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Abstract 

We use a five percent sample of Americans’ credit bureau data, combined with a regression discontinuity 

approach, to estimate the effect of universal health insurance at age 65—when most Americans become 

eligible for Medicare—at the national, state, and local level. We find a 30 percent reduction in debt 

collections—and a two-thirds reduction in the geographic variation in collections—with limited effects on 

other financial outcomes. The areas that experienced larger reductions in collections debt at age 65 were 

concentrated in the Southern United States, and had higher shares of black residents, people with 

disabilities, and for-profit hospitals. 
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1 Introduction

Why does consumer financial strain vary so much across the United States (Keys, Mahoney and

Yang, 2020)? In this paper, we examine the role that health insurance plays in shaping the geogra-

phy of financial health. To do this, we use a five percent sample of Americans’ credit report data,

combined with a regression discontinuity (RD) approach, to estimate the effect of universal health

insurance at age 65—when most Americans become eligible for Medicare—at the national, state,

and commuting zone level.

We use our location-specific estimates of Medicare’s effects for three purposes. First, we show

that Medicare reduces geographic variation in debt collections by two-thirds at age 65. Second,

we show that the gains in financial health due to Medicare are greatest in the South, where a

higher share of the near-elderly (i.e., 55-64 year olds) are uninsured and the financial health im-

provements per newly-insured individual are largest. We show that the commuting zones (CZs)

experiencing the largest gains in financial health at age 65 had larger shares of black residents,

people with disabilities, and for-profit hospitals. Third, using shrinkage estimators, we construct

forecasts of the causal effect of expanding coverage to the near-elderly in each of the 741 CZs in

the United States, which we use to evaluate existing policies and potential future expansions.

To quantify how Medicare reduces geographic disparities in consumer financial strain, we

construct counterfactual estimates of consumer financial outcomes at age 65, with and without

Medicare, for each locality. With these location-specific counterfactuals, we construct an estimator

of the nationwide, cross-locality reduction in the variance of consumer financial outcomes. Using

this approach, we show that Medicare reduces the geographic variation in collections by two-

thirds at age 65, highlighting an understudied aspect of the Medicare program—that it largely

eliminates geographic disparities in access to insurance (which fall by 93.5% at age 65), and sub-

stantially reduces geographic disparities in collections-related financial strain. However, we do

not find evidence that Medicare reduces geographic variation in the other financial health out-

comes we study (e.g., credit score, bankruptcy, delinquent debt), though our confidence intervals

are quite wide.

Second, we explore why the effect of Medicare on collections debt, where we find a large

reduction in geographic variation, differs so much across localities. We find that reductions in
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collections debt are higher in areas that experienced larger increases in the insurance rate at age

65, suggesting that the gains in financial health are primarily driven by reducing the number of

uninsured, rather than changes in the composition of coverage.1 Motivated by this finding, we

then examine how CZ-level reductions in collections differ between areas on a per capita and per

newly-insured basis, with the latter done by scaling the change in financial health estimates by

the estimated effect of Medicare on insurance rates. While our analysis suggests that a primary

mechanism through which Medicare affects financial strain is by reducing the uninsurance rate, it

is unlikely that the exclusion restriction holds.2 As a result, we view this as an informative scaling

exercise rather than an estimate of the causal effect of health insurance coverage on debt collec-

tions. To understand why the effects of Medicare differ across areas, we examine the demographic

and healthcare market characteristics associated with the 741 causal estimates of CZ-level reduc-

tions in per capita collections debt at age 65. We find that the effect of Medicare on collections

debt is larger in areas with larger shares of black residents, people with disabilities, and for-profit

hospitals.

Third, we construct forecasts of the causal effect of Medicare on financial health in each CZ.

This gives us a local approximation to the effect of lowering the Medicare eligibility age, a popular

policy proposal. To reduce noise, we follow Chetty and Hendren (2018) and construct forecasts

using a shrinkage estimator that combines our unbiased RD estimates and a predicted effect for

each CZ based on its demographic and healthcare market characteristics. Maps of the forecast

reductions in per capita and per newly-insured debt collections are strikingly similar, with the

largest values in both concentrated in the South. For example, a coverage expansion to the near-

elderly is forecast to reduce collection balances by 53 dollars per capita in Raleigh, NC (one of the

largest forecast reductions). In contrast, the same treatment in San Francisco, CA, is only forecast

to reduce collection balances by 8 dollars per capita. This is not simply because there are a greater

share of uninsured in Raleigh; in fact, the near-elderly uninsurance rates in the two places are

1Our state-level results imply a reduction in collection balances of $584 per newly-insured individual at 65, which
falls within the range of estimates from prior work on the effects of Medicaid coverage (Finkelstein et al., 2012; Hu
et al., 2018).

2For individuals with no insurance prior to Medicare, turning 65 provides a big increase in risk protection. However,
for individuals with insurance at age 65, the transition to Medicare changes premiums, benefits, provider networks, and
the set of incentives their providers face (Clemens and Gottlieb (2017)). Hence, the treatment we study is a combination
of the effect of Medicare for those who were previously uninsured and those with other forms of coverage at age 64.
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similar.3 The difference in the forecasts arises primarily due to large differences in the forecast

reductions in collections balances per newly-insured individual in the two locations. In Raleigh,

NC, the forecast reduction in collection balances was 956 dollars per newly-insured individual,

785% higher than the analogous forecast in San Francisco, CA.

Lastly, we examine how CZ-level forecasts changed due to the passage of the Affordable Care

Act (ACA) in 2010, federal health reform legislation that substantially expanded coverage (e.g.,

Frean, Gruber and Sommers, 2017). Forecasts of the causal effect of expanding coverage on collec-

tions are smaller after the ACA’s implementation in 2014 and have become more geographically

concentrated in the South. This is because forecasted effects decreased by only 30% in the South

(states like Mississippi, Texas, and Georgia) after the ACA’s implementation, while they decreased

by 50% in the rest of the country. Using a Kitagawa-Oaxaca-Blinder style decomposition, we show

that this was due to the uniformity of ACA coverage gains across regions for the near-elderly—

despite higher rates of uninsurance in the South—and, within the South, the fact that near-elderly

uninsurance rates remain highest in areas where the financial health gains of expanding cover-

age per newly-insured are largest. These findings highlight a potential limitation of policies, such

as the ACA, that delegate states considerable latitude in policy implementation, and a relative

advantage of programs, such as Medicare, that are federally-administered—specifically, that the

former may exacerbate geographic disparities while the latter tend to reduce them.

This paper makes three primary contributions. First, we contribute to a small existing lit-

erature that examines the financial risk protection provided by Medicare to elderly Americans

(Finkelstein and McKnight, 2008; Engelhardt and Gruber, 2011; Barcellos and Jacobson, 2015;

Dobkin et al., 2018; Caswell and Goddeeris, 2019; Batty, Gibbs and Ippolito, 2020) and a broader

literature on the risk protection provided by health insurance (e.g., Gross and Notowidigdo, 2011;

Finkelstein et al., 2012; Mazumder and Miller, 2016; Brevoort, Grodzicki and Hackmann, 2020; Hu

et al., 2018) and the economic consequences of health shocks (e.g., Cochrane, 1991; Charles, 2003;

Poterba, Venti and Wise, 2017; Dobkin et al., 2018; Meyer and Mok, 2019). We contribute to this

literature in two ways. First, we examine the effect of Medicare at age 65 on a broad set of finan-

cial health outcomes from administrative credit report data. These results expand the outcomes of

3The near-elderly uninsurance rates in Raleigh, NC and San Francisco, CA during the period 2014-2017 were 6.5 and
5.9 percent, respectively.
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Caswell and Goddeeris (2019) beyond just debt collections, and highlight that the financial health

benefits of Medicare are concentrated in debt collections, with limited effects for other consumer

credit outcomes. Second, we exploit our location-specific estimates of Medicare’s causal effect

to explore the effects of Medicare on the extensive margin (i.e., changes in insurance rates) and

intensive margin (i.e., changes in financial health per newly-insured individual), and document

considerable heterogeneity across geography in both.

Second, our work contributes to a growing literature on the geography of health and economic

opportunity. Prior work has documented the important role that geography plays in economic

opportunity (Chetty et al., 2014), healthcare utilization and spending (Finkelstein, Gentzkow and

Williams, 2016; Cooper et al., 2018), and mortality (Finkelstein, Gentzkow and Williams, 2019).

Recent work has also documented geographic concentration in financial strain (Keys, Mahoney

and Yang, 2020), but causal evidence on the effects of geography on consumer financial strain is

limited (Miller and Soo, 2018; Keys, Mahoney and Yang, 2020). We contribute a set of methods for

estimating location-specific effects of Medicare and the extent to which they reduce geographic

variation in financial health outcomes. Our findings suggest that differential access to health in-

surance is a key driver of the geographic variation in collections debt for the near-elderly, but less

important in explaining differences across areas in other financial health outcomes.

Third, we use our locality-level estimates to investigate the incidence of Medicare. At $750 bil-

lion in annual spending (and growing), Medicare’s incidence as one of the largest public programs

is of first-order policy importance (McClellan and Skinner, 2006; Bhattacharya and Lakdawalla,

2006). We show that the gains in financial health due to Medicare are greatest in the South (and

particularly the Deep South) where, in addition to there being a greater number of the uninsured,

the financial health improvements per newly-insured person are the greatest.

2 Study data

In this section we briefly describe the data we use to construct area-level financial, demographic,

health insurance, and healthcare market characteristics. Appendix A provides additional detail.
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2.1 Financial outcomes data

The main dataset used in our analysis is the Federal Reserve Bank of New York’s Equifax Con-

sumer Credit Panel (CCP). The CCP is a five percent random sample of all individuals in the U.S.

with credit reports.4 The data include a comprehensive set of consumer credit outcomes quarterly

from 1999 to 2017, including credit scores (originating from Equifax Risk Score 3.0), unsecured

credit lines, auto loans, and mortgages. The data also include year of birth and zip code. No other

demographic information is available. A major virtue of the CCP is its large sample size, which

allows us to estimate the effect of Medicare separately for all 50 states and 741 commuting zones

in the country. Our datasets include ages 55-64 (“the near-elderly”) and 65-75 (“the elderly”).

