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Abstract 

Business cycles are costlier and stabilization policies more beneficial than widely thought. This 

paper shows that all business cycles are asymmetric and resemble mini “disasters.” By this we 

mean that growth is pervasively fat-tailed and non-Gaussian. Using long-run historical data, we 

show empirically that this is true for all advanced economies since 1870. Focusing on the 

peacetime sample, we develop a tractable local projection framework to estimate consumption 

growth paths for normal and financial-crisis recessions. Using random coefficient local 

projections we get an easy and transparent mapping from the estimates to the calibrated 

simulation model. Simulations show that substantial welfare costs arise not just from the large 

rare disasters, but also from the smaller but more frequent mini-disasters in every cycle. In 

postwar America, households would sacrifice more than 10 percent of consumption to avoid such 

cyclical fluctuations. 
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1. Introduction

Few questions in the discipline of macroeconomics divide schools of thought as passionately as the

cost of business cycles and the gains from stabilization policy. In a highly influential back of the

envelope calculation, Robert Lucas made the point in 1987 and prominently again in 2003 in his

presidential address to the American Economic Associations that the welfare gains from stabilizing

the business cycle were extremely low. The estimate by Lucas (1987, 2003) showed that transitory

i.i.d. Gaussian consumption deviations from the postwar U.S. trend, under log utility, deliver very

small costs: less than 1/10 of a percent. Clearly, one might allow more volatile consumption, like the

pre-war U.S. or other countries; or allow expected utility and stochastic growth (Obstfeld, 1994).

But even then it is hard to get the costs of business cycles and hence potential gains from flattening

them to exceed 1–2 percent. The implications, both for research and policy, would be profound.

Instead of fine-tuning low-cost fluctuations with monetary and fiscal policies, the profession and

policy institutions could devote their time and energy to things that matter.

A challenge to Lucas’ findings emerged as an implication of asset pricing models that aimed to

explain the equity risk premium. Note that the two questions are intimately linked. While Lucas

argued that consumption fluctuations were not very costly, asset pricing was confronted with the

puzzle that the compensation for bearing risk over the cycle appeared very high. Why are risk

premiums so high if consumption volatility had only minimal welfare costs? “Rare disasters” asset

pricing models were developed to address this key macro-finance puzzle (Barro, 2006; Gabaix, 2008;

Rietz, 1988). In these models, growth has fat tails: it is skewed by large, low-probability, permanent

jump losses, and the welfare costs are much larger. Such losses depend on the size and probability

of the disaster but, using historical panel data, Barro (2009) arrives at a welfare cost estimate of

17 percent due to the disaster-driven jumps, ten times larger than the 1.6 percent attributable to

Gaussian growth disturbances.1 The costs can be larger still if utility is recursive, or if disasters

have stochastic probability, stochastic size, more persistence, or are permanent rather than transitory

(Barro and Jin, 2011; Gourio, 2012; Nakamura, Steinsson, Barro, and Ursúa, 2013; Obstfeld, 1994;

Reis, 2009). Fat tails matter, with effectively all of the amplification of the welfare costs driven by

higher moments (Martin, 2008).2

From the “rare disaster” perspective, the true welfare cost of economic fluctuations mainly

stems from such rare, but very costly events. But this view might be too optimistic still, and

the value of stabilization policy consequently even bigger. In this paper we argue that the “rare

disasters” method of measuring the costs of business cycles needs amendment: it is not that it is

incorrect, but rather that it does not go far enough. In fact, when we use long-run historical data

to look at growth at risk, we find that business cycle events typically contain the kinds of higher

moments that amplify welfare costs. That is, such deviations from the Gaussian benchmark do

1For comparability, this is for the CRRA case with γ = θ = 4 reported in Table 3 .
2Research also shows that other sources of risk, notably uninsured idiosyncratic income risk, can also

amplify these costs (Atkeson and Phelan, 1994; Imrohoroğlu, 1989).
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not just appear in the extreme disasters—the wars, revolutions, financial crises, etc. considered

by previous research. Instead, we argue that fat tails and persistence also appear in “normal

recessions:” there are disasters everywhere.3 Once we embrace this idea, welfare cost judgments

change profoundly. In our estimates for post-WW2 U.S. data, households would sacrifice about 10-15

percent of consumption to avoid business cycles. Far from being a side-show for macroeconomics,

business cycles are at the heart of the discipline.

The first part of our paper documents this new stylized fact using a comprehensive macro-

historical database by (Jordà, Schularick, and Taylor, 2017). The result holds true in advanced

economies usually considered exempt from the more frequent economic dislocations seen in

emerging markets. Our finding ties into recent research exploring the importance of skewness for

macro and finance puzzles (Colacito, Ghysels, Meng, and Siwasarit, 2016; Dew-Becker, Tahbaz-Salehi,

and Vedolin, 2019) as well as the micro skewness underpinnings at the firm or household level

(Busch, Domeij, Guvenen, and Madera, 2018; Salgado, Guvenen, and Bloom, 2019). In these works,

skewness appears as a general phenomenon and not just as a disaster pattern.4 Our analysis also

meshes with inherently asymmetric macro frameworks, such as de Long and Summers (1988) or the

Friedman “plucking” model which has periodically attracted attention (Dupraz, Nakamura, and

Steinsson, 2019; Kim and Nelson, 1999). Fatás and Mihov (2013) echo this idea when noting that

even in the U.S., as postwar growth volatility fell in the Great Moderation, nonetheless negative

skewness increased. Jensen, Petrella, Ravn, and Santoro (2020) make the link between this skewed

pattern and the growth of leverage, which we also explore below. But, to our knowledge, we are

the first to re-examine the costs of business cycles debate in this setting of ubiquitous fat tails with

disasters everywhere.

The second part of the paper proposes a new empirical framework for accurately estimating and

calibrating a growth process with these properties. At each date a recession occurs according to a

Bernoulli coin-flip process, but this can be a less-disastrous normal recession or a more-disastrous

financial crisis recession. We restrict to these cases and exclude wars to focus on peacetime welfare

costs. The recession type is governed by another coin-flip. If no recession occurs, consumption

growth is drawn from a Gaussian i.i.d. process. This is a baseline: in general we can allow for

many recession types and non-i.i.d. growth. If a recession occurs, then over some horizon the

path of consumption is subject to a stochastic penalty, the scale of which varies by horizon, and

by recession type. This formulation turns out to be convenient as it maps directly into estimation

via local projections (Jordà, 2005), and at larger horizons LP estimation may be preferred to VAR

methods when estimation is constrained to finite-lag specifications (Jordà, Singh, and Taylor, 2020).

LP estimation has been successfully employed in fixed-coeffcient form to document the systematic,

large, and persistent differences in normal and financial crisis recessions (Jordà, Schularick, and

Taylor, 2013). Here we extend the approach using random-coefficient local projections (RCLP). In an

3Deviations from Gaussianity are in line with venerable arguments for asymmetric business cycle dynamics.
See, e.g., Acemoglu and Scott (1994); Keynes (1936); Morley and Piger (2012); Neftçi (1984); Sichel (1993).

4The large literature on time-varying volatility also points to the importance of higher moments in macro.
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extension, we also explore what happens in this setting when the recession type probability has a

conditional mean which depends on covariates, and a natural case to consider is when the financial

crisis probability depends on the history of credit growth (Schularick and Taylor, 2012).

The third part of the paper takes the estimated consumption growth process and simulates

an economy under various parameter configurations to assess actual and counterfactual welfare

losses due to peacetime business cycles.5 Our focus on the normal versus financial crisis recession

dichotomy speaks to the increased interest in the potential gains from macroprudential policies to

the extent that they can mitigate crisis risk: here direct policy actions are being debated and even

implemented as we write; in contrast other disastrous recessions, such as wars or revolutions, may

be less susceptible to purely economic policy interventions.

As in Barro (2009), we explore how much welfare loss is due to the Gaussian terms versus the

disaster terms. Results still depend on assumptions about the permanent component of the disasters.

But since disasters are now everywhere, including in normal recessions, we find that the welfare

costs of business cycles are much larger. A large loss affects the trend in both normal and financial

crisis recessions, and under simulation we reject the Gaussian null in favor of our RCLP-estimated

dynamic moments. In a peacetime setting, the Gaussian terms account for only about a 2 percent

loss; allowing fat tails in normal recessions increases this loss to 5 percent; and allowing fat tails in

financial crisis recessions increases it to about 25 percent.

