consumption to monetary policy shocks depends on the covariance of the distribution
of MPCs with the cyclicality of income, net nominal position, and unhedged interest rate exposure.

2Nearly all theories of MPC heterogeneity have some form of state dependence. For example, in Carroll
(1992) the MPC is a declining function of gross household wealth.

3For the former, see for instance Kaplan and Violante (2014) and Carroll, Slacalek, Tokuoka, and White
(2017). For the latter, Fagereng, Holm, and Natvik (2016) exploit randomized lottery winnings to identify
transitory income shocks, and subsequently group observations on observables to estimate group-level
MPCs. See also Johnson et al. (2006), Blundell, Pistaferri, and Preston (2008), Parker et al. (2013), Kaplan,
Violante, and Weidner (2014), and Crawley and Kuchler (2018).
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including time varying household characteristics. Indeed, we find a considerable degree
of heterogeneity, and document a robust, significant, and positive relationship between
the MPC and the average propensity to consume (APC), as well as between the MPC and
total income, particularly its non-salary component.

Clustering algorithms assign individuals to groups not based on observable charac-
teristics, but based on how well each set of estimated group-specific parameters describe
the observations. FCM is a “fuzzy” clustering approach, in which individuals are not as-
signed to groups in a binary fashion, but instead have continuous weights. When there
is no panel dimension to the data (as is the case in our empirical setting) it is unrealistic
to think that group assignment can be determined binarily in the presence of noise, so
continuous weights are desirable to represent the level of uncertainty that exists in in the
assignment. If the econometrician knows the true distribution of the data, a likelihood-
based approach like a Gaussian mixture model can be used, but, absent any information
on the distribution, the form of weights used by FCM has optimality properties (Bezdek
(1973)). We therefore generalize FCM from the cluster means case to the regression set-
ting, where it constitutes a weighted least squares (WLS) problem, and call the result-
ing generalized estimators fuzzy C-parameters (FCP).4 We establish the consistency and
asymptotic normality of a GMM formulation for the FCP problem. In a simulation study
calibrated to our empirical setting, we find that FCP is able to accurately recover the distri-
bution of MPCs, faring considerably better than binary classification or likelihood-based
competitors. We further show how FCP can be used in the second stage of two-stage least
squares (TSLS) to accommodate the use of instrumental variables. These characteristics
mean that FCP is well-suited to studying heterogeneity in a wide variety of economic set-
tings with cross-sectional or short-panel data, and can be implemented in contexts well
beyond our current focus.

We apply the FCP estimator to study the MPC distribution using the 2008 Economic
Stimulus Act, recovering a considerable degree of heterogeneity, whose magnitude de-
pends on the consumption good studied. Households span a spectrum of propensities,
from nearly no response to the receipt of the rebate to propensities of unity and even
slightly above, depending on the consumption good studied. Our results are consis-
tent across different specifications and sample restrictions. Instrumenting the rebate with
an indicator for its receipt, as in Parker et al. (2013), leaves the results qualitatively un-
changed and in fact increases the estimated heterogeneity in MPCs. The same is true
when we exclude from the sample households that never received a rebate, or when we

4Further generalizations to nonlinear models, while outside the scope of this paper, appear trivial under
suitable assumptions.
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include lagged values of the rebate to control for persistent effects of receiving the rebate.
We next show how the MPC distribution varies across consumption goods. A large

share of households do not consume additional nondurable goods out of the transitory in-
come shock, consistent with predictions of the permanent income hypothesis (PIH, Fried-
man (1957)). Moreover, the highest shares of the rebate spent on nondurables are lower
than the highest spent on total consumption. Further, around three quarters of house-
holds do not adjust their durable consumption in response to the tax rebate, while a small
fraction consumes half of the received amount in new durables. These findings are con-
sistent with the discreteness and infrequency of durable purchases, resulting in lumpy
adjustments. Correlating the household-level MPCs across these consumption categories,
we find a positive, albeit small, correlation between MPCs for durable and non-durable
goods.

Having characterized the distribution of marginal propensities to consume, we de-
scribe its main drivers. We first document that many observable characteristics are indi-
vidually correlated with household MPCs. Homeowners have higher MPCs than renters,
and households with a mortgage display even greater marginal propensities to consume
than outright homeowners. We next explore the joint relationship between the estimated
MPCs and various household characteristics, which our approach permits without the
usual drawback of a loss in statistical power from cutting the data along multiple di-
mensions. Once we do this, only two observables are robust to the inclusion of additional
controls. First, high-income households have greater propensities to consume. This result
crucially hinges on the non-salary component of income, such as business and financial
income. Second, a household’s MPC and APC are positively correlated. We regard this
result as particularly useful for disciplining macro models of household consumption and
savings, as it is easy to compute expenditure rates, both in structural models and in the
data.

Examining how MPCs vary jointly with income and the APC, we uncover three groups
of households. “Poor-savers”, with low total income and a low APC, have the lowest
MPCs. Households with high total income and a low APC, or vice versa, display interme-
diate marginal propensities to consume. The greatest marginal propensities to consume
are found among “rich-spenders”, who not only have high total income, but also typically
spend a large portion of it. This group of households has not received much attention in
macro models of consumption and savings.

Importantly, our best array of observable predictors is able to explain only about 11%
of the variation in estimated MPCs. With the vast majority of heterogeneity unexplained
by standard controls, our results suggest that a relevant portion of MPC heterogeneity is
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driven by latent household traits.5 For example, heterogeneity in discount rates and/or
intertemporal rates of substitution (Aguiar, Boar, and Bils (2019)) would deliver hetero-
geneity in MPCs, and is further supported by the aforementioned significance of APCs
in predicting MPCs, as APCs can also be a function of the same unobserved traits. This
type of unobserved heterogeneity could never be recovered by simply splitting the sam-
ple on observable characteristics and estimating within-subsample homogeneous MPCs,
as is typically done in the literature.6

Finally, correctly accounting for MPC heterogeneity also matters for the aggregated
consumption effects of the fiscal stimulus. We show that the sample average of our esti-
mated heterogeneous responses is larger than the homogeneous marginal propensity to
consume. When considering the cumulated heterogeneous responses over two quarters,
the aggregated response from our distribution is almost twice as large as its homoge-
neous counterpart. While still a partial-equilibrium object in nature, this result suggests
that correctly accounting for heterogeneity is important in order to correctly evaluate the
impact of the 2008 fiscal stimulus.

Our paper is related to an extensive literature estimating the marginal propensity to
consume out of transitory income shocks, and a smaller, complementary literature ex-
amining how it varies across households. As previously mentioned, the vast majority of
existing papers study observable drivers of the MPC; we relate our findings to this litera-
ture. A more recent, burgeoning literature has turned its attention to unobserved house-
hold traits and preference heterogeneity. Our findings corroborate the importance of this
dimension, recently highlighted by Alan, Browning, and Ejrnaes (2018), Parker (2017),
Aguiar et al. (2019), and Gelman (2019).

Our approach allows us to flexibly and non-parametrically combine observed and
unobserved MPC heterogeneity. In this respect, Misra and Surico (2014) is closest in spirit
to our work.7 They estimate a quantile regression of consumption responses to the 2008
tax rebate, and find substantial heterogeneity. However, quantile regression estimates the
role of regressors at specific points in the overall conditional distribution of the dependent
variable. We discuss how the estimated distribution of MPCs via quantile regression is

5As we subsequently show, neither the estimated MPC heterogeneity, nor its correlation with observ-
ables (or lack thereof) are driven by spurious features of the algorithm. When we run our FCP estimator on
a simulated sample generated with homogeneous MPCs, we estimate no spurious heterogeneity and find
zero correlation with observables, up to Monte Carlo error.

6This is true unless preference heterogeneity is explicitly elicited in survey questions so that it can be
used as an observable control. Using Nielsen panel data, Parker (2017) finds that the MPC out of the tax
rebate is indeed strongly correlated with a self-reported measure of impatience.

7Other papers have used the “reported preference” approach, eliciting MPC heterogeneity directly from
responses to survey questions. Recent examples include Jappelli and Pistaferri (2014) and Fuster, Kaplan,
and Zafar (2018).

4



likely sensitive to the correlation of MPC heterogeneity with other forms of heterogeneity,
since other factors may be quantitatively larger drivers of the conditional distribution of
consumption changes than the tax rebate. We further distinguish our methodology from
quantile regressions, as well as other clustering approaches, throughout the paper.

The paper proceeds as follows. In Section 2 we describe our empirical strategy based
on the 2008 tax rebate. In Section 3, we formulate the problem at hand and present the
FCP estimator. We extend FCM from the cluster means case to a fully-general regression
setting, as well as instrumental variables regression, and derive asymptotic properties of
the corresponding estimators. Our results are outlined in Section 4, where we provide
estimates of the distribution of MPCs for various consumption categories. Section 4.3
discusses observable characteristics that are correlated with the estimated MPCs. Section
4.4 aggregates the estimated household MPCs to arrive at a partial equilibrium effect on
aggregate consumption. Section 5 concludes.

2 Empirical methodology

In order to estimate the marginal propensity to consume, and how it varies across house-
holds, we look at an off-the-shelf well-identified quasi-natural experiment: the 2008 Eco-
nomic Stimulus Act (ESA), as studied by Parker et al. (2013), among others. Between
April and July of 2008, $100 billion in tax rebates was sent to approximately 130 mil-
lion US tax filers.8 The timing of rebate receipt was determined by the last two digits
of the recipient’s Social Security Number (SSN), making the timing of receipt random.
As in Parker et al. (2013), we also exploit the randomized timing of the rebate receipt,
but instead estimate heterogeneous (and unobserved) marginal propensities to consume
rather than a homogeneous marginal propensity to consume. Our data come from the
Consumer Expenditure Survey (CEX), which contains comprehensive and detailed mea-
sures of household-level consumption expenditures. The 2008 CEX wave also includes
supplemental questions on the ESA, including the amount of each stimulus payment re-
ceived. While CEX expenditures are reported at the quarterly frequency, new households
enter the survey at each month, making the frequency of our data monthly. Since we
depart from Parker et al. (2013) by allowing for treatment heterogeneity, we present their
homogeneous specification first as a useful benchmark, introducing our generalizations
thereafter.

8We defer to Parker et al. (2013) and Sahm et al. (2010) for an exhaustive discussion of the Economic
Stimulus Act.
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2.1 Homogeneous MPC

Parker et al. (2013) consider the following specification:

∆Cj = β′Wj + φRj + α + εj, j = 1, . . . , N, (1)

where ∆Cj is the first difference of consumption expenditure of household i in quarter
t.9 Wj is a set of controls including month dummies aimed at absorbing common time
effects such as aggregate shocks, as well as seasonal factors.10 The independent variable
of interest is Rj, which denotes the amount of the tax rebate received by each household. φ

is then interpreted as the causal effect of the rebate on expenditures, where identification
is achieved by comparing expenditure changes of households that received the rebate in
a certain period to expenditure changes of households that did not receive the rebate in
the same period.11

2.2 Heterogeneous MPCs

We depart from the homogeneous specification in Equation (1) and allow for heterogene-
ity in the expenditure responses to the tax rebate across households. In particular, we
augment Parker et al. (2013)’s specification as follows:

∆Cj = β′Wj + ∑
g∈G

(
φg1 [j ∈ g] Rj + αg1 [j ∈ g]

)
+ εj, j = 1, . . . , N, (2)

where 1 [j ∈ g] is an indicator that takes a value of 1 if household i in period t belongs
to a certain group g = 1, . . . , G. That is, we assume that heterogeneity in responses to
the rebate can be summarized with G groups, characterized by the vector of coefficients{

αg, φg
}

. We include group-specific intercepts αg to correctly interpret φg as a marginal
propensity to consume. For example, since we do not observe quarterly changes in
income, failing to include group-specific level effects may bias MPC estimates due to
heterogeneity in income changes unrelated to the tax rebate. Our object of interest is

9To maintain consistent notation throughout the paper, we refer to j as the (i, t) combination of house-
hold i in quarter t. We wish to emphasize that while we have information on the same households i in
different periods t, identification is not obtained by comparing individual responses over time. We do not
exploit any limited panel structure, except to construct consumption changes for the left-hand-side variable.
We return to this point below.

10In Parker et al. (2013), the other controls are age, change in number of adults in the household, and
change in the number of children in the household. The controls we will use are the same, but additionally
include age squared.

11Kaplan and Violante (2014) discuss why φ may not correctly measure the marginal propensity to con-
sume out of a transitory income shock, but is instead better thought of as a “rebate coefficient”. We address
these issues in Supplement D.4.
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φ =
(

φ1 . . . φG

)′
, which describes MPC heterogeneity, while 1 [j ∈ g] tells us the

group membership of each household. The vector of coefficients, combined with 1 [j ∈ g],
gives an approximation of the MPC distribution. In the next section we introduce a new
methodology to jointly estimate φ and 1 [j ∈ g].

3 A fuzzy clustering approach to MPC estimation

In this section, we describe our approach to recovering the distribution of MPCs. We first
outline the FCM algorithm for the cluster means case, before generalizing it to our FCP
methodology, and outlining simulation results. Finally, we compare FCP to alternative
methodologies.

3.1 Fuzzy clustering

To estimate group-specific MPCs we must first assign individuals to groups. Previous
papers have grouped individuals based on observable characteristics, but doing so pre-
supposes the determinants of the MPCs a priori. However, we do not suppose to know
these determinants in advance (there is indeed considerable empirical and theoretical dis-
agreement on this point).12 Moreover, we aim to investigate correlates of the MPC ex post,
requiring us to remain agnostic while recovering the MPCs. For these reasons, we group
individuals based on unobserved heterogeneity – that is, on the basis of their heteroge-
neous MPCs themselves (and potentially other group-specific parameters). This goal is
the focus of the extensive literature on clustering methods.

To build intuition for our approach, we start with the cluster means case, where the
econometrician simply wishes to characterize the distribution of means across groups.
This problem consists of minimizing

L1 (P, ψ) =
∫ G

∑
g=1

wg (y; ψ)
∥∥y− ψg

∥∥2 P (dy) , (3)

where y ∈ R is the observed variable with probability measure P on R, g = 1, . . . , G
indexes groups, and ψ ∈ RG is the vector of cluster means.13 The weights, wg, satisfy

∑G
g=1 wg (y; ψ) = 1∀y. Equation (3) constitutes a weighted least-squares (WLS) problem,

12We briefly cover the extensive literature on MPC heterogeneity in Sections 1 and 4.3.
13For simplicity, we present our theory in text in terms of scalar-valued y, but our theoretical results in

Supplement A are presented in full generality for vector-valued y ∈ RT to accommodate a panel structure,
for instance.

7



where the weights are unknown. Dunn (1973) shows that if the econometrician does
not have any additional information about the distribution of y, the optimal solution to
Equation (3) consists of binary weights w∗g = 1

[∥∥y− ψg
∥∥2 ≤ ‖y− ψh‖2 ∀ h 6= g

]
. This

“hard” classification corresponds to the so-called hard K-means (HKM) approach. If the
econometrician has information to provide a likelihood for y, then wg can be derived from
that likelihood, as in a Gaussian mixture model, for instance. However, performance can
deteriorate (e.g., Winkler et al. (2011)) if the likelihood is misspecified or there are outliers,
which motivates the use of the (optimal) non-parametric weights, w∗g.

Nevertheless, the binary nature of w∗g is not well-suited to empirical settings like ours.
Some clustering applications focus on cases where y is a T× 1 vector of outcomes (a panel
structure), sometimes even assuming T → ∞. In contrast, in our data, T = 1. Given a sin-
gle observation for each individual, in the presence of noise, definitive group assignment
is an unrealistic representation of the econometrician’s information. Assigning individu-
als for whom

∥∥y− ψg
∥∥2 ≈ ‖y− ψh‖2 , g 6= h discretely to a single group has the potential

to mischaracterize group membership and to distort WLS estimates. Indeed, in a sim-
ple example with two Gaussian clusters, the cluster means are shifted outwards, as we
show analytically in Proposition 1 in Supplement A.1. The “fuzzy clustering” literature
recognizes that group assignments are in practice better represented as uncertain, with
observations belonging to multiple groups with some weight in (0, 1). To obtain a set of
weights that is both optimal and non-binary, we must modify Equation (3). Rousseeuw
et al. (1995) show that if the derivative of the objective function with respect to wg is pos-
itive at wg = 1 for all g, the optimal weights will be non-binary. Dunn (1973) proposes a
simple solution satisfying this condition, generalized by Bezdek (1973):

Lm (P, φ) =
∫ G

∑
g=1

wm
g (y; ρ)

∥∥y− ρg
∥∥2 P (dy) , (4)

where m is a “fuzziness parameter” that determines the deviation from binary assign-
ment. If m = 1, then Lm = L1, with binary weights, but if m > 1, the optimal weights
are “fuzzy”, with w∗g,m → 1/G as m → ∞. In particular, Bezdek (1973) shows that the
minimization of Equation (4) results in the optimal weights:

µg (y; φ) ≡ w∗g,m (y; ρ) =

(
G

∑
h=1

∥∥y− ρg
∥∥2/(m−1)

‖y− ρh‖2/(m−1)

)−1

, g = 1, . . . , G.
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The resulting objective function,

Jm (P, ρ) =
∫ G

∑
g=1

µm
g (y; ρ)

∥∥y− ρg
∥∥2 P (dy) (5)

is known as “fuzzy C-means” (FCM). Without requiring assumptions on the distribution
of y, and given the formulation in Equation (4), FCM provides the optimal non-parametric
solution to clustering data in cross-sectional or small-T settings like the one we face em-
pirically (Bezdek (1973)).

Asymptotic properties for FCM in this simple cluster means case are derived by Yang
and Yu (1992) and Yang (1994), who show that sample estimates of ρg are consistent for
their population counterparts with normal limiting distributions. FCM has frequently
been found to perform very well in practice, sometimes even outperforming well-specified
mixture models (e.g., Chapter 6 of Bezdek (1981)).

3.2 Fuzzy clustering regression

While FCM has been widely adopted in practice as a tool to recover cluster means, the
MPC, which we wish to uncover, is a regression coefficient on the tax rebate as outlined
in Section 2. We therefore generalize the FCM approach to a regression setting by consid-
ering the model

yi =
G

∑
g=1

1 [i ∈ g] θ′gxi + εi, i = 1, . . . , N, (6)

where group membership indicators 1 [i ∈ g] are unobserved and x is a K× 1 vector. We
propose fuzzy C-parameters (FCP) as a novel tool to recover the distribution of heteroge-
neous treatment effects θg in Equation (6). FCP replaces cluster means ρg in Equation (5)
with the conditional mean, θ′gx:

Jreg
m (Π, θ) =

∫ ∫ G

∑
g=1

µ
reg
g (y, x; θ)m

∥∥∥y− θ′gx
∥∥∥2

Πy|x (dy | x)Πx (dx) . (7)

where θ ∈ Θ ⊂ RK×G, Π denotes the distribution of (y, x) and

µ
reg
g (y | x; θ) ≡

 G

∑
h=1

∥∥∥y− θ′gx
∥∥∥2/(m−1)

∥∥y− θ′hx
∥∥2/(m−1)


−1

, g = 1, . . . , G. (8)
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As before, Equation (7) has the interpretation of a WLS regression, where the weights are
unknown. We define θ∗ as the population minimizer of the objective in Equation (7).

Our approach determines group weights based on the data alone, without requiring a
classification a priori. Supplement B.2 discusses the distinction between recovering MPCs
based on a parsimonious specification as in Equation (2) and subsequently investigating
their relationship with additional covariates, as compared to including additional covari-
ates in the regression itself.

Asymptotic properties of fuzzy C-parameters

We now characterize the asymptotic properties of an estimator, θ̂, based on the sample
counterpart of Equation (7). In Supplement A.2, we provide detailed proofs and devel-
opment of these properties, generalized further to the case where y can be vector valued
(as in panel data).

First, substituting the µ
reg
g into Equation (7) yields the alternative formulation:

Lreg
m (Π, θ) =

∫ ∫ ( G

∑
g=1

∥∥∥y− θ′gx
∥∥∥−2/(m−1)

)1−m

Πy|x (dy | x)Πx (dx) . (9)

The minimization of Equation (9) can be recast as a Generalized Method of Moments
(GMM) problem, with θ∗ satisfying the moment conditions:

E

[
∂Jreg

m

∂vec (θ)

]
≡ E [η (θ, yi, xi)] = E


 G

∑
h=1

∥∥∥yi − θ′gxi

∥∥∥2/(m−1)

∥∥yi − θ′hxi
∥∥2/(m−1)


−m (

yit − θ′gxi

)
xi

 = 0

for g = 1, . . . , G.

