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Abstract 

We offer a parsimonious model of reserve demand to study the trade-offs associated with various 

monetary policy implementation frameworks. Prior to the 2007-09 financial crisis, many central banks 

supplied scarce reserves to execute their interest rate policies. In response to the crisis, central banks 

undertook quantitative easing policies that greatly expanded their balance sheets and, by extension, the 

amount of reserves they supplied. When the crisis and its aftereffects passed, central banks were in a 

position to choose a framework that has reserves that are: (1) abundant—by keeping their balance sheets 

and reserves at the expanded level; (2) scarce—by vastly decreasing their balance sheets and reserves; or 

(3) somewhere in between abundant and scarce—by moderately decreasing their balance sheets and 

reserves. We find that the best policy implementation outcomes are realized when reserves are 

somewhere in between scarce and abundant. This outcome is consistent with the Federal Open Market 

Committee's 2019 announcement to implement monetary policy in a regime with an ample supply of 

reserves. 
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1 Introduction

A monetary policy implementation framework describes the targets and tools a central

bank uses to transmit its desired stance of monetary policy to financial markets and the real

economy. An implementation framework specifies, e.g., a target interest rate, reserve require-

ments, the rate of remuneration on reserves, the discount rate, tools—such as open market

operations—used to adjust the quantity of reserves, parameters associated with standing

repo and reverse repo facilities, the issuance of central bank bills and so on. Over time and

across jurisdictions central banks have chosen a wide variety of monetary implementation

schemes. Although monetary economics typically abstracts from implementation issues by

assuming that the central bank achieves its policy stance by choosing the policy interest rate,

such an assumption is not at all innocuous. In practice, the way in which monetary policy

is implemented can constrain the choice of feasible policy stances and, conversely, the choice

of a policy stance has implications for how the policy should be implemented. This paper

attempts to shed some light on what constitutes an optimal implementation framework.

The 2007-2009 financial crisis and its aftermath highlight some of the interactions be-

tween a policy stance and implementation strategies. A conventional policy response at

the outset of the financial crisis would call for negative nominal policy rates. However,

it is challenging to implement non-negligible negative nominal policy rates in an economy

with physical currency. As a result, many central banks adopted new policy tools, such

as forward guidance and large-scale purchases of long-dated assets—quantitative easing—to

provide additional stimulus. While large-scale asset purchases were effective at easing fi-

nancial conditions, they also dramatically increased the amount of reserves supplied to the

banking system. The pre-crisis tools for controlling overnight interest rates—such as open

market operations via overnight repo and reverse-repo transactions—became ineffective since

open market operations that result in small changes in the supply of reserves cannot affect

overnight rates since reserves are no longer scarce. In response to the impotence of tradi-

tional tools, central banks introduced new and additional ones, such as payment of interest

on reserves and overnight repurchase and reverse repurchase facilities, to better control the

policy rate (Bernanke (2020); Ihrig, Meade, and Weinbach (2015)).

The framework for monetary policy implementation continues to evolve to this day. In the

months prior to the coronavirus pandemic, central banks around the world were unwinding
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their responses to the financial crisis and “normalizing” their policy stances. However, the

disruptions in money markets in September 2019 and those associated with the Covid-19

pandemic stalled the normalization process and led policymakers to once again reassess their

implementation frameworks. It is likely that lessons learned since September 2019 will shape

the narrative for a monetary policy implementation framework into the foreseeable future.

In this paper, we develop a simple model of the banking system’s demand for reserves

to better understand the choices policy makers face when selecting a monetary policy im-

plementation framework. Throughout we focus on the experience of the Federal Reserve to

create an intuitive link between theory and practice. Our model builds on the seminal work

of Poole (1968): a model where banks hold reserves to meet reserve requirements, borrow

or lend them in an interbank market to adjust end-of-day reserves and face a late-period

payment shock that can drain reserves after the interbank market closes.1 We generalize

the Poole (1968) model along several dimensions. First, we consider a reserve demand func-

tion that captures banks’ preferences for reserves in the post-crisis world beyond required

reserves. Second, we include shocks to banks’ reserve demand functions that reflect the in-

creased uncertainty associated with estimating the banking system’s demand for reserves in

the post-crisis period. And finally, we introduce shocks to supply of reserves to incorporate

uncertainty that arises from factors outside the Federal Reserve’s control, such as changes in

the balances that the Treasury Department holds at the Federal Reserve or in the balances

held at the overnight reverse repo facility, both of which have become rather pronounced

and important in the post-crisis period.

Our model generates a downward sloping reserve demand curve with three main regions—

a region of “high” aggregate reserves, a region of “low” aggregate reserves and a smooth

transition between the two—that is consistent with the demand curve estimated by Afonso

et al. (2023). Through the lens of our model, we define the amount of reserves that a central

bank supplies to the banking system as abundant, scarce or ample. Reserves are abundant

when the equilibrium is characterized by no interest rate volatility.2 Such an equilibrium

occurs only if the central bank supplies very large quantities of reserves. In Figure 1, the

demand curve is flat when aggregate reserves are abundant since banks are able to meet

1Many models examining some aspect of monetary policy implementation use the Poole model as their
starting point.

2In our model, no interest rate volatility means that the probability that the policy rate deviates from
its target is very small.
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Figure 1: Reserve Demand

their internal and external regulatory requirements for any (ex post) reserve demand shock

or supply shock realizations. When reserves are abundant, the value of trading reserves is

simply the interest paid on overnight reserve balances. In contrast, reserves are scarce when

the equilibrium displays high-rate volatility, even when the central bank undertakes open

market operations in an attempt to stabilize rates. Intuitively, this equilibrium occurs when

reserve supply is small and the equilibrium rate is on the inelastic downward-sloping part of

the demand curve, as illustrated in Figure 1. In the region of scarce reserves, the marginal

value of reserves increases as aggregate reserves decline and always exceed the interest paid

on overnight reserves. Finally, in between scarcity and abundance, we define reserves to be

ample. In this region, reserve supply and demand shocks result in a positive but suppressed

equilibrium interest rate volatility.3

We use our model to study the choice of a central bank’s monetary policy implementation

framework. In practice, policy makers have preferences over outcomes and operations and,

because of this, they face trade-offs when choosing their implementation framework. For

example, policy makers may prefer low, rather than high, volatility in their policy rate.

They may also prefer smaller, less frequent open market operations in response to reserve

3These definitions—scarce, abundant, and ample—are our own, and are intended to facilitate the discus-
sion of central banks’ implementation choices from within the perspective of our model.
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supply and demand shocks to larger or frequent operations. A central bank could achieve a

low volatility policy rate, without relying on open market operations, by supplying a very

large amount of reserves to the banking sector. But, if policy makers also prefer smaller to

larger balance sheets, then a large balance sheet—that stabilizes the policy rate—may not

necessarily constitute an optimal framework from the central bank’s perspective. We capture

these policy-maker preferences as a linear combination of costs associated with: (i) volatility

in the policy rate; (ii) the size of the central bank’s balance sheet; and (iii) the expected

size of open market operations. The central bank’s implementation framework specifies the

initial quantity of aggregate reserves—small, moderate, or large—and the size and frequency

of subsequent open market operations. The optimal implementation framework is the one

that minimizes a linear combination of these costs.

Since the 2007-2009 financial crisis, the magnitudes of the shocks to the reserve supply

have increased substantially and a new set of drivers of reserve demand have also emerged,

both of which decrease the predictability of reserve supply and demand.4 We show that in

the post-financial crisis world the optimal monetary policy framework has aggregate reserve

supply in the intermediate region, between scarcity and abundance. These findings are

consistent with the Federal Reserve’s plans to implement monetary policy over the longer

run in an environment of ample reserves.5 An important implication of this framework is

that high frequency, active adjustment of the reserve supply is not needed to implement

policy, although occasional adjustments may arise.6

The next section provides a brief overview of the banking system’s demand for reserves in

the pre- and post-financial crisis periods, as well as a discussion of reserve supply in the post-

crisis period. Section 3 introduces our model of a monetary policy implementation framework

4Post-crisis liquidity regulations, such as the Liquidity Coverage Ratio (LCR), living wills, stress testing,
as well as banks’ responses to the regulation via internal liquidity management strategies and targets, have
transformed the demand for reserves. In recent years, changes in reserve supply due to factors outside of the
control of the central bank—mainly, balances in the account of the U.S. Treasury or at the overnight reserve
repo facility—have increased too, making reserve supply more uncertain.

5In January 2019, the Federal Open Market Committee (FOMC) announced its intention to maintain
an “ample supply of reserves” and to use administered interest rates, such as the rate paid on reserves, as
its primary tools to ensure rate control. Our model predictions are also consistent with the Federal Re-
serve’s longstanding plan to operate with a balance sheet that is no larger than necessary for efficient and
effective policy implementation, see “Policy Normalization Principles and Plans,” September 2014, avail-
able at https://www.federalreserve.gov/monetarypolicy/policy-normalization-discussions-communications-
history.htm.

6See “Statement Regarding Monetary Policy Implementation and Balance Sheet Normalization.”
https://www.federalreserve.gov/newsevents/pressreleases/monetary20190130c.htm.
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and provides insights into a central bank’s choice of the optimal framework. Section 4 then

focuses on how effective these regimes have been in practice and discusses potential financial

stability implications of regimes with high reserves. Section 5 concludes.

2 Reserve Demand and Supply

To motivate our model and analysis, we first discuss the impact that post-crisis liquidity

regulations have had on the banking sector’s demand for reserves and how these regulations,

along with other considerations, make it more challenging for a central bank to estimate

total reserve demand. We then document changes in the supply of reserves for the pre-

and post-crisis periods in the U.S. and show that reserve supply volatility has substantially

increased in the post-financial crisis period.

2.1 Reserve Demand

Prior to the 2007-2009 financial crisis, the Federal Reserve and clearing banks provided

intraday liquidity at generous terms so that banks could almost costlessly smooth out their

daily payment flow obligations. As a result, banks demanded reserves mainly to satisfy their

end-of-day reserve requirements. Since the primary driver for pre-crisis reserve demand was

banks’ reserve requirements, the Federal Reserve was able to estimate banks’ total demand

for reserves with a high degree of precision.

Post-crisis regulations have directly and indirectly affected banks’ liquidity risk manage-

ment in ways that have resulted in new and more uncertain sources of demand for reserves.

For example, the liquidity coverage ratio (LCR) requires banks to hold a sufficient amount of

high-quality liquid assets (HQLA) to meet net cash outflows over a thirty-day stress period.

HQLA include central bank reserves and government securities, as well as some other safe

and liquid assets. The LCR regulation implies that banks’ demand for the sum of reserves

and government securities will be higher than the pre-crisis period. Banks are, however,

free to allocate their HQLA holdings between government securities and reserves as they

see fit: the LCR does not, per se, specify any requirements about reserve holdings vis-à-vis

government securities holdings. Since the LCR allows banks to choose different mixes of

reserves and other types of HQLA to satisfy the requirements, the Federal Reserve may be
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unable to estimate banks’ total demand for reserves with a high degree of precision, even

though banks’ demand for HQLA can be. For example, a bank may prefer to hold more

government securities than reserves if the yields on government securities are relatively high

but may suddenly reverse this preference if the bank believes that it might be challenging

to quickly convert government securities into cash in the face of outflows.

In addition to the increase in demand for reserves associated with regulatory requirements

such as the LCR, resolution plans under the Dodd-Frank Act, buffers of highly liquid assets

under Regulation YY, and banks’ internal liquidity stress tests also increase banks’ demand

for reserves. Importantly, the impact on the demand for reserves depends on banks’ own risk

assessments and their willingness to bear these risks. Owing to these new and more complex

sources of demand for bank reserves, a central bank’s ability to accurately predict reserve

demand has been reduced in the post-financial crisis period.

In Section 3, we model the increased uncertainty regarding banks’ reserve demand in

the post-crisis period as an increase in the magnitude of shocks to reserve demand and as a

decrease in the central bank’s ability to predict the reserve demand.

2.2 Reserve Supply

Traditional models typically assume that the reserve supply is under the complete control

of the central bank. In practice, however, the level of reserves can change due to factors

that are outside of the control of the central bank, the so-called autonomous factors. Two

important examples of these factors in the U.S. are the balances at the overnight reverse

repo (ON RRP) facility and the balances that the Treasury Department holds at the Federal

Reserve. In this section, we show that variations in reserve supply due to autonomous factors

have become much larger in the U.S. in recent years. This development poses challenges for

monetary policy implementation when reserves are scarce and small changes in reserves affect

the policy rate.

In the absence of offsetting open market operations, reserves available to banks change on

a daily basis. Reserves may change for two reasons: First, the size of the central bank balance

sheet may change as the result of, e.g., large-scale asset purchases. Second, the composition

of the central bank liabilities may change when, e.g., bank reserves are converted into physical

currency, which is also a liability of the central bank, or when currency is returned to the
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central bank and the returning bank’s account at the central bank is credited (with reserves).

Another example of changes in reserves occurs on tax payment dates when funds from a

bank’s account at the central bank are used to pay taxes, which reduces reserves in the

banking system and increases the balance of the Treasury General Account (TGA) at the

central bank. Prior to the 2007-2009 financial crisis, these exogenous, day-to-day changes in

the supply of reserves were small and mostly predictable. Since then, the volatility of these

changes has increased significantly.

The first 5 panels in Figure 2 illustrate the weekly volatility of selected autonomous

factors from 2003 to 2022. Notice that the volatility of these factors have significantly

increased since 2009. This, in turn, means that the volatility of the supply of reserves,

the bottom-right panel in Figure 2, has also increased substantially. The volatility of the

reserve supply was close to zero prior to the 2007-2009 financial crisis, partly because the

Federal Reserve actively offset movements in the supply of reserves. However, given the much

smaller volatility of autonomous factors in the pre-crisis period, the reserve volatility would

have been much lower than it has since 2009 even in the absence of the Federal Reserve’s

operations.

The Federal Reserve could, in principle, reduce the volatility of autonomous factors,

at least in a limited way.7 It is not, however, obvious that reducing reserve volatility is

desirable. For example, since 2015 the Treasury Department has tried to maintain a five-day

liquidity buffer in its account at the Federal Reserve to limit the risk that it may be unable

to access markets due to an operational outage or a cyber-attack.8 While such a buffer

contributes to a larger autonomous factor, it might not be possible or desirable to return

to the pre-crisis balance. Alternatively, the Treasury Department could move its buffer into

the banking sector, thereby reducing or eliminating this autonomous factor. But banks may

not be interested in taking on large and volatile cash deposits since it is costly from both a

7It would be difficult to regulate the withdrawal and deposit of physical currency. The Federal Reserve
could set up rules on the use of accounts held by non-banks. But it would be difficult to force these accounts
to substantially reduce their volatility without impairing their operational needs. In fact, free withdrawal
and deposit is a primary advantage of holding cash or reserves.