2.2 Demographic and health insurance data

For demographic and health insurance information, we draw on the American Community Sur-

vey (Ruggles et al., 2019). All analyses use samples constructed from the Public Use Microdata

Area (PUMA) and state datasets, linked to the CZ- and state-level.5 Demographic and health

insurance variables from the ACS allow us to test for covariate smoothness to validate our RD

design and examine the correlates of geographic heterogeneity in our treatment effects.

2.3 Additional area-level characteristics data

We constructed additional characteristics at the PUMA-level using data from the Healthcare Cost

Report Information System (HCRIS) and the Dartmouth Atlas. From the HCRIS data, we con-

struct PUMA-level measures of the share of hospital patient days at for-profit hospitals, teaching

hospitals, and public hospitals in addition to other healthcare market characteristics. From the

Dartmouth Atlas data, we measure the PUMA-level risk-adjusted Medicare spending per enrollee

(Dartmouth Institute, 2019).

3 Empirical strategy: Regression discontinuity design

3.1 Econometric model

To estimate the causal impact of Medicare, we use an RD design that takes advantage of the sharp

change in eligibility at age 65. We compare individuals just above and below the age 65 eligi-

4Lee and Van der Klaauw (2010) show that the CCP is reasonably representative of the U.S. population.
5Our cross-walk from PUMA to CZ uses David Dorn’s crosswalks: https://www.ddorn.net/data.htm.
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bility threshold under the assumption that individuals around the discontinuity are similar on

observable and unobservable characteristics. Under this assumption, any discontinuities in fi-

nancial health around age 65 can be attributed to the change in coverage as individuals age onto

Medicare.

We estimate our regression discontinuity analyses both at the national level, and separately

for each state and commuting zone,6 using equations of the following form:

yi,l,t(age) = γ× 1(age > 65) + f (age)× 1(age ≤ 65) + g (age)× 1(age > 65) + εi,l,t(age). (1)

where yi,l,t(age) is an outcome for individuals i in location l in time period t of a given age. The

functions f (age) and g (age) are the age profile of yi,l,t for those below the age of 65 and those

above the age of 65, respectively, and control for the direct effect of age on outcomes. We denote

the national-level effect of Medicare at age 65 as γ. We denote a set of γl , one for each location

(either state or commuting zone) in our sample, as the location-level effect of Medicare at age 65,

where f (age) and g(age) are allowed to vary by location.

The estimation of Equation 1 is complicated by two features of our data; First, our running

variable, age, is measured discretely by year in our sample; Second, because we only observe birth

year in the CCP data, and the data is quarterly, we measure age with noise. As a result, both the

estimation and inference of f (·), g(·), and γ are more challenging, as error in measuring age 65

forces us to omit age 65 in our estimation procedure and use a “donut” RD, and the discreteness of

the age variable requires further extrapolation.7 To account for both issues, we follow the "honest"

confidence intervals approach outlined in Kolesár and Rothe (2018), and Armstrong and Kolesár

(2018b,a). Briefly, this approach bounds the second derivative of the true f (·) and g(·) functions

near age 65, and uses this bound to estimate the maximum potential bias due to extrapolation.

In our estimation, we report our point estimate and bias-adjusted 95% confidence intervals. See

Appendix B for additional details.

Like all RD approaches, our design allows us to easily visualize the treatment effect γ using

graphical methods. However, more uniquely in our setting, we also use our estimates to con-

6Commuting zones are groups of counties representing local labor markets (David and Dorn, 2013; Dorn, Hanson
et al., 2019)

7The donut RD is a common solution to this problem in the literature (e.g., Barreca et al., 2011).
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sider how Medicare changes the cross-location distribution of counterfactual outcomes at age 65.

Denote the average counterfactual at age 65 for location l as yl(65−) and yl(65+), and define the

causal effect of Medicare on the variance of outcomes across locations as φ = Var(yl(65−))−Var(yl(65+))
Var(yl(65−)) ,

where the variance is taken across locations. This measure captures the change in geographic vari-

ance of our outcomes due to Medicare, rather than just the average level. We estimate standard

errors and bias-adjusted confidence intervals for φ using the delta method following Armstrong

and Kolesár (2018a), and report an estimated drop in variance for each of our outcomes along with

bias-adjusted 95% confidence intervals. See Appendix B for additional details.

3.2 Forecasting the causal effects of Medicare by location

This section describes our approach to measuring the area-level factors associated with reductions

in consumer financial strain at age 65 and constructing forecasts of the causal effects of Medicare

by location.

We begin by estimating bivariate regressions between our locality-level causal effects of Medi-

care and location characteristics:

γ̂l = α + Xlω + vl . (2)

where Xl is a scalar containing a single area-level characteristic (e.g. the share of black residents)

and γ̂l is our RD estimate for location l. We separately estimate ω for each characteristic, weighting

the regression by each location’s near-elderly population.

Given that many of the area-level characteristics we study are highly correlated, we re-estimate

Equation 2 with the full set of area-level covariates:

γ̂l = α + ~Xl~ω + vl . (3)

where ~Xl is the full set of area-level covariates. We estimate Equation 3 in two ways. First, we

estimate the model using ordinary least squares (OLS) to recover the marginal association of each

area-level characteristic with our locality-level causal estimates. Second, since the dimension of

Xl is large (and many of the covariates are highly correlated), we use Lasso to perform covariate

selection on ~Xl , and then re-estimate the model using OLS (Belloni and Chernozhukov, 2013).

This Lasso procedure lets us trade off between including multiple characteristics and constructing
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predictions of γ̂l with lower mean squared error.

We next construct forecasts of the causal effect of expanding Medicare (i.e., a reduction in the

Medicare eligibility age) in each commuting zone. While our RD estimates of γl are unbiased

forecasts, many are estimated with substantial estimation error. To reduce noise, we build on

Chetty and Hendren (2018) and construct forecasts using a shrinkage estimator that combines

our unbiased RD estimates and a predicted effect for each commuting zone using the covariates

selected from our Lasso procedure (see Appendix B for additional details).

We repeat our approach for a scaled estimate βl = γl
/

γh
l , where γl is a location-specific esti-

mate of the effects of Medicare on financial health outcomes and γh
l is a location-specific estimate

of the effects of Medicare on the insurance rate. This provides a measure of the effect of Medi-

care on financial health outcomes per newly-insured individual at each location. This helps account

for the mechanical effect that areas with high near-elderly uninsurance rates will likely see large

changes in financial health alongside increases in coverage. However, while we estimate βl using

fuzzy RD, it does not estimate the causal effect of insurance on financial health, as the character-

istics of health insurance coverage also change for the previously-insured as they enter Medicare

(Card, Dobkin and Maestas, 2008).

4 Results

4.1 Medicare, health insurance, and financial health, nationally and across states

Figure 1 presents the effect of Medicare at age 65 at the national level and for each state. In solid

red circles, we plot the average national outcome for each age. At age 65, we plot two points: in

the solid red triangle, we plot y(65−), the national average at age 65 without Medicare and in

the hollow red triangle we plot y(65+), the national average at age 65 with Medicare. In gray,

we repeat the same exercise for each of the states in our sample. For each outcome, we report

the estimated national effect (with the bias-adjusted 95% confidence interval) and the estimated

percent reduction in variance across states (with the bias-adjusted 95% confidence interval).

We plot the share of the population with health insurance coverage in Panel A of Figure 1. As

has been documented previously (e.g., Card, Dobkin and Maestas, 2008), the effect of Medicare

eligibility on the share of individuals with any form of coverage at age 65 is large—rising by 7.9
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percentage points, relative to an overall insurance rate of almost 91 percent prior to Medicare.

We estimate a sharp reduction in geographical variation in health insurance rates of 93.2% (95%

CI: 85.3 to 101.1) at age 65 due to Medicare eligibility.8 This suggests that Medicare, as expected,

eliminates almost all variation across states in health insurance rates.

In Panel B of Figure 1, we also estimate a large national reduction in collections debt at age

65, with a sharp drop of 28.5 dollars (95% CI: -48.3 to -13.7).9 We also estimate a corresponding

reduction of 67.3% (95% CI: 44.1%-90.4%) in the overall cross-state variance of collections debt at

age 65, consistent with the drop in variance for health insurance, implying that Medicare reduced

the differences in collections debt across states by two-thirds.

In contrast, for our other financial health measures, we find statistically insignificant effects on

credit score (Panel C) and bankruptcy (Panel D). The estimated variance reduction and national

effects are small with large confidence bounds, suggesting that Medicare had limited effects on

cross-state variance, despite large baseline differences across states. We also examine a variety of

other financial health outcomes, including delinquent debt and foreclosure, and find small, though

noisy, effects, with no corresponding reduction in national variance (Figure A2). In Appendix B we

demonstrate that these results (and lack thereof) are robust to alternative specifications (Figures

A3, A4, A5, A6, and Table A1).

In Panels E and F of Figure 1, we test our key identifying assumption that non-Medicare

characteristics that affect outcomes do not jump discontinuously at age 65. For example, given

that many individuals tend to retire in their early to mid-60s, we test whether this coincides with

the age of eligibility for Medicare. We do not find evidence of discontinuities in non-Medicare

characteristics at the national or local level at age 65. For both figures, we cannot reject the null

that the effect size is zero at the national level, and that there is no change in the variance across

states.

In Appendix B we examine potential discontinuities in additional covariates and present our

estimates from CZ-level covariate smoothness tests (Figures A7 and A8). We find little evidence of

discontinuities in the average values of covariates at age 65. Intuitively, while the early to mid-60s

8Due to the asymptotic nature of these confidence intervals, the 95% CI includes values larger than the maximum
possible value, 100%.

9We find a decline in especially large collections balances (Figure A1), consistent with evidence that Medicare curbs
the upper tail of medical spending (Finkelstein and McKnight, 2008; Caswell and Goddeeris, 2019).
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are a time of transition for many individuals, the precise age of 65 is no longer a focal point for

retirement decisions, which smooths out the timing of other lifestyle changes in a way that does

not confound them with Medicare eligibility.