The paper makes two main contributions. The first is in terms of empirical methodology,

as we present a new estimation and simulation approach built around the attractive technique

of local projections, which we show is particularly suited to the problem of measuring disaster

losses over multi-period horizons, and without the complexity and fragility of more elaborate

methods. In random coefficient form, local projections are well equipped to model disaster gaps

with stochastic scaling and persistence in a tractable and flexible way. The methods make for an

easy and transparent mapping from the LP estimates to the calibrated simulation model.

The second contribution is to the perennial applied macro problem of the cost of business cycles.

We argue that all recessions are disasters—in the sense that the growth process has fat tails everywhere,

not just in Barro-type rare disasters. Looking at the post-1985 era in advanced economies, a time of

high credit growth where the mix of disaster types empirically was 50-50, our model says agents

would sacrifice 15 percent of consumption to avoid all business cycles; and 10 percent just to get

back to a world of only non-financial crisis (i.e., only normal) recessions, a goal which was attainable

in the 1950s–1960s era. Thus, even outside of military conflicts, there could be considerable gain to

smoothing economic fluctuations, and all the more so in financially unstable economies.

5Economics has little to say about how to stop wars. But other events classified as disasters outside of
wars are still very damaging. Here, as is well known, the most damaging type are financial crisis recessions
(see, e.g. Muir, 2017). Normal recessions are rarely very disastrous, though probabilistically some will be so.
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2. Disasters everywhere? Testing for the presence of disasters

The canonical model of per capita consumption growth used in Lucas (1987, 2003), and also by a

large literature in macroeconomics and in finance is a random walk with drift. In such a model, it

is easy to see why stabilization policy has few benefits: deviations from trend growth tend to be

short-lived and mean-reverting.

As a first approximation, this model has served the profession well. However, as remarked in

the introduction, evidence that the business cycle is asymmetric abounds. This section documents

some basic moments in the data on per capita consumption (and per capita output) growth for 17

advanced economies since 1870 drawn from the macrohistorical dataset of of Jordà, Schularick, and

Taylor (2017). The statistical features that we derive form the basis of the model specification that

we adopt in the next section, where we calculate the welfare costs of all “disasters.”

The analysis shows non-Gaussian or fat-tailed consumption growth dynamics, or what one could

term mini-disasters. This is true even outside the established rare disaster events in the benchmark

chronologies of Barro (2006), Barro and Ursúa (2008), and related studies. Basically, we show that

the entire universe of peacetime recessions in advanced economies since 1870 displays the same

qualitative fat-tailed behavior as the Barro disasters.

We will examine two alternative measures of economic activity that we generally label as X
and which refer to either real GDP per capita, Y, or real consumption per capita C. Let x = log(X),

hence, lowercase variables denote logs. Lucas (1987, 2003) proposes a null model that characterizes

the growth rate of x (in logs) along the lines of a random walk with drift, such as:

∆xt = xt − xt−1 = g + εt ; εt ∼ N (0, σ2) . (1)

Although our data are organized as a panel, we omit cross-section index to avoid cluttering the

notation.

Next, we expand on this null model. First, define a mapping m that results in the classification

of some time periods as events or “disasters.” The index of events given the observer’s choice of

mapping is denoted rm ∈ Z for rm = 1, . . . , Rm(T), that is, given a sample of size T and based on

the mapping, there are at most Rm such events. When clear from context, we will omit the subindex

m to simplify the presentation.

As an illustration, consider one of the mappings that we use below. In a sample where

the focus is on periods of recession regardless of their origin, a convenient way to date these

events is with the algorithm described in Bry and Boschan (1971). With annual data such as

ours, t(rAll) = t if xt−1 < xt > xt+1 with rAll denoting the index of recessions resulting from this

mapping. Barro (2006), Barro and Ursúa (2008), and Nakamura, Steinsson, Barro, and Ursúa (2013)

are examples of alternative mappings that we explore in more detail in the next section.

We now allow for the possibility that after an event r, the economy takes a hit beyond what the

null model with random drift in Equation 1 would prescribe. However, we assume that after at most
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H periods, the economy returns to its steady-state growth path. This can be easily accomplished by

defining the dummy variable dh
t = I[t(r) < t < t(r + 1); t(r) + h = t] where I[.] is equal to 1 when

the conditions in brackets are met, and is 0 otherwise. In words, the dummy variable will be 1 at

time t if h periods prior was an event, t(r), date. Hence, Equation 1 can be expanded into:

∆xt = g +
H

∑
h=1

βhdh
t + εt . (2)

Therefore, β = (β1 . . . βH) describes a sort of impulse response. It captures, on average, the negative

effects on the growth of x from experiencing a disaster, relative to the random walk with drift null

path.

The cumulative effect of a disaster after h periods is easily seen to be Ch = β1 + . . . + βh. One

way to see this is by recursive substitution of Equation 2, speficically:

∆hxt+h = xt+h − xt−1 = gh +
H

∑
h=1

(
βh

h

∑
j=0

dh
t+j

)
+

h

∑
j=0

εt+j . (3)

Based on these extensions of the null model, it is straightforward to test whether the data support

departures from the null model in Equation 1. Based on Equation 2, one would test the null

H0 : β1 = . . . = βH = 0 or alternatively H0 : C1 = . . . = CH = 0.

However, the null hypothesis can be sharpened by realizing that a given mapping under the

null will generate, by construction, a recession path even under that null. In other words, the mere

definition provided by the mapping restricts the probability space of possible disaster paths. We

illustrate precisely how each of the mappings that we entertain in the next section generate such

paths and how to properly test for the absence of event-specific distortions to the null model of

Equation 1.

A good way to illustrate what the cumulative path of x looks like after a disaster relative to

its null growth path is to examine the cumulative changes of x following disasters. These can be

estimated using local projections with the sequence of regressions:

∆hxt+h = µh + Chd0
t + ut+h ; h = 1, . . . , H . (4)

Depending on the mapping, one obtains a sequence of null values of the cumulative impulse

response, denoted C0,m
h , with which to compare sample estimates from Equation 4, Ĉh. Thus, when

testing the null that disasters are simply rare events generated under the null model, we will be

interested in testing the null hypothesis H0 : Ch = C0,m
h .

To reiterate, different mappings truncate the calendar-time data-generating-process in Equation 1

differently. Events, or disasters, refer to particular regions of the distribution of x rather than the

entire sample space. For this reason, except for some mappings where the null can be constructed

analytically, we rely on numerical approximations to the null that can be made as precise as needed.
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The next section provides a more detailed look at the dynamics of disasters in our sample using

these methods.

2.1. Testing for the role of different disasters

Our statistical framework guides the testing strategy that we now follow. We begin with a baseline

scenario where the theoretical null can be easily computed to illustrate how our numerical procedure

to construct the null path works. Thus, in Test 1 we consider all peaks of economic activity (m ≡ All)
in our sample (which exludes World Wars and the Spanish Civil War), where an event is defined as:

t = t(rAll) if xt−1 < xt > xt+1, that is, a peak in activity defined as in Bry and Boschan (1971).

Rejection of the null in Test 1 could be explained because some of the events defined by our

criterion will include Barro-Ursúa disasters. Test 2 hence begins by assessing the null against these

disasters, with the mapping denoted m ≡ BU. We will show this is indeed the case, thus begging

the question: Would we still find a rejection of the null if we excluded Barro-Ursúa disasters from

our sample?

We probe this question in Test 3, now with the notation m ≡ All − BU. We again reject the null

despite excluding Barro-Ursúa disasters. But as Jordà, Schularick, and Taylor (2013); Muir (2017)

have shown, recessions associated with financial crises tend to be deep and protracted. Hence one

might wonder whether the null would be rejected if we were to focus only on typical recessions not

associated with a Barro-Ursúa disaster nor on any remaining financial crises. This is what we do

in Test 4 using the notation m ≡ N for normal recessions and m ≡ F for recessions associated to a

financial crisis.

Summing up the preview of our results: disasters are everywhere. Economic slowdowns are

not merely unfortunate draws along trend growth. They are economic events whose economic

consequences need to be reevaluated in light of the results of Tests 1–4. This we do in the sections

that follow. But first, here is the summary of all four tests.

Test 1: All peacetime recessions This benchmark test applies to all recessions, denoted m = All.
Every recession peak date is defined as a local maximum of x, whether x = y (output peaks and

output recessions) or x = c (consumption peaks and consumption recessions) following Bry and

Boschan (1971).

