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Abstract 

We offer a parsimonious model of the reserve demand to study the trade-offs associated with various 

monetary policy implementation frameworks. Our model considers a reserve demand function that 

encompasses banks' preferences for reserves in the post 2007-2009 financial crisis world and incorporates 

shocks to the demand for and the supply of reserves. We find that the best policy implementation 

outcomes are realized when reserves are somewhere in between scarce and abundant. This outcome is 

consistent with the Federal Open Market Committee's 2019 announcement to implement monetary policy 

in a regime with an ample supply of reserves. 
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1 Introduction

A monetary policy implementation framework describes the targets and tools a central

bank uses to transmit its desired stance of monetary policy to financial markets and the real

economy. An implementation framework specifies, e.g., a target interest rate, reserve require-

ments, the rate of remuneration on reserves, the discount rate, tools—such as open market

operations—used to adjust the quantity of reserves, parameters associated with standing

repo and reverse repo facilities, the issuance of central bank bills and so on. Over time and

across jurisdictions central banks have chosen a wide variety of monetary implementation

schemes. Although monetary economics typically abstracts from implementation issues by

assuming that the central bank achieves its policy stance by choosing the policy interest rate,

such an assumption is not at all innocuous. In practice, the way in which monetary policy

is implemented can constrain the choice of feasible policy stances and, conversely, the choice

of a policy stance has implications for how the policy should be implemented. This paper

attempts to shed some light on what constitutes an optimal implementation framework.

The 2007-2009 financial crisis and its aftermath highlight some of the interactions be-

tween a policy stance and implementation strategies. A conventional policy response at the

outset of the financial crisis would call for negative nominal policy rates. However, it is

challenging to implement non-negligible negative nominal policy rates in an economy with

physical currency. As a result, many central banks adopted new policy tools, such as forward

guidance and large-scale purchases of long-dated assets—quantitative easing—to provide ad-

ditional stimulus (Bernanke, 2020). While large-scale asset purchases were effective at easing

financial conditions, they also dramatically increased the amount of reserves supplied to the

banking system. The pre-crisis tools for controlling overnight interest rates—such as open

market operations via overnight repo and reverse-repo transactions—became ineffective since

open market operations that result in small changes in the supply of reserves cannot affect

overnight rates as reserves are no longer scarce. In response to the impotence of traditional

tools, central banks introduced new and additional ones, such as payment of interest on re-

serves and overnight repurchase and reverse repurchase facilities, to better control the policy

rate (Ihrig et al., 2015).

The framework for monetary policy implementation continues to evolve to this day. In the

months prior to the coronavirus pandemic, central banks around the world were unwinding
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their responses to the financial crisis and “normalizing” their policy stances. However, the

disruptions in money markets in September 2019 and those associated with the Covid-19

pandemic temporarily stalled the normalization process and led policymakers to once again

reassess their implementation frameworks. As economic conditions improved, central banks

resumed reducing the size of their balance sheets, bringing on board lessons learned since

September 2019 that will likely shape the narrative for monetary policy implementation

frameworks into the foreseeable future.

In this paper, we develop a simple model of the banking system’s demand for reserves

to better understand the choices policy makers face when selecting a monetary policy im-

plementation framework. Throughout we focus on the experience of the Federal Reserve to

create an intuitive link between theory and practice. Our model builds on the seminal work

of Poole (1968): a model where banks hold reserves to meet reserve requirements, borrow

or lend them in an interbank market to adjust end-of-day reserves, and face a late-period

payment shock that can drain reserves after the interbank market closes and force banks

to borrow from the central bank discount window.1 We generalize the Poole (1968) model

along several dimensions. First, we consider a reserve demand function that captures banks’

preferences for reserves in the post-crisis world beyond required reserves. Second, we include

shocks to banks’ reserve demand functions that reflect the increased uncertainty associated

with estimating the banking system’s demand for reserves in the post-crisis period. And

finally, we introduce shocks to supply of reserves to incorporate uncertainty that arises from

factors outside the Federal Reserve’s control, such as changes in the balances that the Trea-

sury Department holds at the Federal Reserve or in the balances held at the overnight reverse

repo facility, both of which have become rather pronounced and important in the post-crisis

period.

Our model generates a downward sloping reserve demand curve with three main regions—

a region of “high” aggregate reserves, a region of “low” aggregate reserves and a smooth

transition between the two—that is consistent with the demand for reserves estimated by

Afonso et al. (2023b). Through the lens of our model, we define the amount of reserves

that a central bank supplies to the banking system as abundant, scarce or ample. Reserves

are abundant when the equilibrium is characterized by no interest rate volatility. Such an

1Many models of monetary policy implementation use the Poole model as their starting point. See, for
example, Ennis and Keister (2008), Keister et al. (2008), and references therein.
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Figure 1: Reserve Demand

equilibrium occurs only if the central bank supplies large quantities of reserves. In Figure

1, the demand curve is flat when aggregate reserves are abundant since banks are able

to meet their internal and external requirements for any (ex post) reserve demand shock

or supply shock realization. When reserves are abundant, the value of trading reserves is

simply the interest paid on overnight reserve balances. In contrast, reserves are scarce when

the equilibrium displays high-rate volatility, even when the central bank undertakes open

market operations in an attempt to stabilize rates. Intuitively, this equilibrium occurs when

reserve supply is small and the equilibrium rate is on the downward-sloping part of the

demand curve, as illustrated in Figure 1. In the region of scarce reserves, the marginal value

of reserves increases as aggregate reserves decline and exceeds the interest paid on overnight

reserves. Finally, in between scarcity and abundance, we define reserves to be ample. In this

region, reserve supply and demand shocks result in a positive but suppressed equilibrium

interest rate volatility.2

We use our model to study the choice of a central bank’s monetary policy implementation

framework and explore trade-offs between interest rate control, financial stability, and active

management of reserve balances. In practice, policy makers have preferences over outcomes

2These definitions—scarce, abundant, and ample—are our own, and are intended to facilitate the discus-
sion of central banks’ implementation choices from within the perspective of our model.
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and operations and, because of this, they face trade-offs when choosing their implementation

framework. For example, policy makers may prefer low, rather than high, volatility in their

policy rate. They may also prefer smaller, less frequent open market operations in response

to reserve supply and demand shocks to larger or frequent operations. A central bank could

achieve a low volatility policy rate, without relying on open market operations, by supplying

a very large amount of reserves to the banking sector. But, if policy makers also prefer smaller

to larger balance sheets, then a large balance sheet—that stabilizes the policy rate—may not

necessarily constitute an optimal framework from the central bank’s perspective. We capture

these policy-maker preferences as a linear combination of costs associated with: (i) volatility

in the policy rate; (ii) the size of the central bank’s balance sheet; and (iii) the expected

size of open market operations. The central bank’s implementation framework specifies the

initial quantity of aggregate reserves—small, moderate, or large—and the size and frequency

of subsequent open market operations. The optimal implementation framework is the one

that minimizes a linear combination of these costs.

Since the 2007-2009 financial crisis, the magnitudes of the shocks to the reserve supply

have increased substantially and a new set of drivers of reserve demand have also emerged,

both of which decrease the predictability of reserve supply and demand.3 We show that in

the post-financial crisis world the optimal monetary policy framework has aggregate reserve

supply in the intermediate region, between scarcity and abundance. These findings are

consistent with the Federal Reserve’s plans to implement monetary policy over the longer

run in an environment of ample reserves.4 An important implication of this framework is

that high frequency, active adjustment of the reserve supply is not needed to implement

policy, although occasional adjustments may arise.5

3Post-crisis liquidity regulations, such as the Liquidity Coverage Ratio (LCR), living wills, stress testing,
as well as banks’ responses to the regulation via internal liquidity management strategies and targets, have
transformed the demand for reserves. In recent years, changes in reserve supply due to factors outside of the
control of the central bank—mainly, balances in the account of the U.S. Treasury or at the overnight reserve
repo facility—have increased too, making reserve supply also more uncertain.

4In January 2019, the Federal Open Market Committee (FOMC) announced its intention to maintain
an “ample supply of reserves” and to use administered interest rates, such as the rate paid on reserves, as
its primary tools to ensure rate control. Our model predictions are also consistent with the Federal Re-
serve’s longstanding plan to operate with a balance sheet that is no larger than necessary for efficient and
effective policy implementation, see “Policy Normalization Principles and Plans,” September 2014, avail-
able at https://www.federalreserve.gov/monetarypolicy/policy-normalization-discussions-communications-
history.htm.

5See “Statement Regarding Monetary Policy Implementation and Balance Sheet Normalization.”
https://www.federalreserve.gov/newsevents/pressreleases/monetary20190130c.htm.
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The next section provides a brief overview of the banking system’s demand for reserves in

the pre- and post-financial crisis periods, as well as a discussion of reserve supply in the post-

crisis period. Section 3 introduces our model of a monetary policy implementation framework

and provides insights into a central bank’s choice of the optimal framework. Section 4 then

focuses on how effective these regimes have been in practice and discusses potential financial

stability implications of regimes with high reserves. Section 5 concludes.

2 Reserve Demand and Supply

To motivate our model and analysis, we first discuss the impact that post-crisis liquidity

regulations have had on the banking sector’s demand for reserves and how these regulations,

along with other considerations, make it more challenging for a central bank to estimate

total reserve demand. We then document changes in the supply of reserves for the pre-

and post-crisis periods in the U.S. and show that reserve supply volatility has substantially

increased in the post-financial crisis period.

2.1 Reserve Demand

Prior to the 2007-2009 financial crisis, the Federal Reserve and clearing banks provided

intraday liquidity at generous terms so that banks could almost costlessly smooth out their

daily payment flow obligations. As a result, banks demanded reserves mainly to satisfy their

end-of-day reserve requirements. Since the primary driver for pre-crisis reserve demand was

banks’ reserve requirements, the Federal Reserve was able to estimate banks’ total demand

for reserves with a high degree of precision.

Post-crisis regulations have directly and indirectly affected banks’ liquidity risk manage-

ment in ways that have resulted in new and more uncertain sources of demand for reserves.

For example, the liquidity coverage ratio (LCR) requires banks to hold a sufficient amount of

high-quality liquid assets (HQLA) to meet net cash outflows over a thirty-day stress period.

HQLA include central bank reserves and government securities, as well as some other safe

and liquid assets. The LCR regulation implies that banks’ demand for the sum of reserves

and government securities will be higher than the pre-crisis period. Banks are, however,

free to allocate their HQLA holdings between government securities and reserves as they
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see fit: the LCR does not, per se, specify any requirements about reserve holdings vis-à-vis

government securities holdings. Since the LCR allows banks to choose different mixes of

reserves and other types of HQLA to satisfy the requirements, the Federal Reserve may be

unable to estimate banks’ total demand for reserves with a high degree of precision, even

though banks’ demand for HQLA can be. For example, a bank may prefer to hold more

government securities than reserves if the yields on government securities are relatively high

but may suddenly reverse this preference if the bank believes that it might be challenging

to quickly convert government securities into cash in the face of outflows.

In addition to the increase in demand for reserves associated with regulatory requirements

such as the LCR, resolution plans under the Dodd-Frank Act, buffers of highly liquid assets

under Regulation YY, and banks’ internal liquidity stress tests also increase banks’ demand

for reserves. Importantly, the impact on the demand for reserves depends on banks’ own risk

assessments and their willingness to bear these risks. Owing to these new and more complex

sources of demand for bank reserves, a central bank’s ability to accurately predict reserve

demand has been reduced in the post-financial crisis period.

In Section 3, we model the increased uncertainty regarding banks’ reserve demand in

the post-crisis period as an increase in the magnitude of shocks to reserve demand and as a

decrease in the central bank’s ability to predict the reserve demand. The central bank in our

model determines the optimal implementation regime taking this increased uncertainty as an

exogenous change. This approach is motivated by the observation that regulatory changes,

such as the liquidity coverage ratio (LCR), were introduced for financial stability purposes,

largely independent of monetary policy implementation considerations.

2.2 Reserve Supply

Traditional models typically assume that the reserve supply is under the complete control

of the central bank. In practice, however, the level of reserves can change due to factors

that are outside of the control of the central bank, the so-called autonomous factors. Two

important examples of these factors in the U.S. are the balances at the overnight reverse

repo (ON RRP) facility and the balances that the Treasury Department holds at the Federal

Reserve. In this section, we show that variations in reserve supply due to autonomous factors

have become much larger in the U.S. in recent years. This development poses challenges for
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monetary policy implementation when reserves are scarce and small changes in reserves affect

the policy rate.

In the absence of offsetting open market operations, reserves available to banks change on

a daily basis. Reserves may change for two reasons: First, the size of the central bank balance

sheet may change as the result of, e.g., large-scale asset purchases. Second, the composition

of the central bank liabilities may change when, e.g., bank reserves are converted into physical

currency, which is also a liability of the central bank, or when currency is returned to the

central bank and the returning bank’s account at the central bank is credited (with reserves).

