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Abstract 

We study optimal monetary policy in a heterogeneous agent new Keynesian economy. A 
utilitarian planner seeks to reduce consumption inequality, in addition to stabilizing output gaps 
and inflation. The planner does so both by reducing income risk faced by households, and by 
reducing the pass-through from income to consumption risk, trading off the benefits of lower 
inequality against productive inefficiency and higher inflation. When income risk is 
countercyclical, policy curtails the fall in output in recessions to mitigate the increase in 
inequality. We uncover a new form of time inconsistency of the Ramsey plan—the temptation to 
exploit households' unhedged interest rate exposure to lower inequality.  
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1 Introduction

It is increasingly recognized by researchers and policymakers that monetary policy can have important

effects on inequality. Despite this, the study of how monetary policy should be conducted optimally has

only recently begun to depart from a representative agent framework in which concerns about inequality

are trivially absent. While the large recent heterogeneous agent New Keynesian (HANK) literature has

shown that uninsurable idiosyncratic risk and inequality can dramatically change the positive effects of

monetary policy on the macroeconomy (See for example Ravn and Sterk (2017, Forthcoming); Kaplan et

al. (2018); den Haan et al. (2018); Auclert et al. (2018); Auclert (2019); Bilbiie (2019a) and many others),

the normative implications of HANK and the reciprocal effects of monetary policy on risk and inequality,

have been less well studied. This gap in the literature partly exists because characterizing optimal policy

in HANK economies is technically difficult. Solving for the Ramsey optimal policy involves choosing the

evolution of an infinite dimensional state variable (the wealth distribution), as well as infinite dimensional

controls (the distribution of consumption and hours worked across agents) subject to an infinite number

of constraints (each household’s optimality condition and budget constraints).

One approach to solving optimal policy problems for HANK economies is computational, and re-

searchers have recently started developing numerical algorithms to handle them (Bhandari et al., 2018).

We instead take an analytical approach. We study a standard NK economy with nominal rigidities with

the exception that households face uninsurable idiosyncratic risk. Markets are incomplete and agents can

only self-insure by trading a riskless bond or by working longer hours. We assume that households have

constant absolute risk (CARA) utility and idiosyncratic shocks are normally distributed. As in Acharya

and Dogra (2018), these assumptions imply that the economy permits linear aggregation which in turn

means that the infinite dimensional distributions of consumption, hours worked and wealth can be summa-

rized by their cross-sectional averages: the positive behavior of macroeconomic aggregates can be described

independently of the distribution of the wealth distribution. Of course, from a normative perspective, the

dispersion of wealth does affect social welfare and hence the optimal conduct of monetary policy. Crucially,

the effect of inequality on social welfare is also summarized by a finite dimensional sufficient statistic. This

makes the optimal policy problem analytically tractable, allowing us to drill down and identify exactly the

features that makes the optimal conduct of monetary policy different in HANK economies compared to

the RANK benchmark.

As is commonly known, in RANK the planner seeks to stabilize prices and keep output at its produc-

tively efficient level. In HANK, the planner has an additional objective - to use monetary policy to reduce

the cross-sectional consumption dispersion that results from the cumulated effects of uninsured idiosyn-

cratic shocks. This incentive is shut down in RANK by construction. We show that there are three ways in

which the planner can use monetary policy to achieve this purpose. First, the central bank may attempt

to reduce the amount of income risk that households are exposed to (the income risk channel). How to

achieve this reduction naturally depends on the cyclicality of income risk: if this risk is countercyclical,

then the central bank has an incentive to raise output in order to lower risk, while the opposite is true

if risk is procyclical. Either way, the central bank’s willingness and ability to manipulate the amount of

idiosyncratic risk that households face gives it an incentive to move output away from the level consistent
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with stable prices and productive efficiency.1

The second way in which the central bank may reduce consumption dispersion, independently of affect-

ing the level of income risk, is by reducing the pass-through from income risk to consumption risk, that is,

by lowering the marginal propensity to consume out of a change in individual income (the self-insurance

channel). This pass-through ultimately reflects the ability of the households to self-insure against idiosyn-

cratic risk through borrowing or working longer hours, and is thus affected by the paths of real interest

rates and wages going forward. On the one hand, lower interest rates make it easier for households to

borrow in response to an unfavorable shock, making individual consumption less response to changes in

individual income; this ultimately reduces consumption dispersion at any level of income risk. On the other

hand, higher wages going forward make it easier for households to buffer the impact of a fall in current

income on current consumption by borrowing today and working longer hours in the future to repay the

debt. When future wages are high, only a small increase in hours ( and hence the incurred dis-utility)

worked is required to repay this debt. This again makes individual consumption less responsive to changes

in current income. It follows that the central bank has an incentive to commit to low interest rates and

high wages –i.e., to be expansionary– going forward in order to reduce the pass-through from income risk

to consumption risk. This incentive is of course absent in RANK.

Finally, the central bank can reduce consumption dispersion through unanticipated changes in the

marginal propensity to consume out of wealth. Given a distribution of wealth, an unexpected fall in

interest rates benefits poor debtors, reducing their interest payments and increasing their consumption

(the unhedged interest rate exposure (URE) channel) (Auclert, 2019). Conversely, lower interest rates

reduce the interest income of rich savers, reducing their consumption. Overall, lower rates reduce the

marginal propensity to consume out of wealth, reducing consumption inequality. Importantly, this channel

(unlike the previous two) only operates for unexpected changes in interest rates, as we explain in more

detail in Section 4.

How does the presence of these three channels, through which the planner can affect inequality, change

the optimal conduct of monetary policy? As is commonly known, in RANK, optimal monetary policy

features divine coincidence in response to productivity shocks (Blanchard and Gaĺı, 2007): it is both

feasible and optimal to stabilize both the gap between output and its efficient level (output gap), and

inflation. In our RANK economy, in the empirically relevant case where income risk is countercyclical,

while it remains feasible to stabilize the output gap and inflation, it is no longer optimal to do so. But

to understand the tradeoffs that lead the planner to deviate from divine coincidence in this case, it is

instructive to start by examining a HANK economy where divine coincidence is optimal. This is the case

when risk is mildly procyclical and there is no initial wealth inequality. In this knife-edge case, the two

channels through which anticipated monetary policy affects consumption inequality exactly offset each

other: expansionary policy raises output and hence income risk, but makes it easier for households to self-

insure, leaving the consumption risk faced by households unchanged. In addition, the absence of wealth

inequality at date 0 mutes the URE channel. Thus, while the planner would like to reduce consumption

inequality, since it is not possible to do this with monetary policy, it remains optimal to stabilize both the

1Earlier work has stressed that the cyclicality of income risk affects the response of aggregate demand in HANK economies
(Werning, 2015; Acharya and Dogra, 2018; Bilbiie, 2019a), and this in itself generically requires a benevolent central bank
to implement a different path of the policy rate than in RANK (Challe, 2020). This does not, however, necessarily warrant
departing from price stability.
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output gap and inflation.

Away from this knife-edge case, monetary policy can, and does exploit the channels above to affect

consumption inequality. Suppose first that risk remains mildly procyclical so that income risk and self-

insurance channels offset each other, but there is wealth inequality at date 0. In this case, monetary policy

cannot affect inequality through the first two channels, but it can through the URE channel. Consequently,

the optimal plan features an unexpected cut in interest rates at date 0, which reduces consumption in-

equality at the cost of deviating from the efficient level of output and inflation. That is, optimal policy

features higher output and inflation at date 0 than would be optimal in RANK. While monetary policy

cannot affect inequality from date 1 onwards, output and inflation continue to deviate from RANK as

policy seeks to smooth the transition back to steady state. If policy was somehow prevented from creating

the boom to exploit the URE channel at date 0, it would not seek to deviate from RANK at any other

date either.

This brings us to the empirically relevant case of countercyclical risk. In this case expansionary mone-

tary policy can reduce inequality at all dates through the self-insurance and income risk channels: a lower

path of interest rates makes it easier for households to insure themselves, and makes a boom in output

which reduces the level of income risk households face. In addition, at date 0, a cut in rates delivers a

further reduction in inequality through the URE channel. Consequently, the planner always trades off this

benefit of more expansionary monetary policy - namely, that it reduces consumption inequality - against

the costs of inefficiently high output and inflation. These tradeoffs change the optimal response to produc-

tivity shocks, relative to RANK. Following a negative productivity shock, the planner lets output decline

as much as output in the flexible price case and implements zero inflation by raising nominal interest rates.

However, in HANK, optimal policy implements a lower path of nominal interest rates, curtailing the fall

in output in order to mitigate the increase in inequality. Even though this entails higher inflation and

output above its efficient level, this is optimal because inequality is already higher in recessions and so is

the benefit from a reduction in inequality.

So far we have only discussed one channel through which unexpected cuts in interest rates can lower

inequality (the URE channel). Several authors have highlighted another way in which unexpected changes

in monetary policy can lower inequality, namely the Fisher channel : unexpected inflation redistributes

from savers who hold nominal assets to debtors who hold nominal liabilities. We deliberately abstract

from this channel in our baseline model (by letting households trade inflation-indexed debt) in order to

emphasize that the URE channel does not depend on the ability of monetary policy to redistribute wealth

through an inflation surprise. While conceptually distinct from the URE channel, the Fisher channel

provides another avenue through which expansionary monetary policy can reduce inequality. In Section

6 we show that when households trade nominally denominated assets, optimal monetary policy is more

expansionary in recessions compared to RANK.

Related Literature The paper most closely related to ours is Bhandari et al. (2018), who also study

optimal monetary policy in a HANK model. The main difference between our paper and theirs is method-

ological. Bhandari et al. (2018) propose a numerical algorithm to derive optimal monetary policy in HANK

models, while we study a HANK economy with constant constant absolute risk aversion (CARA) prefer-
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ences and normally distributed shocks which permits closed form solutions.2 We see the two approaches as

inherently complementary: the first allows more flexibility in the structure of preferences and idiosyncratic

shocks, while the second better isolates the channels by which the central bank manipulates consumption

dispersion along the optimal policy plan. Another closely related paper is Nuño and Thomas (2019) who

study how URE and Fisher effects affect the optimal conduct of monetary policy in the presence of het-

erogeneity. Unlike us, they study a small open economy in which short-term real interest rates and output

are unaffected by monetary policy. Thus, the classic output inflation trade-off which is central to New

Keynesian economies is absent in their setting.

Several authors have studied optimal monetary policy in simple HANK economies with limited cross-

sectional heterogeneity–see, e.g., Bilbiie (2008); Bilbiie and Ragot (2018); Bilbiie (2019a) and Challe

(2020).3 Most of these papers achieve tractability by imposing the zero liquidity limit (households can-

not borrow and government debt is in zero net supply).4 This assumption rules out the self-insurance

channel because in equilibrium households do not borrow or lend and hence they spend all their income

on consumption. Our analysis shows that this assumption rules out an important channel through which

monetary policy affects inequality.

More generally, our paper belongs to the growing strand of literature that revisits the transmission and

optimality of various economic policies within the HANK framework. This includes not only the work on

conventional monetary policy discussed above but also that on unconventional monetary policy (McKay

et al., 2016; Acharya and Dogra, 2018; Bilbiie, 2019a; Cui and Sterk, 2019), on unemployment-insurance

and social-insurance policies (McKay and Reis, 2016, 2019; den Haan et al., 2018; Kekre, 2019), and on

fiscal policy (Auclert et al., 2018; Bilbiie, 2019b).

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 characterizes

equilibria, defining the implementability constraints the planner faces. Section 4 shows that the utilitarian

planner’s objective function can be written in terms of aggregate variables and a single sufficient statistic

for the welfare-relevant measure of inequality. Section 5 characterizes optimal monetary policy. Section 6

introduces nominal bonds and shows how our results extend to that case. Section 7 concludes.

2 Environment

2.1 Households

We study a Bewley-Huggett economy in which households face uninsurable idiosyncratic shocks to their dis-

utility from supplying labor. We abstract from aggregate risk but allow for a one time unanticipated shock

at date 0, after which agents have perfect foresight. Our economy features a perpetual youth structure à la

Blanchard-Yaari in which each individual faces a constant survival probability ϑ in any period. Population

is fixed and normalized to 1. Consequently, the size of a newly born cohort at any date t is 1− ϑ and the

2Caballero (1990), Calvet (2001), Wang (2003), Angeletos and Calvet (2006) have used similar modeling assumptions in
real economies. Recently, Acharya and Dogra (2018) shows that these assumptions are very helpful in understanding the
positive properties of HANK economies.

3See also Nisticò (2016), who generalizes the Two-Agent New Keynesian (TANK) model of Gaĺı et al. (2007) and Bilbiie
(2008) to the case of stochastic asset-market participation, and Debortoli and Gaĺı (2018) on the comparison between the
TANK model and a HANK model with homogeneous borrowing-constrained households and heterogeneous unconstrained
households.

4Bilbiie and Ragot (2018) is an exception as it it allows agents to hold money in positive amounts for self-insurance purposes.
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date t size of a cohort born at s < t is (1−ϑ)ϑt−s. The date s problem of an individual i born at date s is:

max
{cst (i),`st (i),ast (i)}

∞∑
t=s

(βϑ)t−s u
(
cst (i), `

s
t (i); ξ

s
t (i)
)

s.t.

cst (i) + qta
s
t+1(i) = wt`

s
t (i) + ast (i) + Tt (1)

ass(i) = 0 (2)

Agents have CARA preferences over both consumption and (disutility of) labor:

u
(
cst (i), `

s
t (i); ξ

s
t (i)
)

= −1

γ
e−γc

s
t (i) − ρe

1
ρ

[`st (i)−ξst (i)]
(3)

Each agent i saves in riskless real actuarial bonds, issued by financial intermediaries (described below),

which trade at a price of qt at date t and pay off one unit of the consumption good at t + 1 if the agent

survives.5 Each agent can take unrestricted positive or negative positions in the bond and these choices are

only disciplined by the transversality condition. Tt denotes lump-sum transfers net of taxes and dividends

from the firms. For simplicity, we assume that dividends are equally distributed across agents.

A household supplies labor `st (i) at the pre-tax real wage wt. The agent faces uninsurable shocks ξst (i) ∼
N
(
ξ, σ2

t

)
to the dis-utility of supplying labor. ξst (i) is independent across time and across individuals. A

larger realization of ξst (i) reduces the dis-utility from work and, given wages, increases the household’s labor

supply. Equivalently, one may think of ξst (i) as a shock to the household’s endowment of time available to

supply labor.6 To see this, define leisure as lst (i) = ξst (i) − `st (i). Then one can rewrite the period utility

functional (3) as −e−γcst (i)/γ − ρe−lst (i)/ρ and the budget constraint as:

cst (i) + wtl
s
t (i) + qta

s
t+1(i) = wtξ

s
t (i) + ast (i) + Tt (4)

The LHS of (4) denotes the purchases of consumption, leisure and bonds by the household while the RHS

denotes the notional cash-on-hand - the value of the household’s time endowment along with savings net

of transfers. Henceforth, we will simply refer to this as cash-on-hand. We allow for the possibility that the

variance of ξ, σ2
t , vary endogenously with the level of economic activity as we discuss below.

2.2 Financial intermediaries

There is a competitive financial intermediation sector which trades actuarial bonds with households and

trades government debt. An intermediary only needs to repay households that survive between t and t+1.