The corresponding just-identified finite-sample GMM objective function is

SN (θ) =
1
N

N

∑
i=1

η (θ, yi, xi)
′

N

∑
i=1

η (θ, yi, xi) . (10)

Define θ̂ as the solution to (10). Assumption 1 presents standard grouped OLS assump-
tions:

Assumption 1. (Grouped OLS Assumptions)

1. Observations (yi, xi) are generated according to (6) and jointly i.i.d. from Π,

10



2. E [εi | xi, i ∈ g] = 0 ∀g = 1, . . . , G,

3. The second moments of y and x are finite under Π,

4. The regressors x are not collinear, rank (
∫

xx′Πx (dx)) = K,

5. G is finite.

Assumption 2 adds standard assumptions for consistency of the GMM estimator:

Assumption 2. (Consistency)

1. θ∗ is the unique solution to E [η (θ, yi, xi)] = 0 (up to ordering of the groups),

2. Θ is compact.

Theorem 1 shows that θ̂ is consistent for θ∗, the population solution to Equation 7.

Theorem 1. (Consistency) Under Assumptions 1-2, θ̂
p→ θ∗ as N → ∞.

To characterize the asymptotic distribution, we require further technical conditions
that are standard for the asymptotic normality of GMM estimators:

Assumption 3. (Asymptotic Normality)

1. θ∗ is in the interior of Θ,

2. H = E
[

∂η(θ,yi,,xi)
∂vec(θ)′

]
is full rank,

3. E
[

supθ∈N

∥∥∥∥ ∂η(θ,yi,,xi)
∂vec(θ)′

∥∥∥∥] < ∞ in a neighborhood N of θ∗,

4. E
[
η (θ∗, yi,, xi) η (θ∗, yi,, xi)

′] is positive definite.

Theorem 2 gives the limiting distribution of θ̂.

Theorem 2. (Asymptotic Normality) Under Assumptions 1 - 3,

√
N
(
vec
(
θ̂
)
− vec (θ∗)

) d→ N
(

0, H−1VH−1
)

,

where
V = E

[
η (θ∗, yi, xi) η (θ∗, yi, xi)

′
]

,

and H is the Hessian of Equation (9).

We provide expressions for H (including several extensions) in Supplement A.2. With
these results, we are able to conduct inference for the population parameter θ∗.
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Practical considerations

We have so far taken the number of groups, G, as known and the smoothing parameter, m,
as given. In practice, the econometrician must choose both, and we adopt data-dependent
rules. To select G, we adapt the “gap statistic” of Tibshirani et al. (2001) to the regression
setting. This approach runs the clustering algorithm on data with no cluster structure
(homogeneous coefficients) and compares the FCP objective function in this reference
distribution to the value obtained for the empirical data. The optimal G maximizes the
gap between the reference and empirical FCP objective function. Supplement contains
additional details, but the main idea behind the Gap Statistic is to normalize declines in
(7) as G increases by expected declines in (7) that would arise mechanically even without
a group structure. Such declines should be penalized as they do not pick up true group
heterogeneity.

We choose m to minimize the loss function

Q (m) =
(

J̄reg
m
(
θ̂
))2

+
(
Ēm
(
θ̂
))2

,

where J̄reg
m is the sample analog of Equation (7), normalized to the range [0, 1], and Ēm

is the sample cluster entropy (see e.g., Bezdek et al. (1984)), measuring dispersion with
clusters, normalized to the range [0, 1]. We trade off the objective function against the
similarity of observations within each group. This approach is related to the Cui et al.
(2010) method for cluster means. In our data, we select m = 2.35, in line with the range
of values found in the FCM literature.14 We find that the optimal value for G is invariant
to m in our data, so choose G and m sequentially.

We argue above that the FCP problem can be solved using a GMM approach, with a
formal proof in Proposition 5 in the Supplement. We exploit this GMM representation
and minimize Equation (9) numerically. In extensive simulations, we find this numeri-
cal procedure to be both considerably faster and more accurate in our setting than the
iterative approach adopted for FCM in the literature. Supplement C.1 contains details.

FCP instrumental variables regression

In our empirical setting, the value of the rebate an individual receives is potentially en-
dogenous, so we propose an instrumental variables extension of FCP (FCP-IV). In partic-
ular, we consider a two-stage least squares (TSLS) estimator, where we denote the rebate

14The literature generally suggests 1.5 ≤ m ≤ 2.5 (e.g., Bezdek et al. (1984); Pal and Bezdek (1995); Yu
et al. (2004); Jing et al. (2014); Wu (2012)). Optimality results are not generally available (theoretically or
numerically).
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as xe, additional controls as ω, and the instrument as z (in our case, an indicator for the
rebate receipt). We estimate the first stage

xe
i = γzi + τ′ωi + ui,

via OLS, and then generate x̃e
i = γzi + τ′ωi. We define x̃ =

(
x̃e ω

′)′
, and estimate

Equation (7), replacing x with x̃ as the second stage. In Supplement A.3, we establish the
consistency and asymptotic normality of this estimator.

3.3 Simulation results

To evaluate the performance of FCP in our setting, we conduct a simulation study cal-
ibrated to our empirical data. We summarize the main results below, with full details
reported in Supplement C.2. We simulate data according to Equation (6) using the empir-
ical parameter estimates, taking an individual’s true group membership as the group with
maximal weight. We consider three specifications: G = 5 (our empirical baseline), with
Gaussian errors εi (with group-specific variance); G = 5, with εi resampled from each
group’s empirical errors; and G = 10, with Gaussian errors (with group-specific vari-
ance). For each specification, we estimate the model using FCP (m = 2.35, our empirical
choice), HKM extended to a regression framework (as in Bonhomme and Manresa (2015)),
and a Gaussian mixture model (using the EM algorithm). For each estimator, we report
the mean and RMSE for each MPC, the share of observations misclassified (by maximal
weight), and the median CDF of MPCs (by maximal weight), across 500 simulations.

For G = 5 and Gaussian errors, both FCP and HKM perform quite well by all metrics:
the average point estimates are accurate, the RMSEs are fairly low, only 9% of individuals
are misclassified, and the median CDF recovers the true distribution of MPCs very closely.
The Gaussian mixture model performs poorly, recovering a spuriously wide distribution
of MPCs. For G = 5 and empirical errors, FCP continues to perform well, demonstrating
a clear advantage over HKM in terms of average point estimates and continuing to match
the true CDF of MPCs. The Gaussian mixture model deteriorates further, recovering a
large mass of negative MPCs. Finally, for G = 10, a much more challenging clustering
problem, FCP performs remarkably well. Average point estimates remain reasonably
close to the truth, the RMSEs generally fall, the share misclassified rises only slightly, and
the median CDF matches the true distribution of MPCs very closely. HKM recovers a
large mass of negative MPCs, while the Gaussian mixture model recovers many MPCs
greater than one. Additionally, for FCP, tests of the null of the true MPCs are generally
well-sized. Together, these results support the ability of FCP to recover the distribution
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of MPCs in our empirical setting.

3.4 Comparison to alternative methodologies

Section 3.1 describes the theoretical relationship between fuzzy clustering (e.g., FCM and
FCP), binary approaches (e.g., HKM), and likelihood-based approaches (e.g., Gaussian
mixture models). The previous subsection argues that in our empirical setting, where the
likelihood is unknown and the data is cross-sectional, FCP demonstrates considerable
advantages in simulations. However, there are further possible approaches to recovering
heterogeneous responses.

Indeed, Misra and Surico (2014) study heterogeneous responses to the 2008 tax rebate
using quantile regressions. Quantile regression differs from clustering; rather than recov-
ering groupings of the data that share similar parameters and estimating those param-
eters, quantile regressions investigate the relationship between the dependent variable
and the regressors at different points of the conditional distribution of the dependent
variable. Because quantile regression computes relationships at percentiles of the overall
conditional distribution, the estimated MPC distribution depends on the correlation of
MPCs with other forms of heterogeneity. If the “ranking” of the conditional distribution
is mostly driven by factors other than the responsiveness to the rebate (like fixed effects
or other covariates), and these factors are uncorrelated with the rebate, heterogeneity of
the MPC distribution will be underestimated in the presence of noise. We provide an
example in Supplement C.3.

In unreported simulations matching our main simulation study, we confirm quantile
regression provides a poor approximation of the MPC distribution. It also less accurately
assigns individuals to MPCs. This latter point is crucial, since we examine determinants
of MPC heterogeneity ex post; if individual MPCs are not accurate, results of these regres-
sions will be spurious. Such exercises also pose a conceptual problem for quantile re-
gression. Following quantile regression, it is possible to regress percentiles on the charac-
teristics of their members, similar to how Misra and Surico (2014) plot observables across
percentiles. However, it is not possible to examine the relationship between MPCs and co-
variates directly. Thus, this exercise relies on percentiles and MPCs being well-correlated
for validity. Fortunately, the distributions of Misra and Surico (2014) do indeed exhibit
strong correlations with the MPC, but this need not be the case in general.

Recently, machine learning approaches (e.g., random forests, neural networks) have
been used to recover heterogeneous effects (e.g., Athey and Imbens (2016); Chernozhukov
et al. (2017)). Crucially, our clustering approach is distinct since such methodologies rely
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on a wide array of observable variables to characterize heterogeneity. In our context, few
observable variables are available. More importantly, we seek to recover latent hetero-
geneity that may be entirely unrelated to observable characteristics. Our use of FCP in
the second stage of TSLS also provides a novel way that “machine learning” can be ex-
ploited for IV problems; typically, such methods have instead been applied as prediction
tools to develop a strong instrument in the first stage (e.g., Belloni et al. (2012)).

4 Results

We apply our FCP approach to the 2008 tax rebate. In particular, (2) is a special case of
Equation (6), where the coefficients on Wj are assumed to be common across groups; we
then estimate (6) using FCP with m = 2.35, in particular minimizing

1
N

N

∑
j=1

(
G

∑
g=1

∥∥∆Cj − αg − φgRj − β′Wj
∥∥−2/(m−1)

)1−m

.

Our findings highlight a considerable degree of MPC heterogeneity whose extent varies
depending on the consumption category considered. We first show the distribution of
marginal propensities to consume for total expenditures and illustrate how our results
are robust to different specifications and sample selection procedures. We then investi-
gate how the MPC distribution changes as we consider nondurable and durable goods as
the dependent variables. Importantly, our approach also allows us to directly test whether
households display similar propensities for different consumption goods, or instead sub-
stitute across expenditure types when they receive a transitory income shock such as a
tax rebate. Finally, we explore which observable household characteristics are correlated
with the estimated marginal propensities to consume.

4.1 The distribution of marginal propensities to consume

We start by considering total expenditures, defined as in Parker et al. (2013). Following
Kaplan and Violante (2014), who show that properly accounting for outliers reduces the
homogeneous rebate coefficient, while increasing precision, we drop the top and bottom
1.5% of consumption changes.15 The gap statistic indicates that 5 is the optimal num-
ber of groups. For each household that receives the rebate, we compute the weighted

15This is the only way in which our sample departs from Parker et al. (2013), and explains why the
homogeneous MPC we estimate for total consumption differs from theirs.
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Figure 1: Estimated distribution of MPCs out of the tax rebate

Notes: Figure 1 plots a histogram (light blue bars) of the estimated distribution of MPCs for total expenditures among households that
received the rebate, defined as in Parker et al. (2013). The homogeneous MPC (red vertical line) is estimated assuming a homogeneous
response to the tax rebate as in Parker et al. (2013), following Equation (1). For each household we compute the weighted MPC across
groups. The black vertical line shows the average weighted MPC in our sample. The dash-dotted line overlays data simulated from a
Beta distribution, shifted to lie on the closed interval [.253, .756], fitting our MPC distribution, with parameters 0.641 and 1.338.

average MPC, using the household-specific weights µi,g and the group-specific MPCs φg

estimated by the algorithm.16 Figure 1 shows the distribution of this object for the (i, t)
pairs receiving the rebate.

The vast majority of households display a relatively low (but certainly non-negligible)
MPC between 0.25 and 0.4, and the share of households with a given MPC slowly decays
as the MPC increases. While under this specification no household can be strictly defined
as hand-to-mouth (MPC = 1), the majority of the sample exhibits a sizable propensity to
consume; our findings suggest that most households consume at least part of the rebate.17

Aggregating the individual-level responses, we also find a larger average propensity
to consume than from the homogeneous regression, as shown by the black and red ver-
tical lines respectively. This is not surprising; in general, estimates from a homogeneous
specification like Equation (1) will not equal the average of estimates from our heteroge-

16Supplement D.2 shows the distribution of the MPC associated with the maximal weight at the individ-
ual level. Because we find that many such weights are close to one, the average of MPCs associated with
maximal weights is very close to the average of weighted MPCs.

17In Section D.1, we report the MPC distribution estimated by HKM and a Gaussian mixture model. The
distribution is qualitatively robust to the estimator used, although there is variation in the degree of dis-
persion in the tails. HKM does not estimate any MPC higher than 0.45. The Gaussian mixture model, in
contrast, predicts higher dispersion on both ends of the distribution, also estimating some negative MPCs;
we find exaggerated dispersion to be a property of the Gaussian mixture model in simulations, see Supple-
ment C.2.
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Table 1: Test for MPC equality

(a) Analytical standard errors

MPC

0.25 0.38 0.57 0.71 0.76

0.25 6.02
(0.01)

0.38 0.37 1.87
(0.54) (0.17)

0.57 6.02 0.37 0.17
(0.68) (0.82) (0.48)

0.71 8.05 1.63 0.04 10.51
(0.00) (0.20) (0.84) (0.00)

0.76 0.21 0.14 0.02 0.00 0.43
(0.65) (0.71) (0.89) (0.97) (0.51)

(b) Conditional on FCP weights

MPC

0.25 0.38 0.57 0.71 0.76

0.25 154.55
(0.00)

0.38 8.28 78.70
(0.00) (0.00)

0.57 2.23 0.75 7.33
(0.14) (0.39) (0.01)

0.71 115.1232.48 0.45 304.07
(0.00) (0.00) (0.50) (0.00)

0.76 4.37 2.35 0.35 0.04 9.89
(0.04) (0.13) (0.55) (0.85) (0.00)

Notes: MPCs for total expenditures. The two tables show F−statistics from pairwise two-sided Wald tests of equality across MPCs
(the diagonals show tests of equality with zero). The left panel uses the standard errors outlined in Theorem 2. The right panel repeats
the exercise, taking the weights as given. These are equivalent to weighted least squares estimates where the weights are those in
Equation (8), raised to the power m, as in (13). Therefore, to run the tests in Table 1(b), we replicate the sample by the number of
groups and estimate ∆Cj = β′Wj + ∑g∈G

(
φg1 [j ∈ g] Rj + αg1 [j ∈ g]

)
+ εj via weighted least squares, with standard errors corrected

for heteroskedasticity, and compute the Wald tests. p−values are reported in parentheses.

neous specification, unless the distribution of right-hand-side variables is invariant across
groups. We discuss this point further in Supplement E, and provide a statistical decom-
position to help understand which variables drive this discrepancy. We find that variation
in the mean of regressors across groups (particularly for certain time dummies and the
age variable) is principally responsible.

In Table 1 we examine whether the estimated MPCs differ from zero and are statis-
tically different from one another. In the left panel, we make use of the analytical for-
mulas outlined in Theorem 2 to compute Wald tests of pairwise equality across MPCs.
Groups 3 and 5 (ordered from lowest to highest MPC), whose MPCs are not statistically
significantly different from zero, are also those with the smallest share of households.18

Relative to the equivalent weighted least squares regression in which the weights are
treated as given, the FCP standard errors are larger because they take into account that
the weights are in fact estimated endogenously. Table 1(b) shows that – when group as-
signment is taken as given – all MPCs are statistically different from zero. Moreover, most
MPC groups are statistically different from each other, at least at the 68% confidence level.
Supplement D.2 further shows that the full distribution of MPCs is largely invariant when

184% and 3% of rebate recipients have maximum weight on groups 3 and 5, respectively.
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re-estimated on bootstrap samples drawn from the data.19

The flexibility of the FCP methodology allows us to nest instrumental variable esti-
mation. This is particularly relevant in our framework, since the exogenous source of the
transitory income shock is driven by the random timing of rebate receipt, but the value
of the rebate itself may be endogenous. We therefore follow the literature and instrument
the tax rebate with an indicator variable for its receipt. In this TSLS specification, we first
regress the rebate value on the rebate indicator and the same controls as in Equation (2),
and then use the predicted values in the second stage. Moreover, we also address po-
tential bias arising from the inclusion of households that never get the rebate, excluding
them from the analysis.20

Figure 2 plots the resulting distribution of weighted MPCs, and shows how it remains
qualitatively unchanged relative to the OLS specification. If anything, instrumentation
uncovers a non-negligible portion of households that consume the rebate in its entirety
and that even display an MPC slightly larger than 1. Moreover, the gap between aggre-
gated and homogeneous response is even larger than in OLS.

4.2 The MPC distribution for different consumption goods

We have shown how households differ with respect to their propensity to consume the re-
bate. How does the distribution of these propensities change across consumption goods?
The granularity of the CEX data allows us to tackle this question, while our approach
allows us to explore how good-specific MPCs vary at the household level.

First, in the left panel of Figure 3, we report the weighted MPC distribution for non-
durable goods.21 As expected, the distribution is shifted to the left with respect to the dis-
tribution corresponding to total expenditures in Figure 1, as nondurable goods account
for, on average, only 57% of household total expenditures.

An important share of households consume a value of nondurables consistent with the
annuity value of the rebate, as suggested by the Permanent Income Hypothesis (Friedman
(1957)): roughly one third of households have an MPC that is not statistically distinguish-
able from zero. The majority of households have a small, but non-zero, propensity to

19In particular, we repeat the estimation of the distribution of MPCs for total expenditures, with 5 groups,
over 250 samples obtained with bootstrap with replacement. We find that the average quantiles across
bootstraps are very close to those estimated in the baseline sample, and fairly stable across bootstraps.

20Households may never receive the rebate because they have different characteristics, such as higher
income. In Supplement D.4 we show robustness to the exclusion of this group for OLS too.

21Nondurable goods are defined, following Parker et al. (2013), as strictly nondurables (Lusardi (1996))
plus apparel goods and services, health care expenditures (excluding payments by employers or insurers),
and reading material (excluding education).
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Figure 2: Estimated distribution of MPCs out of the tax rebate: two-stage least squares

Notes: Figure 2 plots a histogram (light blue bars) of the estimated distribution of MPCs for total expenditures, defined as in Parker
et al. (2013), using the two-stage least squares specification. We also drop from the sample the households that never receive a rebate.
The homogeneous MPC (red vertical line) is estimated assuming a homogeneous response to the tax rebate, as in Parker et al. (2013),
following the two-stage least squares equivalent of Equation (1). We estimate the model with G = 5. For each household we compute
the weighted MPC across groups. The black vertical line shows the average weighted MPC in our sample. The dash-dotted line
overlays data generated from a Beta distribution, shifted to lie in the closed interval [.395, 2.099], fitting our MPC distribution, with
parameters 0.713 and 2.513.

consume nondurable goods, and around 8% of households consume nearly half of their
rebate in nondurables. The heterogeneity in nondurable MPCs is not only economically
meaningful, but also statistically significant. In Supplement D.2 we show that nearly all
the estimated MPCs are statistically different from each other. Instrumenting the rebate
with the rebate receipt indicator slightly increases both the mass and the values at the
right tail, similar to the results for total expenditures.

As shown in the right panel of Figure 3, we estimate that 73% of households do not
change their durable expenditures in response to the rebate; their weighted MPC is in
a neighborhood of zero and the associated group-specific MPC is not statistically differ-
ent from zero. A small fraction of households, however, has a durable MPC larger than
one half.22 The dichotomy of this MPC distribution is in line with the discrete nature of
durable goods purchases. This discreteness implies lumpy adjustment and is consistent
with the fact that most households either use most of the rebate to purchase durables, or
do not adjust their durable goods consumption at all.23

22In line with the tendency shown for other consumption categories, estimating durable MPCs with TSLS
uncovers a group with larger propensity, up to 1.49.

23Our definition of durables follows Coibion et al. (2017). Parker et al. (2013), instead, define durable ex-
penditures as the difference between total and nondurable expenditures. Using this categorization delivers
very similar results.

19



Figure 3: MPCs out of the tax rebate: nondurables and durables

(a) Nondurables (b) Durables

Notes: Nondurable goods are defined, following Parker et al. (2013), as strictly nondurables (Lusardi (1996)) plus apparel goods and
services, health care expenditures (excluding payments by employers or insurers), and reading material (excluding education). The
homogeneous MPC (red line) is estimated assuming homogeneous response to the tax rebate. For each household we compute the
weighted MPC across groups. The black line shows the average weighted MPC in our sample. We estimate the models with G = 5 to
allow direct comparability with the distribution of MPCs for total expenditures. We follow Coibion et al. (2017) and define durables
as durable health expenditures, entertainment durables, furniture, jewelry, durable personal care, vehicle purchases, durable vehicle
expenditures, housing durable expenditures (e.g., maintenance and repair commodities such as paint, materials.).