Another example of changes in reserves occurs on tax payment dates when funds from a

bank’s account at the central bank are used to pay taxes, which reduces reserves in the

banking system and increases the balance of the Treasury General Account (TGA) at the

central bank. Prior to the 2007-2009 financial crisis, these exogenous, day-to-day changes in

the supply of reserves were small and mostly predictable. Since then, the volatility of these

changes has increased significantly.

The first 5 panels in Figure 2 illustrate the weekly volatility of selected autonomous

factors from 2003 to 2022. Notice that the volatility of these factors have significantly

increased since 2009. This, in turn, means that the volatility of the supply of reserves,

the bottom-right panel in Figure 2, has also increased substantially. The volatility of the

reserve supply was close to zero prior to the 2007-2009 financial crisis, partly because the

Federal Reserve actively offset movements in the supply of reserves. However, given the much

smaller volatility of autonomous factors in the pre-crisis period, the reserve volatility would

have been much lower than it has since 2009 even in the absence of the Federal Reserve’s

operations.

The Federal Reserve could, in principle, reduce the volatility of autonomous factors, at

least in a limited way.6 It is not, however, obvious that reducing volatility is desirable.

For example, since 2015 the Treasury Department has tried to maintain a five-day liquidity

buffer in its account at the Federal Reserve to limit the risk that it may be unable to access

markets due to an operational outage or a cyber-attack.7 While such a buffer contributes

6It would be difficult to regulate the withdrawal and deposit of physical currency. The Federal Reserve
could set up rules on the use of accounts held by non-banks. But it would be difficult to force these accounts
to substantially reduce their volatility without impairing their operational needs. In fact, free withdrawal
and deposit is a primary advantage of holding cash or reserves.

7Treasury’s May 6, 2015, quarterly refunding statement notes: “Based on our review, the TBAC’s [Trea-
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Figure 2: Volatility in Selected Autonomous Factors and Reserves in the United States

The volatility of autonomous factors and reserves generally increased since 2009, albeit not

monotonically. Time period covered is 2003 to 2022. Volatility is calculated as the standard

deviation of weekly differences over a 52-week trailing window, using publicly released weekly

snapshots of Federal Reserve’s liability (H.4.1 releases from the Federal Reserve). Vertical lines

mark the beginning of asset purchases in response to the 2007-09 financial crisis in late 2008

and to the Covid-19 pandemic in early 2020. Other deposits are held by selected official and

private entities.
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to a larger and more volatile autonomous factor, it might not be possible or desirable to

return to the pre-crisis balance. Alternatively, the Treasury Department could move its

buffer into the banking sector, thereby reducing or eliminating this autonomous factor. But

banks may not be interested in taking on large and volatile cash deposits since it is costly

from both a regulatory and liquidity risk management perspective. Similarly, the volatility

of the balances of various non-bank counterparties, such as deposits held by of foreign central

banks, governments, and monetary authorities or by government-sponsored enterprises (see

the mid-right and the bottom-left panels of Figure 2) might be reduced by establishing

restrictions on account usage, but doing so would make these deposits less attractive to their

holders. In addition, while in a frictionless world where reserves can be costlessly transferred

to and from the ON RRP facility, the volatility of ON RRP balances could be considered

irrelevant—endogenous to the supply of other Federal Reserve liabilities— in reality the

volatility of the ON RRP balances remains a source of reserve supply shocks due to frictions

in money markets.

As illustrated in the bottom-right chart on Figure 2, the weekly volatility of reserves

was less than $10 billion prior to the financial crisis. Volatility increased sharply during the

first round of large-scale asset purchases to around $60 billion in 2009. For several years

after the crisis, reserve supply volatility remained near that level through different rounds

of large-scale asset purchases. Between 2015 and 2017, a period between the end of asset

purchases and the beginning of balance sheet normalization, reserve volatility was elevated

and reached nearly $150 billion. During this period, volatility reflected changes in reserves

due to exogenous factors as the Federal Reserve no longer conducted daily open market

operations to fine-tune reserve supply nor changed the size of its balance sheet to conduct

monetary policy.8 Volatility fluctuated around $50 billion during balance sheet normalization

over 2017-2019, and increased again as the Federal Reserve expanded the balance sheet in

response to the Covid-19 pandemic.

sury Borrowing Advisory Committee’s] recommendations, and an assessment of emerging threats, such as
potential cyber-attacks, Treasury believes it is prudent to change its cash management policy starting this
month. To help protect against a potential interruption in market access, Treasury will hold a level of cash
generally sufficient to cover one week of outflows in the Treasury General Account, subject to a minimum
balance of roughly $150 billion.”

8Fine-tuning the reserve supply was a key element of the monetary policy implementation framework
in the pre-crisis period. Therefore, pre-crisis figures do not reflect volatility in exogenous reserve supply
since most of the autonomous changes were “reversed” through open market operations. Similarly, reserve-
injecting operations in the aftermath of mid-September 2019 money market volatility tended to offset reduc-
tions in reserve supply.
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3 A Model of a Monetary Policy Implementation Frame-

work

We propose a model of interbank interest rate determination to study the trade-offs

that policy makers face when choosing a monetary policy framework. Our model builds

on the work of Poole (1968) and accommodates implementation frameworks with scarce,

abundant, and somewhere in between (ample) reserves. As in Poole (1968), banks must

hold a minimum level of reserves. In contrast to Poole (1968), where the minimum level is

proportional to bank deposits, in our model, the minimum level of reserves captures banks’

expanded demand for reserves in a post-financial crisis environment. More specifically, and as

discussed in Section 2, changes in (i) liquidity regulation, (ii) supervision of banks, (iii) banks’

risk management practices and (iv) the structure of the market for reserves have substantially

transformed—and expanded—the banking system’s demand for reserves relative to the pre-

crisis period. These new and more complex sources of demand for reserves have reduced the

central bank’s ability to accurately predict demand for reserves. Our model captures this

increased uncertainty, which is an important feature of the post-financial crisis period, by

introducing shocks to the demand for reserves. These demand shocks decrease the central

bank’s ability to accurately predict aggregate reserve demand. Moreover, the volatility of

factors outside the control of a central bank that affect the supply of reserves has also

increased relative to the pre-financial crisis period, as illustrated in Figure 2. We model the

increased uncertainty arising from these autonomous factors by introducing shocks to the

supply of reserves.9

3.1 Agents

There are two types of agents: depository institutions, which we will refer to as “banks,”

and a central bank.

Banks. There are N banks in the banking system indexed by i ∈ {1, ..., N}. Banks are

risk-neutral and maximize expected profits. Each bank has an initial level of desired reserves,

R̄i, which is exogenous to the model. Each bank receives a demand shock, di, that changes

9Shocks in Poole (1968) are “late-period” shocks, which redistribute reserves between banks after the
interbank market closes. As we discussed in Section 3.2, our model includes this late-period shock, and
incorporates shocks in the demand for and supply of reserves.
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the bank’s desired reserves by di, where di can be either positive or negative. After the

demand shock realizations, banks trade in a competitive interbank market for reserves, e.g.,

the federal (or fed) funds market in the U.S., to adjust their reserve holdings at rate r. After

the interbank market closes, each bank receives a late (Poole) shock, ui, which redistributes

reserves among banks. If this shock causes reserves to fall below R̄i+di, then bank i borrows

reserves from the central bank at a penalty rate, rP , to get reserves back to its desired level

R̄i+di. One can think of the penalty rate as the rate charged by the central bank on discount

window loans or the minimum bid rate at the Standing Repo facility. Banks hold all of their

reserves overnight at the central bank and earn the interest rate on these reserves equal to

rIOR < rP .

Central bank. The central bank chooses an initial level of reserves to supply to the banking

system, R. The supply of reserves is subject to a shock, s, which arises from factors outside

the central bank’s control. After the shock, the central bank either injects, x > 0, or drains,

x < 0, reserves through an open market operation. The central bank lends to banks at a

penalty rate, rP , and remunerates reserve balances that banks hold at the central bank at

the rate rIOR.

3.2 Shocks

There are three important shocks at play: a supply shock, a demand shock, and a late

(Poole) reserve redistribution shock.

Supply shock. The shock s to the supply of reserves captures that central banks do not

perfectly control the supply of reserves. Changes in the balances at the ON RRP facility

or at the account that the Treasury Department holds at the Federal Reserve are relevant

examples of supply shocks that affect the level of reserves in the U.S. banking system.

Demand shock. The model incorporates a shock, di, to a bank’s initial demand for reserves,

where d =
∑

i di denotes the aggregate shock to the banking system demand for reserves.

This shock captures the ex ante uncertainty about a bank’s demand for desired reserves, as

well as the increased uncertainty associated with the post-financial crisis environment.

Late shock. Each bank receives a late shock, ui. This shock represents increases or decreases

in a bank’s reserves due to, e.g., a payment that occurs late in the day after the interbank
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market closes. We can interpret the ui shocks as a reshuffling of existing reserves among the

N banks, where
∑

i ui = 0. Late shocks will further have the indirect effect of increasing the

supply of reserves in the system if banks borrow from the central bank at the end of the day.

3.3 Timing of Events

The model is static in the sense that events and actions occur over a finite number of

periods, six to be precise. We think of the model as describing what happens over a typical

day. The timing of events is as follows:

Time t = 1: The central bank: (i) chooses the level of reserves, R, to supply to the

banking system; (ii) specifies the penalty rate, rP , at which banks can borrow from

the central bank; and (iii) sets the interest paid on reserves, rIOR. Each bank has an

initial (time t = 1) level of desired reserves, R̄i, where R̄ =
∑

i R̄i.

Time t = 2: The reserve supply shock, s, is revealed. Total reserves are now R + s.

Time t = 3: The central bank either injects x ≥ 0 or drains x ≤ 0 reserves. Total,

and final, supply of reserves is R + s+ x.

Time t = 4: Each bank receives a demand shock, di, to its initial level of desired

reserves. Bank i’s desired reserves are now given by R̄i + di. The banking system’s

demand for reserves is R̄ + d, where d =
∑

i di.

Time t = 5: A competitive interbank market opens, where banks can borrow and

lend reserves at rate r. Reserves are redistributed in the interbank market, and then

the market closes. Denote bank i’s reserves at the end of period 5 by Ri.

Time t = 6: Each bank i receives a late shock, ui, to its reserve holdings. If Ri+ui <

R̄i+di, then bank i must borrow the difference from the central bank at rate rP . Banks

hold their reserves at the central bank and earn interest rIOR.

The central bank makes decisions about the level of reserves at t = 1, when it chooses the

initial supply of reserves, and at t = 3, when it adjusts this initial level plus the reserve supply

shock through an open market operation. When making these decisions, the central bank

takes into account banks’ expected borrowing and lending in the interbank market at t = 5.
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Banks’ behavior creates a demand for reserves which, along with the central bank’s earlier

supply decisions, results in an equilibrium interbank (fed funds) rate at t = 5. Intuitively,

if the central bank cares only about rate control, and there are no costs associated with the

size of its balance sheet or with open market operations, then the solution to the central

bank’s problem is relatively simple: the central bank provides an arbitrarily large supply of

reserves—in the abundant region—so that the reserve supply intersects the reserve demand

in the far right region where the demand curve is essentially flat in Figure 1. For a large

enough level of reserves, the equilibrium interbank rate will (almost always) equal the rate

on overnight reserves, rIOR, regardless of the supply, s, and demand, d, shock realizations.

In this scenario, the central bank is able to (almost) perfectly control its policy rate with

an abundant reserve supply.10 However, if there are costs associated with the size of the

central bank’s balance sheet, then having (almost) perfect control over the policy rate may

not constitute an optimal implementation framework, as we shall see in Section 3.5.

Before describing and solving the central bank’s policy implementation problem, we first

characterize the individual bank’s reserve holdings problem.

3.4 Reserve Demand

In this section, we first provide the intuition underlying an individual bank’s demand for

reserves. We then consider a banking system with many banks and sum their individual

demands to derive the banking system’s demand for reserves (see, e.g., Poole (1968), Ennis

and Keister (2008) and references therein). Our formal derivations are relegated to Appendix

A.

The bank’s problem. Bank i’s problem can be characterized as follows: At t = 5, bank

i chooses between borrowing and lending in the interbank market given its current desired

reserves, R̄i + di, and knowing that after the interbank market closes at the end of the

period, it will receive a late shock ui. Since the value of the late shock is not known when

the interbank market is open, bank i’s demand for reserves in the fed funds market depends

10If the supports of the random variables s and d are finite, then the fed funds rate always equals rIOR

for a sufficiently large (abundant) reserve supply, and the central bank has perfect interest rate control. If
the supports of the demand and supply shocks are not finite, e.g., when s and d are normally distributed,
then the probability that the fed funds rate does not equal rIOR can be made arbitrarily small by choosing
a sufficiently large reserve supply.

13



on the distribution of the late shocks (and not on the realization of the shock). As in Poole

(1968), the shock may push bank i’s reserves below its desired level.11 In this case, bank i

borrows from the central bank at a penalty rate, rP , to bring its reserve holdings up to the

desired level. If reserves exceed its desired level, then the bank does not borrow from the

central bank. In either case, bank i deposits all of its reserves at the central bank and earns

an interest on these balances equal to rIOR.

