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Abstract 

We model how a cyber attack may be amplified through the U.S. financial system, focusing on the 

wholesale payments network. We estimate that the impairment of any of the five most active U.S. banks 

will result in significant spillovers to other banks, with 38 percent of the network affected on average. The 

impact varies and can be larger on particular days and geographies. When banks respond to uncertainty 

by liquidity hoarding, the potential impact in forgone payment activity is dramatic, reaching more than 

2.5 times daily GDP. In a reverse stress test, interruptions originating from banks with less than $10 

billion in assets are sufficient to impair a significant amount of the system. Additional risk emerges from 

third party providers, which connect otherwise unrelated banks, and from financial market utilities.  
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1 Introduction

Cyber attacks are an increasing concern especially for financial service firms which may
experience up to 300 times more cyber attacks per year than other firms (Boston Consult-
ing Group, 2019). Almost every financial stability survey includes cyber attacks among
the top risks.1 More recently, academic economists have begun to highlight the impor-
tance of understanding and analyzing cyber attacks as a financial stability risk (Duffie and
Younger, 2019; Kashyap and Wetherilt, 2019). Yet, there is still no universal consensus on
the taxonomy and definition of cyber events, let alone comprehensive data collection on
the frequency and nature of cyber attacks. In this paper, we seek to understand the risk
presented by cyber attacks to the U.S. financial system and to quantify how a cyber attack
may be amplified through the system.

We begin by integrating cyber risk into the theoretical literature on bank runs, high-
lighting similarities and differences between cyber and traditional shocks. In some ways,
losses related to cyber attacks are similar to other operational loss events that can trig-
ger liquidity runs and lead to solvency issues. Such runs can be panic based (Diamond
and Dybvig, 1983) or fundamentals based (Goldstein and Pauzner, 2005). As in a stan-
dard run, a cyber related run would likely result in direct costs to the affected bank and
spillovers to counterparties within the financial sector and to the real economy.

The classification used by the cyber community suggests a taxonomy of how cyber at-
tacks may differ from traditional operational risks (Curti et al., 2019). In a cyber attack,
confidentiality of data may be compromised, as may be the availability and integrity of
data or systems. Further, a cyber event may be a deliberate attack to damage the finan-
cial system. Technological linkages through which cyber attacks can spread are likely to
be different from solvency and linkages arising from business interactions. Finally, cyber
attacks are likely to be associated with significant uncertainty.

When a cyber attack compromises the availability or integrity of an institution’s sys-
tem and/or data — unlike in a traditional run — cyber attacks may impair the ability of
the bank to service running creditors. In such a scenario, the classic first-mover advan-
tage would be weakened, potentially limiting the incentive to run. On the other hand,
uncertainty regarding the nature and extent of the attack could prompt runs to occur in
segments of banks’ operations that are otherwise unaffected.

1Survey results come from both industry and regulatory reports. To name a few, see
the DTCC’s 2018 Systemic Risk Barometer Survey (http://www.dtcc.com/systemic-risk/
systemic-risk-barometer-surveys), the Bank of England’s Systemic Risk Survey (http://www.
bankofengland.co.uk/systemic-risk-survey/2019/2019-h1), and the Bank of Canada’s Financial
System Survey (http://www.bankofcanada.ca/2019/05/fss-highlights).
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In general, rare events are difficult to analyze, as we have seen with financial crises
(Gorton, 2014) and macroeconomic disasters (Barro and Ursúa, 2012). Rather than wait
to perform a post-mortem analysis of a crippling cyber attack, we instead conduct a pre-
mortem analysis to uncover ways that attacksmay be amplified using comprehensive Fed-
wire data on wholesale payments between financial institutions in the U.S. By doing so,
we hope to inform the ex ante response by mapping out how, in a variety of plausible
scenarios, an attack on a single institution or collection of related institutions could be
transmitted throughout the financial system. This analysis informs our understanding of
transmission mechanisms and the evaluation of vulnerabilities in the financial system, as
well as highlights potential policy responses that would be effective to mitigate amplifica-
tion. In addition, we reverse the analysis to understand different channels through which
the system could become impaired.

The wholesale payment network has several characteristics that make it an attractive
environment to study. High-value payment and settlement systems may be natural can-
didates for a malicious attacker intent on inflicting the largest possible damage to the fi-
nancial system and the broader economy. From a practical standpoint, data on wholesale
payments provides detailed information on flows between a diverse set of financial insti-
tutions. This enables us to simulate a broad set of scenarios using actual data and examine
the result on the network without relying on too many assumptions. This exercise is sim-
ilar in spirit to that of Duffie and Younger (2019), but calibrated in the post-Dodd Frank
Act environment of ample reserves and heightened liquidity and capital regulation.

We begin by establishing a framework to estimate cyber vulnerability, making simple
assumptions about an attack and bank responses, and tracing out the impact on payments
and liquidity. Our framework assumes that an attacked institution receives payments, but
is unable to send payments for a single full day. By accumulating payments from its coun-
terparties, the attacked institution soaks up liquidity, effectively acting as a liquidity black
hole. We estimate how and where the lack of payments leads to liquidity dislocation, and
estimate the impact on the liquidity position of other banks that fail to receive payments
from the attacked institution. A bank is considered impaired if its end of day reserves fall
sufficiently below the bank’s past daily reserve average. We design the framework to be
flexible in order to explore various scenarios and variations on assumptions, which illus-
trate how results may be different depending on the impact of an attack, the responsive-
ness of banks and the responsiveness of policy.

In our baseline scenario, we begin by analyzing the impact of a cyber attack on the
largest five participants in the network. We estimate that, on average, if any of these large
banks stops making payments, 6 percent of institutions breach their end-of-day reserves
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threshold. While the number of affected banks is relatively small relative to the number
of banks in the network, the affected banks are often very large. Weighting the impact of
a cyber attack by the assets of affected banks dramatically increases the average spillover
impact to about 38 percent of bank assets (excluding the attacked institution). This reflects
the high concentration of payments between large institutions, and the large liquidity im-
balances that follow if even one large institution fails to remit payments to its counterpar-
ties.

Disruptions can be even larger within a local area when the impairment of banks im-
pacts liquidity at local bank branches. For instance, almost 10 percent of U.S. metropolitan
statistical areas (MSAs) would experience a severe disruption if one of the largest banks
were successfully attacked. Markets with less bank competition are inherently more vul-
nerable to disruptions, as a direct impact on a large bank is likely to directly impair a large
share of local deposits. Additional fragility to retail depositors arises when a large share
of local deposits are held by banks which are more connected in the payment system.

Amplificationmay also arisewhen banks connected to a cyber-impaired bank have less
capital and liquidity. We estimate that if the liquidity shortfall becomes a solvency shock
by turning into disputed payments or interrupted trades, shortfalls could amount to as
much as 5 percent of risk-weighted assets (37 percent of tier-1 capital) at the 95th per-
centile of affected banks. At the bank level, impairment is more likely at banks with more
unstable funding. Such clustering of different vulnerabilities suggests cyber attacks will
be amplified by traditional financial stability vulnerabilities such as leverage and liquidity.

One distinguishing feature of cyber attacks is that they may be designed for maxi-
mum disruption. The extent to which an attacker is informed with respect to the payment
system, the targeted institution, and its relation to the payment network, may dictate the
magnitude of systemic risk arising in an attack. We estimate that attacks targeted on the
worst seasonal days for the system are approximately 11 percent greater than on a typical
day and attacking on the worst date for a particular large institution adds an additional
38 percent in impairment relative to the case of no specific knowledge.

This initial analysis assumes no response by the banks indirectly affected by the attack.
An added impact arises if banks respond strategically to improve their liquidity positions
by proactively forgoing payments and hoarding liquidity (a cascade scenario). Theoreti-
cally, the effect of liquidity hoarding is unclear depending on payment patterns, as hoard-
ing can mitigate disruption by bypassing affected banks or amplify disruption by creating
new impairments. We find that liquidity hoarding amplifies the network impact of the cy-
ber attack, both increasing the average impact on the system and increasing the maximal
risk, although the effect is relatively modest, by about 1 percent larger. While this incre-
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mental effect is small, it masks potential disruptions in the system as a large quantity of
payments would fail to settle as a consequence of strategic hoarding. Excluding the at-
tacked institution, banks’ endogenously forgone payments approach the level of average
one-day U.S. GDP. Even without accounting for additional spillovers such as firms or con-
sumers forgoing spending, a cyber event can therefore have a sizable impact on economic
activity.

Traditional interconnectedness research examines the network impact of links formed
by banks through interbank borrowing and other counterparty relationships. Yet cyber
vulnerabilities may reveal themselves through connections that are not actively captured
through traditional counterparty risk management. We explore such vulnerabilities by
making use of regulatory data on client lists of significant service providers, with a sce-
nario where all banks that rely on a service provider are shocked at the same time. For
a provider with multiple large and medium size bank clients, an average of 60 percent
of banks by assets become impaired. In addition to highlighting the direct impact that a
cyber attack may have on its clients, this exercise reveals the importance of understanding
operational linkages presented by third party service providers.

We also conduct a reverse stress test exercise, highlighting that possibly unexplored
linkages among smaller banks could have a systemic impact. For 9 percent of days, we an
identify a subset of small domestic banks (under $10 billion in assets) that can impair at
least one of the largest institutions. For larger domestic banks (under $50 billion), such
a subset exists on 40 percent of days. Furthermore, including branches of foreign bank
organizations (FBOs) with under $10 billion in assets to the set of small banks means that
the largest institutions may be impaired due to a successful cyber attack on 72 percent of
days.

Another important consideration is the potential for feedback and amplification through
financial market utilities (FMUs). We find that a successful cyber attack on a large U.S. in-
stitution would also have a significant impact on the liquidity of systemically important
FMUs. Vice versa is also true – breakdown in normal functioning of FMUs that provide
liquidity-savings such as Clearing House Interbank Clearing System (CHIPS) and Con-
tinuous Linked Settlement (CLS), can dramatically affect liquidity if banks replace those
intermediaries with payments through Fedwire. An FMU impairment would require a
massive increase in payments value, requiring banks to process additional payments equal
to about 3 times their daily reserves on average.

Our baseline scenario provides a lower bound for an attack that persists over multiple
days. If the attack continues, we estimate that the shock transmits tomore core institutions,
with the average size of impaired institutions reaching $85 billion by the second day and
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over time, affecting other periphery banks. The average liquidity shortfall in the system
grows from $122 billion on the first day, to an average of $1 trillion by the fifth day. This is
roughly equivalent to 20 percent of the Federal Reserve balance sheet during our sample
period, signifying the magnitude of liquidity injections that could be required if a cyber
attack impaired the data and records necessary to make payments.

The paper proceeds as follows. We begin by providing a discussion on cyber risk in
the context of the theoretical literature on financial fragility in Section 2. In Section 3, we
outline the data and a framework for testing cyber vulnerability. Section 4 summarizes
our baseline scenario and main analysis. In Section 5, we augment the baseline scenario
by introducing strategic liquidity hoarding behavior of banks. In Section 6, we analyze the
systemic implications of cyber risk originating from other non-bank sources, as well as
results from a reverse stress test.We consider feedback and amplification to other financial
markets in Section 7. Section 8 examines the implications of a cyber attack that impairs
institutions for an extended period of time. Section 9 concludes.