This particular mapping has a closed form solution for the null. By construction, any year

after a peak will have conditional mean growth δ̄− = E(∆x|∆x < 0), whereas all other years will

have unconditional mean growth δ̄ = g. Given the Gaussian null, the former is δ̄− = g− l, where

l = σ[φ(−g/σ)/Φ(−g/σ) is the closed-form expression for the expected loss at the peak under

Gaussianity with φ and Φ referring to the normal density and distribution functions respectively.

Thus, under the null, the local projection Equation 4 should yield the following predicted path

estimates: ∆h x̂ = gh− ld0
t . That is, the null predicts a dogleg jump down of size l in the level after a

peak at h = 1, but after that growth reverts to trend as it is drawn afresh every subsequent period
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from the Gaussian null for all h > 1.

To confirm that this is correct, Figure 1 and Table 1 show numerical null paths exactly that

exactly match the closed-form solution just discussed. For clarity, here and below, all LP paths are in

deviations relative to the mean growth path gh. The sample is all countries (N = 17), all peacetime

years (1870–2008) from the Jordà, Schularick, and Taylor (2017) dataset, excluding the two World

Wars and the Spanish Civil War. For log real GDP per capita, g = 1.96%, σ = 3.62%, and the implied

jump loss under the null is l = −4.24%. For log real consumption per capita, g = 1.78%, σ = 4.02%,

and the implied null has l = −4.42%. Both match the simulation LP output.

We now use historical data to test whether reality accords with the null, and it is easy to see

that the null is generally too high and easily rejected.6 In the figures, the 95% confidence intervals

are shown for the LP. For GDP the difference between the LP and the null paths is negative and

statistically significant when h ≥ 2, and for consumption when h = 1 and h ≥ 4. The behavior is as

one might have expected. Including all recessions in the sample leads in general to post-recession

paths skewed more to the downside than a Gaussian null would predict, and more in line with the

disaster model.

Test 2: All peacetime Barro-Ursúa disasters Consider an observer using the Barro and Ursúa

(2008) rare disaster criterion, which we denote m = BU. These dates were constructed in such a

way as to encompass disasters defined as events with peak-to-trough declines in annual real GDP

per capita of at least 15%. This cutoff creates disaster events where the probability that a disaster

begins is about p = 2.4% in the peacetime sample considered above. Accordingly, we construct the

Gaussian null numerically by imposing the same conceptual frequency cutoff. That is, we take all

simulated peak-to-trough declines, and find the worst 2.4% among them, and designate these as the

rare disaster dates.7

The numerical null values are again negative, but they do not follow a simple dogleg: selection

into the disaster bin is not a simple mapping from the one-year post period growth rate, and

depends on the peak-to-trough change over a longer, endogenous, horizon.

The strong message from Figure 2 and Table 2 is that Barro (2006) and Barro and Ursúa (2008)

were right. At all horizons, the actual historical LP estimates are significantly below the simulated

null values, and by a huge margin, often more than minus 10% in level difference. The null

deviations are, of course, negative: after all the endogenous dating scheme was designed to capture

peaks with the worst quintile subsequent declines. But they are just not as negative as in the actual

data. The growth process of the Gaussian null is clearly inadequate to capture the fat tails seen

during rare disasters.

The persistent negative loss of output lasts for many periods and the peak deviation from the

6Rejection in one period is enough to reject the joint null, hence the joint null is not reported even if the
size of the implicit test is too small. Evidence from the data is overwhelming.

7In the numerical approximations we find that 12% of all observations are recession peaks, so to pick out
the peaks that occur 2.4% of the time and have the worst peak-to-troughs of all peaks, we proceed by selecting
the worst fifth (20% = 2.4/12) of all peaks by this yardstick.

7



Figure 1: LP test for non-Gaussianity, all JST recession peaks, all countries, peacetime sample
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Table 1: LP test for non-Gaussianity, all JST recession peaks, all countries, peacetime sample

(a) Real GDP per capita, log y (×100)

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10

C0,All
h -4.24 -4.25 -4.25 -4.25 -4.25 -4.25 -4.25 -4.25 -4.25 -4.25

ĈAll
h -4.40 -5.13 -5.45 -6.26 -7.15 -7.65 -8.20 -8.62 -8.56 -8.67

Difference -0.16 -0.88 -1.21 -2.01 -2.90 -3.40 -3.95 -4.37 -4.32 -4.43

s.e. 0.17 0.30 0.40 0.50 0.60 0.70 0.78 0.86 0.93 0.99

p-value 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N 2237 2220 2203 2186 2169 2152 2135 2118 2101 2084

(b) Real consumption per capita, log c (×100)

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10

C0,All
h -4.42 -4.42 -4.43 -4.42 -4.42 -4.43 -4.43 -4.42 -4.42 -4.43

ĈAll
h -3.39 -4.40 -5.31 -6.26 -7.61 -8.08 -8.29 -8.88 -9.04 -9.91

Difference 1.02 0.02 -0.88 -1.83 -3.19 -3.65 -3.87 -4.46 -4.62 -5.49

s.e. 0.22 0.33 0.44 0.55 0.66 0.76 0.84 0.91 0.99 1.06

p-value 0.00 0.94 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N 2150 2133 2116 2099 2082 2065 2048 2031 2014 1997

Notes: ∗∗ p < 0.01, ∗ p < 0.05, + p < 0.1. See text. Units are in log times 100.
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Gaussian null path is -14.69% in year 7, with a deviation of -9.43% still present after 10 years. For

consumption the peak deviation is -14.25% in year 7, with a deviation of -6.09% after 10 years. This

supports the standard view that disaster losses consist, in some large part, of permanent downshifts

in the trend path. There is also support for the mutli-period evolving disaster setup in Nakamura,

Steinsson, Barro, and Ursúa (2013), since the loss doesn’t fully appear in year 1 and slowly builds

up, before some transitory part begins to fade away.

Test 3: All peacetime recessions minus Barro-Ursúa disasters In our third test, we revert

to the recession peak criterion used in Test 1, but exclude all of the Barro-Ursúa disaster peaks used

in Test 2. We refer to this mapping for the date indicators as m = All − BU.

The equally strong message from Figure 3 and Table 3 is that disasters are indeed everywhere,

so to speak, and not just in Barro-Ursúa episodes. Every peak in the simulated data is counted

in the simulated date indicators, except those simulated as BU disaster peaks above. And every

peak in the actual data is counted in the real world date indicators, except BU disaster peaks (for

robustness we actually exclude peaks within ± 2 years of a BU disaster peak).

The numerical null values are again negative: all peaks on average have subsequent declines. The

null values are also lower than in Table 2, and higher than in Table 1, by construction: we excluded

rare disasters in the numerical calculations to focus on other recession events. The historical LP

estimates are also lower than in Table 2, and higher than in Table 1, by construction: we excluded

the actual rare disasters to focus on other recession events. The null is again no longer a simple

dogleg: recoveries from bad shocks that avoid the disaster threshold survive in this sample, but not

those that cross the threshold; on average, then, the path bounces up compared to the full sample.

Now the main result appears, as we clearly see, since the very same type evidence of non-

Gaussianity emerges. At almost all horizons, the actual LP estimates are again well below the

simulated values and the differences are statistically significant. However we should note that,

given the exclusion of the worst disaster events, the differences—like the estimates themselves—are

smaller in scale than in Table 2. The deviation from the null prediction is now -4.42% at 10 years for

GDP; -6.92% at 10 years for consumption.

We therefore conclude that the rare disaster approach is valid: those events are still the big

disasters. But now even all the other recessions in history can be viewed as mini-disasters of the

same ilk. That is, there are disasters everywhere.