4.2 Medicare and the geography of financial strain

In this section, we seek to understand why the effect of Medicare on collections debt, where we

find a large reduction in geographic variation, varies so much across localities.

Prior to individuals gaining Medicare eligibility at age 65, we observe large differences in

collections debt across areas, with particularly high levels in the South. This feature of the US

landscape of financial health is apparent in Figure 2, where we map the commuting zone esti-

mates of counterfactual collections debt flows at age 65, with and without Medicare.10 It is clear

from Panel A that, absent Medicare, collections debt for the near-elderly varies widely across the

country, with low levels in the Midwest and Northeast, and with high levels of debt collection

concentrated in the South. At age 65, we observe a large reduction in collections, concentrated in

the South. Panel B shows that much of the geographic variation in collections debt disappears at

age 65, with lower (though still elevated) levels of collections debt in states like Mississippi, Texas,

and Nevada.11

Why are collections so concentrated before Medicare and much less so after? One clear candi-

date is geographic differences in the uninsurance rate for the near-elderly. Prior work documents

a link between health insurance coverage and collections debt (see e.g., Finkelstein et al., 2012),

and we find similar associations between area-level health insurance rates and financial health

outcomes among the near-elderly (Figure A9). We compare the estimated increase in health insur-

ance due to Medicare to the drop in debt collections at the state-level and CZ-level in Figure A10.

This “extensive margin” effect of Medicare on coverage explains a surprisingly large share of the

variation (R2 = 0.38), with small estimated reductions in collections for states with small estimated

changes in the insurance rate at age 65.

These facts suggest that the effect of Medicare eligibility on debt collections may be driven by

individuals who gain coverage, rather than those whose primary source of coverage is changing.

10For this map, due to smaller sample sizes, we use an empirical Bayes approach to shrink each locality-level estimate
towards the overall average of the effects (see Appendix B).

11At the CZ-level, this reduction equates to a drop in the across-CZ variance in collections debt of 70% (very similar
to our state-level estimate of 67.3%).
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Figure 2: Counterfactual levels of collections debt by commuting zone at age 65 with and
without Medicare

Panel A: Without Medicare Panel B: With Medicare

Note: This figure plots our counterfactual estimates of the flow of newly reported collections debt (within
the past year) per capita at age 65, with and without Medicare. The CZ-level variance reduction at age
65—the difference in CZ-level variance between the two panels—was 63.8% (95% CI: 30.7%-97.0%). The
counterfactuals are based on local linear regressions, done separately by commuting zone, using the meth-
ods from Kolesár and Rothe (2018). These estimates are then shrunk using empirical Bayes, described in
Appendix B. Darker regions correspond to higher counterfactual collections debt per capita. Source: Con-
sumer credit outcomes are based on 137,340,577 person-year observations from the New York Fed Con-
sumer Credit Panel/Equifax, 2008-2017.

Motivated by this finding, we construct a scaled version of our CZ-level estimates, βl , that mea-

sures the reduction in collections debt per newly-insured, and examine it alongside our per capita

estimates going forward. This allows us to compare how the effects of Medicare differ across

locations with different baseline levels of uninsurance among the near-elderly.

We now examine what other area-level factors are associated with the reductions in collections

debt at age 65. We present evidence that commuting zones with larger shares of black residents,

people with disabilities, and for-profit hospitals experience the largest gains in financial health at

age 65, across a variety of estimation approaches.

Figure 3 presents correlations between our area-level characteristics and estimated effects of

Medicare. The leftmost panel presents the coefficients from separate bivariate OLS regressions

of our regression discontinuity estimates of CZ-level reductions in collections debt per capita (in

red circles) and per newly-insured (in blue triangles) on CZ-level demographic and healthcare mar-

ket characteristics, with bars representing the 95% confidence intervals. Since many of the area-

level characteristics are highly correlated, the center and right panels plot multivariate and post-

Lasso analyses describing the partial correlations between the characteristics and our locality-
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Figure 3: Commuting zone characteristics correlated with the reduction in collections
debt at age 65

Panel A: Demographic characteristics

Bivariate Multivariate Post−Lasso

−0.4 0.0 0.4 −0.4 0.0 0.4 −0.4 0.0 0.4

Has Medicaid (%)

Has any coverage (%)

Physical disability (%)

Median house value

Income per capita

Poverty rate (%)

Greater than high school education (%)

Black (%)

Impact of 1 SD Change in Covariate

Per Capita Per Newly Insured

Panel B: Healthcare market characteristics

Bivariate Multivariate Post−Lasso

−0.5 −0.2 0.0 0.2 0.5−0.5 −0.2 0.0 0.2 0.5−0.5 −0.2 0.0 0.2 0.5

Medicare spending per enrollee ($)

Payment by charity care patients ($)

Cost of charity care per patient day ($)

Hospital beds per capita

Hospital occupancy rate (%)

Teaching hospitals (%)

For−profit hospitals (%)

Impact of 1 SD Change in Covariate

Per Capita Per Newly Insured

Note: This figure plots bivariate OLS estimates (left panel), multivariate OLS estimates (center panel), and post-Lasso
multivariate estimates (right panel) of CZ-level estimated reductions in collections debt per capita on a set of CZ-level
characteristics. We standardize all the variables so the coefficients reflect the strength of the association between a one
standard deviation change in the covariate and the estimated reduction in collections debt at age 65. The horizontal bars
are 95% confidence intervals. The multivariate OLS regression results and post-Lasso multivariate regression results
are both run on the full set of characteristics in Panels A and B. For post-Lasso, we first estimate a Lasso regression
on the full set of characteristics and then report the results of multivariate OLS run on the characteristics chosen by
the Lasso regression. Tabular versions of these results are in Table A4. Source: Consumer credit outcomes are based
on 137,340,577 person-year observations from the New York Fed Consumer Credit Panel/Equifax, 2008-2017. CZ-level
uninsurance rates are from the American Community Survey, 2008-2017. Healthcare market characteristics are from
the Healthcare Cost Report Information System (HCRIS) and the Dartmouth Atlas. For additional details on the data
see Section 2.
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level causal estimates. We separate the demographic and healthcare market characteristics into

two panels for presentation purposes, but all covariates are jointly combined in estimation for the

multivariate and post-Lasso models. To facilitate comparison across the area-level correlates and

the per capita and per newly-insured measures, we standardize all the area-level correlates, and then

divide the coefficients by the respective national per capita or per newly-insured estimates. Hence,

plotted coefficients in Figure 3 correspond to the effect of a one standard deviation change in the

covariate on a percentage change in the reduction in debt collections at age 65. Hence, a coeffi-

cient of 0.1 implies a 10% increase in the effect of Medicare in reducing debt collections from a one

standard deviation change in the covariate.

Panel A of Figure 3 shows that the share of high school graduates, income per capita, and

median house values in a CZ were all associated with smaller reductions in per capita collections

debt at age 65. Unsurprisingly, the share of residents with health insurance (or Medicaid), was

also associated with a smaller reduction in per capita collections debt at age 65. The share of

black residents, the poverty rate, and the share of people with disabilities, on the other hand,

were associated with larger reductions in collections at age 65. In multivariate and post-Lasso

analyses, only the near-elderly health insurance rate and the high school graduation rate were

associated with smaller reductions in per capita collections, while the share of black residents and

people with disabilities in a CZ were consistently associated with larger reductions in per capita

collections.12 Inclusion of Census region or division fixed effects—and using only the within-area,

across-CZ variation that remains—does not qualitatively change our results. Once we restrict to

only using variation across CZs, but within states, however, the association between the share of

black residents and per capita reductions in collections is severely attenuated.

Panel B of Figure 3 presents the healthcare market characteristics correlated with our esti-

mates. In the bivariate OLS model, a higher share of for-profit hospitals and higher risk-adjusted

spending per Medicare beneficiary were both associated with larger reductions in collections debt

at age 65, while a higher share of teaching hospitals and higher hospital occupancy rates were

associated with smaller reductions in collections at age 65. In multivariate OLS and post-Lasso

analyses, only the CZ-level share of for-profit hospitals was associated with our causal CZ-level

12While the Lasso procedure did not select the near-elderly health insurance rate, we note a very high correlation
between that measure and the high school graduation rate (ρ = 0.45).
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effects, with a one standard deviation increase in the share of for-profit hospitals associated with

a 40% larger reduction in per capita collections at 65. Unlike not-for-profit hospitals, for-profits

are not required to provide charity (discounted or free) care and evidence suggests that they of-

fer less charity care than not-for-profit hospitals (e.g., Horwitz, 2005; Schlesinger and Gray, 2006;

Valdovinos, Le and Hsia, 2015).13 We find that the relationship between for-profit hospital share

and CZ-level reductions in per capita collections debt at age 65 is robust to the inclusion of fixed

effects for census regions or divisions, but not states.

Figure 3 also examines the demographic and healthcare market characteristics associated with

reductions in collections debt per newly-insured. This exercise accounts for the change in the unin-

surance rate at age 65, to identify CZs that experienced larger or smaller reductions in debt col-

lections not mechanically driven by Medicare’s “extensive margin” effect on coverage. The share

of people with disabilities and for-profit hospitals in a CZ is consistently associated with larger

reductions in collections debt per newly-insured. In addition, CZs with a larger share of black

residents—where we see large reductions in per capita collections debt—also appear to experience

larger reductions in collections per newly-insured. The other area-level characteristics were not

consistently associated with the estimated reductions in collections debt per newly-insured.

4.3 Forecasts of the causal effects of Medicare on financial strain

Given that the effect of Medicare varies substantially across localities, where would the effects

of a broad expansion of coverage to the near-elderly (i.e., by lowering the Medicare eligibility

age) be the largest? In what follows, we discuss our forecasts of CZ-level causal effects, how those

forecasts have changed post-ACA, and their implications for future potential coverage expansions.