2 Background on Cyber Risk as a Threat to Financial Sta-
bility

We begin by providing background on cyber risk. We then relate cyber risk to the broader
theoretical literature on bank runs, highlighting similarities and differences between cyber
and other shocks modeled in the theoretical literature.

2.1 Frequency and Nature of Cyber Events

Cyber attacks are rapidly increasing. For example, ID Theft Resource Center (2020) re-
ports that over the 16-year period from 2005 to 2020 there were a total of 12,250 recorded
breaches and over half of those occurred in the last five years. IBM Security (2020) re-
ports that breaches caused by malicious act (as opposed to human error or system glitch)
are growing even faster, with their share reaching 52 percent in 2020. Of the malicious
breaches in 2020with a known source, themajority were by financiallymotivated criminal
actors (67 percent) but the rest was split equally among nation-state actors and hacktivists
and were, on average, at least as costly to the attacked. While the financial sector had the
shortest average timespan of breaches, its average time to identify a breach was more than
half a year. Further, the lifetime of malicious breaches was on average 30 percent longer
than in other industries.
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Little information is available publicly on details of specific cyber events, especially
in the financial sector. Some notable exceptions are the 2016 “Bangladesh Bank robbery”
where fraudulent SWIFT messages resulted in the transfer of over $100 million from the
account of the central bank of Bangladesh at the Federal Reserve Bank of New York (see,
e.g. Hammer, 2018). Closely related to this paper, Finastra, a third-party provider of pay-
ments services to banks, was targeted in what appears to have been a ransomware attack
onMarch 20, 2020. The firm resolved the attack bydisconnecting its servers, leaving certain
customers without access payments (see Finastra, 2020). Finally, details are still incom-
plete about the SolarWinds hack uncovered in 2020, which potentially affected a range of
private sector firms and some U.S. government agencies.

Other recent empirical work in financial economics has begun to quantify cyber risk.
Aldasoro et al. (2020a) analyze cyber events across sectors and find that losses are higher
when cyber events affect larger firms or multiple firms at the same time, patterns that are
very concerning in terms of systemic risk. In addition, they document an inverse relation
between the frequency and cost of different types of cyber events with full-scale business
disruptions being the least frequent but most costly. Similarly, they find that in the right
tail of the distribution, events with malicious intent have the highest costs and specifically
highlight cyber attacks on cryptocurrency exchanges.

In a complementary paper, Aldasoro et al. (2020b) analyze a detailed cross-country
database on operational risk events in the financial sector (covering 16 years for over 70
large banks), document the evolution of cyber-related events and compute a cyber value-
at-risk (VaR). They find that cyber events are still rare but increasing relative to other
operational risk events at banks. They estimate that cyber VaR can contribute up to a third
of a bank’s total operational VaR.

2.2 Classification of Cyber Events

Cyber events are conventionally classified into three categories based on the technical na-
ture of the event, introduced in the Federal Information Security Management Act. How-
ever, the classification is also useful for thinking about the economic consequences of a
cyber event.

Confidentiality. The confidentiality of data is compromised; for example, customer so-
cial security numbers or proprietary trading records are hacked and publicized. Such
events cause direct losses to the affected bank – for example, the compromise of customer
social security numbers would incur a loss due to liability for damages while an attack
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on proprietary trading records might incur a loss due to competitors learning about the
bank’s strategies. In addition, as for all types of confidentiality events, the bank would
suffer reputational costs.

Availability. The availability of data or systems is compromised; for example, a bank’s
computer systems are shut down. Similar to confidentiality events, availability events can
cause direct losses and reputational costs. In addition, availability events can immobilize
capital and liquidity, and affect the ability of the bank to perform its core activities. Such
events can therefore have considerable spillovers to the banks customers and counterpar-
ties, within and outside the financial sector.

Integrity. The integrity of data is compromised; for example, customer account balances
or proprietary trading records are impaired. Similar to confidentiality and availability
events, integrity events can have direct costs such as the cost of restoring the integrity
of the data and legal costs of resolving issues where integrity cannot be restored. Similar
to availability events, integrity events can have severe spillover costs if they impair the
bank’s ability to perform its core activities. In particular, integrity events and the resulting
legal uncertainty could significantly extend the time required to recover full functioning
of the affected bank and the system more broadly.

Based on this classification, cyber events threaten financial stability through their direct
costs aswell as through the spillovers they cause.While this classification shows similarity
to other types of shocks, cyber events are different along specific dimensions (for a related
discussion, see Healey et al., 2018, Curti et al., 2019, Duffie and Younger, 2019, Kashyap
and Wetherilt, 2019, European Systemic Cyber Group, 2020, and Adelmann et al., 2020).

Intent. A cyber event is typically a deliberate act which may be intended to produce
financial gain for the attacker or, more importantly, to create damage to the attacked bank
and the financial system.Unlike risk events that impair operations, whichmay be expected
to occur randomly or seasonally, themalicious intent of cybermeans that these eventsmay
be more likely to happen at times and at banks such that the impact is largest.

Technology. Due to its technological nature, a cyber event can spread through techno-
logical linkages, e.g. communication networks, as opposed to traditional economic link-
ages. In addition, due to the commonality of technology across banks, a cyber event can
have significantly larger scale than other types of shocks, affecting a large number of banks
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at the same time. Combined with malicious intent, attacks with larger potential scale are
more likely.

Uncertainty. A cyber event may remain hidden for a considerable time before being de-
tected. This increases the potential for damage while undetected and the problems of re-
covery, especially for integrity events. Even when detected by one bank, other banks may
remain uncertain about whether they are affected as well. Again, this characteristic in-
teracts with intent since an attacker may have an incentive to remain hidden as long as
possible.

2.3 Impact of a Cyber Attack on a Financial Institution

Like any operational risk event, a cyber attack can trigger a liquidity run and lead to sol-
vency issues. Such a run can be panic based (Diamond andDybvig, 1983) or fundamentals
based (Goldstein and Pauzner, 2005). As in a standard run, there are direct costs to the af-
fected bank, e.g. due to inefficient liquidation of assets, and spillovers within the financial
sector (counterparties) and to the real economy (borrowers).

A detail specific to cyber attacks is that they may impair the ability of the bank to ser-
vice running creditors, e.g. if payments or accounts are not available. In such a scenario,
the classic first-mover advantage would be weakened, potentially limiting the incentive to
run. This channel through which inaccessibility attenuates the run incentives in the after-
math of a cyber attack, however, relies on a partial equilibrium argument. As banks and
financial institutions operate over a diverse set of markets and performmultiple functions
on behalf of clients, uncertainty regarding the magnitude and potential spillover to other
segments of the attacked institution may spark runs from clients of other uncompromised
operations of the respective bank. This issue is further complicated by asymmetric infor-
mation problems that arise as attacked institutions formulate their disclosure strategy for
communicating with clients.

More generally, cyber attacks have the potential to immobilize capital and liquidity
which can impose costs irrespective of a run or other changes in behavior of the affected
bank and its creditors and counterparties.

2.4 Amplification through Network Structure and Uncertainty

In addition to accounting-based effects (Eisenberg and Noe, 2001), network structure can
amplify and propagate shocks (Allen and Gale, 2000). While these standard models con-
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sider the propagation of solvency and liquidity shocks, their insights also apply to cyber
shocks. For example, if a cyber shock impacts the distribution of or access to liquidity, it
can trigger contagion events as in Allen and Gale (2000). The technological impact of a cy-
ber attack may travel through a different network from interbank lending or payments, as
a virus or technical exploit may propagate through data and communications networks,
through shared service providers or technological similarities.

In addition, there are recent theoretical insights derived mainly for solvency shocks
that also apply to cyber shocks. For example, Erol andVohra (2018) study the systemic risk
in financial networks arising from both correlated defaults of peripheral banks, and de-
faults of systemically important core banks. Cyber attacks may result in correlated impair-
ments, for example through technological connections, leading to similar systemic risk.

Asymmetric information plays an important amplifying role in standard theories of
systemic risk and also applies to cyber shocks. For example, Caballero and Simsek (2013)
show how incomplete information about the location of a solvency shock in a financial
network greatly increases individual banks’ incentive to engage in individually prudent
but systemically harmful actions. This naturally applies to cyber shocks and banks’ indi-
vidually optimal response in financial networks. Uncertainty about the location of a cyber
shock can significantly amplify its disruptive effects. News or rumors regarding impair-
ment of some (possibly unknown) banks or financial institutions could lead to preemptive
withdrawals from institutions who are not affected.

Strategic complementarities, coordination problems and lack of common knowledge
have been studied extensively (for a review, see Morris and Shin, 2003). Afonso and Shin
(2011) show specifically for shocks to the payment system — which naturally include
cyber shocks — how coordination motives can lead to precautionary demand for liquid-
ity. The analysis of Corsetti, Dasgupta, Morris, and Shin (2004) examines the impact of
strategic complementarities with large players, a model that represents well many finan-
cial markets and applies to cyber shocks just as it does to fundamental shocks.

A final consideration in cyber is that financial networks structured for resiliency to
market risk and for liquidity sharing may be vulnerable to cyber shocks, which connects
firms through different networks. If redundancies are not available, networks with a core-
periphery structure can see rapid spreadwhen the core is compromised, andmay struggle
to identify their connections in the network.
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2.5 Policy Responses to a Cyber Event

When thinking about policy responses, it is helpful to distinguish solvency and liquidity
effects that are similar regardless of the initial shock, and those effects that are specific to
a cyber-attack related shock. In this way we can evaluate how ex ante policy measures
to reduce the vulnerability to or the impact of a cyber event, as well as ex post policy
measures in the aftermath of a cyber event may be necessary. See Kashyap and Wetherilt
(2019) for a discussion of ex ante regulatory and supervisory measures.

Similar to a traditional shock, a cyber event may require ex post liquidity injections via
the discountwindow, openmarket operations ormarket-wide liquidity facilities. Similarly,
ex ante regulation and supervision can emphasize resiliency to and contingency planning
for cyber events. However, due to the unique properties of cyber events, traditional policy
tools such as ex ante capital requirements or ex post liquidity provision may not be as
effective. For example, a cyber event that falls into the availability or integrity categorymay
require additional policy responses such as a bank holiday to allow for the time necessary
to recover the affected systems. In addition, regulatory requirements such as liquidity or
reserve requirements could be temporarily suspended if banks are technologically unable
to address violations, limiting the knock-on effects of perceived impairment.

More generally, it is possible that cyber attacks can be mitigated through additional
roles of the Federal Reserve or other agencies. For example, the provision of dedicated
back-up facilities in core markets could reduce the impact of availability and integrity
events (Duffie and Younger, 2019). Due to the systemic externalities, the individual cost of
such facilities would likely outweigh the individual benefit, requiring public provision. In
addition, individual banks may not anticipate that conditional on receiving a cyber shock
themselves, there is a high probability of other banks being affected at the same time. This
is analogous to the issue of “crowded trades,” where individual banks overestimate the
liquidity that will be available when they want to unwind a position. Pre-positioning of
such facilities, and ensuring that a cyber attack would not prevent access to such facilities
would be critical, as the reduction in uncertainty can be as valuable as the actual facilities.