Test 4: All peacetime normal and financial recessions minus Barro-Ursúa disasters
Lastly, we consider a natural hypothesis to account for the previous result, by addressing the

role of financial crises in generating these patterns. It is well established that recessions associated

with financial crises are more costly on average than other “normal recessions” (Jordà, Schularick,

and Taylor, 2013; Muir, 2017), and this holds true even outside of the rare disasters sample. To attack

this question we just employ the Jordà, Schularick, and Taylor (2013) classification of recessions

into Normal (N) and Financial Crisis (F) types, where the latter denotes cases where a financial

9



Figure 2: LP test for non-Gaussianity, all BU disaster peaks, all countries, peacetime sample
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Table 2: LP test for non-Gaussianity, all BU disaster peaks, all countries, peacetime sample

(a) Real GDP per capita, log y (×100)

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10

C0,BU
h -6.19 -9.33 -10.16 -10.31 -10.34 -10.34 -10.34 -10.34 -10.34 -10.35

ĈBU
h -7.82 -13.64 -17.29 -23.49 -24.93 -25.03 -22.54 -22.90 -21.55 -19.78

Difference -1.63 -4.31 -7.13 -13.17 -14.59 -14.69 -12.20 -12.56 -11.22 -9.43

s.e. 0.62 0.97 1.28 1.57 1.90 2.21 2.49 2.72 2.91 3.07

p-value 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N 2237 2220 2203 2186 2169 2152 2135 2118 2101 2084

(b) Real consumption per capita, log c (×100)

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10

C0,BU
h -6.45 -10.10 -11.21 -11.44 -11.47 -11.49 -11.49 -11.49 -11.48 -11.48

ĈBU
h -8.08 -14.85 -19.04 -25.05 -25.64 -25.75 -24.08 -23.47 -20.32 -17.57

Difference -1.63 -4.75 -7.83 -13.60 -14.17 -14.25 -12.59 -11.98 -8.83 -6.09

s.e. 0.64 0.93 1.24 1.55 1.88 2.16 2.41 2.62 2.81 2.99

p-value 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

N 2150 2133 2116 2099 2082 2065 2048 2031 2014 1997

Notes: ∗∗ p < 0.01, ∗ p < 0.05, + p < 0.1. See text. Units are in log times 100.
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Figure 3: LP test for non-Gaussianity, all JST recession peaks, all countries, peacetime sample, excluding BU
disaster peaks (± 2 years) from the historical and simulated indicators
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Table 3: LP test for non-Gaussianity , all JST recession peaks, all countries, peacetime sample, excluding BU
disaster peaks (± 2 years) from the historical and simulated indicators

(a) Real GDP per capita, log y (×100)

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10

C0,All−BU
h -3.77 -3.06 -2.55 -2.36 -2.32 -2.31 -2.31 -2.31 -2.31 -2.31

ĈAll−BU
h -3.90 -4.18 -4.01 -4.18 -4.86 -5.31 -6.17 -6.57 -6.59 -6.72

Difference -0.14 -1.12 -1.46 -1.82 -2.55 -3.00 -3.86 -4.26 -4.28 -4.42

s.e. 0.16 0.27 0.37 0.46 0.56 0.66 0.77 0.87 0.96 1.03

p-value 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N 2048 2031 2014 1997 1980 1963 1946 1929 1912 1895

(b) Real consumption per capita, log c (×100)

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10

C0,All−BU
h -3.90 -3.05 -2.41 -2.15 -2.09 -2.08 -2.07 -2.07 -2.07 -2.07

ĈAll−BU
h -2.73 -3.12 -3.77 -4.03 -5.33 -5.93 -6.49 -7.27 -7.76 -8.99

Difference 1.18 -0.07 -1.36 -1.88 -3.24 -3.86 -4.42 -5.20 -5.69 -6.92

s.e. 0.20 0.30 0.40 0.50 0.59 0.69 0.79 0.90 1.01 1.12

p-value 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N 1956 1939 1922 1905 1888 1871 1854 1837 1820 1803

Notes: ∗∗ p < 0.01, ∗ p < 0.05, + p < 0.1. See text. Units are in log times 100.
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crisis event occurs within ± 2 years of the recession peak. Now we just repeat the previous test, but

examine differences between the null and historical paths in N and F types of recessions separately.

The local projection estimates are now denoted by N and F subscripts.

Figure 4 and Table 4 deliver a potentially surprising answer. Financial Crisis type recessions

have much worse growth paths than the null, and a good deal of the fat-left-tail growth performance

seen in the last test clearly stems from the damage done in financial crisis events. However, even in

the Normal recessions we still find strong evidence against the Gaussian null. So the problem is

not just rare disaster causing fat tails, nor is it rare disasters and financial crises. It looks like even

Normal recessions contribute to the general pattern too.8

Implications for welfare: do all disasters matter? If we admit these fat-tailed mini-disasters

into the welfare accounting framework, there is prima facie evidence of their quantitative significance.

The intuition for this result is straightforward. Welfare calculations, risk premia, and other features

of the disaster calculus center on an expression like pE(l), the event probability p times the expected

jump loss in an event E(l). For sure, mini-disasters are on average less painful, about one quarter as

severe as rare disasters. However, they are about four times as likely to occur. Overall, then, they

have the potential to be very consequential in welfare terms, and possibly even more than the rare

disasters.

Some back-of-the envelope calculations motivate the rest of the paper. Specifically, in the

peacetime JST panel data we analyzed above, the BU rare disasters have p = 0.024 and from the

analysis E(l) = 16%, which would be larger if wars were included in our sample, as in Barro (2006).

Thus, pE(L) = 0.384%. However, non-disaster Financial Crisis recessions have p = 0.0024 and from

the charts E(L) = 8%, for pE(b) = 0.19%. And non-disaster Normal recessions have p = 0.072 and

from the charts E(L) = 4%, for pE(b) = 0.29%. Thus the expected jump loss from recessions other
than rare disasters has a larger magnitude than that associated with the rare disasters themselves.

This highlights the key concern of our paper. Rare disasters hurt a lot, but happen once in a

blue moon; but the smaller-but-frequent left-tail pain of other recessions really adds up. To the best

of our knowledge, no research has considered the existence of the latter type of non-Gaussianity,

nor measured the relative importance of these different flavors of disasters in the context of the

literature on the welfare costs of business cycles. Setting aside the rough calculations in the last

paragraph, we now need a carefully estimated growth process, a well calibrated model, and a set of

meaningful counterfactuals. To this we now turn.

8Note that the null is numerically constructed as in Test 3 and therefore by construction includes “big”
recessions that would probably would better characterize financial crises. Instead of adjusting the null, we left
the figure as is to highlight that even in this adverse choice of null, Normal recessions still exhibit statistically
measurable fat-tailed features.
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Figure 4: LP test for non-Gaussianity, all JST Normal and Financial recession peaks, all countries, peacetime
sample, excluding BU disaster peaks (± 2 years) from the historical and simulated indicators
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Table 4: LP test for non-Gaussianity, all JST Normal and Financial recession peaks, all countries, peacetime
sample, excluding BU disaster peaks (± 2 years) from the historical and simulated indicators

(a) Real GDP per capita, log y (×100)

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10

C0,N
h -3.77 -3.06 -2.55 -2.36 -2.32 -2.31 -2.31 -2.31 -2.31 -2.31

ĈN
h -0.14 -0.76 -0.98 -1.39 -1.99 -2.32 -3.04 -3.57 -4.05 -4.31

ĈF
h -0.33 -2.43 -3.38 -3.75 -5.17 -5.97 -7.52 -7.64 -6.31 -6.08

Difference N -0.14 -0.76 -0.98 -1.39 -1.99 -2.32 -3.04 -3.57 -4.05 -4.31

s.e. 0.19 0.31 0.42 0.53 0.64 0.76 0.88 1.00 1.09 1.17

p-value 0.45 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Difference F -0.33 -2.43 -3.38 -3.75 -5.17 -5.97 -7.52 -7.64 -6.31 -6.08

s.e. 0.34 0.55 0.75 0.94 1.14 1.35 1.57 1.77 2.01 2.27

p-value 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

N 2077 2060 2043 2026 2009 1992 1975 1958 1941 1924

(b) Real consumption per capita, log c (×100)

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10

C0,N
h -3.90 -3.05 -2.41 -2.15 -2.09 -2.08 -2.07 -2.07 -2.07 -2.07

ĈN
h 1.34 0.47 -0.50 -0.73 -1.92 -2.46 -2.79 -3.74 -4.51 -5.87

ĈF
h -0.16 -1.93 -3.80 -5.04 -6.88 -8.00 -9.30 -9.44 -9.03 -9.77

Difference N 1.34 0.47 -0.50 -0.73 -1.92 -2.46 -2.79 -3.74 -4.51 -5.87

s.e. 0.24 0.35 0.46 0.57 0.68 0.79 0.91 1.03 1.16 1.26

p-value 0.00 0.18 0.27 0.20 0.00 0.00 0.00 0.00 0.00 0.00

Difference F -0.16 -1.93 -3.80 -5.04 -6.88 -8.00 -9.30 -9.44 -9.03 -9.77

s.e. 0.40 0.59 0.78 0.97 1.15 1.33 1.53 1.73 2.00 2.29

p-value 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N 1974 1957 1940 1923 1906 1889 1872 1855 1838 1821

Notes: ∗∗ p < 0.01, ∗ p < 0.05, + p < 0.1. See text. Units are in log times 100.
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3. Disaster paths with randomly varying severity

The previous section establishes that, on average, even plain vanilla recessions are like mini-disasters.