In Panel A of Figure 4, we map the per capita mean-square error minimizing forecast causal

effects, γ̂
f
l , across CZs for the near-elderly, with darker colors depicting areas predicted to ex-

perience larger reductions in collections-related strain associated with an expansion of (nearly)

universal health insurance to the near-elderly. The largest forecast reductions are concentrated in

the South, ranging from $20-$50 in most CZs. The opposite is true in the Midwest, where fore-

cast reductions in consumer financial strain are small across all CZs.14 In Panel B, we map the

13In addition, hospitals in markets with a higher share of for-profits respond to competition by reducing charity care
and trying to avoid the uninsured (Frank, Salkever and Mitchell, 1990).

14Table A2 lists the forecasts for the 50 commuting zones with the largest near-elderly populations (accounting for
53.2% of the near-elderly US population during our sample period).
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Figure 4: Forecasts of causal reductions in collections debt from expanding health insur-
ance to the near-elderly by commuting zone

Panel A: Per capita, 2008-2017 Panel B: Per newly insured, 2008-2017

Note: This figure plots mean square error (MSE)-minimizing forecasts of the reductions in collections debt
per capita (Panel A) and the reduction in collections debt per newly-insured (Panel B). We construct the
MSE-minimizing forecasting by first running a Lasso regression to predict the CZ-level reductions in col-
lections debt per capita (or per newly-insured) as discussed in Section 3. This generates a prediction for
each CZ, which we call γ̂l . Following Chetty and Hendren (2018) we then combine the γ̂l estimates with
our estimates of γl to construct the MSE-minimizing forecast for each commuting zone, γ

f
l . Source: Con-

sumer credit outcomes are based on 137,340,577 person-year observations from the New York Fed Con-
sumer Credit Panel/Equifax, 2008-2017. CZ-level uninsurance rates are from the American Community
Survey, 2008-2017. Healthcare market characteristics are from the Healthcare Cost Report Information Sys-
tem (HCRIS) and the Dartmouth Atlas. For additional details on the data see Section 2.

forecasts per newly-insured at age 65, β̂
f
l . Despite large geographic differences in the near-elderly

uninsurance rate, the maps are strikingly similar, with the largest forecast reductions in collec-

tions debt per newly-insured also concentrated in the South. This is consistent with the Lasso

procedure selecting similar area-level characteristics when predicting changes in per capita and

per newly-insured debt collections at age 65.15

We next examine how these forecasts have changed due to the ACA, federal health reform

legislation that substantially expanded coverage (Frean, Gruber and Sommers, 2017). Panel A of

Figure 5 presents the forecasts using the sample before and after the implementation of the ACA.

On the x-axis, we plot the pre-ACA per capita forecast reductions in collections, and on the y-

axis, the post-ACA per capita forecast reductions. The forecast reductions post-ACA are generally

smaller than pre-ACA, which results in the majority of commuting zones below the 45-degree line.

Rather than having a uniform effect across CZs on collections forecasts, which would appear as a

vertical shift in the cloud of points, the ACA led to a “rotation” in the forecasts; CZs with larger

15A regression of the two forecasts across CZs has an R2 of 0.8213.
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Figure 5: Forecasts of causal reductions in collections debt at the commuting zone level
before and after the Affordable Care Act (ACA)

Panel A: Pre and Post-ACA Per Capita Forecasts Panel B: Decomposing Changes in Forecasts

Slope =  0.59

Slope =  0.25

0

30

60

90

0 30 60 90
Pre−ACA Effects

South
All Others

Post−ACA Effects

Note: Panel A of this figure plots mean square error (MSE)-minimizing forecasts of the CZ-level reductions in collections
debt per capita in the pre-ACA period on the x-axis against the analogous post-ACA period forecast on the y-axis. We
separately plot commuting zones in the South in orange circles and all other commuting zones with blue triangles.
Fitted lines are constructed using bivariate OLS. We construct the MSE-minimizing forecasting by first running a Lasso
regression to predict the CZ-level reductions in collections debt per capita separate for each period as discussed in Section
3. This generates a prediction for each CZ in each period, which we call γ̂l . Following Chetty and Hendren (2018) we
then combine the γ̂l estimates with our estimates of γl to construct the mean square error-minimizing forecast for each
commuting zone in each period, γ

f
l . Panel B of this figure plots the average percentage decline in per capita forecasted

effects for the South and non-South regions, and the decomposition described in the text and Appendix B. The top bars
present the average percentage decline in per capita forecasted effects for the South and non-South regions. The second
set of bars present the decline due to the change in insurance coverage rates, holding fixed the per newly-insured effect.
The third set of bars present the decline due to the change in the per newly-insured effect, holding fixed the impact on
insurance coverage rates. The last set of bars is due to the change in covariance between the per newly-insured effect and
the effect on insurance. In curly braces for each set of bars we report the difference between the non-South and South
averages. Source: Consumer credit outcomes are based on 137,340,577 person-year observations from the New York
Fed Consumer Credit Panel/Equifax, 2008-2017. CZ-level uninsurance rates are from the American Community Survey,
2008-2017. For additional details on the data see Section 2.

pre-ACA forecasts experienced larger changes in forecast pre- to post-ACA. This is consistent with

the increase in health insurance coverage due to the ACA (Frean, Gruber and Sommers, 2017).

However, the degree of rotation varied significantly by geography. The forecasts fell less in the

South than elsewhere. As a result, the effect of Medicare on collections-related financial strain

have become much more geographically-concentrated in the South, and particularly the “Deep

South” region comprised of Louisiana, Alabama, Mississippi, Georgia, South Carolina, and parts

of Texas and Florida (Figure A11).

Why did the forecast reductions in collections fall less in the South than elsewhere? Panel B

of Figure 5 documents that average CZ-level forecasts decreased by only 30% in the South after
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the ACA’s implementation, but 50% elsewhere. We decompose the differential change in fore-

casts (i.e., the 30% vs. 50%) using a Kitagawa-Oaxaca-Blinder style decomposition (Kitagawa,

1955; Oaxaca, 1973; Blinder, 1973). Intuitively, this decomposes the change in the forecast reduc-

tions in collections debt per capita into changes in the extensive margin “any health insurance”

effect, changes in the intensive margin “reduction in collections per newly-insured” effect, and

a residual term that reflects the changing covariance between the two (see Appendix B for addi-

tional details). We find that the differential change in forecasts between regions was driven by all

three pieces. First, uniform gains in ACA coverage across regions for the near-elderly—despite

higher pre-existing rates of uninsurance in the South—led to smaller reductions, percentage-wise,

in uninsurance rates in the South as compared to elsewhere.16 This accounted for one-quarter of

the differential change in forecasts between regions (0.051/0.2). Second, the forecast reductions in

collections debt per newly-insured increased in the South (where they were larger to begin with)

after the ACA, but remained unchanged elsewhere. This accounted for two-fifths of the differ-

ential change in forecasts (0.083/0.2). Lastly, in the non-south CZs, the covariance between the

per newly-insured effect and the effect on the share of individuals covered decreased post-ACA,

whereas it was unchanged in the South. This suggests that the ACA expansions in the South were

not as well targeted (on this dimension) as those elsewhere in the country. The poorer targeting

explained the remaining third (0.065/0.2) of the differential change in forecasts between regions.

5 Conclusion

This paper examines the relationship between health insurance and financial health by studying

financial outcomes for individuals as they age onto Medicare at 65. We find a 30 percent reduction

in debt collections—and a two-thirds reduction in the geographic variation in collections—at age

65, with limited effects on other financial outcomes. Areas that experienced larger gains in finan-

cial health at age 65 had higher shares of black residents, people with disabilities, and for-profit

hospitals.

Our data suggest that the financial health benefits of potential future coverage expansions to

the near-elderly have become more geographically concentrated in the South after the passage of

16This left the uninsured near-elderly population more concentrated in the South after the implementation of the
ACA (Figure A12).
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the ACA. This is due to the uniform gains across regions in coverage for the near-elderly due to

the ACA—despite higher pre-existing rates of uninsurance in the South—and, within the South,

the fact that uninsurance rates remain high in areas where the financial health gains per newly-

insured are largest. These findings highlight a potential limitation of policies, such as the ACA,

that delegate states considerable latitude in policy implementation, and a relative advantage of

programs, such as Medicare, that are federally-administered—specifically, that the former may

exacerbate geographic disparities while the latter tend to reduce them.
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A Study data
A.1 Financial outcomes data
The main dataset used in our analysis is the Federal Reserve Bank of New York’s Equifax Consumer Credit Panel (CCP). The
CCP is a five percent random sample of all individuals in the U.S. with credit reports. The CCP data is a representative sample
of all individuals with a credit report but it does not include the roughly 11 percent of the U.S. population without credit reports.
As a result, the CCP data is more representative for high-income individuals than for low-income individuals, and it is more
representative for older than younger people. Lee and Van der Klaauw (2010) show that the CCP is reasonably representative of
the U.S. population with the possible exception of very young adults, suggesting that sample representativeness should not be
a concern in our application.

The data include a comprehensive set of consumer credit outcomes from quarterly from the first quarter of 1999 to the
fourth quarter of 2017, including information on credit scores (originating from Equifax Risk Score 3.0), unsecured credit lines,
auto loans, and mortgages. The data also include year of birth and precise geographic location at the census block level. No
other demographic information is available at the individual level.

A major virtue of the CCP is its large sample size, which allows us to measure financial outcomes at granular geographic
levels with precision. This is key to our RD estimation strategy across geographies, where we estimate the effect of Medicare
separately for 50 states and 741 commuting zones in the country. For our analyses, we aggregate the data to locality-by-age-by-
year cells and weight by the underlying population in each cell. Since we only observe birth year, and the data is quarterly, age
is measured with noise. For example, all individuals with birth year 1940 are measured as age 65 in the first quarter of 2005,
while in reality some of these individuals will turn 65 later in the year. We address this using a “donut” RD procedure which we
discuss in more detail in Section 3.

The financial health variables that we focus on from the CCP are the size of accounts sent to collection agencies (usually,
these are accounts that have been delinquent for over 90 days), the size of accounts that are delinquent, the Equifax Risk Score,
as well as additional financial health outcomes (e.g., bankruptcy).