Finally, we assess whether households with high propensities to consume nondurable
goods are also more likely to consume durable goods after receiving the rebate. While we
can rule out substitution between goods, the estimated complementarity – at the margin
– is, however, quantitatively small. The correlation between household-level weighted
MPCs for nondurable goods with those for durables is 0.04, significant at the 5% level,
while the rank correlation is also 0.04. Albeit small, the complementarity might signal the
presence of heterogeneous preferences or a small share of “spender” types, who are more
prone to adjust any type of consumption in response to transitory income shocks. While
the structure of our data does not allow us to draw conclusions regarding permanent
unobserved heterogeneity in MPCs, we can investigate what observable characteristics
explain the estimated MPC distributions that we recover. We tackle this issue in the next
section.

4.3 What drives MPC heterogeneity?

Our approach uncovers the distribution of marginal propensities to consume without
taking a stance, ex ante, on its observable determinants. Nevertheless, we can use the es-
timated distribution to understand how MPCs correlate, ex post, with observable charac-
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Table 2: Individual correlations with the MPC for total expenditures

(1) (2) (3) (4)

log salary income 0.12*** 0.10*** 0.11*** 0.10***
log non-salary income 0.19*** 0.17*** 0.18*** 0.18***
mortgage interest/income 0.06*** 0.07*** 0.05** 0.04*
APC 0.05* 0.05** 0.02 0.00
age -0.04** -0.04* -0.04** -0.03*
log liquid assets 0.13*** 0.12*** 0.15*** 0.14***

Notes: Table 2 shows the correlations between MPC estimates listed in columns and observables listed in rows. Column (1) uses the
weighted MPC from the WLS specification, while column (2) uses the MPC associated with the maximal weight from the WLS speci-
fication. Columns (3) and (4) use the weighted and maximal weight MPCs, respectively, based on the TSLS specification, respectively.
All logged variables take a value of 0 when the raw value is 0 or negative. *, ** and *** denote significance of the correlation at 10, 5
and 1% levels, respectively.

teristics. We start by examining how observables are individually correlated with MPCs.
We then turn to investigate the joint relationship between the estimated MPCs and vari-
ous households characteristics. This approach would be very challenging using existing
approaches, since estimating MPCs for different observable subgroups (e.g., cut by age,
income, wealth, and other observables simultaneously) would come at the cost of sub-
stantial loss of statistical power.

Table 2 reports individual correlations. Our estimated weighted MPCs (column (1))
are positively correlated with salary and non-salary income, the mortgage interest to in-
come ratio, the average propensity to consume (APC), and log liquid wealth; however,
they are negatively correlated with age.24 As shown in columns 2-4, these findings barely
change when considering the MPC associated with an individual’s maximal weight, or
the MPC distribution estimated via TSLS.25

We also find that homeowners have larger MPCs, a result that echoes findings in
Parker et al. (2013). Moreover, having a mortgage is associated with an even higher
propensity to consume, as shown in Figure 4.

Most of these patterns, however, hold only unconditionally, and disappear or weaken
when we control for other observables, as we show in Table 3. Since the inclusion of liquid

24Additional relationships hold unconditionally. For instance, we find that households that put money
into a tax-deferred or tax-free educational savings plan have a significantly higher MPC. Moreover, MPCs
increase with education. All these relationship, however, are insignificant when tested jointly with other
observables as in Table 3.

25In unreported results we also find that correlations with observables are robust to the exclusion of
observations associated with statistically insignificant MPCs for total expenditures.
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Figure 4: MPCs by housing status
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Notes: Figure 4 shows the average weighted MPC for total expenditures by housing status of households receiving a rebate. Error
bars show 90% confidence intervals, computed with the standard deviation of weighted MPC within each group.

assets causes a drop in the number of observations, we also estimate the MPC drivers
without taking liquidity into account. The absence of correlation between the MPC and
liquid assets is in line with findings by Parker et al. (2013), who suggest the finding might
be driven by non-response bias.26 Our results are robust across specifications and to using
alternative MPC definitions.27

Only two explanatory variables remain statistically significant even after the inclusion
of additional covariates: non-salary income and the average propensity to consume, both
of which are positively correlated with the marginal propensity to consume. We expand
on these two drivers in the remainder of the section.

While higher income households are found to be have higher MPCs, it is mainly the
non-salary component of income that drives this relationship.28 This effect is partly the re-
sult of a particular category of households, such as entrepreneurs or investors (for exam-
ple, those with a positive business or financial income), who have a significantly higher
MPC. The intensive margin, however, seems to play the most prominent role. Putting the
estimates together, we find that a 1% increase in non-salary income is associated with an
increase in the MPC between 5 and 13 cents for each dollar of the rebate, depending on
the specification. Put differently, a 2% increase in non-salary income predicts a 1 standard

26Considering the ratio of liquid assets to total income leaves the coefficients unaffected. Moreover, this
variable is unconditionally uncorrelated with the marginal propensities to consume.

27All the regression results are broadly unaffected if using the MPC associated with an individual’s max-
imal weight as the dependent variable.

28Non-salary income consists of farm and business income, financial income (e.g., income from interest,
dividends, pensions and annuities) and all other income except foodstamps (e.g., retirement, supplemental
security, unemployment compensation), following the categorization in Coibion et al. (2017). Business and
financial income drive the positive correlation with the MPC.
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deviation increase in the MPC, in our preferred specification in column (2). While some
studies find that low-income households have a higher marginal propensity to spend,29

others are in line with our findings. Kueng (2018) studies consumption responses to regu-
lar and predetermined payments from the Alaska Permanent Fund and finds that MPCs
monotonically increase with income. Misra and Surico (2014) also find that median in-
come is higher at the top of the conditional distribution of consumption changes, which
they find to be associated with higher propensities to consume, although the overall re-
lationship is U-shaped. Shapiro and Slemrod (2009) use data on self-reported propensity
to spend the 2008 rebate to show that low-income individuals were more likely to pay off
debt. They also find that 21% of households making more than $75,000 of total annual
income reported to spend most of the rebate, compared to 18% for households with total
income below $20,000.

Moreover, it should be noted that income is measured in the CEX over the past 12
months and only in the first interview, thus making it less suited to measure transitory
income fluctuations. Indeed, our attempts to isolate unemployment episodes delivered
noisy results, also because most of the households with zero salary seem to be older and
retired. On the other hand, the importance of business and financial income for the MPC
might suggest the presence of wealthy hand-to-mouth households, as first posited by
Kaplan and Violante (2014). Finally, the positive correlation between income and MPCs
does not only hold for total expenditures, but also for nondurable expenditures, even
when controlling for additional covariates.

Marginal propensities to consume also increase with the average propensity to con-
sume (APC). Empirically, we define the APC as the ratio between lagged consumption
and lagged total income. As previously mentioned, we consider income as measured in
the first interview for each household, and it refers to the previous 12 months. We lag ex-
penditures to avoid a mechanical positive correlation with the MPC. To ensure stability of
APCs, we average expenditures over all the available lagged quarters at the household-
level, but the results are virtually unchanged if we only consider the first lag. Households
that spent 1 percentage point more of their income before receiving the rebate spent 9 ad-
ditional cents out of each rebate dollar. This effect is significant also for nondurable MPCs
and conditional on a wide array of controls.30

In Figure 5 we show how the MPC varies jointly with the APC and total income.

29For instance, see Johnson et al. (2006) for the 2001 tax rebate and Jappelli and Pistaferri (2014), with
respect to cash on hand, for Italian data on reported MPCs.

30A 1 percentage point increase in the APC for total expenditures predicts 2 additional cents per rebate
dollar spent on nondurables. This effect goes up to 6 when considering the APC for nondurable expendi-
tures only.
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Table 3: Explanatory variables: weighted MPC for total expenditures

(1) (2) (3) (4)
dummy for no salary -0.040 -0.082 -0.248 -0.237

(0.059) (0.054) (0.158) (0.132)

log salary income 0.001 -0.006 -0.016 -0.021
(0.007) (0.006) (0.018) (0.015)

log non-salary income 0.046∗∗∗ 0.066∗∗∗ 0.099∗∗∗ 0.125∗∗∗

(0.011) (0.009) (0.029) (0.022)

mortgage interest/income 0.054 0.010 0.145 0.073
(0.041) (0.034) (0.092) (0.075)

APC 0.063∗∗∗ 0.092∗∗∗ 0.119∗∗∗ 0.146∗∗∗

(0.015) (0.013) (0.030) (0.025)

homeowner dummy 0.032∗ 0.024 0.027 0.022
(0.015) (0.012) (0.039) (0.031)

dummy for mortgage -0.025 -0.013 -0.043 -0.026
(0.015) (0.012) (0.036) (0.028)

log liquid assets -0.001 0.002
(0.002) (0.004)

N 723 1079 723 1079
R2 0.101 0.112 0.100 0.092
Notes: Columns (1) and (2) use the weighted and maximal weight MPCs from our WLS specification, respectively. Columns (3) and
(4) use the weighted and maximal weight MPCs from our TSLS specification, respectively. All logged variables take a value of 0 when
the raw value is 0 or negative. Standard errors are robust to heteroskedasticity and reported in parentheses. We control for marriage
dummies, education dummies, number of children, age and age squared; those coefficients are not reported. Age and its square are
controls in our FCP estimation. While this does not pose an issue for the point estimates shown in this table, it could potentially affect
inference. However, we repeat the same regressions, excluding age and and age squared, and find that the remaining coefficients are
unaffected. , *, and *** denote significance at the 10, 5, and 1% levels respectively.
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Figure 5: The relationship between MPCs, APCs, and income

Notes: Figure 4 shows the average weighted MPC for total expenditures for pairs of quintiles of APC and log total income. The
colorbar on the right represents the MPC.

We separately compute quintiles of the APC and total income, and calculate the average
weighted MPC for each quintile pair. The MPC increases with income, conditional on the
APC, and vice versa.

Our analysis uncovers three main groups. First, households with low total income and
low APC display the lowest marginal propensity to consume. We label these households
“poor savers”. Second, households with high APC and low total income, and vice versa,
display intermediate MPC. Third, the greatest marginal propensity to consume is found at
households with high APC and high total income. We label this group “rich spenders”.31

We regard these results as particularly useful for disciplining macro models of house-
hold consumption. First, the average propensity to consume can easily be computed in
a large number of micro datasets with minimal information. Second, these correlations
can be directly tested in even the simplest of consumption/savings models. Yet, different
models will have strikingly different implications for the relationship between the APC
and MPC. Consider the workhorse life-cycle model with incomplete markets. House-
holds are born with zero assets and cannot borrow. Early on in the life cycle they are
hand-to-mouth (APC = 1) and they display a large MPC. As they move up the income
ladder, they start saving in order to accumulate a buffer stock. The APC starts to fall,

31We find similar relationships for MPC for nondurable goods, especially the presence of “rich spenders”,
as we show in Supplement (D.3).
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and so does the MPC. This behavior can generate a positive correlation between the APC
and MPC across the working-age population. How the remaining part of the population
is modeled is important for the correlation. If agents are infinitely lived, they will save
until a certain target wealth and then stop saving. As they approach the target, the MPC
gradually falls towards the annuity value of the transitory income shock, while the APC
converges to 1. In the population, this implies an ambiguous correlation between APC
and MPC, in contrast with our results. In a life cycle model, instead, households start
dissaving as they approach their death. This implies they display an APC > 1. Simi-
larly, they are more responsive to transitory income shocks, given the increasingly lower
effective discount factor. This model therefore has the potential to generate a positive
correlation between MPC and APC across the entire population.32

On the other hand, such models assign a crucial role to age for the heterogeneity in
MPC, predicting a U-shape relationship. In our empirical findings, in contrast, marginal
propensities to consume do not systematically vary with age, after controlling for other
household characteristics. Moreover, most incomplete markets models typically fail to
generate savings rates (APC) that increase (decrease) with wealth and permanent income,
at odds with what is observed in the data and documented by Dynan et al. (2004) and
Straub (2017).

The fact that income and the APC jointly affect the MPC further helps to distinguish
models. In a standard model, “poor savers” are building up their wealth and have
high expected consumption growth. Moreover, they should also have higher MPCs than
households that have reached their target levels of wealth, of which we do not find evi-
dence empirically. Moreover, as outlined before, the model counterfactually predicts that
the APC increases with wealth. Preference heterogeneity can break these relationships.
Aguiar et al. (2019) highlight the importance of heterogeneity in the intertemporal elas-
ticity of substitution in order to generate heterogeneous target levels of wealth. In their
model, high-IES households have high MPCs and high APCs.

The presence of “rich spenders” per se is an even bigger challenge to standard models,
and more so the fact that they have a high MPC. We do not find these households to be
systematically different from rich-savers (high income and low APC), when looking at
other observable characteristics. Our findings are consistent with the size of the income
shock, in particular relative to typical consumption, mattering for the MPC. High-income
households, especially those who typically spend a large fraction of their income, might

32Retired households, on the other hand, are wealthier, which negatively affects the MPC in this class of
models. Eventually, the correlation between MPC and APC depends on the quantitative properties of the
model.
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find it easier to spend a $1000 check – on a few nice meals out or a new TV, for example
– without dramatically adjusting their consumption behavior, relative to poorer house-
holds.

Our empirical findings, taken together, point towards a possible role played by un-
observed factors for MPC heterogeneity, possibly household preferences. An additional
finding corroborates this possibility. All the observable drivers mentioned in this section
— as well as other household characteristics that do not strongly correlate with the MPC
— explain a relatively small portion of the variance of the weighted MPC distribution.
Indeed, our best linear regression framework of weighted MPC on observable character-
istics delivers an R2 of 11%. This could be partly explained by non-linear relationships
that are difficult to parametrize.33 Moreover, the CEX contains only sparsely populated
information on wealth. In Supplement D.3, we show the relationship between the MPC
and liquid wealth, aware of the potential nonresponse bias highlighted by Parker et al.
(2013). We refrain from showing any relationship with total wealth, given the lack of
reliable data. While these unobservable — within our dataset — characteristics could
potentially explain some of the variation in MPCs, our results nevertheless suggest the
presence of unobserved or latent drivers in MPC heterogeneity, especially since some of
those latent characteristics may drive the observables we analyze in the first place. Our
approach is able to uncover the full MPC distribution, including its latent part, but we
are not able to clearly identify its source in the form of, for instance, preference hetero-
geneity. Some survey datasets attempt to uncover these features directly. Parker (2017)
finds that the majority of consumption responsiveness to the tax rebate, in the Nielsen
data, is driven by a measure of impatience, defined as households reporting to be “the
sort of people who would rather spend money and enjoy it today or save more for the fu-
ture”. Alternatively, a long panel data structure could allow one to draw conclusions on
the permanent component of the MPC heterogeneity, as well as the evolution of the MPC
distribution over the business cycle. The application of our framework to these questions
is left to future research.

4.4 Aggregate partial equilibrium effects of the 2008 ESA

In this section, we estimate the partial equilibrium (PE), aggregate response to the 2008
tax rebate based on our estimated heterogeneous coefficients. For this exercise, we use a
lagged specification that takes into account the possible persistent effects of rebate receipt,

33As discussed, our results are robust to different sets of explanatory variables. We also run a linear Lasso
for the selection of the array of predictors. Regressing the MPC on the selected right hand side delivers the
same R2.
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Figure 6: Estimated distribution of total 2-quarter effect of the tax rebate

Notes: Figure 6 plots the histogram (light blue bars) of the estimated distribution of the total effect of the 2008 ESA for total ex-
penditures, defined as in Parker et al. (2013), using the lagged specification in Equation (11). The homogeneous MPC (red vertical
line) is estimated assuming a homogeneous contemporaneous and homogeneous lagged response to the tax rebate, as in Parker et al.
(2013). For each household we compute the weighted MPC, weighted across groups g ∈ G. The black vertical line shows the average
weighted MPC in our sample.

as in Parker et al. (2013). In particular, we estimate the following model:

∆Cj = β′Wj + ∑
g∈G

(
φg1 [j ∈ g] Rj + φ

lag
g 1 [j ∈ g] Rlag

j + αg1 [j ∈ g]
)
+ εj, j = 1, . . . , N,

(11)
where the coefficient φ

lag
g represents the lagged effect of the rebate for group g.34 We do

not force a household group membership for household i to be fixed across t. To correctly
estimate the cumulative response to the rebate, we therefore track individual weights
over the two quarters following the rebate. We use these to construct the individual 2-
quarter total effect of the rebate, by adding twice the weighted contemporaneous rebate
coefficient to the weighted lagged coefficient.35

Figure 6 plots a histogram of this object among those who received the rebate. Rela-

34Kaplan and Violante (2014) suggest that the rebate coefficient might differ from the marginal propensity
to consume because some households in the control group have already received the rebate, and some
households might anticipate receiving the rebate in the future. Adding lagged rebate partially address this
concern. See Supplement D.4 for further discussion of this specification.

35For example, a household may be categorized to be in some group a in the period in which they re-
ceive the rebate, and then in some group b the period after they receive the rebate. For such an individual,
we construct the individual 2-quarter total effect of the rebate by adding twice the contemporaneous re-
bate coefficient for group a to the lagged rebate coefficient of group b, since φ

lag
g captures the change in

consumption relative to consumption in the period of rebate receipt.
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Table 4: Over-fitting G: average quantiles of the MPC distribution across simulated sam-
ples

Average p25 p50 p75

truth: 0.31 0.31 0.31 0.31

G = 1 0.31 – – –
(0.11)

G = 5 0.30 0.25 0.30 0.35
(0.27) (0.27) (0.27) (0.28)

Notes: Table 4 reports the average of various summary statistics of the distribution of (weighted) MPCs across Monte Carlo samples.
The first row reports the truth, which is 0.31 for all statistics, since the distribution is homogeneous. The second row corresponds to
a correctly-specified homogeneous regression in repeated samples (with the standard deviation across samples below in parentheses)
and the fourth to FCP incorrectly assuming the presence of five distinct groups. pxx denotes the xxth percentile. The final row
reports the standard deviation of each moment for the G = 5 specification across simulated samples. Results are roughly unchanged
computing medians across simulated samples, as well as distributions of the MPC associated with an individual’s maximal weight.

tive to the baseline results depicted in Figure 1, the distribution spreads out, with some
households having a total effect near zero. Moreover, as depicted in Figure 6, the esti-
mated partial equilibrium effect of the tax rebate more than doubles relative to its homo-
geneous counterpart, from 0.28 to 0.69. Indeed, accounting for individual heterogeneity
of treatment effects becomes even more important, even if the object of interest is simply
the average response; as a share of 2008-Q1 aggregate consumption in our sample, the
total effect is equivalent to 3.6%. Broda and Parker (2014) find that the stimulus increased
consumption by 1.3% and 0.6% in Q2 and Q3, respectively.

4.5 Robustness to spurious heterogeneity

In this section we show that neither the MPC heterogeneity we uncover, nor its correlation
with observables, is a spurious product of our estimation approach. For this exercise,
we generate data using estimates from the homogeneous regression, with errors drawn
from a Gaussian distribution with the empirical variance. We then obtain FCP estimates
under the faulty assumption that five groups are present, and repeat the same analysis
for 250 Monte Carlo samples. Table 4 shows that imposing spurious heterogeneity on a
homogeneous distribution does not significantly bias moments of the distribution.

Limited spurious heterogeneity, however, arises towards the tails, driven by particu-
larly noisy draws in the simulation. To show that these spuriously estimated MPCs do not
invalidate our headline results, we regress the estimated weighted MPCs for each sam-
ple on the array of observable predictors used in specification (2) of Table 3. On average
across samples, all the estimated correlations are almost exactly 0. For illustrative pur-
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Figure 7: (Lack of) spurious correlations with observables

Notes: For each of 250 simulated samples, we regress the weighted MPCs for total expenditure estimated imposing spurious hetero-
geneityon the set of observables used in specification (2) of Table 3. Figure 7 plots the histogram (light blue bars) of thet−statistics for
the coefficient on the APC. Total expenditures and baseline OLS specification. The red and black lines represent the critical values for
a 5% test of equality with zero.

poses, Figure 7 displays the distribution of the t−statistic for the coefficient on the APC,
across samples. In only 6.8% of the samples is there significant evidence of a relationship
between MPC heterogeneity and APC at the 5% level, a size distortion within the scope
of Monte Carlo error. The same is also true for coefficients on all other observables, with
even lower shares of significant coefficients.

5 Conclusion

We develop a flexible clustering approach to uncover latent heterogeneity in the marginal
propensity to consume. Our fuzzy C-parameters methodology extends the fuzzy C-
means algorithm to regression problems. Individuals’ group membership is character-
ized with non-binary weights, presenting a WLS-like problem. This approach is well-
suited to cross-sectional and short-panel data and does not require the researcher to take
a stance ex ante on the relationship between heterogeneity and observables. In simulations
calibrated to our empirical setting, we find that FCP performs better than competing clus-
tering approaches.