Let us consider bank i’s decision between lending and not lending an additional unit of

reserves in the interbank market at time t = 5. If bank i lends, then the (gross) payoff

associated with this trade is r, the interbank rate. In time period t = 6, bank i receives a

shock ui to its reserve holdings, Ri. If its new level of reserves Ri+ui falls short of its desired

level, R̄i+di, i.e., if Ri+ui ≤ R̄i+di, then bank i must borrow reserves from the central bank

at the rate rP to make up for the shortfall. Hence, with probability Pr(Ri+ui ≤ R̄i+di) bank

i’s net payoff from lending a unit in the interbank market is the sum of (i) the interbank rate

r from the unit of reserve it lent in the interbank market, (ii) the penalty rate, rP , it pays

from borrowing this unit back from the central bank, and (iii) the interest on reserves, rIOR,

it receives when the borrowed unit is deposited at the central bank. And with probability

Pr(Ri + ui > R̄i + di), the date t = 6 late shock does not push bank i’s level of reserves

below its desired level and bank i’s net payoff is simply the interbank rate r it received on

the unit it lent out. Thus, the expected net payoff from lending is

Pr(Ri + ui ≤ R̄i + di)(r − rP + rIOR) + Pr(Ri + ui > R̄i + di)r. (1)

Bank i is indifferent between lending and not lending an additional unit of reserves in

the interbank market when the expected return to lending the additional unit (equation (1))

equals the expected return of not lending, which equals rIOR. Rearranging this indifference

condition, the competitive interbank market rate, r, can be expressed as a weighted average

between the penalty rate, rP , and the rate on reserves balances, rIOR, where the weights

capture the probability that bank i’s reserves fall, or not, below its minimum level, i.e.,

r = rP Pr(Ri + ui ≤ R̄i + di) + rIOR Pr(Ri + ui > R̄i + di). (2)

11Some recent models use alternative modeling approaches, such as search and bargaining or preferred
habitat, in contrast to the perfect competition assumption in Poole (1968). See for example Afonso and
Lagos (2015), Afonso et al. (2019), Armenter and Lester (2017), Schulhofer-Wohl and Clouse (2018), and
Chen et al. (2016). Kim et al. (2020) adds regulatory frictions while maintaining the assumption of perfect
competition. Still, demand for reserves typically originates from a required quantity of reserves and timing
of shocks that are broadly consistent with Poole (1968).
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For simplicity, we assume that ui is uniformly distributed over the interval [−Ui, Ui] for

all i. This assumption implies that the size of the late shock can take any value in the

interval [−Ui, Ui] with the same probability and is zero outside this interval. It also implies

that the probability that the late shock, ui, is: (i) less than some value z ∈ [−Ui, Ui] is given

by Pr(ui ≤ z) = (z +Ui)/2Ui; (ii) less than some value z < −Ui is Pr(ui ≤ z) = 0; and (iii)

less than some value z > Ui is Pr(ui ≤ z) = 1. We can then express the probability that

the size of the late shock is such that reserves, Ri + ui, fall short of bank i’s desired level of

reserves, R̄i + di—and hence the bank borrows from the central bank—as

Pr(Ri + ui ≤ R̄i + di) =


1 if Ri < R̄i + di − Ui
R̄i + di + Ui −Ri

2Ui
if R̄i + di − Ui ≤ Ri ≤ R̄i + di + Ui (3)

0 if Ri > R̄i + di + Ui

Substituting equation (3) in equation (2) and rearranging terms, the demand for reserves

of bank i when the interbank market opens at time t = 5 is given by

Ri =


[0, R̄i + di − Ui] if r = rP

R̄i + di + Ui − 2Ui
r − rIOR
rP − rIOR

if rIOR < r < rP (4)

[R̄i + di + Ui,∞) if r = rIOR

When the interbank rate equals the penalty rate, bank i is indifferent between holding

any amount of reserves between zero and R̄i + di−Ui, because in this region of the demand

curve bank i’s reserve balances will always be below its desired level for any realization of

the late shock. This creates a flat demand curve at r = rP . When the interbank rate falls

below the penalty rate (r < rP ), bank i demands more reserves in the interbank market,

since borrowing from the central bank at rate rP is more costly than in the interbank market

at rate r. This generates a downward slopping demand curve until the interbank rate equals

the interest on reserves. When r = rIOR, the opportunity cost of demanding reserves in

the interbank market is zero and bank i becomes indifferent between holding any amount

of reserves greater than R̄i + di + Ui; in this region of the demand curve, bank i’s reserve

balances will always exceed its desired level for any realization of the late shock. At rate

r = rIOR, the demand curve for reserves becomes flat again.12

12In practice, the flat region lies slightly below rIOR due to regulatory costs faced by banks. Taking this
into account will not change the structure of the model or its implications; see Kim et al. (2020).
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Banking system demand for reserves. We can derive the banking system demand

for reserves by simply summing the individual demand curves of the banks in the banking

system, i.e., by summing the reserves demanded by the each bank for each interest rate. The

aggregate demand for reserves, RD, is given by

RD =


[0, R̄+ d− U ] if r = rP

R̄+ d+ U − 2U
r − rIOR
rP − rIOR

if rIOR < r < rP (5)

[R̄+ d+ U,∞) if r = rIOR

where RD ≡
∑

iRi is the aggregate quantity of reserves demanded by banks when the

interbank market opens at t = 5; R̄ =
∑

i R̄i is the initial aggregate quantity of of desired

reserves (before the demand shocks, di, are realized); d ≡
∑

i di is the aggregate demand

shock to the banking system’s initial desired reserves (which is realized at t = 4, before the

interbank market opens); and U ≡
∑

i Ui is sum of each bank i’s maximum late period shock

(the shock which is realized at t = 6, after the interbank market closes).

3.5 Reserve Supply

The equilibrium interest rate. The central bank understands the behavior of banks and

the nature of the shocks s and d that hit the supply and demand for reserves of the banking

sector. The time t = 5 equilibrium is characterized by the aggregate supply of reserves

equating the aggregate demand for reserves, RD = RS, or, equivalently, RD = R + s + x.

Since R, s, x and d are known at t = 5, the equilibrium interbank interest rate is obtained

by substituting R+ s+ x for RD in the aggregate demand function (5). Rearranging terms,

the market-clearing interbank rate can be expressed as an implicit function of R+ s− d−x,

r(R + s− d+ x):

r =


rP if R + s− d+ x < R̄− U

rIOR − c0(R + s− d+ x− R̄− U) if R̄− U ≤ R + s− d+ x ≤ R̄ + U (6)

rIOR if R + s− d+ x > R̄a + U

where c0 = (rp − rIOR)/2U . If R + s − d + x ∈ (R̄ − U, R̄ + U), then the interbank rate is

decreasing in the quantity of reserves in the banking system R. It is straightforward to show
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that the market clearing interbank rate has the expected comparative statics. In particular,

∂r/∂R ≤ 0, ∂r/∂rp ≥ 0 and ∂r/rIOR ≥ 0.

The central bank’s problem. When implementing monetary policy, the central bank

incurs costs associated with: (i) losing close control over the policy rate by “missing” its

time t = 5 target interbank (fed funds) rate, i.e., when the equilibrium interbank rate differs

from the central bank’s target; (ii) undertaking open market operations at time t = 3; and

(iii) the size of its time t = 1 balance sheet.13 We assume that these costs are linear and

that the central bank’s monetary policy implementation cost function is given by:

V ≡ E {α|r(R + s− d+ x)− r(R)|+ β|x|}+ γR. (7)

The cost function V is expressed from a time t = 1 perspective where s, d, and x are

random variables. The term α|r(R + s− d+ x)− r(R)| represents the cost associated with

interest rate volatility, i.e., the cost of missing the target rate, r(R). Intuitively, if there

are no shocks to neither the reserve supply nor the desired reserve holdings, the equilibrium

interest would be r(R) since s = d = x = 0. Therefore, r(R + s − d + x) − r(R) is the

equilibrium deviation from the target interbank interest rate when the economy is charac-

terized by uncertainty. The term β|x| represents the operational cost of conducting open

market operations. For simplicity, we assume that the cost is symmetric, i.e., draining and

injecting reserves are equally costly. Finally, the term, γR, captures the political-economy

cost associated with the size of the central bank’s time t = 1 balance sheet, where we assume

that a higher level of reserves, R, results in higher political-economy costs. Without loss of

generality, we set γ = 1.

The central bank takes two policy implementation actions: at time t = 1, it chooses the

level of reserves R, and, then, at time t = 3, it selects the size of the open market operation,

x(R, s), given its initial choice of reserves, R, and the realization of the time t = 2 reserve

supply shock s. Taking into account how it conducts open market operations for all possible

combinations of (R, s), the central bank’s choice of the t = 1 reserve supply is given by the

13Concerns about the size of central bank balance sheets are often raised in policy normalization discus-
sions. For example, in 2014, the Federal Reserve expressed its intention to ‘hold no more securities than nec-
essary’ in its “Policy Normalization Principles and Plans,” available at https://www.federalreserve.gov/
monetarypolicy/policy-normalization-discussions-communications-history.htm. See also Bindseil
(2016) and Borio (2023).
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solution to

min
R≥R̄

E{α|r[R + s− d+ x(R, s)]− r(R)|+ β|x(R, s)|}+R. (8)

The restriction that R ≥ R̄ guarantees that the central bank supplies enough reserves to

at least meet the initial desired reserves demanded by the banking system.14 Although we

treat x(R, s) as an exogenous function, this function is constructed from the state-by-state

time t = 3 optimization problem.15

The central bank’s decisions regarding initial reserves, R, and open market operations,

x, become trivial if the central bank does not face “real” trade-offs among the various costs.

For example, if β ≥ αc0, then the cost of an open market operation always exceeds the

benefit associated with hitting the target rate, which implies that the central bank does not

implement open market operations, i.e., x = 0. To rule out this pathological case, we assume

that β < αc0 in the rest of the paper.

Parametrization of supply and demand shocks. We parameterize the shocks s and

d in a stylized and convenient way to capture the uncertainty a central bank faces when it

makes its reserve decisions at times t = 1 and t = 3. At time t = 1, the realizations of the

supply and demand shocks are both unknown. At time t = 3, after the supply shock has

been revealed, the demand shock still remains unknown. For simplicity, we assume that s

and d follow independent uniform distributions:

s ∼ U (−S, S) , (9)

d ∼ U (−D,D) , (10)

where S and D are positive constants. Note that the demand shock d is an aggregate of the

individual demand shocks, d =
∑

i di. In principle, we could allow s and d to be correlated

14From a technical perspective, we impose this constraint to rule out a solution where the central chooses
a very low level of reserves, i.e., R � R̄ − U can be the solution to the minimization problem in (8). This
solution would be characterized by a very low political cost, very low interest rate volatility and no need
for operations. The interest rate will be almost always equal to the penalty rate, rP , and there would be
significant borrowing from the central bank at time t = 6. Although unlikely in reality, the central bank’s
objective function does not prevent this outcome from occurring because the model does not place a cost
associated with the central bank persistently lending reserves to banks at date t = 6.

15Alternatively, we could have represented the central bank’s problem as choosing both R and x at time
t = 1, where x is a function of s. This formulation, however, is not as convenient as the one we propose
since it would not give rise to a unique functional form for x(s) without additional restrictions. For example,
one can make an arbitrary deviation over a measure zero set that does not change the expected value.
Furthermore, given the smoothness of the problem at time t = 3, the measurability of x is not a concern if
we write x(R, s) as an optimizer for the time t = 3 problem.
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without changing the structure of the problem, in which case the expected value of d given

s would be accounted for by the central bank at t = 3 and the remaining portion of d would

remain a random variable.

We now turn to the central bank’s choice of monetary policy implementation regime.

3.6 Policy Implementation without Demand Uncertainty

We first consider the case with no uncertainty about the demand for reserves and assume

that demand shocks are perfectly predictable, i.e., D = 0. In practice, this scenario describes

the U.S. reserve market in the pre-crisis period. In that period, banks demanded reserves

mainly to satisfy reserves requirements and the Trading Desk at the New York Fed was able

to accurately estimate the banking system demand for reserves (Logan, 2017).

Perfect predictability of demand implies that all uncertainty is resolved by time the

central bank conducts open market operations at time t = 3. Given the initial supply of

reserves, R, and the realization of the supply shock, s (and d = 0), the central bank chooses

the size of its open market operation, x, to minimize the cost of implementing monetary

policy, V (R), in (7), i.e.,

x(R, s) = arg min
R≥R̄
{E[α|r(R + s+ x)− r(R)|] + β|x|+R} ,

where we impose R ≥ R̄ to ensure that the central bank supplies enough reserves to meet

the desired amount demanded by the banking system. Proposition 1 summarizes our first

result.

Proposition 1. Assume that D = 0. If β > 2 and αc0 > S
U

, the cost of implementing

monetary policy, V (R), has two local minima: one at R = R̄ and another, denoted RA, at

R > R̄ + U .

Otherwise, the cost function has local minima only within the steep portion of the demand

curve, R ∈ [R̄, R̄ + U ].