We examine the impact of Medicare on the distributions of three of our outcome measures: amount of debt in collections,
total amount of debt in delinquency, and amount of credit card debt in delinquency. For all three of these cases, we would expect
that large out-of-pocket expenses would cause increases in the right tail of the distribution. To examine this, we calculate the
share of the population in a county-year-age bin that has amounts in the following bins: 1-500, 501-1,000, 1,001-2,500, 2,501-5,000,
5,001-10,000, and greater than 10,000 dollars. The residual category is any person with 0 dollars. We use the share within a given
bin as the outcome variable in our main specification, so that our estimate is the change in the relative share of individuals within
each bin due to Medicare eligibility.1

A.2 Demographic and health insurance data
For demographic and health insurance information, we draw on the American Community Survey (Ruggles et al., 2019). All
analyses use samples constructed from the PUMA and state datasets, linked to the Commuting Zone (CZ)- and state-level.
Our cross-walk from PUMA to Commuting Zones uses David Dorn’s crosswalks (available here: https://www.ddorn.net/
data.htm).

Demographic data. We construct demographic variables from the ACS at the PUMA-by-age-by-year level and then crosswalk
to the CZ- and state-level to test for covariate smoothness in validating our RD design and to examine the correlates of geographic
heterogeneity in our treatment effects. From the ACS, we measure the homeownership rate, marital status, race, educational
attainment, employment status, usual hours worked per week, total personal income, social security income, poverty status,
and disability rate.

Health insurance data. The ACS also allows us to construct health insurance variables from the ACS at the PUMA-by-age-
by-year level to test for changes in health insurance at age 65 and to examine the correlates of geographic heterogeneity in our
treatment effects. From the ACS, we measure the share of individuals in each cell with any health insurance coverage.

A.3 Additional area-level characteristics data
In addition to the CCP and ACS data, we constructed additional characteristics at the PUMA-level. These characteristics are
drawn from several places, including the Healthcare Cost Report Information System (HCRIS) and the Dartmouth Atlas. From
the HCRIS data, we construct PUMA-level measures of the share of hospital patient days at for-profit hospitals, teaching hos-
pitals, and public hospitals. We also measure the average hospital occupancy rate at the PUMA-level and the hospital beds per
capita. In addition, for the period 2010-2017 we measure PUMA-level reported charity care costs per patient day and payments
recovered by hospitals from charity care patients by patient day. From the Dartmouth Atlas data, we measure the PUMA-level
risk-adjusted Medicare spending per enrollee (Dartmouth Institute, 2019).

1An alternative approach would be to directly estimate quantile treatment effects using regression discontinuity, such as those
proposed in Frandsen, Frölich and Melly (2012). However, we are not able to easily account for the discrete running variable in
our estimation process using quantile treatment effects. As a result, we focus on our share-based approach.
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B Additional Methods and Robustness
B.1 Honest RD and Shrinkage Estimators
Robustness using Honest RD As discussed in Section 3, we account for discreteness and measurement error in our
running variable, age, by following the "honest" confidence intervals approach outlined in Kolesár and Rothe (2018), and Arm-
strong and Kolesár (2018b,a). This method requires an additional tuning parameter, K, which imposes an upper bound on the
absolute value of the second derivative of the conditional expectation function. Intuitively, this method places a bound on how
quickly the functions f (·) and g(·) can change. To choose our value of K for our main estimates, we follow an approach similar
to the approach advocated in Imbens and Wager (2019). We take a large window to the left of the RD cutoff and fit a quadratic
function of age to the data. We take the coefficient on the quadratic term (the second derivative), take the absolute value, and
multiply it by four. We take this as our estimate of K. Similar to robustness exercises with bandwidths in previous RD methods,
we present additional robustness tests which vary the value of K by changing the number that we scale this second derivative
by in Appendix Figures A3 and A5.

Inference for variance reduction Our estimate of cross-state and cross-CZ variance reduction due to the Medicare is
a non-linear functional of the different estimates of a local non-parametric estimate. Specifically, we are interested in T( f , g) =
φ( f , g), where

φ( f , g) = 1−
(

g(0)′g(0)− (L−1g(0)′ι)2)
)(

f (0)′ f (0)− (L−1 f (0)′ι)2)
) = 1−

L−1
(

∑l gl(0)2 −
(

L−1 ∑m gm(0)
)2
)

L−1
(

∑l fl(0)2 −
(

L−1 ∑m fm(0)
)2
) ,

where f and g are the vector of functions fl and gl that are estimated using local linear regression and ι is an L× 1 vector
of ones.2

To construct confidence intervals for this estimate that correctly account for the discreteness of our outcome variable, we ap-
ply the delta method following Appendix B.1.1 of Armstrong and Kolesár (2018a). Let the numerator and denominator of φ be A
and B, respectively. Then, dA/dg = 2g(0)′ − 2(L−1g(0)′ι)L−1ι′ and dB/d f = 2 f (0)′ − 2(L−1 f (0)′ι)L−1ι′. The cross-derivatives
are zero. Hence, dφ( f , g)/d f = −d(AB−1)/d f = −(dA/d f )B−1 and dφ( f , g)/dg = −d(AB−1)/dg = −A(dB−1)/dg =
A(B−2)dB/dg.

Thus, our bias term will be B = ∑l |φ′l Bl |, where Bl is the bias determined from the underlying estimation.
We next consider the covariance matrix Σ of our stacked f and g. Since we estimate each fl and gl separately, Σ is simply a

diagonal matrix of the S2
l estimates for each fl(0) and gl(0) estimate. Hence, our variance estimate is S2 = φ′( f , g)′Σφ′( f , g).

Finally, to calculate the confidence intervals around our estimate T̂( f , g), we follow Armstrong and Kolesár (2018a) and
calculate the 95% confidence intervals around our estimate of the ratio as

T̂( f , g)± cv0.95(t) · ŝe,

where t = B/S is our bias-sd ratio and ŝe =
√

S2. We note that cv0.95(t) is the quantile of the folded normal distribution with
mean equal to t (see the note in Table 1 of Armstrong and Kolesár (2018a)).

Shrinkage Estimators Due to smaller sample sizes, the locality-level estimates are noisier than estimates of the overall
national effects (or counterfactuals). Hence, our estimates of γl , yl(65−), and yl(65+) have more inherent noise and variation
than the true underlying estimates due to estimation error (in part due to smaller sample sizes). Here we provide additional
details on the shrinkage estimator we use to address this.

Formally, using our estimates of state-level discontinuities as an example, we calculate the shrinkage estimator by assuming
that the γs ∼ N (γ0, σ2). We estimate these two parameters directly. Then, using the standard errors estimated for each γs, σ̂s,
and following the standard James-Stein estimator approach (Morris, 1983), we construct B = σ̂2

σ̂2
s +σ̂2 , and our shrinkage estimator

is γ̃s = Bγ̂s + (1− B)γ0. The CZ-level counterfactuals in Figure 2, for example, are shrunk using this method.

B.2 Robustness checks
In this section, we discuss our approach to assessing the robustness of our results to alternative specifications and bandwidths.
As discussed in Section B, our empirical methodology requires two tuning parameters: the bandwidth (standard regression
discontinuity applications) and our upper bound on the magnitude of the second derivative. In Figures A3 and A4, we present
sensitivity tests for our main RD estimates for various outcome measures to the choice of bandwidth and our upper bound. Our
results are qualitatively unchanged across our choice of bandwidth and upper bound. In Figures A5 and A6 we demonstrate
that our estimated reductions in the variance of health insurance and collections debt are robust to alternative bound scaling
factors and bandwidths.

In Appendix Table A1, we repeat our estimates for our consumer credit outcomes, using alternative RD methodologies.
We do so in four ways. First, in Column 1, we replicate our main estimates from Figures 1 and A2. Second, we consider three
parametric models, fitting a linear, quadratic and cubic model in age on either side of the discontinuity and estimating the

2Note that we additionally population-weight our estimates. We omit this notation here for simplicity’s sake.
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jump at age 65. For inference, we use heteroskedasticity-robust standard errors. We report these estimates in Columns 2, 3
and 4. Third, we estimate the same models, but cluster on the running variable of age, as suggested in Lee and Card (2008)
(and subsequently shown to have coverage issues in Kolesár and Rothe (2018)). We report these models in Columns 4, 5 and 6.
Finally, we use local linear estimation using the RDRobust package from Calonico, Cattaneo and Titiunik (2015). We report this
estimate in Column 8.

Our estimates are similar across various estimation methodologies. However, many outcomes do appear statistically sig-
nificant when we cluster on the running variable, unlike in our main specification. This is likely due to incorrect coverage,
as highlighted in Kolesár and Rothe (2018). When using heteroskedasticity-robust standard errors, there are also additional
significant estimates, but fewer, and they are not consistent across various parametric forms. Our estimates are quite similar,
qualitatively, to using the Calonico, Cattaneo and Titiunik (2015) method, but our preferred estimate’s point estimate is larger in
magnitude and the confidence interval is smaller for our collection estimates.

B.3 Forecasting the causal effects of Medicare by location
This section provides additional details about how we forecast the causal effects of Medicare by location. We are interested in
the forecastable components of both γl and βl , where βl is our fuzzy-RD estimates of CZ-level reductions in collections debt per
newly-insured (see Section 3 for details). We are interested in the best predictions of γl and βl .

Ideally, each forecast would be the unbiased causal estimate for the location from our RD design. However, in many
locations, the near-elderly population is small and the estimates are noisy. To reduce noise, we follow Chetty and Hendren
(2018) and construct forecasts using a shrinkage estimator that combines our unbiased RD estimates and the predicted effect
for each commuting zone based on its demographic and healthcare market characteristics. Since the dimension of our set of
predictors, ~Xl , is large (and many of the covariates are highly correlated), we use our Lasso predictions from Section 3.2 in order
to minimize over-fitting.

We denote our predictions of γl and βl estimated using our Lasso model as γ̂l and β̂l , respectively. Briefly, the Lasso
estimation procedure penalizes covariates and shrinks terms in the estimated ωl towards zero, in order to minimize mean
squared error. As a result, the estimation procedure will select a subset of the covariates in ~Xl , to have non-zero parameters,
and set the remaining parameters to zero. We implement this using a ten-fold cross-validation over the penalization parameter,
implemented using R glmnet package.