Taking FCP to the data, we find that households display a considerable degree of het-
erogeneity in their marginal propensities to consume. Moreover, we show that different
consumption goods are associated with different distributions, suggesting the need to
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take good-specific heterogeneity seriously in consumption/savings models. We do not
find evidence of individual-level substitution across consumption goods in response to
transitory income shocks, but rather a very mild positive correlation. Finally, we explore
what observables best predict different portions of the MPC distribution. Our findings
suggest that there is a tight relationship between marginal and average propensities to
consume, which is easy to derive in many models of consumption behavior and yet has
received relatively little attention. Moreover, since observable characteristics explain a
minor portion of the estimated MPC heterogeneity, we posit that other latent factors, such
as preference heterogeneity, might be important in determining marginal propensities to
consume.

Finally, two caveats help to highlight possible avenues for future work. Importantly,
we measure the distribution of MPCs to the 2008 tax rebate. This means our estimated
distribution uses a single cross-section of data during a recession; if an individual’s MPC
is a function of the aggregate state, extrapolating our estimates requires caution. Second,
because our empirical setting is one in which individuals only experience positive tran-
sitory shocks, we cannot speak to income windfalls, to which households may respond
differently (Fuster et al. (2018)). However, the fuzzy C-parameters approach we develop
can easily be applied to other datasets with suitably identified transitory income shocks,
making comparisons straightforward. We leave such exercises for future work.
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Supplemental Appendix to “Latent Heterogeneity
in the Marginal Propensity to Consume”

Daniel Lewis Davide Melcangi Laura Pilossoph

A Theoretical results

In this section, we provide additional theoretical results and proofs for the theorems in-
cluded in the text. In particular, we characterize the behavior of HKM and FCM, relative
to true cluster means, in a simple two Gaussian cluster example. Second, we provide
detailed proofs establishing FCP regression as a GMM problem and the consistency and
asymptotic normality of the resulting estimator. We include analytical expressions for the
Hessian matrix required for the asymptotic variance. We also establish asymptotic prop-
erties of the FCP-IV estimator discussed in the text. Finally, we include a brief discussion
of the relationship between FCP and finite mixture models.

A.1 Characterizing HKM and FCM in a simple case

The population optima of both HKM in fixed-T data (ψ∗) and FCM in general (ρ∗) repre-
sent pseudo-true parameters. For HKM, this is because the group assignment cannot be
consistently estimated. For FCM, this is because the introduction of non-binary weights
does not match the true model. However, we are not aware of any existing analytical
results characterizing the properties of these pseudo-true parameters. In this section, we
consider the problem of estimating the cluster means of two groups, where the data are
generated from two Gaussian distributions with distinct means, the same finite variance,
and equal mass, where the econometrician observes a single outcome for each observa-
tion. We show that there exists a smoothing parameter m for which ρ∗ will recover the
true parameter. While this is a highly simplified setting and m is unknown in practice,
our simulation results show that for our regression problem and data-driven choice of m,
the estimates are indeed quite close to the true parameter values.
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First, we characterize the behavior of HKM in this homoskedastic two-Gaussian set-
ting.

Proposition 1. In the homoskedastic two Gaussian cluster case, ψ∗1 , the HKM global optimum
for the lower mean, ζ1, is given by

ψ∗1 = Φ (−ζ1/σ)

(
ζ1 +

−Φ′ (−ζ1/σ)

Φ (−ζ1/σ)

)
+ Φ (−ζ2/σ)

(
ζ2 +

−Φ′ (−ζ2/σ)

Φ (−ζ2/σ)

)
,

and similarly for ζ2, the higher mean, where σ is the standard deviation of both Gaussian clusters.
ζ1 is negatively biased and ζ2 is positively biased unless σ→ 0.

Proof. Without loss of generality, we assume that ζ1 = −ζ2, so (ζ1 + ζ2) /2 = 0 (we can
always demean all data before clustering). Denote the Gaussian with mean ζ1 as G1 and
similarly G2 for ζ2, with ζ1 < ζ2, and denote their variance by σ2. By symmetry, the
groups are separated at 0, so values y < 0 are assigned to cluster 1 and y > 0 are assigned
to cluster 2; y = 0 is a measure-zero event. Thus, the observations assigned to cluster
1 correspond to the portion of G1 left of zero and the left tail of G2. To compute ψ∗1 , it
suffices to compute the mean over these two truncated normal distributions, weighted by
their relative contribution to the cluster’s mass:

E [y | g (y) = 1] =
PrG1 (g (y) = 1)

PrG1 (g (y) = 1) + PrG2 (g (y) = 1)
EG1 [y | g (y) = 1]

+
PrG2 (g (y) = 1)

PrG1 (g (y) = 1) + PrG2 (g (y) = 1)
EG2 [y | g (y) = 1] ,

where g (y) denotes the group to which a value y is assigned. By symmetry, the total mass
of the cluster is unity, so the relative contributions are simply Φ (−ζ1/σ) and Φ (−ζ2/σ)

respectively, where Φ is the standard normal CDF. Finally, it remains to compute the
means for each of the two truncated normals. Using standard results for the mean of the
truncated normal distribution, with lower bound equal to −∞ and upper bound equal to
0, we obtain the result,

ψ∗1 = Φ (−ζ1/σ)

(
ζ1 +

−Φ′ (−ζ1/σ)

Φ (−ζ1/σ)

)
+ Φ (−ζ2/σ)

(
ζ2 +

−Φ′ (−ζ2/σ)

Φ (−ζ2/σ)

)
,

with a symmetric argument giving a similar expression for ψ∗2 .
To conclude that ψ∗1 is negatively biased, note that in computing the mean over cluster

1, the right tail of G1 (right of zero) has been replaced by an equal mass to the left of zero,
shifting the overall mean to the left. ψ∗1 in general only recovers ζ∗1 by taking the limit as
σ→ 0.
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Proposition 1 shows that each of the global minimum of the HKM objective function
for each of the cluster means is biased outwards (away from zero), with the lower mean
being further reduced, and the upper mean being increased. The intuition is that ψ∗1 repre-
sents the mean over two truncated normals (portions of the mean ζ1 and ζ2 distributions),
with the right tail of the distribution with mean ζ1 truncated and replaced with an equal-
mass portion of the ζ2 distribution that is situated to the left of that tail. In practical terms,
this means that HKM overstates cluster heterogeneity in this simple case.

While we cannot similarly characterize the FCM optima analytically, Proposition 2
provides an existence result for a value m̃ such that FCM recovers the truth.

Proposition 2. In the homoskedastic two Gaussian case, assuming ρ∗1 and ρ∗2 are unique, there
exists some m̃ ∈ (1, ∞) such that ρ∗1 (m̃) = ζ1, ρ∗2 (m̃) = ζ2.

Proof. We begin by showing that ρ∗i (m) is everywhere differentiable in m. ρ∗i is implicitly
defined by the moment equation

fi (m, ρ) =
∫ ∞

−∞

1 +

∥∥yi − ρ∗i
∥∥ 2

m−1∥∥∥yi − ρ∗j

∥∥∥ 2
m−1


−m

(y− ρ∗i ) dP (y) = 0, i 6= j

(for a formal argument that the FCM clustering problem can be represented as a method
of moments problem see Proposition 5). By the implicit function theorem, since ρ∗1 and ρ∗2
are unique,

dρ∗i (m)

dm
=

[
− ∂ f

∂ρ′
(m, ρ∗ (m))

]−1 [
− d f

dm
(m, ρ∗ (m))

]
,

where ρ stacks ρ1, ρ2 in a vector (and similarly f stacks f1, f2). Since ρ∗ is assumed to be
the unique solution to f (m, ρ), the first term (the inverse of the Jacobian of the moments)
exists. The second term can be simplified to

∫ ∞

−∞
2 (m− 1)−2

1 +

∥∥y− ρ∗i − ζi
∥∥ 2

m−1∥∥∥y− ρ∗j − ζ j

∥∥∥ 2
m−1


−m

ln

1 +

∥∥y− ρ∗i − ζi
∥∥ 2

m−1∥∥∥y− ρ∗j − ζ j

∥∥∥ 2
m−1



×
∥∥y− ρ∗i − ζi

∥∥ 2
m−1∥∥∥y− ρ∗j − ζ j

∥∥∥ 2
m−1

ln


∥∥y− ρ∗i − ζi

∥∥∥∥∥y− ρ∗j − ζ j

∥∥∥ 2
m−1

 (y− ρ∗i − ζi) dP (y) .

For a given m (and thus ρ∗), the integrand is clearly finite for finite y except for at the
point where y = ρ∗j + ζ j (and infinite y are probability zero since the variance of each
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Gaussian component is assumed to be finite). Further, denoting bj =
∥∥∥y− ρ∗j − ζ j

∥∥∥ 2
m−1 ,

ai =
∥∥y− ρ∗i − ζi

∥∥ 2
m−1 , ãi =

∥∥y− ρ∗i − ζi
∥∥

lim
bj→0

[
1 +

ai

bj

]−m

ln

[
1 +

ai

bj

]
ai

bj
ln

(
ãi

bj

)

= lim
bj→0

[
bj+ai

bj

]−m
ai ln

[
ai+bj

bj

]
ln
(

ãi
bj

)
bj

= lim
bj→0

bm−1
j ai

(
ln
(
ai + bj

)
− ln

(
bj
)) (

ln (ãi)− ln
(
bj
))(

bj + ai
)m

= lim
bj→0

ai(
bj + ai

)m

[
bm−1

j ln
(
ai + bj

)
ln (ãi)− bm−1

j ln
(
ai + bj

)
ln
(
bj
)

.

−bm−1
j ln

(
bj
)

ln (ãi) + bm−1
j ln

(
bj
)

ln
(
bj
)]

The term outside the brackets is finite in the limit. We take the second part term-by-term.
The first is zero in the limit. The remaining terms are also each zero in limit by application
of l’Hôpital’s rule. Having argued that the integrand is finite for all points with positive
probability under P, the integral exists. Thus ∂ f

∂m (m, ρ∗ (m)) exists everywhere, so ∂ρ∗i (m)
∂m

exists everywhere. Since ρ∗i (m) is a univariate function, existence of the derivative is
sufficient for differentiability to hold. Since ρ∗i (m) is thus everywhere differentiable for
m ∈ (1, ∞), ρ∗i (m) is everywhere continuous. We know that limm→1 ρ∗1 (m) = ψ∗1 < ζ1,
and that limm→∞ ρ∗1 (m) = 0. Note that given the normalization (ζ1 + ζ2) /2 = 0, ζ1 < 0.
Therefore, by the intermediate value theorem, there exists some m̃ ∈ (1, ∞) such that
ρ∗1 (m̃) = µ1. The same trivially holds for ρ∗2 .

Of course, in practice we do not know m̃, even in this simple case; Proposition 2 is
merely an existence result. However, Propositions 1 and 2 jointly motivate the use of
FCM, by demonstrating that choosing m > 1 has the potential to recover the true param-
eters in this simple problem.

A.2 Asymptotic properties of FCP

In the text, we argue that FCP can be viewed as a GMM problem and provide consistency
and asymptotic normality results for θ̂ in Theorems 1 and 2. We state results tailored to
our empirical setting, where y ∈ R, a cross-sectional structure. However, all results also
apply for panel structure, where y is a T × 1 vector, y ∈ RT. We state results here for that
more general model for completeness.
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We first restate the assumed model in this more general setting

yi =
G∗

∑
g=1

1 [i ∈ g] θgxi + εi, i = 1, . . . , N, (12)

where yi ∈ RT, xi ∈ RK, (yi, xi) are i.i.d. according to the probability measure Π on y, x
(denoting the conditional for y by Πy|x and the marginal for x by Πx), E [εi | xi, i ∈ g] = 0,
and θg is a T × K matrix. Note that the K dimensions of xi may contain observations of
the same characteristic, repeated across time.

Define the FCP objective function as

Jreg
m (Π, θ) =

∫ ∫ G

∑
g=1

µ
reg
g (y | x; θ)m ∥∥y− θgx

∥∥2 Πy|x (dy | x)Π (dx) , (13)

where θ ∈ Θ ⊂ RG×T×K and

µ
reg
g (y | x; θ) =

(
G

∑
h=1

∥∥y− θgx
∥∥2/(m−1)

‖y− θhx‖2/(m−1)

)−1

, g = 1, . . . , G.

Following the development of Yang and Yu (1992), we begin by proving the equiva-
lence of the WLS objective Jreg

m to an objective function subsuming weights into the loss
function, Lreg

m .

Proposition 3. (Equivalence) Under Assumption 1, Jreg
m (Π, θ) = Lreg

m (Π, θ), where

Lreg
m (Π, θ) =

∫ ∫ ( G

∑
g=1

∥∥y− θgx
∥∥−2/(m−1)

)1−m

Πy|x (dy | x)Πx (dx) ; (14)

a minimizer θ∗ ∈ Θ of Lreg
m (Π, θ) is also a minimizer of Jreg

m (Π, θ) over Θ and weights µreg.

Proof. The first point follows from simple algebra and the definition of µ
reg
g . In particular,

Jreg
m (Π, θ) =

∫ ∫ G

∑
g=1

µ
reg,m
g (y | x; θ)

∥∥y− θgx
∥∥2 Πy|x (dy | x)Πx (dx)

=
∫ ∫ G

∑
h=1

 G

∑
j=1

‖y− θhx‖2/(m−1)∥∥y− θjx
∥∥2/(m−1)

∥∥y− θgx
∥∥2 Πy|x (dy | x)Πx (dx)

=
∫ ∫ ( G

∑
g=1

∥∥y− θgx
∥∥−2/(m−1)

)1−m

Πy|x (dy | x)Πx (dx) ,
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which is the formulation of Lreg
m (Π, θ).

Parallel to the development of Yang and Yu (1992) for the cluster means case, the
minimization problem of Jreg

m is equivalent to that of Lreg
m . Note that Lemmata 1 and 2

from Yang and Yu (1992) hold trivially in this setting since they make no reference to
the form of the square error function; combining them as in that paper completes the
proof.

Proposition 3 demonstrates that we can turn our attention from the WLS objective
function Jreg

m (Π, θ) to the compact formulation in Lreg
m (Π, θ), without weights. Under

additional regularity conditions, we now establish the existence of a solution to the FCP
problem in Equation (13).

Proposition 4. (Existence) If Assumption 1 holds, then for any G = 1, 2, . . . , there exists a
solution θ∗ such that

Lreg
m (Π, θ∗) = inf

θ
Lreg

m (Π, θ) .

Proof. The proof is a straightforward extension of the proof of Theorem 1 in Yang and Yu
(1992). Define a (G) = infθ Lreg

m (Π, θ) obtained for G groups. If Π is degenerate at some
set of T × K matrices θ̃g , then a (G) = 0 and θ∗ =

{
θ̃1, . . . θ̃G

}
. Therefore we can restrict

our attention to non-degenerate Π. When G = 1, (14) reduces to∫ ∫
‖y− θx‖2 Πy|x (dy | x)Πx (dx) ,

which is the standard OLS objective function, which has the familiar solution θ∗1 = E [yx′] E [xx′]−1

(the slightly unusual form accommodates y being T × 1, T possibly greater than 1). Con-
sider G = 2. Denote θ21 as the parameters for group 1 with G = 2, and let θ21 = θ∗1 , with
θ22 arbitrary. Then

a (2) ≤
∫ ∫ ( 2

∑
g=1

∥∥y− θ2gx
∥∥−2/(m−1)

)1−m

Πy|x (dy | x)Πx (dx)

<
∫ ∫ ( 1

∑
g=1

∥∥y− θgx
∥∥−2/(m−1)

)1−m

Πy|x (dy | x)Πx (dx) (15)

= a (1) < ∞,

where the second inequality is strict since Π is not degenerate and 1 − m < 0. Since
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a (2) < ∞, there exists θ(r) (2) =
(

θ
(r)
21 , θ

(r)
22

)
such that as r → ∞,

∫ ∫ ( 2

∑
g=1

∥∥∥y− θ
(r)
2g x

∥∥∥−2/(m−1)
)1−m

Πy|x (dy | x)Πx (dx)→ a (2) .

We want to show that
{

θ(r) (2) , r ≥ 1
}

is bounded. Suppose the statement is false, so

there exists a subsequence θ
(rj)
21 such that

∥∥∥∥θ
(rj)
21

∥∥∥∥ goes to infinity. Then

a (2) = lim
rj→∞

∫ ∫ ( 2

∑
g=1

∥∥∥∥y− θ
(rj)
2g x

∥∥∥∥−2/(m−1)
)1−m

Πy|x (dy | x)Πx (dx)

≥ lim inf
rj→∞

∫ ∫ ( 2

∑
g=1

∥∥∥∥y− θ
(rj)
2g x

∥∥∥∥−2/(m−1)
)1−m

Πy|x (dy | x)Πx (dx)

≥
∫ ∫

lim inf
rj→∞

(
2

∑
g=1

∥∥∥∥y− θ
(rj)
2g x

∥∥∥∥−2/(m−1)
)1−m

Πy|x (dy | x)Πx (dx)

≥
∫ ∫

lim inf
rj→∞

∥∥∥∥y− θ
(rj)
22 x

∥∥∥∥2

Πy|x (dy | x)Πx (dx)

≥ a (1) ,

where the second inequality follows from Fatou’s Lemma and the third uses the fact that∥∥∥∥θ
(rj)
21

∥∥∥∥ goes to infinity. The result contradicts (15). Thus,
{

θ(r) (2) , r ≥ 1
}

is bounded and

there exist θ∗21, θ∗22 such that θ(r) (2) converges to θ∗ (2) = (θ∗21, θ∗22) along a subsequence,
say rj. Then for all δ > 0, there exists r0 such that for all rj > r0,

∥∥∥θ(rj) (2)− θ∗ (2)
∥∥∥ ≤ δ.
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Thus (
2

∑
g=1

∥∥∥∥y− θ
(rj)
2g x

∥∥∥∥−2/(m−1)
)1−m

≤ max
1≤i≤2

∥∥∥∥y− θ
(rj)
2g x

∥∥∥∥2

≤
∥∥∥∥y− θ

(rj)
21 x

∥∥∥∥2

+

∥∥∥∥y− θ
(rj)
22 x

∥∥∥∥2

≤
(
‖y‖+

∥∥∥∥θ
(rj)
21 x

∥∥∥∥)2

+

(
‖y‖+

∥∥∥∥θ
(rj)
22 x

∥∥∥∥)2

≤
(
‖y‖+

∥∥∥∥θ
(rj)
21

∥∥∥∥ ‖x‖)2

+

(
‖y‖+

∥∥∥∥θ
(rj)
22

∥∥∥∥ ‖x‖)2

≤ (‖y‖+ ‖θ∗21‖ ‖x‖+ ‖διT×K‖ ‖x‖)2 + (‖y‖+ ‖θ∗21‖ ‖x‖+ ‖διT×K‖ ‖x‖)2 ,

where the third inequality follows from the triangle inequality, the fourth follows from
Cauchy-Schwarz, and the last line follows from the triangle inequality and the fact that

δ ≥
∥∥∥θ(rj) (2)− θ∗ (2)

∥∥∥ implies
∣∣∣∣θ(rj)

2g,tk

∣∣∣∣ ≤ ∣∣∣θ∗2g,tk

∣∣∣+ δ for all g, t, k where t indexes dimen-

sions of y and k indexes dimensions of x, which then implies
∥∥∥∥θ

(rj)
2g

∥∥∥∥ ≤ ∥∥∥θ∗2g

∥∥∥+ ‖διT×K‖.
By Assumption 1, the last line provides a bound in expectation for the left hand side. Fi-

nally, since the last line establishes a bounding function for

(
∑2

g=1

∥∥∥∥y− θ
(rj)
2g x

∥∥∥∥−2/(m−1)
)1−m

,

the dominated convergence theorem shows that as rj tends to infinity,

a (2) = lim
rj→∞

∫ ∫ ( 2

∑
g=1

∥∥∥∥y− θ
(rj)
2g x

∥∥∥∥−2/(m−1)
)1−m

Πy|x (dy | x)Πx (dx)

=
∫ ∫ ( 2

∑
g=1

∥∥∥y− θ∗2gx
∥∥∥−2/(m−1)

)1−m

Πy|x (dy | x)Πx (dx) .

This establishes that the infimum a (2) is indeed obtained at θ∗ (2) , the limit of θ(r) (2)
for subsequence rj (which exists). A similar argument can then be made sequentially for
G = 3, 4, . . ., so by mathematical induction, the theorem is therefore true for all G =

1, 2, . . ..