5In economies with a distribution of nominal debt, unexpected inflation redistributes wealth between creditors and debtors.
Bhandari et al. (2018) and Nuño and Thomas (2019) discuss how optimal monetary policy takes this into account. Our
benchmark economy deliberately abstracts from this channel in order to highlight the other ways in which optimal monetary
policy differs in HANK and RANK economies. In Section 6, we replace real debt with nominal debt, bring this channel back
into play and show how our results change.

6We thank Gianluca Violante for suggesting this interpretation.
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The representative intermediary solves:

max
at+1,Bt+1

−ϑat+1 +Bt+1 s.t. − qtat+1 + Πt+1
Bt+1

1 + it
≤ 0

where Bt denotes government debt, at denotes claims held by households, Rt = 1+it
Πt+1

is the gross real

return on government debt, it is the nominal interest rate which is set by the monetary authority and Πt+1

denotes gross inflation between t and t+1. Zero profits require that the intermediary sells/buy bonds from

the households at a price qt = ϑ
Rt

and that ϑat+1 = Bt+1.

2.3 Final goods producers

A representative competitive final goods firm transforms the differentiated intermediate goods yjt , j ∈ [0, 1]

into the final good y according to the CES aggregator yt =
[∫ 1

0 yt(j)
1
λdj
]λ

. As is standard, the final good

producer’s demand for variety j is:

yt(j) =

(
Pt(j)

Pt

)− λ
λ−1

yt (5)

where λ
λ−1 is the elasticity of substitution between varieties.

2.4 Intermediate goods producers

There is a continuum of monopolistically competitive intermediate goods firms indexed by j ∈ [0, 1]. Each

firm faces a quadratic cost of changing the price of the variety it produces (Rotemberg, 1982). If firm j

hires nt(j) units of labor, it can only sell to the final goods firm the quantity:

yt(j) = ztnt(j)−
Ψ

2

(
Pt(j)

Pt−1(j)
− 1

)2

yt (6)

where zt denotes the level of aggregate productivity at date t. Firm j solves:

max
{P jt ,n

j
t ,y

j
t }∞t=0

∞∑
t=0

Qt|0

{
Pt(j)

Pt
yt(j)− (1− τ)wtnt(j)

}

subject to (5) and (6) where Qt|0 =
∏t
s=0R

−1
s . This yields the standard Phillips curve:

(Πt − 1) Πt =
λ

Φ (λ− 1)

[
1− zt

(1− τ)λwt

]
+

1

Rt

(
yt+1ztwt
ytzt+1wt+1

)
(Πt+1 − 1) Πt+1 (7)

2.5 Government

The monetary authority sets the interest rate on nominal government debt. The fiscal authority subsidizes

the wage bill of firms at a rate τ and rebates lumpsum taxes/transfers to all households equally. The

government budget constraint is given by:

Bt+1

1 + it
= PtTt + τPtwt

∫ 1

0
nt(j)dj +Bt (8)
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We further assume that government debt is in zero net supply, Bt = 0 for all t ≥ 0.

2.6 Market clearing

In equilibrium, the markets for the final good, labor and assets must clear:

yt = (1− ϑ)
t∑

s=−∞
ϑs−t

∫
i
cst (i)di

∫ 1

0
nt(j)dj = (1− ϑ)

t∑
s=−∞

ϑs−t
∫
i
`st (i)di

0 = at = (1− ϑ)
t∑

s=−∞
ϑs−t

∫
i
ast+1(i)di

where the last equation holds because Bt = 0 for all t.

2.7 Shocks

As mentioned previously, we abstract from aggregate risk but allow for a one time unanticipated aggregate

shock to the level of labor productivity z0 at date 0. We assume that the shock decays geometrically:

ln zt = %tz ln z0 for %z ∈ [0, 1).

3 Characterizing equilibria

As in Acharya and Dogra (2018), CARA preferences and normally distributed shocks imply that the

model aggregates linearly and the distribution of wealth does not directly affect the dynamics of aggregate

variables. We begin by describing optimal household decisions in equilibrium.

Proposition 1 (Household Decision Rules). In equilibrium, the optimal date t consumption and labor

supply decisions of a household i born at date s are:

cst (i) = Ct + µtx
s
t (i) (9)

`st (i) = ρ lnwt − γρcst (i) + ξst (i) (10)

where xst (i) = ast (i) + wt
(
ξst (i)− ξ

)
is demeaned cash-on-hand, Ct denotes aggregate consumption and µt

is the “marginal propensity to consume” (MPC) out of cash-on-hand. These evolve according to:

Ct = −1

γ
lnβRt + Ct+1 −

γµ2
t+1w

2
t+1σ

2
t+1

2
(11)

µ−1
t = 1 + γρwt +

ϑ

Rt
µ−1
t+1 (12)

Proof. See Appendix A

To understand the role of market incompleteness in explaining the behavior of consumption and la-

bor supply it is useful to compare equations (9) and (10) to their counterparts under complete markets.

7



Under complete markets, all households are insured against dis-utility shocks, i.e. the marginal utility of

consumption e−γc
s
t (i) and the marginal dis-utility of work e

1
ρ

(`st (i)−ξst (i))
are equalized across all states and

so:
∂cst (i)
∂ξst (i) = 0 and

∂`st (i)
∂ξst (i) = 1. Thus, since households’ consumption is insured, a household which draws a

temporarily higher dis-utility from working can reduce hours without experiencing a drop in consumption.

Instead, when markets are incomplete (9) and (10) imply that:

∂cst (i)

∂ξst (i)
= µtwt > 0 and

∂`st (i)

∂ξst (i)
= 1− γρµtwt < 1

For example, after a negative ξ shock (i.e., greater dis-utility from working), consumption declines instead

of remaining constant while labor supply does not fall quite as much as under complete markets. While

households use credit and labor market to insure themselves to some extent, these are not perfect substitutes

for Arrow securities, so agents are only able to partially insulate themselves from the shock. When the

dis-utility of labor rises, households would like to work less, but reducing hours as much as under complete

markets would cause consumption to drop too much. The optimal response to the shock is to use labor

supply for self-insurance, i.e. to work longer hours than under complete markets.7

Proposition 1 also states that the MPC out of cash-on-hand is the same across individuals; (12) describes

its evolution over time. Intuitively, consider a household i that receives an additional dollar at date t. They

will optimally choose to spend dcst (i) = µt of the dollar in the current period. Since consumption and leisure

are normal goods, they also reduce hours worked by γρµt, resulting in γρwtµt less income. Saving the

remaining 1 − µt(1 + γρwt), they find themselves with dast+1(i) = Rt
ϑ [1− µt(1 + γρwt)] next period out

of which they will consume dcst+1(i) = µt+1da
s
t+1(i). Finally, it is optimal to smooth consumption so that

dcst (i) = dcst+1(i) which yields µt = µt+1
Rt
ϑ [1− µt(1 + γρwt)]. Rearranging this expression yields equation

(12). Iterating forwards yields:

µt =
1∑∞

s=0Qt+s|t(1 + γρwt+s)

The MPC µt, which measures the pass-through from a fall in cash-on-hand to consumption, is increasing in

current and future interest rates and decreasing in current and future wages. This is because interest rates

and wages affect households’ ability to use the bond and labor markets, respectively, for self-insurance.

Consider a household who receives an unfavorable shock ξ < 0. The household responds by working less

today, borrowing in order to mitigate the decline in consumption, and working longer hours in the future.

A lower path of interest rates reduces the cost of borrowing, making it easy to self insure using the bond

market and lowering the responsiveness of consumption to changes in cash-on-hand. Similarly, higher

future wages reduce the (disutility) cost of working more hours in the future since even a small increase

in hours worked suffices to repay the same debt. This too lowers the sensitivity µt of consumption to

cash-on-hand.8

While the sensitivity of household consumption to shocks (µt) depends on the factors we have just

described, the average level of consumption in the economy Ct depends on interest rates relative to impa-

7As already mentioned, the model can be re-interpreted as one with an idiosyncratic time-endowment shock and utility
from leisure time. In this interpretation, both consumption and leisure time stay constant under complete markets, while both
co-vary with the idiosyncratic shock under incomplete markets.

8While Acharya and Dogra (2018) already discuss how the MPC responds to future real interest rates, the path of wages
has no effect on the MPC in their paper because their environment features inelastic labor supply. In this model, however,
since households can choose how much labor to supply, they use this additional margin to self-insure.
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tience and households’ desire for precautionary savings, as shown in equation (11). Absent idiosyncratic

risk, σt = 0, (11) is a standard Euler Equation; higher real interest rates relative to household impatience

raise consumption growth. The last term in (11) reflects precautionary savings. Given (9), the conditional

variance of date t + 1 consumption of household i is Vt
(
cst+1(i)

)
= µ2

t+1w
2
t+1σ

2
t+1. To the extent that

consumption risk is positive and households are prudent (γ > 0), households save more than in a riskless

economy for the same interest rate, i.e. they choose a steeper path of consumption growth. The variance

of consumption, in turn, depends on both the variance of cash-on-hand Vt
(
xst+1(i)

)
= w2

t+1σ
2
t+1, and the

pass-through of cash-on-hand risk into consumption risk measured by the (squared) MPC µ2
t+1.

Determination of yt In a symmetric equilibrium, aggregating (6) across firms, we have:

yt = ztnt −
Ψ

2
(Πt − 1)2 yt (13)

Aggregating labor supply (10) across currently alive households and using goods and labor market clearing:

nt = ρ lnwt − γρyt + ξ (14)

Combining the two equations above, we have:

yt = zt
ρ lnwt + ξ

1 + γρzt + Ψ
2 (Πt − 1)2 (15)

where Ψ
2 (Πt − 1)2 denotes the resource cost of inflation - higher inflation reduces output.

Deriving the aggregate IS equation Imposing goods market clearing in (11) yields the aggregate IS

equation which describes the relation between output today and tomorrow:

yt = yt+1 −
1

γ
lnβ

(
i+ it
Πt+1

)
−
γµ2

t+1w
2
t+1σ

2
t+1

2
(16)

Time varying σt Following McKay and Reis (2019), we allow for the variance of ξ shocks to vary

endogenously with economic activity so that the model generates cyclical changes in the distribution of

earnings risks. In particular, we assume that σ2
tw

2
t = σ2w2e2φ(yt−y) where y denotes steady state output

and φ = ∂ lnV(x)
∂y is the constant semi-elasticity of the variance of cash-on-hand w.r.t output. This flexible

specification allows the variance of cash-on-hand Vt(x) to be either increasing in yt (procyclical risk), when

φ > 0; decreasing in yt (countercyclical risk), when φ < 0; or independent of the level of yt (acyclical risk)

when φ = 0.

3.1 Steady state

We now characterize allocations in the zero inflation steady state. We normalize the level of productivity

z = 1 in steady state. Imposing Πt = Πt+1 = 1 in (7) requires that steady state wages w = 1
λ(1−τ) . Given

9



this wage, steady state output is y = ρ lnw+ξ
1+γρ . Imposing steady state in (16) and (12) yields:

R = β−1e−
Λ
2 and µ =

1− β̃
1 + γρw

(17)

where Λ = γ2µ2w2σ2 denotes the consumption risk faced by households in steady state (scaled by the

coefficient of prudence) and β̃ = ϑ
R is the steady state price of an actuarial bond. Observe that the

presence of uninsurable risk (Λ > 0) implies that the equilibrium real interest rate R < β−1. Furthermore,

the steady state distribution of cash-on-hand x in the population is given by:

F (x) = (1− ϑ)
∞∑
s=0

ϑsΦ

(
x

wσ
√
s+ 1

)
(18)

where Φ(·) is the cdf of the standard normal distribution. This follows since, conditional on survival, x is

a random walk with no drift and a variance of w2σ2 in steady state.

3.2 Linearized demand block

The demand block of the economy, given a path of interest rates, can be described by the IS equation

(16), the MPC recursion (12) and the definition of GDP (15). Before analyzing optimal policy, it is useful

to compare the dynamics of this HANK economy to its RANK counterpart. It is easiest to compare the

first-order Taylor expansion of the equations describing aggregate dynamics in the neighborhood of the

zero inflation steady state, which are:9

ŷt = Θŷt+1 −
1

γ
(it − πt+1)− 1

γ
Λµ̂t+1 (19)

µ̂t = −(1− β̃)
γρw

1 + γρw

ŵt
w

+ β̃ (µ̂t+1 + it − πt+1) (20)

ŷt =
ρ

1 + γρ

ŵt
w

+
y

1 + γρ
ẑt (21)

where Θ = 1− Λφ
γ . In RANK, there is no idiosyncratic risk, i.e. σ2 = 0 which implies Θ = 1 and Λ = 0, so

that (19) becomes the standard RANK IS curve. As discussed in Acharya and Dogra (2018), uninsurable

idiosyncratic risk changes the IS equation in two ways. First, it can introduce either discounting (Θ < 1)

or compounding (Θ > 1) depending on the cyclicality of risk. If risk is acyclical, φ = 0, then Θ = 1 as

in the RANK IS equation. If risk is procyclical φ > 0 then Θ < 1 and there is discounting in the IS

equation. This is because in this situation low future output implies low idiosyncratic income risk, hence

(all else equal) a fall in precautionary savings that mutes down the effect of the forthcoming recession

on current aggregate demand. The opposite occurs when risk is countercyclical (φ < 0), in which case

Θ > 1 –that is, we have compounding in the IS equation–, because then the impact of a future recession

on current aggregate demand is magnified by the rise in precautionary savings. Second, the strength of

the precautionary motive depends not only on the level of income risk but also on its pass-through to

consumption risk, i.e. µ̂t+1, which in turn depends of the future path of real interest rates and wages. By

committing to a lower path of real rates or a higher path of wages, monetary policy can lower the strength

9We linearize yt and wt in levels while all other variables are log-linearized.
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of the precautionary savings motive at any level of income risk.

Equations (7), (12), (15) and (16) summarize the optimality conditions of the private sector and define

the implementability constraints faced by the central bank. We may now turn to its objective function.

4 Objective function of the planner

We assume that the planner maximizes a utilitarian criterion; at any date t the planner assigns equal

weights to the welfare of all households currently alive and a weight of βs−t on the welfare of cohorts

who will be born at dates s > t. Given these Pareto weights, the planner’s objective can be written as

maximizing
∑∞

t=0 β
tUt where Ut, the period t felicity function of the planner is simply the average utility

of all surviving agents:10

Ut = −(1− ϑ)

0∑
s=−∞

ϑ−s
∫
u
(
cst (i), `

s
t (i); ξ

s
t (i)
)
di,

This expression for Ut feature the full cross-sectional distribution of agents and is in general not tractable.

Fortunately, it can be greatly simplified by exploiting our CARA-Normal structure again.

Proposition 2 (Social Welfare Function). The period felicity function Ut can be written as

Ut = u(yt, nt; ξ)Σt

where

Σt = (1− ϑ)

0∑
s=−∞

ϑ−se
1
2
γ2σ2

c (t,s)

and σ2
c (t, s) is the date-t cross-sectional dispersion of consumption amongst the surviving households from

the cohort born at date s ≤ t, i.e., cst (i) ∼ N
(
yt, σ

2
c (t, s)

)
.

Proof. See Appendix B.2.

Intuitively, u(yt, nt; ξ) is the notional flow utility of the representative agent, i.e., the period utility

functional (3) evaluated at aggregate consumption yt, aggregate labor supply nt, and mean labor dis-

utility ξ. Σt can be thought of as the welfare cost of inequality, and is increasing in the within cohort

dispersion of consumption. In a riskless economy, there would be no consumption dispersion and hence

Σt = 1 at all dates. However, in the presence of risk, Σt > 1, reducing welfare relative to this representative

agent benchmark. Recall that u(·) < 0 and so higher Σt reduces welfare.

