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Abstract 

 

This paper documents law of one price violations in equity volatility markets. While tightly 

linked by no-arbitrage restrictions, the prices of VIX futures exhibit significant deviations relative 

to their option-implied upper bounds. Static arbitrage opportunities occur when the prices of VIX 

futures violate their bounds. The deviations widen during periods of market stress and predict the 

returns of VIX futures. A relative value trading strategy based on the deviation measure earns a 

large Sharpe ratio and economically significant alpha-to-margin. There is evidence that 

systematic risk and demand pressure contribute to the variation in the no-arbitrage deviations 

over time. 
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1 Introduction

The law of one price is a fundamental concept in economics and finance. The law states
that assets with identical payoffs must have the same price. Otherwise, competitive traders
will exploit the deviations to make arbitrage profits, thereby eliminating law of one price
violations so that financial markets behave as if no arbitrage opportunities exist.

Financial markets are a prime testing ground for the law of one price. With low trans-
action costs and the ability to buy and sell similar securities, traditional theories predict
that the law of one price should hold broadly across financial markets. A growing literature,
however, challenges this view. There are now well-documented examples of law of one price
violations in equity, fixed income, credit, and currency markets. When assets with closely re-
lated payoffs trade at significantly different prices for prolonged periods of time, there must
be market frictions or inefficiencies that impede arbitrage activity, even for sophisticated
traders and financial institutions. By documenting these anomalies, we can better interpret
market prices and understand how financial markets function (Lamont and Thaler (2003),
Gromb and Vayanos (2010)).

This paper contributes to the limits-to-arbitrage literature by providing new evidence of
systematic law of one price violations in equity volatility markets. These violations matter
because equity volatility markets are among the largest and most actively traded derivatives
markets in the world. Since the financial crisis, rapid growth in the S&P 500 index options
and VIX futures markets has led to the development of separate venues where investors
can hedge and speculate on stock market volatility. These markets provide an opportunity
to test the law of one price because they offer redundant securities upon which arbitrage
pricing places tight restrictions (Merton (1973), Ross (1976a)). In practice, however, trading
desks at banks and hedge funds tend to focus on specific products, using different models
for hedging and valuing different derivatives (Longstaff et al. 2001). This risk management
approach makes it difficult to determine when relative valuations are accurate, leaving open
the possibility of observing arbitrage violations.

This paper studies no-arbitrage relationships in equity volatility markets by comparing
the prices of VIX futures to S&P 500 index options. The starting point is the observation
that VIX futures prices are bounded above by variance swap forward rates (Carr and Wu
2006).1 The paper uses S&P 500 index options to non-parametrically estimate variance
swap forward rates, thus obtaining an option-implied upper bound for VIX futures. The
no-arbitrage deviation measure, or arbitrage spread, is then defined for each futures contract

1The upper bound follows from the definition of the VIX index and Jensen’s inequality. For each futures
contract, the upper bound is the one-month variance swap forward rate starting on the futures expiration
date, expressed in volatility units.
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as the difference between the futures price and the option-implied upper bound.
Figure 1 plots the no-arbitrage deviation measure averaged across the front six futures

contracts from March 26, 2004 to December 31, 2018.2 Positive values indicate static ar-
bitrage opportunities in which futures prices exceed their option-implied upper bounds. In
these cases, traders can sell futures and pay fixed in forwards to lock in a riskless profit.
Disaggregating the results by contract, the paper shows that there are frequent upper bound
violations throughout the sample. In addition, the paper finds that the upper bound is rel-
atively tight, with large negative deviations indicating that VIX futures are cheap relative
to index option prices. Combining the upper bound with estimates from a term-structure
model, the paper estimates the lower bounds for VIX futures prices and finds evidence of
lower bound violations as well. Taken together, the evidence suggests that there are large
and significant deviations between the prices of VIX futures and their option-implied bounds.

The paper then explores the return predictability of the deviation measure to provide
further evidence that it is identifying an arbitrage spread. The paper finds that the deviation
measure significantly predicts the returns of VIX futures relative to variance swap forwards.
The predictability holds across contracts, sample periods, and horizons, and is robust to
competing predictors like the variance risk premium. A trading strategy based on the devia-
tion measure earns a large Sharpe ratio and economically significant alpha-to-margin across
a range of assumptions, consistent with the law of one price interpretation. In addition,
the paper finds that the deviation measure predicts the returns of VIX futures and variance
swap forwards relative to the stock market, providing evidence that both the futures and
options markets are contributing to the predictability of the deviation measure.