The proofs to all propositions are in Appendix B. Notice that RA > R̄ + U means that the

higher value local minimum is located beyond the “kink” of the aggregate demand curve for

reserves in equation (6).
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Next, we describe the choice between scarce (R = R̄) and ample (R = RA) reserves,

first using an illustrative example based on our model, and then more generally based on

theoretical implications of our model. Then, we discuss the interpretation of the lower

bounds for β and αc0.

Scarce, ample and abundant reserves. In the following example, we define reserves

as being scarce, ample, or abundant depending on how likely it is that the supply shock s

pushes reserves below the threshold R̄ + U that defines the transition from the flat to the

downward-sloping region of the demand curve (see equation 6). When the supply of reserves

exceeds this threshold the equilibrium interbank interest rate equals the rate that the central

bank pays on reserves, rIOR; when the supply of reserves falls short of this threshold, the

equilibrium interbank interest rate exceeds rIOR. We define reserves as abundant when there

is a zero probability that the time t = 1 level of reserves, R, falls below R̄ + U after the

realization of the supply shock s; ample when the probability is “reasonably small”; and

scarce when the probability is greater than reasonably small.

In the calibration exercise, we define a reasonably small probability to be below 25

percent; and greater than reasonably small probability as exceeding 25 percent. Figure

3 provides an illustration of Proposition 1. In the example described by the figure, the lower

limit for an abundant reserve supply is equal to R̄ + U + S, and the lower limit for ample

reserve supply is equal to R̄ + U + 0.5 × S. Hence, an abundant reserve supply is at least

0.5× S larger than the lowest level of ample reserves in this example.

The central bank chooses between the two level of reserves—scarce or ample—in Proposi-

tion 1 by comparing the expected cost of implementing monetary policy with scarce reserves,

R = R̄, and with ample reserves, R = RA > R̄ + U . In our calibration, the central bank

chooses an ample level of reserves at time t = 1 (see Figure 3), since its expected cost is

less than that associated with implementing monetary policy with scarce reserves R = R̄.

In general, however, the central bank’s choice need not be R = RA and instead might be

R = R̄. Next, we discuss what determines this choice in our model.

Optimal level of reserves. Before discussing the optimal level of reserves, we first char-

acterize the local minimum at RA and then turn to the central bank’s choice of reserves. We

can determine the level of reserves RA by equating the marginal benefit of choosing a higher

level of initial reserves—which would be associated with smaller open market operations—
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t = 1 supply of reserves, R, reduces the size of open market operations at t = 5 only if

R + s < R̄ + U ; when R + s > R̄ + U the central bank does not conduct any open mar-

ket operations (x = 0). This implies that the marginal benefit of increasing R is equal to

β Pr[R+s < R̄+U ] = βF1[(R̄+U−R)/S], where F1 is the cumulative distribution function

of a uniform distribution over [−1, 1]. Since the marginal cost of increasing reserves is equal

to γ = 1, the level of reserves that minimizes the cost of implementing monetary policy is

obtained by equating the marginal benefit to the cost of increasing reserves at date 1, which

yields the following expression for RA:

RA = R̄ + U + SF−1
1

(
1− 1

β

)
. (11)

Intuitively, RA is increasing in β because a higher cost of open market operations incentivizes

the central bank to increase the initial level of reserves R so as to move farther away from the

threshold, R̄ + U . This threshold determines the transition between the negatively sloped

and flat regions of the demand curve. RA is also increasing in the volatility of the supply

shock, S: As S increases so does the probability that reserves will be pushed below the

threshold R̄ + U , incentivizing the central bank to increase R.

Interpretation of the lower bounds on β and αc0. It is not surprising that we need β

to be not too small—β > 2—to have a local optimum at R > R̄ + U ; otherwise, the benefit

from decreasing the expected size of open market operations will be too small for such a

local optimum to exist.

The lower bound on αc0, αc0 >
S
U

, is also an upper bound the size of the supply shock S:

S < αc0U . If S is too large, then the steep portion of the demand curve becomes relatively

insignificant to the central bank. Accordingly, the benefit from decreasing the expected size

of open market operations, which is associated with the steep portion of the curve, becomes

less important to the central bank. We also note that such a large value of S seems irrelevant

in practice—S ≥ αc0U > 2U implies that the possible realization of R+s can span the entire

steep portion of the demand curve r even with the starting point of R = R̄ + U . As the

following discussion shows, ample reserve supply is beneficial if S is large but only if it is

not too large to render the kinked shape of the demand curve irrelevant.17

We now compare the central bank’s cost of implementing a scarce reserve framework with

R = R̄ to the cost of implementing an ample reserve framework with RA > R̄ + U given by

17See Appendix B for a discussion of local minima when β ≤ 2 or S ≥ αc0U .
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equation (11):

• Scarce reserves. The central bank’s implementation cost evaluated at R = R̄ is

approximately equal to

V (R∗ = R̄) ≈ 1

2
βS + R̄. (12)

The first term captures the cost of fully offsetting reserve supply shocks, i.e., it is the

expected value of β| − s|.18

• Ample reserves. The central bank’s implementation cost evaluated at R = RA is

V (R∗ = RA) =

(
1− 1

β

)
S + R̄ + U. (13)

As above, the first term is the expected cost associated with open market operations.

The coefficient on S in equation (13) is smaller than that in (12) because the central

bank’s open market operations are smaller and less frequent when reserves are ample. Since

both of these terms are linear in S, if S is “large enough,” the ample-reserve regime will

have a lower expected implementation cost and, hence, will be preferred to the scarce-reserve

regime. Proposition 2 formalizes this intuition:

Proposition 2. Assume that D = 0 and S < U . Then, there exists a constant β0 such

that if β > β0, then there exists some S0 < U such that the scarce-reserve regime is optimal

for S ∈ (0, S0) and the ample-reserve regime is optimal for S ∈ (S0, U). Otherwise—if

2 < β ≤ β0—then the scarce-reserve regime is optimal.

We showed, with Proposition 1, that if S ≥ αc0U , there would be no locally optimal ample

reserve supply. For certain large values of S, that is for S between U and αc0U , the central

bank optimally chooses not to conduct open market operations for large realizations of |s| at

R = R̄ because the cost of interest rate deviation is bounded from above by α× (1/2)(rP −
rIOR). This upper bound can make the scarce-reserve regime relatively more favorable for

values of S close to but still below αc0U , depending on other parameters of the model. By

assuming S < U , the characterization of the central bank’s behavior becomes much simpler.

18In the extreme case of a very large shock, the central bank will choose not to offset s. See the proof of
Proposition 1 in Appendix B for a technical description of the conditions under which such an outcome will
occur.
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We can derive an expression for S0 by finding the value of S that equates V (R̄) in equation

(12) to V (RA) in equation (13), which are exact for S < U :19

S0 =

[
β

2
− 1 +

1

β

]−1

U. (14)

When demand shocks are predictable, D = 0, and the volatility of the shocks to the

reserve supply is “low” (S < S0), then a scarce-reserve regime will be optimal. This scenario

is consistent with the monetary policy implementation regime that prevailed in the U.S. prior

to the 2007-2009 financial crisis. On the other hand, when the volatility of the supply shock

is “high,” then the central bank will choose a regime with ample reserves. This scenario is

consistent with monetary implementation policy in the U.S. since the 2007-2009 financial

crisis. Figure 4 illustrates this intuition: When the volatility S is low—the orange line—

it is less costly for the central bank to implement monetary policy with scarce reserves,

R = R̄; when volatility is high—blue line—ample reserves, R ≡ RA > R̄ + U , provides the

implementation framework with the lowest cost.

Intuitively, S0 is higher if U is higher. If the threshold (kink) in the reserve demand

is farther away from the minimum level, then the central bank has a stronger incentive to

choose the minimum level of reserve supply to avoid incurring the cost associated with a

larger reserve supply, which is proportional to U , while the benefit of smaller open market

operations does not depend on U .

The cost of engaging in open market operations, β, is also an important determinant

of the optimal monetary policy implementation framework that the central bank chooses.

Intuitively, if the cost of conducting open market operations, β, is relatively small, then the

central bank will choose a framework with scarce reserves even at higher levels of volatility,

S, using open market to adjust reserves if needed. Alternatively, if the operational costs β

are relatively high, then higher reserves will be chosen for even lower levels of volatility S.

This intuition is verified in the following proposition,

Proposition 3. ∂S0/∂β < 0; S0 is as defined in Proposition 2.

Since the 2007-2009 financial crisis, reserve supply shocks and the required size of open

market operations to offset those shocks have become substantially larger (see section 2.2).

19See the proof of Proposition 2 in Appendix B.
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However, in Proposition 2, we rely on a stronger assumption: S < U . Using the weaker

assumption of S < αc0U makes the characterization of the optimal choice more complex.

This is because when S is large, R+s can reach the flat portion of the reserve demand curve

even with scarce reserves at R = R̄, setting an upper bound on the implementation cost

of the scarce-reserve regime. A sufficient condition that allows us to dismiss this effect by

making interest rate movements costly enough is the following: αc0
1
β
> 2. The ratio αc0

1
β

represents the trade-off between tolerating interest rate movements and conducting open

market operations to offset these movements; a value close to 1 indicates a central bank

indifferent between the two.

Proposition 4. Assume that D = 0, αc0 >
S
U

and αc0
1
β
> 2. Then, for any β > 2, there

exists some S0 < αc0U such that the scarce-reserve regime is optimal for S ∈ (0, S0) and the

ample-reserve regime is optimal for S ∈ (S0, U).

The proof is in Appendix B.

3.7 Environment with Demand Uncertainty

We now consider the case where there is uncertainty about the demand for reserves—

i.e., D > 0—at the time t = 5 when the central bank conducts an open market operation.

We can interpret this scenario as representative of the U.S. reserve market in the post-

crisis period. As discussed in Section 2.2, since the 2007-2009 financial crisis, changes in

bank regulation, banks’ risk management practices, and liquidity stress tests, among other

factors, have transformed the banking system’s demand for reserves. We interpret the post-

crisis period as characterized by an increase in the magnitude of the demand and supply

shocks—larger S and D.

An increase in uncertainty may lead a central bank to prefer an ample reserve supply to

a scarce one. In particular, when reserves are scarce and the reserve demand becomes less

predictable (D increases), open market operations become less effective in stabilizing interest

rate movements, making an ample-reserve regime more attractive to the central bank. This

is because the effectiveness of open market operations in reducing interest rate deviations

depends on the realization of the demand shock, d, i.e., the specific open market operation

that the central banks chooses at t = 3 will reduce the distance between the equilibrium
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interest rate and the target rate r(R) for some realizations of the demand shock d but

will increase it for others. A wider distribution of d implies a more equal mixing of these

outcomes, making open market operations less useful as a tool for minimizing the central

bank’s implementation cost. This, in turn, makes the ample-regime regime, which relies less

on open market operations, more desirable.

The following simple example illustrates this point. Suppose that the central bank chooses

an initial level of reserves that is scarce and equal to 3, i.e., R = R̄ = 3 at t = 1, and that a

supply shock s of -1 has been realized at t = 2, where the supply shock can be either -1 or

1 with equal probability. Since the reserve demand curve in the scarce region is downward

sloping, in the absence of reserve demand shocks, the central bank would inject x = 1 unit of

reserves at t = 3. This operation costs the central bank β but saves αc0 since the equilibrium

interbank rate equals the target rate r(R + s+ x = 3).

Now suppose that, at t = 4, there are demand shocks d of either −1 or +1 with equal

probability and that the central bank injects a unit of reserves at time t = 3. Then the

equilibrium interest rate will be either r(2) > r(3) if d = 1 or r(4) < r(3) if d = −1. The

time t = 3 expected cost associated with x = 1 is β + αc0. If, instead, the central does

not inject a unit of reserve at time t = 3, then the equilibrium interest rate will be either

r(1) > r(3) if d = 1 or r(3) if d = −1. The expected cost associated with not injecting or

draining reserves, x = 0, is αc0. Hence, the central bank’s best response at time t = 3 is not

to undertake an open market operation, i.e., x = 0 since the expected cost to the central

bank is lower by β relative to the cost of conducting the operation (x = 1).

Next, consider the case where the central bank chooses ample reserves equal to RA =

R̄+U+2 at t = 1 instead of scarce reserves for this example. Independently of the supply and

demand shock realizations, the t = 5 equilibrium interbank rate is r(RA + s+x− d) = rIOR:

hence, there is no interest rate variability. In this example, the central bank will choose

ample reserves if the increase in balance sheet costs, RA − R̄, is less than the cost savings

associated with interest rate variability, αc0.

To see that the decrease in the predictability of demand makes ample reserves more

attractive, we assume that the central bank learns what the demand shock at t = 5 will be

at t = 3. Because the demand shock is known at t = 3, the central bank will offset the

demand shock at t = 3 when reserves are scarce. The cost savings from choosing ample
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reserves at date t = 1 is only equal to β because the reserve injection at t = 3 would be 2 or

0 with equal probability, which is smaller than αc0. Thus, cost savings from choosing ample

reserves are larger with less predictable demand.