The relationship between θ∗ and the true parameter, θ0, generating the data in Equa-
tion (12) merits further discussion. θ∗ is a pseudo-true parameter, which may not be in
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general be equivalent to θ0, since it optimizes an objective function that is not perfectly
aligned with the the true data generating process (DGP). Jreg

m puts non-zero weight on
individuals being members of groups other than their (unknown) true group. HKM also
recovers pseudo-true parameters in fixed−T environments, as noted in the supplemental
appendix to Bonhomme and Manresa (2015), since group membership cannot be consis-
tently estimated, even though the objective function appropriately represents the DGP.
The tuning parameter m trades off two factors influencing θ∗: as m → 1, Jreg

m approaches
the true DGP, but as m increases, the potential impact of miss-assigned individuals on
optimal parameters also increases as the weights approach binary values. Under two
special limiting cases, however, θ∗ = θ0. First, as the degree of separation of the groups

diverges, ∑G
h=1
‖y−θgo x‖2/(m−1)

‖y−θhx‖2/(m−1) → 1,where g0 is the true group, so the FCP objective func-

tion Lreg
m converges to its HKM counterpart, and both recover the truth. Second, as m→ 1,

under additional weak dependence assumptions (like those in Bonhomme and Manresa
(2015)), the weight on the true group will likewise converge to unity asymptotically in T.
While neither of these conditions describes our dataset, or indeed most macroeconomic
datasets, our extensive simulations calibrated to our empirical setting show that θ∗ can
still be very close to θ0. Moreover, even if the population values for the group parameters
themselves may not align precisely with the true values, we show that the distribution of
MPCs recovered matches the true distribution very well, on average.

We now show that FCP can be solved as a GMM problem.

Proposition 5. (Moments) The solution θ∗ satisfies the moment equations

E

( G

∑
h=1

∥∥yi − θgxi
∥∥2/(m−1)

‖yi − θhxi‖2/(m−1)

)−m (
yit − θg,(t)xi

)
xi

 = 0 for g = 1, . . . , G and t = 1, . . . , T,

(16)
where t indexes dimensions of yi and (t) rows of θg; FCP is a GMM problem.
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Proof. We start by differentiating the integrand of Lreg
m (Π, θ) with respect to θg,tk:

∂

∂θg,tk

(
G

∑
h=1
‖y− θhx‖−2/(m−1)

)1−m

= (1−m)

(
G

∑
h=1
‖y− θhx‖−2/(m−1)

)−m
∂

∂θg,tk

G

∑
g=1

∥∥y− θgx
∥∥−2/(m−1)

= (1−m)

(
G

∑
h=1
‖y− θhx‖−2/(m−1)

)−m
−2

m− 1

∥∥y− θgx
∥∥(1+m)/(1−m) ∂

∂θg,tk

∥∥y− θgx
∥∥

= 2

(
G

∑
h=1
‖y− θhx‖−2/(m−1)

)−m ∥∥y− θgx
∥∥−(1+m)/(m−1) yt − θg,(t)x∥∥y− θgx

∥∥ (−xk)

= −2

(
G

∑
h=1
‖y− θhx‖−2/(m−1)

)−m ∥∥y− θgx
∥∥−2m/(m−1)

(
yt − θg,(t)x

)
xk

= −2

(
G

∑
h=1

∥∥y− θgx
∥∥2/(m−1)

‖y− θhx‖2/(m−1)

)−m (
yt − θg,(t)x

)
xk,

where θg,(t) denotes the row of θg corresponding to outcome yt. Note that since these
partial derivatives are continuous in θ (by inspection; see also Yang (1994) Lemma 2), the
integrand is (continuously) differentiable in θ (Spivak (1971) Theorem 2.8). Moreover,(

∑G
h=1 ‖y− θhx‖−2/(m−1)

)1−m
is Lebesgue integrable for each θ as

(
G

∑
h=1
‖y− θhx‖−2/(m−1)

)1−m

≤
G

∑
h=1
‖y− θhx‖−2(1−m)/(m−1) =

G

∑
h=1
‖y− θhx‖2

since 1−m < 0 and

G

∑
h=1
‖y− θhx‖2 ≤

G

∑
h=1

(‖y‖+ ‖θhx‖)2

≤
G

∑
h=1

(‖y‖+ ‖θh‖ ‖x‖)2

=
G

∑
h=1
‖y‖2 + 2 ‖θh‖ ‖x‖ ‖y‖+ ‖θh‖2 ‖x‖2 , (17)

which is integrable by Assumption 1. Moreover, (17) establishes a bounding function for
the integrand in terms of θ. From these conditions, the dominated convergence theorem
allows the interchange of differentiation and integration:
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∂Lreg
m (Π, θ)

∂θg,tk
=

∂

∂θg,tk

∫ ∫ ( G

∑
g=1

∥∥y− θgx
∥∥−2/(m−1)

)1−m

Πy|x (dy | x)Πx (dx)

=
∫ ∫ (

∂

∂θg,tk

G

∑
g=1

∥∥y− θgx
∥∥−2/(m−1)

)1−m

Πy|x (dy | x)Πx (dx)

= E

( ∂

∂θg,tk

G

∑
g=1

∥∥yi − θgxi
∥∥−2/(m−1)

)1−m


= E

−2

(
G

∑
h=1

∥∥yi − θgxi
∥∥2/(m−1)

‖yi − θhxi‖2/(m−1)

)−m (
yit − θg,(t)xi

)
xi,k

 ,

where we henceforth replace the Lebesgue integrals with expectations. Stacking the con-
ditions vertically for row t of θg yields the K× 1 vector

∂Lreg
m

∂θ′g,(t)
= E

−2

(
G

∑
h=1

∥∥yi − θgxi
∥∥2/(m−1)

‖yi − θhxi‖2/(m−1)

)−m (
yit − θg,(t)xi

)
xi

 .

Proceeding likewise across t = 1, . . . , T and for g = 1, . . . , G yields G× T × K conditions
which θ∗ must satisfy,

E

( G

∑
h=1

∥∥yi − θgxi
∥∥2/(m−1)

‖yi − θhxi‖2/(m−1)

)−m (
yit − θg,(t)xi

)
xi

 = 0, for g = 1, . . . , G, t = 1, . . . , T,

since θ∗ minimizes Lreg
m (Π, θ) . These G× T × K equations constitute moment conditions

for the G× T × K free parameters in θ. Thus, the objective function (9) constitutes a just-
identified GMM problem.

Proposition 5 has two important implications. First, reframing FCP as a GMM prob-
lem allows the asymptotic properties of estimators θ̂ to be derived using standard theory.
Second, it justifies a numerical approach to solve the moment equations (16), in addi-
tion to the standard iterative procedure used in the FCM literature. The moment equa-
tions in Proposition 5 can easily accommodate regressors with common coefficients across
groups, θg,tk = θh,tk, or additionally across dimensions of yi, θg,tk = θh,sk. The former ap-
plies to the coefficients on time dummies in our model, for example. In this case, it is
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straightforward to show that the corresponding moment condition is

E

( G

∑
h=1
‖yi − θhxi‖−2/(m−1)

)−m G

∑
g=1

∥∥yi − θgxi
∥∥−2m/(m−1)

(
yit − θg,(t)xi

)
xik

 = 0

and in the case of common coefficients across both g and t,

E

( G

∑
h=1
‖yi − θhxi‖−2/(m−1)

)−m T

∑
t=1

G

∑
g=1

∥∥yi − θgxi
∥∥−2m/(m−1)

(
yit − θg,(t)xi

)
xik

 = 0.

The moment conditions in Equation (16) have natural sample counterparts that can
be used to define the estimator θ̂, as defined in Equation (10). Under the additional con-
ditions in Assumption 2, detailed in the text, θ̂ is consistent for θ∗. Assumption 2.1 is an
identification condition. In clustering models, if identification holds, it does so up to a
labeling of the groups g, which can always be permuted. The FCM literature (and HKM
when T is finite, e.g., Pollard (1981, 1982)) always assumes the uniqueness of θ∗. While it
appears intractable to characterize primitive conditions under which identification holds
in the non-linear form of Equation (14), the condition is closely linked to OLS identifica-
tion. With known membership, Assumption 1 suffices for OLS to uniquely identify the
true parameters, and for relatively small m, the objective (14) is a perturbation around the
OLS objective. In a formal sense, identification in clustering models when group mem-
bership cannot be recovered remains a topic for future work.

Theorem 1. (Consistency) Under Assumptions 1-2, θ̂
p→ θ∗ as N → ∞.

Proof. By Assumption 1, (yi, xi) are i.i.d.. By Assumption 2, θ∗ uniquely satisfies η (θ, yi, xi).
As noted in the proof of Corollary 5, the moment functions η (θ, yi, xi) are continuous for
all θ ∈ Θ. Next, we show that the moments are bounded in expectation for all θ ∈ Θ (the

dominance condition). Observe that
(

∑G
h=1
‖y−θgx‖2/(m−1)

‖y−θhx‖2/(m−1)

)−m

is bounded between zero

and one (the supremum of the summation is infinity as the residuals y− θhx, h 6= g go to
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zero and the infimum is 1 as y− θhx, h 6= g go to infinity). So

E

[
sup
θ∈Θ
‖η (θ, yi, xi)‖

]
≤ E

[
sup
θ∈Θ

sup
g

∥∥(yi − θgxi
)

x′i
∥∥]

= E

[
sup
θ∈Θ

sup
g

∥∥yix′i − θgxix′i
∥∥]

≤ E

[
sup
θ∈Θ

sup
g

∥∥yix′i
∥∥+ ∥∥θgxix′i

∥∥]

≤ E

[
sup
θ∈Θ

sup
g
‖yi‖ ‖xi‖+

∥∥θg
∥∥ ‖xi‖ ‖xi‖

]
< ∞,

where the third inequality follows from the triangle inequality, the fourth from Cauchy-
Schwarz, and the final follows from Assumption 1. These points jointly satisfy the re-
quirements of standard GMM arguments, (e.g., Newey and McFadden (1994), p. 2121—2,
Hayashi (2011) Proposition 7.7), so θ̂

p→ θ∗.

With the additional assumptions detailed in Assumption3, the asymptotic distribution
of θ̂ can be characterized. These assumptions are standard technical conditions required
for GMM estimators.

Theorem 2. (Asymptotic Normality) Under Assumptions 1 - 3,

√
N
(
vec
(
θ̂
)
− vec (θ∗)

) d→ N
(

0, H−1VH−1
)

,

where
V = E

[
η (θ, yi, xi) η (θ, yi, xi)

′] ,

and H is the Hessian of Equation (9).

Proof. First, we provide expressions for H to establish continuous differentiability of η (θ, yi, xi)

in θ. We focus on the cross-sectional case here (T = 1, so θg is a K× 1 vector) for the sake
of brevity and in keeping with our empirical focus, but provide fully general expressions
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for panel data below. Partition the blocks of H as

H =



H11 · · · H1g · · · H1G
... . . . ...

Hg1 Hgg HgG
... . . . ...

HG1 · · · HGg · · · HGG


,

where Hgh = ∂2Lreg
m

∂θg∂θ′h
,with Hgh = H′hg by symmetry of the Hessian. For the case where all

coefficients are group-specific, it can be shown that

Hgg = E
[

xix′i

{
−2m
m− 1

A−m−1
i

(
ei,g
)2 C2

i,g +
m + 1
m− 1

A−m
i Ci,g

}]
Hgh = E

[
xix′i

{
−2m
m− 1

A−m−1
i Ci,hei,hei,gCi,g

}]
, h 6= g,

where ei,g = yi − θgxi, Ai = ΣG
g=1

∥∥ei,g
∥∥−2/(m−1), Cig =

∥∥ei,g
∥∥−2m/(m−1). We also pro-

vide expressions for additional elements of the Hessian when there are covariates with
common coefficients across groups, such that θg,k = θh,k ≡ θ?,k, h 6= g. In this case,

∂2Lreg
m

∂θ?,k∂θ?,k
E

[
x2

i,k

{
−2m
m− 1

A−m−1
i B2

i +
m + 1
m− 1

A−m
i

G

∑
g=1

Ci,g

}]
∂2Lreg

m

∂θ?,k∂θ?,l
= E

[
xi,kxi,l

{
−2m
m− 1

A−m−1
i B2

i +
m + 1
m− 1

A−m
i

G

∑
g=1

Ci,g

}]
∂2Lreg

m

∂θ?,k∂θg,l
= E

[
xi,kxi,l

{
−2m
m− 1

A−m−1
i Ci,gei,gBi +

m + 1
m− 1

A−m
i Ci,g

}]
,

where Bi = ∑G
g=1

[
ei,gCi,g

]
. By inspection, all elements of these Hessians are continuous in

θ, since ei,g, A−m
i , A−m−1

i , Cig, Bi are continuous in θ, and all elements of H are continuous
functions of these objects.

Next, we establish asymptotic normality of 1√
N ∑N

i=1 η (θ, yi, xi). Since yi, xi are as-
sumed to be jointly i.i.d., η (θ, yi, xi) is i.i.d. across observations, so by the Lindeberg-Levy
central limit theorem,

1√
N

N

∑
i=1

η (θ∗, yi, xi)
d→ N (0, V) ,

where V = E
[
η (θ∗, yi, xi) η (θ∗, yi, xi)

′] is assumed to be positive definite in Assumption
3.4.
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Combining these two results with the conditions of Assumption 3, the standard con-
ditions for asymptotic normality of a GMM estimator are satisfied (e.g., Hayashi (2011)
Proposition 7.10). Since the weighting matrix is the identity matrix (the problem is just-
identified), √

N
(
vec
(
θ̂
)
− vec (θ∗)

) d→ N
(

0, H−1VH−1
)

.

With this final result, it is possible to conduct inference on the population solution θ∗,
which provides the points of the distribution of coefficients. The Hessian, H, is charac-
terized above for our empirical setting, where y is a scalar (T = 1), with the possibility of
common coefficients across groups. For the sake of generality, we also report expressions
for the panel data case (T > 1). Partial derivatives are then given by

∂2Lreg
m

∂θg,kt∂θg,lt
= E

[
xi,k

{
−mA−m−1

(
2

m− 1

∥∥ei,g
∥∥−2m/(m−1) ei,g,txi,l

)
ei,g,tCi,g

−A−mxi,lCi,g + A−mei,g,t

(
2m

m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,g,txi,l

)}]
= E

[
xi,kxi,l

{
−2m
m− 1

A−m−1C
2

i,ge2
i,g,t − A−mCi,g +

2m
m− 1

A−mC
2m−l

m
i,g e2

i,g,t

}]
∂2Lreg

m

∂θg,kt∂θg,ls
= E

[
xi,k

{
−mA−m−1

(
2

m− 1

∥∥ei,g
∥∥−2m/(m−1) ei,g,sxi,l

)
ei,g,tCi,g

+A−m × 0× Ci,g + A−mei,g,t

(
2m

m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,g,sxi,l

)}]
= E

[
xi,kxi,l

{
−2m
m− 1

A−m−1C
2

i,gei,g,tei,g,s +
2m

m− 1
A−mC

2m−l
m

i,g ei,g,tei,g,s

}]

15



∂2Lreg
m

∂θg,kt∂θh,lt
= E

[
xi,k

{
−mA−m−1

(
2

m− 1
‖ei,h‖−2m/(m−1) ei,h,txi,l

)
ei,g,tCi,g

+ A−m × 0× Ci,g + A−mei,g,t × 0
}]

= E
[

xi,kxi,l

{
−2m
m− 1

A−m−1Ci,gCi,hei,g,tei,h,t

}]
, h 6= g

∂2Lreg
m

∂θg,kt∂θh,ls
= E

[
xi,k

{
−mA−m−1

(
2

m− 1
‖ei,h‖−2m/(m−1) ei,h,sxi,l

)
ei,g,tCi,g

+ A−m × 0× Ci,g + A−mei,g,t × 0
}]

= E
[

xi,kxi,l

{
−2m
m− 1

A−m−1Ci,gCi,hei,g,tei,h,s

}]
, h 6= g.

With common coefficients across groups, additional partial derivatives with respect
to the common coefficients must be obtained. For this purpose, let Bit = ∑G

g=1
[
ei,g,tCi,g

]
.

Then the relevant derivatives are given by

∂2Lreg
m

∂θ?,kt∂θ?,lt
= E

[
xi,k

{
−2m
m− 1

A−m−1
G

∑
g=1

(∥∥ei,g
∥∥−2m/(m−1) ei,g,txi,l

)
Bit

+ A−m
G

∑
g=1

(
−xi,lCi,g + ei,g,t

2m
m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,g,txi,l

)}]

= E

[
xi,kxi,l

{
−2m
m− 1

A−m−1
i B2

it + A−m
i

G

∑
g=1

(
2m

m− 1
C

2m−1
m

i,g e2
i,g,t − Ci,g

)}]
∂2Lreg

m

∂θ?,kt∂θ?,ls
= E

[
xi,k

{
−2m
m− 1

A−m−1
G

∑
g=1

(∥∥ei,g
∥∥−2m/(m−1) ei,g,sxi,l

)
Bit

+ A−m
G

∑
g=1

(
0× Ci,g + ei,g,t

2m
m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,g,sxi,l

)}]

= E

[
xi,kxi,l

{
−2m
m− 1

A−m−1
i BisBit + A−m

i

G

∑
g=1

(
2m

m− 1
C

2m−1
m

i,g ei,g,sei,g,t

)}]
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∂2Lreg
m

∂θ?,kt∂θg,lt
= E

[
xi,k

{
−2m
m− 1

A−m−1 ∥∥ei,g
∥∥−2m/(m−1) ei,g,txi,lBit

+ A−m
(
−xi,lCi,g + ei,g,t

2m
m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,g,txi,l

)}]

= E
[

xi,kxi,l

{
−2m
m− 1

A−m−1
i Ci,gei,g,tBit + A−m

i

(
2m

m− 1
C

2m−1
m

i,g e2
i,g,t − Ci,g

)}]
∂2Lreg

m

∂θ?,kt∂θg,ls
= E

[
xi,k

{
−2m
m− 1

A−m−1 ∥∥ei,g
∥∥−2m/(m−1) ei,g,sxi,lBit

+ A−m
(

0× Ci,g + ei,g,t
2m

m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,g,sxi,l

)}]

= E

[
xi,kxi,l

{
−2m
m− 1

A−m−1
i Ci,gei,g,sBit + A−m

i

G

∑
g=1

(
2m

m− 1
C

2m−1
m

i,g ei,g,sei,g,t

)}]
.

A.3 Properties of FCP-IV

In this section, we replicate the results of the FCP implementation of the OLS regression
in the previous section for FCP-IV. For the purposes of this development, we assume
cross-sectional data, T = 1. Let xe denote the endogenous regressors of interest, and let ω

denote additional controls. Consider a homogeneous first-stage regression

xe
i = γ′zi + τ′ωi + ui, (18)

for Kz instruments z with Kz ≥ Ke, where Ke is the number of endogenous regressors
xe. We henceforth consider the just-identified case with a single endogenous regressor,
Kz = Ke = 1, for economy of notation and our empirical setting, but the results can be
trivially extended to allow for additional dimensions, overidentification, and an arbitrary
weight matrix W in the first-stage. We also assume that xe has heterogeneous coefficients.

Denote x̃e
i = γzi + τ′ωi, the predicted first-stage values, and x̃i =

(
x̃e

i ω′
)′

, the vector
of predicted endogenous regressors and exogenous controls (so x̃e is ordered first). Using
these values, we define the FCP second-stage as

J IV
m = E

[
G

∑
g=1

µIV,m
g

(
yi | x̃i; θ IV

) ∥∥∥yi − θ IV′
g x̃i

∥∥∥2
]

,
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where

µIV
g

(
yi | x̃i; θ IV

)
=

 G

∑
h=1

∥∥∥yi − θ IV′
g x̃i

∥∥∥2/(m−1)

∥∥yi − θ IV′
h x̃i

∥∥2/(m−1)


−1

, g = 1, . . . , G.

Assumption 4. (Two-stage least squares)

1.
(
yi, xe

i , wi, zi
)

are i.i.d. with probability measure Π̃ and E [εizi | i ∈ g] = 0, ∀g = 1, . . . , G,

2. The second moments of y, x̃, xe, ω, and z are finite under Π̃:

E
[
y2

i

]
< ∞, E

[
x̃2

i

]
< ∞, E [x̃iyi] < ∞, E [xe

i ] < ∞,

E

[(
zi

ωi

)(
zi

ωi

)′]
< ∞, E

[(
zi

ωi

)
xe

i

]
< ∞,

3. Additionally, neither x̃ nor

(
z
ω

)
is collinear,

rank
(
E
[
x̃i x̃′i

])
= K,

rank

(
E

[(
zi

ωi

)(
zi

ωi

)′])
= K.

Assumption 4 stipulates TSLS assumptions, extended to grouped regression, and reg-
ularity conditions on the data. The relevance condition is incorporated in point 3.