8Treasury’s May 6, 2015, quarterly refunding statement notes: “Based on our review, the TBAC’s [Trea-
sury Borrowing Advisory Committee’s] recommendations, and an assessment of emerging threats, such as
potential cyber-attacks, Treasury believes it is prudent to change its cash management policy starting this
month. To help protect against a potential interruption in market access, Treasury will hold a level of cash
generally sufficient to cover one week of outflows in the Treasury General Account, subject to a minimum
balance of roughly $150 billion.”
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Figure 2: Volatility in Selected Autonomous Factors and Reserves in the United States

The volatility of autonomous factors and reserves generally increased since 2009, albeit not

monotonically. Time period covered is 2003 to 2022. Volatility is calculated as the standard

deviation of weekly differences over a 52-week trailing window, using publicly released weekly

snapshots of Federal Reserve’s liability (H.4.1 releases from the Federal Reserve). Vertical lines

mark the beginning of asset purchases in response to the 2007-09 financial crisis in late 2008

and to the Covid-19 pandemic in early 2020. Other deposits are held by selected official and

private entities.
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regulatory and liquidity risk management perspective.

As illustrated in the bottom-right chart on Figure 2, the weekly volatility of reserves

was less than $10 billion prior to the financial crisis. Volatility increased sharply during the

first round of large-scale asset purchases to around $60 billion in 2009. For several years

after the crisis, reserve supply volatility remained near that level through different rounds

of large-scale asset purchases. Between 2015 and 2017, a period between the end of asset

purchases and the beginning of balance sheet normalization, reserve volatility was elevated

and reached nearly $150 billion. During this period, volatility reflected changes in reserves

due to exogenous factors as the Federal Reserve no longer conducted daily open market

operations to fine-tune reserve supply nor changed the size of its balance sheet to conduct

monetary policy.9 Volatility fluctuated around $50 billion during balance sheet normalization

over 2017-2019, and increased again as the Federal Reserve expanded the balance sheet in

response to the Covid-19 pandemic.

3 A Model of a Monetary Policy Implementation Frame-

work

We propose a model of interbank interest rate determination to study the trade-offs

that policy makers face when choosing a monetary policy framework. Our model builds

on the work of Poole (1968) and accommodates implementation frameworks with scarce,

abundant, and somewhere in between (ample) reserves. As in Poole (1968), banks must

hold a minimum level of reserves. In contrast to Poole (1968), where the minimum level is

proportional to bank deposits, in our model, the minimum level of reserves captures banks’

expanded demand for reserves in a post-financial crisis environment. More specifically, and as

discussed in Section 2, changes in (i) liquidity regulation, (ii) supervision of banks, (iii) banks’

risk management practices and (iv) the structure of the market for reserves have substantially

transformed—and expanded—the banking system’s demand for reserves relative to the pre-

crisis period. These new and more complex sources of demand for reserves have reduced the

9Fine-tuning the reserve supply was a key element of the monetary policy implementation framework
in the pre-crisis period. Therefore, pre-crisis figures do not reflect volatility in exogenous reserve supply
since most of the autonomous changes were “reversed” through open market operations. Similarly, reserve-
injecting operations in the aftermath of mid-September 2019 money market volatility tended to offset reduc-
tions in reserve supply.
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central bank’s ability to accurately predict demand for reserves. Our model captures this

increased uncertainty, which is an important feature of the post-financial crisis period, by

introducing shocks to the demand for reserves. These demand shocks decrease the central

bank’s ability to accurately predict aggregate reserve demand. Moreover, the volatility of

factors outside the control of a central bank that affect the supply of reserves has also

increased relative to the pre-financial crisis period, as illustrated in Figure 2. We model the

increased uncertainty arising from these autonomous factors by introducing shocks to the

supply of reserves.10

3.1 Agents

There are two types of agents: depository institutions, which we will refer to as “banks,”

and a central bank.

Banks. There are N banks in the banking system indexed by i ∈ {1, ..., N}. Banks are

risk-neutral and maximize expected profits. Each bank has an initial level of desired reserves,

R̄i, which is exogenous to the model. Each bank receives a demand shock, di, that changes

the bank’s desired reserves by di, where di can be either positive or negative. After the

demand shock realizations, banks trade in a competitive interbank market for reserves, e.g.,

the federal funds market in the U.S., to adjust their reserve holdings at rate r. After the

interbank market closes, each bank receives a late (Poole) shock, ui, which redistributes

reserves between banks. If this shock causes reserves to fall below R̄i + di, then bank i

borrows reserves from the central bank at a penalty rate, rP , to get reserves back to its

desired level R̄i + di. One can think of the penalty rate as the rate charged by the central

bank on discount window loans or the minimum bid rate at the Standing Repo facility .

Banks hold all of their reserves overnight at the central bank and earn the interest rate on

these reserves equal to rIOR < rP .

Central bank. The central bank chooses an initial level of reserves to supply to the banking

system, R. The supply of reserves is subject to a shock, s, which arises from factors outside

the central bank’s control. After the shock, the central bank either injects, x > 0, or drains,

x < 0, reserves through an open market operation. The central bank lends to banks at a

10Shocks in Poole (1968) are “late-period” shocks, which redistribute reserves between banks after the
interbank market closes. As we discussed in Section 3.2, our model includes this late-period shock, and
incorporates shocks in the demand for and supply of reserves.
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penalty rate, rP , and remunerates reserve balances that banks hold at the central bank at

the rate rIOR.

3.2 Shocks

There are three important shocks at play: a supply shock, a demand shock, and a late

(Poole) reserve redistribution shock.

Supply shock. The shock s to the supply of reserves captures that central banks do not

perfectly control the supply of reserves. Changes in the balances at the ON RRP facility

or at the account that the Treasury Department holds at the Federal Reserve are relevant

examples of supply shocks that affect the level of reserves in the U.S. banking system.

Demand shock. The model incorporates a shock, di, to a bank’s initial demand for reserves,

where d =
∑

i di denotes the aggregate shock to the banking system demand for reserves.

This shock captures the ex ante uncertainty about a bank’s demand for desired reserves, as

well as the increased uncertainty associated with the post-financial crisis environment.

Late shock. Each bank receives a late shock, ui. This shock represents increases or decreases

in a bank’s reserves due to, e.g., a payment that occurs late in the day after the interbank

market closes. We can interpret the ui shocks as a reshuffling of existing reserves among the

N banks, where
∑

i ui = 0. Late shocks will further have the indirect effect of increasing the

supply of reserves in the system if banks borrow from the central bank at the end of the day.

3.3 Timing of Events

The model is static in the sense that events and actions occur over a finite number of

periods, six to be precise. We think of the model as describing what happens over a typical

day. The timing of events is as follows:

Time t = 1: The central bank: (i) chooses the level of reserves, R, to supply to the

banking system; (ii) specifies the penalty rate, rP , at which banks can borrow from

the central bank; and (iii) sets the interest paid on reserves, rIOR. Each bank has an

initial (time t = 1) level of desired reserves, R̄i, where R̄ =
∑

i R̄i.

Time t = 2: The reserve supply shock, s, is revealed. Total reserves are now R + s.
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Time t = 3: The central bank either injects x ≥ 0 or drains x ≤ 0 reserves. Total,

and final, supply of reserves is R + s+ x.

Time t = 4: Each bank receives a demand shock, di, to its initial level of desired

reserves. Bank i’s desired reserves are now given by R̄i + di. The banking system’s

demand for reserves is R̄ + d, where d =
∑

i di.

Time t = 5: A competitive interbank market opens, where banks can borrow and

lend reserves at rate r. Reserves are redistributed in the interbank market, and then

the market closes. Denote bank i’s reserves at the end of period 5 by Ri.

Time t = 6: Each bank i receives a late shock, ui, to its reserve holdings. If Ri+ui <

R̄i+di, then bank i must borrow the difference from the central bank at rate rP . Banks

hold their reserves at the central bank and earn interest rIOR.

The central bank makes decisions about the level of reserves at t = 1, when it chooses the

initial supply of reserves, and at t = 3, when it adjusts this initial level plus the reserve supply

shock through an open market operation. When making these decisions, the central bank

takes into account banks’ expected borrowing and lending in the interbank market at t = 5.

Banks’ behavior creates a demand for reserves which, along with the central bank’s earlier

supply decisions, results in an equilibrium interbank (fed funds) rate at t = 5. Intuitively,

if the central bank cares only about rate control, and there are no costs associated with the

size of its balance sheet or with open market operations, then the solution to the central

bank’s problem is relatively simple: the central bank provides an arbitrarily large supply of

reserves—in the abundant region—so that the reserve supply intersects the reserve demand

in the far right region where the demand curve is essentially flat in Figure 1. For a large

enough level of reserves, the equilibrium interbank rate will (almost always) equal the rate

on overnight reserves, rIOR, regardless of the supply, s, and demand, d, shock realizations.

In this scenario, the central bank is able to (almost) perfectly control its policy rate with

an abundant reserve supply.11 However, if there are costs associated with the size of the

11If the supports of the random variables s and d are finite, then the fed funds rate always equals rIOR

for a sufficiently large (abundant) reserve supply, and the central bank has perfect interest rate control. If
the supports of the demand and supply shocks are not finite, e.g., when s and d are normally distributed,
then the probability that the fed funds rate does not equal rIOR can be made arbitrarily small by choosing
a sufficiently large reserve supply.
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central bank’s balance sheet, then having (almost) perfect control over the policy rate may

not constitute an optimal implementation framework, as we shall see in Section 3.5.

Before describing and solving the central bank’s policy implementation problem, we first

characterize the individual bank’s reserve holdings problem.

3.4 Reserve Demand

In this section, we first provide the intuition underlying an individual bank’s demand for

reserves. We then consider a banking system with many banks and sum their individual

demands to derive the banking system’s demand for reserves (see, e.g., Poole (1968), Ennis

and Keister (2008) and references therein). Our formal derivations are relegated to Appendix

A.

The bank’s problem. Bank i’s problem can be characterized as follows: At t = 5, bank

i chooses between borrowing and lending in the interbank market given its current desired

reserves, R̄i + di, and knowing that after the interbank market closes at the end of the

period, it will receive a late shock ui. Since the value of the late shock is not known when

the interbank market is open, bank i’s demand for reserves in the fed funds market depends

on the distribution of the late shocks (and not on the realization of the shock). As in Poole

(1968), the shock may push bank i’s reserves below its desired level.12 In this case, bank i

borrows from the central bank at a penalty rate, rP , to bring its reserve holdings up to the

desired level. If reserves exceed its desired level, then the bank does not borrow from the

central bank. In either case, bank i deposits all of its reserves at the central bank and earns

an interest on these balances equal to rIOR.

Let us consider bank i’s decision between lending and not lending an additional unit of

reserves in the interbank market at time t = 5. If bank i lends, then the (gross) payoff

associated with this trade is r, the interbank rate. In time period t = 6, bank i receives a

shock ui to its reserve holdings, Ri. If its new level of reserves Ri+ui falls short of its desired

level, R̄i+di, i.e., if Ri+ui ≤ R̄i+di, then bank i must borrow reserves from the central bank

12Some recent models use alternative modeling approaches, such as search and bargaining or preferred
habitat, in contrast to the perfect competition assumption in Poole (1968). See for example Afonso and
Lagos (2015), Afonso et al. (2019), Armenter and Lester (2017), Schulhofer-Wohl and Clouse (2018), and
Chen, Clouse, Ihrig, and Klee (2016). Still, demand for reserves typically originates from a required quantity
of reserves and timing of shocks that are broadly consistent with Poole (1968).
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at the rate rP to make up for the shortfall. Hence, with probability Pr(Ri+ui ≤ R̄i+di) bank

i’s net payoff from lending a unit in the interbank market is the sum of (i) the interbank rate

r from the unit of reserve it lent in the interbank market, (ii) the penalty rate, rP , it pays

from borrowing this unit back from the central bank, and (iii) the interest on reserves, rIOR,

it receives when the borrowed unit is deposited at the central bank. And with probability

Pr(Ri+ui > R̄i+di), the date t = 6 late shock does not push bank i’s level of reserves below

it’s desired level and bank i net payoff is simply the interbank rate r it received on the unit

it lent out. Thus, the expected net payoff from lending is

Pr(Ri + ui ≤ R̄i + di)(r − rP + rIOR) + Pr(Ri + ui > R̄i + di)r. (1)

Bank i is indifferent between lending and not lending an additional unit of reserves in

the interbank market when the expected return to lending the additional unit (equation (1))

equals the expected return of not lending, which equals rIOR. Rearranging this indifference

condition, the competitive interbank market rate, r, can be expressed as a weighted average

between the penalty rate, rP , and the rate on reserves balances, rIOR, where the weights

capture the probability that bank i’s reserves fall, or not, below its minimum level, i.e.,

r = rP Pr(Ri + ui ≤ R̄i + di) + rIOR Pr(Ri + ui > R̄i + di). (2)

For simplicity, we assume that ui is uniformly distributed over the interval [−Ui, Ui] for

all i. This assumption implies that the size of the late shock can take any value in the

interval [−Ui, Ui] with the same probability and is zero outside this interval. It also implies

that the probability that the late shock, ui, is less than some value z ∈ [−Ui, Ui] is given by

Pr(ui ≤ z) = (z + Ui)/2Ui; is less than some value z < −Ui is Pr(ui ≤ z) = 0; and is less

than some value z > Ui is Pr(ui ≤ z) = 1. We can then express the probability that the size

of the late shock is such that reserves, Ri + ui, fall short of bank i’s desired level of reserves,

R̄i + di—and hence the bank borrows from the central bank—as

Pr(Ri + ui ≤ R̄i + di) =


1 if Ri < R̄i + di − Ui
R̄i + di + Ui −Ri

2Ui
if R̄i + di − Ui ≤ Ri ≤ R̄i + di + Ui (3)

0 if Ri > R̄i + di + Ui
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Substituting equation (3) in equation (2) and rearranging terms, the demand for reserves

of bank i when the interbank market opens at time t = 5 is given by

Ri =


[0, R̄i + di − Ui] if r = rP

R̄i + di + Ui − 2Ui
r − rIOR
rP − rIOR

if rIOR < r < rP (4)

[R̄i + di + Ui,∞) if r = rIOR

When the interbank rate equals the penalty rate, bank i is indifferent between holding

any amount of reserves between zero and R̄i + di−Ui, because in this region of the demand

curve bank i’s reserve balances will always be below its desired level for any realization of

the late shock. This creates a flat demand curve at r = rP . When the interbank rate falls

below the penalty rate (r < rP ), bank i demands more reserves in the interbank market,

since borrowing from the central bank at rate rP is more costly than in the interbank market

at rate r. This generates a downward slopping demand curve until the interbank rate equals

the interest on reserves. When r = rIOR, the opportunity cost of demanding reserves in

the interbank market is zero and bank i becomes indifferent between holding any amount

of reserves greater than R̄i + di + Ui; in this region of the demand curve, bank i’s reserve

balances will always exceed its desired level for any realization of the late shock. At rate

r = rIOR, the demand curve for reserves becomes flat again.