Qualitatively, key results and insights from the model with predictable reserve demand

hold when the reserve demand is no longer perfectly predictable. Importantly, the central

bank’s t = 1 reserve supply decision is still a choice between a scarce-reserve regime and

an ample-reserve regime. And due to the demand shock being unpredictable, it is more

likely that an ample-reserve regime is preferred to a scarce-reserve regime. To facilitate the

comparison between the cases with and without demand uncertainty, we state a more general

version of Proposition 1:

Proposition 5. Assume that D = 0 and s is a sum of two independent uniform distributions,

s = s1 + s2, where s1 and s2 follow uniform distributions over [−S1, S1] and [−S2, S2],

respectively. If β > 2 and αc0U > −β
2
F−1
s (1

2
− 1

β
) (a sufficient condition for which is

αc0 >
S1+S2

U
), the cost of implementing monetary policy, V (R), has two local minima: one

at R = R̄ and another, denoted RA, at R > R̄ + U .

Otherwise, the cost function has local minima only within the steep portion of the demand

curve, R ∈ [R̄, R̄ + U ].

The proof is in Appendix B. The intuition for this result is the same as in Proposition 1;

setting S1 = 0 or S2 = 0 reduces Proposition 5 to Proposition 1.

Next, we show that with demand shocks, an ample level of reserve supply is more likely

to be optimal:

Proposition 6. Assume S+D < U and define two economies 1 and 2 as follows: In economy

1, the supply shock s is a sum of two independent uniform distributions over [−S, S] and

[−D,D] and the demand shock d is zero. In economy 2, the supply shock s is uniform over

[−S, S] and the demand shock d is uniform over [−D,D].

If there exists a local optimum R > R̄+U in economy 1, then there exists a local optimum

RA over R > R̄+U in economy 2, too. Furthermore, if the ample-reserve regime is optimal in

economy 1—the local optimum at R > R̄+U is preferred to R = R̄—then the ample-reserve

regime is also optimal in economy 2.
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The intuition behind this result is the following: The presence of demand shocks (economy

2) that are unknown at the time when the central bank chooses its operation makes open

market operations less effective in economy 2, thus providing the central bank with a stronger

incentive to preemptively choose a higher level of reserve supply relative to economy 1 and

avoid a potential use of operations. Therefore, with the overall shock distribution s + d

fixed, having more uncertainty at the time of operation (economy 2) strengthens the relative

preference for the ample-reserve regime over the scarce-reserve regime.20 The formal proof

of Proposition 6 is in Appendix B.

Through three examples, Figure 5 illustrates how uncertainty at the time of operation

makes an ample reserve supply more favorable (relative to a scarce supply). When there is

no uncertainty about the demand for reserves at the time of the open market operation—the

orange line—the scarce reserve regime is preferred; however, when predictability is reduced

and demand is uncertain—the blue and green lines—the ample reserve regime is preferred.

4 An Ample Reserve Regime in Practice

Our theory provides a rationale for the FOMC’s decision in 2019 to remain in an ample

reserve regime. In this section, we briefly discuss how effective this regime has been at

maintaining interest rate control, which is the primary objective of the monetary policy

implementation framework in the U.S. We also discuss financial stability implications of this

type of framework.

4.1 Interest Rate Control

Measuring the effectiveness of monetary policy implementation can be approached in

many ways. One approach is to track the position of the policy rate relative to the target

rate or range, and determine how often the rate deviates from the target. In the U.S., the

effective federal funds rate has printed outside the target range in only two instances since

the FOMC announced the establishment of a target range for the federal funds rate in 2008.21

20Our findings are consistent with those in Afonso et al. (2023c). Building on a different modeling approach,
Afonso et al. (2023c) show that, when the banking system demand for reserves is uncertain, the optimal
level of reserves that a central bank supplies is greater than that absent uncertainty.

21The effective fed funds rate printed below the target range on December 31, 2015 and above the target
range on September 17, 2019.
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crisis period has been effective and achieved good pass-through.

Another way of measuring the effectiveness of the operating regime is by the pass-through

of administered rates to market rates. A particularly interesting approach to look at the

effectiveness of the Federal Reserve’s current implementation framework is to consider the

effect of the “technical adjustments” on various money market rates. A technical adjustment

is a change to the administered rates—the interest on reserve balances (IORB) rate and/or

the ON RRP rate—that is intended to foster trading in the fed funds market at rates well

within the target range, rather than change the stance of monetary policy. Afonso et al.

(2022b) and Afonso et al. (2023a) show that changes in administered rates, through technical

adjustments, effectively steer the policy rate within the target range.

Overall, the Federal Reserve’s current implementation framework has been effective at

interest rate control and at ensuring pass-through of the policy rate to short-term money

markets rates.

4.2 Additional Financial Stability Considerations

Our paper focuses on the financial stability considerations associated with the size of

the central bank balance sheet. An example of these considerations is political economy

concerns that might cast some doubt over the independence of the central bank from the

government. For instance, a large central bank balance sheet entails a large footprint on

certain financial markets such as the market for government securities; a large presence in

the government securities market might suggest a tight connection between monetary and

fiscal policies. Another example arises from the remuneration of reserves balances—a key

implementation tool in floor systems. A high level of reserves implies larger payments on

the balances that banks hold at the central bank; these payments might be perceived as

subsidies to the banking system.

Our stylized model abstracts from other financial stability considerations. Acharya et al.

(2022) point to potential fragility concerns associated with central bank balance sheet ex-

pansions. During expansions of central bank balance sheets, which ultimately create reserve

balances, banks finance these reserves with demandable deposits and lines of credit. The

authors argue that this increase in deposits and lines of credit is not reversed during balance

sheet shrinkage, creating an asymmetry responsible for tightening liquidity conditions and
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stress episodes during balance sheet normalization that can make the banking system more

dependent on central bank liquidity infusions during stress (Acharya and Rajan, 2024).

There are also financial stability benefits of implementation frameworks with high levels

of reserves that our model abstracts from. Higher reserves reduce the risk of disruptions in

payments systems (Afonso et al., 2022a; Copeland et al., 2024) and increase the liquidity

held by the banking sector, supporting the smooth functioning of financial markets. A

monetary policy implementation regime with a sufficiently large supply of reserves allows

banks to meet some of their needs for high-quality liquid assets (HQLA) with reserves. It

also provides enough reserves for banks to meet their outflow needs with reserves during a

time of stress and avoid the potential fire-sale effects from monetizing large quantities of

assets (Bush et al., 2019). This makes the financial system safer, more resilient, and may

reduce the need for banks to borrow from the central bank.

Another benefit of a regime with a large supply of reserves is that reserves as “money-

like” short-term safe assets are particularly attractive to some investors and, for that reason,

carry a premium that reduces their yield. When the supply of money-like assets is too

small, private sector participants have an incentive to issue liabilities that have money-like

properties because of their low cost. This can result in excessive maturity transformation,

which makes the financial system more fragile (Greenwood et al., 2016; Carlson et al., 2016).

5 Conclusion

The 2007-2009 financial crisis, and its aftermath, have led to profound changes in the way

many central banks implement monetary policy. In particular, large-scale asset purchases re-

sulted in high levels of reserves balances at major central banks. Traditional implementation

tools became ineffective, and central banks transitioned to control interest rates with ad-

ministered rates, using a “floor” system. Some central banks, including the Federal Reserve,

have indicated that they expect to continue using this type of implementation framework in

the foreseeable future.

Our paper provides a framework to think through the costs and benefits of different

implementation frameworks and discuss in which environments a level of reserves that is

low, moderate, or high is preferable. We propose a model of the banking system demand
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for reserves to study the trade-offs that policy makers face when choosing a monetary policy

implementation framework. We highlight potential trade-offs between rate control and the

financial stability implications of using the central bank’s balance sheet as a monetary policy

implementation tool as well as considerations arising from active management of central

bank reserve balances. We show that in the post-financial crisis environment, the optimal

monetary policy regime is one where reserve balances lie between scarce and abundant.
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Appendix

A Demand for Reserves

In this section we formally describe individual banks’ problem and explain in more detail

some of the results in Section 3.4. Bank i maximizes the following objective function:

+∞∫
−∞

Vi(u)µi(u)du−Rir. (A-1)

µi is the probability density function of ui and Vi(u) is the value associated with the outcome

ui = u. Vi(u) can be derived by integrating the marginal value of reserves up to Ri + ui.

The marginal value of reserves is rP for Ri +ui < R̄(i) + di and rIOR for Ri +ui ≥ R̄(i) + di.

Integrating the marginal value from 0 (or any constant) to Ri + ui, the expression for Vi(u)

is

Vi(u) = min(Ri + ui, R̄(i) + di)rP +max(Ri + ui − R̄(i)− di, 0)rIOR. (A-2)

Note that

∂Vi(u)

∂Ri

= rP if Ri + ui < R̄(i) + di;

= rIOR otherwise. (A-3)

The first-order condition (FOC) for bank i with respect to Ri is

0 =
∂

∂Ri

[

+∞∫
−∞

Vi(u)µi(u)du−Rir] =

+∞∫
−∞

∂Vi(u)

∂Ri

µi(u)du− r

= Prob(Ri + ui < R̄(i) + di)rP + Prob(Ri + ui ≥ R̄(i) + di)rIOR − r. (A-4)

This is bank i’s FOC described in Section 3.4.

Given the FOC of bank i, we can derive its demand for reserves. Recall that ui is

uniformly distributed over (−Ui, Ui).

• If Ri ≤ R̄(i)+di−Ui, then Prob(Ri+ui < R̄(i)+di) = 1. Therefore, r = 1·rP+0·rIOR =

rP .

• If Ri ≥ R̄(i) + di + Ui, then Prob(Ri + ui < R̄(i) + di) = 0. Therefore, r = rIOR.
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• If R̄(i) + di − Ui ≤ Ri ≤ R̄(i) + di + Ui, then Prob(Ri + ui < R̄(i) + di) = −(Ri −
R̄(i)− di − Ui)/(2Ui). Therefore,

r = rP (−Ri − R̄(i)− di − Ui
2Ui

) + rIOR(1 +
Ri − R̄(i)− di − Ui

2Ui
)

= rIOR + (rP − rIOR)(−Ri − R̄(i)− di − Ui
2Ui

). (A-5)

Solving this equation for Ri, we have Ri = R̄(i) + di +Ui− 2Ui(r− rIOR)/(rP − rIOR).

Next, we aggregate reserve demand across banks; recall that Ragg =
∑

iRi, R̄ =
∑

i R̄(i),

d =
∑

i di and U =
∑

i Ui.

• If Ragg ≤ R̄+d−U , then r = rP in equilibrium and Ri ≤ R̄(i)+di−Ui for every bank;

note that Ri is not uniquely determined. To prove this, suppose that Rj > R̄(j)+dj−Uj
for some j. Then, to satisfy bank j’s FOC, r < rP . This implies Ri > R̄(i) + di − Ui
for all i, implying R > R̄ + d− U , which is a contradiction.

• If Ragg ≥ R̄ + d + U , then r = rIOR in equilibrium and Ri ≥ R̄(i) + di + Ui for every

bank; note that Ri is not uniquely determined. This can be proved by contradiction,

similarly to how the previous case was proved.

• If R̄+ d− U ≤ Ragg ≤ R̄+ d+ U , then rIOR < r < rP , because otherwise, Ragg would

be outside the range. For any r in (rIOR, rP ), bank i’s choice of Ri is unique and given

by Ri = R̄(i) + di + Ui − 2Ui(r − rIOR)/(rP − rIOR), as shown earlier. Summing this

expression across i, we have

Ragg = R̄ + d+ U − 2U(
r − rIOR
rP − rIOR

). (A-6)

Solving this for r, we have

r = rIOR − (
rP − rIOR

2U
)(Ragg − R̄− d− U) if R̄ + d− U < Ragg < R̄ + d+ U. (A-7)

In equilibrium, Ragg = R+ s+ x and recall y ≡ R+ s+ x− d. Writing the expression in

terms of y, we have

r = rIOR − (
rP − rIOR

2U
)(y − R̄− U) if R̄− U < y < R̄ + U. (A-8)

This is the functional form of r(y) described in Section 3.4.
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B Technical Assumptions and Proofs

Proof of Proposition 1: The proposition is as follows: Assume that D = 0. If β > 2 and

αc0 > (S/U), the cost of implementing monetary policy, V (R), has two local minima: one

at R = R̄ and another, denoted RA, at R > R̄ + U . Otherwise, the cost function has local

minima only within the steep portion of the demand curve, R ∈ [R̄, R̄ + U ].

Proving this proposition is somewhat redundant because we will prove a more general

Proposition 6. Nonetheless we provide a proof because it is helpful in understanding the

choice of the central bank in the equilibrium. Recall that the central bank’s cost function

from date 0 perspective is

V (R) = E[α|r(R + s− d+ x(R, s))− r(R)|+ β|x(R, s)|] +R. (B-9)

The central bank seeks to minimize this cost function under the constraint R ≥ R̄, with

x(R, s) optimal in each state s. To show the existence of two local minima, one at R = R̄

and another over R > R0, where R0 is defined as R̄+U , it is sufficient to show the following:

• V ′(R̄) > 0.