10Note that the planner discounts felicity at the same rate as the households would themselves. Consider a change in
allocations which reduces the date t felicity of cohort s by dut and increases their date t + 1 felicity by dut+1, while keeping
the felicity at all other dates and for all other agents the same. A cohort s individual will be indifferent regarding this change
if dut = βϑdut+1. From the planner’s perspective this changes aggregate welfare by −ϑs−tdut + βϑs+1−tdut+1. Thus, the
planner will be indifferent about this change if and only if the individuals themselves are indifferent. As discussed by Calvo
and Obstfeld (1988), assuming that the planner and the households share the same rate of time preference ensures that social
preferences are time-consistent, so that the first-best intertemporal allocation of consumption across cohorts does not change
over time. This does not prevent other from of time inconsistencies from arising in decentralized equilibrium (as shown below),
but these are unrelated to the form of social preferences.
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Appendix B.2.1 shows that the evolution of Σt for t > 0 can be written as:

ln Σt =
1

2
γ2µ2

tw
2
t σ

2
t + ln [1− ϑ+ ϑΣt−1] (22)

with

ln Σ0 =
1

2
γ2µ2

0w
2
0σ

2
0 + ln [1− ϑ+ ϑΣ−1] + ln

 1− ϑe
Λ
2

1− ϑe
Λ
2

(
µ0

E−1µ0

)2


︸ ︷︷ ︸

effect of date 0 surprise / URE

(23)

where Σ−1 = Σ = (1−ϑ)e
Λ
2

1−ϑe
Λ
2

is the steady state Σ.11 Intuitively, higher cash-on-hand risk w2
t σ

2
t and a higher

pass-through µt both tend to increase consumption inequality. In addition, consumption inequality inherits

the slow moving dynamics of wealth inequality, as can be seen from the presence of Σt−1 in (22).12

Equation (23) shows that the relation between µ0 and Σ0 is different than the relation between µt

and Σt at all other dates. This can be explained intuitively as follows. At the beginning of date 0, the

distribution of wealth a is at its steady state level: some households have positive net wealth and some

are debtors. Since savers and debtors have different unhedged interest rate exposures (UREs) in the sense

of Auclert (2019), an unanticipated change in interest rates affects consumption inequality. Suppose that

at date 0, the central bank chooses a policy path that implements a transitory drop in the real interest

rate. The lower interest rates benefit poor debtors, reducing their interest payments and allowing them to

increase their consumption. By the same token, a lower path of rates reduces the interest income of rich

savers, causing them to reduce consumption. In other words, lower rates reduce the MPC out of wealth

(µ0 ↓) which reduces consumption inequality and hence Σ0.

Importantly, an anticipated cut in rates would not reduce inequality as much as this unanticipated cut.

If wealthy agents at date t− 1 anticipated lower rates at date 0, they would save more in order to insure

a higher level of consumption at date 0. Equally, the poor debtors would borrow more at date -1 knowing

that their debt would be less costly to repay. For this reason, what reduces Σ0 through this channel is not

a fall in µ0 per se but a fall in µ0 relative to its expected value E−1µ0, as can be seen from the last term

in (23). To be clear, anticipated cuts in rates do reduce inequality as discussed earlier: lower µt reduces

Σt in equation (22). But there is an additional effect that comes from a surprise fall in rates. In our

environment, since we do not have aggregate shocks (except for the unanticipated shock at date 0) and the

fact that the Ramsey planner is only allowed to re-optimize at date 0 imply that this additional affect of

an unanticipated change in µ can only occur at date 0. More generally, in an environment with aggregate

shocks, surprise changes in µ would have this effect on any date, for example when there is an aggregate

productivity shock and zt 6= Et−1zt.

Of course, this one-off redistribution would not operate in the absence of wealth inequalities at time

0. If the economy were starting with equal (zero) wealth for all households, instead of starting from the

invariant distribution, then only the first effect would play out and the equilibrium value of consumption

11We are assuming that the economy is in steady state at date −1.
12Note that within-cohort consumption dispersion σ2

c (t, s) in general rises without bounds as the cohort ages (i.e., as
t − s → ∞), due to the cumulated effect of idiosyncratic shocks on the distribution of cash-on-hand. However, since every
cohort gradually shrinks in size, while newborn cohorts have little consumption dispersion (i.e., σ2

c (t, t) = µ2
tw

2
tσ

2
t ), Σt does

not necessarily blow up. In fact, provided that the survival rate ϑ < e−Λ/2, Σt is stationary.
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dispersion at time zero would simply be:

ln Σ0 =
1

2
γ2µ2

0w
2
0σ

2
0. (24)

5 Optimal monetary policy

The planner chooses sequences {wt,Πt, µt,Σt, it, nt}∞t=0 to maximize
∑∞

t=0 β
tu
(
yt, nt; ξ

)
Σt subject to the

aggregate Euler equation (16), agggregate labor supply (14), the evolution of µt (12), the Phillips curve

(7), the evolution of Σt (22)-(23) and the relationship between GDP and wages (15). In the RANK version

of our economy, σ = 0 and (22) is replaced by Σt = 1 for all t. Appendix D presents the Lagrangian

associated with this problem along with the first order necessary conditions for optimality.

5.1 Long run outcomes under the optimal Ramsey plan and the payroll subsidy

To proceed further, we need to take a stand on the value of the payroll subsidy τ . In RANK, if we imposed

a production subsidy to eliminate the distortions caused by market power, zero inflation is optimal in the

long run in the absence of aggregate shocks. This need not be true in our HANK economy where σ > 0

and so Σt is endogenous. As in the standard NK model, the Phillips curve (7) implies a long-run trade-off

between inflation and economic activity:

(Π− 1)Π =
λ

(1− β̃ϑ−1)(1− λ)Ψ

[
1− 1

(1− τ)λw

]
(25)

The presence of a long-run tradeoff implies that the policymaker can move wages (or equivalently output)

above or below its flexible-price level by persistently deviating from price stability. While it is not optimal

to do so in RANK, it may in fact be optimal in HANK because the level of economic activity affects both

the amount of income risk households face w2
t σ

2
t and their ability to self-insure against this risk, µt. For

example, if income risk is countercyclical, Θ > 1 the planner may want to create inflation to raise wages

(and output) above the level consistent with productive efficiency (w > 1), and thereby reduce income risk.

To make our results as comparable as possible to the classic NK literature on optimal monetary policy,

we eliminate this motive for deviating from price stability by introducing an appropriately chosen payroll

subsidy τ . To see how this works, consider the case with countercyclical risk in which the planner wants

to implement a high after-tax wage w > 1 in the long run in order to reduce inequality. From (25) it is

easy to see that if τ = λ−1
λ (the standard subsidy used in the RANK literature, such a high level of wages

entails a marginal cost greater than 1 which implies positive long run inflation Π > 1. However, if the

payroll subsidy is larger, the steady state marginal cost can be brought down to 1, consistent with zero

inflation in the long run.

More generally, Appendix D.1 shows that in the presence of an appropriately chosen payroll subsidy to

ensure zero inflation Π = 1, the planner’s first-order condition for wages - which states that the net-benefit
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of higher economic activity must be zero at an optimum - becomes:13

Ω︸︷︷︸
benefit from
reduction of
inequality

≡ Λ

(1− β̃)(1− Λ)︸ ︷︷ ︸
reduction of inequality

due to low interest rates

+
Θ− 1

(1− β̃)(1− Λ)︸ ︷︷ ︸
reduction of inequality

due to high output

=
w − 1

1 + γρw︸ ︷︷ ︸
cost of deviating

from productive efficiency

(26)

Equation (26) implies that the steady state wage and payroll subsidy consistent with the optimality of zero

long-run inflation satisfy:

w =
1 + Ω

1− γρΩ
and τ =

λ− 1

λ
+

1 + γρ

λ

Ω

Ω + 1
(27)

Ω summarizes the benefit from a reduction in consumption inequality due to higher economic activity. The

planner has the option to reduce interest rates and raise output above the flexible price level. Equation

(27) states that at an optimum, the marginal benefit of lower inequality due to lower rates and higher

output, Ω, must equal the marginal cost of distorting productive efficiency by raising output (and wages)

above the flexible price level which is proportional to w − 1, the negative of the labor-wedge.

Absent uninsurable risk (Λ = 0,Θ = 1), there is no inequality and so there is no benefit from higher

economic activity in terms of reducing inequality, Ω = 0. Consequently, in RANK, optimal policy equates

the cost of deviating from productive efficiency in steady state to 0 and hence w = 1 in the long run. In

this case, Π = 1 in steady state can be implemented with the standard RANK subsidy τ = λ−1
λ (from eq.

(27)) which removes the monopolistic distortion.

In the presence of risk (Λ > 0), optimal monetary policy seeks to reduce consumption inequality. This

can be accomplished both by reducing labor income risk w2
t σ

2
t and by making it easier for households to

self-insure against this risk (by reducing µt). Thus the policymaker may want to deviate from productive

efficiency and price stability, both to facilitate self-insurance and to reduce income risk; equation (26)

shows that Λ and Θ− 1 represent the strength of these two motives respectively.

Consider first the self-insurance channel. When Θ = 1, income risk is acyclical: the level of economic

activity does not affect household income risk. In this case, deviating from price stability and productive

efficiency (say by implementing a wage w > z = 1) delivers no benefits in terms of lower income inequality

(second term on the LHS of (26) is zero). However, lowering real interest rates still makes it easier for

households to smooth consumption by borrowing and reduces the pass-through from income shocks into

consumption, measured by the first term of the LHS, reducing consumption inequality. Lower interest

rates and the associated higher level of economic activity also have a cost, since they distort output and

employment above the productively efficient level. Optimal policy equates these costs and benefits. So,

even with acyclical risk, Ω > 0, and output is optimally above productive efficiency in the long run. Since

higher wages increase the firms marginal cost, it takes a higher payroll subsidy than in RANK τ > λ−1
λ to

implement Π = 1 in steady state.

Next, consider the income risk channel. When Θ > 1, income risk is countercyclical: higher economic

activity lowers income risk. In this case, stimulating output above its productively efficient level lowers

consumption inequality even for a fixed µ; in addition, the lower interest rates necessary to implement

13Note that here there is no term representing the cost of inflation, precisely because we assume that whatever the steady
state level of wages, the appropriate payroll subsidy is chosen so that firms’ marginal costs are consistent with zero inflation
in the long-run, i.e., (25) holds with Π = 1.
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higher output reduce µ further reducing consumption inequality. Thus, the benefit from higher output is

even larger than if Θ = 1 - both LHS components in (26) are positive and Ω is larger - and so output (and

wages) must be even further above the productive efficient level than if Θ = 1. Again, it takes a higher

payroll subsidy τ > λ−1
λ to implement Π = 1 in steady state.

In contrast, when risk is procyclical (Θ < 1), the effect of higher economic activity and lower rates on

consumption inequality are ambiguous. While lower rates decrease the passthrough from income shocks to

consumption (Λ > 0), they also raise output which now increases income risk (Θ− 1 < 0). For sufficiently

procyclical risk, the second effect dominates, Ω < 0 and the optimal steady state level of output (and

wages) is below the productively efficient level. In this case, it takes a lower payroll subsidy than λ−1
λ to

implement Π = 1 in steady state. For mildly procylical risk, the self-insurance channel dominates and

Ω > 0 with w > 1 in steady state. The self-insurance channel is perfectly balanced by the income risk

channel if 1 − Θ = Λ in which case Ω = 0; higher economic activity and low interest rates have no first

order effect on consumption inequality and in this case, the planner does not wish to distort productive

efficiency in steady state, setting w = 1. The Ω = 0 case will be a useful benchmark in what follows.

Remark 1 (Comparison with Zero-Liquidity Limits). The self-insurance channel is absent in models which

feature incomplete markets but impose the zero liquidity limit such as Bilbiie (2019a,b); Ravn and Sterk

(2017); Challe (2020) and others. Zero liquidity implies that in equilibrium, the passthrough from income

risk to consumption risk is invariant to policy since it always equals 1. Instead, our analysis emphasizes

that in HANK economies interest rate policy affects welfare not just via its effect on the level of economic

activity, as in RANK, but also by affecting the ease with which households can self-insure.

As is standard in the NK literature, a useful benchmark is the level of output under flexible prices. In

a flexible-price version of the HANK economy, we would have wt = wzt at all times, and output would be

ynt = zt
ρ (lnw + ln zt) + ξ̄

1 + γρzt

while the efficient level of output is:

yet = zt
ρ ln zt + ξ̄

1 + γρzt

In RANK, the flexible-price and efficient levels of output coincide: yet = ynt . This is also true in HANK with

Ω = 0. But in general, when Ω 6= 0, the flexible-price and efficient levels of output no longer coincide. With

strongly procyclical risk Ω < 0, the flexible-price level of output ynt is always below its efficient level yet ,

while with mildly procyclical or countercyclical risk Ω > 0, ynt is always above yet . Using these definitions,

we can express the linearized version of the Phillips curve (7) as:

πt =
β̃

ϑ
πt+1 + κ (ŷt − ŷnt ) (28)

where κ =
(

1+γρ
ρΨ

)
λ
λ−1 , ŷet = ρ+1

1+γρ ẑt and ŷnt = ρ+y
1+γρ ẑt.

5.2 Calibration

While our results are primarily analytical, when plotting IRFs we parameterize the model as follows.

We choose ξ̄ to normalize aggregate steady state output y∗ to 1 in the HANK economy with Ω = 0
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(equivalently, in the RANK economy). We calibrate the model to an annual frequency and choose the

standard deviation of ξst (i), σ, so that the standard deviation of income in steady state equals 0.5.14 This

is in line with Guvenen et al. (2014) who using administrative data find the standard deviation of 1 year

log earnings growth rate to be slightly above 0.5. We set the slope of the Phillips curve κ = 0.01, and the

elasticity of substitution between varieties λ
λ−1 to 10, implying a 10 percent steady state markup, λ = 1.1.

We set the coefficient of relative prudence for the median household, − cu′′′(c)
u′′(c) = γ, to be 3, within the range

of estimates in the literature (see e.g. Cagetti (2003); Fagereng et al. (2017); Christelis et al. (2015)). We

set r = 4%. ρ can be interpreted as the Frisch elasticity of labor supply for the median household; we set it

equal to 1/3, within the range of estimates from the micro literature. We set the persistence of the shock

%z = 0.8. Following Nisticò (2016), we set ϑ = 0.85. Finally, we consider two values for the cyclicality of

income risk: φ = γ (which implies Ω = 0), and φ = −3 (which implies Ω > 0 and countercyclical risk).

Finally, we set ξ = 1 + γρ to normalize the efficient level of output in steady state to 1.

5.3 Dynamics under optimal monetary policy under RANK

As is common in the NK literature, we characterize optimal policy by linearizing the first order conditions

arising from the planner’s Lagrangian (presented in Appendix E). It is useful to compare this characteri-

zation to optimal policy in a RANK version of our economy.

Lemma 1 (Optimal monetary policy in RANK). In RANK (Λ = 0,Θ = 1), output and inflation {ŷt, πt}∞t=0

under optimal policy satisfy

ηt = ŷt − ŷnt (29)

ηt = ηt−1 −
λ

λ− 1
πt (30)

πt =
β̃

ϑ
πt+1 + κ (ŷt − ŷnt ) (31)

where ηt is the (normalized) multiplier on the Phillips curve (7) and is defined in Appendix E.1.