Banking system demand for reserves. We can derive the banking system demand

for reserves by simply summing the individual demand curves of the banks in the banking

system, i.e., by summing the reserves demanded by the each bank for each interest rate. The

aggregate demand for reserves, RD, is given by

RD =


[0, R̄+ d− U ] if r = rP

R̄+ d+ U − 2U
r − rIOR
rP − rIOR

if rIOR < r < rP (5)

[R̄+ d+ U,∞) if r = rIOR

where RD ≡
∑

iRi is the aggregate quantity of reserves demanded by banks when the

interbank market opens at t = 5; R̄ =
∑

i R̄i is the initial aggregate quantity of of desired

reserves (before the demand shocks, di, are realized); d ≡
∑

i di is the aggregate demand

shock to the banking system’s initial desired reserves (which is realized at t = 4, before the

interbank market opens); and U ≡
∑

i Ui is sum of each bank i’s maximum late period shock

(the shock which is realized at t = 6, after the interbank market closes).
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Finally, for simplicity, we do not consider the flat portion of the demand curve for very

low levels of reserves, i.e. when RD ≤ R̄+ d− U , and treat the demand curve for low levels

of reserves as a single downward sloping line.13

3.5 Reserve Supply

The equilibrium interest rate. The central bank understands the behavior of banks and

the nature of the shocks s and d that hit the supply and demand for reserves of the banking

sector. The time t = 5 equilibrium is characterized by the aggregate supply of reserves

equating the aggregate demand for reserves, RD = RS, or, equivalently, RD = R + s + x.

Since R, s, x and d are known at t = 5, the equilibrium interbank interest rate is obtained

by substituting R+ s+ x for RD in the aggregate demand function (5). Rearranging terms,

the market-clearing interbank rate can be expressed as an implicit function of R+ s− d−x,

r(R + s− d+ x):

r =


rP if R + s− d+ x < R̄− U

rIOR − c0(R + s− d+ x− R̄− U) if R̄− U ≤ R + s− d+ x ≤ R̄ + U (6)

rIOR if R + s− d+ x > R̄a + U

where c0 = (rp − rIOR)/2U . If R + s − d + x ∈ (R̄ − U, R̄ + U), then the interbank rate is

decreasing in the quantity of reserves in the banking system R. It is straightforward to show

that the market clearing interbank rate has the expected comparative statics. In particular,

∂r/∂R ≤ 0, ∂r/∂rp ≥ 0 and ∂r/rIOR ≥ 0.

The central bank’s problem. When implementing monetary policy, the central bank in-

curs costs associated with: (i) the size of its time t = 1 balance sheet; (ii) undertaking open

market operations at time t = 3; and (iii) “missing” its time t = 5 target interbank (fed

funds) rate, i.e., the equilibrium interbank rate differs from the cental bank’s target.14 We as-

sume that these costs are linear and that the central bank’s monetary policy implementation

13Relaxing this assumption requires taking into account the flat segment of the demand at r = rP , which
captures an environment where (negative) shocks are very large, interbank rates equal the penalty rate,
and banks borrow consistently from the central bank. This complicates the analysis considerably without
providing any additional economic insight.

14Concerns about the size of central bank balance sheets are often raised in policy normalization discus-
sions. For example, in 2014, the Federal Reserve expressed its intention to ‘hold no more securities than
necessary’ in its “Policy Normalization Principles and Plans,” available at https://www.federalreserve.

gov/monetarypolicy/policy-normalization-discussions-communications-history.htm.
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cost function is given by:

V ≡ E {α|r(R + s− d+ x)− r(R)|+ β|x|}+ γR. (7)

The cost function V is expressed from a time t = 1 perspective where s, d, and x are

random variables. The term α|r(R + s− d+ x)− r(R)| represents the cost associated with

interest rate volatility, i.e., the cost of missing the target rate, r(R). Intuitively, if there

are no shocks to neither the reserve supply nor the desired reserve holdings, the equilibrium

interest would be r(R) since s = d = x = 0. Therefore, r(R + s − d + x) − r(R) is the

equilibrium deviation from the target interbank interest rate when the economy is charac-

terized by uncertainty. The term β|x| represents the operational cost of conducting open

market operations. For simplicity, we assume that the cost is symmetric, i.e., draining and

injecting reserves are equally costly. Finally, the term, γR, captures the political-economy

cost associated with the size of the central bank’s time t = 1 balance sheet, where we assume

that a higher level of reserves, R, results in higher political-economy costs. Without loss of

generality, we set γ = 1.

The central bank takes two policy implementation actions: at time t = 1, it chooses the

level of reserves R, and, then, at time t = 3, it selects the size of the open market operation,

x(R, s), given its initial choice of reserves, R, and the realization of the time t = 2 reserve

supply shock s. Taking into account how it conducts open market operations for all possible

combinations of (R, s), the central bank’s choice of the t = 1 reserve supply is given by the

solution to

min
R≥R̄

E{α|r[R + s− d+ x(R, s)]− r(R)|+ β|x(R, s)|}+R. (8)

The restriction that R ≥ R̄ guarantees that the central bank supplies enough reserves to

at least meet the initial desired reserves demanded by the banking system.15 Although we

treat x(R, s) as an exogenous function, this function is constructed from the state-by-state

time t = 3 optimization problem.16

15From a technical perspective, we impose this constraint to rule out a solution where the central chooses
a very low level of reserves, i.e., R � R̄ − U can be the solution to the minimization problem in (8). This
solution would be characterized by a very low political cost, very low interest rate volatility and no need
for operations. The interest rate will be almost always equal to the penalty rate, rP , and there would be
significant borrowing from the central bank at time t = 6. The central bank’s objective function does not
prevent this outcome from occurring because it does not place a cost associated with lending reserves to
banks at date t = 6.

16Alternatively, we could have represented the central bank’s problem as choosing both R and x at time
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The central bank’s decisions regarding initial reserves, R, and open market operations,

x, become trivial if the central bank does not face “real” trade-offs among the various costs.

For example, if β > αc0, then the cost of an open market operation always exceeds the

benefit associated with hitting the target rate, which implies that the central bank does not

implement open market operations, i.e., x = 0. If, in addition, the cost of missing the target

rate, α, is very small, then the central bank is not particularly concerned about interest rate

volatility. In this case, in addition to never undertaking an open market operation, x = 0,

the central bank always chooses the minimum possible level of reserves, R = R̄. To rule out

these pathological cases, we assume that β < αc0 and that β is “not too small.”17

Parametrization of supply and demand shocks. We parameterize the shocks s and

d in a stylized and convenient way to capture the uncertainty a central bank faces when it

makes its reserve decisions at times t = 1 and t = 3. At time t = 1, the realizations of

the supply and demand shocks are unknown. We model this uncertainty as the standard

deviation of s + d, which we denote as σ. At time t = 3, after the supply shock has been

revealed, we model the uncertainty that the central bank faces as the conditional standard

deviation of s + d, and denote it by ρσ. One can interpret ρ as how predictable s + d is

at time t = 3. Clearly, since the uncertainty about the supply shock has been resolved

at this time, ρ captures the predictability of the demand shock.18 For example, if ρ = 0,

then the conditional standard deviation of the sum of the shocks is zero, and the demand

shock, d, is perfectly predictable and equal to 0. For simplicity, we assume that s and d are

independently distributed with

s ∼ N
(
0, (1− ρ2)σ2

)
(9)

d ∼ N
(
0, ρ2σ2

)
, (10)

where σ ∈ (0, σ̄). Note that the demand shock d is an aggregate of the individual demand

shocks, d =
∑

i di. One interpretation is that (d1, d2, ..., dN) follows a multivariate normal

t = 1, where x is a function of s. This formulation, however, is not as convenient as the one we propose since it
would not give rise to a unique functional form for x(s) without additional restrictions. For example, one can
make an arbitrary deviation over a measure zero set that does not change the expected value. Furthermore,
given the smoothness of the problem at time t = 3, we do not need to worry about the measurability of x if
we write x(R, s) as an optimizer for the time t = 3 problem.

17We formally define “not to small” in Appendix B. In some proofs, we impose a slightly stronger version
of the inequality β < αc0; see Appendix B.

18Alternatively, we can parameterize the shocks using the standard deviations, say σs and σd, of s and d,
respectively. The advantage of the current setup is that it clearly incorporates the concept of predictability,
as discussed in Section 2.1, and allows us to describe the outcome of changes in predictability.
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distribution, which implies that d follows a normal distribution. For simplicity, we also

assume that uncertainty about the demand and supply shocks, σ, is not too large compared

to the aggregate late shock U .19

We now turn to the central bank’s choice of monetary policy implementation regime.

3.6 Policy Implementation without Demand Uncertainty

We first consider the case with no uncertainty about the demand for reserves and assume

that demand shocks are perfectly predictable, i.e., ρ = 0. In practice, this scenario describes

the U.S. reserve market in the pre-crisis period. In that period, banks demanded reserves

mainly to satisfy reserves requirements and the Trading Desk at the New York Fed was able

to accurately estimate the banking system demand for reserves.

Perfect predictability of demand implies that all uncertainty is resolved by time the

central bank conducts open market operations at time t = 3. Given the initial supply of

reserves, R, and the realization of the supply shock, s (and d = 0), the central bank chooses

the size of its open market operation, x, to minimize the cost of implementing monetary

policy, V (R), in (7), i.e.,

x(R, s) = arg min
R≥R̄
{E[α|r(R + s+ x)− r(R)|] + β|x|+R} ,

where we impose R ≥ R̄ to ensure that the central bank supplies enough reserves to meet the

desired amount demanded by the banking system. We also impose β < αc0 to guarantee that

the central bank is willing to undertake open market operations and assume that β > β̄—

which sets a floor on the cost of open market operations—so that the central bank does

not simply choose the minimum level of initial reserves and then adjusts reserves through

injections because open market operations are cheaper than supplying reserves at time t =

1.20 In addition, we assume a lower bound on the ratio U/σ̄.21 Proposition 1 summarizes

19Otherwise we would not be able to abstract away from the flat portion of the demand curve at r = rP ,
where banks believe that they will be borrowing reserves from the central bank with certainty. Also, if σ
were too large, it would be difficult to define the concept of scarce reserves because even at the minimal level
of reserve supply, R = R̄, there would be a substantial chance that r might equal rIOR. Assumption A3 in
Appendix B formally defines “not too large.”

20See Appendix B, assumption A1. In the case of no demand uncertainty, β̄ ≥ 2 is sufficient for deriving
the results.

21This assumption—A3 in Appendix B—is necessary for the concept of scarce reserves to be well-defined.
See footnote 19.
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our first result.

Proposition 1. Assume ρ = 0. Then, the cost of implementing monetary policy, V (R), has

two local minima: one at R = R̄ and another, denoted RA, at R > R̄ + U .

The proofs to all propositions are in Appendix B. Notice that RA > R̄ + U means that the

higher value local minimum is located beyond the “kink” of the aggregate demand curve for

reserves in equation (6).

Next, we describe the choice between R = R̄ and R = RA first using an illustrative

example based on our model, and then more generally based on theoretical implications of

our model.

Scarce, ample and abundant reserves. In the following example, we define reserves

as being scarce, ample, or abundant depending on how likely it is that the supply shock s

pushes reserves below the threshold R̄ + U that defines the transition from the flat to the

downward-sloping region of the demand curve (see equation 6). When the supply of reserves

exceeds this threshold the equilibrium interbank interest rate equals the rate that the central

bank pays on reserves, rIOR; when the supply of reserves falls short of this threshold, the

equilibrium interbank interest rate exceeds rIOR. We define reserves as abundant when there

is a “negligible” probability that the time t = 1 level of reserves, R, falls below R̄ + U after

the realization of the supply shock s; ample when the probability is “reasonably small”; and

scarce when the probability is greater than reasonably small.

In the calibration exercise, we define a negligible probability to be less than or equal to

0.1 percent; a reasonably small probability to be between 0.1 and 15 percent; and greater

than reasonably small probability as exceeding 15 percent. Figure 3 provides an illustration

of Proposition 1. In the example described by the figure, the lower limit for an abundant

reserve supply is equal to R̄ + U + 3.1 × σ, and the lower limit for ample reserve supply is

equal to R̄+ U + 1.0× σ. Hence, an abundant reserve supply is at least 2.9× σ larger than

the lowest level of ample reserves in this example.

The central bank chooses between the two level of reserves—scarce or ample—in Proposi-

tion 1 by comparing the expected cost of implementing monetary policy with scarce reserves,

R = R̄, and with ample reserves, R = RA > R̄ + U . In our calibration, the central bank

chooses an ample level of reserves at time t = 1 (see Figure 3), since its expected cost is
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supply shock, s, is realized, the central bank conducts an open market operation to inject

reserves only if the new level of reserves, R + s, is less than the threshold R̄ + U . The size

of the operation will be x = −s − [R − (R̄ + U)] which equates the equilibrium interbank

interest rate to the interest on reserve balances, i.e., r(R+ s+x) = rIOR. Clearly, increasing

the time t = 1 supply of reserves, R, reduces the size of open market operations at t = 5

only if R + s < R̄ + U ; when R + s > R̄ + U the central bank does not conduct any open

market operations (x = 0). This implies that the marginal benefit of increasing R is equal

to β Pr[R+ s < R̄+U ] = βΦ[(R̄+U −R)/σ]. Since the marginal cost of increasing reserves

is equal to γ = 1, the level of reserves that minimizes the cost of implementing monetary

policy is obtained by equating the marginal benefit to the cost of increasing reserves at date

1, which yields the following expression for RA:22

RA = R̄ + U + σΦ−1(1− 1

β
). (11)

Intuitively, RA is increasing in β because a higher cost of open market operations incentivizes

the central bank to increase the initial level of reserves R so as to move farther away from the

threshold, R̄ + U . This threshold determines the transition between the negatively sloped

and flat regions of the demand curve. RA is also increasing in the volatility of the demand

and supply shocks σ: As σ increases so does the probability that reserves will be pushed

below the threshold R̄ + U , incentivizing the central bank to increase R.23

We now compare the central bank’s cost of implementing a scarce reserve framework with

R = R̄ to the cost of implementing an ample reserve framework with RA > R̄ + U given by

equation (11):

• Scarce reserves. The central bank’s implementation cost evaluated at R = R̄ is

approximately equal to

V (R∗ = R̄) ≈
√

2

π
βσ + R̄. (12)

The first term captures the cost of fully offsetting reserve supply shocks, i.e., it is the

expected value of β| − s|.24

22As discussed in Section 3.4, we do not consider the region of the demand curve with very low reserve
balances, i.e., the region to the left of R̄ + d − U . The missing term is very small and does not provide
additional insights.

23Note that we assume β > 2 (see assumption A1 in Appendix B); otherwise, the cost of open market
operations will be too low and the central bank will always choose the lowest level of reserve supply; as a
result, there will be no local minimum at R > R̄+ U , and RA will not be defined.

24This result is an approximation. In an extreme event of a very large shock, the central bank will choose
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• Ample reserves. The central bank’s implementation cost evaluated at R = RA is

V (R∗ = RA) = φ

(
Φ−1

(
1− 1

β

))
βσ + R̄ + U. (13)

As above, the first term is the expected cost associated with open market operations.

The first term in equation (13) is smaller than the first term of (12) because the central

bank’s open market operations are smaller and less frequent when reserves are ample. Since

both of these terms are linear in σ—and RA > R̄, if σ is “large enough,” the ample-reserve

regime will have a lower expected implementation cost and, hence, will be preferred to the

scarce-reserve regime. Proposition 2 formalizes this intuition:

Proposition 2. Assume ρ = 0 and σ ∈ (0, σ̄]. There exists a critical value σ∗ ∈ (0, σ̄] such

that if σ < σ∗, then R = R̄ is the cost minimizing reserve level and if σ > σ∗, then R = RA

is the cost minimizing level.

Note that the constraint σ ≤ σ̄ ensures that σ is not too large, as discussed earlier (see

assumption A3 in Appendix B or footnote 19).