Corollary 1. Define LIV
m = E

[(
∑G

g=1

∥∥∥y− θ IV
g x̃
∥∥∥−2/(m−1)

)1−m
]

. If γ and τ are known and

Assumption 4 holds, then

1. LIV
m is equivalent to J IV

m ,

2. There exists a solution to LIV
m , θ∗,IV .

Proof. The results follow immediately from Propositions 3 and 4, simply replacing x with
x̃.

Corollary 1 establishes the existence of a solution to the FCP problem, θ∗,IV , which
minimizes LIV

m . LIV
m is identical to the regression objective function, just evaluated for x̃ in-

stead of x. Thus, it has first-order-conditions given by ρ
(
θ IV , yi, x̃i

)
. Let κ

(
γ, τ, xe

i , zi, ωi
)
=
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E

[(
zi

ωi

) (
xe

i − γzi − τωi
)]

, the standard OLS moment conditions corresponding to

Equation (18) and let ξ
(
θ IV , γ, τ, yi, xe

i , zi, ωi
)
≡ ξ

(
θ IV , γ, τ, ·

)
be the stacked vector of

moment equations
(

κ
(
γ, τ, xe

i , zi, ωi
)′ , ρ

(
θ IV , yi,, x̃i

)′ )′. Denote the parameter vector

combining both first and second stage coefficients as υ =
(

vec
(
θ IV)′ , γ′, τ′,

)′
. De-

fine υ̂ as the estimated parameter vector solving the sample analogue of ξ
(
θ IV , γ, τ, ·

)
. As

in the regression model, these moments constitute the basis for a GMM interpretation of
the FCP-IV model. Some additional assumptions are needed to characterize the asymp-
totic properties of υ̂. Denote as υ∗ the vector of true parameters from the first stage, γ0, τ0,
and θ∗,IV .

Assumption 5. (Consistency and asymptotic normality) Additionally,

1. υ is in the interior of Υ; Υ is compact.

2. θ∗,IV is unique,

3. Γ = E
[

∂ξ(υ∗,·)
∂υ′

]
is full rank,

4. E
[
supυ∈N

∥∥∥ ∂ξ(υ,·)
∂υ′

∥∥∥] < ∞ in a neighborhood N of υ∗,

5. E
[
ξ (υ, ·) ξ (υ, ·)′

]
is positive definite.

Theorem 3. Under Assumptions 4-3,

1. υ̂, is consistent for υ∗,

2.
√

N (υ̂− υ∗)
d→ N

(
0, Γ−1V IVΓ

′−1
)

, where

V IV = E
[
ξ (υ, ·) ξ (υ, ·)′

]
.

Proof. The proof largely follows from those of Theorems 1 and 2. For consistency, first
note that γ0 and τ0 are unique solutions to the set of first-stage moments κ

(
γ, τ, xe

i , zi, ωi
)
=

E

[(
zi

ωi

) (
xe

i − γzi − τωi
)]

corresponding to the OLS problem (18) by Assumption 4.

υ∗ is thus the unique solution to the stacked moments ξ (υ). Since the second stage is
just-identified (so the corresponding moments can always be set to zero at the optimum
θ∗,IV regardless of the value the first stage parameters take), the second stage has no influ-
ence on the first stage coefficients. It is immediate that κ (υ) is continuous in υ; as noted
in the proof of Proposition 5, the moment conditions η (θ, yi, xi) are continuous for all
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θ ∈ Θ. Since x̃ is continuous in γ, τ, this means that ξ
(
θ IV , yi, x̃i (γ, τ)

)
is continuous in

υ. The moments are bounded in expectation for all υ ∈ Υ by duplicating the argument in
the proof of Theorem 1 for the second stage under Assumption 4 and observing that the
boundedness of the first-stage moments follows immediately from Assumptions 4 and 5.
These points jointly satisfy the requirements of standard GMM arguments, (e.g., Newey
and McFadden (1994), p. 2121—2, Hayashi (2011) Proposition 7.7), so υ̂

p→ υ∗.
For asymptotic normality, we first provide expressions for Γ to establish the continu-

ous differentiability of ξ (υ) in υ. Partition the blocks of Γ as

Γ =



Γγγ Γγτ Γγ1 · · · Γγg · · · ΓγG

Γτγ Γττ Γτ1 · · · Γτg · · · ΓτG

Γ1γ Γ1τ Γ11 · · · Γ1g · · · Γ1G
...

...
... . . . ...

Γgγ Γgτ Γg1 Γgg ΓgG
...

...
... . . . ...

ΓGγ ΓGτ ΓG1 · · · ΓGg · · · ΓGG


,

Note that since the moment conditions are no longer derived as the gradient of a single
objective function, Γ is no longer a Hessian, and no longer symmetric, in particular the
blocks linking the first and second stages. For the case where all second stage coefficients
are group-specific,

Γγγ = E
[
z2

i

]
Γτγ = E [ωizi]

Γττ = E
[
ωiω

′
i

]
Γγg = 0

Γτg = 0

Γgg = E
[

x̃i x̃′i

{
−2m
m− 1

A−m−1
i

(
ei,g
)2 C2

i,g +
m + 1
m− 1

A−m
i Ci,g

}]
Γgh = E

[
x̃i x̃′i

{
−2m
m− 1

A−m−1
i Ci,hei,hei,gCi,g

}]
, h 6= g,
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with the elements of Γgγ and Γgτ given by

∂2LIV
m

∂θ IV
g,1∂γ

= E

[{
−2m
m− 1

A−m−1
G

∑
h=1

(
‖ei,h‖−2m/(m−1) ei,hθ IV

h,1

)
Ci,gei,g x̃e

i

+ A−m 2m
m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,gθ IV
g,1ei,g x̃e

i − A−mCi,gθ IV
g,1x̃e

i + A−mCi,gei,g

}
zi

]

= E

[
A−mCi,g

{
−2m
m− 1

A−1
G

∑
h=1

(
Ci,hei,hθ IV

h,1

)
ei,g x̃e

i +
m + 1
m− 1

θ IV
g,1x̃e

i + ei,g

}
zi

]
∂2LIV

m

∂θ IV
g,k∂γ

= E

[{
−2m
m− 1

A−m−1
G

∑
h=1

(
‖ei,h‖−2m/(m−1) ei,hθ IV

h,1

)
Ci,gei,g x̃ik

+ A−m 2m
m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,gθ IV
g,1ei,g x̃ik − A−mCi,gθ IV

g,1x̃ik

}
zi

]

= E

[
A−mCi,g x̃ik

{
−2m
m− 1

A−1
G

∑
h=1

(
Ci,hei,hθ IV

h,1

)
ei,g +

m + 1
m− 1

θ IV
g,1

}
zi

]
, k > 1

∂2LIV
m

∂θ IV
g,1∂τ′

= E

[{
−2m
m− 1

A−m−1
G

∑
h=1

(
‖ei,h‖−2m/(m−1) ei,hθ IV

h,1

)
Ci,gei,g x̃e

i

+ A−m 2m
m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,gθ IV
g,1ei,g x̃e

i − A−mCi,gθ IV
g,1x̃e

i + A−mCi,gei,g

}
ω′i

]

= E

[
A−mCi,g

{
−2m
m− 1

A−1
G

∑
h=1

(
Ci,hei,hθ IV

h,1

)
ei,g x̃e

i +
m + 1
m− 1

θ IV
g,1x̃e

i + ei,g

}
ω′i

]
∂2LIV

m

∂θ IV
g,k∂τ′

= E

[{
−2m
m− 1

A−m−1
G

∑
h=1

(
‖ei,h‖−2m/(m−1) ei,hθ IV

h,1

)
Ci,gei,g x̃ik

+ A−m 2m
m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,gθ IV
g,1ei,g x̃ik − A−mCi,gθ IV

g,1x̃ik

}
ω′i

]

= E

[
A−mCi,g x̃ik

{
−2m
m− 1

A−1
G

∑
h=1

(
Ci,hei,hθ IV

h,1

)
ei,g +

m + 1
m− 1

θ IV
g,1

}
ω′i

]
, k > 1

where ei,g = yi − θ IV
g x̃i, Ai = ΣG

g=1

∥∥ei,g
∥∥−2/(m−1), Cig =

∥∥ei,g
∥∥−2m/(m−1) and we have

exploited the fact that
∥∥ei,g

∥∥2
= e2

i,g since T = 1. We also provide expressions for elements
of Γ that change when there are controls in ωk with common coefficients across groups,
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such that θ IV
g,k = θ IV

h,k ≡ θ IV
?,k, h 6= g. In this case,

∂2LIV
m

∂θ IV
?,k∂θ IV

?,k
= E

[
x̃2

i,k A−m
i

{
−2m
m− 1

A−1
i B2

i +
m + 1
m− 1

G

∑
g=1

Ci,g

}]
∂2LIV

m

∂θ IV
?,k∂θ IV

?,l
= E

[
x̃i,k x̃i,l A−m

i

{
−2m
m− 1

A−1
i B2

i +
m + 1
m− 1

G

∑
g=1

Ci,g

}]
∂2LIV

m

∂θ IV
?,k∂θ IV

g,l
= E

[
x̃i,k x̃i,l A−m

i

{
−2m
m− 1

A−1
i Ci,gei,gBi +

m + 1
m− 1

Ci,g

}]
,

∂2LIV
m

∂θ IV
?,k∂γ

= E

[
x̃i,kzi A−m

i

{
−2m
m− 1

A−1
i

G

∑
g=1

(
Ci,gei,gθ IV

g,1

)
Bi +

m + 1
m− 1

G

∑
g=1

Ci,gθ IV
g,1

}]
∂2LIV

m

∂θ IV
?,k∂τ′

= E

[
x̃i,k A−m

i

{
−2m
m− 1

A−1
i

G

∑
g=1

(
Ci,gei,gθ IV

g,1

)
Bi +

m + 1
m− 1

G

∑
g=1

Ci,gθ IV
g,1

}
ω′i

]

where Bi = ∑G
g=1

[
ei,gCi,g

]
. By inspection, Γ is continuous in υ, since ei,g, A−m

i , A−m−1
i , Cig, Bi

are continuous in θ IV , and all elements of Γ are continuous functions of these objects.
Next, we establish the asymptotic normality of 1√

N ∑N
i=1 ξ (υ). Since yi, xe

i , ωi, zi are as-
sumed to be jointly i.i.d., ξ

(
υ, yi, xe

i , ωi, zi
)

is i.i.d. across observations, so by the Lindeberg-
Levy central limit theorem,

1√
N

N

∑
i=1

ξ (υ∗, ·) d→ N
(

0, V IV
)

,

where V IV = E
[
ξ (υ∗, ·) ξ (υ∗, ·)′

]
is assumed to be positive definite in Assumption 5.5.

Combining these two results with the additional conditions of Assumption 5, the stan-
dard conditions for asymptotic normality of a GMM estimator are satisfied (e.g.,Hayashi
(2011) Proposition 7.10). Since the weighting matrix is the identity (we assumed the prob-
lem is just-identified),

√
N (υ̂− υ∗)

d→ N
(

0, Γ−1V IVΓ
′−1
)

.

A.4 Relationship between FCP and finite mixture models

In the main text, we note that FCP is closely related to finite mixture models, including
Gaussian mixture models or Bayesian mixture models, for example. Such models have
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previously been used to characterize latent heterogeneity in economic relationships, for
example by Boz et al. (2019). Bonhomme and Manresa (2015) (Section 2.1 and Appendix
S5) discuss this point for HKM, and show formal equivalence between HKM and finite
mixture models, where the weights in the mixture model take the form of the binary HKM
weights. The same is true for FCP. The objective function Jreg

m (Π, θ), (Equation (13)) has
precisely the form of the M-step of a Gaussian mixture model, where the weights would
instead be derived in the E-step based on the likelihood. Thus, the distinction between
FCP and conventional mixture models can be seen as a choice of weights.

When the likelihood is known, as well as any relationship between heterogeneity and
observables, mixture models will identify the true parameters even in the face of uncer-
tain group membership (and Cramer-Rao efficiency results apply). If the true likelihood
is unknown, such approaches will only recover pseudo-true parameters, much like HKM
and FCP. In this case, the econometrician has to choose between alternative sets of mis-
specified weights. However, Bezdek (1973) shows that the FCP weights are the optimal
choice based on the formulation in Equation (4), given no knowledge of the likelihood.
Thus, when the likelihood is known, there is a strong argument to use a mixture model
based upon it, but when the likelihood is unknown, there are firm theoretical grounds to
opt for FCP instead.

B Specification details

In this section, we discuss two considerations underlying our chosen specification, (2).
First, we present details on the gap statistic, which we use to select the number of groups,
G. Second, we describe the role that additional observable controls play in our model.

B.1 Selecting G using the Gap Statistic

For a given G, it is easy to apply the FCP algorithm as described above. However, G is
unknown. To choose G, we extend the “gap statistic” of Tibshirani et al. (2001) to the
regression setting. In the Tibshirani et al. (2001) setting, the researcher has data on some
characteristic for observation i, yi, for each i = 1, . . . , N. They define the within-group
residual sum of squares Wss(G) under G groups as:

Wss (G) = ∑
g∈G

1
2Ng

∑
i′,i∈g

di′i
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where di′i is the Euclidean distance between observations i and i′ and Ng is the number
of observations belonging to cluster g. The gap statistic identifies the number of clusters
by comparing the average within group sum of squares under G groups (Wss (G)) to
the expected within group sum of squares under G groups under the assumption that no
clustering is present in the data (the “reference distribution”). Formally, the gap statistic
is:

Gap (G) = Ere f [log (WSS (G))]− log (W̄SS (G)) (19)

The reference distribution is obtained by sampling the outcomes from a uniform distri-
bution on an interval [a, b] where a and b are chosen as the maximum and minimum
observed values of the outcomes in the sample. Ideally, G is chosen such that the gap
statistic is maximized. The basic idea is to normalize the within group sum of squares
(WSS (G)) curve by what one would expect to obtain for the WSS (G) in a sample in which
no clusters are present, and any improvement in the WSS (G) as G increases is simply due
to fitting noise. In practice, Tibshirani et al. (2001) find that the gap statistic may display
local maxima when the data are not well-separated or sub-clusters are present, and it is
advisable to inspect the “gap curve” as opposed to mechanically choosing its maximum.
The gap statistic is also closely related to the approach described by Dunn (1977) for FCM,
in which the partition entropy is normalized by its value in a reference distribution.

The objective WSS above is tailored to the cluster mean setting of Tibshirani et al.
(2001). We opt to use our regression objective, Jreg

m (θ (G)) as a natural alternative: the
(sample analog of) the weighted sum of squared residuals from Equation (13). The selec-
tion procedure for G then proceeds as follows:

1. Run a homogeneous regression (one that assumes no group heterogeneity). Call the
residuals from the regression ε̂i.

2. Generate B samples of simulated outcomes for each observation using the homoge-
neous coefficients, with an error that is uniformly distributed from the minimum to
the maximum of ε̂i.

3. Run the FCP algorithm described in Section 3.2 on each of the B samples for each
G ≤ Ḡ, where Ḡ is some upper bound. For each sample and each G, compute the
weighted sum of squared residuals, the sample analog of Equation (13).

4. Run the FCP algorithm on the actual data and compute the same object for G ≤ Ḡ.

5. Choose G ≤ Ḡ corresponding to the maximum value of the Gap statistic from Equa-
tion (19) that is statistically significantly greater than those for G− 1 and G + 1 and
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displays a positive gradient.

The final point operationalizes the advice in Tibshirani et al. (2001) to not simply choose
the maximum of the gap statistic. In particular, the requirement that the chosen G rep-
resents a statistically significant increase over all previous estimates through G− 1 avoids
spuriously increasing G when doing so does not offer a significantly better representation
of the data. We introduce the positive gradient requirement to ensure we identify impor-
tant sub-clusters and to address the possible non-monotonicity noted by Tibshirani et al.
(2001).36

Gap statistic performance

We also assess the performance of the gap statistic in selecting the correct number of
groups. For this simulation, we draw 50 samples using as true structure G = 5 (using the
same approach detailed in Section 3.3) and resampling from the empirical distribution of
errors for each group to preserve its properties. We find that in all 50 samples, the gap
statistic correctly selects G = 5 as the preferred specification. This evidence extends the
original finding of Tibshirani et al. (2001) that the gap statistic performs well for mean
clustering problems in our regression context.

B.2 Inclusion of controls in the objective function

In this section, we highlight the role that controls play in our model. In particular, we
show that the baseline specification in Equation (20) without controls included can be
seen as a non-parametric alternative to a specification with controls as the number of
groups, G, increases.

Consider two models. Suppose the true model has the form

∆Cj = β′Wj + ∑
g∈G

(
φg1 [j ∈ g] Rj + αg1 [j ∈ g]

)
+ εj, j = 1, . . . , N. (20)

Suppose the econometrician estimates a simpler model, omitting the controls:

∆Cj = ∑
g̃∈G̃

(
φ̃g̃1 [j ∈ g̃] Rj + α̃g̃1 [j ∈ g̃]

)
+ ε̃j, j = 1, . . . , N. (21)

36This is particularly important in our empirical setting, where we group both on intercepts and MPCs,
but are interested only in the latter, since it is conceivable that the first level of clustering might only repre-
sent level heterogeneity in consumption changes. We additionally find that – in simulations in which the
data are not well-separated – without this requirement the gap statistic has a tendency to erroneously favor
homogeneous models.
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In general, this second model could be susceptible to omitted variable bias (in particular,
if G̃ = G). However, this need not be the case if G̃ is allowed to vary. This is because the
model in Equation (20) can be rewritten in the form of Equation (21), with G̃ ≥ G. To see
this, consider a simple example where Wj is a scalar binary regressor and G = 2. Then if
G̃ = 4, there are four cases to consider, based on two “true” groups with heterogeneous
parameters, and two levels of Wj within each group. Then the following relationships
exist between

{
φg, αg

}
g=1,2 and

{
φ̃g̃, α̃g̃

}
g̃=1,...,4 (where the labels of groups are arbitrary):

expanded
group

true
group

control
value

slope intercept

g̃ = 1 g = 1 Wj = 0 φ̃1 = φ1 α̃1 = α1

g̃ = 2 g = 1 Wj = 1 φ̃2 = φ1 α̃2 = α1 + β

g̃ = 3 g = 2 Wj = 0 φ̃3 = φ2 α̃3 = α2

g̃ = 4 g = 2 Wj = 1 φ̃4 = φ2 α̃4 = α2 + β

The effect of Wj is absorbed entirely into the fixed effects α̃g̃, which now vary with an
individual’s Wj. The true values of φg and αg are still recovered, as well as values of αg

shifted by β, provided G̃ is chosen correctly.
This argument can be extended to allow for effects of Wj other than simple level shifts.

For example, if the true model has the additional interaction term φW
g 1 [j ∈ g] RjWj, then

the φ̃g̃’s recovered would incorporate φW
g just like the expressions for α̃g̃ above incorporate

β. The argument also extends to non-binary controls. For example, a discrete regressor
taking k values would expand a G−group model to a k×G group model. Admittedly, ex-
tending the argument to a continuous regressor introduces a computational challenge in
practice, but in our setting, available controls are generally discrete. Finally, the argument
generalizes in the same way when Wj is a vector and not a simple scalar.

There remains a question over whether estimating such a model accurately recovers
the heterogeneity in φg, or rather overestimates heterogeneity as G grows to G̃. In our
view, G̃ more accurately represents the true heterogeneity in the underlying data, seeing
as it incorporates any differences in MPCs arising from observable controls, Wj, as op-
posed to only residual heterogeneity after partialing out Wj. Individuals still have mean-
ingfully different MPCs, even if that difference is explained by observable characteristics.
We can then, of course, investigate the relationship between the recovered φ̃g̃ and Wj ex
post, as we do in Section 4.3. We seek to characterize the full heterogeneity of MPCs, as
opposed to the conditional heterogeneity of MPCs, as for instance in Kaplan et al. (2014),
Fagereng et al. (2016), Johnson et al. (2006), Parker et al. (2013), and Crawley and Kuchler
(2018).
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A further advantage of estimating Equation (21) as opposed to Equation (20) is that
it allows the relationship between Wj and ∆Cj to be completely non-parametric. Includ-
ing Wj as in Equation (20) assumes the term enters linearly; including an interaction with
1 [j ∈ g] Rj likewise assumes a functional form. However, estimating a separate set of pa-
rameters φ̃g̃, α̃g̃ for each g̃ ∈ G̃ takes no stance on the parametric structure relating Wj to
Cj. On this basis, as well as the desire to recover the full degree of heterogeneity in MPCs,
we proceed using specifications based on Equation (21) as our baseline. We opt to in-
clude a minimal set of covariates common to the literature, Wj, including time dummies,
age, age squared, and changes in household membership, and explore the relationship
between additional covariates and consumption behavior in Section 4.3.