However, it does not quite tell us how much consumption the representative agent would forgo to

avoid them, a critical calculation to assess welfare costs. Motivated by the methods used above, we

introduce an estimation technique that will allow us to calibrate disaster dynamics directly from

local projections. Later we incorporate these estimates to conduct the proper welfare calculation.

We begin by conceiving of the economy as evolving under two different regimes. In normal

times the economy evolves as the random walk with drift of Equation 1. When a disaster hits, the

economy is shunted onto a different regime whose dynamics we wish to characterize next. Thus, the

empirical process corresponding to all calendar dates associated with an event r, that is {t(rm)}Rm
rm=1,

is a point process with a long tradition in statistics (see, e.g., Cox and Isham, 1980, for an introduction

to the topic). In particular, if we assume—as we will assume in our simulations later—that at each

calendar time period a Bernoulli draw with constant success probability determines whether an

event takes place, then the duration elapsed between events, τ(r) = t(t)− t(r− 1), is approximately

distributed as an exponential random variable.

Applications in economics include models describing the arrival of policy rate changes (Hamilton

and Jorda, 2002; Hu and Phillips, 2004), descriptions of the arrival of trades in financial markets

(Bowsher, 2007; Engle and Lunde, 2003; Engle and Russell, 1998), and models of trades in commodity

markets (Davis and Hamilton, 2004), among others.

In order to allow the severity of each disaster to vary randomly, we expand on our previous

specification. Therefore, at each event date t(r), we assume that there is an associated stochastic

process characterizing the depth of the recession associated to the rth event. We denote the path at

each event r as C(r) = (C1(r), . . . , CH(r)) where the C(r) are indexed by r (we omit reference to the

mapping for simplicity). Before becoming more specific, it is important to note that the stochastic

process given by {t(r),C(r)}R
r=1 for r ∈ Z now becomes a marked point process (see Cox, 1972; Last

and Brandt, 1995, for two classical references). That means that the intensity or hazard rate with

which events arrive and the values that the marks take could be related, in principle.

Our strategy is more modest motivated by the evidence and to facilitate the simulations in later

sections. First, we assume that there is no duration dependence in the point process, that is, the

duration between two disasters is uninformative about when the next recession will hit, or as stated

earlier, τ(r) ∼ E(λ), that is, durations are exponentially distributed with constant hazard λ = 1/p
where p is the success probability in the Bernoulli trial. This seems consistent with findings reported

in the literature on recession prediction (see, e.g., Berge and Jordà, 2011; Chauvet and Hamilton,

2006; Diebold and Rudebusch, 1990). Second, the point process and the process for the marks are

assumed to be independent from each other. In other words, the severity a disaster is not a function

of how long ago the previous disaster happened. Here again the evidence does not strongly suggest

otherwise. Potential violations of these two assumptions in other contexts are an interesting area of

research that we reserve for a different paper.
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A simple way to extend the framework of marked point processes is to augment our local

projections specification as follows:

∆hxt(r)+h = µh + αh exp(ζt(r))d
0
t + ut(r)+h ; ζt(r) ∼ N(0, σ2

ζ ) ; ut(r)+h ∼ N(0, σ2
h ) ; (5)

r = 1, . . . , R ; h = 1, . . . , H ,

where ζ and u are independent from each other. Call this model random coefficient local projections
or RCLP. We also present the model by omitting the panel dimension of our application to avoid

notational clutter. Thus, note that E(exp(ζ)) = exp(σ2
ζ /2) and hence, when evaluated at the mean,

Ch ≈ αh exp(σ2
ζ /2) where Ch refers to the non-random version of the local projections in Equation 4.

In order to get a tangible sense of what the RCLP specification buys us, notice that exp(ζ) ∈ (0, ∞)

since ζ ∈ (−∞, ∞), meaning that as ζ → −∞, the disaster approaches the null model proposed

by Lucas (1987, 2003) and shown in Equation 1. This is why we do not scale the constant term by

exp(ζ) as we do with the other coefficients. As ζ → ∞, the disaster becomes increasingly severe. As

we will show momentarily, we estimate σζ ≈ 0.5. This means that the recession penalty coefficients,

αh are scaled up or down as follows. Take a centered 95% probability range for ζ. At the low end,

the coefficient αh is scaled down by a factor of 0.4, approximately. At the other end, it gets scaled by

a factor of approximately 2.7. In other words, the worst recession is about 7 times worse than the

weakest recession when comparing the 2.5% quantile to the 97.5% quantile of the distribution of the

latent variable ζ.

As an example, if the typical recession results in a 2% decline in GDP in the first year, a mild

recession will result in a decline of about 0.8%, whereas a severe recession is in the order of 5.4%.

Thus, this simple extension of the model permits quite a range of variation in the severity of disaster

events, which can easily bracket the mild recession of 2001 and the Great Recession in the U.S., for

example. When ζ is at its zero mean, the coefficient αh is scaled by a factor of 1.3, meaning that our

estimates of αh are approximately such that Ch ≈ αh since e0.52/2 = 1.01. This provides a convenient

rule of thumb to compare the fixed and random coefficient model estimates.

The model in Equation 5 can be extended in a number of ways that we leave unexplored here as

those extensions are not our primary focus in this paper. In more general applications, a typical local

projection exercise would include additional controls. However, it is easy to see how these extensions

could be accommodated. The specification in Equation 5 can be estimated by maximum likelihood

for each horizon h = 1, . . . , H noting that because we work in event time, ζτ is common to all

horizons and the system of equations can be set up accordingly. Although this is the recommended

approach for general applications of the model, the particular application that we pursue here

allows for a simpler, single equation estimation procedure as follows:

∆hxt(r)+h = µh +

(
H

∑
h=1

αhd0
t(r)

)
exp(ζt(r)) + ηt(r)+h . (6)

Because we have worked so far with cumulated responses, it is worth remarking that a similar

15



approach can be used when working with typical impulse responses. In that case, Equation 5 can be

rewritten as:

∆xt(r)+h = gh + πh exp(ζt(r))d
0
t(r) + vt(r)+h ; ζt(r) ∼ N(0, σ2

ζ ) ; vt+h ∼ N(0, σ2
h ) . (7)

Similarly, Equation 7 would then be expressed instead as:

∆xt(r)+h = γh +

(
H

∑
h=1

πhd0
t(r)

)
exp(ζt(r)) + ξt(r)+h . (8)

In our application we will report results based on both approaches by further noting that the

αh coefficients in Equation 6 simply accumulate the coefficients πh in Equation 8, that is, αh =

π1 + . . . + πh. This makes it easy to compare one set of estimates with the other as we do below.

3.1. Estimating the baseline RCLP model

Using the methods just introduced, we estimate baseline values on data that we will then use for the

welfare calculation of the cost of business cycles. For this reason we focus only on real consumption

per capita in what follows. Let cit denote the log of annual real consumption per capita across years

t = 1, ..., T and countries i = 1, ..., I. The relevant sample will be drawn from the same peacetime

dataset as above, with recession peaks, r, further sorted into two types: recessions associated with

financial crises (F) and normal recessions (N). Accordingly, let Fi,t = 1 for a business cycle peak

of the F type, and Ni,t = 1 an analogous indicator variable for N type peaks. In due course, the

occurrence of these peaks will be modeled as Bernoulli draws, as in standard disaster models.

The sample used for estimation is limited by business cycle peak episodes, r = 1, ..., R. The rth

peak in the sample corresponds to the country-year observation {i(r), t(r)}. The next recession

peak does not occur until observation {i(r + 1), t(r + 1)}. Hence, the sample used for estimation

is S = {i, t, h|i = i(r); t = t(r); h = 1, . . . , H(r); r = 1, . . . , R}, that is, we use all country-year pairs

during recession episodes only.