The asymmetric information resulting from a cyber event also creates the potential for
beneficial policy intervention. Ex ante, requirements to disclose to regulators even minor
cyber events or to share with other banks information on threat assessments and contin-
gency plans could increase resilience by reducing uncertainty and improving collective
learning. This could also boost credibility of government certification of the information
environment. The catalyst for coordination failures is the lack of common knowledge, i.e.
strategic uncertainty. Ex post, uncertainty could be reduced, for example, by identifying
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(a) Concentration of payments. (b) Network dependencies.

Figure 1: Concentration and network dependencies. The left panel shows the share of pay-
ments sent by the top 5 and top 10 institutions by payments activity. The right panel shows
value weighted (VW) and equal weighted (EW) averages across participants of the number
of other participants receiving payments from a participant.

the affected banks or, instead, certifying key banks as unaffected. However, as Angele-
tos, Hellwig, and Pavan (2006) illustrate, policies surrounding information alone may not
suffice to alleviate coordination failures when policies are endogenously determined.

3 Evidence from the U.S. Wholesale Payment Network

In this section, we investigate quantitatively the impact that a cyber attack can have on the
financial system, examining how a cyber attack on a set of banks impairs payment activ-
ity in Fedwire Funds Service (“Fedwire”). Fedwire represents the majority of wholesale
payments between financial institutions in the U.S. and provides detailed information on
the accounts and flows between a diverse set of financial institutions. This enables us to
simulate a broad set of scenarios and examine the results on the network without relying
on heavy parametric assumptions.

3.1 Overview of the Wholesale Payment Network

TheU.S. payments network has a core-periphery structure (Soramäki, Bech,Arnold,Glass,
and Beyeler, 2007). Consistent with this, payments are highly concentrated among a small
set of institutions. The top five most active banks in the payment system account for close
to 50 percent of total payments and the top ten for over 60 percent (Figure 1a). Activity
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Figure 2: Total payments as a fraction of reserves. This figure provides a time-series plot of
the total daily payments in Fedwire, scaled by total reserves.

is concentrated not only in terms of payments value but also in terms of network connec-
tions, with themost active banks’ connections outnumbering the average banks’ by several
orders of magnitude (Figure 1b).

It is worth noting the dramatic change in the underlying reserve environment after
2008. Past studies that highlight strategic behavior in liquidity management, both empiri-
cally and theoretically, assume a systemwith scarce reserves. Following the financial crisis,
the Federal Reserve’s asset purchasing programs expanded its balance sheet, and with it
the aggregate quantity of reserves. As shown in Figure 2, the ratio of total payments to total
reserves has fallen a hundred fold. While a complete analysis of the changes to the under-
lying payment environment is outside the scope of this paper, we provide some context
and relevant dimensions to understand the analysis of cyber attacks.

Existing empirical literature documents strategic behavior and complementarities in
the wholesale payment system.When liquidity is scarce, banks manage intraday liquidity
by delaying payments and closely matching inflows and outflows to avoid liquidity short-
ages (McAndrews and Rajan, 2000). Over the normal course of the day, this creates both
clusters and delays in the aggregate value of payments. Klee (2010) shows that disruptions
due to operational problems increase aggregate uncertainty onmarket functioning and are
realized in prices, volume, and discount window activity. Afonso and Shin (2011) simu-
late intraday liquidity dynamics and show that network externalities in liquidity hoarding
behavior can spark illiquidity spirals in payment systems.

Past shocks offer a glimpse into how the payment network behaves in times of crisis. On
September 11, 2001, many banks based in lower Manhattan experienced direct damage to
property and communication systems (Lacker, 2004)whichwere followed by payment co-
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ordination breakdowns (McAndrews and Potter, 2002). Heightened uncertainty can also
amplify private incentives to hoard liquidity. Ashcraft, McAndrews, and Skeie (2011) find
evidence of strategic liquidity management in interbank markets during the 2007–2009 fi-
nancial crisis. In recent work, Allen (2020) considers the impact of operational risk events
more broadly on the payments system.

Some measures of banks’ strategic management of intraday liquidity have fallen with
the abundant supply of reserves. For example, delays in payments and turnover, met-
rics which proxy for strategic complementarities in payment activity have dramatically
decreased (McAndrews and Kroeger, 2016). However, other post-financial crisis changes
such as liquidity regulation, liquidity stress testing and improved liquidity risk manage-
ment mean that banks continue to closely manage their liquidity. More recently, these
proxies for strategic complementarities have shown signs of increasing again, suggesting
that even in an environment with an ample quantity of reserves, banks’ payment activities
continue to be carefully managed.

3.2 A Framework for Cyber Vulnerability

Our main strategy is to analyze scenarios in which a cyber attack impairs a subset of insti-
tutions, and to evaluate the systemic implications by examining the overall impact on the
payment network. Throughout the paper, we focus our analysis on a single-day shock to
the payment network. Multi-day impairments necessarily result in broader impact. To fix
ideas, we outline a framework used to understand how hypothetical cyber attacks would
be amplified through the system.

As highlighted in Section 2, a cyber incident can compromise normal functioning of an
institution through affecting a bank’s confidentiality, availability, and/or integrity. We fo-
cus on scenarios involving availability or integrity. A cyber attack may temporarily impair
the availability of relevant data or communication andmessaging systems of a target insti-
tution. For the duration of the issue, the institution may not be able to process or transmit
payments. Alternatively, a cyber attack may compromise the integrity of a target insti-
tution’s data, either by manipulating or corrupting the data. While the target institution
could, in principle, perform payments on behalf of its clients and/or its key operations to
avoid reputational costs, and/or delay announcing its compromised position, this would
be unlikely, given the large notional size of payments and because payments in Fedwire
are settled with finality. The alternative may be that the institution undergoes a process of
reconciliation, in which it rebuilds its data both internally and externally. In either case, a
successful cyber attack can have an immediate and direct impact on an institution’s ability
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to carry out day-to-day operations.
A hypothetical scenario starts with a set of target institutions that experience a cyber at-

tack, and are able to receive but unable to remit any payments over the Fedwire operating
day. The assumption that only the sending of payments is impacted reflects the institu-
tional practices of Fedwire. In a nutshell, a payment is actualized when Fedwire receives
a payment request from the sender. As a result, an institution’s balance, as represented
in the Fedwire system, can immediately reflect changes due to incoming payments, even
if the institution is unable to observe or interact with the Fedwire network due to a cy-
ber incident. Attacked institutions can therefore become liquidity black holes, soaking up
liquidity but unable to send out payments (in the form of reserves). This can restrict the
effective flow of liquidity, similar to the situation after September 11, 2001 (Lacker, 2004).

Let U be the universe of financial institutions, indexed i, in the network. A scenario S
specifies three primitives (Z, R, B), where Z ⊂ U is the set of financial institutions that
are directly affected by the cyber attack (referred to as shocked institutions); R is the set
of reaction functions of institution i ∈ Zc = U \ Z that characterize its payment behavior
within a given day; and B = {bi} is the set of impairment conditions,whereby an institution
i is considered adversely affected by the scenario if condition(s) bi holds.With slight abuse
of notation, we also use B is to denote the set of institutions i ∈ U that are impaired. By
default, we assume that any directly affected institution i ∈ Z is also impaired. As such, an
outcome used to characterize the network impact includes both that of the primary impact
(via institutions i ∈ Z) and the derivative impact (via institutions i ∈ Zc).

A scenario provides us with a baseline to describe the behavior of the constituents of
the network and evaluate whether an institution is impaired by the scenario or not. Fix-
ing a scenario, we first simulate the scenario for the entire sample period, and construct a
dataset with counterfactual outcomes, including the list of impaired institutions. We then
assess the effect of the shock by evaluating and analyzing the properties and character-
istics of impaired institutions implied by the counterfactual outcomes. We focus on three
different aspects. First, what is the magnitude of the network impact caused by the sce-
nario? Second, what is the set of institutions that are vulnerable to the shock? Finally, how
does the level of information available to the attacker relate to the systemic implications
of a cyber attack?

3.3 Data Description

Our primary data sources consist of intraday payment data between banks in the Fed-
wire Funds Service payment system and the individual banks’ end-of-day reserve bal-
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ances over the year 2018. During this period of time, the aggregate supply of reserves
gradually shrinks, with depository institutions collectively holding about $2.3 trillion in
reserves in January 2018, and about about $1.8 trillion in reserves at the end of 2018.2

Table 1: Summary statistics. The table shows summary statistics of payments in Fedwire.

Avg. St. dev. p1 p25 p50 p75 p99
Total senti,t (millions) 519.94 9588.86 0.00 0.00 0.37 3.16 7242.90
Avg. by institution i (millions) 508.75 9318.75 0.00 0.15 0.86 4.29 7818.85
Total on day t (trillions) 2.85 0.32 2.32 2.63 2.81 3.02 3.73

Table 1 summarizes statistics on daily payment value. The average total daily payments
in Fedwire in 2018 is about $2.8 trillion, with a standard deviation of $320 billion and a
maximum of over $3.7 trillion. The cross-sectional variation is considerably larger with a
highly skewed distribution of total payments sent at the institution level. Themedian bank
sends less than $1 million per day while the average bank sends about $500 million per
day and the most active banks send over $7 billion per day.

Fedwire payments data are organized by “ABAs” — account numbers instituted by
the American Bankers Association to facilitate check payments. Because some banks have
multiple ABAs (typically due to mergers), we aggregate entities to the parent depository
institution level.3 We use data from Call Reports, Y-9C and FFIEC 002 filings as well as
Summary of Deposits data, to complement Fedwire data with detailed information on
financial institutions, including asset size, branch location, and other relevant information.
As will be shown, taking into account institutions’ size is integral to understanding and
evaluating the overall impact of a cyber attack.

Thus, our main universe U consists of financial institutions for which information on
asset size is available, which still permits a wide class of U.S. chartered financial institu-
tions, including national banks, state member and non-member banks, federal and state
savings banks, and branches of foreign banks. These institutions together represent about
half of the participants in the Fedwire payment system, and account for about three quar-
ters of total daily payments and reserves. All reported results on the network impact are
based on this subset of institutions. We exclude all other institutions from the analysis of

2While the aggregate quantity of reserves and distribution of reserves throughout the system will affect
this analysis, there is sufficient daily variability to inform the analysis.