C Simulation results

In this section, we compare the computational performance of FCP implemented via nu-
merical minimization to an iterative approach, HKM, and an EM implementation of a
Gaussian mixture model. We then document in full the simulation study sketched in the
text. Finally, we provide an illustrative example of how quantile regression estimates of
the MPC depend on the correlation of MPC heterogeneity with other forms of hetero-
geneity.

C.1 Computational tractability and details

Our approach is computationally tractable, entailing a sizable improvement compared
to alternative techniques. First, we find that the numerical minimization motivated by
GMM implies a reduction in the computational time to solve the algorithm relative to the
iterative procedure, while also improving precision. More generally, in our setting, the
FCP approach proves somewhat slower than a simple version of HKM, but considerably
faster than the full HKM algorithm and than an EM implementation of the Gaussian
mixture model.

The structure of our problem is such that we can apply standard non-linear minimiza-
tion routines to the objective function, and make use of analytical gradients to further
enhance performance. This strategy is substantially faster than an iterative procedure
that sequentially optimizes weights and parameters, as is the norm for FCM. The im-
provements in computational speed increase with the chosen number of groups. With
10 groups, for instance, our GMM approach is more than twice as fast as its iterative
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counterpart.37

The FCP algorithm is also faster than HKM implementations that are feasible in our
setting. In the simulations shown in the following subsection, we consider two versions
of the algorithms proposed by Bonhomme and Manresa (2015). “Algorithm 1”, directly
from that paper, starts by randomly allocating observations to a given number of groups,
estimates the model, and iteratively reallocates observations while estimating the model
until convergence. This strategy is faster than FCP, but has weaker performance in simu-
lations, as we discuss below. It takes about 6 seconds to solve our FCP algorithm with 5
groups, for a single start value. Algorithm 1 takes instead about 2 seconds per start value
using the same machine (MacBook Pro, 2.7Ghz Intel Core with turbo boost up to 3.8Ghz,
16GB memory). Nevertheless, we find that, even with 1,000 starting values, results are
not particularly stable for Algorithm 1. For FCP, we find that 500 starting values are more
than enough to obtain consistent and stable results.

Bonhomme and Manresa (2015) propose a variable neighborhood search algorithm,
“Algorithm 2”, which, in their framework, improves simulation performance and is of-
ten necessary to avoid local minima. In our relatively large cross-sectional dataset, this
algorithm is infeasible.38 We therefore consider an intermediate version, which we label
“Algorithm 1.5”. This uses the best result of Algorithm 1 (with 500 starting values) as
the start value of a variable neighborhood approach, excluding the local search compo-
nent, however. This algorithm repeats the assignment procedure relocating n randomly
selected individuals and proceeds iteratively until the objective function stops improving.
It increases n by 1 up to nmax, until the objective decreases. When this happens, it restarts
n and repeats the procedure for b outer iterations. Jumps of size n allow escape from local
solutions trapped in valleys. In the simulations shown in the following subsection, we set
both nmax and b to 100. We also set a stopping rule of 30 iterations which exits the algo-
rithm if 30 consecutive b iterations do not improve the objective function.39 Within every
variable neighborhood iteration, Algorithm 2 systematically checks all re-assignments of
individual observations across groups, updating group assignment when the objective
function decreases. This step took more than 1 week to perform for only 1 starting value
in our dataset. Algorithm 1.5, instead, adds only a further 9 minutes to Algorithm 1. Its
nature, however, does not allow parallelization beyond the start values in the first step.

37We solve the model, for one set of start values, in 17 seconds, compared with 40 seconds required to
solve the model iteratively.

38The infeasibility stems from the fact that one step of the algorithm – local search – requires looping over
all observations (~17,000 in our case) sequentially in every iteration, a step which cannot be parallelized.

39In unreported results we increased these parameters and find that HKM performance improves only
mildly, at the expense of a dramatic increase in computational time.
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Our FCP approach also improves upon an expectation-maximization (EM, Dempster
et al. (1977)) implementation of a Gaussian mixture model. In the simulation results
for this estimator below, we set start values by randomly assigning each individual to
a group, with uniform probabilities, and calculating group-specific parameters based on
this binary assignment. We then proceed through the standard EM algorithm until the log
likelihood function converges. For G = 5, the algorithm takes over 45seconds to converge
for a single start value. This computational time is much closer to that of an iterative im-
plementation of the FCP approach, likely because both are iterative in nature; our FCP
implementation via GMM is 7 times as fast as the EM implementation of the Gaussian
mixture model. For each Monte Carlo sample in our simulations, we run the EM algo-
rithm for 500 starting values, and select the solution that maximizes the log likelihood
across the random starting values.

C.2 Simulation results

To evaluate the performance of FCP in our setting, we conduct simulations calibrated
to our empirical data. We simulate data according to Equation (6) using the empirical
parameter estimates, taking an individual’s true group membership as the group with
maximal weight. We consider three specifications: G = 5 (our empirical baseline), with
Gaussian errors εi (with group-specific variance); G = 5, with εi resampled from each
group’s empirical errors; and G = 10, with Gaussian errors (with group-specific vari-
ance). For each specification, we estimate the model using FCP (m = 2.35, our empirical
choice), HKM extended to a regression framework (using Algorithm 1.5), and a Gaus-
sian mixture model. For each estimator, we report the mean and RMSE for each MPC,
the share of observations misclassified (by maximal weight), and the median estimated
CDF of MPCs, across 500 simulations. For FCP we also report rejection rates of the true
parameters based on the asymptotic results provided in Theorem 2.

We start by presenting the results for G = 5 and group-specific Gaussian errors. Table
5 reports the results across 500 Monte Carlo samples. The top panel reports mean point
estimates for each MPC for each estimator. FCP recovers values very close to the truth,
on average. The values estimated by HKM are reasonably close to the DGP, although
generally somewhat further from the truth than FCP. In contrast, the EM implementation
of the Gaussian mixture model performs poorly, with all estimated values quite different
to the true parameter values. The second panel reports the RMSE for each estimate. They
are reasonably small for both FCP and HKM; the RMSE is substantially higher for those
groups with relatively few observations. The Gaussian mixture model does not display
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this clear pattern with some RMSEs quite large. Finally, we report the share of individuals
misclassified (based on their maximal weight for FCP and the Gaussian mixture model).
Again, FCP and HKM perform similarly, while the Gaussian mixture model does consis-
tently worse.

Table 5: Simulation results, Gaussian errors, S = 500

Truth FCP HKM Gaussian mixture

Point Estimates

0.756 0.769 0.716 3.588
0.382 0.342 0.344 0.256
0.253 0.264 0.253 0.107
0.709 0.713 0.638 -0.076
0.566 0.560 0.549 0.615

RMSE

0.429 0.367 9.250
0.118 0.116 0.270
0.044 0.047 0.559
0.097 0.121 2.908
0.411 0.363 0.361

Share Misclassified 0.096 0.098 0.162
Notes: MPCs estimated on simulated data generated according to (6), G = 5, with group assignment based on maximal weights and
Gaussian errors with group-specific variance. MPC estimates are labeled by selecting the permutation that minimizes the Euclidean
distance between the estimated fixed effects and MPCs and the true values. The first panel reports the mean MPC for FCP, HKM, and
an EM implementation of the Gaussian mixture model. The second panel reports the RMSE for each MPC. The final panel reports the
share of observations misassigned based on maximal estimated weights. 500 Monte Carlo samples.

While these results illustrate the ability of the algorithms to recover point estimates,
they do not directly demonstrate the ability of each algorithm to fit the MPC distribution.
To this end, we compute the CDF of the estimated MPC distribution for each estimator
for each sample (censored to the 0-1 interval), and report the median of these CDFs in
Figure 8. These results show that FCP is able to recover the full distribution of MPCs
remarkably well, not just point estimates. Focusing on the median CDF as opposed to
mean estimates, however, does favor the Gaussian mixture model, since it minimizes
the role of many large estimated outliers. The mean MPC is 0.40 in the data generating
process, and is 0.38 for FCP (based on individuals’ maximal weights), 0.36 for HKM, and
0.39 for the Gaussian mixture model, averaging across simulations.40

The second specification samples errors from the group-specific empirical distribu-
tion, which results in data that are much less well-separated. Table 6 reports parameter
estimates, RMSE and misclassification across models. While no estimator precisely recov-
ers the truth on average, FCP comes by far the closest. On average, MPC point estimates
differ by 0.12 at most. In contrast, HKM comes no closer than 0.20 to any true MPC. Devi-
ations are much larger still for the Gaussian mixture model. As above, the RMSE results

40Values are basically unchanged considering the medians instead.
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Figure 8: Empirical CDFs of the MPC distribution: G = 5, Gaussian errors
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Notes: 500 samples. Medians of the estimated CDF of the MPC distribution across samples, with individuals assigned based on their
maximal weights.

are less consistent. In particular, FCP underperforms for the least populated groups. In
terms of misclassification, FCP performs the best across models, and even better than
with Gaussian errors.

Figure 9 plots the median CDF of MPCs for each estimator. The median CDF for FCP
is largely aligned with the true DGP. HKM, in contrast, systematically wrongly assigns
three quarters of the observations to MPCs close to 0, which is not in the support of true
data generating process. The Gaussian mixture model solution instead counterfactually
spreads out the MPC distribution, well beyond the censored distribution plotted below.
For example, the median share of negative MPCs across simulations is 40%. The average
mean MPC across simulations (based on maximal weights) is 0.41 for FCP, almost equal
to the true value, 0.40. The low MPCs estimated by HKM, and the large share of negative
MPC for the Gaussian mixture model, lead both models to underestimate the mean MPC
at 0.10 and 0.22 respectively.

Table 7 reports results for the G = 10 specification with Gaussian noise. As more
groups are introduced, clusters naturally become less well-separated, posing a sterner
challenge to the estimators. Remarkably, even in this poorly-separated data, baseline
FCP (with m = m∗ optimized for the G = 5 specification) continues to estimate the
true parameters reasonably accurately. In contrast, both HKM and the Gaussian mixture
model misestimate most of the MPCs. These results are further supported by the RMSE,
reported in the second panel; FCP recovers the true parameters quite precisely, despite the
challenges posed by the additional clusters. The misclassification rates further accentuate
the advantage of FCP in this setting with additional groups.

Figure 10 plots the median CDF of MPCs for each estimator. It shows that the mis-
estimation of some MPCs by HKM and the Gaussian mixture model is not confined to a
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Table 6: Simulation results, empirical errors, S = 500

Truth FCP HKM Gaussian mixture

Point Estimates

0.756 0.853 0.407 0.982
0.382 0.317 -0.040 0.197
0.253 0.253 0.040 -0.270
0.709 0.758 0.339 0.712
0.566 0.685 0.383 0.707

RMSE

0.901 0.807 4.711
0.298 0.554 0.547
0.102 0.239 0.719
0.179 0.397 1.397
0.888 0.627 0.576

Share Misclassified 0.037 0.067 0.576
Notes: MPCs estimated on simulated data generated according to (6), G = 5, with group assignment based on maximal weights
and resampled empirical errors. MPC estimates are labeled by selecting the permutation that minimizes the Euclidean distance
between the estimated fixed effects and MPCs and the true values. The first panel reports the mean MPC for FCP, HKM, and an EM
implementation of the Gaussian mixture model. The second panel reports the RMSE for each MPC. The final panel reports the share
of observations misassigned based on maximal estimated weights. 500 Monte Carlo samples.

small share of observations. In contrast, FCP recovers the true distribution of MPCs very
closely, on average. The Gaussian mixture model wrongly estimates a non-negligible
share of observations with MPC above 1, while HKM estimates more than 10% of MPCs
to be negative. The average mean MPC is close to the truth for all estimators, but this
reflects these spurious tails cancelling out for HKM and the Gaussian mixture model.
However, those estimators fail to match other moments of the distribution, illustrated in
particular in the right panel, which reports the non-censored CDFs.

Finally, Table 8 reports the size of nominal 5% tests for the the MPCs estimated using
FCP for all three specifications Size is very good for the G = 5 model with Gaussian noise;
the largest distortion is about 2%. With empirical noise, some larger distortions (up to 7%)
appear, but these are associated with the parameters for which the point estimates exhibit
appreciable bias. Finally, for the G = 10 specification, the tests are again well-sized for
most MPCs, with a larger deviation from the nominal size for a single MPC.

In summary, both FCP and HKM perform quite well for a small number of groups and
Gaussian noise, in terms of the mean and RMSE of point estimates, misclassification of
individuals and recovering the distribution of MPCs. For a small number of groups and
empirical noise, FCP demonstrates a clear advantage in our empirical setting in terms of
the mean of point estimates and recovering the distribution of MPCs. For a large number
of groups, the gap in performance between FCP and the other estimators is sizable for all
metrics. The limiting distribution provided in Theorem 2 provides a good approximation,
yielding tests that are generally well-sized, suggesting that inference on the recovered
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Figure 9: Empirical CDFs of the MPC distribution: G = 5, empirical errors
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Notes: 500 samples. Medians of the estimated CDF of the MPC distribution across samples, with individuals assigned based on their
maximal weights.

Figure 10: Empirical CDFs of the MPC distribution: G = 10, Gaussian errors

(a) Censored distribution
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(b) Uncensored distribution
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Notes: 500 samples. Medians of the estimated CDF of the MPC distribution across samples, with individuals assigned based on their
maximal weights. The left panel censors the distributions on the interval [−0.2, 1]; the right panel reports the uncensored distributions.

MPC distribution is reliable.

C.3 The role of correlated heterogeneity in quantile regression

In this section, we provide a concrete example of how the heterogeneity in MPCs recov-
ered by quantile regression depends on the correlation of MPC heterogeneity with other
forms of heterogeneity. We consider a simple example, where there are two possible fixed
effect values, αj ∈ {−10, 000, 10, 000} (the order of magnitude of our estimated fixed ef-
fects), and two MPCs, φj = {0.20, 0.70} (approximately the high and low points of our
baseline distribution). We draw non-zero rebate values Rj ∼ N

(
900, 1002), centered at

the median in our data. We then generate data according to
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Table 7: Simulation results, Gaussian errors, G∗ = 10, S = 500

Truth FCP HKM Gaussian mixture

Point Estimates

0.761 0.780 1.649 -1.945
0.359 0.387 0.544 0.629
0.454 0.464 -0.375 0.260
0.336 0.313 0.224 0.361
0.249 0.231 0.211 0.205
0.335 0.330 0.444 0.730
0.493 0.502 0.908 -0.961
0.373 0.425 0.414 0.603
0.467 0.401 0.346 0.602
0.117 0.168 0.165 0.165

RMSE

0.427 9.519 10.918
0.236 0.545 0.418
0.176 2.282 1.004
0.067 0.658 0.253
0.039 0.575 0.282
0.031 1.020 0.904
0.050 3.124 3.276
0.146 0.770 0.371
0.391 3.258 0.969
0.163 0.199 0.155

Share Misclassified 0.138 0.454 0.719
Notes: MPCs estimated on simulated data generated according to (6), G = 10, with group assignment based on maximal weights and
Gaussian errors with group-specific variance. MPC estimates are labeled by selecting the permutation that minimizes the Euclidean
distance between the estimated fixed effects and MPCs and the true values. The first panel reports the mean MPC for FCP, HKM, and
an EM implementation of the Gaussian mixture model. The second panel reports the RMSE for each MPC. The final panel reports the
share of observations misassigned based on maximal estimated weights. 500 Monte Carlo samples.

∆Cj = αj + φjRj + εj, j = 1, . . . , N,

where εj ∼ N
(
0, 10002), somewhat lower than the estimated noise in the data. We set

N = 100, 000, with 17.5% of observations receiving a rebate, as in our data, with Rj = 0
for the others.

We assume αj and φj take each value with 50% probability. We consider three pos-
sible relationships between αj and φj. First, we assume that they are perfectly posi-
tively correlated, so

(
αj, φj

)
∈ {(−10, 000, 0.20) , (10, 000, 0.70)}, with equal probabilities.

Next, we assume that fixed effects and MPCs have zero correlation. Thus,
(
αj, φj

)
∈

{(−10, 000, 0.20) , (10, 000, 0.70) , (−10, 000, 0.70) , (10, 000, 0.20)} , with equal probabilities.
Finally, we assume that they are perfectly negatively correlated, so

(
αj, φj

)
∈ {(10, 000, 0.20) , (−10, 000, 0.70)},

with equal probabilities. For each specification, we draw 10 samples, estimate the model
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Table 8: Size of tests for FCP parameter estimates

MPC 0.756 0.382 0.253 0.709 0.566

G = 5, Gaussian 4.8 5.4 4.4 5.4 7.6
G = 5, empirical 10.2 8.4 4.6 3.6 12.0

MPC 0.761 0.359 0.454 0.336 0.249 0.335 0.493 0.373 0.468 0.117

G = 10, Gaussian 11.4 3.4 8.2 7.6 7.4 4.8 5.6 6.4 17.2 8.2

Notes: Rejection rates of nominal 5% tests of true MPC values based on FCP estimates using the asymptotic variance derived in
Theorem 2 for each of the three simulation specifications, 500 Monte Carlo samples.

Figure 11: The role of correlated heterogeneity in quantile regression
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(b) Zero correlation
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(c) Negative correlation
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Notes: Figure 11 plots the estimated MPCs from quantile regression for every fifth percentile for 10 samples of simulated data for three
specifications. In each specification, both fixed effects and MPCs take two possible values. In the first panel, fixed effects and MPCs
are perfectly positive correlated, in the second they have zero correlation, and in the third they are perfectly negatively correlated. The
dashed lines represent the two true MPC values.

using quantile regression for every fifth percentile, and plot the estimated MPC distri-
butions in Figure 11. The first panel shows that when the fixed effects and MPCs are
positively correlated, the MPCs are well estimated; half of the distribution is associated
with an MPC around 0.20, and half with an MPC around 0.70. Because the fixed effects
dominate the conditional distribution, and the MPCs are correlated with the fixed effects,
the lower MPC aligns with the lower half of the distribution. In the second panel, there
is zero correlation between fixed effects and MPCs. Since the percentile of the distribu-
tion to which each observation corresponds is driven largely by the fixed effect, the two
MPCs occur with approximately equal frequency at each percentile, so a value near the
average MPC is estimated at each percentile. Finally, the third panel shows that when
fixed effects and MPCs are negatively correlated, the MPCs are again well-estimated, as
in the first panel. However, this time the high MPC corresponds to the lower half of the
distribution, since it aligns with the lower fixed effect.

As noted in the text, we also conduct unreported simulations to evaluate the perfor-
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mance of quantile regression for the first specification in our main simulation study. This
more complicated setting involves more complex interactions between fixed effect and
MPC heterogeneity, as well as other regressors. We find that even for this G = 5 specifica-
tion with Gaussian noise, the distribution estimated by quantile regression is on average
biased to the left, with the an appreciable mass of negative MPCs. The highest MPCs
are also considerably lower than the true values. As noted in the text, the accuracy with
which individuals’ MPCs are recovered (measured by RMSE across observations) is also
an order of magnitude worse than for FCP.
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D Supplemental empirical results

In this section we report additional empirical results. First, we estimate the MPC distribu-
tion using HKM and a Gaussian mixture model, obtaining results broadly similar to our
baseline, albeit quantitatively different. Next, we report additional details on the MPC
distribution for several specifications. Third, we document further results on the rela-
tionship between MPC heterogeneity and observable characteristics. Finally, we provide
details on the interpretation of the MPC in this setting.

D.1 The MPC distribution under alternative estimators

To assess the robustness of the MPC distribution to the estimator used, we additionally
estimate MPCs using HKM and a Gaussian mixture model implemented using the EM
algorithm. Recall that based on the simulation results detailed in Section C.2, the perfor-
mance of these estimators tends to be considerably poorer in our setting. Figure 12 over-
lays the distributions recovered using each estimator. For HKM, we set the same number
of groups as in FCP. For the Gaussian mixture model, the BIC chooses 6 groups. The
histograms show that the general shape of the distribution is similar across estimators,
confirming our baseline findings. However, the dispersion of MPCs is quite different.
HKM predicts a much more concentrated distribution, and misses the right tail. In other
words, it implies that there are no households that consume a large fraction of their re-
bate. The Gaussian mixture model, on the other hand, generates much higher dispersion,
and even some negative MPCs. We document this tendency to counterfactually stretch
the distribution beyond its true domain in the simulation study in Supplement C.2.

D.2 The MPC distribution: additional results

Figure 13 depicts the distribution of estimated individual maximal weights. Some house-
holds’ assignments are estimated with near certainty (those with a maximum weight of
near unity), but is clearly quite different from the binary assignment imposed by HKM.
Our weighted approach therefore allows us to recover the smoother distribution shown
in Figure 1. Figure 14, instead, shows the distribution of MPCs for total expenditures
associated with individuals’ maximal weights.