• V ′′ ≤ 0 for R < R0.

• V ′′ ≥ 0 for R > R0.

• limR→∞ V
′(R) > 0.

• V ′(R+
0 ) < 0, where V ′(R+

0 ) denotes the right limit of V ′ at R0, if and only if β > 2

and S < αc0U .

The first inequality shows that R = R̄, the scarce supply, is a local optimum and the second

inequality shows that there is no other local optimum below the kink level, R < R0. The

remaining inequalities show that there is a unique optimum with R > R0 (the ample supply).

In what follows, we first prove the five inequalities and then discuss what happens if

β ≤ β0. To prove the first inequality, V ′′ < 0 for R < R0, we recognize that increasing R

is less costly for R closer to R0 (while still R̄ ≤ R < R0) because moving closer to the flat
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portion of the demand curve at r = rIOR helps lower the cost due to interest rate volatility.

Recall that

r(y) = rIOR if R0 < y;

= rIOR + c0(R0 − y) if R0 − 2U ≤ y ≤ R0;

= rIOR + 2c0U otherwise. (B-10)

We first derive the optimal x(R, s) for R̄ ≤ R < R0. Recall that the problem is

min
x
α|r(R + s+ x)− r(R)|+ β|x|. (B-11)

d is dropped because D = 0 and R is dropped from the cost function because this is a

problem of determining x taking R and s is given. Given the standing assumption β < αc0

(section 3.5), we can characterize x:

• If R0 − 2U ≤ R + s ≤ R0 − R, then x = −s. R + s is still in the steep portion of the

demand curve and β < αc0 implies that the central bank finds it optimal to completely

offset s.

• Otherwise, two cases are possible: either x = −s or x = 0. Only x such that R+s+x is

on the steep portion of the demand curve can be better than x = 0, and any R+ s+x

that is on the steep portion of the demand curve is dominated by x = −s because

β < αc0.

The preceding discussion shows that for any s, the optimal choice is either x = 0 or

x = −s:

min
x
α|r(R + s+ x)− r(R)|+ β|x| = min(α|r(R + s)− r(R)|, β|s|). (B-12)

In other words, calculating the minimum cost requires just comparing x = 0 with x = −s.
Given the functional form of r, x = 0 is chosen if (and only if) |s| is large enough to take

advantage of the flat portions of r: if s ≥ (αc0/β)(R0 −R) or if s ≤ (αc0/β)(R0 − 2U −R).

Recall that V (R) = E[α|r(R+ s−d+x(R, s))− r(R)|+β|x(R, s)|] +R = Emin(α|r(R+

s)− r(R)|, β|s|) +R. Using this expression we can calculate the derivative dV/dR:

dV

dR
=

∫
∂

∂R
min(α|r(R + s)− r(R)|, β|s|)fs(ds) + 1

= −αc0[1− Fs(
αc0

β
(R0 −R))] + αc0Fs(

αc0

β
(R0 − 2U −R)) + 1. (B-13)
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fs and Fs are the probability density and the cumulative distribution functions of s, respec-

tively. The contribution from the integrand is nonzero only for s such that x(R, s) = 0,

leading to the expression.

Putting R = R̄, we have the first two terms in the equation canceling each other out

due to the symmetry of s around zero, giving us V ′(R̄) = 1, proving the first inequality,

V ′(R̄) > 1.

As R increases, both the first and the second terms (weakly) decrease, proving the second

inequality, V ′′(R) ≤ 0 if R < R0.

To prove the remaining three inequalities, we recognize that increasing R when R ≥ R0

reduces the cost of operations because the central bank does not need to respond if reserve

supply after the shock still remains within the flat portion of the demand curve, r(R+ s) =

r(R). Recall that, for the purpose of the proof, the central bank’s problem can be written

simply as

min
x
α|r(R + s+ x)− r(R)|+ β|x|. (B-14)

Now we characterize the optimal choice of x:

• If R + s ≥ R0, then x = 0 because r(R + s) = r(R).

• If R+s ≤ R0, then the optimal choice is either x = R0−R−s or x = 0. The argument

is the same as that used in proving the first two inequalities, except that it is optimal

to choose x = R0−R− s rather than x = −s because x = R0−R− s is the minimum

operation that achieves r(R + s+ x) = r(R).

The preceding discussion shows

min
x
α|r(R + s+ x)− r(R)|+ β|x| = min(α|r(R + s)− r(R)|, β|R0 −R− s|).

Given the functional form of r, x = 0 is optimal if s ≤ −(α/β)(rP − rIOR) + R0 − R or if

s ≥ R0 −R.

Recall that V (R) = Emin(α|r(R + s) − r(R)|, β|s|) + R. Using this expression we can

calculate the derivative dV/dR:

dV

dR
=

∫
∂

∂R
min(α|r(R + s)− r(R)|, β|R0 −R− s|)fs(ds) + 1

= −β[Fs(R0 −R)− Fs(−
α

β
(rP − rIOR) +R0 −R)] + 1. (B-15)
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Note that the term multiplying β is the probability of −(α/β)(rP − rIOR) + R0 − R ≤
s ≤ R0 − R, which is monotonically decreasing in R if R0 ≤ R, given the shape of the

distribution of s. Therefore, (dV/dR) is monotonically increasing in R, proving the third

inequality: V ′′(R) ≥ 0 if R0 > R.

Next, given the functional form of V ′(R), its limit as R goes to +∞ is 1, which proves

the fourth inequality.

Also, as R approaches R0 from the right,

lim
R→R+

0

V ′(R) = −β
[

1

2
− Fs

(
−α
β

(rP − rIOR)

)]
+ 1

= −β
[

1

2
− Fs

(
−αc0

β
× 2U

)]
+ 1. (B-16)

If S ≤ (2αc0/β)U , then this expression becomes −(β/2) + 1, which is negative if and only

if β > 2. Otherwise, note that Fs(−(2αc0/β)U) = (1/2)[1 − (2αc0/β)(U/S)]. Thus, the

preceding equation can be simply written as −(αc0)(U/S) + 1, which is negative if and only

if S < αc0U .

To summarize, V ′(R+
0 ) < 0 holds if and only if either (i) β > 2 and S ≤ (2αc0/β)U ;

or (ii) (2αc0/β)U < S < αc0U . Note that condition (i) implies S < αc0U and condition

(ii) implies β > 2 (in the sense that otherwise the set of (β, S) satisfying (ii) is empty).

Therefore the condition implies β > 2 and S < αc0U . Conversely, if β > 2 and S < αc0U ,

either condition (i) or (ii) is satisfied depending on the value of S.

Therefore, the fifth inequality, V ′(R+
0 ) < 0, holds if and only if β > 2 and S < αc0U .

If V ′(R+
0 ) ≥ 0, the inequality along with V ′′(R) ≥ 0 for R > R0 (the third inequality in

the earlier list) shows that there is no local minimum in R > R0. This completes the proof

of Proposition 1.

Local minima in case β ≤ 2 or S ≥ αc0U . Notice that V ′′(R) < 0 for R < R0 implies

that there can be a local minimum only at R = R0 other than R = R̄. And R = R0 is a local

minimum if and only if V ′(R−0 ) < 0, where V ′(R−0 ) is the limit of V ′(R) as R approaches R0

from the left. Using the expression for V ′(R) derived while proving the first inequality, we

can calculate the limit:

lim
R→R−

0

V ′(R) = −αc0

[
1

2
− Fs

(
−2

(
αc0

β

)
U

)]
+ 1. (B-17)
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If S ≤ (2αc0/β)U , then this expression can be simplified as −(αc0/2) + 1, which is nega-

tive if and only if αc0 > 2. If S > (2αc0/β)U , then this expression can be simplified as

−[(αc0)2/β](U/S) + 1, which is negative if and only if S < [(αc0)2/β]U.

Proof of Proposition 2: The proposition is as follows: Assume that D = 0 and S < U .

Then, there exists a constant β0 such that if β > β0, then there exists some S0 < U such that

the scarce-reserve regime is optimal for S ∈ (0, S0) and the ample-reserve regime is optimal

for S ∈ (S0, U). Otherwise—if 2 < β ≤ β0—then the scarce-reserve regime is optimal.

As explained in Section 3.6, the intuition behind this result is clear—the cost to the

central bank loads more heavily on S in the scarce-reserve regime, thus a larger S makes the

ample-reserve regime more favorable relative to the scarce-reserve regime.

For R = R̄, note that S < U implies min(α|r(R+s)− r(R)|, β|s|) = β|s| for any |s| < S.

Therefore,

V (R̄) =

∫
min(α|r(R+s)−r(R)|, β|s|)fs(s)ds+R̄ =

∫
β|s|fs(s)ds+R̄ =

1

2
βS+R̄. (B-18)

Next, we derive an expression for RA. Note that R0 < RA < R0 + S, where R0 ≡ R̄+ U

as before. This is because V (R) is convex over R > R0 and V ′(R0 +S) = 1; for R ≥ R0 +S,

R+ s always stays in the flat portion of the demand curve r and there is no cost associated

with interest rate movements or open market operations.

For R0 < R < R0 + S, as explained in the proof of Proposition 1,

dV

dR
= −β[Fs(R0 −R)− Fs(−

α

β
(rP − rIOR) +R0 −R)] + 1.

Given S < U , we can simplify this expression as

dV

dR
= −βFs(R0 −R) + 1 = −βF1(

R0 −R
S

) + 1.

As in the main text, F1 denotes the cumulative distribution function of a uniform distribution

over (−1, 1). Setting this expression at 0 to derive the value of RA, we have

RA = F−1
1

(
1− 1

β

)
S +R0 =

(
1− 2

β

)
S +R0. (B-19)
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Following the proof of Proposition 1 and using S < U ,

V (RA) =

∫
min(α|r(RA + s)− r(RA)|, β|R0 −RA − s|)fs(ds) +RA

=

∫
β|R0 −RA − s|fs(ds) +RA

=
1

2
β|R0 −RA − S|Prob(R0 −RA − s ≤ 0) +RA

=
1

2
β × 2

β
S × 1

β
+

(
1− 2

β

)
S +R0 =

(
1− 1

β

)
S + U + R̄. (B-20)

The difference between these two cost functions is

V (R̄)− V (RA) =
1

2
(β − 2 + 2β−1)S − U. (B-21)

The coefficient on S is positive if β > 2. If S = U , the expression becomes

1

2β
(β2 − 4β + 2). (B-22)

If 2 < β ≤ β0, where β0 = 2 +
√

2, this expression is non-positive, and V (R̄) − V (RA) is

negative for any S < U , implying that the scarce-reserve regime is optimal.

If β > β0, then the expression is positive, which means that for some S, V (R̄) > V (RA).

Given that the coefficient on S is larger in the expression for V (R̄) than in the expression for

V (RA), the condition for V (R̄) > V (RA), implying that the ample-reserve regime is optimal,

can be expressed as S > S0.

We can derive the value of S0 as the value of S that satisfies the equation V (R̄)−V (RA) =

0. Using the explicit expression for V (R̄)− V (RA), we see

S0 =

[
β

2
− 1 +

1

β

]−1

U. (B-23)

This completes the proof of Proposition 2.

Proof of Proposition 3: The proposition is as follows: ∂S0/∂β < 0; S0 is as defined in

Proposition 2.

Note that, from the proof of Proposition 2,

S0 =

[
β

2
− 1 +

1

β

]−1

U. (B-24)
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We only need to prove that the expression inside the brackets, (β/2) − 1 + (1/β), is

increasing in β. Its derivative is (1/2) − (1/β2), which is positive if β > 2. This completes

the proof of Proposition 3.

Proof of Proposition 4: The proposition is as follows: Assume that D = 0, αc0 > (S/U)

and (αc0/β) > 2. Then, for any β > 2, there exists some S0 < (αc0)U such that the

scarce-reserve regime is optimal for S ∈ (0, S0) and the ample-reserve regime is optimal for

S ∈ (S0, U).

First, we calculate V (R̄). Note that if |s| is large enough, then the central bank chooses

x = 0 instead of x = −s (see the proof of Proposition 1). The central bank is indifferent if

α|r(R + s)− r(R)| = β|s|, which occurs at |s| = (αc0/β)U.

Therefore, if S ≤ (αc0/β)U, then V (R̄) has the same expression as before (see the proof

of Proposition 2):

V (R̄) =
1

2
βS + R̄. (B-25)

If S > (αc0/β)U, then conditional on s ≤ (αc0/β)U , the expected cost is given by

the preceding expression evaluated at S = (αc0/β)U . Conditional on s > (αc0/β)U , the

expected cost is constant at αc0U. Therefore,

V (R̄) =
1

2
αc0U ×

1

S

αc0

β
U + αc0U ×

(
1− 1

S

αc0

β
U

)
+ R̄

=

(
1− αc0

2β

U

S

)
αc0U + R̄. (B-26)

Next, we calculate RA. Note that the expression derived earlier (in the proof of Propo-

sition 2) is still valid, as long as the central bank is still choosing x = R0 − RA − s for the

largest negative realization of s, s = −S:

RA =

(
1− 2

β

)
S + R̄ + U. (B-27)

Note that, for s = −S, RA+s = −(2/β)S+R̄+U > R̄+U−(2αc0/β)U . The implied offset x

by the central bank is x = (R0−RA− s) < (2αc0/β)U , with associated implementation cost

of βx < 2αc0U = α(rP − rIOR). Thus, the central bank optimally chooses x = (R0−RA− s)
over x = 0 for s = −S, and the expression for RA is valid.