3Our analysis is at the depository institution level for two reasons. First, financial institutions may face
liquidity demands and regulations, including reserve requirements, at the depository institution level. Sec-
ond, impairments in the payment system could make it difficult to shift liquidity between accounts, even
within the same bank holding company. Our main results continue to hold if we aggregate accounts to the
bank holding company level.
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network impact. By doing so, our results on both unweighted and weighted impact of cy-
ber attacks are based on the same subset of potentially impaired institutions. In addition
to excluding a number of non-depository institutions, a large number of institutions ex-
cluded from our analysis are credit unions, which together represent about 18 percent of
participants, but collectively account for less than 0.5 percent of payments by value. By
excluding these institutions from U, we are potentially underestimating the network im-
pact. This is because excluded institutions may be heavily impacted but are not included
as potential firms in B. Second, as will be seen in Section 5, excluded institutions are im-
plicitly assumed to continue to send out payments unconditionally, which underestimates
the cascade effect.

4 Baseline Scenario

In this section, we outline our baseline scenario and summarize the results. In the base-
line scenario, we consider an attack on a single institution on day t and assume that the
attacked institution does not send any payments on that day. All other institutions are
assumed to make payments as observed in the payments data for day t. We calculate
the counterfactual end-of-day-t reserve balance for each institution and analyze the set
of institutions B that drop below an impairment threshold (Section 4.1). Since only the
shocked institution’s payment activity is assumed to be disrupted, the impact in the base-
line scenario arises exclusively from other institutions failing to receive payments from the
shocked institution. We consider the impact of other institutions endogenously suspend-
ing payments in Section 5. There are several rationales for this simple baseline scenario.
First, some banks may not have the systems or protocols in place to identify and respond
immediately to the failure of a counterparty to make payments. Second, banks may not
be sensitive to intraday liquidity conditions, due to the ample reserves environment, and
thus may not react to abnormal conditions in a timely manner. Finally, the baseline sce-
nario may also be interpreted as payment network participants continuing to operate as
usual in expectation of a regulatory intervention.

We focus attention on attacks on themost active institutions in the payments system.As
described in Section 3.1, a well-documented and stable feature of U.S. wholesale payments
systems is its high concentration of activity among a small set of financial institutions. The
core banks in the network are among the largest banks in the U.S., with a rank correlation
between assets and payments of over 80 percent, and therefore play vital roles in various
other markets, including Treasury, equity, and derivatives markets. This strongly suggests
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that a cyber attack at a single institution alone couldmaterially impair normal functioning
in the payment network. We therefore present results for a hypothetical situation in which
Z consists of one of the largest five institutions in the payment network (“top-5”), by value
in 2018.

4.1 Defining Impairment

An important unknown in evaluating the severity of a cyber event is under which condi-
tions an institution that is not itself attacked becomes materially impaired. For instance,
even though we observe each individual bank’s reserve levels at a high frequency, we do
not directly observe the bank’s desired reserve holdings, nor dowe observe levels at which
the bank would view its liquidity position as severely compromised. For institutions sub-
ject to regulatory requirements such as the liquidity coverage ratio (LCR), high frequency
and detailed data on balance sheet is needed to assess how binding liquidity regulation is
for an institution. Furthermore, banks’ internal liquidity targets may incorporate a buffer
above the regulatory minimum. Additional liquidity may be required within entities of
the bank holding company to support recovery and resolution planning. As individual
reserve balances are endogenously determined by both market-wide liquidity conditions,
and each bank’s idiosyncratic liquidity demand, a bankmaymanage its day-to-day reserve
balances to accommodate shocks to its balance sheet positions.

One way to approximate this is to use empirical variation in banks’ reserves as a basis
for evaluating when they would be materially impaired. Our main measure uses individ-
ual banks’ end-of-day reserve dynamics to identify when a cyber event has a significant
effect on a bank’s liquidity position. In our baseline definition, we classify an institution
as impaired if the counterfactual end-of-day reserve balance ri

t is more than two standard
deviations below its average, over a 30 day window:4

bi
t = r̄i

t−1,t−30 − 2σi
t−1,t−30.

A key advantage to our reserve-based impairment measure is that it provides a time-
varying cutoff that adjusts as individual banks optimize their reserve balances to their
liabilities and liquidity positions as well as to changes in aggregate reserves.

How binding is bi
t? One way to test this is to examine how close banks come to their

4Since the impairment threshold bi
t is a moving average based on past reserves, it is possible that a bank’s

end-of-day reserves drops below bi
t on certain days, even before accounting for missing payments from our

scenario. We show in the appendix that excluding from the analysis any banks that are impaired but do not
receive any payments from the shocked institution on that day does not materially affect our results.
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impairment threshold during normal times. Consider the normalized distance to the past
30-day average given by a time-varying z-score measure

zi
t =

rt − r̄t−1,t−30

σt−1,t−30
.

On average, the z-score is negative most of the days, with a median of -0.03. There is sig-
nificant positive skew with a mean of 0.49. Table 4 summarizes the average z-scores for
banks, weighted by size. The table shows that banks on average stay within roughly half a
standard deviation above and below their trailing average balance. As reference, we also
plot the time-varying buffer relative to reserve balances for the top-5 institutions, which
can be found in Appendix B. Overall, this suggests that banks, adjusting for size, tend to
actively manage a relatively stable end-of-day reserve balance.

While our current impairment measure is chosen for its intuitive, parsimonious defi-
nition, the framework is designed to be flexible to different definitions of impairment bi

t.
The impairment definition can be adjusted to bemore or less stringent, simulating possible
policy responses to an attack. For example if reserve balances reflect compliance with liq-
uidity regulation or supervisory expectations, a policy response could be to change those
regulations or expectations in order to mitigate the amplification of an attack.

4.2 Distribution of Impact across Institutions and over Time

As a starting point, we examine the share of institutions that become impaired, i.e. end-
of-day reserves fall below their impairment threshold, as a consequence of a successful
cyber attack on one of the top-5 institutions. Figure 3a outlines the average daily impact
of an attack on each of the five institutions in 2018, where unweighted share is the fraction
of impaired institutions, i.e. |B||U| . Across all days in 2018, the average share of institutions
impaired ranges from 4.8 percent to 8.5 percent, depending on which of the top-5 institu-
tions is attacked (blue bars). There is substantial variation on different days of the extent
of amplification of an attack on a single large institution. The daily variation in the share of
impaired institutions is larger within each shocked institution than it is across the shocked
institutions. The share impaired on the 1 percent worst days is roughly three times larger
than the share on the 1 percent best possible days (dashed whiskers).

By comparison, we also examine a size-weighted share of the impaired institutions,
which is computed using ωi

q|B|
|U| , where ωi

q =
Ai

q

∑q Ai
q
and Ai

q is the size of the institution mea-
sured in total assets in the quarter q (red bars in Figure 3a). Across the top-5 institutions,
weighting impaired institutions by asset size leads to between 22 percent and 55 percent
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Figure 3: Impact of a shock to a top-5 institution. The figure shows the distribution of the
unweighted share (blue), share weighted by assets (red) and net weighted share (grey) of
institutions impaired by a shock to each of the top-5 institutions. Panel (a) shows the distribu-
tion across the top-5, averaged across days; bars represent the average impact; solid whiskers
represent the p25/p75 range; dashed whiskers the p1/p99 range. Panel (b) shows the distri-
bution across days, averaged across the top-5 institutions. Net weighted share excludes the
shocked institution.

of bank assets being impaired, magnifying the average impact by over four times relative
to the numerical share of affected institutions.

Figure 3b shows histograms of the distribution across days in 2018, averaged across the
shocked top-5 institutions. Compared to the unweighted distribution (blue), theweighted
distribution is shifted to the right and exhibits amore symmetric form,whether the shocked
top-5 institution is counted among the impaired or not (red or gray, respectively). Since
the directly shocked institutions are large in assets, the direct impact of the shocked in-
stitution has a nontrivial contribution to the total network impact. However this direct
effect does not explain the variation in the simulated network impact. Even excluding the
shocked institution, on the days of maximum impact, an attack results in close to half of
the network being impaired, in terms of bank assets. This distribution is shown in the
gray bars of the histogram, which nets out the direct impact on the top-5 institution. The
large amount of assets impacted reflects the high concentration of payments between rel-
atively large institutions, and the large liquidity imbalances that follow if even one large
institution fails to remit payments to its counterparties. Because of the high volume and
size of payments among core institutions, large and highly central institutions are more
commonly impacted by an attack on any of the top-5, and represent a large share of the
affected banks. In other words, the large share of affected assets generally reflects trans-
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mission from one top-5 bank to another.
Of course, different assumptions would produce different estimates of the extent of

amplification. In terms of comparative statics, any ability of the attacked institution to
send out some payments would result in less amplification. Similarly, lowering the impair-
ment thresholdwould also reduce amplification. Changes to the information environment
also affect amplification. For example, if banks were informed about the impairment and
stopped sending payments to the affected institution, their liquidity would also be im-
proved. We explore the impact of allowing for different responses from other banks in
Section 5.

4.3 Geographic Impact

We began by estimating the number and assets of affected banks on a national basis. A
key concern in a cyber attack is that disruptions in the wholesale payment network can
lead to widespread spillovers to the real economy. In this section, we enrich our analysis
of amplification from a single direct attack in our main scenario, by understanding how
the physical structure of the U.S. banking system could transmit shocks to bank depositors
and customers. Given the high concentration of activity in key financial centers in the U.S.,
a natural question is, towhat extent a successful cyber attack on a large systemic institution
has an impact on particular geographic areas.

To examine the geographic impact on the banking sector, we evaluate the overall mar-
ket share of impaired institutions by geography.We achieve this in two steps. First, for each
institution i ∈ U, we make use of Summary of Deposits data to measure deposit market
share in each respective state, Metropolitan Statistical Area (MSA), and county, which
proxies for banking market presence. Then, for each scenario, we aggregate the overall
impact by total market share of the set of impaired institutions B.

To the extent that banking markets are concentrated, an impairment of a small num-
ber of institutions may have a large effect on depositors in that market, particularly when
those institutions are highly connected in the wholesale payments network. We find a sig-
nificant amount of variation in the extent of an impact. Figure 17 in Appendix C depicts
the geographical impact aggregated at the county level. Geographic impact varies because
the extent to which the shock affects bankingmarkets depends not only on how connected
relevant institutions are to the network, but also on how concentrated markets are. For in-
stance, Ohio sees, on average, 53 percent of its banking sector impaired under the main
scenario because it has a high concentration of banking activity by banks within the core
of the payment network.
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Examining the top ten MSAs with the largest shares of deposits held by impaired in-
stitutions, in the baseline scenario, we find that all ten MSAs average at least 40 percent of
the local banking market impaired. While the geographic impact is correlated with MSAs
with greater financial activity, the impact is also large for MSAs where the financial sector
does not play an outsize role in the local economy. This can be attributed to a combina-
tion of two factors: concentration in the banking market, and the deposit market share in
the MSA of core institutions in the payment network. The impact is even more extreme at
some counties where the banking market is highly concentrated.5

This illustrates that disruptions in wholesale payments and subsequent liquidity dis-
locations can potentially prompt widespread illiquidity of banks that can be very concen-
trated in certain geographies. Notably, a cyber attack can lead to uncertainty regarding
the security and safety of the banking system that can be felt by depositors and financial
market participants, both at the institutional and individual household level. This points
to a broader concern: a cyber attack has the potential to trigger rapid degradation in the
trust towards financial institutions and can therefore quickly lead to traditional forms of
financial fragility. At the micro level, this also shows an additional possible risk of highly
concentrated banking markets. Disruption in a geographic area is likely to be higher if
a large share of customers and businesses cannot access their deposits. While a lack of
reserves may not immediately lead to a lack of cash in ATMs, if affected banks delay pay-
ments or reduce lending, the impact is likely to be magnified in some geographies.