There is no closed-form solution for σ∗, but we can derive an approximate expression by

finding the value of σ that equates the approximation of V (R̄) in equation (12) to V (RA) in

equation (13):

σ∗ ≈ [

√
2

π
− φ

(
Φ−1

(
1− 1

β

))
]−1U

β
. (14)

When demand shocks are predictable, ρ = 0, and the volatility of the shocks to the

reserve supply is “low” (σ < σ∗), then a scarce-reserve regime will be optimal. This scenario

is consistent with the monetary policy implementation regime that prevailed in the U.S. prior

to the 2007-2009 financial crisis. On the other hand, when the volatility of the supply shock

is “high,” then the central bank will choose a regime with ample reserves. This scenario is

consistent with monetary implementation policy in the U.S. since the 2007-2009 financial

crisis. Figure 4 illustrates this intuition: When the volatility σ is low—the orange line—

it is less costly for the central bank to implement monetary policy with scarce reserves,

R = R̄; when volatility is high—blue line—ample reserves, R ≡ RA > R̄ + U , provides the

implementation framework with the lowest cost.

not to offset it. However, the probability of this event is very small because we assume that U is large relative
to σ. Appendix B derives the exact formulation; the economic intuition and mathematical arguments remain
the same.
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Since the 2007-2009 financial crisis, reserve supply shocks and the required size of open

market operations to offset those shocks have become substantially larger (see section 2.2).

Even though the cost of open market operations is proportional to its size in the model,

in practice this cost might be convex. For example, with larger operations, the central

bank might be much more concerned about risks associated with counterparty exposures,

potential market distortions, possible mistakes, and so on. If so, the post-crisis environment

could be described with a higher cost parameter β, which makes an ample-reserve regime

more preferable to the central bank.

3.7 Environment with Demand Uncertainty

We now consider the case where there is uncertainty about the demand for reserves—i.e.,

ρ 6= 0—at the time t = 5 when the central bank conducts an open market operation. We

can interpret this scenario as representative of the U.S. reserve market in the post-crisis

period. As discussed in Section 2.2, since the 2007-2009 financial crisis, changes in bank

regulation, banks’ risk management practices and liquidity stress tests, among other factors,

have transformed the banking system’s demand for reserves. We interpret the post-crisis

period as characterized by an increase in the magnitude of the demand and supply shocks—

a larger σ—and a decline in the predictability of the reserve demand—a larger ρ.

An increase in uncertainty and a decrease in predictability may lead a central bank to

prefer an ample reserve supply to a scarce one. When reserves are scarce and the reserve

demand becomes less predictable (ρ increases), open market operations become less effective

in stabilizing interest rate movements, making an ample-reserve regime more attractive to

the central bank. The following simple example illustrates this point. Suppose first that the

central bank chooses an initial level of reserves that is scarce and equal to 3, i.e R = R̄ = 3

at t = 1, and that a supply shock s of -1 has been realized at t = 2, where the supply shock

can be either -1 or 1 with equal probability. Since the reserve demand curve in the scarce

region is downward sloping, in the absence of reserve demand shocks, the central bank would

inject x = 1 unit of reserves at t = 3. This operation costs the central bank β but saves αc0

since the equilibrium interbank rate equals the target rate r(R + s+ x = 3).

Now suppose that, at t = 4, there are demand shocks d of either −1 or +1 with equal

probability and that the central bank injects a unit of reserves at time t = 3. Then the
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equilibrium interest rate will be either r(2) > r(3) if d = 1 or r(4) < r(3) if d = −1. The

time t = 3 expected cost associated with x = 1 is β + αc0. If, instead, the central does

not inject a unit of reserve at time t = 3, then the equilibrium interest rate will be either

r(1) > r(3) if d = 1 or r(3) if d = −1. The expected cost associated with x = 0 is αc0.

Hence, the central bank’s best response at time t = 3 is not to undertake an open market

operation, i.e., x = 0 since the expected cost to the central bank is lower by β relative to

the cost of conducting the operation (x = 1).

We consider the case where the central bank chooses ample reserves equal to RA =

R̄+U+2 at t = 1 instead of scarce reserves for this example. Independently of the supply and

demand shock realizations, the t = 5 equilibrium interbank rate is r(RA + s+x− d) = rIOR:

hence, there is no interest rate variability. In this example, the central bank will choose

ample reserves if the increase in balance sheet costs, RA − R̄, is less than the cost savings

associated with interest rate variability, αc0.

To see that the decrease in the predictability of demand makes ample reserves more

attractive, we assume that the central bank learns what the demand shock at t = 5 will be

at t = 3. Because the demand shock is known at t = 3, the central bank will offset the

demand shock at t = 3 when reserves are scarce. The cost savings from choosing ample

reserves at date t = 1 is only equal to β because the reserve injection at t = 3 would be 2 or

0 with equal probability, which is smaller than αc0. Thus, cost savings from choosing ample

reserves are larger with less predictable demand.

Qualitatively, key results and insights from the model with predictable reserve demand

hold when the reserve demand is no longer perfectly predictable. Importantly, the central

bank’s t = 1 reserve supply decision is still a choice between a scarce-reserve regime and an

ample-reserve regime. In particular,

Proposition 4. The cost function V (R) has two local minima. One is at R = R̄ and

another, denoted RA, is at R > R̄ + U .

The central bank’s cost function retains the same basic shape as in the model with predictable

demand (Figure 3).

The cost that a central bank incurs from interest rate volatility is mitigated in an ample

reserve regime since the equilibrium interbank interest rates are less responsive to demand
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Figure 5 also shows that higher uncertainty and less predictability (the green line), con-

sistent with the post-crisis period, would incentivize the central bank to move to an ample

reserve regime from a scarce reserve regime such as the pre-crisis period (when uncertainty

was low and predictability high). The optimal ample reserve supply in this case is greater

than the supply associated with the blue line due to the higher uncertainty.

4 An Ample Reserve Regime in Practice

Our theory provides a rationale for the FOMC’s decision in 2019 to remain in an ample

reserve regime. In this section, we briefly discuss how well this regime has been at maintaining

interest rate control, which is the primary objective of a monetary policy implementation

framework. We also discuss some other benefits of this type of framework.

4.1 Interest Rate Control

Measuring the effectiveness of monetary policy implementation can be approached in

many ways. One approach is to track the position of the policy rate relative to the target

rate or range, and determine how often the rate deviates from the target. In the U.S., the

effective federal funds rate has printed outside the target range in only two instances since

the FOMC announced the establishment of a target range for the federal funds rate in 2008.25

Other measures of effectiveness focus on rate dispersion. Duffie and Krishnamurthy

(2016), for instance, propose an index intended to capture rate dispersion across different

segments of money markets.26 Building on the Duffie-Krishnamurthy index, Afonso et al.

(2017) show that the implementation framework used by the Federal Reserve in the post-

crisis period has been effective and achieved good pass-through.

Another way of measuring the effectiveness of the operating regime is by the pass-through

of administered rates to market rates. A particularly interesting approach to look at the

effectiveness of the Federal Reserve’s current implementation framework is to consider the

25The effective fed funds rate printed below the target range on December 31, 2015 and above the target
range on September 17, 2019.

26In particular, Duffie and Krishnamurthy (2016) consider the volume-weighted average absolute deviation
from the volume-weighted average rate, which captures how much each market rate deviates from the average
rate across markets. To implement the index, the authors adjust rates for term and credit spreads, and weight
each instrument’s influence by its outstanding amount.
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effect of the “technical adjustments” on various money market rates. A technical adjustment

is a change to the administered rates—the interest on reserve balances (IORB) rate and/or

the ON RRP rate—that is intended to foster trading in the fed funds market at rates well

within the target range, rather than change the stance of monetary policy. Afonso et al.

(2022) show that changes in administered rates, through technical adjustments, pass-through

fully to other short-term rates.

Overall, the Federal Reserve’s current implementation framework has been effective at

interest rate control and at ensuring pass-through of the policy rate to short-term money

markets rates.

4.2 Some Financial Stability Considerations

In this section, we discuss some financial stability implications of implementation frame-

works with a large supply of reserve balances.

A monetary policy implementation regime with a sufficiently large supply of reserves

allows banks to meet some of their needs for high-quality liquid assets (HQLA) with reserves.

It also provides enough reserves for banks to meet their outflow needs with reserves during

a time of stress and avoid the potential fire-sale effects from monetizing large quantities of

assets (Bush et al., 2019). This makes the financial system safer, more resilient, and may

reduce the need for banks to borrow from the central bank.27

Another benefit of a regime with a large supply of reserves is that reserves as “money-

like” short-term safe assets are particularly attractive to some investors and, for that reason,

carry a premium that reduces their yield. When the supply of money-like assets is too

small, private sector participants have an incentive to issue liabilities that have money-like

properties because of their low cost. This can result in excessive maturity transformation,

which makes the financial system more fragile (Greenwood et al., 2016; Carlson et al., 2016).

Acharya et al. (2022), however, point to potential fragility concerns associated with cen-

27An alternative approach to avoid fire-sales effects would be for the central bank to offer a liq-
uidity facility to “monetize” Treasury securities and, perhaps, other HQLA. See Andolfatto and Ihrig
(2019), Liang and Parkinson (2020), and Group of Thirty Working Group on Treasury Market Liquidity
(2021), for example. Such an alternative would be effective only if the liquidity facility does not suf-
fer from stigma. The FOMC announced in July 2021 the establishment of a standing repo facility (see
https://www.federalreserve.gov/newsevents/pressreleases/monetary20210728b.htm.)
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tral bank balance sheet expansions. During expansions of central bank balance sheets, which

ultimately create reserve balances, bank demandable deposits and lines of credit increase.

This increase is not reversed during balance sheet shrinkage. The authors argue that this

asymmetry is responsible for tightening liquidity conditions and stress episodes during bal-

ance sheet normalization and can make the banking system more dependent on central bank

liquidity infusions during stress.

5 Conclusion

The 2007-2009 financial crisis, and its aftermath, have led to profound changes in the way

many central banks implement monetary policy. In particular, large-scale asset purchases

resulted in high levels of reserves balances at major central banks. Traditional implementa-

tion tools became ineffective, and central banks transitioned to control interest rates with

administered rates, using a “floor” system. Some central banks, such as the Federal Reserve,

have indicated that they expect to continue using this type of implementation framework in

the foreseeable future.

The results of our paper shed some light on the implications of these policy implemen-

tation decisions. In this paper, we proposed a model of the banking system demand for

reserves to study the trade-offs that policy makers face when choosing a monetary policy

implementation framework. We reviewed key features of a central bank operating regime

and discussed the costs and benefits of different implementation frameworks. We highlighted

potential trade-offs between the size of a central bank’s balance sheet and effectiveness of rate

control, as well as the size of central bank operations. We showed that in the post-financial

crisis environment, the optimal monetary policy regime is one where reserve balances lie

between scarce and abundant.
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Appendix

A Demand for Reserves

In this section we formally describe individual banks’ problem and explain in more detail

some of the results in Section 3.4. Bank i maximizes the following objective function:

+∞∫
−∞

Vi(u)µi(u)du−Rir. (A-1)

µi is the probability density function of ui and Vi(u) is the value associated with the outcome

ui = u. Vi(u) can be derived by integrating the marginal value of reserves up to Ri + ui.

The marginal value of reserves is rP for Ri +ui < R̄(i) + di and rIOR for Ri +ui ≥ R̄(i) + di.

Integrating the marginal value from 0 (or any constant) to Ri + ui, the expression for Vi(u)

is

Vi(u) = min(Ri + ui, R̄(i) + di)rP +max(Ri + ui − R̄(i) + di, 0)rIOR. (A-2)

Note that

∂Vi(u)

∂Ri

= rP if Ri + ui < R̄(i) + di;

= rIOR otherwise. (A-3)

The first-order condition (FOC) for bank i with respect to Ri is

0 =
∂

∂Ri

[

+∞∫
−∞

Vi(u)µi(u)du−Rir] =

+∞∫
−∞

∂Vi(u)

∂Ri

µi(u)du− r

= Prob(Ri + ui < R̄(i) + di)rP + Prob(Ri + ui ≥ R̄(i) + di)rIOR − r. (A-4)

This is bank i’s FOC described in Section 3.4.

Given the FOC of bank i, we can derive its demand for reserves. Recall that ui is

uniformly distributed over (−Ui, Ui).

• If Ri ≤ R̄(i)+di−Ui, then Prob(Ri+ui < R̄(i)+di) = 1. Therefore, r = 1·rP+0·rIOR =

rP .

• If Ri ≥ R̄(i) + di + Ui, then Prob(Ri + ui < R̄(i) + di) = 0. Therefore, r = rIOR.
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• If R̄(i) + di − Ui ≤ Ri ≤ R̄(i) + di + Ui, then Prob(Ri + ui < R̄(i) + di) = −(Ri −
R̄(i)− di − Ui)/(2Ui). Therefore,

r = rP (−Ri − R̄(i)− di − Ui
2Ui

) + rIOR(1 +
Ri − R̄(i)− di − Ui

2Ui
)

= rIOR + (rP − rIOR)(−Ri − R̄(i)− di − Ui
2Ui

). (A-5)

Solving this equation for Ri, we have Ri = R̄(i) + di +Ui− 2Ui(r− rIOR)/(rP − rIOR).

Next, we aggregate reserve demand across banks; recall that Ragg =
∑

iRi, R̄ =
∑

i R̄(i),

d =
∑

i di and U =
∑

i Ui.

• If Ragg ≤ R̄+d−U , then r = rP in equilibrium and Ri ≤ R̄(i)+di−Ui for every bank;

note that Ri is not uniquely determined. To prove this, suppose that Rj > R̄(j)+dj−Uj
for some j. Then, to satisfy bank j’s FOC, r < rP . This implies Ri > R̄(i) + di − Ui
for all i, implying R > R̄ + d− U , which is a contradiction.

• If Ragg ≥ R̄ + d + U , then r = rIOR in equilibrium and Ri ≥ R̄(i) + di + Ui for every

bank; note that Ri is not uniquely determined. This can be proved by contradiction,

similarly to how the previous case was proved.

• If R̄+ d− U ≤ Ragg ≤ R̄+ d+ U , then rIOR < r < rP , because otherwise, Ragg would

be outside the range. For any r in (rIOR, rP ), bank i’s choice of Ri is unique and given

by Ri = R̄(i) + di + Ui − 2Ui(r − rIOR)/(rP − rIOR), as shown earlier. Summing this

expression across i, we have

Ragg = R̄ + d+ U − 2U(
r − rIOR
rP − rIOR

). (A-6)

Solving this for r, we have

r = rIOR − (
rP − rIOR

2U
)(Ragg − R̄− d− U) if R̄ + d− U < Ragg < R̄ + d+ U. (A-7)

In equilibrium, Ragg = R+ s+ x and recall y ≡ R+ s+ x− d. Writing the expression in

terms of y, we have

r = rIOR − (
rP − rIOR

2U
)(y − R̄− U) if R̄− U < y < R̄ + U. (A-8)

This is the functional form of r(y) described in Section 3.4.
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B Technical Assumptions and Proofs

This section has proofs associated with Sections 3.6 and 3.7. We first state three technical

assumptions on model parameters:

A1. β > 1/Φ(−
√

2log2): β represents the unit cost of conducting market operations; if

it were very small, the central bank would always choose the minimal level of reserves,

R = R̄. Except for proving Proposition 5, β > 2 is sufficient; note that Φ is the cumu-

lative distribution function of the standard normal distribution, and 1/Φ(−
√

2log2) is

about 8.28

A2. 1.1 < αc0/β < 2: β < αc0 means that the central bank would rather use operations

to reduce interest rate volatility than let the rate move. αc0 < 2β helps simplify the

central bank’s problem. Except for proving Proposition 5, a lower bound of 1 on αc0/β

is sufficient.