We index H(r) by r. Because the length of expansion varies across recessions r. In any case, as a

practical matter, we limit included observation to those which satisfy H(r) ≤ 10 = Hmax since few

expansion last more than 10 years, and this subsample of observations is too small to afford precise

path estimates beyond this horizon. Of course, allowing Hmax = 10 does not constraint the recession

to revert to its growth path sooner. We simply let the data determine that.

We now describe the counterpart specification to Equation 6 in cumulative form. Hence, we

specify the LHS variable of the LP in similar fashion as ∆hci(r),t(r)+h. In parallel, we also estimate the

counterpart specification in growth rates given by Equation 8, in which case the LHS is defined as

∆ci(r),t(r)+h. As we will see shortly, the results are essentially the same. We now discuss the specifics

of the RCLP specification in cumulative terms. The specification in growth rates is analogous as we

show momentarily.
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As discussed in the previous section, to allow for the depth of each recession episode to vary

randomly, we extend the standard LP set-up to the RCLP specification introduced earlier as follows

for the counterpart to Equation 6:

∆hci(r),t(r)+h = µh +

(
H(r)

∑
h=1

[α
f
h Fi(r),t(r) + αn

h Ni(r),t(r)]

)
eζi(r),t(r) (9)

+
(

α
f
LRI(h > Hmax)Fi(r),t(r) + αn

LRI(h > Hmax)Ni(r),t(r)

)
eζi(r),t(r)

+ εh
i(r),t(r) ; ∀ i, t, h ∈ S ; H(r) ≤ 10 = Hmax ,

where the terms in the second line of this expression capture unspecified long-run effects sometimes

lasting beyond Hmax. We explain this feature in more detail momentarily. First note that the coeffi-

cients α
f
h and αn

h measure disaster-type losses in financial crises and normal recessions, respectively.

In particular, the coefficient α
f
h measures the (one-period or cumulative growth) impact of a financial

crisis recession at h-years, relative to trend. The interpretation of the coefficient αn
h is analogous

for normal recessions. Both are modulated by eζi(r),t(r) to allow for variation in the severity of the

episode, as explained in the previous section.

Returning to the second line in Equation 9, note that in finite samples—where cycles of arbitrarily

long length H are never observed—we cannot achieve reasonable sample sizes of outcomes to

measure growth or level deviations at large H. Thus, pragmatically, we truncate the LP estimation

at a reasonable horizon Hmax. This is allows estimation using a reasonable number of observations

from which to compute growth or cumulative growth. Second, beyond that horizon we implicitly

assume in the growth rate regression that the process reverts to the random walk with drift for

h > Hmax. That is, the cumulation of all growth losses captured by the αn
h and α

f
h parameters will

cease at that point, and no further permanent loss is incurred: the disaster is over. To make the

regression consistent with this formulation, we need to impose permanent losses via the long-run

permanent loss terms α
f
LR and αn

LR.

Assuming that a financial recession leads to a permanent loss has become the consensus view

since at least Cerra and Saxena (2008). Assuming that a normal recession also leads to a permanent

loss, however, might be controversial. Therefore, in our baseline level regression results to be

conservative, we will impose the restriction αn
LR = 0 and assume there is no permanent loss from a

normal recession, and only estimate α
f
LR. For the baseline growth regression we will do the same,

and therefore impose the restriction ∑H
h=1 αn

h = 0.

Note that this type of constraint effectively adjusts the trend component and therefore also

rescales all financial recession coefficients. In other words, if financial recessions had the same

long-run impact as normal recessions, the financial recession coefficients would sum up to zero as

well. We will discover that this is clearly not the case, in line with consensus. Of course, all else

equal, these restrictions limit the welfare losses in the normal recessions, and lower estimates of

welfare costs, and in that sense are conservative.
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Figure 5: Recession paths for Normal and Financial Crisis Recessions
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Notes: The figure shows Normal versus financial crisis recession (Fin) paths by displaying estimates of the αn
h and α

f
h coefficients in

Equation 9 in the cumulative (cum.) version in that specification as well as the growth rate version (not shown). In addition, the figure
displays the same coefficients when estimated with traditional fixed coefficient local projection versions pf Equation 9. The coefficients
of the growth versions are reported in cumulative form by adding up the coefficient estimates appropriately. The estimates are scaled
by 100 to show the results in percent deviations from the peak of activity. 95 % confidence intervals from the RCLP estimates are
provided as shaded regions. The recession paths are scaled to ensure that normal recessions have no long run effect, i.e., the constraint
∑10

h=1 n̂h = 0 is imposed. See text.

This specification makes the connection with the empirical results in Section 2 direct. However,

in the next section we conduct our welfare calculations using the specification in growth rates

parallel to Equation 8. Thus, the version of Equation 9 in growth rates is easily seen to be:

∆ci(r),t(r)+h = µh +

(
H(r)+1

∑
h=1

[π
f
h Fi(r),t(r) + πn

h Ni(r),t(r)]

)
eζi(r),t(r) + εh

i(r),t(r) ; ∀ i, t, h ∈ S , (10)

As we show next, the results from using the cumulative or growth specifications in equations 9

and 10 generate essentially the same results, as one would expect. However, Equation 10 makes it

easier to simulate the data for our purposes.

3.2. Results

Based on the previous section, we estimate a battery of specifications that serve as baseline for the

welfare calculations in later sections. In particular, we estimate models in cumulative and growth

forms, using fixed coefficient local projections (LP) and random coefficient local projections (RCLP),

and provide separate results for normal recessions (N) and financial crisis recessions (F). Figure 5

and Table 5 summarize the estimated paths based on all these variants.

Several results deserve comment. First, it is encouraging (though not unexpected) to see that
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Table 5: Recession paths for Normal and Financial Crisis Recessions

(1) (2) (3) (4)
LP cumulative RCLP cumulative LP Growth RCLP Growth

αn
1 -5.6∗∗∗ -4.1∗∗∗ πn

1 -5.5∗∗∗ -5.2∗∗∗

(0.5) (0.4) (0.2) (0.2)
αn

2 -7.3∗∗∗ -5.3∗∗∗ πn
2 -1.6∗∗∗ -1.3∗∗∗

(0.6) (0.5) (0.3) (0.2)
αn

3 -7.7∗∗∗ -5.4∗∗∗ πn
3 -0.2 0.3

(0.6) (0.5) (0.3) (0.2)
αn

4 -7.5∗∗∗ -5.4∗∗∗ πn
4 0.3 0.6∗∗

(0.7) (0.6) (0.3) (0.3)
αn

5 -6.8∗∗∗ -4.8∗∗∗ πn
5 0.9∗∗ 1.2∗∗∗

(0.8) (0.7) (0.4) (0.3)
αn

6 -6.0∗∗∗ -4.0∗∗∗ πn
6 1.3∗∗∗ 1.3∗∗∗

(0.9) (0.7) (0.4) (0.4)
αn

7 -6.0∗∗∗ -3.4∗∗∗ πn
7 0.9∗∗ 0.8∗∗

(1.0) (0.8) (0.5) (0.4)
αn

8 -4.7∗∗∗ -1.6∗ πn
8 1.3∗∗ 1.0∗∗

(1.1) (0.9) (0.5) (0.5)
αn

9 -4.8∗∗∗ -1.0 πn
9 1.5∗∗∗ 1.1∗∗

(1.2) (1.0) (0.6) (0.5)
αn

10 0.0 0.0 πn
10 1.1∗ 0.2

(.) (.) (0.6) (0.6)