What drives the law of one price deviations and return predictability over time? The
limits-to-arbitrage literature suggests channels like demand shocks and financial constraints
(Shleifer et al. (1990), Liu and Longstaff (2003), Adrian and Shin (2013)). The paper explores
these frictions by studying whether a range of risk and demand variables are related to the
deviation measure. VAR and panel regression analysis indicate that the deviation measure
is decreasing in systematic risk. When the stock market declines or volatility increases, the
prices of VIX futures increase less than the prices of index options, leading to a decline in the
deviation measure. In addition, the paper finds that the deviation measure is increasing in
various proxies for the demand to buy VIX futures, consistent with demand pressure playing
a role.

One explanation for these results is that hedgers take profit on long positions in VIX
futures when risk increases, leading to demand shocks that are correlated with risk. Cheng

2There are only four contracts at the start of the sample. Six monthly contracts are available starting in
late 2006 on a consistent basis. The paper analyzes how the results differ by contract and over time.
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(2018) proposes a similar mechanism for the VIX premium. In addition to hedging demand,
the VAR analysis highlights that dealer net positions increase following a positive shock
to the deviation measure. To the extent that dealer positions are a veil for retail demand
(Dong 2016), the results suggest that retail traders may chase momentum in the VIX fu-
tures market. The paper also provides event study analysis to investigate how the deviation
measure behaves around margin changes, end-of-quarter dates, and FOMC and non-farm
payroll announcements. There is some evidence that margin increases attenuate the de-
viation measure’s relationship with risk and that the deviation measure declines following
FOMC announcements and leading into quarter-end. Comparing the deviation measure to
the VIX premium from Cheng (2018), the paper finds the two measures are related but
have different interpretations. While the VIX premium reflects the implied volatility risk
premium, the deviation measure represents a no-arbitrage violation or relative mispricing.

The remainder of the paper proceeds as follows. Section 2 provides a literature review
and brief overview of equity volatility markets. Section 3 defines the no-arbitrage deviation
measure. Section 4 presents the return predictability and trading strategy results. Section 5
discusses the deviation measure and its relationship with risk and demand factors. Section
6 concludes. The Appendix includes additional results and robustness checks.

2 Equity Volatility Markets

2.1 Relation to the Literature

This paper contributes to the literature on anomalies and the limits of arbitrage. Exam-
ples of related studies on law of one price deviations in other markets include: closed-end
funds (Lee et al. 1991), “negative stubs” or situations where the market value of a company
is less than its subsidiary (Mitchell et al. 2002), and American Depository Receipts and
cross-listed shares (Gagnon and Karolyi 2010) in equities; on-the-run versus off-the-run U.S.
Treasuries (Krishnamurthy 2002), swap spreads (Duarte et al. 2007), mortgage-backed se-
curities (Gabaix et al. 2007), and Treasury-inflation-protected securities (Fleckenstein et al.
2014) in fixed income; the CDS-bond basis (Garleanu and Pedersen (2011), Bai and Collin-
Dufresne (2018)) in credit; and covered interest rate parity (Du et al. (2018)) in foreign
exchange. Across asset classes, law of one price deviations receive significant attention be-
cause they pose a model-free challenge to the most basic assumption in many asset pricing
models — that investors prefer more wealth to less.

In the equity volatility literature, studies of anomalies often focus on the index options
market or the VIX futures market in isolation. Early papers in the option pricing literature

3



emphasized the variance risk premium and implied volatility smile for out-of-the-money put
options as irregularities not explained by the Black-Scholes-Merton model (Bates 2000). One
strand of the literature developed more sophisticated option pricing models with stochastic
volatility and jumps to account for these patterns (Heston (1993), Duffie et al. (2000),
Madan et al. (1998)). Even with these improvements, the no-arbitrage models still struggle
to explain some of the empirical properties of option prices (Bates 2003). Another strand of
the literature studies the importance of demand-pressure and equilibrium effects (Grossman
and Zhou (1996), Bollen and Whaley (2004), Garleanu et al. (2009)). When dealers absorb
demand shocks from end-users or portfolio insurers, demand pressure can impact option
prices and the implied volatility surface, with demand for specific options impacting the
prices of other options with related, unhedgeable features.