A3. U/σ̄ > Φ−1(1− 2
3αc0

): As discussed in Section 3.5, this helps simplify the central

bank’s problem.

Proof of Proposition 1: The proposition is as follows: Assume that ρ = 0. The cost

function V (R) has two local minima: R = R̄ (scarce reserves) and another in R > R0

(ample reserves).

Technically proving this proposition is redundant because we will prove a more general

Proposition 4. Nonetheless we still provide a proof because it is helpful in understanding the

choice of the central bank in the equilibrium. Recall that the central bank’s cost function

from date 0 perspective is

V (R) = E[α|r(R + s− d+ x(R, s))− r(R)|+ β|x(R, s)|] +R. (B-9)

The central bank seeks to minimize this cost function under the constraint R ≥ R̄, with

x(R, s) optimal in each state s. To show the existence of the two local minima, it is sufficient

to show the following:

• V ′′ < 0 for R < R0.

28In particular, if β < 1, the central bank always chooses R = R̄ because state-contingent reserve injections
are a cheaper way to supply reserves. This is an unrealistic assumption.
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• V ′′ > 0 for R > R0.

• V ′(R̄) > 0.

• V ′(R0+) < 0, where V ′(R0+) denotes the right limit of V ′ at R0.

• limR→∞ V
′(R) > 0.

Note R0 = R̄ + U . The third inequality shows that R = R̄, the scarce supply, is a local

optimum and the first inequality shows that there is no other optimum below the kink level,

R < R0. The fourth and the fifth inequality show that there is an optimum with R > R0

(the ample supply), and it is unique by the second inequality.

To prove the first inequality, V ′′ < 0 for R < R0, we recognize that increasing R is less

costly for R closer to R0 (while still R < R0) because the flat portion of the demand curve

helps lower the cost due to interest rate volatility. As stated in the main text, we use the

following approximate form for r(y):

r(y) = rIOR if y > R0;

= rIOR + c0(R0 − y) otherwise. (B-10)

We first derive the optimal x(R, s) for R < R0. Note that the problem is

min
x
α|r(R + s+ x)− r(R)|+ β|x|. (B-11)

d is dropped because ρ = 0 and R is dropped from the cost function because this is a problem

of determining x taking R and s is given. Assumption A2 implies β < αc0 < 2β and given

these inequalities, we can characterize x:

• If s ≤ R0 − R, then x = −s. R + s is still in the steep portion of the demand curve

and β < αc0 implies that the central bank finds it optimal to completely offset s.

• If s ≥ R0−R, then two cases are possible. First, note that β < αc0 implies that either

x = −s or x = 0. If R + s + x < R0 and R + s + x 6= R, then the central bank can

further its reduce cost by setting s + x = 0 because β < αc0. If R + s + x ≥ R0 and

x 6= 0, it can reduce cost by setting x = 0 simply because β > 0. Thus the optimal
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choice is the better one between x = −s and x = 0. The central bank is indifferent

between these two choices if

αc0(R0 −R) = βs. (B-12)

For s < (R0 − R)αc0/β, the optimal choice is x = −s; for s > (R0 − R)αc0/β, it is

x = 0.

Recall that V (R) = E[α|r(R+ s− d+ x(R, s))− r(R)|+ β|x(R, s)|] +R. The first term

of this expression is

Eα|r(R + s− d+ x(R, s))− r(R)| = αc0(R0 −R)Φ(− 1

σ

αc0

β
(R0 −R)). (B-13)

This is a result of applying the explicit formula for x that we just derived. Similarly, we can

calculate the second term:

Eβ|x(R, s)| = β

∫ (R0−R)αc0/β

−∞
|s| 1
σ
φ(
s

σ
)ds. (B-14)

Using these expressions we can calculate the derivative dV/dR:

dV

dR
= −αc0Φ(− 1

σ

αc0

β
(R0 −R)) + αc0(R0 −R)

∂

∂R
Φ(− 1

σ

αc0

β
(R0 −R))+

∂

∂R
β

∫ (R0−R)αc0/β

−∞
|s| 1
σ
φ(
s

σ
)ds+ 1. (B-15)

The second and third terms cancel out because of the continuity in the value of the cost

function in s. Thus
dV

dR
= −αc0Φ(− 1

σ

αc0

β
(R0 −R)) + 1. (B-16)

This is decreasing in R, which proves the inequality V ′′ < 0 for R < R0.

We now prove the second inequality, V ′′ > 0 for R > R0. Intuitively, increasing R reduces

the expected size of operations for R > R0. For a greater R, the marginal reduction in the

expected size of operations is smaller because operations are needed less frequently.

Characterizing x is straightforward, given assumption A2, β < αc0 < 2β. If R+ s ≥ R0,

or equivalently, s ≥ R0 − R, then r(R + s) = r(R) = rIOR, so the central bank optimally

chooses x = 0. Otherwise, β < αc0 implies that the central bank will set R+ s+ x = R0, or

equivalently, x = R0 −R− s.
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Recall that V (R) = E[α|r(R + s − d + x(R, s)) − r(R)| + β|x(R, s)|] + R. Given the

optimal choice of x,

Eα|r(R + s− d+ x(R, s))− r(R)| = 0. (B-17)

Eβ|x(R, s)| = β

∫ R0−R

−∞
(R0 −R− s)

1

σ
φ(
s

σ
)ds. (B-18)

Note that (R0 − R − s) = |R0 − R − s| given the upper limit of the integral. Given these

expressions, we can calculate

dV

dR
= β

∫ R0−R

−∞
−1

1

σ
φ(
s

σ
)ds+ 1 = −βΦ(

1

σ
(R0 −R)) + 1. (B-19)

This expression is increasing in R, which proves the inequality V ′′ > 0 for R > R0.

To prove the third inequality, V ′(RLC) > 0, we use the following expression derived in

the course of proving the first inequality:

dV

dR
= −αc0Φ(− 1

σ

αc0

β
(R0 −R)) + 1. (B-20)

Evaluating this expression for R = RLC , we have

dV

dR
(RLC) = −αc0Φ(− 1

σ

αc0

β
U) + 1. (B-21)

Given assumption A3, U/σ̄ > Φ−1(1− 2/(3αc0)), along with αc0/β > 1 implied by assump-

tion A2, we have

dV

dR
(RLC) > −αc0Φ(−Φ−1(1− 2

3αc0

)) + 1 = −αc0[1− Φ(Φ−1(1− 2

3αc0

))] + 1

= −αc0[1− (1− 2

3αc0

)] + 1 =
1

3
. (B-22)

This proves the third inequality.

Similarly, to prove the fourth inequality, V ′(R0+) < 0, we use the expression for dV/dR

derived for R > R0. Recall that

dV

dR
= −βΦ(

1

σ
(R0 −R)) + 1. (B-23)

Evaluating this expression at R = R0 gives dV/dR = −(1/2)β + 1. Assumption A1, β > 2,

implies dV/dR < 0.

Using the expression for dV/dR, we see that limR→+∞(dV/dR) = 1, which proves the

last inequality, limR→∞ V
′(R) > 0.
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This completes the proof of Proposition 1.

Proof of Proposition 2: The proposition is as follows: Assume that ρ = 0 and all model

parameters are fixed except for σ. There exists a constant F in (0, σ̄] such that if σ < F ,

then the scarce-reserve regime is optimal, and if σ > F , then the ample-reserve regime is

optimal.

This proposition is a special case of Proposition 5, which we prove later. Nonetheless

working through this proof is helpful in better understanding the result. As explained in

Section 3.6, the intuition behind this result is clear—the cost to the central bank loads more

heavily on σ in the scarce-reserve regime, thus a larger σ makes the ample-reserve regime

more favorable relative to the scarce-reserve regime.

In the course of proving Proposition 1, we derived an explicit formula for V (R̄), the cost

to the central bank of the scarce-reserve regime:

V (R̄) = αc0UΦ(− 1

σ

αc0

β
U) + β

Uαc0/β∫
−∞

|s| 1
σ
φ(
s

σ
)ds+ R̄

= αc0UΦ(− 1

σ

αc0

β
U) + βσ(

√
2

π
− φ(

1

σ

Uαc0

β
)) + R̄. (B-24)

Taking its partial derivative with respect to σ, we have

∂V (R̄)

∂σ
= β(

√
2

π
− φ(

1

σ

Uαc0

β
)). (B-25)

Some terms cancel out because of the optimization implicit in the expression for V (R̄) in

choosing between incurring the cost of interest rate volatility αc0U and the cost of operations

β|s|.

We also derived an explicit formula for V (RA) and dV/dR(RA):

V (RA) = β

∫ R0−R

−∞
(R0 −R− s)

1

σ
φ(
s

σ
)ds+RA. (B-26)

dV

dR
(RA) = −βΦ(

1

σ
(R0 −R)) + 1. (B-27)

By solving dV/dR(RA) = 0, we have R = R0 + σΦ−1(1− (1/β)), an expression we verbally
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derived in Section 3.6. Using this expression, we can calculate:

∂V (RA)

∂σ
=
∂

σ
[β

∫ R0−RA

−∞
(R0 −RA − s)

1

σ
φ(
s

σ
)ds+RA]

=
∂

σ
[β

∫ (R0−RA)/σ

−∞
(R0 −RA − tσ)φ(t)dt+RA]

= β

∫ (R0−RA)/σ

−∞
[−∂RA

∂σ
− t]φ(t)dt+

∂RA

∂σ

= β

∫ (R0−RA)/σ

−∞
−tφ(t)dt = βφ(

R0 −RA

σ
) = βφ(Φ−1(

1

β
)). (B-28)

Note that the second line is by a variable replacement, t = s/σ; the third line is by ignoring

the derivative of the upper limit of the integral given that the integrand is zero at the upper

limit; and the fourth line is by using the envelope property given that RA is an optimizer.

Note that (∂V/∂σ)(R̄) = β(
√

2/π − φ(Uαc0/(σβ))) > β
√

2/π and (∂V/∂σ)(RA) =

βφ(Φ−1( 1
β
)) < β

√
2/π. Thus (∂V/∂σ)(R̄) > (∂V/∂σ)(RA); in other words V (R̄)−V (RA) is

strictly increasing in σ.

To prove Proposition 2, we need only to prove limσ→0 V (R̄)− V (RA) > 0. This ensures

that for small enough σ, a scarce level of supply will always be chosen. This is straight-

forward, because using formulas for V (R̄) and V (RA) derived previously, we can show that

limσ→0 V (R̄) = RLC and limσ→0 V (RA) = R0, which is intuitive as the costs due to interest

rate volatility and open market operations converge to zero. This completes the proof of

Proposition 2.

Note that Proposition 2 allows the possibility that for a given set of parameters, the

scarce-reserve regime is always optimal, in which case F = σ̄. We can show that there exist

a ‘plenty’ of cases where for some σ, the ample-reserve regime is optimal and F < σ̄. Given

that V (R̄) − V (RA) = U in the limit σ → 0, a sufficient condition for the ample-reserve

regime to be optimal for some σ ∈ (0, σ̄] is that the minimum of (∂V/∂σ)(R̄)− (∂V/∂σ)(RA)

is greater than U/σ̄.

For convenience, suppose that σ̄ = U/Φ−1(1− 2/(3αc0)), the upper limit of σ̄ consistent
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with A3. Note that

(∂V/∂σ)(R̄)− (∂V/∂σ)(RA) = β(

√
2

π
− φ(

Uαc0

σβ
)− φ(Φ−1(

1

β
)))

> β(
1√
2π
− φ(

Uαc0

σβ
))

> β(
1√
2π
− φ(

Uαc0

σ̄β
))

> β(
1√
2π
− φ(Φ−1(1− 2

3αc0

))

>
1

2
αc0(

1√
2π
− φ(Φ−1(1− 2

3αc0

))). (B-29)

The last line is implied by assumption A2. We need the last line to be greater than U/σ̄,

which is Φ−1(1 − 2/(3αc0)). In other words, a sufficient condition for the ample-reserve

regime to be optimal for some σ is

1

2
αc0(

1√
2π
− φ(Φ−1(1− 2

3αc0

))) > Φ−1(1− 2

3αc0

). (B-30)

This condition is easily satisfied because while both sides increase in αc0, the right-hand

side increases extremely slowly in αc0 for about αc0 > 10, as Φ approaches 1 very fast. For

example, imagine evaluating the expression for αc0 = 100; Φ−1(1− 2
3αc0

) is less than 3; even

Φ−1(1− 10−10) is less than 7.

Proof of Proposition 3: The proposition is as follows: Assume ρ = 0. ∂F/∂β ≤ 0. The

inequality is strict if F is not at the upper bound, F < σ̄.

This has almost been proved in the course of proving Proposition 2. Using the expression

for V (R̄), we calculate

∂V (R̄)

∂β
= σ(

√
2

π
− φ(

1

σ

Uαc0

β
)). (B-31)

This is almost identical to the expression for (∂V/∂σ)(R̄) because β and σ both appear only

in the form of βσ in the expression for V (R̄). Similarly, using the expression for V (RA), we

calculate
∂V (RA)

∂β
= σφ(Φ−1(

1

β
)). (B-32)

This again is very similar to the expression for (∂V/∂σ)(RA). Thus

∂V (R̄)

∂β
− ∂V (RA)

∂β
= σ[

√
2

π
− φ(

1

σ

Uαc0

β
)− φ(Φ−1(

1

β
))] > 0. (B-33)
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Suppose that F < σ̄. Then this inequality implies that if β increases by a small amount,

the central bank strictly prefers the ample reserves at σ = F , while it was indifferent prior

to the increase in β. Thus ∂F/∂β < 0. However, if F = σ̄, then the inequality might hold

not strictly because the central bank might have strictly preferred the scarce-reserve regime

prior to the increase in β. This completes the proof of Proposition 3.

Proof of Proposition 4: The proposition is as follows: The cost function V (R) has two

local minima: R = R̄ (scarce reserves) and another in R > R0 (ample reserves).

This is a generalized version of Proposition 1. The basic ideas underlying the proof are

the same, but we rely less on deriving closed-form expressions because doing so is more

difficult in this case. As in the proof of Proposition 1, it is sufficient to prove the following

five inequalities:

• V ′′ < 0 for R < R0.

• V ′′ > 0 for R > R0.

• V ′(R̄) > 0.

• V ′(R0+) < 0, where V ′(R0+) denotes the right limit of V ′ at R0.

• limR→∞ V
′(R) > 0.

The proof of the first inequality, V ′′ < 0 for R < R0, is based on the idea that increasing

R is less costly for R closer to R0 (while still R < R0) because the flat portion of the demand

curve helps lower the cost due to interest rate volatility and central bank operations. We

write the central bank’s cost function as follows:

V (R) =

+∞∫
−∞

W (R, s)µs(s)ds+R. (B-34)

W (R, s) is the expected cost due to interest rate volatility and central bank operations given

(R, s) and µs is the probability density function of s; µs(s) = φ(s/(
√

1− ρ2σ))/(
√

1− ρ2σ.