α
f
1 -5.4∗∗∗ -4.2∗∗∗ π

f
1 -5.5∗∗∗ -5.0∗∗∗

(0.7) (0.7) (0.4) (0.4)
α

f
2 -8.4∗∗∗ -6.6∗∗∗ π

f
2 -3.2∗∗∗ -2.9∗∗∗

(0.8) (0.8) (0.4) (0.3)
α

f
3 -11.0∗∗∗ -8.2∗∗∗ π

f
3 -2.3∗∗∗ -1.8∗∗∗

(1.0) (1.0) (0.5) (0.4)
α

f
4 -13.7∗∗∗ -9.8∗∗∗ π

f
4 -1.9∗∗∗ -1.7∗∗∗

(1.2) (1.2) (0.6) (0.4)
α

f
5 -14.3∗∗∗ -10.1∗∗∗ π

f
5 -0.9 -0.3

(1.3) (1.4) (0.6) (0.5)
α

f
6 -15.5∗∗∗ -10.0∗∗∗ π

f
6 -0.6 0.1

(1.6) (1.6) (0.8) (0.6)
α

f
7 -16.7∗∗∗ -9.5∗∗∗ π

f
7 -0.2 0.7

(1.8) (1.6) (0.9) (0.6)
α

f
8 -17.1∗∗∗ -10.2∗∗∗ π

f
8 -0.5 0.1

(2.0) (2.0) (1.0) (0.8)
α

f
9 -17.8∗∗∗ -9.6∗∗∗ π

f
9 -0.1 0.5

(2.3) (2.0) (1.1) (0.9)
α

f
10 -14.5∗∗∗ -6.8∗∗∗ π

f
10 0.1 0.6

(3.0) (2.6) (1.5) (1.1)
α

f
LR -15.9∗∗∗ -3.8∗∗∗

(1.2) (1.1)

σζ 0.63 0.45

Observations 1915 1891 2157 1915

Notes: Dependent variable for columns (1) and (2): ∆hci(r),t(r)+h × 100. Dependent variable in columns (3) and (4): ∆ci(r),t(r)+h × 100.
Thus, the cumulative sum of the coefficients in columns (3) and (4) is approximately equal to the coefficients in columns (1) and (2).
The Table displays regression coefficients for the LP and RCLP models with H=10. Standard errors in parentheses. ∗p < 0.10,∗∗ p <

0.05,∗∗∗ p < 0.01. We impose ∑H
h=1 αn

h = 0. The row σζ displays the estimate of the standard deviation of the latent variable ζ in the
RCLP specification. See text.
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estimates based on our new random coefficient local projection (RCLP) specification match pretty

closely the usual fixed coefficient LP counterparts. Second, it is also useful to see that, whether one

estimates the model in growth or cumulated terms, essentially makes no difference and that is as

true for LPs as it is for RCLPs. The confidence regions plotted alongside the RCLP estimates show

that all paths are rather close to each other in the economic and statistical sense. Finally and as is

well documented in, e.g. Jordà, Schularick, and Taylor (2013, 2017) there are significant differences

between normal and financial crisis recessions. Normal recessions tend to last about one year. By

year two the economy returns to the level at the peak, and continues on its growth path thereafter.

Financial recessions are deeper, last longer, and even 10 years out, sit about 10 percentage points

lower than the path following a normal recession. All in all, these results provide a great deal of

comfort regarding the new methods that we introduced as they match previous, well-documented

features of economic downturns.

However, the more interesting feature of the RCLP estimates perhaps lies in estimates of the

variance of the latent variable ζ, which modulates the strength of the recession. In order to get a

closer look, we turn to Table 5. The estimates reported in columns (1) and (2) correspond directly to

those shown in Figure 5. The estimates reported in columns (3) and (4) correspond to estimates based

on the growth version of the specification. When sequentially cumulated, they are approximately

the same as those in columns (1) and (2) as Figure 5 corroborates. Importantly, estimates of σζ

whether for the cumulative or growth specifications are very close to each other: 0.63 vs. 0.45, or

approximately 0.5 as we claimed earlier.

As we discussed in previous sections, one way to conceptualize what this estimate of σζ means

is to explore the implied variation in the depth of a recession at both extremes of a centered 95%

probability range. This range puts a severe recession about 7 times worse than a mild recession.

Therefore, at an intuitive level, the RCLP estimates make economic sense and will therefore be

helpful in constructing the welfare simulations of the coming sections.

4. Costs of business cycles with disasters everywhere

Recessions are not just bad consumption draws from a random walk with drift. They have patterns

that defy this null model in ways as shown above—disasters are everywhere. If so, how much is

a representative consumer willing to pay to such randomness? In this section we take the lessons

from our empirical strategy seriously and put them to work in a welfare calculation exercise.

Our starting point will be to model consumption growth as a two-state process. In good

no-disaster states of the world, consumption follows the familiar random walk with drift model.

However, with some probability drawn from a Bernoulli distribution calibrated to match the

frequency of the events investigated earlier, a disaster takes place, although we rule out a disaster

in consecutive years to match the empirical constraint that a peak in output or consumption by

definition cannot occur in two consecutive years. If such a disaster occurs, then with some probability

taken as a sub-draw from another Bernoulli distribution, the normal or financial type of disaster is
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decided. When such draws yield a disaster, we then characterize the average path of the disaster

using our estimated LP coefficients in the previous section, and we also adjust its severity by taking

a draw calibrated to the latent process ζ in the previous section. Once on a disaster path, the

economy remains on it until horizon Hmax is encountered and it returns to the no-disaster state, or

until another disaster draw is encountered.

Thus, the consumer faces uncertainty from a variety of quarters. First, at any point a disaster

may take place. Second, given that a disaster takes place, its type and severity is uncertain. Third,

the duration of the disaster itself is uncertain. Faced with these multiple sources of uncertainty, the

consumer will be willing to pay a price to insure the stability of its consumption stream. How much

consumption is she willing to forgo? This is big question we try to answer.

Model simulations To do this, we simulate an artificial consumption series given by the follow-

ing process for annual consumption growth. The simulation is for an individual country, so the i
subscript is dropped. As described, consumption follows a two-state process given by:

∆ct = µ̂ + εt , No Disaster Period, h > Hmax

∆ct = µ̂ +

(
H(r)+1

∑
h=1

[π̂
f
h Ft(r) + π̂n

h Nt(r)]

)
eζt(r) + εt Disaster Period, 1 ≤ h ≤ Hmax

The estimates µ̂, π̂
f
h , and π̂n

h come from the estimates reported in Table 5 in column (4). ζt(r) is

drawn from N(0, σ̂2
ζ ) once per recession cycle at t(r), where σ̂2

ζ also comes from Table 5. Similarly,

εt ∼ N(0, σ̂2
ε ). The dummies indicating when there is a recession (normal or financial) are Rt =

{Nt, Ft} just as in the empirical model. What remains is to specify the Bernoulli draw probabilities:

the top-level probability draw for entering a disaster period, and the subdraw for whether the type

is normal of financial.

Our baseline probabilities are chosen as follows, based on empirical frequency in the data in our

full sample, excluding wars:

• Disaster event: using earlier notation, p = P(d0
t = 1|d0

t−1 = 0) = xx.x%, that is, the baseline

probability of a disaster today conditional on no disaster the previous year.

• Peak type: baseline probability given that a disaster occurs, d0
t = 1, what type will it be. With

probability q f = 19.3% it will be a financial recession (type F) and with probability qn = 81.7%

it will be a normal recession (type N), with qn + q f = 1.

To illustrate how varying the sub-draw probabilities (qn, q f ) affects welfare outcomes, holding p
fixed, we also consider alternative simulations using a range of other calibrations as follows:

• Zero financial crisis risk: q f = 0, qn = 1, approximate empirical frequencies of the 1950s–60s era.

• Medium financial crisis risk: q f = 0.25, qn = 0.75, approximate empirical frequencies of the

pre-WW1 era.
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• High financial crisis risk: q f = 0.50, qn = 0.50, approximate empirical frequencies of the

post-1985 era.

• Variable financial crisis risk: any q f , qn combination.

These results will provide guidance as to the welfare implications of varying financial crisis risk.

This completely specifies the simulated consumption process. Simulation begins at time t = 0

and h = 0 with the economy in a No Disaster Period. The relevant draw for consumption growth is

then made and t and h are stepped forward one year. But if a peak was drawn, h is reset to 1, and ζ

is drawn afresh for the newly-starting Disaster Period. Initially, and at any time where h > Hmax,

we draw from the No Disaster Period process, otherwise the Disaster Period process. To recover the

path in log levels, ct, we simply cumulate growth draws, and then we convert to levels.9

To afford welfare comparisons with other benchmarks from the literature, we complement

our simulated models above with two additional simulated models of consumption growth: a

deterministic trend, ct = µ̂0 t, to be used as a welfare baseline; and a “Lucas” path, ct = µ̂0 t + ε0
t ,

which is a deterministic trend plus i.i.d. Gaussian shocks. Formally, we denote these

4ct = µ̂0 , Deterministic Trend

4ct = µ̂0 + ε0
t − ε0

t−1 , Lucas Experiment

where µ̂0 refers to the unconditional annual growth rate in our sample.10 The variance of the Lucas

process, Var(ε0
t − ε0

t−1) is normalized to match the unconditional variance of consumption growth

in the data. We also consider a minor modification, an Adjusted Lucas experiment, in which we

assume that the variance equals to σ̂2
ε , i.e., the remaining consumption growth variance once variable

recession paths are controlled for.