Building on these studies, the literature on VIX futures emphasizes the importance of
demand shocks for understanding prices and risk premia. Cheng (2018) finds that the VIX
premium, or implied volatility risk premium, declines when risk increases alongside decreases
in dealer hedging demand. Dong (2016) argues that VIX ETP demand impacts the prices
of VIX futures through dealer hedging activity. Mixon and Onur (2019) provide a related
study of demand pressure using regulatory data that includes dealer net positions by contract
at a daily frequency. Similar to Garleanu et al. (2009), Mixon and Onur (2019) find that
demand for one VIX futures contract spills over to impact the prices of other contracts. The
estimated demand effects in Mixon and Onur (2019) are quantitatively small, however, in
comparison to the no-arbitrage bounds for VIX futures.

This paper contributes to the literature by studying law of one price deviations across eq-
uity volatility markets. While the relationship between the pricing of VIX futures and index
options is well understood from a theoretical perspective, this paper provides a comprehen-
sive empirical study that documents large no-arbitrage deviations. The deviation measure
allows for a direct measurement of arbitrage opportunities and finds a high frequency of
violations.3 In addition, this paper adds a new predictor to the VIX futures literature to
complement the VIX premium of Cheng (2018) and the slope factor of Johnson (2017). The
predictability of the deviation measure is strongest for VIX futures in excess of variance swap
forwards, a relative value finding that is new to the literature. Finally, the paper provides
new evidence on the importance of the risk and demand channels in driving the deviation
measure. While the response to a risk shock is larger in magnitude over shorter horizons,

3Existing studies either estimate a risk premium for VIX futures that relies on time-series data and a
parametric statistical forecasting model as in Cheng (2018) or they compute a deviation measure that relies
on synthetic variance swap rates and a convexity adjustment from VIX options (Dong (2016), Park (2019)).
This paper estimates synthetic variance swap forward rates from the S&P 500 index options market to obtain
an upper bound, thus avoiding VIX options which are less liquid and only available starting in 2006.
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demand shocks are more permanent according to VAR analysis. The results indicate that
demand by itself is not sufficient to explain the negative response of the no-arbitrage de-
viation measure to increases in risk. Overall, the results raise new puzzles regarding the
frequency of no-arbitrage violations and the significant return predictability of the deviation
measure.

2.2 Equity Volatility Products and Market Participants

Index options complete markets and expand the set of contingent claims that investors can
trade by allowing for the construction of Arrow-Debreu securities on the state of the stock
market over different horizons (Ross (1976b), Breeden and Litzenberger (1978)). S&P 500
index options started trading on the Chicago Board Options Exchange (CBOE) in 1983.

Variance swaps are over-the-counter derivatives that allow investors to hedge and specu-
late on realized volatility over different horizons. The only cashflow occurs at maturity and
is equal to the difference between the fixed variance swap rate and the floating amount of
realized variance that the underlying asset exhibits over the life of the swap. The fixed rate
is priced to make the swap costless to enter at the time of trade.

Variance swaps gained traction in the late 1990s alongside theoretical developments that
showed how to replicate variance swap payoffs with a static portfolio of options and a dynamic
trading strategy in the underlying (Demeterfi et al. (1999), Bakshi and Madan (2000), and
Britten-Jones and Neuberger (2000)). In 2003, the CBOE revised its definition of the VIX
index to follow the no-arbitrage formula for pricing variance swaps (Carr and Wu (2006),
CBOE (2019)). In recent work, Martin (2017) has extended the generality of variance swap
pricing.

VIX futures were introduced by the CBOE in 2004. The payoff to a VIX futures contract
is the difference between the futures price and the VIX index at maturity. The VIX index
is the square root of a one-month synthetic variance swap rate. The swap rate is “synthetic”
because it is computed from a portfolio of S&P 500 index options. This relationship binds
together the pricing of VIX futures and index options.