We can write

W (R, s) = min
x

[β|x|+
+∞∫
−∞

α|r(R + s+ x+ e)− r(R)|µe(e)de]. (B-35)
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We denote the demand shock as e instead of d to avoid notational confusion involving

integrals. µe(e) is the probability density function of e; µe(e) = φ(e/(σρ))/(σρ). Also, we

write R + s + x + e instead of R + s + x − e, which we can do because e’s distribution is

symmetric around zero.

Taking the derivative of W (R, s) with respect to R, we have

∂W

∂R
=

∂

∂R
[β|x|+

+∞∫
−∞

α|r(R + s+ x+ e)− r(R)|µe(e)de]

=

+∞∫
−∞

α
∂

∂R
|r(R + s+ x+ e)− r(R)|µe(e)de

= −αc0Prob(R + s+ x+ e ≥ R0) = −αc0[1− Φ(
R0 −R− s− x

σρ
)]. (B-36)

In the second line, note that x is not treated as a function of R in calculating the partial

derivative. Otherwise, x is implicitly a function of R and s but terms including ∂x/∂R

cancel out because x is either an optimal choice satisfying the first-order condition—envelope

property—or x = 0 is optimal because moving x to either direction is suboptimal, in which

case ∂x/∂R = 0.

Using this expression we can calculate dV/dR and d2V/dR2:

dV

dR
=

+∞∫
−∞

−αc0[1− Φ(
R0 −R− s− x

σρ
)]µs(s)ds+ 1. (B-37)

d2V

dR2
=

+∞∫
−∞

αc0φ(
R0 −R− s− x

σρ
)

1

σρ
(−1− ∂x

∂R
)µs(s)ds. (B-38)

To show V ′′ < 0, it is sufficient to show that 1 + ∂x/∂R ≥ 0 for any (R, s). Recall that

x is an optimizer of the following problem:

min
x

[β|x|+
+∞∫
−∞

α|r(R + s+ x+ e)− r(R)|µe(e)de]. (B-39)

If x = 0, then ∂x/∂R = 0 because moving x in either direction is suboptimal. Therefore,

41



1 + ∂x/∂R = 1 ≥ 0. Suppose that x 6= 0. Then, the FOC for x implies

0 = βsign(x) +

+∞∫
−∞

α
∂

∂x
|r(R + s+ x+ e)− r(R)|µe(e)de

= βsign(x) + αc0[−Prob(e < −s− x) + Prob(−s− x < e < −s− x+R0 −R)]. (B-40)

sign(x) is 1 if x > 0 and −1 if x < 0. The second line can be understood as follows: if

e < −s − x, then increasing x moves r(R + s + x + e) toward r(R), reducing the cost.

However, if e > −s − x, then increasing x moves r(R + s + x + e) away from r(R), except

if e > −s− x+R0 −R, in which case there is no change because r(R+ s+ x+ e) is at the

flat portion of the demand curve, r(R + s+ x+ e) = rIOR.

Furthermore, since x minimizes the objective function, the partial derivative of the right-

hand size with respect to x must be positive:

αc0[2µe(−s− x)− µe(−s− x+R0 −R)] > 0. (B-41)

Taking the partial derivative of the FOC with respect to R, we have

0 = αc0[2µe(−s− x)
∂x

∂R
− µe(−s− x+R0 −R)(

∂x

∂R
+ 1)]

= αc0[(2µe(−s− x)− µe(−s− x+R0 −R))
∂x

∂R
− µe(−s− x+R0 −R)]. (B-42)

If ∂x/∂R ≤ 0, then the right-hand side of this equation is negative, which is a contradiction.

Therefore, ∂x/∂R > 0. This completes the proof of the first inequality, V ′′ < 0 for R < R0.

We now prove the second inequality, V ′′ > 0 for R > R0. This is simpler because we can

explicitly characterize x. Since R > R0, the central bank chooses only x ≥ 0; x < 0 is not

optimal because it increases the interest rate cost term |r(R+ s+ x+ e)− r(R)|. Thus the

optimal x satisfies the following FOC, derived earlier:

0 = β +

+∞∫
−∞

α
∂

∂x
|r(R + s+ x+ e)− r(R)|µe(e)de

= β − αc0Prob(e < −s− x+R0 −R) = β − αc0Φ(
−s− x+R0 −R

ρσ
). (B-43)

Therefore,

x(R, s) = max(y0 − (R + s), 0); (B-44)

y0 ≡ R0 − ρσΦ−1(
β

αc0

). (B-45)
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Note that by assumption A2, β/(αc0) > (1/2), which implies y0 < R0.

Recall that W (R, s) is the cost associated with the state s. Using an expression for

∂W/∂R derived earlier, we have

∂W

∂R
=

+∞∫
−∞

α
∂

∂R
|r(R + s+ x+ e)− r(R)|µe(e)de

= −αc0Prob(R + s+ x+ e ≤ R0) = −αc0Φ(
R0 −R− s− x

ρσ
). (B-46)

Note that in the first line, x is not treated as a function of R in calculating the partial

derivative.

Therefore,

dV

dR
=

+∞∫
−∞

−αc0Φ(
R0 −R− s− x

ρσ
)µs(s)ds+ 1. (B-47)

d2V

dR2
=

+∞∫
−∞

−αφ(
R0 −R− s− x

ρσ
)

1

σρ
(−1− ∂x

∂R
)µs(s)ds. (B-48)

The expression for x(R, s) implies that ∂x/∂R is either 0 or −1. Therefore, −1 −
(∂x/∂R) ≤ 0 and thus V ′′ > 0; the inequality is strict because ∂x/∂R = 0 over the in-

terval s ∈ (y0 −R,+∞) for every (R, s). This proves the second inequality.

We now prove the third inequality, V ′(R̄) > 0. First, we prove that at R = R̄, if s ≤ 0,

then x + s ≤ 0; x at most offsets s. Suppose that s ≤ 0 and x + s > 0. Then x > 0. The

FOC for x is

0 = β − αc0Prob(e < −s− x) + αc0Prob(−s− x < e < −s− x+R0 −R). (B-49)

Prob(e < −s − x) < (1/2) because x + s > 0. Thus the sum of the first two terms alone

is greater than β − (1/2)αc0, which is positive due to assumption A2, β < αc0 < 2β. Thus

the right-hand side of FOC is positive, which is a contradiction. Therefore, if x < 0, then

x+ s ≤ 0.

Next, we prove that if s > 0, then x ≤ 0. If s > 0 and x > 0, then s+x > 0, which leads

to a contradiction, as we just saw.
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Define x̃(s) = −s if s ≤ 0 and x̃(s) = 0 if s > 0. We just showed that for every s, x̃ ≥ x;

we ignore the dependence of x on R because we are looking at R = R̄. Then,

dV

dR
(R̄) =

+∞∫
−∞

−αc0[1− Φ(
R0 − R̄− s− x

ρσ
)]µs(s)ds+ 1

≥
+∞∫
−∞

−αc0[1− Φ(
R0 − R̄− s− x̃

ρσ
)]µs(s)ds+ 1

=

0∫
−∞

−αc0[1− Φ(
R0 − R̄
ρσ

)]µs(s)ds+

∞∫
0

−αc0[1− Φ(
R0 − R̄− s

ρσ
)]µs(s)ds+ 1

> −αc0

2
[1− Φ(

R0 − R̄
σ

)] +

∞∫
−∞

−αc0[1− Φ(
R0 − R̄− s

ρσ
)]µs(s)ds+ 1

= −αc0

2
[1− Φ(

R0 − R̄
σ

)] +

∞∫
−∞

∞∫
−∞

−αc0I(R̄ + s+ e > R0)µe(e)µs(s)deds+ 1

= −αc0

2
[1− Φ(

R0 − R̄
σ

)]− αc0[1− Φ(
R0 − R̄
σ

)] + 1

= −3αc0

2
[1− Φ(

R0 − R̄
σ

)] + 1 > 0. (B-50)

The second line is a direct result of x̃ ≥ x. In the third line, we are putting in actual values

of x̃ into the equation. In the fourth line, the first term follows from the fact that 0 < ρ < 1,

thus removing ρ decreases the argument of the function Φ. The integral in the second term

has its range of integration expanded. In the fifth line, the integrand is written as an integral

over the indicator function I, which takes the value of 1 if the inequality inside its argument

is satisfied and 0 otherwise. In the sixth line, we use the fact that s + e follows a normal

distribution with mean 0 and standard deviation σ. In the last line, we use assumption A3,

U/σ = (R0− R̄)/σ > Φ−1(1− 2/(3αc0)). These lines of equations and inequalities prove the

third inequality, dV/dR(R̄) > 0.

Next, we prove the fourth inequality, V ′(R0+) < 0. We showed earlier that at R = R0,

x = max(y0−R0−s, 0), where y0 = R0−ρσΦ−1(β/(αc0)). Using the expression for (dV/dR)

44



derived earlier for R ≥ R0, we write

dV

dR
(R0) =

+∞∫
−∞

−αc0Φ(
−s− x
ρσ

)µs(s)ds+ 1

=

y0−R0∫
−∞

−αc0Φ(
R0 − y0

ρσ
)µs(s)ds+

+∞∫
y0−R0

−αc0Φ(
−s
ρσ

)µs(s)ds+ 1

=

y0−R0∫
−∞

−βµs(s)ds+

+∞∫
y0−R0

−αc0Φ(
−s
ρσ

)µs(s)ds+ 1

<

y0−R0∫
−∞

−βΦ(
−s
ρσ

)µs(s)ds+

+∞∫
y0−R0

−βΦ(
−s
ρσ

)µs(s)ds+ 1

=

+∞∫
−∞

−βΦ(
−s
ρσ

)µs(s)ds+ 1

=

+∞∫
−∞

+∞∫
−∞

−βI(s+ e < 0)µe(e)µs(s)deds+ 1

= −1

2
β + 1 < 0. (B-51)

The second line directly follows from the explicit form of x as a function of s. The third

line substitutes y0 in the integrand by R0 − ρσΦ−1(β/(αc0)). In the fourth line, inserting

Φ makes the first term larger and replacing αc0 by β makes the second term larger, given

assumption A2, β < αc0 < 2β. In the fifth line, the two integrals are combinded into one.

In the sixth line, Φ is replaced by integration over e. The last line follows from the fact that

s+ e is normally distributed with mean zero, and from assumption A1, β > 2. This proves

V ′(R0+) < 0.

Lastly, we prove limR→∞ V
′(R) > 0.

dV

dR
=

+∞∫
−∞

−αc0Φ(
R0 −R− s− x

ρσ
)µs(s)ds+ 1

≥
+∞∫
−∞

−αc0Φ(
R0 −R− s

ρσ
)µs(s)ds+ 1

= −αc0Prob(s+ e < R0 −R) + 1. (B-52)
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The second line follows from x ≥ 0, as derived earlier. The third line is derived by writing

down Φ as the probability involving e and integrating over s; equivalently, we can derive

it by writing Φ as the integration of an indicator function over e, as we did multiple times

earlier. The last line converges to 1 as R→∞ because s+ e follows a normal distribution.

This completes the proof of Proposition 4.

Proof of Proposition 5: The proposition is as follows: Assume that all model parameters

are fixed except for σ and ρ. There exists a function F (ρ) ∈ (0, σ̄] such that if σ < F (ρ),

then the scarce-reserve regime is optimal, and if σ > F (ρ), then the ample-reserve regime is

optimal. F is monotonically decreasing in ρ.

This is a generalization of Proposition 2.

First, we prove the first part of the proposition that a larger σ makes ample reserve

preferable holding everything else constant, including ρ: There exists a function F (ρ) ∈ (0, σ̄]

such that if σ < F (ρ), then the scarce-reserve regime is optimal, and if σ > F (ρ), then the

ample-reserve regime is optimal.

It is convenient to introduce an additional parameter γ in the central bank’s cost function

in the form of γR:

V (R) = min
x(R,s)

E[α|r(R + s+ x− e)− r(R)|+ β|x|] + γR. (B-53)

In addition, for convenience, we assume RLC = 0 without loss of generality. Then,

R0 = U . Therefore, the cost function can be written as

V (R) = min
x
E[αc0|min(s+ x− e, U)|+ β|x|] + γR if R ≤ U ;

= min
x
E[αc0|min(s+ x− e+R− U, 0)|+ β|x|] + γR if R > U. (B-54)

V is a function of R as well as model parameters, so we write V (R,α, β, γ, σ, U) whenever

it is helpful to explicitly state the dependence on parameters. We omit the other parameters,

c0 and ρ, because they are always fixed while we prove the first part of the proposition.

Consider a baseline vector of parameters satisfying the assumptions A1, A2 and A3:

PBS ≡ (α, β, γ = 1, σ, U). Consider an alternative vector of identical parameters except for

σ: PALT = (α, β, 1, σ′, U), where σ′ > σ. Define η ≡ σ′/σ and PALT = (α, β, 1, ησ, U).
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Similarly, the level of ample reserves can be written as a function of parameters, RA(α, β, γ, σ, U).

Formally, RA = argminR≥R0V (R), whose existence is guaranteed by Proposition 4, as long

as the assumptions A1 through A3 are satisfied with α and β replaced by α/γ and β/γ. This

is because scaling the cost function of the central bank by γ results in identical optimizing

choices.

To prove the first proposition, it is sufficient to show the following:

d

dσ
[V (RA(α, β, 1, σ, U), α, β, 1, σ, U)− V (0, α, β, 1, σ, U)] < 0 (B-55)

if V (RA(PBS, PBS) − V (0, PBS) = 0. This is intuitive because the inequality implies that

increasing σ by a small amount makes ample reserves more favorable for parameter values

at the border of the region over which ample reserves are more favorable.

Formally, suppose that for given parameter values (other than σ), ample reserves are more

favorable for some σ, V (RA) ≤ V (0); let S denote the set of such σ. To prove the first part of

the proposition, it is enough to show that if ample reserves are preferred, V (RA)−V (0) ≤ 0,

for some σ = a, then ample reserves are preferred for every σ > a. Suppose that this is not

the case: V (RA)− V (0) ≤ 0 for σ = a but V (RA)− V (0) > 0 for σ = b, where b > a. Let B

be the set of σ such that V (RA)− V (0) > 0 and σ > a, which is not empty by assumption.

Suppose that inf B > a. Since V and RA are continuous in σ, V (RA)−V (0) = 0 at σ = inf B.

Then, if the stated inequality, (d/dσ)(V (RA) − V (0)) < 0, holds at σ = inf B, there exists

a′ such that a < a′ < inf B and V (RA) − V (0) > 0 at σ = a′, which implies a′ ≥ inf B, a

contradiction. Now suppose that inf B = a. Since V (RA) − V (0) > 0 for every σ ∈ B and

V (RA)−V (0) ≤ 0 at σ = a, the continuity of V (RA)−V (0) implies V (RA)−V (0) at σ = a.

If the inequality (d/dσ)(V (RA) − V (0)) < 0 holds at σ = a, then there exists δ > 0 such

that V (RA)−V (0) < 0 for every σ ∈ (a, a+ δ), which implies inf B ≥ a+ δ, a contradiction.