Proof. See Appendix E.1.

Combining (29)-(30), we see that optimal policy in RANK satisfies the standard target criterion:15

(ŷt − ŷnt )−
(
ŷt−1 − ŷnt−1

)
+

λ

λ− 1
πt = 0 (32)

where ŷ−1 = ŷe−1 = 0. Combining this with (31) and using the fact that ŷnt = ŷet in RANK, we see that the

economy features a divine coincidence: it is both feasible and optimal for monetary policy to set ŷt = ŷet

and πt = 0 at all dates and states. Given the appropriate steady state subsidy τ = λ−1
λ , the flexible-price

level of output, which is also consistent with zero inflation, maximizes social welfare –there is no tradeoff

between implementing the efficient level of output and price stability.

14The standard deviation of income is given by (1− γρµw)wσ. We calibrate all parameters except the cyclicality of income
risk to an economy with Ω = 0, which implies w = 1.

15See for example, chapter 5 in Gaĺı (2015).
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5.4 Dynamics of monetary policy under HANK

In HANK, the planner has an additional objective relative to RANK: in addition to stabilizing inflation

and keeping output close to its efficient level, she wants to keep inequality Σt as low as possible. The

innovations to inequality depend on consumption risk µ2
tσ

2
t which in turn depends on both income risk σ2

t

and the pass-through µ2
t . This can be seen from the linearized version of (22) which is given by:

Σ̂t

Σ
=


γ (1−Θ) ŷt + Λµ̂t︸ ︷︷ ︸

consumption
risk

+ ϑ
βR

Σ̂t−1

Σ for t > 0

γ (1−Θ) ŷ0 + Λµ̂0 + ϑΛΣ
1−ϑ µ̂0 for t = 0

(33)

One way to reduce consumption inequality is to affect the level of output: with procyclical risk (Θ < 1)

lower output directly reduces income risk (Θ > 1) faced by households while with countercyclical risk,

a higher level of output is necessary to reduce income risk. An alternative path to lower consumption

inequality is to commit to a lower path of interest rates which reduces pass-through from income to

consumption risk.

However, the planner only has one instrument - the nominal interest rate. Lowering the nominal interest

rate lowers the pass-through from income risk to consumption risk (measured by µt) but increases output.

If risk is countercyclical Θ > 1, then this too reduces consumption risk. However, if risk is procyclical

Θ < 1, then it increases income risk, leaving the overall effect on consumption risk unclear. To see what

combinations of {ŷt, µ̂t} that the planner can implement with some path of nominal interest rates, combine

the IS equation (19), µ recursion (20) using the definition of GDP (21) and solve forwards:

γ
[
1 +

(
1− β̃

)
Ω
]
ŷt + µ̂t =

(
1− β̃

)
(1 + Ω)

γy

y + ρ

∞∑
s=0

β̃s (1− Λ)s ŷnt+s ≡ Γt (34)

where Γt is an exogenous process driven by the sequence {ynt }, which in turn depends solely on {ẑt}.

5.4.1 HANK with Ω = 0

To understand the trade-offs facing the planner, it is useful to consider the special case in which Ω = 0

(or equivalently 1−Θ = Λ). Recall from (26) that this is the case in which the zero inflation steady state

features productive efficiency (Π = 1, w = 1). This benchmark features mildly procyclical risk: while this

may not be the empirically relevant case, it is a useful benchmark because in this case, the constraint

on the planner’s ability to affect consumption inequality is particularly severe. Recall that when risk is

procyclical, the effect of expansionary monetary policy on consumption inequality is generally ambiguous:

higher output reduces the level of income risk, but lower interest rates reduces the passthrough from income

to consumption risk. When Ω = 0, both these effects exactly cancel each other out and consumption is

invariant to monetary policy to first-order. To see this, note that (33) becomes:

Σ̂t

Σ
=


Λ(γŷt + µ̂t) + ϑ

βR
Σ̂t−1

Σ for t > 0

Λ(γŷ0 + µ̂0) + ϑΛΣ
1−ϑ µ̂0 for t = 0

(35)
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while (34) becomes:

γŷt + µ̂t = Γt (36)

Clearly, in this case, the planner cannot affect the evolution of consumption risk for dates t > 0 which is

solely driven by exogenous shocks {ynt }t≥0 denoted Γt in (36). Plugging in (36) into (35) shows that the

evolution of inequality after date 0 is governed completely by the exogenous sequence {Γt}:

Σ̂t

Σ
=


ΛΓt + ϑ

βR
Σ̂t−1

Σ for t > 0

ΛΓ0 + ϑΛΣ
1−ϑ µ̂0 for t = 0

(37)

Again, while a cut in interest rates lowers µ̂t, it increases output ŷt and hence income risk, leaving con-

sumption risk unchanged. A higher path of aggregate productivity {ẑt} (which implies a higher path of

{ŷnt }) increases consumption risk in this case and monetary policy cannot do anything to prevent it: higher

productivity tends to increase output and hence the level of income risk that households face but tighter

monetary policy, which would be needed to forestall the rise in output, tends to make µ higher which itself

increases consumption risk.

Even though changes in interest rates (and hence µ) cannot affect consumption inequality after date

0, the planner can affect consumption inequality at date 0 (and thus at all subsequent dates, because Σ̂t

depends on Σ̂t−1). This is because monetary policy changes after date 0 are anticipated while the date

0 change in monetary policy is unanticipated. As described in section 4, an unanticipated cut in interest

rates (and hence µ0) effectively redistributes from savers to borrowers. To be clear, since we have an

economy where agents hold real (and not nominal) claims, this is not because inflation redistributes date

0 real wealth from savers to borrowers: the date 0 distribution of real wealth is unaffected.16 But the

distribution of consumption is affected, as rich savers find that they receive a lower return on their bond

holdings than they had anticipated while poor debtors find that their interest payments are smaller than

they had expected.

In sum, while the planner seeks to reduce consumption inequality in addition to stabilizing prices and

the gap output and its flexible-price level, this is not possible after date 0 since (to first order) the evolution

of consumption inequality is unaffected by policy. Effectively, then after date 0, the planner faces the same

trade-off between output and inflation as in the RANK economy. At date 0, it is possible to reduce

consumption inequality via a surprise cut in interest rates which exploits households’ unhedged interest

rate exposure. Thus, the planner has an additional motive to cut rates at this date. This is reflected in

the optimal design of monetary policy, as we now demonstrate.

Proposition 3 (Optimal monetary policy with Ω = 0). Output and inflation {ŷt, πt}∞t=0 under optimal

16Section 6 discusses the case where households hold nominal debt.
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policy satisfy

ηt =

α (ŷt − δŷnt − χ) for t = 0

ŷt − ŷnt for t ≥ 1
(38)

ηt =
1

βR
ηt−1 −

λ

λ− 1
πt (39)

πt =
β̃

ϑ
πt+1 + κ(ŷt − ŷnt ) (40)

where α > 1, 0 < δ < 1 and χ > 0 are defined in Appendix E.1 and ηt is the (normalized) multiplier on the

Phillips curve (40).

Proof. See Appendix E.1.

Combining (38) and (39), we get the following target criterion for all dates t > 1:

(ŷt − ŷnt )− 1

βR

(
ŷt−1 − ŷnt−1

)
+

λ

λ− 1
πt = 0 (41)

Comparing equations (32) and (41) shows that when Ω = 0 the target criteria in HANK and RANK for

t > 0 are almost identical (under complete markets we have βR = 1 so the former collapses to the latter).

This reflects that fact that monetary policy cannot affect consumption risk at dates t > 0, and thus faces

the same tradeoff as RANK. But this is not true at t = 0, where the target criterion is:

ŷt − δŷnt +
1

α

λ

λ− 1
πt = χ (42)

Equation (42) shows that at time 0 optimal policy in HANK deviates from that in RANK in three ways.

First, it is optimal to create a boom at date 0. To see this most clearly, suppose that productivity is at its

steady-state value, so ŷnt = ẑt = 0 for all t. Even in this case, it is optimal to move away from ŷ0 = π0 = 0

and implement an output boom ŷ0 > 0 which is accompanied by inflation π0 > 0. This is because, as

discussed earlier, the evolution of Σt is different at date 0, compared to all other dates. A surprise cut

in interest rates at date 0 reduces consumption inequality–as is summarized by the last term of (37) for

t = 0. The constant term χ > 0 in the date-0 target criterion (42) reflects exactly this benefit from cutting

rates and reducing inequality at date 0. This is not because it is infeasible to set ŷt = ŷet = 0 and πt = 0

in the HANK economy; this remains feasible, and it remains costly for the planner to deviate from this

benchmark. But the costs of doing so are balanced by benefits of reducing consumption inequality via

a surprise interest rate cut. Note that the desirability of exploiting households’ unhedged interest-rate

exposure for redistribution (the URE channel) makes the Ramsey plan time-inconsistent. Suppose that

the planner has been following a Ramsey plan since t = −∞ and the economy has converged to steady

state. Given the opportunity to deviate from this plan at date 0, the planner would do so, lowering interest

rates temporarily - i.e. the continuation of a Ramsey plan is not a Ramsey plan.

Second, whereas in RANK, optimal policy seeks to move output ŷt one-for-one with its efficient level

ŷet (= ŷnt in RANK), which fluctuates due to productivity shocks, under HANK it is optimal to track the

flexible-price level of output ŷnt less than one-for-one. In other words, 0 < δ < 1 in (42). Figure 1 depicts

the optimal level of date 0 output as a function of flexible-price level of output ŷnt in HANK and RANK.
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Figure 1. Optimal level of ŷ0 in HANK (Ω = 0) and RANK absent markup shocks

First, suppose, ŷn0 = 0. In RANK, it is optimal to track this and to set ŷ0 = ŷn0 = 0. But in HANK there

is a first order benefit from cutting interest rates to reduce inequality, creating a boom in output, until

the marginal benefit of an additional reduction in nominal rates is outweighed by the cost of distorting

output further above its efficient level (point A in Figure 1). Next, suppose that ŷn0 > 0. Again, the

RANK planner sets ŷ0 = ŷn0 (denoted by point B in the Figure). If the HANK planner were also to set

ŷ0 = ŷn0 > 0, this would already generate a surprise fall in interest rates, which would reduce inequality to

some extent. The HANK planner still perceives some additional benefit to reducing inequality further but

the marginal benefit is smaller since inequality has already been reduced. Consequently, it is not optimal

to deviate as much from productive efficiency as in the case ŷn0 = 0, and so the gap between points C and

B is smaller than that between points A and the origin. Conversely, when ŷn0 < 0, tracking the flexible

price allocation would entail a surprise interest rate increase which would increase consumption inequality.

The benefit of deviating from this RANK allocation is larger in this case and therefore it is optimal to

tolerate a larger deviation from production efficiency: the gap between points D and E is larger than that

between point A and the origin.

Finally, the date 0 target criterion puts less weight on inflation relative to output α > 1. This is because,

given the constraint on monetary policy imposed by (36), the evolution of consumption inequality depends

directly on the sequences {ŷt, ŷnt }∞t=0 but not on inflation. Thus, the target criterion puts relatively less

weight on inflation and more on output, which attains heightened importance due to its effects on inequality.

Figure 2 shows the dynamics of optimal policy absent shocks in the economy with Ω = 0. The policy

maker cuts nominal interest rates at date 0 (panel d), which generates a fall in real rates and in the

passthrough from income risk to consumption risk µt (panel e). The fall in consumption risk in turn

reduces consumption inequality on impact (panel c), after which it gradually returns to steady state. The

fall in interest rates also generates a boom in output (panel a) and inflation (panel b). Since there are no

shocks to the efficient level of output in this scenario, both the boom in output and increase in inflation

are in themselves undesirable from an efficiency perspective, even if they are a price worth paying for

a persistent reduction in inequality. In order to arrest the increase in inflation, the planner commits to

tighten policy, generating a fall in output and deflation, from date 1 onwards. Since firms are forward

looking, a commitment to lower inflation in the future mitigates the date 0 inflation caused by the boom
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Figure 2. Time Inconsistency: Optimal dynamics absent shocks. All variables are plotted as percentage deviations from
their steady state values.

in output.

Next, we discuss the optimal dynamic response of the economy to a negative productivity shock. Figure

3 shows the impulse responses to a negative productivity shock under optimal policy in the HANK and

RANK models, defined as the difference between outcomes with and without the shock. That is, for any

variable of interest x, we plot xt|z0=−0.01−xt|z0=0.17 In the RANK economy (red lines), the planner allows

output to fall (panel a) in line with the natural rate of output, keeping the output gap (panel f) and

inflation (panel b) equal to zero. Implementing a fall in output requires an increase in nominal interest

rates (panel d), but since agents do not face idiosyncratic risk, this has no effect on consumption inequality

which is always zero.

In the HANK economy (blue lines), a sharp increase in interest rates would increase the passthrough

from income to consumption risk and would persistently increase inequality. To avoid this, the planner

actually cuts interest rates at date 0, dampening the increase in passthrough µt and the increase in

inequality. Output does not fall as much as the flexible price level of output (as shown by the output gap

in panel f), and as a result inflation increases at date 0 - even relative to the scenario absent shocks. This

increase in inflation is not costless. To mitigate its impact, the planner commits to a slightly higher path

of interest rates, and lower output and inflation, from date 1 onwards.

Understanding the forces generating time inconsistency The difference in the optimal target

criterion than at all other dates arises only because there is existing wealth inequality at the start of date

0. Suppose that there is an equalization of asset positions across all households at the beginning of date 0.

17In the RANK economy, the impulse response is identical to the response of the economy to the shock, since in the absence
of shocks, optimal policy keeps all variables at their steady state values and all deviations from steady state equal zero. This
is not true in the HANK economy, where (as shown in Figure 2) the Ramsey planner deviates from steady state even absent
shocks.
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Figure 3. HANK (Ω = 0) vs RANK optimal response to a negative productivity shock. Red line denotes RANK while
blue line represents HANK (Ω = 0). All variables are plotted as percentage deviations from their steady state values. In panel
f), we plot output gap as the difference between yt and ynt normalized by steady state y: (ŷt/y)− (ŷnt /y).

In this scenario, the URE channel is inoperative, as discussed in section 4 and surprise changes in µ0 have

no additional effect relative to anticipated changes. When there is existing wealth inequality, a surprise cut

in the path of interest rates (lower µ0) lowers the consumption of rich savers and raises the consumption

of poor borrowers, reducing consumption inequality. Consequently, at t = 0, the planner deviates from the

date t > 1 target criterion by cutting interest rates do engineer precisely this outcome. Absent existing

wealth inequality at the beginning of date 0, clearly there are no borrowers and savers to redistribute

between and this motive is absent. In fact, with Ω = 0, absent initial wealth inequality, equation (37)

becomes:

Σ̂t

Σ
= ΛΓt +

ϑ

βR

Σ̂t−1

Σ
∀t ≥ 0 (43)

with Σ̂−1

Σ = −βR
ϑ ln

(
1−ϑ

1−ϑe
Λ
2

)
< 0. Equation (43) shows that without initial wealth inequality, the planner

is unable to affect Σt at any date (up to first-order). Unsurprisingly then, the planner faces the standard

trade-off between price stability and productive inefficiency. Consequently, the optimal target criterion at

all dates in this case simplifies to:

(ŷt − ŷnt )− 1

βR

(
ŷt−1 − ŷnt−1

)
+

λ

λ− 1
πt = 0 (44)

with ŷ−1 = ŷn−1 = 0 and so divine coincidence holds - optimal policy implements πt = 0 and ŷt = ŷnt at all

dates t ≥ 0 in response to productivity shocks.