An immediate corollary of the preceding discussion is that the earlier expression for
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V (RA) is also valid (from the proof of Proposition 2):

V (RA) =

(
1− 1

β

)
S + U + R̄. (B-28)

The difference between these two costs, say DV (S) ≡ V (R̄) − V (RA), which depend on

S (holding all other parameters constant), is

DV (S) =

(
β

2
− 1 +

1

β

)
S − U. (B-29)

if S < (αc0/β)U . Otherwise—if (αc0/β)U ≤ S < (αc0)U—

DV (S) =

(
1− αc0

2β

U

S

)
αc0U −

(
1− 1

β

)
S − U. (B-30)

Notice that DV (0) = −U < 0 and DV is concave, D′′V < 0. This means that if

DV (αc0U) > 0, then DV crosses 0 exactly once, such that there exists some S0 such that

DV > 0 if and only if S > S0.

We can simplify the expression for DV (αc0U) as follows:

DV (αc0U) =

(
αc0

2β
− 1

)
U. (B-31)

This is positive if (αc0/β) > 2, which completes the proof of Proposition 4.

Proof of Proposition 5: The proposition is as follows: Assume that D = 0 and s is a sum

of two independent uniform distributions, s = s1 + s2, where s1 and s2 follow independent

uniform distributions over [−S1, S1] and [−S2, S2], respectively. If β > 2 and αc0U >

−(β/2)F−1
s (1/2 − 1/β) (a sufficient condition for which is αc0 > (S1 + S2)/U), the cost of

implementing monetary policy, V (R), has two local minima: one at R = R̄ and another,

denoted RA, at R > R̄ + U . Otherwise, the cost function has local minima only within the

steep portion of the demand curve, R ∈ [R̄, R̄ + U ].

As in the proof of Proposition 1, it is sufficient to prove the following:

• V ′(R̄) > 0.

• V ′′ ≤ 0 for R < R0.

• V ′′ ≥ 0 for R > R0.
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• limR→∞ V
′(R) > 0.

• V ′(R+
0 ) < 0, where V ′(R+

0 ) denotes the right limit of V ′ at R0, if and only if β > 2

and αc0U > −(β/2)F−1
s (1/2− 1/β).

Following the proof of Proposition 1, for R < R0,

dV

dR
= −αc0[1− Fs(

αc0

β
(R0 −R))] + αc0Fs(

αc0

β
(R0 − 2U −R)) + 1. (B-32)

Since the distribution of s is symmetric around zero, V ′(R̄) = 1 > 0. Also, both instances

of Fs decreases in R, implying V ′′ ≤ 0. This proves the first two inequalities.

For R > R0, the optimal choice of x is x = 0 if s ≤ −(α/β)(rP − rIOR) + R0 − R

or if s ≥ R0 − R; and is x = −s otherwise, following the characterization in the proof of

Proposition 1. This implies that the derivative of V has the following form:

dV

dR
= −β[Fs(R0 −R)− Fs(−

α

β
(rP − rIOR) +R0 −R)] + 1

= −βProb(−α
β

(rP − rIOR) +R0 −R ≤ s ≤ R0 −R) + 1. (B-33)

Since the density of s is maximum at 0 and (weakly) decreases as s moves away from 0,

the probability in the expression decreases in s, implying V ′′ ≥ 0. In addition, as R → ∞,

V ′(R) = 1 > 0.

We only need to prove the last inequality. Note that

V ′(R+
0 ) = −β

[
1

2
− Fs(−

2αc0

β
U)

]
+ 1. (B-34)

If S1 + S2 ≤ (2αc0/β)U , this expression becomes −(β/2) + 1, which is negative if and only

if β > 2. Otherwise, the expression is negative if and only if Fs(−2αc0U/β) < 1/2 − 1/β,

which is equivalent to −(β/2)F−1
s (1/2− 1/β) < αc0U.

To summarize, V ′(R+
0 ) < 0 holds if and only if either (i) β > 2 and S1 +S2 ≤ (2αc0/β)U ;

or (ii) S1 + S2 > (2αc0/β)U and −(β/2)F−1
s (1/2− 1/β) < αc0U . Condition (i) implies S1 +

S2 < αc0U . For condition (ii), note that F−1
s (1/2−1/β) ≥ F−1

t (1/2−1/β) = −2(S1 +S2)/β

for t that follows a uniform distribution over [−S1−S2, S1+S2]. Therefore, −(β/2)F−1
s (1/2−

1/β) ≤ S1 + S2, as stated by the proposition. This implies that if β ≤ 2, then no set of

coefficient will satisfy condition (ii), thus condition (ii) implies β > 2. Also, F−1
s (1/2−1/β) ≤
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F−1
u (1/2− 1/β) = (S1 + S2)(

√
1− 2/β − 1) for a random variable u defined as u = u1 + u2,

where u1 and u2 each follow i.i.d uniform distribution over [−(S1 +S2)/2, (S1 +S2)/2]. Thus,

−(β/2)F−1
s (1/2 − 1/β) < αc0U implies (S1 + S2)(1 −

√
1− 2/β) < (2αc0/β)U , which is a

necessary condition for S1 + S2 ≤ (2αc0/β)U .

Therefore, V ′(R+
0 ) < 0 if and only if β > 2 and −(β/2)F−1

s (1/2 − 1/β) < αc0U , which

completes the proof of Proposition 5.

Proof of Proposition 6: The proposition is as follows: Assume S+D < U and define two

economies 1 and 2 as follows: In economy 1, the supply shock s is a sum of two independent

uniform distributions over [−S, S] and [−D,D] and the demand shock d is zero. In economy

2, the supply shock s is uniform over [−S, S] and the demand shock d is uniform over [−D,D].

If there exists a local optimum R > R̄ + U in economy 1, then there exists a local

optimum RA over R > R̄ + U in economy 2, too. Furthermore, if the ample-reserve regime

is optimal in economy 1—the local optimum at R > R̄+U is preferred to R = R̄—then the

ample-reserve regime is also optimal in economy 2.

This is a generalized version of Propositions 1 and 5. The basic ideas underlying the proof

are the same, but we rely less on deriving closed-form expressions because they become more

complicated with the presence of demand shocks. To prove the existence of local optimum in

R > R0, it is sufficient to prove the following five inequalities for economy 2 as in Proposition

1:

• V ′(R̄) > 0.

• V ′′ ≤ 0 for R < R0.

• V ′′ ≥ 0 for R > R0.

• limR→∞ V
′(R) > 0.

• V ′(R+
0 ) < 0, where V ′(R+

0 ) denotes the right limit of V ′ at R0, if V ′(R+
0 ) < 0 in

economy 1.

We write the central bank’s cost function as follows:

V (R) =

∫
W (R, s)fs(s)ds+R. (B-35)
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W (R, s) is the expected cost due to interest rate volatility and central bank operations given

(R, s) and fs is the probability density function of s. We can write

W (R, s) = min
x

[
β|x|+

∫
α|r(R + s+ x+ e)− r(R)|fd(e)de

]
. (B-36)

We denote the demand shock as e instead of d to avoid confusion of notation involving

integrals. fd(e) is the probability density function of d. Also, we write R+ s+ x+ e instead

of R + s+ x− e, which we can do because e’s distribution is symmetric around zero.

Taking the derivative of W (R, s) with respect to R, we have, for R̄ ≤ R ≤ R̄ + U ,

∂W

∂R
=

∂

∂R

[
β|x|+

∫
α|r(R + s+ x+ e)− r(R)|fd(e)de

]
=

∫
α
∂

∂R
|r(R + s+ x+ e)− r(R)|fd(e)de

= −αc0Prob(R + s+ x+ e ≥ R̄ + U) + αc0Prob(R + s+ x+ e ≤ R̄− U)

= −αc0[1− Fd(R̄−R− s− x+ U)− Fd(R̄−R− s− x− U)]. (B-37)

Fd denotes the cumulative distribution function of demand, e, and x is an optimal choice

that is implicitly a function of R and x. In the second line, however, note that x is not

treated as a function of R in calculating the partial derivative. The terms including ∂x/∂R

cancel out because x is either an optimal choice satisfying the first-order condition—envelope

property—or x = 0 is optimal, in which case ∂x/∂R = 0.

At R = R̄, given the symmetry of r around R, x(−s) = x(s). Therefore,

∂W

∂R
(s) +

∂W

∂R
(−s) = αc0[Fd(−s− x(s) + U) + Fd(−s− x(s)− U)

+ Fd(s− x(−s) + U) + Fd(s− x(−s)− U)− 2]

= αc0[Fd(−s− x(s) + U) + Fd(s+ x(s)− U)

+ Fd(−s− x(s)− U) + Fd(s+ x(s) + U)− 2]

= 0. (B-38)

Due to the symmetry of the distribution of e around 0.

Therefore,

V ′(R) =

∫
∂W

∂R
fs(s)ds+ 1 = 1. (B-39)

This proves the first inequality.
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To calculate V ′′, we note

∂2W

∂R2
= −αc0[fd(R̄−R− s− x+ U) + fd(R̄−R− s− x− U)]

(
1 +

∂x

∂R

)
. (B-40)

Therefore,

V ′′ =

∫
∂2W

∂R2
fs(s)ds

=

∫
−αc0[fd(R̄−R− s− x+ U) + fd(R̄−R− s− x− U)]

(
1 +

∂x

∂R

)
fs(s)ds.

(B-41)

To show V ′′ ≤ 0, it is sufficient to show that 1 + ∂x/∂R ≥ 0 for any (R, s). Recall that

x is an optimizer of the following problem:

min
x

[
β|x|+

∫
α|r(R + s+ x+ e)− r(R)|fd(e)de

]
. (B-42)

If x = 0, then ∂x/∂R = 0 because it is a boundary solution. Therefore, 1 + ∂x/∂R =

1 ≥ 0.

Suppose that x 6= 0. Then, the FOC for x is

0 = βsign(x) +

∫
α
∂

∂x
|r(R + s+ x+ e)− r(R)|fd(e)de

= βsign(x) + αc0[−Prob(−s− x+ R̄− U −R < e < −s− x)

+ Prob(−s− x < e < −s− x+ R̄ + U −R)]. (B-43)

sign(x) is 1 if x > 0 and −1 if x < 0. The second line can be understood as follows: If

e < −s − x, then increasing x moves r(R + s + x + e) toward r(R), reducing the cost.

However, if e > −s−x, then increasing x moves r(R+s+x+e) away from r(R); exceptions

are when r(R + s + x + e) is at the flat portion of the demand curve, which occurs if

e < −s− x+ R̄− U −R or e > −s− x+ R̄ + U −R.

Taking the total derivative of the FOC with respect to R, we have

0 = αc0[[2fd(−s− x)− fd(−s− x+ R̄ + U −R)− fd(−s− x+ R̄− U −R)]
∂x

∂R
− fd(−s− x+ R̄ + U −R)− fd(−s− x+ R̄− U −R)]. (B-44)

Given that fd is the probability density for a uniform distribution, the coefficient on

∂x/∂R is non-negative, which implies ∂x/∂R ≥ 0, sufficient for the proof, except when the

47



coefficient is zero. This can happen if the densities in the expression for the coefficient are

either all zero or all positive.

If they are all zero, it implies that the probabilities in the expression for the FOC (for

x) are 0 or 1, implying that the FOC will not hold. If they are all positive, it means that

the probabilities in the FOC are not a function of x, and the FOC can hold only for a single

value of R. Therefore, we can ignore this case for the purpose of the proof. This completes

the proof of the second inequality, V ′′ ≤ 0 for R < R̄ + U .

We turn to characterize V and its derivatives for R > R0. Expressions for W and its

derivatives are simpler because r(R) is at the floor and there are only one-sided deviations:

∂W

∂R
(R, s) =

∂

∂R

[
β|x|+

∫
α|r(R + s+ x+ e)− r(R)|fd(e)de

]
=

∫
α
∂

∂R
|r(R + s+ x+ e)− r(R)|fd(e)de

= −αc0Prob(R̄− U ≤ R + s+ x+ e ≤ R̄ + U)

= −αc0[Fd(R̄−R− s− x+ U)− Fd(R̄−R− s− x− U)]. (B-45)

As discussed earlier, we used the envelope property to remove terms involving ∂x/∂R.