Note that V (0, α, β, 1, σ′, U) = V (0, α, β, 1, ησ, U) = V (0, ηα, ηβ, η, σ, U/η). To see this,

V (0, α, β, 1, ησ, U) = min
x
E[αc0|min(s+ x− e, U)|+ β|x|]

= min
x
E[ηαc0|min(

s

η
+
x

η
− e

η
,
U

η
)|+ ηβ|x

η
|]

= min
x
E[ηαc0|min(

s

η
+ x− e

η
,
U

η
)|+ ηβ|x|] = V (0, ηα, ηβ, η, σ,

U

η
).

(B-56)

From the second to the third line, x/η is simply replaced by x because we can treat the
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x/η as the optimizing choice. The last equality holds because s/η ∼ N (0, (1 − ρ2)σ2) and

e/η ∼ N (0, ρ2σ2).

Similarly, V (RA(α, β, 1, ησ, U), α, β, 1, ησ, U) = V (RA(ηα, ηβ, σ, η, U/η), ηα, ηβ, σ, η, U/η).

To see this (we define VA as the value of V at the optimally chosen RA for conciseness),

VA(α, β, 1, ησ, U) = min
R≥U,x

E[αc0|min(s+ x− e+R− U, 0)|+ β|x|] +R

= min
R/η≥U/η,x

E[ηαc0|min(
s

η
+
x

η
− e

η
+
R

η
− U

η
, 0)|+ ηβ|x

η
|] + η

R

η

= min
R≥U/η,x

E[ηαc0|min(
s

η
+ x− e

η
+R− U

η
, 0)|+ ηβ|x|] + ηR

= VA(ηα, ηβ, η, σ,
U

η
). (B-57)

In addition, ηV (0, α, β, 1, σ, U) = V (0, ηα, ηβ, η, σ, U). This can be simply seen by

multiplying the cost function of the central bank by η. Similarly ηVA(α, β, 1, σ, U) =

VA(ηα, ηβ, η, σ, U).

Next, we calculate VA(α, β, 1, σ′, U)− VA(α, β, 1, σ, U):

VA(α, β, 1, σ′, U)− VA(α, β, 1, σ, U) =

VA(ηα, ηβ, η, σ,
U

η
)− 1

η
VA(ηα, ηβ, η, σ, U). (B-58)

Note that VA(ηα, ηβ, η, σ, U) = VA(ηα, ηβ, η, σ, U/η) + η(U − U/η). To see this (define

∆ ≡ U − U/η for convenience),

VA(ηα, ηβ, η, σ, U) = min
R≥U,x

E[ηαc0|min(s+ x− e+R− U, 0)|+ ηβ|x|] + ηR

= min
R−∆/≥U−∆,x

E[ηαc0|min(s+ x− e+ (R−∆)− (U −∆), 0)|+ ηβ|x|] + η(R−∆) + η∆

= VA(ηα, ηβ, η, σ,
U

η
) + η(U − U

η
). (B-59)

The last line follows from treating R−∆ as the optimizer.

Thus, we can further simplify the expression for VA(α, β, 1, σ′, U)− VA(α, β, 1, σ, U):

VA(α, β, 1, σ′, U)− VA(α, β, 1, σ, U) = (1− 1

η
)VA(ηα, ηβ, η, σ, U)− η(1− 1

η
)U. (B-60)

We divide this expression by σ′ − σ and take the limit σ′ → σ to calculate the following

48



derivative:

d

dσ
VA(α, β, 1, σ, U) = lim

σ′→σ

1

σ′ − σ
[VA(α, β, 1, σ′, U)− VA(α, β, 1, σ, U)]

=
1

σ
lim
η→1

1

η − 1
[(1− 1

η
)VA(ηα, ηβ, η, σ, U)− η(1− 1

η
)U ]

=
1

σ
[VA(α, β, 1, σ, U)− U ]. (B-61)

Similarly, we calculate the following derivative:

d

dσ
V (0, α, β, 1, σ, U) =

1

σ
lim
η→1

1

η − 1
[(1− 1

η
)V (0, ηα, ηβ, η, σ, U)

+ V (0, ηα, ηβ, η, σ,
U

η
)− V (0, ηα, ηβ, η, σ, U)]

=
1

σ
[V (0, α, β, 1, σ, U) + [

d

dη

U

η
]η=1

∂

∂U
V (0, α, β, 1, σ, U)]

=
1

σ
[V (0, α, β, 1, σ, U)− U ∂

∂U
V (0, α, β, 1, σ, U)] (B-62)

Therefore,

d

dσ
[VA(α, β, 1, σ, U)− V (0, α, β, 1, σ, U)]

=
1

σ
[VA(α, β, 1, σ, U)− V (0, α, β, 1, σ, U)]− U

σ
[1− ∂

∂U
V (0, α, β, 1, σ, U)]. (B-63)

We need to show that this quantity is negative if VA(α, β, 1, σ, U) − V (0, α, β, 1, σ, U) is

zero. The first term in the equation drops out if VA(α, β, 1, σ, U)− V (0, α, β, 1, σ, U) = 0, so

it is sufficient to show that (∂/∂U)V (0, α, β, 1, σ, U) < 1.

We explicitly write down the form of V :

V (0, α, β, 1, σ, U) =

+∞∫
s+x(x,U)−U

+∞∫
−∞

αc0|s+ x(s, U)− e|µs(s)µe(e)dsde

+

s+x(x,U)−U∫
−∞

+∞∫
−∞

αc0Uµs(s)µe(e)dsde+

+∞∫
−∞

+∞∫
−∞

β|x(s, U)|µs(s)µe(e)dsde. (B-64)

As before, µs and µe are probability density functions of s and e, respectively, and we make

the dependence of x on s and U explicit.

Differentiating with respect to U , we have

∂

∂U
V (0, α, β, 1, σ, U) =

s+x(x,U)−U∫
−∞

+∞∫
−∞

αc0µs(s)µe(e)dsde = αc0Prob(s+ x− e ≥ U). (B-65)
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Integration of terms containing the derivative of x drops out due to the envelope property.

We showed that αc0Prob(s + x − e ≥ U) < 1 in proving Proposition 4; see Equation

B-50. Essentially, we showed that

αc0Prob(s+ x− e ≥ U) ≤ 3αc0

2
Prob(s− e ≥ U) < 1. (B-66)

The right-hand side inequality follows from assumption A3.

This completes the proof of the first part of the proposition.

Next, we prove the second part of the proposition: F is monotonically decreasing in ρ. As

before, let V (R, σs, σe) denote the central bank’s cost. Since we are interested in changing ρ

only, we express V as a function of the supply and the demand shocks’ standard deviations,

σs and σe, respectively, as well as the baseline reserve supply. By definition,

σS =
√

1− ρ2σ; and (B-67)

σE = ρσ. (B-68)

To prove that F is monotonically decreasing in ρ, it is sufficient to prove

d

dρ
V (RA(σs, σe), σs, σe)−

d

dρ
V (0, σs, σe) < 0. (B-69)

Note that RA is the optimal level of ample reserves, which minimizes V in R ≥ U . As before,

we normalize RLC = 0. To see that proving this inequality is sufficient, note that F (ρ) is

implicitly defined as V (RA(σs, σe), σs, σe)− V (0, σs, σe) = 0, with σ = F (ρ). Differentiating

the equation with respect to ρ, we have

dX

dρ
+
dX

dσ

dF

dρ
= 0. (B-70)

dF

dρ
= −(

dX

dσ
)−1dX

dρ
. (B-71)

where X = V (RA(σs, σe), σs, σe) − V (0, σs, σe). Previously we showed that dX/dσ < 0 if

X = 0. Therefore, if dX/dρ < 0, then dF/dρ < 0, which proves the second part of the

proposition.
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We first characterize V (0, σs, σe). We can write

V (0, σs, σe) =

∞∫
−∞

Z(s, σe)µs(s)ds. (B-72)

Z(s, σe) =

∞∫
−∞

αc0|min(s+ x(s, σe)− e, U)|µe(e)de+ β|x(s, σe)|, (B-73)

where x(s, σe) is the optimal choice of x given s and σe.

Next, we calculate ∂V/∂σs and ∂V/∂σe. Using integration by parts, we write

∂

∂σs
V (0, σs, σe) =

∂

∂σs

∞∫
−∞

Z(s, σe)µs(s)ds =

∞∫
−∞

Z
∂µs
∂σs

ds =

∞∫
−∞

Zµs(−
1

σs
+
s2

σ3
s

)ds

=

[
−Zµss

σs

]∞
−∞

+

∞∫
−∞

∂Z

∂s
µs

s

σs
ds

=

[
−Zµss

σs

]∞
−∞

+

[
−∂Z
∂s
µsσs

]∞
−∞

+ σs

∞∫
−∞

∂2Z

∂s2
µsds

= σs

∞∫
−∞

∂2Z

∂s2
µsds. (B-74)

Given the form of Z, Z and Z ′ will grow at most linearly with s, while µs is proportional

to exp(−s2/(2σ2
s)). Therefore, the expressions inside the two brackets converge to zero for

s→∞ and s→ −∞.

To characterize ∂2Z/∂s2, we characterize x(s, σe) first. Define

W (s, x, σe) =

∞∫
−∞

αc0|min(s+ x− e, U)|µede. (B-75)

Here x is used as a variable while x(s, σe) in the expression for Z is the optimal choice of x.

Then,

Z(s, σe) = W (s, x(s, σe), σe) + β|x(s, σe)|. (B-76)

Note that
∂W

∂x
= αc0[−Φ(−s+ x

σe
) + Φ(

s+ x

σe
)− Φ(

s+ x

σe
− U

σe
)]. (B-77)
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For s ≤ 0, ∂W/∂X increases monotonically in x if s+x ≤ 0, or equivalently x ≤ −s. To see

this, note that
∂2W

∂x2
= αc0[µe(−s− x) + µe(s+ x)− µe(s+ x− U)], (B-78)

which is positive if s+x ≤ 0. Also, note that ∂W/∂x→ −αc0 < −β as x→ −∞ (assumption

A2), and for x = −s, ∂W/∂x > −β. To see this, with s+ x = 0,

∂W

∂x
= −αc0Φ(−U

σe
) ≥ −αc0Φ(−Φ−1(1− 2

3αc0

)) = −2

3
> −β. (B-79)

For convenience, define s1 < 0 such that ∂W (s1, 0, σe)/∂x = −β, which is unique given

the preceding characterization of ∂W/∂x. Then, the optimal choice of x for s ≤ 0 is x = 0

if s1 ≤ s ≤ 0 and x = s1 − s if s ≤ s1; note that this depends on the behavior of ∂W/∂x for

s+ x > 0, and we will shortly show that ∂W/∂x > −β for s+ x > 0, which is sufficient.

Next, we characterize the optimal choice of x for s ≥ 0. First, note that ∂W/∂x is

concave in x if 0 ≤ s + x ≤ U (equivalently −s ≤ x ≤ −s + U). To see this, recall that

∂2W/∂x2 = αc0[µe(−s − x) + µe(s + x) − µe(s + x − U)] is monotonically decreasing in x

over 0 ≤ s + x ≤ U . Note that we already showed that for x = −s, ∂W/∂x > −β. For

x ≥ −s+ U ,

|∂W
∂x
| = αc0| − Φ(−s+ x

σe
) + Φ(

s+ x

σe
)− Φ(

s+ x

σe
− U

σe
)|

≤ αc0[|Φ(−s+ x

σe
)|+ |Φ(

s+ x

σe
)− Φ(

s+ x

σe
− U

σe
)|]. (B-80)

Note that |Φ(−(s+x)/σe)| ≤ Φ(−U/σe) and |Φ((s+x)/σe)−Φ((s+x−U)/σe)| ≤ Φ(U/σe)−
(1/2), given s+ x ≥ U . Therefore,

|∂W
∂x
| ≤ αc0[Φ(−U

σe
) + Φ(

U

σe
)− 1

2
] =

αc0

2
< β. (B-81)

Next, let s2 > 0 be the smaller of the two solutions to ∂W (s2, 0, σe)/∂x = β. Given

the shape of ∂W/∂x, if the maximum of ∂W (s, 0, σe)/∂x over 0 ≤ s ≤ U is greater than β,

then there will be two solutions to the equation defining s2. If not, there will be one or zero

solution and x = 0 will be optimal for all s ≥ 0. For now, let us assume that there will be

two solutions to the equation defining s2. We will later see that this assumption makes no

difference in proving the proposition.

Given this characterization, the optimal choice of x for s ≥ 0 is x = 0 if s ≤ s2 or s ≥ s3;

and x = s2 − s if s2 ≤ s ≤ s3. s3 is the maximum value of s for which it is beneficial to
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choose x = s2 − s, defined as the solution to the following equation:

W (s3, 0, σe) = W (s3, s2 − s3, σe) + β|s2 − s3| = W (s2, 0, σe) + β|s2 − s3|. (B-82)

The solution s3 is unique given the shape of ∂W/∂x. In particular, it is greater than the

larger solution to the equation defining s2.

Two things are worth noting. First, ∂W (s3, 0, σe)/∂x < β, which will be used later. Also,

note that ∂W (s, 0, σe)/∂x > −β for all s ≥ 0 given the characterization of ∂W/∂x, which

validates the characterization of optimal x for s ≤ 0 discussed earlier.

Given the characterization of the optimal choice of x, we can fully characterize ∂2Z/∂s2.

Note that since W depends on s and x through s + x only, we can differentiate W with

respect to s and x interchangeably. First, note that due to a discrete jump in ∂Z/∂s at s3,

we need a term including the Dirac delta function, (∂W (s3, 0, σe)/∂s− β)δ(s− s3).29 As is

standard, δ(s − s3) is zero if s 6= s3 and becomes 1 if integrated over an interval including

a neighborhood of s3. The remaining expression is based on the fact that s + x(s, σe) is

constant over the regions s ≤ s1 and s2 ≤ s < s3:

∂2Z

∂s2
= [

∂W (s3, 0, σe)

∂s
− β]δ(s− s3) if s < s1 or s2 < s < s3;

=
∂2W (s, 0, σe)

∂s2
+ [

∂W (s3, 0, σe)

∂s
− β]δ(s− s3) if s1 < s < s2 or s > s3. (B-83)

Note that ∂W (s3, 0, σe)/∂s− β < 0, as discussed earlier.

Similarly we characterize ∂V/∂σe:

∂

∂σe
V (0, σs, σe) =

∂

∂σe

∞∫
−∞

[W (s, x(s, σe), σe) + β|x(s, σe)|]µs(s)ds

=

∞∫
−∞

∂

∂σe
W (s, x(s, σe), σe)µsds

=

∞∫
−∞

∞∫
−∞

αc0|min(s+ x(s, σe)− e, U)|∂µe
∂σe

deµsds

= σe

∞∫
−∞

∞∫
−∞

αc0
∂2

∂e2
|min(s+ x(s, σe)− e, U)|µedeµsds. (B-84)

29We can avoid using the delta function by breaking down the second integration by parts into two different
intervals to have an explicit term taking into account the jump in ∂Z/∂S, in deriving the expression for
∂V/∂σs. Using the delta function is more convenient.
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The second line follows from the envelope property given that x(s, σe) is an optimal choice,

the third line from the definition of W , and the last line from using integration by parts

twice as earlier.