4.4 Solvency and Stability Impact

Our discussion of impact is mainly in terms of banks becoming impaired, where a bank’s
impairment is defined in Section 4.1 as its reserve balance falling more than two stan-
dard deviations below its trailing average. We now consider to what extent impairment
presents an explicit solvency risk to banks and how impairment is related to banks’ other
vulnerabilities and therefore amplifies financial stability risks.

We consider the potential direct solvency implications of our baseline one-day scenar-
ios of a cyber-attack compromising one of the top 5 banks. For each of the banks that
becomes impaired due to not receiving payments, we calculate the liquidity shortfall, i.e.
the difference between their actual end-of-day reserve balance and their counterfactual
end-of-day reserve balance calculated in our shock scenario.

5Note that the Summary of Deposits data have not been adjusted to account for the way in which some
corporate and online deposits are accounted for at bank headquarters locations, meaning that measures of
concentration in MSAs where the large banks are headquartered may be overstated.
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Figure 4: Distribution of liquidity shortfall across impaired banks. The figure shows his-
tograms of the shortfall in reserves relative to risk weighted assets (Panel a) and relative to
tier-1 capital (Panel b). Averaged across shocks and days, truncated to values between 0.1
percent and 1000 percent.

Figure 4 shows distributions of the liquidity shortfall across impaired banks, scaled
by risk weighted assets (Panel a) and by tier-1 capital (Panel b). This is similar to the
payments never being made to the bank, and the loss of payments being realized as an ac-
counting loss, as may occur if the books and records of a bank are permanently impaired.
Alternately this could be interpreted as a proxy for counterparties’ assessment of the ex-
posure to an impaired institution. Note that this differs from typical exposure measures
as it captures the exposure of banks’ customers as well as the direct exposure of the bank.
Themagnitudes are largewhen compared to risk-weighted assets or tier-1 capital. Consid-
ering the right tail of the distribution across banks (95th percentile), the shortfall amounts
to as much as 5 percent of risk-weighted assets or 37 percent of tier-1 capital.

The financial stability implications more broadly may depend on banks’ other vulner-
abilities, as the uncertainty around an attack is likely to have more severe implications
for banks with less liquidity or less capital. Thus, we regress the fraction of days a bank
becomes impaired in one of our top-5 scenarios on the bank’s size, liquid asset share, its
unstable funding share and capital ratio.6 Table 2a shows the results. Consistent with our
results in Section 4.2, we find that larger banks are significantly more likely to become im-
paired (p-val<0.01, columns 1–5). As previously noted, this is a serious financial stability

6Unstable funding is defined as non-retail deposits, fed funds and repo borrowing, commercial paper,
trading liabilities, and other borrowing with maturity less than one year. The unweighted capital ratio is
tier-1 capital divided by total assets.
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Table 2: Relating impairment to bank characteristics. The tables shows estimates from lin-
ear regressions at the bank level of fraction of days impaired (averaged across shocks) on
the listed controls. Panel a pools all banks; Panel b restricts each regression by bank size as
noted at the top of each column. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(a) Individual variables.

Fraction of days impaired
(1) (2) (3) (4) (5)

Log assets 0.015∗∗∗ 0.009∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002)

Liquid asset share 0.094∗∗∗ 0.143∗∗∗
(0.034) (0.032)

Unstable funding share 0.052∗∗ 0.049∗∗
(0.023) (0.022)

Capital ratio 0.326∗∗∗ 0.357∗∗∗
(0.078) (0.074)

Adj. R2 0.019 0.006 0.013 0.007 0.014
Num. obs. 2688 2688 2688 2688 2688

(b) Splits by bank size.

Fraction of days impaired
(1) (2) (3) (4) (5)

All banks > 1 bn > 5 bn > 10 bn > 50 bn
Log assets 0.015∗∗∗ 0.041∗∗∗ 0.056∗∗∗ 0.084∗∗∗ 0.152∗∗∗

(0.002) (0.004) (0.011) (0.014) (0.035)
Liquid asset share 0.094∗∗∗ 0.170∗∗ 0.253 -0.225 -0.045

(0.034) (0.066) (0.178) (0.221) (0.381)
Unstable funding share 0.052∗∗ 0.127∗∗∗ 0.478∗∗∗ 0.713∗∗∗ 0.709∗∗∗

(0.023) (0.044) (0.109) (0.134) (0.219)
Capital ratio 0.326∗∗∗ 0.474∗∗ 0.493 2.843∗∗∗ 4.146∗∗

(0.078) (0.223) (0.608) (0.813) (1.864)
Adj. R2 0.019 0.167 0.321 0.476 0.554
Num. obs. 2688 627 178 118 37
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concern as stress at larger banks has more systemic consequences. Controlling for size,
we find that impairment is significantly related to more unstable funding (p-val<0.05,
columns 3 & 5). This is a further financial stability concern if we consider wholesale fund-
ing sources more likely to withdraw from an impaired bank. Potentially mitigating this in-
stability, we find that impairment is also related to higher capital (p-val< 0.01, columns 4
& 5) and more liquid assets (p-val<0.01, columns 2 & 5). Table 2b reports the same spec-
ification but restricting the sample to progressively larger banks. Results are similar in
this sub-sample, but the mitigating factor of more liquid assets is no longer significant
(columns 3–5).

4.5 Timed Attacks

A defining feature of cyber risk is that attacks may be targeted, with the intent to achieve
maximum disruption rather than financial gain. The extent to which an attacker is in-
formedwith respect to the payment system overall and the targeted institution specifically
can affect the magnitude of systemic risk associated with a cyber attack.

An important dimension of private information entails the timing of a cyber attack.
While payment volumes are high throughout the year, utilization varies depending on
the demand for transactions by both the real and financial sector. The most active days
see over 60 percent more total payments than the least active days (see Table 1). Perhaps
unsurprisingly, these large swings in payment value also correspond to large variation in
the network impact of a cyber attack. Even within the top-5 institutions, shares of total
payments are variable, and result in large swings in the transmission of shocks to other
banks over the course of the year.

This indicates that the timing of the cyber attack can heavily influence the magnitude
of impact. In this section, we evaluate how progressively higher levels of knowledge that
a cyber attacker may possess increase the attacker’s ability to inflict damage to the pay-
ment network, and to what extent information can be effectively used to disrupt financial
activity.

Public information. The first level is public information. Past studies document strong
seasonality in wholesale payment activity, with large, periodic increases in payment ac-
tivity over the course of a year (Klee, 2010; Furfine, 2000; Soramäki et al., 2007). A cyber
attack may therefore be timed to coincide with high-activity periods, so as to increase
the network impact. To illustrate this, we examine the counterfactual impact of a subset
of days coinciding with calendar periods documented by existing studies to have higher
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Figure 5: Relation between payment value and network impact. The figure shows a scatter-
plot of daily payments sent by one top-5 institution against the weighted share of impaired
institutions from the baseline scenario of the same top-5 institution.

than usual payment activity (referred to as “seasonal” days), and compare it an average
Fedwire day in 2018. Timed attacks on seasonal days increase weighted impact by about
11 percent on average.

Private information on a target institution. The second level is private information,
specifically pertaining to a target institution. A common form of cyber attack is an “ad-
vanced persistent threat” (APT), during which the attacker is undetected and may ex-
tract data on an institution’s activities and obtain information on the internal mechanisms
within the institution. For example, Mexico’s Bancomext and Chile’s Bank of Chile fell
victim to malicious actors who gained access into their systems but remained in stealth
mode for extended periods of time before exploiting systemweaknesses.7 These instances
primarily involved thefts on the order of millions of dollars. However, given a different
objective, such as inflicting the largest damage, an attacker could attempt to analyze the
compromised institution’s financial and payment activity. In the same vein, private in-
formation and insider knowledge may become available via direct and indirect forms of
insider threat (Randazzo et al., 2005).

In the context of payment networks, a valuable type of private information is under-
standing patterns in the individual institution’s payments. As hinted earlier, days inwhich
an institution conducts large payments are correlated with days in which the scenario

7https://www.wired.com/story/mexico-bank-hack/
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yields a large share of impaired institutions. Figure 5 plots the weighted share of impaired
institutions on a particular day against one top-5 institution’s total payments on that day.
As expected, we see that there is a positive correlation between the two measures. Days
with a high impact include many days that are seasonal days as well as days where the
attacked institution has high payments value.

For each of the five institutions, we identify days in which it individually has high
payment value in 2018. Attacks on days with high payment value translate into greater
network impact relative to seasonal days, and increase the network impact relative to the
average day by about 25 percent.

Private information on network interconnectedness. What is the largest possible shock
that can be inflicted on the network? This ex-post identification of worst-case days proxies
for circumstances under which an attacker is privy not only to private information regard-
ing a target institution’s payment activity, but also the underlying network and counterpar-
ties’ activities. The average of the maximum impact for a top-5 institution is considerably
large relative to an average day, with an increase in network impact by about 63 percent.
While access to such detailed information may be unlikely, it provides us a way to esti-
mate how much access to private information can magnify the systemic consequences of
a cyber attack, as well as serving as a reverse stress analysis.

In all of these examples, we show that the extent to which the attacker is privy to de-
tailed institutional and insider knowledge on the payment network, banks’ relations, and
banks’ operations can substantially heighten the systemic risk associated with a cyber at-
tack. One limitation of the payment network data is that we are not able to directly observe
the purpose of these payments. It is possible that an attacker that is able to extract further
information on payment characteristics, such as the purpose or underlying bank customer
could achieve greater disruption to the economy, for example, by timing disruptions to co-
incide with payroll dates or political events such as elections.

5 Liquidity Hoarding and Network Cascades

The baseline scenario assumes that all institutions other than the directly attacked insti-
tution continue to make payments as usual, even after they fail to receive expected pay-
ments from a core institution. To study a richer strategic interplay, we now consider an
augmented scenario, which we refer to as the cascade scenario, in which institutions react
to abnormal imbalances in their intraday reserve positions.
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The absence of payments from an affected core institution is likely not only to create
large liquidity dislocations at the end of the day, but also to have a significant impact on the
intraday balances of counterparties. Relative to an operational outage, a suspected cyber
attack may be accompanied by more uncertainty and lack of common knowledge regard-
ing the source, magnitude, and implications of the attack. Given the malicious intent of a
cyber attack, market participants may also be concerned about extended disruption and
delayed resolution. Uncertainty regarding the nature of a suspected cyber attack may also
be sustained endogenously — target institutions may be reluctant to disclose to counter-
parties and clients the exact state of their internal systems, andmay delay communications
until they acquire enough information. Such delays can also contribute to asymmetric in-
formation, prompting institutions to stall payments and attempt to retain asmuch liquidity
as possible (in risk of operational default). Finally, even if a particular bank is happy to
send payments, its customers may hoard balances or try to effect payments through other
means (Duffie and Younger, 2019).