Today, S&P 500 index options and VIX futures trade in large and liquid exchange-based
markets. Figure 2 provides a brief summary of these markets including their growth over
time and a breakdown of investor positioning in VIX futures. The top left plot illustrates the
size of the markets which have exhibited significant growth in recent years. While the VIX
futures market experienced a nearly 10-fold increase in open interest over the decade ending
in 2018, the index options market was still 7-times larger than the VIX futures market in
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2018 as measured by average open interest in units of Black-Scholes vega.4

Within the VIX futures market, the top right plot shows that the growth in open interest
has coincided with the rise of volatility-exchange-traded products (VIX ETPs). VIX ETPs
issued by banks and broker-dealers allow retail investors to gain exposure to implied volatility
without needing to trade in VIX futures or index options directly. One explanation for
the simultaneous growth of futures and ETPs is that dealers issue ETPs and hedge their
exposures in the underlying futures market. The bottom left plot supports this hypothesis.
Dealer positions from the CFTC’s Commitment of Traders (CoT) report closely match the
magnitude and time-series variation of VIX ETP net vega (Dong 2016).

To the extent that dealer positions are a veil for retail demand, who absorbs the retail
demand shocks? The bottom right plot addresses this question by plotting net positions for
different trader types including dealers, leveraged funds, asset managers, and other reportable
traders from the CoT report. The largest net positions by magnitude belong to dealers and
leveraged funds which exhibit a correlation of -91% from 2010 to 2018. One interpretation of
this result is that hedge funds absorb retail demand shocks that are passed through by dealers
from the VIX ETP market. An implication is that demand shocks may be an important
factor for understanding no-arbitrage deviations across the VIX futures and index options
markets. The paper investigates this hypothesis in Section 5.

3 No-Arbitrage Deviation Measure

3.1 VIX Futures Bounds

The price of a VIX futures contract is the risk-neutral expected value of the VIX index at
maturity T ,

Futt,T = EQ
t [V IXT ]. (1)

Variance swap forwards provide an upper bound for this payoff. Consider a variance swap
forward whose floating leg pays the realized variance of the S&P 500 index between the
futures expiration date and the index options expiration date thirty calendar days later.
Applying results from Carr and Wu (2009), a combination of index options with different
strikes and maturities can be used to closely-approximate the one-month variance swap
forward rate as,

Fwdt,T,T+1 = EQ
t [RVT,T+1] ≈ EQ

t [V IX2
T ]. (2)

4S&P 500 index options had an average open interest of $3.4 billion in Black-Scholes-Merton vega in 2018.
VIX futures had an average open interest of 462 thousand contracts in 2018, equal to $462 million of “vega”
or gains and losses for a one-point change in VIX futures prices given the contract multiplier of $1000.
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It follows from Jensen’s inequality that variance swap forwards provide an upper bound
for the prices of VIX futures contracts,

Fwdt,T,T+1 = EQ
t [V IX2

T ]

≥ EQ
t [V IXT ]2

= Fut2t,T .

(3)

Violations of this bound are a static arbitrage opportunity. If the futures price exceeds the
bound, an arbitrageur can sell ω of the VIX futures contract and buy the variance swap
forward (pay fixed) to obtain the payoff ΠT equal to,

ΠT ≡ Payoff at T=V IX2
T − Fwdt,T,T+1 − ω · (V IXT − Futt,T ). (4)

Since there are no cash flows at t, this trade is an arbitrage if ΠT ≥ 0 for any V IXT > 0.
The Appendix shows that setting the hedge ratio to ω = 2 · Futt,T results in an arbitrage
when the upper bound is violated.

In addition, the Appendix shows that VIX futures are bounded below by volatility swap
forward rates. While the square-root in the definition of the VIX is convenient for expressing
the index in Black-Scholes-Merton implied volatility units that are familiar to option traders,
the square-root introduces a wedge between the pricing of VIX futures and index options.

3.2 No-Arbitrage Deviation Measure

The ability to bound VIX futures with variance swap forwards motivates defining the no-
arbitrage deviation measure,

Deviationt,n ≡ Futt,n −
√
Fwdt,n. (5)

This measure is the difference between the n-month futures price Futt,n and its upper bound,
the square-root of the one-month variance swap forward rate starting on the futures expi-
ration date denoted as Fwdt,n. The measure is expressed in annualized volatility units. It
is based on the futures upper bound rather than the lower bound because variance swap
forward rates can be estimated non-parametrically from index option prices with minimal
assumptions.5

The deviation measure has a straightforward interpretation. When the measure is posi-
5The lower bound for the futures price is the one-month volatility swap forward rate starting on the

futures expiration date. Compared to variance swaps, volatility swaps are traded less frequently and are
more difficult to replicate from index option prices.
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tive, the futures price is above its upper bound. This indicates a static arbitrage opportunity
or law of one price violation. When the measure is negative and large in magnitude, the
futures price is cheap relative to its forward rate. The paper finds that the upper bound is
relatively tight. This means that large negative deviations are often law of one price viola-
tions for the lower bound. The paper estimates the lower bound as the non-parametric upper
bound minus the difference between upper and lower bounds from a dynamic term-structure
model following Van Tassel (2020).