Notice that

∂2

∂e2
|min(s+ x− e, U)| = 2δ(e− s− x)− δ(e− s− x+ U). (B-85)

Thus

∞∫
−∞

αc0
∂2

∂e2
|min(s+ x(s, σe)− e, U)|µede = αc0[2µe(s+ x)− µe(s+ x− U)]

=
∂2W (s, x(s, σe), σe)

∂s2
. (B-86)

This implies

∂

∂σe
V (0, σs, σe) = σe

∞∫
−∞

∂2W (s, x(s, σe), σe)

∂s2
µsds. (B-87)

Next we characterize dV (0, σs, σe)/dρ:

d

dρ
V (0, σs, σe) = − ρσ√

1− ρ2

∂

∂σs
V (0, σs, σe) + σ

∂

∂σe
V (0, σs, σe)

= ρσ2

∞∫
−∞

[−∂
2Z

∂s2
+
∂2W

∂s2
]µsds

= ρσ2

∫
s≤s1,s2≤s≤s3

∂2W

∂s2
µsds+ [β − ∂W (s3, 0, σe)

∂s
]µs(s3)

= ρσ2[Φ(
s1

σs
)
∂2W (s1, 0, σe)

∂s2
+ (Φ(

s3

σs
)− Φ(

s2

σs
))
∂2W (s2, 0, σe)

∂s2
]

+ [β − ∂W (s3, 0, σe)

∂s
]µs(s3)

> ρσ2[Φ(
s1

σs
)
∂2W (s1, 0, σe)

∂s2
+ (Φ(

s3

σs
)− Φ(

s2

σs
))
∂2W (s2, 0, σe)

∂s2
]. (B-88)

Similarly we can characterize dV (RA, σs, σe)/dρ. There are two differences between this

case and the scarce reserve case. First, the level of ample reserves, RA, is a function of σs and

σe but the terms containing differentials of RA cancel out because RA itself is an optimizer
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in the region R ≥ U . Second, the form of W changes slightly and depends on RA. Formally,

WA(s, x, σe, R) =

∞∫
−∞

αc0|min(s+ x+R− U − e, 0)|µede;

ZA(s, σe, R) = WA(s, x(s, σe, R), σe, R) + β|x(s, σe, R)|;

V (R, σs, σe) =

∞∫
−∞

ZA(s, σ, RA(σs, σe))µsds+R. (B-89)

Following the steps outlined earlier, we can derive the following expression:

d

dρ
V (RA(σs, σe), σs, σe) = ρσ2Φ(

sA
σs

)
∂2WA(sA, 0, σe, RA)

∂s2
. (B-90)

This expression follows from the fact that there exists sA < −RA + U such that if s ≤ sA,

then the optimal x = sA − s, and if s > sA, then the optimal x = 0. To see this, note that

∂WA

∂x
= −αc0[1− Φ(

s+ x+RA − U
σe

)]. (B-91)

This expression is monotonically increasing in x. Also, it converges to −αc0 as x → −∞,

and for x = −s − RA + U , it takes the value of −αc0/2. Since −αc0 < β < −αc0/2, the

optimal choice of x takes the form described earlier with sA defined as the unique solution

to ∂WA(sA, 0, σe, RA)/∂x = −β.

Therefore

d

dρ
V (RA, σs, σe)−

d

dρ
V (0, σs, σe)

< ρσ2[Φ(
sA
σs

)
∂2WA(sA, 0, σe, RA)

∂s2
− Φ(

s1

σs
)
∂2W (s1, 0, σe)

∂s2
− (Φ(

s3

σs
)− Φ(

s2

σs
))
∂2W (s2, 0, σe)

∂s2
].

(B-92)

In the rest of the proof, we numerically show the following:

Φ(
sA
σs

)
∂2WA(sA, 0, σe, RA)

∂s2
− Φ(

s1

σs
)
∂2W (s1, 0, σe)

∂s2
< 0. (B-93)

Note that ∂2W (s2, 0, σe)/∂s
2 > 0 given that s2 is the smaller of the two solutions to

∂W (s, 0, σe)/∂s = β within 0 ≤ s ≤ U , over which ∂W (s, 0, σe)/∂s is concave in s. There-

fore, proving the preceding inequality is sufficient to prove the proposition.

Notice that if there were at most one solution to the equation defining s2, implying x = 0

for all s ≥ 0 in the scarce reserve case, then it would still be sufficient to prove the preceding

55



inequality; in that case d/dρ(V (RA, σs, σe) − V (0, σs, σe)) would be equal to the left-hand

size of the inequality.

Note that

∂2WA(sA, 0, σe, RA)

∂s2
= αc0µe(sA +RA − U); and (B-94)

∂2W (s1, 0, σe)

∂s2
= αc0[2µe(s1)− µe(s1 − U)]. (B-95)

Thus it is sufficient to show

Φ(
sA
σs

)µe(sA +RA − U)− Φ(
s1

σs
)[2µe(s1)− µe(s1 − U)] < 0. (B-96)

First we show that sA < s1. Note that RA satisfies the following FOC:

∂V (RA, σs, σe)

∂R
= 0, (B-97)

where R is the first argument of V . Given the expression for V and using the envelope

property on x, we have

∂V (RA, σs, σe)

∂R
=

∞∫
−∞

−αc0[1− Φ(
s+ x+RA − U

σe
)]µsds+ 1. (B-98)

The integrand has the same form as ∂W/∂x because x and R show up in the form of

s+ x+RA − U in the expression for W . If s ≥ sA, then x = 0 and

− αc0[1− Φ(
s+ x+RA − U

σe
)] = −αc0[1− Φ(

s+RA − U
σe

)] < −β[1− Φ(
s+RA − U

σe
)].

(B-99)

If s ≤ sA, then x = sA − s and

−αc0[1−Φ(
s+ x+RA − U

σe
)] = −αc0[1−Φ(

sA +RA − U
σe

)] = −β < −β[1−Φ(
s+RA − U

σe
)].

(B-100)

Thus the FOC for RA implies
∞∫

−∞

−β[1− Φ(
s+RA − U

σe
)]µsds+ 1 > 0. (B-101)

Furthermore,
∞∫

−∞

[1− Φ(
s+RA − U

σe
)]µsds =

∞∫
−∞

Φ(
−s−RA + U

σe
)]µsds

= Prob(s+ e ≤ −RA + U) = Φ(
−RA + U

σ
). (B-102)
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Thus the FOC for RA implies

−RA + U < σΦ−1(
1

β
). (B-103)

We use this inequality to get an upper bound on µe(sA):

µe(sA) = µe(sA + (RA − U)− (RA − U))

=
1√

2πρσ
exp(− 1

2ρ2σ2
[(sA +RA − U)2 + 2(sA +RA − U)(−RA + U) + (−RA + U)2]

<
1√

2πρσ
exp(− 1

2ρ2σ2
(sA +RA − U)2)exp(− 1

2ρ2σ2
(−RA + U)2)

= µe(sA +RA − U)exp(− 1

2ρ2σ2
(−RA + U)2). (B-104)

The third line follows from the fact that sA +RA−U < 0 because by definition, 1−Φ((sA +

RA − U)/σe) = β/αc0 > 1/2. From assumption A1,

(−RA + U)2 > σ2(Φ−1(
1

β
))2 > σ22log2. (B-105)

Therefore

exp(− 1

2ρ2σ2
(−RA + U)2) < exp(−log2) =

1

2
. (B-106)

This implies

µe(sA) <
1

2
µe(sA +RA − U). (B-107)

The expressions defining s1 and sA in terms of ∂W/∂s and ∂WA/∂s imply

Φ(
sA +RA − U

σe
) = 1− β

αc0

; and (B-108)

Φ(
s1

σe
) =

1

2
[1− β

αc0

+ Φ(
s1

σe
− U

σe
)] =

1

2
[Φ(

sA +RA − U
σe

) + Φ(
s1

σe
− U

σe
)]. (B-109)

Note that 0 < Φ(s1/σe − U/σe) < Φ(s1/σe), which implies

1

2
Φ(
sA +RA − U

σe
) < Φ(

s1

σe
) < Φ(

sA +RA − U
σe

). (B-110)

The preceding inequality implies

µe(s1) >
1

2
µe(sA +RA − U). (B-111)
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To see this, assume that µe(s1) ≤ (1/2)µe(sA +RA − U). Notice that

Φ(
s1

σe
) =

s1∫
−∞

µe(e)de =

sA+RA−U∫
−∞

µe(e+ (s1 − sA −RA + U))de. (B-112)

Since Φ(s1/σe) < Φ((sA + RA − U)/σe) < 1/2, s1 < sA + RA − U < 0. Therefore, for any

e < sA +RA − U ,

µe(e+ (s1 − sA −RA + U)) =µe(e)exp(−
1

2ρ2σ2
[(s1 − sA −RA + U)2

+ 2e(s1 − sA −RA + U)])

<µe(e)exp(−
1

2ρ2σ2
[(s1 − sA −RA + U)2

+ 2(sA +RA − U)(s1 − sA −RA + U)2])

= µe(e)exp(−
1

2ρ2σ2
[s2

1 − (sA +RA − U)2])

= µe(e)
µ(s1)

µ(sA +RA − U)
≤ 1

2
µe(e). (B-113)

Therefore,

Φ(
s1

σe
) =

sA+RA−U∫
−∞

µe(e+ (s1 − sA −RA + U))de

<

sA+RA−U∫
−∞

1

2
µe(e)de =

1

2
Φ(
sA +RA − U

σe
). (B-114)

This is a contradiction. Therefore,

µe(s1) >
1

2
µe(sA +RA − U) > µe(sA). (B-115)

This implies sA < s1 because both sA and s1 are negative. Therefore, Φ(sA/σs) < Φ(s1/σs).

Recall that we only need to prove

Φ(
sA
σs

)µe(sA +RA − U)− Φ(
s1

σs
)[2µe(s1)− µe(s1 − U)] < 0. (B-116)

Given Φ(sA/σs) < Φ(s1/σs), it is sufficient to prove

µe(sA +RA − U)− [2µe(s1)− µe(s1 − U)] ≤ 0. (B-117)

Notice that

0∫
−∞

[2µe(s1 + x)− µe(s1 − U − x)]dx = 2Φ(
s1

σe
)− Φ(

s1

σe
− U

σe
) = 1− β

αc0

. (B-118)
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Similarly
0∫

−∞

µe(sA +RA − U + x)dx = 1− β

αc0

. (B-119)

These two equations imply

0∫
−∞

2µe(s1 + x)− µe(s1 − U − x)

µe(sA +RA − U − x)
µe(SA +RA − U − x)dx =

0∫
−∞

µe(sA +RA − U + x)dx.

(B-120)

If we show that, for all x ≤ 0

2µe(s1 + x)− µe(s1 − U − x)

µe(sA +RA − U − x)
≤ 2µe(s1)− µe(s1 − U)

µe(sA +RA − U)
, (B-121)

then the preceding equation implies (2µe(s1) − µe(s1 − U))/µe(sA + RA − U) ≥ 1, which

completes the proof.

Note that

d

dx

2µe(s1 + x)− µe(s1 − U + x)

µe(sA +RA − U + x)
=

1

ρ2σ2

1

µe(sA +RA − U + x)

× [2(sA +RA − U − s1)µe(s1 + x)− (sA +RA − s1)µe(s1 − U + x)]. (B-122)

Next we show that if the following inequality holds for x = 0, then it holds for all x ≤ 0:

2(sA +RA − U − s1)µe(s1 + x)− (sA +RA − s1)µe(s1 − U + x) ≥ 0. (B-123)

This is because for all x ≤ 0,

µe(s1 − U + x)

µe(s1 − U)
= exp(− 1

2ρ2σ2
(x2 + 2x(s1 − U)))

≤ exp(− 1

2ρ2σ2
(x2 + 2xs1)) =

µe(s1 + x)

µe(s1)
. (B-124)

Therefore we only need to show

2(sA +RA − U − s1)µe(s1)− (sA +RA − s1)µe(s1 − U) ≥ 0, (B-125)

or equivalently,

2 + (−1− U

sA +RA − U − s1

)exp(− 1

2ρ2σ2
(U2 − 2Us1))

= 2 + (−1− U

C1 − s1

)C2 ≥ 0, (B-126)
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where C1 ≡ sA + RA − U and C2 denotes the expression with exp for convenience. This

inequality is obtained by dividing the previous inequality by (sA+RA−U−s1)µe(s1), which

is positive.

From assumptions A1 and A2,

U > σΦ−1(1− 2

3αc0

) > σΦ−1(1− 2

3.3β
) > 1.45σ. (B-127)

Differentiating the left-hand side of the inequality B-126 with respect to U , excluding U

inside C1 but including U inside C2, we obtain

C2

C1 − s1

[−1 +
U(U − s1)

ρ2σ2
] +

U − s1

ρ2σ2
C2. (B-128)

The expression is positive for any U > ρσ because s1 < 0. Therefore it is sufficient to

evaluate the inequality B-126 at U = 1.45ρσ, except for the occurrence of U inside C1, to

show that the inequality holds at the actual value of U .

Next we calculate a lower bound on C1 − s1. Note that

Φ(
s1

σe
− U

σe
) = Φ(

s1

σe
)exp(−U

2 − 2Us1

2ρ2σ2
) < Φ(

s1

σe
)exp(− U2

2ρ2σ2
)

< Φ(
s1

σe
)exp(−1.452

2
). (B-129)

Therefore, based on the equation defining s1,

Φ(
s1

σe
) <

1

2
[1− β

αc0

+ Φ(
s1

σe
)exp(−1.452

2
)]. (B-130)

This inequality implies

Φ(
s1

σe
) < [1− 1

2
exp(−1.452

2
)]−1 1

2
(1− β

αc0

) < 0.61(1− β

αc0

). (B-131)

Therefore,

C1 − s1 > ρσ[Φ−1(1− β

αc0

)− Φ−1(0.61(1− β

αc0

))] (B-132)

Next we use the following property of a normal distribution: if a < 1/2 and 0 < b < 1,

then (∂/∂a)(Φ−1(a)− Φ−1(ab)) > 0. To see this,

∂

∂a
(Φ−1(a)− Φ−1(ab)) =

1

φ(Φ−1(a))
− b

φ(Φ−1(ab))
. (B-133)
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Using an argument similar to the one used in proving µe(s1) > (1/2)µe(sA + RA − U), we

can prove that this expression is positive.

Applying this property to C1 − s1 and using assumption A2, we obtain the following

inequality:

C1 − s1 > ρσ[Φ−1(1− β

αc0

)− Φ−1(0.61(1− β

αc0

))]

> ρσ[Φ−1(1− 1

1.1
)− Φ−1(0.61(1− 1

1.1
))] > 0.25ρσ. (B-134)

In addition, note that

s1 < ρσΦ−1(0.61(1− β

αc0

)) < ρσΦ−1(0.61(1− 1

2
)) < −0.51ρσ. (B-135)

Going back to inequality B-126, it is sufficient to prove

2 + (−1− 1.45ρσ

C1 − s1

)C2 ≥ 0, (B-136)

with C2 also evaluated at U = 1.45ρσ:

C2 = exp(−U
2 − 2Us1

2ρ2σ2
) < exp(−1

2
1.45(1.45 + 1.02)) < 0.17. (B-137)

Thus, evaluated at U = 1.45ρσ,

2+(−1− 1.45ρσ

C1 − s1

)C2 > 2+(−1− 1.45ρσ

C1 − s1

)×0.17 > 2+(−1− 1.45

0.25
)×0.17 > 0.84. (B-138)

This completes the proof.
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