5.1 Intraday Reaction Functions

An institution may take notice of abnormal payment activity if it observes unusually large
deficits in its intraday liquidity position. Let ηi

τ,t be the net payment deficit of institution
i ∈ U on day t up to minute τ (total outflows minus total inflows). We assume that each
institution i uses a trigger strategy ri ∈ R that characterizes its intraday reaction to changes
in its net payment deficit: if ηi

τ,t surpasses some threshold, institution i stops sending pay-
ments for the rest of the day. In our main specification, we take this threshold value to be
themaximum realized net payment deficit of the institution in the entire year of 2018. This
threshold, denoted ηi

max, corresponds to the maximum difference that an institution had
between its payment inflow and payment outflow under normal operations, at the minute
level. Bank i’s reaction function is then given by

ri({ηi
τ,t|τ ≤ k}) =

send payments at minute k if ηi
τ,t < ηi

max for all τ ≤ k on day t

hoard liquidity otherwise.

There are twodifferent channels thatmay trigger a bank to hoard liquidity. The primary
channel is due to deficits that grow as the institution affected by the cyber attack fails to
remit payments that it would have under the normal course of the day. When the volume
of such payments to institution i ∈ Zc becomes sufficiently large, institution i may halt
its own payments in order to preserve and absorb incoming liquidity, in anticipation of
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aggregate illiquidity at the end-of-day. Thus, the trigger strategy ri can be interpreted as
the reaction to an informative signal (i.e. ηi

τ,t) through which institution i becomes aware
of the possibility of a cyber attack on a large systemic institution, or as an optimal liquidity
management strategy tomaximize the probability that its end-of-day reserve balance does
not fall below its internal target, i.e. ri

t > bi
t.8

Asecondary channel thatwould trigger a bank to hoard liquidity arises from illiquidity
spillovers that hoarding behavior of institutions inflicts on other institutions. Relative to a
model without hoarding or strategic reactions to intraday reserves imbalances, the liquid-
ity hoarding behavior of other banks collectively contributes to additional non-payments.
An individual bank, by halting payments, can retain liquidity, leading to endogenous liq-
uidity traps. This can, in turn, exacerbate the reduced flow of payments, as other banks,
which may not have been significantly impacted by the first wave, also pass their trigger
strategy and amplify the initial liquidity shortage. Importantly, from a counterparty’s per-
spective, the primary institution that is impaired due to the cyber attack, and secondary
institutions that hoard liquidity may be indistinguishable. As a result, even if the network
distance between an institution and the primary target institution is large, the institution
trigger strategy is aptly described as before – either due to concern of a cyber attack or
prompted to liquidity concerns.

Of course, there are other ways to model banks’ endogenous reactions to intraday re-
serves imbalances as well as their reaction to the failure to receive payments from coun-
terparties. We believe that this approach is parsimonious and captures the dimensions
through which banks may respond to inform the scale of the cascade. It is also possible
to envision a scenario where a malicious attacker publicizes the attack, and even banks
that were not exposed to any missed payments begin to hoard liquidity, in which case the
cascades would be even larger than those we model here.

5.2 Impairment in Cascades

When banks respond to intraday payment activity, banks, responding to abnormal liq-
uidity shortages from deficits in payment inflows, may individually seek to improve their
liquidity positions by forgoing payments. While this imposes network externalities, the
overall impact on liquidity dislocations are unclear. Institutions may collectively resolve
uncertainty about their end-of-day liquidity conditions by hoarding liquidity. Setting aside

8Note, this implies that for each institution, there is exactly one day in which it reaches ηi
max at some

moment within the day. To avoid mechanical liquidity hoarding, we exclude the institution from reactions
on the day that ηi

max is actually reached, though doing such does not significantly affect the results.
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Figure 6: Empirical distribution of network impact for cascade scenario. The figure shows
the distribution of the network impact for the baseline scenario (blue) and the cascade sce-
nario (red), averaged across the top-5 institutions. The left panel shows the unweighted share
of impaired institutions. The right panel shows the share of impaired institutions weighted
by assets.

the large quantity of unsettled payment demand, this would imply that fewer banks may
be impaired, as defined in Section 4.1, as a result of the cyber attack.

Our results suggest that this is not the case. Figure 6 shows the empirical distribution of
the cascade scenario and compares it to the baseline scenario. In bothwe compare averages
over each of the days for an attack on each of the top-5. We find that strategic liquidity
hoarding, if anything, amplifies the network impact of the cyber event. This indicates that
taking into account strategic behavior of payment network participants, a cyber attack has
even greater systemic consequences.

The cascade scenario provides us with a high-frequency counterfactual illustrating
how liquidity hoarding evolves over the course of a given day (Fedwire payments for day
t occur between 9:00pm EST on day t− 1 and 6:30pm EST on day t). Figure 7 illustrates
results on intraday dynamics of liquidity hoarding behavior from two cascade scenarios
(attacks on top-5 banks A and B), averaged across days in 2018. Over the course of the day,
more and more counterparties of the attacked institution pass their trigger threshold, and
start to hoard liquidity. Eventually, their suspended payments also cause their recipients
to start hoarding and so on. The pace at which hoarding accelerates over the day is driven
by a combination of the primary and secondary channels. First, in a normal day, payment
activity intensifies towards the afternoon. As a result, the original attacked institution’s
failure to remit payments affects a broader set of institutions later in the day. As the day
unfolds, the number of institutions that switch to liquidity hoarding increases, even more
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Figure 7: Intraday dynamics of liquidity hoarding. The figure shows, over the course of the
Fedwire day, the average number of institutions triggered to hoard liquidity for the cascade
scenario of two top-5 institutions.

institutions pass their intraday trigger threshold, and revert to self preservation as well.

5.3 Forgone Payments in Cascades

A stark difference, relative to the baseline scenario, is in the value of payments that are
not made as a result of hoarding behavior. Relative to before, the systemic implications
are driven not only from the compromised liquidity positions of financial institutions, but
from the failure to facilitate vital financial services and operations necessary for financial
markets and the broader economy. Under the cascade scenario, forgone transactions, in
terms of value, represent from five to 35 percent of total daily payment value, and amount
from one to eleven times daily GDP. Figure 8 provides a a distribution of the average for-
gone transactions by payment value associatedwith cascade scenarios on the top-5 institu-
tions. The range of the distribution illustrate the variability of the vulnerability in calendar
time as discussed in Section 4.5. As expected, a significant fraction of forgone value can at-
tributed to the shocked institution, which in our baseline scenario is a top-5 institution by
payment value. The net forgone volume represents forgone payments by value for hoard-
ing institutions, which still reaches 0.75 times daily GDP on average.

Wholesale payments such as those in Fedwire can be broadly categorized as payments
related to real economic activity, e.g. firms paying their suppliers, and payments related to
financial activity, e.g. interbank loans. We attempt to identify these two categories using a
business function code that institutions can apply to each of their Fedwire payments. We
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Figure 8: Distribution of total value of forgone transactions. The figure shows the distri-
bution of the value of transactions forgone as a consequence of banks’ liquidity hoarding
behavior in the cascade scenario, averaged across the top-5 institutions. Payment value is
scaled by daily GDP, where the number of days is given by Fedwire days. The net forgone
value excludes payments by the shocked institution.

proxy for real-activity payments by using the code “Customer Transfer” and for financial-
activity payments using the code “Bank Transfer.” Figure 9 shows the distribution of pay-
ments across real and financial activity in normal times (blue bars) and compares it to the
distribution of forgone payments in the cascade scenario (red bars). We see, first, that the
distribution of forgone payments varies dramatically more across days than the distribu-
tion of normal payments (whiskers). This is consistent with the high variance of network
impact across days and the implied tail risk for cyber events (Section 4.5). In addition,
we see that transactions with other financial intermediaries (“Bank Transfers”) represent
the majority of forgone payments and are overrepresented compared to the distribution
of normal payments, both in terms of value (Figure 9a) as well as in terms of volume
(Figure 9b). This may be viewed as attenuating the impact of the cyber event if we think
that such payments can more easily be handled via back-up systems, e.g. because of high
value but lowvolume or because of a high potential for netting.However, financial-activity
payments could also be assigned a high multiplier in terms of real activity they support
indirectly.
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Figure 9: Distribution of transfer types in normal payments and in the cascade scenario’s
forgone payments. The figure shows the distribution of Fedwire business function codes
used among payments in normal times (blue), and the distribution used among forgone pay-
ments in the cascade scenario (red, averaged across the top-5 institutions). Figure 9a shows
the distribution in terms of payments value and Figure 9b in terms of payments volume. Bars
represent the average impact across days; solid whiskers represent the p25/p75 range and
dashed whiskers the p1/p99 range across days. All statistics are “net” (excluding payments
by the shocked institution).

6 Correlated Vulnerabilities

In this section, we explore scenarios in which multiple institutions are directly affected
due to technological or other commonalities. As in the baseline scenario, we assume in
the analysis in this section that banks do not respond strategically throughout the day.

6.1 Technological Commonality

Existing research on financial networks examines transmissions between banks linked
through interbank borrowing and other counterparty relationships. In the context of cy-
ber, a salient concern is risk associated with technological commonality between financial
institutions. As linkages between institutions in a network arise from financial motives, a
financial networkmay not be structured to be resilient to shocks arising from technological
similarities.

Third-party service providers present vulnerabilities especially when a provider is
common to many institutions. However, third-party providers servicing many small insti-
tutionsmay offer improved cyber resiliency relative towhat could be achieved by small in-
stitutions individually. For example, a third-party service providermayhave the economies
of scale or may be better at specializing in cyber security, thereby offering a safer option
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to smaller organizations. At the same time, with third-party service providers, a classi-
cal free-rider problem can arise because agents may individually have weaker incentives
to monitor the common provider which erodes governance and oversight (Shleifer and
Vishny, 1997). Further, it may be practically challenging for banks to effectively monitor
the resilience of their third (and fourth and fifth) party providers.

The Federal Reserve has highlighted the importance of managing risk from financial
institutions’ service providers including activities beyond traditional core bank processing
and information technology services.9 While the Federal Reserve supervises some key
third party service providers, the connections between institutions from shared service
providers are not likely to bewidely understood by the network. In Section 6.2,we consider
a reverse scenario to study the risks posed bymany small banks with shared technological
vulnerabilities, such as a common third-party service provider.

Systemic concerns are greaterwhenmultiple systemically relevant banks share a single
service provider.We analyze a scenario inwhichmultiple large institutions share a service
provider, making use of regulatory data on customer lists of significant service providers.
The service provider specializes in data and systemsmanagement and serves a set of large
andmedium-sized banks.We assume that a successful cyber attack on the service provider
disrupts client institutions’ payment operations as if they were directly attacked.