To forecast the causal effects of Medicare by location, we then combine the Lasso estimates together with our RD estimates
of γl order to construct the mean square error-minimizing forecast for each location, defined as γ̂

f
l . This MSE-minimizing

forecast is constructed using the following formula (Chetty and Hendren, 2018):3

γ̂
f
l =

(
χ2

χ2 + s2
l
(γl − γl) +

s2
l

χ2 + s2
l

τ(γ̂l − γ̂l)

)
+ γl , (4)

where γl is the average RD prediction across locations, γ̂l is the average Lasso prediction across locations, τ = Cov(γ̂l , γl)
/

Var(γ̂l)

is the coefficient of a regression of γl on γ̂l , χ2 is the residual place effect variation after subtracting off the variance due to esti-
mation of γl , and s2

l the squared standard error of the γl . For the purposes of the shrinkage, we demean our estimates and then
add the overall mean back, such that the shrinkage is around the variation around the overall mean. We estimate τ using linear
regression of the demeaned values, and calculate χ2 as

χ2 = Var(γl − τ(γ̂l − γ̂l))− E(s2
l ),

where E(s2
l ) is the average sampling variance across locations. In all calculations, we weight by the precision of the fixed effect

estimates (1/s2
l ) to maximize efficiency.

Note that this approach will shrink our estimates towards the predicted γ̂l when the original estimate is noisy and the
shrinkage will only occur if the lasso prediction has predictive power for γl . If this prediction has limited value, then τ will be
zero, and the shrinkage will shrink towards the overall mean. By a similar argument, as s2 goes to zero, the forecasted estimate
will be exactly γl . We follow the same procedure to construct forecasts for βl , defined as β̂

f
l .

To calculate the prediction errors of the forecasts for Table A2, we follow Chetty and Hendren (2018), where the root mean-
squared error of the prediction is: √

e2
l =

√√√√ 1
1
s2

l
+ 1

χ2

.

Note that as the variance for our unbiased estimate (s2
l ) grows, χ2 places an upper bound on the size of the root MSE. In

contrast, if the sampling error gets very small, the forecast will place all the weight on the unbiased estimate, and send the root

3See Appendix D of Chetty and Hendren (2018) for the explicit derivation of this approach. Our approach deviates from
Chetty and Hendren (2018) in that we use the Lasso predicted estimate, rather than the estimated mean value of residents (as
Chetty and Hendren (2018) do). This extension is discussed in their Appendix D. Additionally, since our estimates are not mean
zero by construction, we demean our estimates for the purposes of the shrinkage, and then add the overall mean back in. Our
approach is otherwise identical.
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MSE to zero.

B.4 Estimating the effects of Medicare eligibility before and after implementation of the
ACA

We briefly describe the methods used to document differences in the effect of Medicare eligibility before and after the ACA. We
also document our approach to quantifying the changes in health insurance and financial health for the near-elderly from the
ACA.

To examine the relationship between Medicare eligibility, health insurance, and financial health before and the after the
implementation of the ACA we re-estimate our primary specification separately, pre- and post-ACA:

yi,l,t(age) = γT × 1(age > 65) + fT (age)× 1(age ≤ 65) + gT (age)× 1(age > 65) + εi,l,t(age). (5)

where T indexes the pre-ACA (2008-2013) and post-ACA (2014-2017) periods. The coefficients of interest are γT which measure
the change in health insurance and financial strain at age 65 before (T = 0) and after (T = 1) the implementation of the ACA. As
before, the above specification allows for flexible age trends on both sides of the discontinuity, with standard errors constructed
using methods outlined in Kolesár and Rothe (2018) and discussed previously.

To quantify the changes in health insurance and financial health for the near-elderly from the ACA, we follow Duggan,
Gupta and Jackson (2019) and estimate a regression discontinuity difference-in-differences (“difference-in-discontinuity”) re-
search design. Intuitively, this design exploits the fact that for 65-year-olds (and older), the expansion of the ACA was limited
(compared to the near-elderly). To implement this approach, we construct ∆yi,l,t(age)) = yi,l,t(age))− ȳi,l,t,2010−2013(age), where
ȳi,l,t,2010−2013(age) is the average outcome in a given location-age from 2010-2013. We then re-estimate our regression disconti-
nuity approach using this modified outcome variable:

∆yi,l,t(age) = γ̃× 1(age > 65) + f̃ (age)× 1(age ≤ 65) + g̃ (age)× 1(age > 65) + ε̃i,l,t. (6)

with the standard errors constructed using methods outlined in Kolesár and Rothe (2018) and discussed previously.

B.5 Decomposing the change in forecast reductions in per capita collections before and after
implementation of the ACA

In this section, we describe how we use our estimates to provide insight into why forecast reductions in collections have become
increasingly concentrated in the Deep South. We are interested in understanding why the changes in the average CZ-level
forecast from pre- to post-ACA differed between the South and other regions of the country.

To formally decompose this, we define the relative percentage change before and after the ACA , η =
(
E(γPost

l )− E(γPre
l )

) /
E(γPre

l ),
for both regions, South and All Others. This change can be written as three parts: the change in the effect of Medicare on health
insurance rates, the change in the effect of Medicare on collections debt per newly-insured, and the change in the covariance
between the two. Formally,

η =
η1 + η2 + η3

E(γPre
l )

η1 =
(

E(βPost
l )− E(βPre

l )
)

E(γh,Post
l )

η2 = E(βPre
l )

(
E(γh,Post

l )− E(γh,Pre
l )

)
η3 = Cov(βPost

l , γh,Post
l )− Cov(βPre

l , γh,Pre
l )

This derivation follows from the fact that E(γl) = E(γh
l βl) = E(γh

l )E(βl) + Cov(γh
l , βl), where γl is the reduction in collections

debt per capita at age 65, γh
l is the change in the insurance rate at age 65, and βl is the reductions in debt collections per newly-

insured at age 65. We then rearrange terms to derive the above expression. An important note is that since we are focusing on
the forecasts, rather than the underlying parameters, there are small differences because we use the shrinkage estimates. E.g.
γl = γh

l βl , but we use γ̂l . As a result, it is useful to rewrite γ̂l = γl + εγ,l , and note that γ̂l = γh
l βl + εγ,l . We can use these

approximations to redefine our approximation in terms of the forecasted estimates, which will leave us with additional error
terms. In our results, these terms are captured in our last decomposition piece, η3.

For transparency, we present the underlying quantities in Appendix Table A3 and plot the three components of the decom-
position (the ηs) in Panel B of Figure 5.
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Appendix Figure A3: Robustness of Age RD Estimates to Bound Scaling Factor

Panel A: Share with coverage Panel B: Total Collections ($) Panel C: Risk Score
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Note: This figure plots the robustness of our regression discontinuity estimates to the choice of the bound scaling
factor used in the Kolesár and Rothe (2018) estimation procedure. Panel A plots the robustness of the share of the
population with any coverage estimates. Panel B plots the robustness of the average debt in collections in dollars
RD estimates. Panel C plots the robustness of the risk score RD estimates based on the Equifax Riskscore 3.0. Panel
D plots the robustness of the bankruptcy RD estimates. Panel E plots the robustness of the average debt past due
RD estimates. Panel F plots the robustness of the average mortgage debt past due RD estimates. Panel G plots
the robustness of the average credit card debt past due RD estimates. Panel H plots the robustness of the share
of debt past due RD estimates. Panel I plots the robustness of the foreclosure RD estimates. The sample includes
individuals who were age 55-75 between 2008 and 2017. See Section 2 for additional details on the outcomes and
sample. Source: The financial health outcomes are based on 137,340,577 person-year observations from the New
York Fed Consumer Credit Panel / Equifax, 2008-2017.
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Appendix Figure A4: Robustness of Age RD Estimates to Bandwidth Selection

Panel A: Share with coverage Panel B: Total Collections ($) Panel C: Risk Score
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Note: This figure plots the robustness of our regression discontinuity estimates to the bandwidth selection used
in the Kolesár and Rothe (2018) estimation procedure. Panel A plots the robustness of the share of the population
with any coverage estimates. Panel B plots the robustness of the average debt in collections in dollars RD estimates.
Panel C plots the robustness of the risk score RD estimates based on the Equifax Riskscore 3.0. Panel D plots the
robustness of the bankruptcy RD estimates. Panel E plots the robustness of the average debt past due RD estimates.
Panel F plots the robustness of the average mortgage debt past due RD estimates. Panel G plots the robustness
of the average credit card debt past due RD estimates. Panel H plots the robustness of the share of debt past due
RD estimates. Panel I plots the robustness of the foreclosure RD estimates. The sample includes individuals who
were age 55-75 between 2008 and 2017. The regressions include 26,120,830 person-year-quarter observations for
2,977,952 unique individuals. See Section 2 for additional details on the outcomes and sample. Source: New York
Fed Consumer Credit Panel / Equifax.
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Appendix Figure A5: Robustness of Variance Reduction Estimates to Bound Scaling Factor

Panel A: Share with coverage Panel B: Total Collections Panel C: Risk Score
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Note: This figure plots the robustness of our regression discontinuity estimates to the choice of the bound scaling
factor used in the Kolesár and Rothe (2018) estimation procedure. Panel A plots the robustness of the share of the
population with any coverage estimates. Panel B plots the robustness of the average debt in collections in dollars
RD estimates. Panel C plots the robustness of the risk score RD estimates based on the Equifax Riskscore 3.0. Panel
D plots the robustness of the bankruptcy RD estimates. Panel E plots the robustness of the average debt past due
RD estimates. Panel F plots the robustness of the average mortgage debt past due RD estimates. Panel G plots
the robustness of the average credit card debt past due RD estimates. Panel H plots the robustness of the share
of debt past due RD estimates. Panel I plots the robustness of the foreclosure RD estimates. The sample includes
individuals who were age 55-75 between 2008 and 2017. See Section 2 for additional details on the outcomes and
sample. Source: The financial health outcomes are based on 137,340,577 person-year observations from the New
York Fed Consumer Credit Panel / Equifax, 2008-2017.
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Appendix Figure A6: Robustness of Variance Reduction Estimate to Bandwidth Selection