Remark 2 (The interest rate exposure channel versus the Fisher channel). Previous research has shown
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how the redistribution of wealth through inflation when assets and liabilities are nominal may create an

inflationary bias on the part of the central bank. This “Fisher channel” is absent in our baseline economy

where households only hold real assets: the planner is unable to redistribute real wealth via surprise infla-

tion. Nonetheless, the planner can redistribute consumption via a surprise cut in the path of real rates via

the interest rate exposure channel (Auclert, 2019). Auclert (2019) studies how both these channel mediate

the effect of interest rate changes on aggregate consumption in an environment with MPC heterogeneity.

In our economy, all agents have the same MPC, so monetary policy does not affect aggregate consumption

through these channels. However, it does affect the distribution of consumption and in our baseline econ-

omy, optimal monetary policy deliberately utilizes the interest rate exposure channel to reduce consumption

inequality. In Section 6, when we introduce nominal bonds into our model, optimal monetary policy exploits

both channels to achieve the same ends.

5.4.2 Optimal policy with countercyclical risk

While the case with Ω = 0 is a useful benchmark to understand the forces driving optimal monetary policy,

the empirically relevant case is one of countercyclical risk, which implies that Ω > 0.18 In this case a cut in

interest rates, and the associated boom in output (and wages), reduce consumption risk through both the

income risk and self-insurance channels. With Ω = 0, risk was procyclical, and the benefit of lower interest

rates (which lower µ and increase households’ ability to self insure) was exactly balanced by the cost of

the associated boom in output which increased the level of income risk faced by households. In contrast,

when risk is countercyclical, the increase in output actually reduces the level of income risk, at the same

time as lower interest rates improve households’ ability to self-insure: expansionary policy unambiguously

reduces consumption risk and inequality. This can be seen by substituting (34) into (33):

Σ̂t

Σ
=


−γ
(

1− β̃
)

Ωŷt + ΛΓt + ϑ
βR

Σ̂t−1

Σ for t > 0

−γ
(

1− β̃
)

Ωŷ0 + ΛΓ0 + ϑΛΣ
1−ϑ µ̂0 for t = 0

(45)

When Ω > 0, an increase in output ŷt reduces the consumption risk faced by households at any date,

not just at date 0: ∂Σ̂t
∂ŷt

< 0. In this environment, the planner would only refrain from increasing output

if doing so distorts productive efficiency and creates inflation. Indeed recall from (26) that in steady state

with Ω > 0, the marginal benefit of reducing inequality by stimulating demand is exactly balanced by

the cost of deviating further from production inefficiency. The reason a marginal increase in output has a

first-order cost in terms of productive efficiency is that the steady state in this case features an inefficiently

high level of output y > 1 (also reflected in w > 1). Out of steady state the planner faces a similar trade-off

between the benefit of reducing inequality via higher output and the cost of further distorting productive

efficiency, while also seeking to limit deviations from price stability. This tradeoff informs the optimal

design of monetary policy, as we discuss next.

18More precisely, countercyclical risk (Θ > 1) implies Ω > Λ

(1−β̃)(1−Λ)
> 0. When 0 < Ω < Λ

(1−β̃)(1−Λ)
, risk is weakly

procyclical so expansionary monetary policy reduces pass through than it increase income risk, reducing consumption risk in
net.
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Proposition 4 (Optimal monetary policy with countercyclical risk). Output and inflation {ŷt, πt}∞t=0

under optimal policy satisfy

ηt =

α0(Ω)
(
ŷt − δ0(Ω)ŷnt − χ(Ω)

)
for t = 0

α(Ω)
(
ŷt − δ(Ω)ŷnt

)
for t ≥ 1

(46)

ηt =
1

βR
ηt−1 −

λ

λ− 1
yπt (47)

πt =
β̃

ϑ
πt+1 + κ(ŷt − ŷet ) + ut (48)

where α(Ω), δ(Ω), α0(Ω), δ0(Ω) and χ(Ω) are defined in Appendix E.1 and satisfy α0(0) = α, δ0(0) = δ,

χ(0) = χ, α(0) = 1, δ(0) = 1. Further, when risk is countercyclical α(Ω), α0(Ω) > 1 and δ(Ω), δ0(Ω) < 1.

Proof. See Appendix E.1.

By combining (46) with (48), one can derive the optimal target criterion for t = 0:(
ŷ0 − δ0(Ω)ŷn0

)
+

λ

λ− 1

y

α0(Ω)
π0 = χ(Ω) for t = 0 (49)

and for dates t > 1: (
ŷt − ŷt−1

)
− δ(Ω)

(
ŷet − ŷ∗t−1

)
+

λ

λ− 1

y

α(Ω)
πt = 0 (50)

As in the case Ω = 0, optimal policy deviates from RANK at date 0, creating a boom even absent

exogenous shocks. However, unlike in the case Ω = 0, with countercyclical risk optimal policy also deviates

from the RANK target criterion at subsequent dates t > 1. This should not be not surprising: with Ω = 0,

monetary policy can only affect the evolution of consumption inequality (to first order) at date 0. However,

with countercyclical risk, an expansion in output reduces inequality at all dates, so monetary policy faces

a tradeoff between the benefits of lower inequality and the cost of distorting productive efficiency and

price stability at all dates, and deviates from RANK as a result. In particular, δ(Ω) < 1 when risk is

countercyclical: output tracks the flexible price level of output less than one for one at all dates. In

addition, α(Ω) > 1: the planner puts more weight on stabilizing output relative to inflation at all dates.

To understand why output moves less than one-for-one with its flexible price level at all date, δ(Ω) < 1,

recall the distinction between three different levels of output: the productively efficient level of output yet ,

the flexible price level of output ynt , and the equilibrium level of output yt. When Ω = 0, ynt = yet . In

this case, the standard subsidy corrects for the distortion due to monopolistic competition, and productive

efficiency is obtained when there is zero inflation at all dates, or when prices are flexible. In other words, the

flexible price version of the economy with Ω = 0 features a zero labor wedge at all dates, Tt ≡ ln zt−lnwnt = 0

where wnt denotes the wage consistent with the flexible price level of output.

However, with countercyclical risk, Ω > 0, and the flexible price level of output ynt is higher than the

efficient level of output yet , whatever the level of productivity. In this case, firms enjoy a subsidy which is

larger than the one necessary to eliminate the distortion due to monopolistic competition (see eq. (27)), and

output would be inefficiently high under flexible prices. The flexible price version of this economy features

a negative labor wedge - a net subsidy to output and employment - at all times. Consequently keeping
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Figure 4. HANK (Ω > 0) vs RANK optimal response to a negative productivity shock. Red line denotes RANK, blue
line represents HANK with countercyclical risk (Ω > 0), and gray line represents HANK with Ω = 0. All variables are plotted
as percentage deviations from their steady state values. In panel f), we plot output gap as the difference between yt and ynt
normalized by steady state y: (ŷt/y)− (ŷnt /y).

output equal to its flexible price level entails keeping output inefficiently high at all times. Conversely,

in order to set output equal to its efficient level, and undo the effects of the net subsidy to output and

employment, one would have to drive output yt down below its flexible price level ynt .

Absent shocks, the planner could always implement the efficient level of output by raising interest

rates above their steady state level, reducing output below its inefficiently high flexible price level, and

eliminating the negative labor wedge. She chooses not to do this, however, because the cost in terms of

increased consumption inequality is too high - so she sets output equal to its flexible price level.

Now consider a scenario in which productivity is higher than in steady state (z > 1). In this case, the

planner could continue to set output equal to its flexible price level, keeping the labor wedge unchanged

(Tt = ln zt − lnwt = − lnw < 0). This would entail increasing yt one for one with ynt . But it is no

longer optimal to do so. The only reason the planner does not eliminate the inefficient subsidy in steady

state is that doing so would increase inequality too much. Now however, with higher output, consumption

inequality is already lower, and the benefit of the inefficient subsidy is lower: even if the planner were

to implement a lower level of output relative to the flexible price level, improving productive efficiency,

inequality would still be relatively low. Optimal policy seeks to reduce the magnitude of the labor wedge

by bringing the level of output yt closer to the efficient level of output yet . Since 1 = ye < yn = y in steady

state, this entails ŷt < ŷnt .

Conversely, suppose productivity falls relative to steady state, z < 1. Again, the planner could track

the flexible price level of output ynt , keeping the labor wedge unchanged. Doing so would entail reducing

output one for one with the flexible price level of output. But when output is lower, consumption inequality

is higher. In this case, the rationale for keeping output above its efficient level yet is not eliminated - it
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is actually strengthened. It is optimal to deviate even further from productive efficiency, increase the

effective subsidy to output and employment, and reduce output less than one for one with the efficient

level of output.

Figure 4 shows the impulse responses to a negative productivity shock under optimal policy in HANK

with countercyclical risk (blue lines), with outcomes in RANK (red lines) and HANK with Ω = 0 (gray

lines) shown as benchmarks. As in the benchmark with Ω = 0, the planner deviates from optimal policy in

RANK - which tracks the flexible price level of output - by cutting nominal interest rates at date 0 (panel

d) and mitigating the fall in output (panel a) on impact, at the cost of creating an increase in inflation

(panel b). Recall that in the economy with Ω = 0, the planner attempted to dampen this increase in

inflation by committing to tighter policy starting at date 1. With countercyclical risk, however, any fall

in output is costly because it directly increases inequality. Indeed, even under optimal policy, the path of

inequality is higher with countercyclical risk (panel c). To prevent inequality from rising even more, the

planner postpones the commitment to tighter policy in the future. While interest rates still rise at date 1

(blue line in panel d), the increase is smaller than in the RANK economy (red line) or the HANK economy

with Ω = 0 (gray line). As a result, the fall in inflation and output-gap are also smoothed out over time.

Remark 3 (The role of initial wealth inequality with countercyclical risk). With countercyclical risk

(Ω > 0), the optimal target criterion is different at date t = 0 and at all subsequent dates, as was the case

when Ω = 0. In particular, optimal policy features a boom at date 0 even absent exogenous shocks. As in

the Ω = 0 case, such a policy is optimal because given existing wealth inequality at date 0, a surprise cut

in interest rates raises the consumption of poor borrowers and reduces the consumption of rich savers. To

understand the role of wealth inequality in driving this result, suppose again that there is an equalization

of household wealth at the beginning of date 0. In this case, the optimal target criterion (50) characterizes

optimal policy at all dates (with ŷ−1 = ŷ∗−1 = 0). This implies that absent shocks, the planner keeps interest

rates at their steady state value. However, unlike in the case with Ω = 0 and wealth equalization, it is no

longer optimal to implement zero inflation and replicate flexible price allocations in response to productivity

shocks - even though it remains feasible to do so.

Figure 5 plots dynamics under optimal policy in this scenario. Qualitatively, policy is similar to the

case without wealth equalization in which there is a time inconsistency problem. Relative to RANK, the

planner implements a lower increase in interest rates on impact (panel d), resulting in a lower increase

in output (panel a) and the passthrough from income to consumption risk µt (panel e). This comes at the

cost of a short-lived increase in inflation. Note that inequality (shown in the panel c) is below its steady

state level, despite the increase in income risk caused by the fall in output, because the initial equalization

of wealth reduces consumption inequality at the start of date 0.

6 Nominal debt

So far we have considered an economy in which households traded inflation indexed bonds. As mentioned

in Remark 2, we made this assumption to distinguish between two ways in which monetary policy can

affect the distribution of consumption in HANK economies. The first is the interest rate exposure channel :

an unanticipated fall in real interest rates increases the consumption of poor debtors and reduces that of

rich savers. The second is the Fisher effect : unanticipated inflation redistributes real wealth from savers
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Figure 5. HANK (Ω > 0) vs RANK optimal response to a negative productivity shock in the economy with wealth
equalization at the beginning of date 0. Red line denotes RANK, blue line represents HANK with countercyclical risk (Ω > 0).
All variables are plotted as percentage deviations from their steady state values. In panel f), we plot output gap as the
difference between yt and ynt normalized by steady state y: (ŷt/y)− (ŷnt /y).

who hold nominal assets to debtors with nominal liabilities. Our baseline model with inflation indexed

debt abstracts altogether from the second effect to focus on the first. In this section, we allow households

to trade nominal debt and show how the the presence of the Fisher effect changes the optimal conduct of

monetary policy.

Financial intermediaries now trade nominal claims at nominal price ϑ
1+it

which pay a dollar tomorrow.

Then the household’s budget constraint can be written as:

Ptc
s
t (i) +

ϑ

1 + it
Ast+1 (i) = Ptwt`

s
t (i) +Ast (i) + PtTt

where Ast+1 (i) is the quantity of nominal claims purchased by the household at date t. The details of this

extension are in Appendix F. As before the evolution of this economy is characterized by the aggregate IS

equation (11), the evolution of µ(12), Phillips curve (7), the definition of GDP (15) and the evolution of

Σ, replacing Rt = 1+it
Πt+1

. Four of these five equations are unaffected by the introduction of nominal bonds

- the exception is the evolution of Σ, which becomes:19

ln Σt =
1

2
γ2µ2

tw
2
t σ

2
t + ln [1− ϑ+ ϑΣt−1] + I(t = 0) ln

 1− ϑe
Λ
2

1− ϑe
Λ
2

(
µ0

E−1µ0

E−1Π0
Π0

)2

 (51)

(51) shows that the presence of nominal debt means that unanticipated higher inflation reduces consump-

tion inequality. Since there are no aggregate shocks except at date 0 and the Ramsey planner can only

re-optimize at date 0, actual and expected inflation coincide in equilibrium except at date 0. As Appendix

19See Appendix F for the derivation.
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F details, the cohort born at date s < 0 enters date 0 with with a cross-sectional distribution of real

wealth which is N

(
0,−sw2σ2

(
E−1Π0

Π0

)2
)

. Higher than expected inflation Π0 > E−1Π0 compresses the

distribution of real wealth. Thus, by generating inflation at date 0, the planner can reduce wealth and

hence consumption inequality. This reduction in consumption inequality is in addition to the reduction

achieved by the surprise cut in interest rates at date 0.
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Figure 6. Time inconsistency with nominal debt: Optimal dynamics absent shocks in alternative calibration (κ = 0.5).
Blue line denotes HANK with countercylcical risk and real debt, red line denotes HANK with countercyclical risk and nominal
debt. All variables are plotted as percentage deviations from their steady state values.

Qualitatively, this increases the planner’s incentive to create a boom at date 0 even absent aggregate

shocks. Quantitatively, though, this effect is small in our baseline calibration, as Figure 8 in Appendix

F shows - optimal policy in the two economies is essentially identical. This is primarily because in our

baseline calibration, the Phillips curve is relatively flat (κ = 0.01) which means that even a large cut in

real interest rates, and a large boom in output, generates only a small increase in inflation. In order to

generate a large enough increase in inflation to effect significant redistribution, it would be necessary to

engineer a massive deviation from the productively efficient level of output, and it is not optimal for the

planner to do this.