Figure 10 shows the empirical distribution of the scenario and shows that a shock to
the set of large and medium banks can have an outsized impact on the payment network.
Similar to the baseline scenario, theweighted share of impaired institutions is several times
greater than the unweighted share. However, the overall magnitude is greater than the
effect of an attack on a single top-5 institution with an average weighted impact of 60
percent. This points to the potential for a third-party service provider, by simultaneously
impairing multiple institutions, to cause a systemic event that is amplified through the
payment network and propagates through the U.S. financial system.

6.2 Reverse Scenario

A clear implication of the baseline scenario is that a successful cyber attack on any sin-
gle one of the top-5 institutions has the potential to have significant spillovers to other
banks, amplifying the attack through the financial system. However, these large institu-
tions can take advantage of economies of scale in investment in cyber defenses and, as
systemically important institutions, they are also subject to heightened supervisory stan-

9See, for example, SR-13-19 Guidance on Managing Outsourcing Risk (https://www.federalreserve.
gov/supervisionreg/srletters/sr1319.htm).
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Figure 10: Cyber vulnerability through a third-party service provider. The figure shows
the distribution of the network impact for the scenario with a disruption originating from a
third-party service provider. “Share” represents the unweighted percent of institutions that
become impaired. “Weighted share” represents the percent of institutions that become im-
paired, weighted by asset size. “Net weighted share” refers to the percent of institutions that
become impaired, net of the shocked institutions.

dards and stringent capital and liquidity regulation. They also dedicate large amounts of
resources to cyber resiliency, meaning that from the perspective of a malicious attacker, a
cyber attack on the largest institutions would be costly. A malicious actor may therefore
instead target institutions that may be relatively easier to successfully infiltrate. In par-
ticular, smaller institutions, may have fewer resources to defend against a sophisticated
attack. With this in mind, we run a reverse scenario — estimating what is the minimum set
of smaller institutions necessary to impair a top-5 institution in the payment network.

With a large amount of time and computing power, it would be possible to estimate all
the different permutations of institutions that would succeed in impairing one of the top-5
institutions, or resulting in the impairment of a given share of payments or banking assets.
In order to implement this approach more parsimoniously, we group institutions by as-
set size, since a number of regulations and supervisory standards are implemented with
cut-offs based on asset size. Implicitly, this analysis highlights that supervisory and regu-
latory standards based on bank size may not take into account the network externalities
of smaller banks with respect to a cyber attack.

Our reverse scenario is implemented as follows. Two sets of potentially shocked in-
stitutions, UN ⊂ U are considered: (i) “mid-sized” entities with asset size between $10
billion and $50 billion, denoted U50; (ii) “small-sized” entities with asset size below $10
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billion, denoted U10. These cutoffs are chosen to identify subsets of banks under mean-
ingfully different and progressively relaxed regulatory and supervisory conditions.10 In
setting these cut-offs, we are motivated by Federal Reserve Supervisory guidance such
as that laid out in SR 12-1711 which makes asset size based distinctions in a supervisory
framework which differs at the $50 billion in assets cut-off. This framework specifically
does not apply to community banking organizations, defined as banks under $10 billion
in size. Also, the Dodd-Frank Act only requires banks with more than $10 billion in total
assets to be subject to regulatory oversight by the CFPB and to be required to perform and
report the results of annual firm-run stress tests. In order to focus on small banking institu-
tions, we exclude any accounts associatedwith government-sponsored entities (including
federal home loan banks), FMUs, and branches of FBOs.

For each set of potentially shocked institutions UN ∈ {U10, U50}, for each top-5 insti-
tution j, and for each day t, we identify the smallest subset of UN which, if successfully
attacked, would lead to the top-5 institution becoming impaired, according to the impair-
ment definition in Section 4.1. Formally, we identify the set Umin

Njt ⊂ UN which is given
by

Umin
Njt = arg min

U′⊂UN
|U′| s.t. j ∈ B for (U′, R, B) on date t.

We then identify for each day the minimum number of entities required to impair any
one of the top-5 institutions, i.e. the set Umin

Nt = arg minj{|Umin
Njt |}j. We outline the results

of the reverse scenario in Table 3, panel (a). The table outlines both the number of days in
which a top-5 institution is impaired or not, along with summary statistics of the number
of institutions in Umin

Nt for t in 2018.
Our results suggest that a successful attack on small institutions could be amplified

dramatically through its effect on top-5 institutions. On 23 of the 250 Fedwire days in 2018,
a coordinated cyber attack on a set of small institutions, if judiciously selected, could re-
sult in at least one of the top-5 institutions’ reserves falling below its liquidity threshold.
Among those dayswhere a potential impairment arises, an average of 24 small institutions
successfully attacked were sufficient. Raising the size to mid-sized entities suggests even
more amplification; we find a greater number of days with potential impairments, and a
smaller number of successfully attacked institutions required to impair a top-5 institution.

The amplification from small banks can be attributed to two factors. First, though small
in size, these institutionsmay collectively have large payments by value. Second, on certain

10Eisenbach, Lucca, and Townsend (2021) provides a detailed study on bank supervision based on size.
11https://www.federalreserve.gov/supervisionreg/srletters/sr1217.htm
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Table 3: Summary statistics of reverse scenario. The table reports the distribution for the
reverse scenario of |Umin

Nt | for entities under $10 billion in asset size, N = 10, and entities
between $10 and $50 billion in asset size, N = 50. Panel (a) excludes branches of FBOs and
panel (b) includes them. “Days with Impairment” indicates the number of days for which
there existed at least one set of banks in UN for which a top-5 institution would become
impaired.

Impairment p1 p25 p50 p75 p99 Mean SD Days with Impairment
(a) Excluding branches of FBOs

U10 1 1 5 24 221 24 50 23 of 250
U50 1 1 3 8 111 10 25 101 of 250

(b) Including branches of FBOs
U10 1 1 2 6 381 11 43 180 of 250
U50 1 1 1 1 6 1 1 250 of 250

days, end-of-day reserves of a top-5 institution may be close to its impairment threshold.
On such a day, the top-5 institution’s end-of-day reserve buffers may be insufficient to
cover unexpected payment deficits even from small institutions. Combined, these factors
suggest that vulnerability can be reduced both through strengthening the cyber resilience
of small institutions as well as through robust liquidity buffers for the largest institutions.

To the extent that supervisory scrutiny can help ensure cyber resilience,we also explore
the impact of a potential attack on branches and agencies of FBOs. These firms have access
to Fedwire payments, but, much like small U.S. banks, are not subject to the heightened
supervisory scrutiny at large domestic institutions. Furthermore, many FBO branches are
“small” by assets, but exhibit outsized payment activity.

Table 3, panel (b) shows results of our reverse scenario when we allow the sets U10

and U50 to include FBO branches. After including FBO branches, we find that there exists
a subset of banks that results in an impairment of a top-5 institution for 72 percent (U10)
and 100 percent of days (U50). For themajority of Fedwire days in 2018, two or fewer insti-
tutions successfully attacked are sufficient to impair at least one of the top-5 institutions.
Strikingly, the reverse scenario also indicates that, on an average day in our sample, only
one mid-sized institution in U50 is necessary to impair a top-5 institution. Several factors
drive these results. First, FBO branches are responsible for significantly larger value of
payments relative to their asset size. Second, our results indicate greater payment flow
between FBO branches and core institutions relative to a domestic institution of similar
size. The large role that these institutions play in the payments network suggests that it is
important to ensure their cyber resiliency in the context of the U.S. payment system.
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7 Feedback and Amplification to Other Financial Markets

An integral feature of the financial system is the interdependence of multiple markets,
often linked by institutions and operations. Because the wholesale payment system in-
cludes payments to other market infrastructure entities, we can trace the implications of
cyber attacks beyond the payments system. Examples of such othermarket infrastructures
are exchanges, central counterparties, and other payments systems, commonly referred to
as financial market utilities (FMUs). The top-5 participants in the wholesale payment sys-
tem are also key players in the operation of FMUs. As such, the underlying links between
critical financial networks can serve as a nexus through which cross-exposures arise. In
this section, we consider the potential for feedback and amplification in a multi-network
environment involving Fedwire and FMUs.

The impact of a cyber attack that disrupts payments in Fedwire can interact with FMUs
through two channels. First, a cyber attack can indirectly affect an FMU if payment disrup-
tions in Fedwire impair the FMU’s liquidity and thereby propagate and trigger settlement
failures and illiquidity in financial markets more broadly. This indirect effect is additive to
the direct effect on the FMU of the impairment of a large participant. Second, a cyber at-
tack can directly affect the operations of FMUs, which offer unsubstitutable services such
as netting.12 These can lead to a sudden and severe scarcity in liquidity intensive opera-
tions, namely wholesale payment and settlement, creating an illiquidity spiral.

We begin with the first channel, estimating the disruption in payments sent to Desig-
nated Financial Market Utilities (DFMUs) within our main scenario (attack on a top-5 in-
stitutions).13 Each of the top-5 institutions accounts for a sizable fraction of total daily pay-
ments received by DFMUs, 12 percent on average. A successful cyber attack on a large U.S.
institution would thus also have a significant impact on the liquidity of the DFMU. That
would also potentially imply an additional liquidity constraint on non-affected DFMU
participants, as many DFMUsmaintain credit line agreements to access liquidity, in many
cases provided by DFMU participants.

We also analyze the second channel, a cyber attack that directly affects a DFMU, and
how that might impact the financial system. We consider two key DFMUs: the Clearing
House Interbank Payment System (CHIPS) and Continuous Linked Settlement (CLS).
CHIPS is a wholesale payment system that offers multilateral netting benefits, and there-

12For example, Fleming and Keane (2021) estimate the impact of interdealer netting of Treasuries in the
central clearing party (CCP) to be almost $300 billion, on average. Therefore in a cyber attack on that CCP,
participants would forego those netting benefits.

13For a list of DFMUs, see https://www.federalreserve.gov/paymentsystems/designated_fmu_
about.htm.
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fore enables banks to economize on liquidity relative to the real-time gross settlement of
Fedwire. CLS provides settlement across different currencies’ payment systems and is a
key part of the infrastructure for global foreign exchange markets. As the members of
CHIPS or CLS also have access to the Fedwire network, institutions can substitute pay-
ments meant to occur on these networks onto Fedwire. However, the key benefits offered
by the FMUs are not substitutable. Specifically, institutions would no longer be able to
realize the liquidity and capital savings of netting (CHIPS and CLS) and counterparty
risk protections (CLS).14 If banks are forced to settle activity without access to FMUs, the
system as a whole could experience a severe shortage of liquidity with a corresponding
impact on intermediation of market trades.

Although we are not able to directly observe the underlying transactions between in-
stitutions within the systems of each of these DFMUs, both CHIPS and CLS ultimately
rely on Fedwire to settle participants’ net payment obligations. We are therefore able to
observe the flows between banks and DFMUs on Fedwire and combine it with informa-
tion on gross DFMU activity from public data. The gross value of payments processed
within CHIPS and CLS are large, each reaching about $1.7 trillion daily.15 To shed light
on the magnitude in the liquidity deficit resulting from an attack on an DFMU, we cal-
culate the netting benefits of the DFMU by taking the ratio of the (gross) activity on the
DFMU to the (net) flows to the DFMU on Fedwire.16 Then we can approximate the value
of additional payments each bank would have to divert to Fedwire if the DFMU were not
available. On each day for each bank, we multiply the daily aggregate gross-to-net ratio
by the each individual bank’s daily payments to the DFMU.