Panel A: Share with coverage Panel B: Total Collections Panel C: Risk Score
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Note: This figure plots the robustness of our regression discontinuity estimates to the bandwidth selection used
in the Kolesár and Rothe (2018) estimation procedure. Panel A plots the robustness of the share of the population
with any coverage estimates. Panel B plots the robustness of the average debt in collections in dollars RD estimates.
Panel C plots the robustness of the risk score RD estimates based on the Equifax Riskscore 3.0. Panel D plots the
robustness of the bankruptcy RD estimates. Panel E plots the robustness of the average debt past due RD estimates.
Panel F plots the robustness of the average mortgage debt past due RD estimates. Panel G plots the robustness
of the average credit card debt past due RD estimates. Panel H plots the robustness of the share of debt past due
RD estimates. Panel I plots the robustness of the foreclosure RD estimates. The sample includes individuals who
were age 55-75 between 2008 and 2017. The regressions include 26,120,830 person-year-quarter observations for
2,977,952 unique individuals. See Section 2 for additional details on the outcomes and sample. Source: New York
Fed Consumer Credit Panel / Equifax.
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Appendix Figure A9: Consumer credit outcomes and uninsurance rates across states

Panel A: Debt collections Panel B: Bankruptcy
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Note: This figure plots consumer credit outcomes against state uninsurance rates for individuals aged 55-64 years
old. Panel A plots the dollar value of new collections debt reported on credit reports annually. Panel B plots the
annual rate of new bankruptcies in percentage points. Panel C plots the share of debt that is more than 30 days past
due. The share debt past due is calculated as the average individual’s debt more than 30 days past due, divided by
the average total debt of all individuals of the same age living in that state. Panel D plots credit score data using
the Equifax Risk Score 3.0. See Section 2 for additional details on the outcomes and sample. Source: Consumer
credit outcomes are based on 137,340,577 person-year observations from the New York Fed Consumer Credit Panel
/ Equifax, 2008-2017. State-level uninsurance rates are from the American Community Survey, 2008-2017.
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Appendix Figure A11: Forecasts of causal reductions in collections debt from expanding health
insurance to the near-elderly by commuting zone

Panel A: Pre-ACA, 2008-2013

Panel B: Post-ACA, 2014-2017

Note: This figure plots mean square error (MSE)-minimizing forecasts of the reductions in collections debt per capita
in the pre-ACA (Panel A) and post-ACA period (Panel B). We construct the MSE-minimizing forecasting by first
running a Lasso regression to predict the CZ-level reductions in collections debt per capita separate for each period.
This generates a prediction for each CZ in each period, which we call γ̂l . Following Chetty and Hendren (2018) we
then combine the γ̂l estimates with our estimates of γl to construct the mean square error-minimizing forecast for
each commuting zone in each period, γ

f
l . Source: Consumer credit outcomes are based on 137,340,577 person-year

observations from the New York Fed Consumer Credit Panel / Equifax, 2008-2017. CZ-level uninsurance rates are
from the American Community Survey, 2008-2017. Healthcare market characteristics are from the Healthcare Cost
Report Information System (HCRIS) and the Dartmouth Atlas. For additional details on the data see Section 2..
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Appendix Figure A12: Counterfactual health insurance rates by commuting zone at age 65 with-
out Medicare, pre- and post-ACA

Panel A: Pre-ACA, 2008-2013

Panel B: Post-ACA, 2014-2017

Note: This figure plots our counterfactual estimates of the share of the population with health insurance coverage
at age 65, without Medicare, before and after the full implementation of the Affordable Care Act in 2014. The
counterfactuals are based on local linear regressions, done separately by commuting zone, using the methods from
Kolesár and Rothe (2018). These estimates are then shrunk using empirical Bayes, described in Section B. Panel
A. presents the counterfactuals from the pre-ACA period, 2008-2013. Panel B. presents the counterfactuals from
the post-ACA period, 2014-2017. Darker shading corresponds to states with higher counterfactual health insurance
rates. Source: CZ-level uninsurance rates are from the American Community Survey, 2008-2017.
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Appendix Table A1: Robustness of estimated changes in financial outcomes at age 65

Main Linear with Quad. with Cubic. with Linear with Quad. with Cubic. with Local linear
Estimate robust SEs robust SEs robust SEs clustered SEs clustered SEs clustered SEs with rdrobust

(1) (2) (3) (4) (5) (6) (7) (8)

Share with any coverage 0.076∗ 0.073∗ 0.077∗ 0.074∗ 0.073∗ 0.077∗ 0.074∗ 0.073∗
(0.004) (0.002) (0.004) (0.007) (0.002) (0.001) (0.002) (0.01)
[0.064, [0.069, [0.069, [0.06, [0.07, [0.075, [0.071, [0.053,
0.087] 0.078] 0.086] 0.088] 0.077] 0.08] 0.078] 0.093]

Debt in collections −28.546∗ −32.981∗ −32.121∗ −23.58∗ −32.981∗ −32.121∗ −23.58∗ −21.558∗
(6.813) (2.578) (4.407) (7.467) (2.212) (2.498) (2.549) (10.83)

[−43.355, [−38.034, [−40.76, [−38.216, [−37.317, [−37.018, [−28.577, [−42.783,
−13.737] −27.928] −23.483] −8.945] −28.645] −27.224] −18.584] −0.332]

Credit score 0.818 1.199 0.645 0.682 1.199∗ 0.645∗ 0.682∗ 0.795
(1.943) (0.87) (1.515) (2.57) (0.437) (0.135) (0.108) (3.663)

[−3.001, [−0.506, [−2.324, [−4.357, [0.342, [0.381, [0.471, [−6.384,
4.637] 2.905] 3.614] 5.72] 2.057] 0.909] 0.892] 7.975]

Bankruptcy (pp) −0.004 −0.006 −0.008 0.005 −0.006∗ −0.008 0.005 0.003
(0.007) (0.003) (0.006) (0.01) (0.003) (0.005) (0.006) (0.013)

[−0.016, [−0.012, [−0.019, [−0.014, [−0.011, [−0.017, [−0.006, [−0.023,
0.008] 0.001] 0.003] 0.024] 0] 0.001] 0.016] 0.029]

Share employed −0.029 −0.089∗ −0.002 −0.016 −0.089∗ −0.002 −0.016 −0.039
(0.008) (0.004) (0.008) (0.014) (0.017) (0.01) (0.014) (0.022)

[−0.096, [−0.097, [−0.018, [−0.043, [−0.122, [−0.022, [−0.043, [−0.083,
0.038] −0.08] 0.014] 0.01] −0.055] 0.018] 0.01] 0.004]

Income 880.67 458.575 1572.808 343.741 458.575 1572.808∗ 343.741 997.591
(1322.697) (749.423) (1315.303) (2235.622) (244.825) (285.332) (333.556) (4308.174)

[−2002.838, [−1010.295, [−1005.185, [−4038.078, [−21.281, [1013.557, [−310.03, [−7446.274,
3764.179] 1927.445] 4150.801] 4725.559] 938.432] 2132.06] 997.511] 9441.457]

Total debt past due −220.973 −213.784 −230.164 −200.976 −213.784∗ −230.164∗ −200.976∗ −233.868
(404.833) (139.794) (240.424) (412.141) (38.637) (53.615) (52.082) (746.706)

[−935.78, [−487.78, [−701.396, [−1008.772, [−289.513, [−335.25, [−303.057, [−1697.385,
493.833] 60.212] 241.067] 606.82] −138.055] −125.079] −98.895] 1229.649]

Mortgage debt past due −191.289 −176.85 −207.937 −177.245 −176.85∗ −207.937∗ −177.245∗ −195.622
(350.784) (120.781) (206.156) (354.14) (30.91) (44.385) (46.654) (634.81)

[−810.149, [−413.58, [−612.002, [−871.359, [−237.433, [−294.932, [−268.687, [−1439.827,
427.571] 59.881] 196.128] 516.87] −116.266] −120.942] −85.803] 1048.583]

Credit card debt past due −13.922 −27.734∗ −11.793 −6.079 −27.734∗ −11.793∗ −6.079 −4.517
(23.341) (9.16) (16.058) (27.349) (4.22) (3.959) (4.492) (49.812)

[−60.867, [−45.688, [−43.265, [−59.683, [−36.005, [−19.552, [−14.883, [−102.146,
33.023] −9.781] 19.68] 47.524] −19.464] −4.033] 2.724] 93.112]

Foreclosure −0.005 −0.003 −0.001 −0.01 −0.003 −0.001 −0.01∗ −0.015
(0.006) (0.003) (0.005) (0.008) (0.002) (0.004) (0.004) (0.014)

[−0.015, [−0.009, [−0.011, [−0.026, [−0.007, [−0.008, [−0.017, [−0.042,
0.006] 0.002] 0.008] 0.006] 0] 0.006] −0.003] 0.011]

Share of mortgage debt past due −0.003 −0.005∗ −0.003 −0.003 −0.005∗ −0.003∗ −0.003∗ −0.003
(0.005) (0.002) (0.003) (0.005) (0.001) (0.001) (0.001) (0.008)

[−0.012, [−0.008, [−0.008, [−0.012, [−0.006, [−0.005, [−0.005, [−0.019,
0.005] −0.002] 0.002] 0.006] −0.003] −0.001] −0.001] 0.013]

Share of cc debt past due −0.003 −0.008∗ −0.001 −0.001 −0.008∗ −0.001∗ −0.001 −0.001
(0.004) (0.002) (0.003) (0.005) (0.002) (0.001) (0.001) (0.01)

[−0.011, [−0.011, [−0.007, [−0.011, [−0.011, [−0.002, [−0.002, [−0.02,
0.005] −0.004] 0.005] 0.009] −0.004] 0] 0.001] 0.018]