To illustrate the qualitative effect of introducing inflation-indexed debt, Figure 6 shows optimal policy

absent shocks with a steeper Phillips curve (κ = 0.5). As panel b shows, the planner creates a larger increase

in inflation in the economy with nominal debt (red line) than in the economy with inflation-indexed debt

(blue line). This results in a larger reduction in inequality (panel c). The black dashed line in this panel

shows the effect of implementing the optimal policy from the economy with inflation-indexed debt in the

economy with nominal debt. Even if the planner follows this policy, and does not actively exploit the

Fisher effect, this already automatically generates a larger reduction in inequality than in the economy

with inflation-indexed debt (the black dashed line is below the blue line) because the same increase in

inflation now redistributes real wealth. The planner actually generates a further increase in inflation, and
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Figure 7. Nominal vs inflation indexed debt: optimal response to a negative productivity shock in alternative calibration
(κ = 0.5). Blue line represents HANK with countercyclical risk and real debt, red line denotes HANK with countercyclical
risk and nominal debt. All variables are plotted as percentage deviations from their steady state values. In panel f), we plot
output gap as the difference between yt and ynt normalized by steady state y: (ŷt/y)− (ŷnt /y).

so inequality falls even more (the red line is below the black dashed line).

The presence of nominal assets and liabilities also affects the optimal response to shocks. Figure 7 plots

the impulse responses (defined as in the previous section) to a negative productivity shock under optimal

policy in the alternative calibration with κ = 0.5. Allocations under optimal policy in the economy with

nominal debt (red line) are similar to those with inflation-indexed debt (blue line), even with a steep

Phillips curve. However, the level of output now deviates even more from ynt (panel f) in order to generate

a larger surprise increase in inflation (panel b). This is optimal when risk is countercyclical because negative

productivity shock tends to increase inequality (panel c). Creating more surprise inflation partially offsets

this, yielding a lower increase in inequality (red line) than would obtain if the planner followed the same

policy as in the economy with inflation-indexed debt (black dashed line). As in the previous figure, though,

even following this same policy would automatically generate a larger reduction in inequality than in the

economy with inflation-indexed debt (blue line).

7 Conclusion

We use a analytically tractable HANK model to study how monetary policy affects inequality, and the

extent to which this warrants a change in the principles governing the design of monetary policy which have

been developed in the Representative Agent New Keynesian literature. In a complete markets economy,

monetary policy affects output and inflation but, trivially, has no effects on inequality (since households

can use Arrow securities to insure themselves, eliminating consumption inequality). In our incomplete

markets economy, monetary policy affects consumption risk and inequality through four channels. The
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first is the income risk channel : when the idiosyncratic income risk faced by households is countercyclical,

expansionary monetary policy, by generating a boom in output, tends to reduce income risk and inequality.

More subtly, lower interest rates make it easier for households to self-insure against income shocks, reducing

consumption risk for a given level of income risk - the self-insurance channel. Finally, unexpected cuts in

interest rates redistribute consumption through an unhedged interest rate exposure channel, and unexpected

inflation redistributed real wealth through the Fisher channel. Thus, expansionary monetary policy can

reduce consumption inequality through all four of these channels.

Given that monetary policy has this power to reduce inequality, how and when should it be used? A

utilitarian planner trades off the benefits of lower inequality against the costs of pushing up output and

inflation above their efficient levels. In recessions, inequality is already high - in the relevant case with

countercyclical risk - so the marginal benefit of reducing inequality is particularly high. Consequently,

optimal monetary policy is more accommodative in recessions relative in to a RANK benchmark: the

planner prevents output from falling as much as the efficient level of output, even though this entails

higher inflation, because curtailing the fall in output also curtails the rise in inequality.
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Appendix

A Proof of Proposition 1

The date s problem of an individual i born at date s can be written as:

max
{cst (i),`st (i),bst+1(i)}

−
∞∑
t=s

(βϑ)t−s
{

1

γ
e−γc

s
t (i) + ρe

1
ρ

[`st (i)−ξst (i)]
}

s.t.

cst (i) + qtb
s
t+1(i) = wt`

s
t (i) + bst (i) + Tt (52)

where bss(i) = 0 and wt = (1− τ)w̃t. The optimal labor supply decisions of houshold i is given by:

`st (i) = ρ lnwt − ργcst (i) + ξst (i) (53)

and the Euler equation is given by:

e−γc
s
t (i) = βRtEte−γc

s
t+1(i) (54)

where we have used the fact that qt = ϑ
Rt

. Next, guess that the consumption decision rule takes the form:

cst (i) = Ct+µtxst (i) (55)

where xst (i) = bst−1(i) + wt
(
ξst (i)− ξ

)
denotes “virtual cash-on-hand”. Notice that xst+1(i) is normally

distributed and so given the guess (55), cst+1(i) is also normally distributed with mean:

Etcst+1(i) = Ct+1 + µt+1
Rt
ϑ

[
xst (i) + wt

(
ρ lnwt + ξ̄

)
+ Tt − (1 + ργwt) c

s
t (i)
]

and variance:

Vt
(
cst+1(i)

)
= µ2

t+1w
2
t+1σ

2
t+1

Taking logs of (54) and using the two expressions above:

cst (i) = −1

γ
lnβRt −

1

γ
lnEte−γc

s
t+1(i)

= −1

γ
lnβRt + Etcst+1(i)− γ

2
Vt
(
cst+1(i)

)
= −1

γ
lnβRt + Ct+1 + µt+1

Rt
ϑ

[
xst (i) + wt

(
ρ lnwt + ξ̄

)
+ Tt − (1 + ργwt) c

s
t (i)
]
−
γµ2

t+1w
2
t+1σ

2
t+1

2

1



Combining the cst (i) terms and using (55), the above can be rewritten as:

µt+1
Rt
ϑ

[
(1 + ργwt) +

ϑ

Rt
µ−1
t+1

]
{Ct+µtxst (i)} = −1

γ
lnβRt + Ct+1 + µt+1

Rt
ϑ

[
xst (i) + wt

(
ρ lnwt + ξ̄

)
+ Tt

]
−
γµ2

t+1w
2
t+1σ

2
t+1

2
(56)

Matching coefficients:

Ct = − ϑµt
µt+1Rt

1

γ
lnβRt +

ϑµt
µt+1Rt

Ct+1 + µt
[
wt
(
ρ lnwt + ξ̄

)
+ Tt

]
− ϑ

Rt

µt
µt+1

γµ2
t+1w

2
t+1σ

2
t+1

2
(57)

µ−1
t = (1 + ργwt) +

ϑ

Rt
µ−1
t+1 (58)

Notice that (58) is the same as (12) in the main text. Next, in equilibrium, aggregate hours worked is

given by:

`t = ρ lnwt − γρCt + ξ

and hence aggregate income is:

yt = wt`t + Tt = wtρ lnwt − γρwtCt + wtξ + Tt

Using this in (57) and the fact that Ct = yt yields equation (11) in the main text.

B Planner’s Objective function

B.1 Consumption is normally distributed within cohort

Given the consumption function (9) and the normality of shocks, to consumption of newly born in-

dividuals at any date s is normally distributed with mean ys and variance σ2
c (s, s) = µ2

sw
2
sσ

2
s since

they all have zero wealth. Given the linearity of the budget constraint, it follows that newly born

agents’ savings decisions ass+1(i) are also normally distributed with mean 0 and variance σ2
a(s + 1, s) =(

Rs
θ

)2
[1− (1 + γρws)µs]

2w2
sσ

2
s . By induction, it follows that for any cohort born at date s, the cross-

sectional distribution of consumption at any date t > s is normal with mean yt and variance

σ2
c (t, s) = µ2

tσ
2
a (t, s) + µ2

tw
2
t σ

2
t (59)

while the distribution of asset holdings is normal with mean 0 and variance

σ2
a(t, s) =

R2
t−1

θ2
[1− (1 + γρwt−1)µt−1]2

[
σ2
a(t− 1, s) + w2

t−1σ
2
t−1

]
(60)

2



B.2 Objective function of planner

Substituting labor supply (10) into the objective function, we can write the date 0 expected utility of

individual i from the cohort born at date s going forwards as:

W s
0 (i) = −1

γ
E0

∞∑
t=0

(βϑ)t (1 + γρwt) e
−γcst (i) = −1

γ
E0

∞∑
t=0

(βϑ)t (1 + γρwt) e
−γyt−γµtxst (i)

where we have used labor supply (10), consumption function (9) and the fact that in equilibrium Ct = yt.

We assume that the planner puts a weight of 1 on every individual alive at date 0 and (βϑ)t on individuals’

lifetime welfare who will be born at date t > 0. Then the social welfare function can be written as:

W0 = (1− ϑ)

0∑
s=−∞

ϑ−s
∫
W s

0 (i)di︸ ︷︷ ︸
welfare of those alive at date 0

+

∞∑
s=1

(1− ϑ)βs
∫
W s
s (i)di︸ ︷︷ ︸

welfare of the unborn at date 0

Using the definition of W s
0 (i) and W s

s (i), notice that W0 can be written as:

W0 = −1

γ

∞∑
t=0

βt (1 + γρwt) e
−γytΣt

where Σt is defined as:

Σt = (1− ϑ)
t∑

s=−∞
ϑt−s

∫
e−γµtx

s
t (i)di (61)

Thus, we can write W0 as:

W0 =
∞∑
t=0

βtUt where Ut = −1

γ
(1 + γρwt)e

−γytΣt

B.2.1 Derivation of Σt recursion

Write (61) as:

Σt = (1− ϑ)

∫
e−γµtx

t
t(i)di+ (1− ϑ)

t−1∑
s=−∞

ϑt−s
∫
e−γµtx

s
t (i)di

= (1− ϑ) e
γ2µ2

t w
2
t σ

2
t

2 + (1− ϑ)
t−1∑

s=−∞
ϑt−s

∫
e−γµt{ast (i)+wt(ξst (i)−ξ)}di

= (1− ϑ) e
γ2µ2

t w
2
t σ

2
t

2 + (1− ϑ)

t−1∑
s=−∞

ϑt−s
∫
e−γµta

s
t (i)di

∫
e−γµtwt(ξ

s
t (i)−ξ)di

= e
γ2µ2

t w
2
t σ

2
t

2

[
(1− ϑ) + (1− ϑ)ϑ

t−1∑
s=−∞

ϑt−1−s
∫
e−γµt

Rt−1
θ [µ−1

t−1−(1+γρwt−1)]µt−1xst−1(i)di

]

where we have used the fact that ast (i) = Rt−1

θ [1− (1 + γρwt−1)µt−1]xst−1 (i). Also, at all dates t > 0,
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we know that µ−1
t−1 − (1 + γρwt−1) = θ

Rt−1
µ−1
t . Using this, we have for all t > 0:

ln Σt =
γ2µ2

tw
2
t σ

2
t

2
+ ln (1− ϑ+ ϑΣt−1) (62)

which is the same as (22) in the main text. Next, imposing steady state up till date 0, we know that

µ−1 − (1 + γρw) = β̃ (µe0)−1 where µe0 denotes the date −1 expectation of µ0. Then we can write Σ0 as:

Σ0 = e
γ2µ2

0w
2
0σ

2
0

2

[
(1− ϑ) + (1− ϑ)ϑ

−1∑
s=−∞

ϑ−1−s
∫
e
−γ
(
µ0
µe0

)
µxs−1(i)

di

]
(63)

and the variance of consumption for cohorts born at date s < 0 is γ2µ2σ2
x (−1, s) = −sΛ. Therefore:

Σ0 = e
γ2µ2

0w
2
0σ

2
0

2

 1− ϑ

1− ϑe
Λ
2

(
µ0
µe0

)2


We also know that in steady state (Σ−1 = Σ) , [1− ϑ+ ϑΣ−1]

(
1− ϑe

Λ
2

)
= (1− ϑ). Plugging this in the

previous expression yields (23) in the main text:

ln Σ0 =
γ2µ2

0w
2
0σ

2
0

2
+ ln [1− ϑ+ ϑΣ−1] + ln

 1− ϑe
Λ
2

1− ϑe
Λ
2

(
µ0
µe0

)2



C Some auxiliary results

In the proofs that follow, we shall make liberal use of the following assumptions and results.

Assumption 1. Throughout the paper, we shall assume that:

1. ϑ ≥ 1
2

2. βϑ > e−
1
2 = 0.61

3. σ2 < σ = 2ρ2 lnϑ−1(
γρ

1+γρ

)2
(

2(1−φγ ) lnϑ−1

1+2 lnϑ
+(1−β)

)2

Lemma 2. Given that βϑ > e−
1
2 , we have Λ < 1 and β̃ < 1.

Proof. Recall that in steady state, Λ = γ2µ2w2σ2 > 0, i.e.:

Λ =
σ2

ρ2

(
γρw

1 + γρw

)2 (
1− βθe

Λ
2

)2

Rearranging:

f (Λ) ≡ Λ(
1− βθe

Λ
2

)2 =
σ2

ρ2

(
γρw

1 + γρw

)2

(64)
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Now, f (Λ) is increasing for Λ < Λ∗ ≡ −2 lnβϑ < 1 given our assumption, and goes to ∞ as Λ→ Λ∗. For

any values of σ and ρ, we can find some 0 < Λ < Λ∗ satisfying f
(
Λ
)

= σ2

ρ2 . Thus, any solution to (64)

must satisfy Λ ≤ Λ < Λ∗ < 1. By construction, for any Λ < Λ∗, β̃ = βθe
Λ
2 < 1.

Lemma 3. For σ < [0, σ), we have ϑe
Λ
2 < 1.

Proof. First we show that ϑe
Λ
2 = 1 implies that σ = σ. Starting from the expressions for wages in steady

state, using ϑe
Λ
2 = 1 we have:

w − 1

1 + γρw
=

Θ− 1 + Λ

(1− Λ)(1− β̃)
=

2
(

1− φ
γ

)
lnϑ−1

(1 + 2 lnϑ) (1− β)

Add 1 to both sides and multiply by γρ
1+γρ to get:

γρw

1 + γρw
=

 2 lnϑ−1
(

1− φ
γ

)
(1 + 2 lnϑ)

(
1− β̃

) + 1

 γρ

1 + γρ

Next, using the expression above in the definition of Λ, we have:

σ2 =
2 lnϑ−1(

γρ
1+γρ

)2
(
−2 lnϑ

(
1−φ

γ

)
(1+2 lnϑ) + (1− β)

)2

which is the same as σ defined in Assumption 1. Second, note that when σ2 = 0, we have Λ = 0 and

ϑe
Λ
2 = ϑ < 1. By continuity it follows that for σ ∈ [0, σ), we have ϑe

Λ
2 < 1.

Corollary 1. The following is true:

1− β−1β̃ (1− Λ) > 0

Proof.

1− β−1β̃ (1− Λ) = 1− ϑe
Λ
2 (1− Λ) > 0

D First-order condition of the planning problem

The planning problem can be written as:

max

∞∑
t=0

βt
{
−1

γ
(1 + γρwt) e

−γytΣt

}
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s.t.

γyt = γyt+1 − lnβθ + lnµt+1 + ln
[
µ−1
t − (1 + γρwt)

]
−
γ2µ2

t+1w
2σ2e2φ(yt+1−y)

2

(Πt − 1) Πt =
λ

Φ (λ− 1)

[
1− zt

(1− τ)λwt

]
+ ζ−1

t (Πt+1 − 1) Πt+1

ln Σt =
γ2µ2

tw
2σ2e2φ(yt−y)

2
+ ln [1− ϑ+ ϑΣt−1] + I(t = 0) ln

 1− ϑe
Λ
2

1− ϑe
Λ
2

(
µ0
µe0

)2


yt = zt

ρ lnwt + ξ

1 + γρzt + ∆t

where ζt = 1
ϑ

[
µ−1
t − (1 + γρwt)

]
µt+1

(
yt+1ztwt
ytzt+1wt+1

)
.