Figure 11a shows that, both for CHIPS and for CLS, the additional payments value
that would have to be executed on Fedwire would be massive, adding to normal Fedwire
payments value by a factor of 2.11 to 1.34 on average, respectively. For CHIPS the ratio
varies between 1.25 and 3.65 while for CLS the variation is considerably larger, between
0.16 and 4.23.

In addition, we quantify the liquidity impact of losing the inoperable DFMU’s netting
benefits by scaling the excess payments by the actual end-of-day reserves balances of each
institution, shown in Figure 11b. The reserves balance of each bank represents the bank’s

14In the case of CLS, an added complication is the netting of transactions involving multiple currencies,
which requires coordination across multiple central bank wholesale payment systems.

15For CHIPS, we use the average daily gross value of payment in 2018, reported on CHIPS’ website. CLS
publicly reports daily gross value at the monthly frequency. Hence, the analysis on CLS is based on average
daily gross value of payment in each month of 2018.

16Note that payment flow to the DFMU on Fedwire is a proxy for net payment activity on the DFMU. It
represents the liquidity the DFMU requires participants to hold which, in turn, is determined primarily by
the participant’s payments activity on the DFMU.
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(a) Scaled by daily payment flow.
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(b) Scaled by daily reserve balances.

Figure 11: Distribution of failed payments. This figure shows the distribution of the esti-
mated value of failed payments on CHIPS and CLS, scaled by daily Fedwire payments made
by each bank (panel a) and by daily reserve balances of each bank (panel b). Bars represent
the average ratio; solid whiskers represent the p25/p75 range; dashed whiskers the p1/p99
range. The blue bar includes all member banks of the DFMU, and the red bar includes only
top-5 banks.

liquidity available to process payments. Scaling by end-of-day reserves balances enables
us to gauge how constrained individual institutions may become in processing a sudden
jump in payments. The excess payments amount to 3 and 2 times banks’ daily reserve
balances on average, for CHIPS and CLS, respectively. This indicates that a cyber attack,
which results in an impairment of DFMU operations, whether direct or indirect, can lead
to a sudden scarcity in system liquidity.

8 Impact of Multi-Day Cyber Attack

A cyber attack that shuts down critical infrastructure for an extended period of time may
generate even larger negative spillovers to the economy (Council of Economic Advisers,
2018). In the context of financial stability, an extended disruption to key institutions or
FMUs could be particularly destructive as banks’ incident response plans may not be de-
signed to combat long-term disruptions. This section extends our analysis to evaluate the
multi-day impact of a cyber attack.

There are several challenges to assessing the multi-day impact of a cyber attack. A cy-
ber attack with longer term disruptions is likely to be met with actions from various stake-
holders, including regulators and central banks. Like any shock that leads to illiquidity, a
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Figure 12: Multi-day impact of a shock to the top-5 institutions. The figure shows the dis-
tribution of net weighted share of impaired institutions for an attack that lasts from 1 to 5
days for each of the top-5 institutions. Panel (a) shows the distribution across days, averaged
across the top-5 institutions; panel (b) shows the distribution across the top-5 institutions,
averaged across days.

central bank may be able to counteract transient illiquidity episodes. Understanding these
limitations, we approach the multi-day scenario by extending our baseline scenario from
one to up to five days, under the assumption that banks, excluding the shocked institu-
tion, continue to send payments as usual. It is likely that banks’ payment behavior would
change following a successful cyber attack (e.g. as in the cascade scenario in Section 5).
However, our approach allows us to analyze how the severity of liquidity dislocation may
grow with each incremental day of operational disruption, and the nature of emergency
liquidity support that may be required in the aftermath of a cyber attack. It also reflects
our preference to keep the scenario as simple as possible to allow for clear interpretation.

We extrapolate our baseline scenario to consider the cumulative set of impaired insti-
tutions as the shocked institution remains inoperable for up to five days. Following the
shock, with each incremental day, we identify the additional set of institutions that be-
come impaired. As a result, the x-day net weighted share is equal to the share of institu-
tions,weighted by assets, that become impaired as a result of payment deficits arising from
day 1 to day x. We adapt the single-day impairment definition for the multi-day scenario:
an institution is considered impaired in the scenario if, within the x days, the end-of-day
counterfactual reserve balance falls below the impairment threshold of that given day.17

Figure 12a summarizes the average network impact across the top-5 scenarios, as the
17Varying the multi-day impairment definition does not yield meaningful differences in the results.
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disruption lasts from one to five days. There are two notable observations regarding the
changes in the distribution. First, the distribution shifts to the right as the disruption to
the shocked institution persists for longer periods of time, with the average net weighted
share of impaired institutions increasing frommore than 30 percent within the first day to
almost 60 percent by the fifth day.

Second, the distribution becomes more concentrated as the disruption is prolonged.
This feature is evident when breaking down the network impact by scenarios of each of
the top-5, shown in Figure 12b. Once a shock persists for five days, the network impact of
an attack on any of the top-5 impairs over 50 percent of the banking sector by assets and
the differences across the top-5 are considerably smaller than on day one.

This is partly due to the fact that prolonged disruptions enable the shock to propagate
further throughout the network. From the first to the second day, the average size of im-
paired institutions almost doubles from $44 billion to $85 billion in assets as the shock is
transmitted to an increasing number of core institutions with high payment value. Over
the next days, the average size of incrementally impaired institutions decreases, reaching
$28 billion on average by the fifth day. Overall, this suggests that liquidity issues spread
first through the core and periphery institutions dependent on the shocked institution,
and over time, reach other periphery banks within the network.

An alternative method of evaluating the network impact in a multi-day scenario is to
evaluate the severity of the liquidity dislocations. For a multi-day scenario, institutions’
reserve holdings may drop below material supervisory thresholds. In such an event, ex-
traordinary actions would be required by regulators and discount window to ensure that
banks operate as usual.

Figure 13 shows that the share of institutions whose balance falls below zero becomes
significant over time, both in terms of the raw and the size weighted share. By the fifth day,
the share and weighted share of institutions with negative balance both reach 37 percent
on average, and up to a maximum of 47 and 45 percent, respectively.

Since our analysis shows that nearly half of institutions would run out of reserves by
day five, it is useful to quantify the liquidity support that would be required to restore
reserve balances to the impairment threshold of the baseline analysis.For each multi-day
scenario, we calculate the liquidity shortfall in the system, defined by gap between institu-
tions’ impairment thresholds and their counterfactual reserve balance, aggregated across
all impaired institutions. We find that following a cyber attack, as shown in Figure 14,
the average liquidity shortfall grows from $122 billion in the first day, to an average of
$1 trillion by the fifth day. In the 2018 sample period, this would have implied an expan-
sion of the Federal Reserve balance sheet of over 20 percent, highlighting the magnitude
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Figure 13: Share of institutions with negative counterfactual reserves balance. The figure
shows the distribution of the share of institutions whose counterfactual end-of-day reserves
balance drops below zero as a result of an attack on a top-5 institution that lasts 1 to 5 days.
The left panel shows the average share across the top-5 scenarios, including the shocked
institution. The right panel shows the results excluding the shocked institution.

of liquidity injections required just to support regular payment activity. This estimate ap-
proximates as well the potential disruption that would arise if the books and records of
an institution were impaired, as liquidity provision would not resolve issues regarding
payment allocations at the bank customer level.

9 Conclusion

Our analysis demonstrates how cyber attacks on a single large bank, a group of smaller
banks or a common service provider can be transmitted through the payments system. A
cyber attack on any of the most active U.S. banks that impairs any of those banks’ abilities
to send payments would likely be amplified to affect the liquidity of many other banks in
the system. The extent of the amplification would be even greater if banks respond strate-
gically, which they are likely to do if there is uncertainty about the attack. The impact
on geographies with concentrated banks may be even larger. We also identify other ways
that the system may become impaired that highlight the importance of all banks in the
network, not just the largest banks. First, if a number of small or midsize banks are con-
nected through a shared vulnerability, such as a significant service provider, this could
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Figure 14: System liquidity shortfall. The figure shows the distribution of aggregate liquid-
ity shortfall resulting from an attack that lasts from 1 to 5 days, averaged across the top-5
scenarios.

result in the transmission of a shock throughout the network. Similarly, banks with a rel-
atively small amount of assets but large payment flows also have the potential to impair
the system.

While the shock we assume is extreme in some ways — a complete inability to send
payments — it is conservative in others. Our extensions suggest potential spillovers out-
side the payment network such as to short term creditors that provide liquidity to impaired
banks. Allowing creditors and customers to run without the ability to realize additional
liquidity through the sale of liquid assets would surely make our results even larger. If a
cyber attackwere to compromise the integrity of banks’ systems, the reconciliation and re-
cuperation process would be an unprecedented task. This could have severe implications
on the stability of the broader financial system vis-à-vis spillovers to investors, creditors,
and other financial market participants. One shortcoming of the analysis is that while we
see payment flows among banks, we do not know the purpose of the flows. Therefore we
cannot measure how these flows will affect customers and borrowers and the real econ-
omy. In future work, we hope to explore how borrowers and other counterparties would
respond.
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Appendix

A Classifying Impaired Institutions

As a robustness exercise, we examine a variation that excludes from the set of impaired in-
stitutions any banks that are impaired but do not receive any payments from the shocked
institution on that day. Figure 15 shows results for the average network impact, after ex-
cluding the the subset of banks that satisfy the above criteria. The weighted share of im-
paired institutions remain large, while we see a noticeable decrease in the unweighted
share of impaired banks. These results indicate that, consistent with the main analysis,
that network impact is primarily driven by large, core institutions.
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Figure 15: Average network impact for alternative impairment classification. The figure
shows the distribution of network impact from the baseline scenario where we exclude from
the set of impaired institutions any banks that are impaired but do not receive any payments
from the shocked institution on that day.

B Detail on Impairment Measure

Table 4: Distance from impairment threshold. This table summarizes statistics on banks’
average z-score for reserves over 2018, weighted by asset size. The z-score measures banks’
distance, in standard deviations, from their 30-day rolling means in the sample period.

p1 p5 p25 p50 p75 p95 p99 Avg. St. dev.
-.4996 -.4565 -.1570 -.0342 .0588 .2422 .6300 .4852 63.5251
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Figure 16: Liquidity buffer relative to daily reserve balances for top-5 banks. This plot
shows how the liquidity buffer in the impairment threshold, the two standard deviations of
banks’ end-of-day reserve balances, varies over time, relative to the daily end-of-day reserve
balances for the top-5 banks.

C Impact of Cyber Attack by Geography

Figure 17: Geographic impact at the county level. The figure shows the average impact of
the baseline scenario, where impact is measured by the deposit share (percent) of impaired
institutions within each state. Impact excludes the shocked institution.
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