Therefore,

∂2W

∂R2
= αc0[fd(R̄−R− s− x+ U)− fd(R̄−R− s− x− U)]

(
1 +

∂x

∂R

)
. (B-46)

For R > R0, the central bank chooses only x ≥ 0; x < 0 is not optimal because it

increases the interest rate cost term |r(R+ s+ x+ e)− r(R)|. Thus the optimal x is either

0 or satisfies the following FOC, derived earlier:

0 = β +

∫
α
∂

∂x
|r(R + s+ x+ e)− r(R)|fd(e)de

= β − αc0[Fd(R̄−R− s− x+ U)− Fd(R̄−R− s− x− U)]. (B-47)

Differentiating the FOC with respect to R, we have

0 = αc0[fd(R̄−R− s− x+ U)− fd(R̄−R− s− x− U)]

(
1 +

∂x

∂R

)
. (B-48)

Note that the right-hand side is identical to the expression for ∂2W/∂R2, implying ∂2W/∂R2 =

0.
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Let AR denote the set of s ∈ [−S, S] such that ∂2W/∂R2 < 0; for any such s, the

interior solution x = 0 is optimal. The expression for the second derivative implies that

|R + s− (R̄− U)| ≤ D and |R + s− (R̄ + U)| > D, so that ∂2W/∂R2 = −αc0/(2D).

Note that s < R̄ − R given that R + s is closer to R̄ − U than to R̄ + U . For any

s ∈ AR, we define t(s) = s − 2(R + s − R̄) = 2R̄ − 2R − s, a function of s. This makes

R + t(s) − R̄ = R̄ − (R + s), implying |t(s)| < |s| and t(s) ∈ [−S, S]. Also, it implies

Prob(R̄ − U ≤ R + s + e ≤ R̄ + U) = Prob(R̄ − U ≤ R + t(s) + e ≤ R̄ + U). This makes

the derivative of the implementation cost with respect to x—the right-hand side of the FOC

derived earlier—evaluated x = 0 the same for s and t(s), which means that it is positive.

Furthermore, the derivative of the cost increases in x at t(s) over x > 0; the derivative can

be written as β − αc0Prob(R̄ − U ≤ R + t(s) + x + e ≤ R̄ + U), and the probability in the

expression decreases in x given that R+ t(s) + x+ e ≥ R̄− U with probability 1 for x > 0.

This implies that x = 0 is optimal for t(s). Therefore, ∂2W/∂R2(t(s)) = αc0[fd(R̄−R−
t+U)−fd(R̄−R− t−U)]

(
1 + ∂x

∂R

)
= αc0/(2D), which equals −∂2W/∂R2(s). Let us define

BR ≡ {t(s)|s ∈ AR}.

Then,

V ′′ =

∫
∂2W

∂R2
fs(s)ds

=

∫
[−S,S]−AR−BR

∂2W

∂R2
fs(s)ds+

∫
AR

∂2W

∂R2
fs(s)ds+

∫
BR

∂2W

∂R2
fs(s)ds

=

∫
[−S,S]−AR−BR

∂2W

∂R2
fs(s)ds ≥ 0. (B-49)

Next, we prove the fourth inequality, limR→∞ V
′(R) > 0. Recall that

W (R, s) = min
x

[
β|x|+

∫
α|r(R + s+ x+ e)− r(R)|fd(e)de

]
. (B-50)

If R > R̄+U+S+D, then by simply choosing x = 0 for all s ∈ [−S, S], the central bank can

minimize W at 0. This implies that for R > R̄+U +S+D, ∂W/∂R = 0 for all s ∈ [−S, S].

Therefore, for R > R̄ + U + S +D,

V ′ =

∫
∂W

∂R
fs(s)ds+ 1 = 1. (B-51)

This proves limR→∞ V
′(R) > 0.
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Lastly, we consider the fifth inequality, V ′(R+
0 ) < 0. For convenience, we a random

variable u as the sum of s and e, so that it represents the distribution of the supply shock

in economy 1.

We can write

V (R) = Y (R) +

∫
[W (R, s)− Z(R, s)]fs(s)ds. (B-52)

Note that Y (R) and Z(R, s) denote the expected implementation cost functions that are

unconditional—like V (R)—and conditional on s—like W (R, s)—for economy 1, respec-

tively. By assumption, Y ′(R+
0 ) < 0, so it is sufficient to prove that (d/dR)

∫
[W (R, s) −

Z(R, s)]fs(s)ds ≤ 0 for R > R0.

Note that

Z(R, s) =

∫
min
x

[β|x|+ α|r(R + s+ x+ e)− r(R)|fd(e)de]. (B-53)

In the expression, x depends on both s and e. Since S +D < U by assumption, the optimal

choice of operation x for economy 1 is x = [R0−(R+s+e)]+, where [y]+ denotes the positive

part of y, max(y, 0), as discussed in the proof of Proposition 1. Therefore,

Z(R, s) =

∫
β[R0 − (R + s+ e)]+fd(e)de. (B-54)

Note that in the expression for W , x can only depend on s:

W (R, s) = min
x

[
β|x|+

∫
α|r(R + s+ x+ e)− r(R)|fd(e)de

]
. (B-55)

The optimal choice of x is nonnegative because r(R) is at the lower bound of r. The derivative

of the second term with respect to x is −αc0Prob(R+ s+ x+ e < R0|s) = −αc0Probs(R+

s+ x+ e < R0), which linearly increases in R+ s+ x over −D < R+ s+ x−R0 < D from

−αc0 to 0 and is constant at −αc0 over R+s+x−R0 < −D and 0 over R+s+x−R0 > D.

Therefore, the optimal solution x satisfies the following:

− αc0Probs(R + s+ x+ e < R0) = −β if − αc0Probs(R + s+ e < R0) ≤ −β; (B-56)

and x = 0 otherwise.

Let δ be the solution to −αc0Prob(R0 + δ + e < R0) = −β. Given the density of e,

δ =

(
1− 2β

αc0

)
D. (B-57)
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Then, we can write the optimal choice of x as follows:

x(R, s) = [R0 + δ − (R + s)]+. (B-58)

And the expression for W becomes

W (R, s) =

∫ [
β[R0 + δ − (R + s)]+ + α|r(R + s+ [R0 + δ − (R + s)]+ + e)− r(R)|

]
fd(e)de

=

∫
w(R + s, e)fd(e)de. (B-59)

The function w is defined as the integrated expression between the brackets, which is a

function of R + s and e. Then, using y to denote the first argument of w,

w(y, e) =

{
β[R0 + δ − y] + αc0[−δ − e]+ if y ≤ R0 + δ;

αc0[R0 − (R + s+ e)]+ otherwise.
(B-60)

Then,∫
[W (R, s)− Z(R, s)]fs(s)ds =

∫ ∫
[w(R + s, e)− β[R0 − (R + s+ e)]+]fd(e)fs(s)deds

=

∫ ∫
[w(y, e)− β[R0 − (y + e)]+]fd(e)fs(y −R)dedy.

(B-61)

Let v(y, e) denote the term in the brackets, w(y, e)− β[R0− (y+ e)]+. Then, the expression

for v can be simplified as follows:

v(y, e) =

{
(αc0 − β)[−δ − e− [y −R0 − δ]+]+ if e ≤ −δ;
βmin(δ + e, [−y +R0 + δ]+) otherwise.

(B-62)

The expression makes it clear that for any given e, v(y, e) is monotonically decreasing in y.

Recall that we need to prove (d/dR)
∫

[W (R, s)−Z(R, s)]fs(s)ds ≤ 0. Using D to denote

the Dirac delta function (to avoid confusion with δ defined earlier), we have

d

dR

∫
[W (R, s)− Z(R, s)]fs(s)ds =

d

dR

∫ ∫
v(y, e)fd(e)fs(y −R)dedy

=

∫ ∫
v(y, e)fd(e)

1

2S
[−D(y − (R− S)) +D(y − (R + S))]dedy

=
1

2S

∫
[v(R + S, e)− v(R− S, e)]de ≤ 0. (B-63)

This proves the first part of the proposition about the existence of a local optimum RA over

R > R̄ + U in economy 2.

51



Next, we prove that the optimality of the ample-reserve regime in economy 1 (over the

scarce-reserve regime) is sufficient for the optimality of the ample-reserve regime in economy

2. The optimality of the ample-reserve regime in economy 1 implies Y (R̄) ≥ Y (RA) for

some RA > R0, where Y (R) is the implementation cost in economy 1 as defined earlier. It is

sufficient to prove that V (R̄) ≥ V (RA). A sufficient condition for this result is V (R̄)−Y (R̄) ≥
V (RA)− Y (RA), which we now prove.

Given S + D < U , the optimal choice of x in economy 1 for R = R̄ completely offsets

shocks: x = −s− e. Therefore,

Y (R̄) =

∫ ∫
β|s+ e|fd(e)fs(s)deds. (B-64)

In economy 2, the optimal choice of x can only depend on s:

V (R̄) =

∫ ∫
[β|x(s)|+ αc0|s− x(s) + e|]fd(e)fs(s)deds. (B-65)

Therefore,

V (R̄)− Y (R̄) =

∫ ∫
[αc0|s− x(s) + e|+ β|x(s)| − β|s+ e|]fd(e)fs(s)deds

≥
∫ ∫

[αc0|s− x(s) + e| − β|s− x(s) + e|]fd(e)fs(s)deds

≥
∫ ∫

[αc0|e|+ β|e|]fd(e)fs(s)deds

= (αc0 − β)

∫
|e|fd(e)de

=
1

2
(αc0 − β)D. (B-66)

Using the notation defined earlier,

V (RA)− Y (RA) =

∫ ∫
v(RA + s, e)fd(e)fs(s)deds

≤
∫ ∫

v(R0 + s, e)fd(e)fs(s)deds

(B-67)

From the expression for v(y, e) derived earlier, notice that v(y, e) ≤ (αc0 − β)(−δ − e) if
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e ≤ −δ and v(y, e) ≤ β(δ + e) otherwise. Therefore,

V (RA)− Y (RA) ≤
∫ ∫

v(R0 + s, e)fd(e)fs(s)deds

≤ 1

2
[(αc0 − β)(D − δ)Prob(e ≤ −δ) + β(D + δ)Prob(e > −δ)]

=
1

4D

[
(αc0 − β)(D − δ)2 + β(D + δ)2

]
=

[
(1− β

αc0

)(
β

αc0

)2 +
β

αc0

(1− β

αc0

)2

]
αc0D

= (αc0 − β)
β

αc0

D. (B-68)

Clearly, V (R̄)− Y (R̄) ≥ V (RA)− Y (RA) if αc0 ≥ 2β.

To complete the proof, we assume β < αc0 < 2β. Notice that

V (RA)− Y (RA) ≤
∫ ∫

v(R0 + s, e)fd(e)fs(s)deds

=

∫
s∈[−S,0]

∫
[v(R0 + s, e) + v(R0 − s, e)]fd(e)fs(s)deds (B-69)

The last line follows from the fact that s follows a symmetric distribution around zero.

Note that with β < αc0 < 2β, δ < 0. For s < 0, the expression for v derived earlier

implies that

v(R0 − s, e) =

{
(αc0 − β)(−e+ s) if e ≤ s;

0 otherwise.
(B-70)

Therefore, ∫
v(R0 − s, e)fd(e)de =

1

4
D(αc0 − β)([1 +

s

D
]+)2. (B-71)

For s ≤ δ, the expression for v is such that

v(R0 + s, e) =


(αc0 − β)(−e− δ) if e ≤ −δ;
β(e+ δ) if− δ < e ≤ min(−s,D);

β(−s+ δ) otherwise.

(B-72)

This implies∫
v(R0 + s, e)fd(e)de = D(αc0 − β)(

β

αc0

)2 +Dβ(1− β

αc0

)2 − 1

4
Dβ([1 +

s

D
]+)2

= (αc0 − β)
β

αc0

D − 1

4
Dβ([1 +

s

D
]+)2. (B-73)
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Thus,∫
[v(R0 + s, e) + v(R0 − s, e)]fd(e)de = (αc0 − β)

β

αc0

D +
1

4
D(αc0 − 2β)([1 +

s

D
]+)2

≤ (αc0 − β)
β

αc0

D. (B-74)

For δ < s < 0, the expression for v implies

v(R0 + s, e) =

{
(αc0 − β)(−e− s) if e ≤ −s;
0 otherwise.

(B-75)

This implies ∫
v(R0 + s, e)fd(e)de =

1

4
D(αc0 − β)(1− s

D
)2. (B-76)

Therefore,∫
[v(R0 + s, e) + v(R0 − s, e)]fd(e)de =

1

4
D(αc0 − β)

[
(1− s

D
)2 + ([1 +

s

D
]+)2

]
=

1

4
D(αc0 − β)

[
(1− s

D
)2 + (1 +

s

D
)2
]

≤ 1

2
D(αc0 − β) < (αc0 − β)

β

αc0

D. (B-77)

Finally, integrating these differences over s, we have

V (RA)− Y (RA) =

∫
s∈[−S,0]

∫
[v(R0 + s, e) + v(R0 − s, e)]fd(e)fs(s)deds

≤
∫

s∈[−S,0]

(αc0 − β)
β

αc0

Dfs(s)ds

=
1

2
(αc0 − β)

β

αc0

D

< V (R̄)− Y (R̄). (B-78)

This completes the proof.
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