The problem can be written as a Lagrangian:

L =

∞∑
t=0

βt
{
−1

γ
(1 + γρwt) e

−γytΣt

}

+
∞∑
t=0

βtM1,t

{
γyt+1 − lnβθ + lnµt+1 + ln

[
µ−1
t − (1 + γρwt)

]
−
γ2µ2

t+1w
2σ2e2φ(yt+1−y)

2
− γyt

}

+

∞∑
t=0

βtM2,t

{
λ

Φ (λ− 1)

[
1− zt

(1− τ)λwt

]
+ ζt (Πt+1 − 1) Πt+1 − (Πt − 1) Πt

}

+M3,0

γ
2µ2

0w
2
0σ

2
0

2
+ ln [1− ϑ+ ϑΣ−1] + ln

 1− ϑe
Λ
2

1− ϑe
Λ
2

(
µ0
µe0

)2

− ln Σ0


+
∞∑
t=1

βtM3,t

{
γ2µ2

tw
2σ2e2φ(yt−y)

2
+ ln [1− ϑ+ ϑΣt−1]− ln Σt

}

+
∞∑
t=0

βtM4,t

{
yt − zt

ρ lnwt + ξ

1 + γρzt + ∆t

}

The optimal decisions satisfy:

FOC wrt wt

Ut
γρwt

1 + γρwt
+ β−1M2,t−1wt

dζt−1

dwt
(Πt − 1) Πt −M1,t

γρwt

µ−1
t − (1 + γρwt)

+M2,t

{
λ

Φ (λ− 1)

zt
(1− τ)λwt

+ wt
dζt
dwt

(Πt+1 − 1) Πt+1

}
−M4,t

ρzt
1 + γρzt + ∆t

= 0 (65)

FOC yt

−γUt − γM1,t + β−1M2,t−1
dζt−1

dyt
(Πt − 1) Πt +M2,t

dζt
dyt

(Πt+1 − 1) Πt+1

+β−1M1,t−1

{
γ − φγ2µ2

t+1w
2σ2e2φ(yt−y)

}
+M3,tφγ

2µ2
tw

2σ2e2φ(yt−y) +M4,t = 0 (66)
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FOC µt

−M1,t
µ−1
t

µ−1
t − 1− γρwt

+ β−1M1,t−1

[
1− γ2σ2w2µ2

t e
2φ(yt−y)

]
+ β−1M2,t−1µt

dζt−1

dµt
(Πt − 1) Πt

+M2,tµt
dζt
dµt

(Πt+1 − 1) Πt+1 +M3,tγ
2σ2w2µ2

t e
2φ(yt−y) + I(t = 0)M3,0

ϑe
Λ
2

(
µ0
µe0

)2

1− ϑe
Λ
2

(
µ0
µe0

)2 Λ

(
µ0

µe0

)2

= 0

(67)

FOC Σt

Ut −M3,t + βM3,t+1
ϑΣt

1− ϑ+ ϑΣt
= 0 (68)

FOC Πt

β−1M2,t−1ζt−1 (2Πt − 1)−M2,t (2Πt − 1) +M4,tzt
ρ lnwt + ξ

[1 + γρzt + ∆t]
2 Ψ (Πt − 1) = 0 (69)

D.1 Steady state of the optimal plan

Next, we impose steady state and set Π = 1. This yields the τ and the multipliers that are consistent with

Π = 1 being optimal in the long-run. Using Π = 1 in (69):(
β−1β̃ − 1

)
M2 = 0

which implies that M2 = 0 in steady state. Next, from (68) we have m3 = (1− β̃)−1 where mi = Mi/U for

i = {1, 2, 3, 4}. Then equations (65),(66),(67) can be manipulated to yield:

m1 =
β̃

1− β̃

[
Λ

1− β−1β̃ (1− Λ)

]
(70)

w − 1

1 + γρw
= Ω (71)

m4 = γ

(
1− β−1β̃

)
(1− Λ)

1− β−1β̃ (1− Λ)
(1 + Ω) (72)

where Ω = Θ−(1−Λ)

(1−Λ)(1−β̃)
and Θ = 1− Λφ

γ . Finally, using (71) and since Π = 1 in (25) implies that 1
(1−τ)λw = 1,

we can write:

w =
1 + Ω

1− γρΩ
and τ =

λ− 1

λ
+

1 + γρ

λ

Ω

Ω + 1

which are the same expressions in (27) in the main text.
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E Linearized first order conditions

Linearizing the first-order conditions from the planners problem yields the following:

FOC w

−γ (1 + Ω) ŷt + (1 + Ω)
Σ̂t

Σ
−

(
1− β̃
β̃

)
(1 + Ω) m̂1,t −

(
1− β̃
β̃

)2(
γρ

1 + γρ

)
(1 + Ω)2m1

ŵt
w

−

(
1− β̃
β̃2

)
(1 + Ω)m1µ̂t + κ

1 + γρ

γρ
m̂2,t −

m̂4,t

γ
+
m4

γ

ŵt
w
− m4

γ

1

1 + γρ
ẑt = 0

(73)

FOC y

−γρ (1 + Ω)

1 + γρ

ŵt
w

+ γ

[
1 + 2

(1−Θ)2

Λ

(
m3 −

m1

β

)]
ŷt −

Σ̂t

Σ
− m̂1,t +

Θ

β
m̂1,t−1

+2 (1−Θ)

(
m3 −

m1

β

)
µ̂t + (1−Θ) m̂3,t +

m̂4,t

γ
= 0 (74)

FOC π

− m̂2,t +
1

βR
m̂2,t−1 +

y

1 + γρ
Φm4πt = 0 (75)

FOC µ (for dates t ≥ 1)

−

(
1− β̃
β̃2

)
γρ (1 + Ω)

1 + γρ
m1

ŵt
w

+

[
2Λ

(
m3 −

m1

β

)
− 1− β̃

β̃2
m1

]
µ̂t + Λm̂3,t

+2γ (1−Θ)

(
m3 −

m1

β

)
ŷt −

1

β̃

(
m̂1,t −

β̃

β
(1− Λ) m̂1,t−1

)
= 0 (76)

For t = 0

−

(
1− β̃
β̃2

)
(1 + Ω)

γρ

1 + γρ
m1

ŵ0

w
+

[
2Λ

(
m3 −

m1

β

)
− 1− β̃

β̃2
m1

]
µ̂0

+2γ (1−Θ)

(
m3 −

m1

β

)
ŷ0 +

ϑΛΣ

1− ϑ
(m3 + m̂3,0)

+Λm̂3,0 +m3

(
2 +

Λ (1− ϑ+ ϑΣ)

1− ϑ

)
ϑΛΣ

1− ϑ
µ̂0 −

1

β̃

(
m̂1,0 −

β̃

β
(1− Λ) m̂1,−1

)
= 0 (77)

FOC Σ
γρw

1 + γρw

ŵt
w
− γŷt − m̂3,t + β̃m̂3,t+1 +

1− β−1β̃2

1− β̃
Σ̂t

Σ
= 0 (78)

where m̂i = M̂i
U for i ∈ {1, 2, 3, 4}.
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E.1 Deriving the target criterion

Combine the FOC for ŵt (73) and for ŷt (74):

γΩŷt + 2γ
(1−Θ)2

Λ

(
m3 −

m1

β

)
ŷt + Ω

Σ̂t

Σ
−

1 +

(
1− β̃
β̃

)2

(1 + Ω)m1

 γρ (1 + Ω)

1 + γρ

ŵt
w

+
m4

γ

ŵt
w

+

[
2 (1−Θ)

(
m3 −

m1

β

)
−

(
1− β̃
β̃2

)
(1 + Ω)m1

]
µ̂t + κ

1 + γρ

γρ
m̂2,t + (1−Θ) m̂3,t −

m4

γ

1

1 + γρ
ẑt

−
1 + Ω

(
1− β̃

)
β̃

[
m̂1,t −

β̃

β
(1− Λ) m̂1,t−1

]
= 0

(79)

Combine with (76):

γ

[
Ω + 2γ

(1−Θ)2

Λ

(
m3 −

m1

β

)
− 2

[
1 + Ω

(
1− β̃

)]
(1−Θ)

(
m3 −

m1

β

)]
ŷt + Ω

Σ̂t

Σ

+

[1 + Ω
(

1− β̃
)](1− β̃

β̃2

)
γρ (1 + Ω)

1 + γρ
m1 −

1 +

(
1− β̃
β̃

)2

(1 + Ω)m1

 γρ (1 + Ω)

1 + γρ
+
m4

γ

 ŵt
w

+

[
2 (1−Θ)

(
m3 −

m1

β

)
−

(
1− β̃
β̃2

)
(1 + Ω)m1

]
µ̂t −

[
1 + Ω

(
1− β̃

)][
2Λ

(
m3 −

m1

β

)
− 1− β̃

β̃2
m1

]
µ̂t

+
(

1−Θ− Λ
[
1 + Ω

(
1− β̃

)])
m̂3,t + κ

1 + γρ

γρ
m̂2,t −

m4

γ

1

1 + γρ
ẑt = 0

Next, use the GDP definition (21) to substitute out for ŵt
w :

γ

[
Ω + 2γ

(1−Θ)2

Λ

(
m3 −

m1

β

)
− 2

[
1 + Ω

(
1− β̃

)]
(1−Θ)

(
m3 −

m1

β

)]
ŷt + Ω

Σ̂t

Σ

+

[1 + Ω
(

1− β̃
)](1− β̃

β̃2

)
γρ (1 + Ω)

1 + γρ
m1 −

1 +

(
1− β̃
β̃

)2

(1 + Ω)m1

 γρ (1 + Ω)

1 + γρ
+
m4

γ

 1 + γρ

ρ
ŷt

−

[1 + Ω
(

1− β̃
)](1− β̃

β̃2

)
γρ (1 + Ω)

1 + γρ
m1 −

1 +

(
1− β̃
β̃

)2

(1 + Ω)m1

 γρ (1 + Ω)

1 + γρ
+
m4

γ

 y

ρ
ẑt

+

[
2 (1−Θ)

(
m3 −

m1

β

)
−

(
1− β̃
β̃2

)
(1 + Ω)m1

]
µ̂t −

[
1 + Ω

(
1− β̃

)][
2Λ

(
m3 −

m1

β

)
− 1− β̃

β̃2
m1

]
µ̂t

+
(

1−Θ− Λ
[
1 + Ω

(
1− β̃

)])
m̂3,t + κ

1 + γρ

γρ
m̂2,t −

m4

γ

1

1 + γρ
ẑt = 0
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Substitute out for µ̂t using µ̂t = Γt− γ
[
1 +

(
1− β̃

)
Ω
]
ŷt and using the definitions of m1,m3 and m4, the

above can be written as:

Λ

1− β−1β̃ (1− Λ)
γΩ

(1− β̃
)

Ω + 1 + 2
(

1− β−1β̃
) (1− β̃

)
Ω

Λ2

 ŷt − γΩŷt

+

(
1− β−1β̃

)
(1− Λ)

1− β−1β̃ (1− Λ)

1

ρ
(Ω + 1)

(
ŷt −

ρ+ y

1 + γρ
ẑt

)
− Ω

Λ + 2
(

1− β−1β̃
)

1− β−1β̃ (1− Λ)
Γt

+κ
1 + γρ

γρ
m̂2,t + Ω

Σ̂t

Σ
−
(

1− β̃
)

Ωm̂3,t = 0 (80)

Guess that:

m̂3,t =
1

1− β̃
Σ̂t

Σ
+ γΩŷt + az ẑt (81)

and use this in (78) with ŵt
w substituted out using the definition of GDP:

Σ̂t+1

Σ
− β−1β̃

Σ̂t

Σ
+ γ

(
1− β̃

)
Ωŷt+1 =

1− β̃
β̃

[
γ (1 + Ω)

y

1 + γρ
+ az

(
1− β̃%z

)]
ẑt

using the fact that ẑt+1 = %z ẑt . Using the date t+ 1 Σ recursion (45):

ΛΓt+1 =
1− β̃
β̃

[
γ (1 + Ω)

y

1 + γρ
+ az

(
1− β̃%z

)]
ẑt

Using the fact that Γt = γy
1+γρ

(1−β̃)(1+Ω)

1−β̃%z(1−Λ)
ẑt, we have:

Λ%z
γy

1 + γρ

(
1− β̃

)
(1 + Ω)

1− β̃%z (1− Λ)
ẑt =

1− β̃
β̃

[
γ (1 + Ω)

y

1 + γρ
+ az

(
1− β̃%z

)]
ẑt

which implies that az must satisfy:

az = − γ (1 + Ω)

1− β̃ρz (1− Λ)

y

1 + γρ
(82)

Using m̂3,t = 1

1−β̃
Σ̂t
Σ + γΩŷt + az ẑt in (80):

α (Ω)
(
ŷt − δ (Ω) ŷnt

)
= ηt for t > 0 (83)

where we have defined ηt = −κ(1+γρ)
m4

m̂2,t where

α (Ω) = 1− γρ Ω

1 + Ω

(1− β̃
)

Ω + 1− 2

(
1− β̃

)
Ω

Λ (1− Λ)


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and

δ (Ω) = α (Ω)−1

1 +
γ
(

1− β̃
)

Ω

1− β̃ρz (1− Λ)

ρy

ρ+ y

[
1 + Λ

1− Λ

]
Similarly, for the date 0 target criterion, combine the date 0 version of (79) with (77), (81) and the date 1

Σ recursion (45) to get:

α0 (Ω)
(
ŷ0 − δ0 (Ω) ŷn0 − χ (Ω)

)
= η0 (84)

where

α0 (Ω) = α (Ω) +
ρ

m4

γ2
[
1 +

(
1− β̃

)
Ω
]2

1− β̃

[
2 + Λ + 2

ΛϑΣ

1− ϑ

]
ϑΛΣ

1− ϑ
(85)

δ0 (Ω) = α0 (Ω)−1

α (Ω) δ (Ω) + γ2 (Ω + 1)

m4

[
1 + 2Λ + 2

ΛϑΣ

1− ϑ

]
ϑΛΣ

1− ϑ

1 +
(

1− β̃
)

Ω

1− β̃ρz (1− Λ)

ρy

y + ρ

 (86)

χ (Ω) = α0 (Ω)−1 γρ

m4

[
1 + (1− β̃)Ω

1− β̃

]
ϑΛΣ

1− ϑ

In summary, using (84)-(83) and the target criterion can be written as:

ηt =

α0(Ω)
(
ŷt − δ0(Ω)ŷnt − χ(Ω)

)
for t = 0

α(Ω)
(
ŷt − δ(Ω)ŷnt

)
for t ≥ 1

This is the same as (46) in the main text. Next, multiplying (75) by κ(1+γρ)
m4

yields:

ηt =
1

βR
ηt−1 −

λ

λ− 1
yπt

which is the same as equation (47) in the main text. This concludes the derivation of the expressions in

Proposition 4.

E.1.1 Derivation of expressions in Proposition 3

Define the scalars α = α0(0) and δ = δ0(0) and χ = χ(0):

α ≡ α0(0) = 1 +
ρ

m4

γ2

1− β̃

[
2 + Λ + 2

ΛϑΣ

1− ϑ

]
ϑΛΣ

1− ϑ
> 1

δ ≡ δ0 (0) = α−1

[
1 +

ρ

m4

γ2

1− β̃

[
1 + 2Λ + 2

ΛϑΣ

1− ϑ

]
ϑΛΣ

1− ϑ
1− β̃

1− β̃ρz (1− Λ)

1

1 + ρ

]

χ = χ (0) = α−1 γρ

m4

ϑΛΣ

1− ϑ
> 0

11



Since 1−β̃
1−β̃ρz(1−Λ)

1
1+ρ < 1, it is clear that δ < 1. It is also clear by inspection that α(0) = δ(0) = 1. Thus,

the optimal target criterion when Ω = 0 can be written as:

ηt =

α
(
ŷt − δŷnt − χ

)
for t = 0

ŷt − ŷnt for t ≥ 1

which is the same as equation (38). Finally, when Ω = 0, y = 1 and so (47) becomes (39).