In terms of the numerical implementation, we simulate all series over T = 5,000 years for each of

the five models m ∈ {Financial, Normal, Lucas unconditional, Lucas adjusted, deterministic}. We

then randomly choose S = 1,000 starting points based on which we compute 1,000 distinct consump-

tion series cm,s,t for each model. We then obtain a welfare estimate for each model by averaging

the discounted lifetime utility for all the related 1,000 sub-series. We assume CRRA preferences

with risk aversion parameter θ = 2 and a discount factor of β = 0.96 for annual data. By today’s

standards the choice of θ = 2 may seem conservative, but it is midway between the values picked in

seminal papers, namely θ = 1 (Lucas, 1987, 2003) and θ = 4 (Barro, 2006, 2009).

Note that, In Barro (2006); Lucas (1987, 2003) preferences are CRRA, but Barro (2009) employs

Epstein-Zin-Weil preferences. EZW preferences tend to magnify welfare losses, all else equal.

9In fact, we implement our simulation in a simpler way. To capture extreme cases, and even all cases
between, we actually start by simulating only two consumption growth series: one in which all disasters
are financial type recessions (q f = 1, qn = 0) and one in which all disasters are normal type recessions
(q f = 0, qn = 1). Then any other sub-draw probability (0 < qn, q f < 1) can easily be simulated by switching
between these two extreme growth process, for any sub-draw probabilities which we wish to assign, including
the empirical frequencies above, and then re-cumulating to recover levels as necessary.

10The unconditional mean is lower than the conditional mean µ̂ which abstracts from recession periods.
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Figure 6: Simulation: Main Results
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Notes: The graph portrays welfare losses associated with the disaster approach and the Lucas experiment relative to the deterministic
trend in %. The recession simulation is based on the annual growth rate regression with random effects and H=10. We provide
two estimates for the Lucas experiment. In the unconditional experiment (blue), the variance of the disturbance term matches the
unconditional variance of consumption growth in the data. The second Lucas experiment (green) assumes that the variance equals
the remaining consumption growth variance once variable recession paths are controlled for. The black dots refer to observed relative
financial crisis probabilities in the data during various periods.

However, as we show momentarily, even in our CRRA environment with a conservative choice of

θ = 2, our set up manages to generate considerable welfare losses by being careful in modeling the

types of recession consumers face in practice: in our setup, disaster-style fat tails are a feature of all

recessions, and so weigh much more heavily in the full welfare cost.

Thus, the welfare level for model m is given by

Welfarem =
∑S

j=1 ∑T
t=s(j) βt−s C1−θ

m,s,t
1−θ

S
,

where s(j) refers to the initial period of the j th sub-series.

Comparing welfare under actual and counterfactual histories Our main result is shown

in Figure 6. Using the deterministic model as a baseline, the vertical axis shows welfare relative to

the baseline, in percent, computed as ∆Welfare = (Welfare/Welfaredeterministic)− 1. The horizontal

axis shows the relative probability of a financial crisis for the subdraw f which varies between zero

and one. The reference level for the deterministic model is the thin dotted line at ∆Welfare = 0.

Consider first the two Lucas models. Welfare losses are shown by the dashed blue (unconditional)

and dotted green (adjusted) lines . These deliver welfare losses of a fixed amount, of about 1 to 2

percent, in line with the prior literature once the more volatile histories of consumption growth for
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samples that are broader than just the tranquil post-WW2 United States period.

Now we move on and compare with our disaster model. In contrast, the solid red line shows the

welfare losses for our simulated model, using the RCLP estimates, which are roughly and order of

magnitude larger, ranging between 5 and 25 percent. The line shows how the variable financial crisis

disaster frequency f impacts the welfare losses relative to the deterministic counterfactual. Three

particular points on the line are pickes out with black dots corresponding to the zero, medium, and

high frequency baselines described above. Note that these illustrative cases hold fixed the top-level

Bernoulli recession disaster probability p, and change only the sub-draw probabilities (qn, q f ). In

reality, the top-level p value may also have varied across eras, but we do not attempt to recalibrate

the parameter here for an illustrative exercise.11

These calculations are staggering, given that we are using a CRRA parameter of just θ = 2. They

speak not only to the massive welfare losses associated with frequent financial crises, but also to the

hitherto ignored but nontrivial welfare losses associated with normal recessions. The latter effects

have not been capture by traditional models Barro (2006); Lucas (1987, 2003) which treat normal

recessions as deriving from Gaussian draws. Instead, as our LP tests have shown, even normal

recessions are non-Gaussian, as indicated by significant fat tails in the consumption path relative to

the Gaussian null. Figure 6 shows that, in welfare terms, this really matters.

Why? A representative agent living in a world of high financial crisis risk (q f = 0.5, post-1985)

would enjoy a welfare gain of 18% from moving to the deterministic path (1/0.85), up to 18 times

the Lucas estimates. In a world of medium financial crisis risk (q f = 0.2, pre-WW1) they would

gain 11% from moving to the deterministic path (1/0.90), up to 10 times the Lucas estimates. But

even with zero financial crisis risk (q f = 0.00, 1950s–1960s) they would gain 5% from moving to the

deterministic path (1/0.95), up to 5 times the Lucas estimates

We also provide some robustness checks to show how these findings are affected by the choice

of local projection estimation technique. Figure 8 shows that switching from our RCLP estimates in

changes to our RCLP estimates in levels makes the welfare losses even larger, by a factor of two or

more. Now even with zero financial crisis risk (q f = 0.00, 1950s–1960s), the agent would gain 17%

from moving to the deterministic path, and is 33% in the high financial crisis risk case (q f = 0.5,

post-1985). These high values obtain even though we are again using a CRRA parameter of just

θ = 2.

Figure 7 shows that switching to the FCLP fixed coefficient estimates would substantially lower

the welfare losses, but this is not a surprise and is inappropriate given that Barro (2006, 2009)

demonstrated the importance of accounting for variable-sized disasters so as not to underestimate

their importance. However, shifting to different variants of the RCLP model associated with different

horizon cutoffs Hmax makes very little difference.

11For example, recessions were more frequent before WW1 and less frequent after WW2, compared to the
full sample, which would pull down the middle dot, and life up the left and right dots somewhat, if the
values of p were also adjusted.
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Figure 7: Simulation: Level Regression
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Notes: The graph presents welfare losses associated with the disaster approach relative to the deterministic trend in %. The recession
simulation is based on the level regression with random effects and H=10. The blue line corresponds to the baseline Lucas experiment.
The black dots refer to observed relative financial crisis probabilities in the data during various periods.

Figure 8: Simulation: RE vs FE, different H
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Notes: The graph provides robustness checks. It shows welfare losses associated with the disaster approach relative to the deterministic
trend in % for various specifications of the growth rate regression. The blue line refers to a deterministic FE-LP with H=10. The red
lines include random effects with H = {6, 8, 10}.
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5. Conclusions

At the time of writing this paper, the world’s economies are experiencing one of the largest and most

sudden declines in stock markets and output due to the outbreak of the coronavirus epidemic—the

type of disaster that Barro (2006, 2009) had in mind in justifying the large equity premiums observed

in the data and, parenthetically, the most obvious justification for stabilization policy.

However, our argument in this paper is that such extreme and costly events are not the only

reason for stabilization policy. This is because disasters are everywhere. We do not live in Gaussian

world. All business cycles are highly asymmetric and resemble mini “disasters”, to put it in the

language of the asset pricing literature. Consumers experience considerable welfare losses from

peacetime recessions, only some of which are associated with financial crises. Because the depth

and duration of recessions are unknown and cause deviations from trend growth that can last for

extended periods, households would be happy to insure against them.

The paper re-calculates the costs of business cycles in this setting of frequent fat tails. The size of

our the welfare loss that we report – up to 15% of consumption for cycles in the past three decades

– is magnitudes above Lucas’ original calculations. Moreover, the welfare gains have increased in

recent decades of more frequent financial recessions. Substantial gains in welfare can be made from

better stabilization policies. More than ever, depression prevention and stabilization policies are

central to the discipline of macroeconomics.
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