Note: This table reports the sensitivity of our main regression discontinuity estimates to alternative specifications. Column
1 reports the point estimate, standard error, and bias-adjusted 95% confidence interval from a local linear regression using
techniques from Kolesár and Rothe (2018). Columns 2-4 report the results of estimating the discontinuity at 65 using three
parametric models and robust standard errors with linear, quadratic, and cubic age trends, respectively. Columns 2-4
report the results of estimating the discontinuity at 65 using three parametric models and clustering standard errors by
age (the running variable) as in Lee and Card (2008) with linear, quadratic, and cubic age trends, respectively. Column
8 reports the results of estimating the discontinuity using the local linear regression model as in Calonico, Cattaneo and
Titiunik (2015). The sample includes individuals who were age 55-75 between 2008 and 2017. Credit score data used is
from Equifax Riskscore 3.0. See Section 2 for additional details on the outcomes and sample. Source: The financial health
outcomes are based on 137,340,577 person-year observations from the New York Fed Consumer Credit Panel / Equifax,
2008-2017.
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Appendix Table A2: Location-specific estimates and forecasts for 50 largest CZs

Per capita Per newly-insured

γ
f
l RMSE β

f
l RMSE

State CZ (1) (2) (3) (4)

Arizona Phoenix -25 11 -273 180
California Los Angeles -29 11 -206 171
California Sacramento -17 8 -259 112
California San Diego -27 7 -443 158
California San Francisco -8 10 -108 176
California San Jose -14 12 -243 247
Colorado Denver -25 6 -409 87
Connecticut Bridgeport -15 3 -272 61
District of Columbia Washington DC -22 10 -468 208
Florida Jacksonville -42 13 -614 248
Florida Miami -62 12 -419 139
Florida Orlando -44 13 -472 267
Florida Port St. Lucie -58 13 -719 243
Florida Sarasota -53 13 -485 256
Florida Tampa -53 13 -484 222
Georgia Atlanta -43 12 -548 206
Illinois Chicago -17 9 -277 159
Indiana Indianapolis -41 11 -614 194
Maryland Baltimore -23 12 -599 265
Massachusetts Boston -14 8 -403 263
Michigan Detroit -21 11 -417 242
Michigan Grand Rapids -8 12 -106 233
Minnesota Minneapolis -3 9 -152 225
Missouri Kansas City -40 13 -412 240
Missouri St. Louis -30 10 -436 180
Nevada Las Vegas -53 12 -591 196
New Hampshire Manchester -11 11 -148 194
New Jersey Newark -18 7 -221 98
New Jersey Toms River -14 10 -280 191
New York Buffalo -14 3 -449 62
New York New York City -12 6 -197 114
North Carolina Charlotte -57 13 -729 268
North Carolina Raleigh -53 11 -956 167
Ohio Cincinnati -26 9 -456 140
Ohio Cleveland -16 10 -281 199
Ohio Columbus -37 6 -759 61
Ohio Dayton -24 11 -381 208
Oregon Portland -10 5 -139 82
Pennsylvania Philadelphia -18 6 -344 84
Pennsylvania Pittsburgh -21 11 -289 243
Rhode Island Providence -2 7 -46 171
Tennessee Nashville -52 8 -611 78
Texas Austin -43 13 -436 248
Texas Dallas -54 13 -502 227
Texas Fort Worth -50 12 -563 125
Texas Houston -49 12 -435 153
Texas San Antonio -43 13 -305 254
Utah Salt Lake City -31 13 -276 245
Washington Seattle -25 10 -467 213
Wisconsin Milwaukee -28 10 -532 215

Note: This table reports the mean square error (MSE)-minimizing forecasts of the reductions in collections debt per capita
and the reduction in collections debt per newly-insured for the 50 most populous CZs based on their near-elderly popula-
tion. We construct the MSE-minimizing forecasting by first running a Lasso regression to predict the CZ-level reductions
in collections debt per capita (or per newly-insured). This generates a prediction for each CZ, which we call γ̂l . Follow-
ing Chetty and Hendren (2018) we then combine the γ̂l estimates with our estimates of γl to construct the mean square
error-minimizing forecast for each commuting zone, γ

f
l , which we present in Column 1. Column 2 presents the root-

mean-square error (RMSE) which is calculated using methods from Chetty and Hendren (2018). Column 3 reports the
mean square error-minimizing forecast of the reduction in collections debt per newly-insured associated with a (nearly)
universal health insurance expansion, β

f
l . Column 4 presents the RMSE for β

f
l . Source: Consumer credit outcomes are

based on 137,340,577 person-year observations from the New York Fed Consumer Credit Panel / Equifax, 2008-2017. CZ-
level uninsurance rates are from the American Community Survey, 2008-2017. Healthcare market characteristics are from
the Healthcare Cost Report Information System (HCRIS) and the Dartmouth Atlas. For details on the data see Section 2.
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Appendix Table A3: Changes in the forecast reductions in collections debt at age 65, pre and
post-ACA, used for decomposition in Figure 5

Per Capita Insurance Effect Per Newly Insured Covariance Decomposition

Location Pre Post Diff Pre Post Diff Pre Post Diff Pre Post Diff η η1 η2 η3

South 43.61 30.66 -12.95 0.13 0.08 -0.05 365.95 408.95 43.0 -0.95 -0.95 0.00 -0.3 -0.38 0.08 0.00
All Others 14.36 7.23 -7.13 0.09 0.06 -0.04 168.76 167.66 -1.1 0.19 -0.30 -0.49 -0.5 -0.43 0.00 -0.06
Difference -29.25 -23.43 5.82 -0.03 -0.02 0.01 -197.20 -241.30 -44.1 1.15 0.66 -0.49 -0.2 -0.05 -0.08 -0.06

Note: This table reports the components involved in the decomposition presented in Panel B of Figure 5 and discussed in Ap-
pendix B.5. Averages are constructed using unweighted means across commuting zones. South is defined using Census regions,
and includes Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina,
Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia.
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Appendix Table A4: Correlates with reduction in collections debt at age 65

Bivariate Multivariate Post-Lasso

Covariate Estimate Type Estimate S.E. Estimate S.E. Estimate S.E.

Black (%) Per Capita -7.17 (2.77) -5.74 (2.28) -6.23 (2.08)
Greater than high school education (%) Per Capita 11.30 (1.74) -2.47 (3.52) 4.86 (2.46)
Has any coverage (%) Per Capita 12.00 (1.86) 7.09 (2.94)
Has Medicaid (%) Per Capita 6.75 (1.65) 3.24 (2.87)
Hospital beds per capita Per Capita -1.09 (1.4) 1.86 (1.48)

Income per capita Per Capita 11.90 (1.79) 6.86 (5.01)
Median house value Per Capita 10.70 (1.88) -2.25 (2.49)
Hospital occupancy rate (%) Per Capita 6.56 (1.68) -0.90 (3.12)
Physical disability (%) Per Capita -11.90 (2) -5.60 (3.21) -7.41 (2.56)
Poverty rate (%) Per Capita -7.01 (2.34) -0.01 (3.24) 1.02 (2.16)

Payment by charity care patients ($) Per Capita -1.52 (1.65) -1.78 (1.46) -2.70 (1.53)
Medicare spending per enrollee ($) Per Capita -6.48 (2.08) -0.63 (2.98)
For-profit hospitals (%) Per Capita -10.20 (1.96) -4.96 (2.17) -8.29 (1.97)
Teaching hospitals (%) Per Capita 9.69 (1.51) 6.14 (3.32)
Cost of charity care per patient day ($) Per Capita 0.07 (3.1) -0.96 (2) -1.26 (2.21)

Black (%) Per Newly Insured -62.20 (37.3) -54.20 (33.7) -53.50 (31.8)
Greater than high school education (%) Per Newly Insured 76.10 (25) -47.20 (49.8) -5.16 (39.9)
Has any coverage (%) Per Newly Insured -3.87 (29.3) -127.00 (52.6)
Has Medicaid (%) Per Newly Insured 91.80 (28.4) 101.00 (52.8)
Hospital beds per capita Per Newly Insured 21.00 (38.2) 46.80 (38.7)

Income per capita Per Newly Insured 95.50 (24.9) 125.00 (64.3)
Median house value Per Newly Insured 97.20 (30.9) -58.50 (44.9)
Hospital occupancy rate (%) Per Newly Insured 45.20 (34.5) -6.50 (47.8)
Physical disability (%) Per Newly Insured -113.00 (24.6) -39.50 (50.8) -123.00 (38.6)
Poverty rate (%) Per Newly Insured -19.30 (28.6) -66.60 (44.4) 48.80 (26.3)

Payment by charity care patients ($) Per Newly Insured -39.30 (33.5) -38.00 (32.4) -49.20 (31.5)
Medicare spending per enrollee ($) Per Newly Insured -29.50 (32) -40.20 (45.1)
For-profit hospitals (%) Per Newly Insured -70.00 (28.6) -65.30 (30.3) -69.40 (26.6)
Teaching hospitals (%) Per Newly Insured 110.00 (18.6) 92.70 (55.1)
Cost of charity care per patient day ($) Per Newly Insured 29.50 (37.2) -59.30 (39.1) 0.70 (31.4)

Note: This table reports the CZ-level correlates with our RD estimated reductions in collections debt at age 65 plotted in Figure 3. The “Estimate
Type” column indicates whether the row presents correlates with our “per capita” or “per newly-insured” estimates. For each row, we we
present the estimates and standard errors for bivariate, multivariate, and post-Lasso models. We standardize all the variables so the coefficients
reflect the strength of the association between a one standard deviation change in the covariate and the estimated reduction in collections debt
at age 65. The multivariate OLS regression results and post-Lasso multivariate regression results are both run on the full set of characteristics.
For post-Lasso, we first estimate a Lasso regression on the full set of characteristics and then report the results of multivariate OLS run on the
characteristics chosen by the Lasso regression. Source: Consumer credit outcomes are based on 137,340,577 person-year observations from the
New York Fed Consumer Credit Panel / Equifax, 2008-2017. CZ-level uninsurance rates are from the American Community Survey, 2008-2017.
Healthcare market characteristics are from the Healthcare Cost Report Information System (HCRIS) and the Dartmouth Atlas. For additional
details on the data see Section 2.
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