E.1.2 Optimal target criterion in RANK

Recall that in RANK we have Ω = 0 and Λ = 0. In this case, it is clear from inspection that the coefficients

further simplify to α = δ = 1, χ = 0 and the target criterion can be written as:

ηt = ŷt − ŷnt for t ≥ 0

which is the same as (29) in the main text

E.2 Properties of coefficients α0(Ω), δ0(Ω), α(Ω), δ(Ω)

Claim: α(Ω) > 1

Proof.

α(Ω) = 1 +
ργΩ

1 + Ω

[(
2

Λ (1− Λ)
− 1

)(
1− β̃

)
Ω− 1

]

> 1 +
ργΩ

1 + Ω

( 2

Λ (1− Λ)
− 1

)(
1− β̃

) Λ(
1− β̃

)
(1− Λ)

− 1


where we have used the fact that Ω = Θ−1+Λ

(1−β̃)(1−Λ)
and for countercycical risk (Θ > 1), we have Ω >

Λ

(1−β̃)(1−Λ)
. Then, the above can be simplified to:

α(Ω) > 1 +
ργΩ

1 + Ω

1 + Λ

(1− Λ)2 > 1

Claim: If risk is countercyclical Θ > 1, then δ(Ω) < 1

Proof. Countercyclical risk or Θ > 1 implies that Ω > Λ

(1−β̃)(1−Λ)

Proof. Notice that δ(Ω) can be written as:

δ(Ω) =
1 + Ω + (Ω + Ω2)

γ(1−β̃)
1−β̃ρz(1−Λ)

ρy
ρ+y

[
1+Λ
1−Λ

]
1 + (1− ργ)Ω + ργΩ2

(
2

Λ(1−Λ) − 1
)(

1− β̃
)

12



We need to show that δ(Ω) < 1, i.e.

1 + Ω + (Ω + Ω2)
γ
(

1− β̃
)

1− β̃ρz (1− Λ)

ρy

ρ+ y

[
1 + Λ

1− Λ

]
< 1 + (1− ργ)Ω + ργΩ2

(
2

Λ (1− Λ)
− 1

)(
1− β̃

)
This expression can be simplified to yield:

1 +

(
1− β̃

)
1− β̃ρz (1− Λ)

y

ρ+ y

(
1 + Λ

1− Λ

)
< Ω

(
1− β̃

)[( 2

Λ (1− Λ)
− 1

)
− 1

1− β̃ρz (1− Λ)

y

ρ+ y

(
1 + Λ

1− Λ

)]
(87)

First, we show that the term in the square brackets on the RHS of (87) is positive, i.e.

2 > Λ

[
1− Λ +

1 + Λ

1− β̃ρz (1− Λ)

y

ρ+ y

]

The worst case for this to be true is if y is very large and %z = 1. In that case, for the expression above to

be true, it must be that:

β̃ <
2

2− (1− Λ) Λ

which is true since β̃ < 1 and 2
2−(1−Λ)Λ > 1 since we know that 0 < Λ < 1 from Appendix XXX. Thus, the

term in the square brackets on the RHS of (87) is positive.

Next, to show that (87) holds with countercyclical risk, it suffices to show that it holds for the lowest

Ω consistent with non-procyclical risk, i.e. Ω = Λ

(1−β̃)(1−Λ)
. Plug in Ω = Λ

(1−β̃)(1−Λ)
into (87), i.e:

1 +

(
1− β̃

)
(1 + Λ)

1− β̃ρz (1− Λ)

y

ρ+ y
<

[
Λ

(
2

Λ (1− Λ)
− 1

)
− 1 + Λ

1− β̃ρz (1− Λ)

y

ρ+ y

(
Λ

1− Λ

)]

Again the worst case for this condition to be satisfied is if %z = 1. Suppose that is the case. Then, the

expression can be further simplified to:
y

ρ+ y
< 1

which is true since steady state output is positive.

Claim: If risk is countercyclical Θ > 1, then α0(Ω) > 1

Proof. Since α(Ω) > 1, it follows from (85) that α0(Ω) > 1.

F The model with nominal debt

In this extension, we change the assumption that financial intermediaries trade real claims with the house-

holds. Instead, we assume that now these intermediaries trade nominal claims at a nominal price ϑ
1+it

which pay a dollar tomorrow. Then the household’s budget constraint can be written as:

Ptc
s
t (i) +

ϑ

1 + it
Ast+1 (i) = Ptwt`

s
t (i) +Ast (i) + PtTt

13



where Ast+1 (i) is the quantity of nominal claims purchased by the household at date t. Dividing through

by Pt, we get:

cst (i) +
ϑ

1 + it
Πt+1a

s
t+1 (i) = wt`

s
t (i) + ast (i) + Tt

where ast (i) =
Ast (i)
Pt

denotes the real value of wealth held by the household at the beginning of date t.

Given these definitions, the rest of the model is the same except for the µt recursion which can now be

written as:

µ−1
t = 1 + γρwt +

ϑΠt+1

1 + it
µ−1
t+1

the Σt recursion which we now derive. We start with the budget constraint of a households and plug in

the expression for labor supply (10) and the consumption function (9):

ast (i) =
1 + it−1

ϑΠt

[
wt−1`

s
t−1 (i) + ast−1 (i) + Tt−1 − cst−1 (i)

]
=

Rt−1

θ
[1− (1 + γρwt−1)µt−1]xst−1 (i)

In steady state, (12) implies that R
θ [1− (1 + γρw)µ] = 1, so we can write:

ast (i) =
R

θ
[1− (1 + γρw)µ]xst−1 (i) = xst−1 (i)

If we were in steady state up till date 0, the distribution of assets which would obtain at date 0 if there

was no inflation between t = −1 and t = 0:

ãs0 (i) = w
−1∑
k=s

(
ξsk (i)− ξ

)
and

σ2
ã (s, 0) = σ2w2 (−s)

But if there is inflation, then actual as0 (i) is:

as0 (i) = w
−1∑
k=s

(
ξsk (i)− ξ

)
Π−1

0

This implies that for cohort born at date s < 0, as0 (i) is normally distributed with mean 0 and variance

−sw2σ2Π−2
0 . Next, we use this information to derive the expression for Σ0. Using the same Pareto weights

as in the baseline model, we have from (63):

Σ0 = (1− ϑ)

0∑
s=−∞

ϑ−s
∫
e−γµ0xs0(i)di

= (1− ϑ)

0∑
s=−∞

ϑ−s
∫
e−γµ0as0(i)di

∫
e−γµ0w0(ξs0−ξ)di

= (1− ϑ) e
1
2
γ2µ2

0w
2
0σ

2
0

0∑
s=−∞

ϑ−se
−Λ

2

(
µ0
µΠ0

)2
s

= (1− ϑ)
e

1
2
γ2µ2

0w
2
0σ

2
0

1− ϑe
Λ
2

(
µ0
µΠ0

)2

14



where on the last line we have used the fact that for cohorts born at dates s < 0, as0 (i) ∼ N
(
0,−sw2σ2Π−2

0

)
.

This expression can be manipulated to yield:

ln Σ0 =
1

2
γ2µ2

0w
2
0σ

2
0 + ln [1− ϑ+ ϑΣ] + ln

 1− ϑe
Λ
2

1− ϑe
Λ
2

(
µ0

E−1µ0

E−1Π0
Π0

)2


︸ ︷︷ ︸

effect of date 0 surprise

Of course, for dates t > 0, the Σ recursion stays the same as in the baseline model since the planner is

not able to create any inflation surprise at dates t ≥ 1. In linearized terms, the Σ recursion can be written

as:

Σ̂t

Σ
=


−γ
(

1− β̃
)

Ωŷt + ΛΓt + ϑ
βR

Σ̂t−1

Σ for t > 0

−γ
(

1− β̃
)

Ωŷ0 + ΛΓ0 + ϑΛΣ
1−ϑ (µ̂0 − π0) for t = 0

F.1 Optimal monetary policy

The monetary policy problem is very similar to the baseline case. The only difference is the expression for

Σ0 since now the planner can affect the level of consumption inequality by creating an inflation surprise

at date 0. In linearized form, the only first order conditions that differ from those in Section E is the date

0 first-order condition with respect to inflation and with respect to µ. In linearized form, the first order

conditions for π can now be written as:

For t = 0

− m̂2,0 +

(
y

1 + γρ
Ψm4 +m3

ϑΛΣ

1− ϑ

)
π0−

ΛϑΣ

1− ϑ
m̂3,0−m3

ϑΛΣ

1− ϑ

(
2 + Λ +

ϑΛΣ

1− ϑ

)
(µ̂0 − π0)−m3

ϑΛΣ

1− ϑ
= 0

(88)

and for t ≥ 1

− m̂2,t +
1

βR
m̂2,t−1 +

y

1 + γρ
Ψm4πt = 0 (89)

and the FOCs for µ can be written as:

For t = 0

−

(
1− β̃
β̃2

)
(1 + Ω)

γρ

1 + γρ
m1

ŵ0

w
+

[
2Λ

(
m3 −

m1

β

)
− 1− β̃

β̃2
m1

]
µ̂0

+2γ (1−Θ)

(
m3 −

m1

β

)
ŷ0 +

ϑΛΣ

1− ϑ
(m3 + m̂3,0) (90)

+Λm̂3,0 +m3

(
2 +

Λ (1− ϑ+ ϑΣ)

1− ϑ

)
ϑΛΣ

1− ϑ
(µ̂0 − π0)− 1

β̃

(
m̂1,0 −

β̃

β
(1− Λ) m̂1,−1

)
= 0
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and for t ≥ 1

−

(
1− β̃
β̃2

)
(1 + Ω)

γρ

1 + γρ
m1

ŵt
w

+

[
2Λ

(
m3 −

m1

β

)
− 1− β̃

β̃2
m1

]
µ̂t (91)

+2γ (1−Θ)

(
m3 −

m1

β

)
ŷt + Λm̂3,0 −

1

β̃

(
m̂1,t −

β̃

β
(1− Λ) m̂1,t−1

)
= 0

F.2 Deriving the target criterion

It is clear that the target criterion for dates t ≥ 1 is unchanged. The only difference is in the date 0 target

criterion, which we derive next. In this case with nominal debt, the date 0 version of the combined FOC

for w and y (79) can be written as:

γΩŷ0 + 2γ
(1−Θ)2

Λ

(
m3 −

m1

β

)
ŷ0 + Ω

Σ̂0

Σ
−

1 +

(
1− β̃
β̃

)2

(1 + Ω)m1

 γρ (1 + Ω)

1 + γρ

ŵ0

w
+
m4

γ

ŵ0

w

+

[
2 (1−Θ)

(
m3 −

m1

β

)
−

(
1− β̃
β̃2

)
(1 + Ω)m1

]
µ̂0 + κ

1 + γρ

γρ
m̂2,0 + (1−Θ) m̂3,0 −

m4

γ

1

1 + γρ
ẑ0

−
1 + Ω

(
1− β̃

)
β̃

[
m̂1,0 −

β̃

β
(1− Λ) m̂1,−1

]
= 0

Multiply (90) by −
[
1 + Ω

(
1− β̃

)]
and add to the equation above to get:

 Λ

1− β−1β̃ (1− Λ)
γΩ

(1− β̃
)

Ω + 1 + 2
(

1− β−1β̃
) (1− β̃

)
Ω

Λ2

− γΩ +
m4

ργ

 ŷ0

−m4

ργ

ρ+ y

1 + γρ
ẑ0 − Ω

Λ + 2
(

1− β−1β̃
)

1− β−1β̃ (1− Λ)
Γ0 + κ

1 + γρ

γρ
m̂2,0 + Ω

Σ̂0

Σ
−
(

1− β̃
)

Ωm̂3,0

−
[
1 +

(
1− β̃

)
Ω
] ϑΛΣ

1− ϑ
m̂3,0 −

1 +
(

1− β̃
)

Ω

1− β̃

 ϑΛΣ

1− ϑ
−

1 +
(

1− β̃
)

Ω

1− β̃

[2 +
Λ (1− ϑ+ ϑΣ)

1− ϑ

]
ϑΛΣ

1− ϑ
Γ0

+γ

[
1 +

(
1− β̃

)
Ω
]2

1− β̃

[
2 +

Λ (1− ϑ+ ϑΣ)

1− ϑ

]
ϑΛΣ

1− ϑ
ŷ0 +

1 + Ω
(

1− β̃
)

1− β̃

[2 +
Λ (1− ϑ+ ϑΣ)

1− ϑ

]
ϑΛΣ

1− ϑ
π0 = 0

Guess

m̂3,0 =
1

1− β̃
Σ̂0

Σ
+ γΩŷ0 −

γ (1 + Ω)

1− β̃ρz (1− Λ)

y

1 + γρ
ẑ0
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Plug this into the expression above: Λ

1− β−1β̃ (1− Λ)
γΩ

(1− β̃
)

Ω + 1 + 2
(

1− β−1β̃
) (1− β̃

)
Ω

Λ2

+
m4

ργ
− γΩ

[
1 +

(
1− β̃

)
Ω
] ŷ0

−m4


(

1− β̃
)

Ω

1− β̃ρz (1− Λ)

y

y + ρ

(
1 + Λ

1− Λ

)
+

1

ργ

 ŷn0 + κ
1 + γρ

γρ
m̂2,0

+γ
[
1 +

(
1− β̃

)
Ω
] ϑΛΣ

1− ϑ

2Ω +

1 +
(

1− β̃
)

Ω

1− β̃

[2(1 +
ϑΛΣ

1− ϑ

)
+ Λ

] ŷ0

−

 1 +
(

1− β̃
)

Ω

1− β̃ρz (1− Λ)

 ϑΛΣ

1− ϑ
γ (1 + Ω)

y

y + ρ

[
1 + 2

(
Λ +

ϑΛΣ

1− ϑ

)]
ŷn0

+

1 + Ω
(

1− β̃
)

1− β̃

 ϑΛΣ

1− ϑ

[
2

(
1 +

ϑΛΣ

1− ϑ

)
+ Λ

]
π0 −

1 +
(

1− β̃
)

Ω

1− β̃

 ϑΛΣ

1− ϑ
= 0

This expression can be rearranged to yield:

α0 (Ω) [ŷ0 − δ0 (Ω) ŷn0 + ι (Ω)π0 − χ (Ω)] = η0

where

α0 (Ω) ι (Ω) =
γρ

m4

1 + Ω
(

1− β̃
)

1− β̃

 ϑΛΣ

1− ϑ

[
2

(
1 +

ϑΛΣ

1− ϑ

)
+ Λ

]
and α0 (Ω) , δ0 (Ω) and χ (Ω) are as defined in Appendix E.1.
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Figure 8. Time inconsistency with nominal debt: Optimal dynamics absent shocks in baseline calibration (κ = 0.01).
Blue line denotes HANK with countercylcical risk and real debt, red line denotes HANK with countercyclical risk and nominal
debt. All variables are plotted as percentage deviations from their steady state values.
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