We further confirm the reliability of our estimated MPC distribution as follows. We
draw 250 samples via bootstrap with replacement. For each sample, we estimate our
FCP algorithm (using the baseline specification). Table 9 shows how, on average, the
bootstrapped samples generate quantiles of the weighted MPC distribution that are very
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Figure 12: The MPC distribution under alternative estimators

(a) FCP and HKM (b) FCP and Gaussian mixture

Notes: Estimated MPC distributions for the baseline total expenditures specification as in Figure 1. In both panels, the red distributions
display the weighted MPCs as computed in the baseline FCP model. In the left panel, we overlay the distribution of HKM MPCs. In
the right panel, the distribution of weighted MPCs obtained estimating the Gaussian mixture model with the EM algorithm.

close to those of the empirical distribution shown in Figure 1. This demonstrates that
even though some MPC estimates may not be individually statistically significant, there
is relatively little sampling uncertainty surrounding the overall shape of the distribution.
Similar results hold if we look at the distribution of MPCs associated with individuals’
maximal weights.

Table 9: Average moments of the MPC distribution across bootstrapped samples

Mean p10 p25 p50 p75 p90
Data 0.41 0.26 0.30 0.38 0.53 0.64
Bootstrap 0.41 0.24 0.28 0.36 0.50 0.66

(0.18) (0.14) (0.13) (0.16) (0.20) (0.22)

Notes: Table 9 shows various statistics of the distribution of weighted MPCs in the data (first row) and in a bootstrap exercise. pxx
denotes the xxth percentile. “Data” refers to Figure 1, while the row labeled “Bootstrap” reports the average of each moment across
250 bootstrapped samples. The last row reports the standard deviation of each moment across bootstrapped samples.

Figure 15 reports the 68% and 90% confidence bands of our estimated MPCs for to-
tal expenditures, estimated via TSLS and dropping the households that never receive a
rebate.

Finally, we repeat the analysis in Section 4.1 and show that nearly all nondurable
MPCs are statistically different from each other when we estimate a heterogeneous WLS
model taking the FCP weights as given, as explained in the notes for Table 1.
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Figure 13: Estimated distribution of households’ maximal weights

Notes: Figure 13 plots a histogram of estimated maximal weights for each household for total expenditures, defined as in Parker et al.
(2013).

Figure 14: Estimated distribution of MPCs out of the tax rebate: maximal weights

Notes: Figure 14 plots a histogram of estimated MPCs associated with maximal weights for total expenditures, defined as in Parker
et al. (2013). The homogeneous MPC (red line) is estimated assuming homogeneous response to the tax rebate, as in Parker et al.
(2013). The black line shows the average MPC associated with individuals’ maximal weights in our sample.
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Figure 15: Estimated MPCs out of the Tax Rebate: TSLS

Notes: Figure 15 depicts the estimated MPCs for total expenditures (defined as in Parker et al. (2013)) each of the G = 5 groups using
the TSLS specification. 90% confidence intervals (black lines) and 68% confidence intervals (red lines) are depicted as vertical lines.
The confidence intervals are constructed using the analytical formulas given in Theorem 2.

D.3 What drives MPC heterogeneity: additional results

Figure 16 graphically displays the correlation of MPCs for durable and nondurable goods.
We have shown in Section 4.3 that some household characteristics individually cor-

relate with the MPC distribution. Here, we analyze whether the linear correlation with
age and liquid wealth hides some non-linear pattern. Figure 18a suggests a positive and
convex relationship between the weighted MPC and log liquid wealth. The relationship
looks instead concave with respect to age, as shown in Figure 18b.

Neither relationship is robust to the inclusion of a set of controls, as shown in Section
4.3. In Table 11 we show that the joint drivers of nondurable MPCs are the same as those
uncovered for the MPC for total expenditures in Table 3. Considering the APC for non-
durable expenditures delivers a threefold increase in the magnitude of the relationship
with the MPC. Turning to the MPC for durable goods, we find almost no significant cor-
relations. Due to the concentrated nature of the distribution, we examine observations
with a durables MPC of about one quarter. While APC and non-salary income remain
positively correlated with the marginal propensity to consume, this relationship is statis-
tically insignificant.

In Figure 18, we show that “rich-spenders” (i.e. households with high APC and high
total income) have high MPC for nondurable expenditures too.

Finally, we explore nonlinear effects of observable predictors of the MPC distribu-
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Table 10: Test for MPC equality: non-durables

0.03 0.15 0.22 0.24 0.49

0.03 8.61
(0.00)

0.15 73.40 310.24
(0.00) (0.00)

0.22 134.78 27.27 332.57
(0.00) (0.00) (0.00)

0.24 33.72 6.90 0.29 50.82
(0.00) (0.01) (0.59) (0.00)

0.49 167.41 100.52 60.28 29.71 212.48
(0.00) (0.00) (0.00) (0.00) (0.00)

Notes: The table shows F−statistics from pairwise two-sided Wald tests of equality across MPCs (the diagonals shows tests of equality
with zero). FCP weights are taken as given. p−values are reported in parentheses.

tion. We estimate a multinomial logit model, using the MPC associated with an individ-
ual’s maximal weight as the dependent variable. Table 12 reports the estimation output,
whereas Figure 19 plots the marginal effects for the APC.41 The results confirm that, con-
ditional on other predictors, non-salary income and the APC are the most significant pre-
dictors of the marginal propensity to consume, even when we allow for nonlinear effects.

41We report only the results for the MPC distribution estimated via WLS and an array of predictors that
excludes liquid wealth. Results are virtually unchanged if we look at the TSLS MPC or include liquidity.
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Figure 16: The correlation of MPCs across consumption goods
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Notes: Figure 16 shows a binscatter of household MPC estimates for durables against nondurables. Each dot shows the average
weighted MPC for durable goods for each decile of the distribution of weighted MPCs for nondurable goods. The red line shows the
quadratic fit.

D.4 Rebate coefficient versus MPC

As discussed by Kaplan and Violante (2014), φ may not correctly measure the marginal
propensity to consume out of a transitory income shock, but is instead better thought of
as a “rebate coefficient”. This is because the control group of non-recipients in period
t is made of three groups: (i) households that never receive the rebate, (ii) households
that have not yet received a rebate, but may anticipate receiving the rebate in the future,
and (iii) households that have already received the rebate. The second group might dis-
play a positive MPC out of news of the rebate, biasing the estimated rebate coefficient θ

downward. Similarly, the third group might also have a positive lagged MPC out of the
rebate, further contributing to a downward bias. Following Kaplan and Violante (2014),
we modify the specification in Equation (1) by introducing the lag of the rebate variable
Rlag

j so that the estimated rebate coefficient can be interpreted as an MPC:

∆Cj = β′Wj + φRj + φlagRlag
j + α + εj (22)

By absorbing the lagged consumption response, this modification accounts for the fact
that, in the baseline specification, the control group includes households that received
the rebate in the past, and whose consumption response might be persistent.42 We then
interact the rebate, its lagged value, and the constant with the group indicators 1 [j ∈ g],

42This is true as long as the persistent effect of the rebate lasts strictly less than four quarters. Moreover,
we assume that the policy is fully anticipated by all households. In an intermediate information case in
which, for instance, the policy enters the agents’ information set after the receipt of the first rebate, this
specification cannot fully account for anticipatory effects often labelled as the MPC out of news.
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Figure 17: Marginal propensities to consume: liquid wealth and age
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Notes: Figure 17 plots binscatters showing the average weighted MPC for total expenditures for each decile of the distribution of
lagged log liquid wealth (left panel) and for each decile of the distribution of age of the reference person in the household (right
panel). Log liquid wealth takes 0 when liquid wealth is 0 or negative. The red line shows the quadratic fit.

and use FCP algorithm to estimate the vector of coefficients
{

φg, φ
lag
g , αg, β

}
. In Figure 20,

we show that the distribution of weighted MPCs is very similar to the one estimated in
the baseline specification.

To address the fact that some households never receive the rebate (and thus may be
meaningfully different from those who do receive the rebate), we drop households who
do not receive a rebate within the sample period that we cover. 40% of the observations in
the sample are associated with households that do not receive a rebate in this time period.
Figure 21 shows the distribution of the weighted MPCs in this subsample. Our results are
very similar to those shown in Figure 1, with a slight rightward shift of the distribution.
Indeed, Parker et al. (2013) also estimate a larger homogeneous rebate coefficient in this
subsample.

E Homogeneous effects and average heterogeneous effects

Across specifications, we find that the estimated MPC from a heterogeneous regression is
lower than the average MPC from our heterogeneous models. In general, homogeneous
effects need not equal the average from heterogeneous specifications. In this section, we
explain why, and provide a decomposition to help understand what factors drive this
discrepancy in our data.
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Figure 18: The relationship between MPCs, APCs, and income: nondurable expenditures

Figure 18 shows the average weighted MPC for nondurable expenditures for pairs of quintiles of APC and log total income. The
colorbar on the right represents the MPC.

First, consider the univariate regression

yj = αg(j) + φg(j)xj + uj, j = 1, . . . , N, (23)

where g (j) indicates individual j’s group membership and g = 1, . . . , G. For this discus-

sion, we assume that g (j) is known. Let Xj =
[

1 xj

]′
. In the population, the expres-

sions for the heterogeneous parameters of group g̃ are given by(
αg̃

φg̃

)
= E

[
XjX′j | g (j) = g̃

]−1
E
[
Xjyj | g (j) = g̃

]
Let πg̃ denote the share of the population belonging to group g̃. Now suppose instead
the econometrician estimates Equation (23) as a homogeneous regression, pooling the
data across groups. The expression for these parameters is:(

αhomo

φhomo

)
= E

[
XjX′j

]−1
E
[
Xjyj

]
,
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Figure 19: Marginal and average propensities to consume: multinomial logit
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Notes: Figure 19 shows the marginal probability effect of a household’s APC, measured as mean lagged consumption relative to lagged
total income, on the MPC for total expenditures associated with an individual’s maximal weight. Marginal effects are estimated by
the estimated regression in Table 12.

where

E
[

XjX′j
]−1

=

(
G

∑
g=1

πgE
[

XjX′j | g (j) = g
])−1

,

E
[
Xjyj

]
=

G

∑
g=1

πgE
[
Xj
(
αg + φgxj

)
| g (j) = g

]
.

The numerator is indeed a weighted average of the group moments, where the weights
are the population shares in each group. However, simple algebra shows that in general(

αhomo

φhomo

)
= ∑G

g=1 πg

(
αg

φg

)
if and only if E

[
XjX′j

]
= E

[
XjX′j | g (j) = g̃

]
∀g̃. Thus,

deviations of the homogeneous estimates from the average of heterogeneous effects fol-
low from differences in the distribution of right-hand-side variables across groups.

We provide an analytical decomposition of which moments of Xj drive these devi-
ations. In this setting where group membership is known, the formulas are exact. To

obtain these expressions, we simply compute the second row of E
[

XjX′j
]−1

, multiply it
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Figure 20: Estimated distribution of MPCs out of the tax rebate: control for lagged re-
sponses

Notes: Total expenditures, defined as in Parker et al. (2013). The homogeneous MPC (red line) is estimated assuming a homogeneous
response to the tax rebate, as in Parker et al. (2013). For each household we compute the weighted MPC. The black line shows the
average weighted MPC in our sample.

by ∑G
g=1 πgE

[
Xj
(
αg + φgxj

)
| g (j) = g

]
, and collect terms. In particular, this yields:

φhomo −
G

∑
g=1

πgφg =
G

∑
g=1

πgαg
E [xi | g (j) = g]− E

[
xj
]

σ2
x

(24)

+
G

∑
g=1

πgφg

E
[

x2
j | g (j) = g

]
− E

[
xj
]

E
[
xj | g (j) = g

]
σ2

x
− 1

 ,

where σ2
x is the unconditional variance of x. It is clear from Equation (24) that if the

group-specific moments of xj are equal to their unconditional counterparts, both terms are
equal to zero. These expressions can shed light on the source of the discrepancy between
homogeneous and the average of the estimated heterogeneous effects. The first term will
be equal to zero if the mean of x is group invariant. The second term will be equal to
zero if the variance of x is group invariant. Even if moments vary across groups, the first
term will be zero if the group means of x are uncorrelated with the fixed effects αg, and
the second will be zero if the group variances are uncorrelated with the coefficients φg.
Crucially, this decomposition presumes that groups g (j) are known.

These analytical expressions hold for the simple univariate regression (23). However,
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Figure 21: Estimated distribution of MPCs out of the tax rebate: only rebate recipients

Notes: Total expenditures, defined as in Parker et al. (2013). The homogeneous MPC (red line) is estimated assuming a homogeneous
response to the tax rebate, as in Parker et al. (2013). For each household we compute the weighted MPC. The black line shows the
average weighted MPC in our sample. The homogeneous response and average heterogeneous response are much closer than in other
specifications.

we are more generally interested in multivariate regressions, as in our empirical setting,
for example:

yi = αg(j) + βg(i)xj + δ′g(j)Wj + uj, j = 1, . . . , N,

where Wj is KW × 1. It is possible to extend the analytical expressions (24) to accom-
modate one or two additional regressors, but the expressions become exponentially more
complicated in the number of regressors. However, we can still compute a decomposition

like that in (24). Now, denote X̃j =

(
Xj

Wj

)
. A general decomposition can be computed

as

φhomo −
G

∑
g=1

πgφg =
G

∑
g=1

πgαgE
[

X̃jX̃′j
]−1

2·
E
[
X̃j
]

, (25)

+
G

∑
g=1

πgφg

(
E
[

X̃jX̃′j
]−1

2·
E
[
X̃jxj

]
− 1
)

+
KW

∑
k=1

G

∑
g=1

πgδgE
[

X̃jX̃′j
]−1

2·
E
[
X̃jWjk

]
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where E
[

X̃jX̃′j
]−1

2·
denotes the second row of E

[
X̃jX̃′j

]−1
. The terms in (25) provide a

similar decomposition into the components driving the deviation between homogeneous
and average heterogeneous parameter estimates. Of course, the last term can be further
decomposed into the elements of the summation over k to provide a separate contribution
for each covariate Wk.

Importantly, these expressions all assume that group membership is binary. If group
membership is non-binary, they can still provide a heuristic decomposition of the dis-
crepancy between homogeneous and heterogeneous estimates. We thus take Equation
(25) to our data in two different ways. First, we generate binary group assignment for
each individual by setting their maximal weight equal to one and all other weights equal
to zero. We then estimate both homogeneous and average heterogeneous parameters for
this model, the difference between which will be exactly explained by Equation (25), the
terms of which we compute based upon this specification. Second, we compute the terms
of the decomposition using our FCP parameters, but the same binary weights as before
to compute the group-specific moments. We conduct this exercise for both our baseline
and IV specifications.

Table 13 reports the results. φ̄ denotes the average MPC based on the binary mem-
bership described above, and φ̄µ denotes the average MPC using the FCP group weights,
µ. By definition, the three decomposition terms sum to the parameter deviation for the
specifications using parameters estimated based on binary group assignment. However,
turning to the FCP specifications, the sums of the decomposition terms are reasonably
close to the overall deviation. This heuristic approach captures most of the deviation
since, for many individuals, the final weights are close to binary, see Figure 13. Across
specifications, we find that the term due to variation in the covariance of regressors ex-
plains virtually none of the deviation. We find that the term due to the covariance of
the rebate with regressors explains very little of the deviation. The vast majority of the
deviation between homogeneous and average heterogeneous effects instead comes from
variation in the mean of regressors with the fixed effects across groups. Further decom-
posing this term into the specific covariates associated with the mean of each regressor,
we find that variation in the means of certain time dummies and the age variable across
groups is most responsible for the difference in the estimates.

At first glance, variation in the moments of regressors across groups might appear
to compromise identification. However, correlation of regressors or their moments with
group membership does not violate identification. Rather, that is only the case if, beyond
the group-based heterogeneity incorporated in the model, xi is correlated with the error
term. The point is particularly clear for the IV specification, where treatment is effectively
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binary. Recall that the average treatment effect, written in terms of potential outcomes
yj (·) for binary treatment Zj is defined as:

E
[
yj (1)− yj (0) |Wj

]
. (26)

In a primitive sense, our estimand is the object:

E
[
yj (1) | Zj = 1, Wj

]
− E

[
yj (0) | Zj = 0, Wj

]
. (27)

Given the nature of our instrument, the random timing at which rebates are received,
E
[
yj (1) | Zj = 1, Wi

]
− E

[
yj (1) | Zj = 0, Wj

]
(and similarly for yj (0)), and the distribu-

tion of Wj is also independent of Zj. Thus, (26) and (27) are equivalent. Of course, there
is no assumption that yj (·) is independent of Wj – if that were the case, there would be
no reason to include the controls. However, this framework may provide motivation to
use an IV approach as opposed to OLS, since using xj, the dollar value of the rebate as
treatment, leaves open the possibility that xj is correlated with potential outcomes yj (·).
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Table 11: Explanatory variables: weighted MPC for nondurables and durables

(1) (2) (3) (4)
dummy for no salary -0.036 -0.040 -0.336∗ -0.212

(0.050) (0.042) (0.153) (0.130)

log salary income -0.003 -0.005 -0.035∗ -0.021
(0.006) (0.005) (0.018) (0.015)

log non-salary income 0.020∗ 0.026∗∗∗ 0.005 0.011
(0.008) (0.006) (0.023) (0.016)

mortgage interest/income -0.002 0.006 0.001 0.046
(0.024) (0.023) (0.086) (0.079)

APC 0.022∗ 0.022∗∗ 0.003 -0.002
(0.009) (0.008) (0.020) (0.014)

homeowner dummy 0.010 0.008 -0.011 -0.010
(0.010) (0.008) (0.028) (0.021)

dummy for mortgage -0.009 -0.010 -0.016 -0.013
(0.010) (0.008) (0.029) (0.023)

log liquid assets 0.000 0.004
(0.001) (0.003)

N 739 1099 714 1062
R2 0.032 0.040 0.044 0.025
Notes: Columns (1) and (2) use the weighted MPC for non-durables as dependent variable. The dependent variable in columns (3) and
(4) is a dummy that takes 1 if the weighted durable MPC is above 0.25, which pertains to roughly 5% of the observations. All logged
variables takes 0 when the raw value is 0 or negative. Standard errors are robust to heteroskedasticity and reported in parentheses.
We control for marriage dummies, education dummies, number of children, age and age squared; those coefficients are not reported.
Age and its square are controls in our FCP estimation. While this does not pose an issue for the point estimates shown in this table,
it could potentially affect inference. However, we repeat the same regressions, excluding age and and age squared, and find that the
remaining coefficients are unaffected. , *, and *** denote significance at the 10, 5, and 1% levels respectively.
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Table 12: Multinomial logit on maximal weight MPC for total expenditures

MPC 0.38 0.57 0.71 0.76
Dummy for no salary -0.72 -3.41* -2.01* -1.49

(1.27) (1.75) (1.10) (3.20)
Log salary income 0.03 -0.32 -0.20 0.45

(0.15) (0.20) (0.13) (0.41)
Log non-salary income 1.72*** 1.12** 1.10*** 3.96***

(0.25) (0.45) (0.22) (0.71)
Mortgage interest/income -0.31 -1.07 1.45 -3.49*

(0.88) (2.56) (0.81) (2.09)
APC 2.94*** 0.99 1.12*** 7.38***

(0.35) (0.86) (0.37) (0.92)
Homeowner dummy 0.41 -0.53 0.74** 0.96

(0.33) (0.57) (0.30) (1.00)
Mortgage dummy -0.25 0.15 -0.48* -0.28

(0.28) (0.53) (0.26) (0.73)

Pseudo R2 0.12
Number of observations 1079

Notes: Output from a single multinomial logit regression of MPCs on observable characteristics. The excluded base outcome is the
lowest MPC, 0.25. All logged variables takes 0 when the raw value is 0 or negative. *, ** and *** denote significance of the coefficients
at 10, 5 and 1% levels respectively. Standard errors are in parentheses. Coefficients on additional controls are not reported and include
age, age squared, marriage dummy, number of children and education dummies as in Table 3.

Table 13: Decomposition of deviation between homogeneous and average heterogeneous
coefficients

Binary groups
term mean rebate controls sum φhomo − φ̄
OLS -0.13 0.02 0.00 0.11 0.11
IV -0.12 -0.00 0.00 0.13 0.13

FCP
term mean rebate controls sum φhomo − φ̄ φhomo − φ̄µ

OLS -0.12 0.02 0.00 0.10 0.11 0.09
IV -0.11 -0.01 0.00 0.11 0.19 0.22

Notes: Contributions to the deviation between the homogeneous MPC and the average weighted MPC are
computed using the formula in (25). The binary groups results compare homogeneous MPC to the mean
MPC estimated using WLS where the weights are binary, according to individuals’ maximal weights. The
FCP panel compares the homogeneous result to the mean MPC estimated in our baseline, where the mean
is computed either based on binary assignment according to maximal weights, φ̄, or the weighted average
using FCP weights, φ̄µ.
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