Table 1 shows how to compute the deviation measure on two example dates and Figure
3 plots the results. The paper estimates the variance swap forward curve by assuming flat
forward rates between index option maturities as in Carr and Wu (2009) and the construction
of the VIX index.6 The forward rate for each futures contract is the average forward rate
between the futures expiration and the index options expiration thirty calendar days later.
The deviation measure is the difference between the futures price and its corresponding
one-month forward rate.

For example, consider the upper bound violations on February 27, 2012 in which the fu-
tures price is more than 1% above the forward rate for several contracts. For the front-month
and second-month contracts, the variance swap forward rates are computed as

√
Fwdt,1 =

√
.0412 = 20.30% and

√
Fwdt,2 =

√
(2/30) · (.0412) + (28/30) · .0597 = 24.17%. The

resulting deviations are Deviationt,1 = 21.40% − 20.30% = 1.10% and Deviationt,2 =

24.38% − 24.17% = 0.20%. The second example on February 8, 2018 features large neg-
ative deviations in which futures prices are below estimates of their lower bounds. These
lower bound violations follow the large spike in the VIX and the turmoil in the VIX-ETP
market on February 5, 2018.

3.3 Data

The paper estimates the no-arbitrage deviation measure from March 26, 2004 to December
31, 2018 using VIX futures prices and synthetic variance swap rates. The synthetic variance
swap rates are estimated from OptionMetrics data following Van Tassel (2020) for traditional
expirations on third Fridays of the month with at least two-weeks to maturity. The VIX
futures prices are synchronized with the option quotes using either daily settlement values
from the CBOE or intraday quotes from Thomson Reuters Tick History (TRTH).7 To rule

6For example, let V St,T1
and V St,T2

be variance swap rates for the first and second maturities. The
instantaneous forward rate between these maturities is assumed to be constant and equal to Fwdt,T1,T2 =
(V St,T2 · T2 − V St,T1 · T1)/(T2 − T1). The results are robust to the interpolation method.

7For the baseline measure, the VIX futures prices are CBOE settlement values until March 3, 2008 and
then 4pm mid-quotes from TRTH to be synchronous with the index option quotes from OptionMetrics. The
Appendix shows that there is little difference between the deviation measure defined using settlement prices
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out concerns that the results are driven by the interpolation method, asynchronicity of fu-
tures and option prices, bias stemming from the upper bound, or data sources, the Appendix
shows that the baseline deviation measure is highly correlated with alternative measures that
are computed from different estimation methods and data sources. For example, measures
that adjust for the bias from the upper bound using a term-structure model or regression
are 97% to 100% correlated with the baseline measure. In addition, the baseline measure
is highly correlated with alternative measures that are computed from interpolated variance
swap rates, VIX settlement prices that are not synchronized with option quotes, Bloomberg
synthetic variance swap rates, CBOE volatility indices, and over-the-counter variance swap
quotes from Markit. Compared to the alternative datasets, the baseline measure is advan-
tageous because it is available over the full sample period at a daily frequency.

3.4 Deviation Time-Series

Figure 1 plots the deviation measure averaged across the front six futures contracts from
March 26, 2004 to December 31, 2018. The daily time-series highlights the variability of the
measure. The one-month moving average shows its persistence. During the early years in
the sample the average deviation is positive on a significant fraction of dates, indicating the
presence of arbitrage opportunities. Since 2012 the average deviation is positive less often,
but law of one price violations still occur for individual contracts, particularly for the front
contracts. The plot also highlights how the deviation measure responds to changes in risk.
Around events such as the financial crisis, equity flash crash, and S&P downgrade of U.S.
debt, the deviation measure declines alongside increasing prices for VIX futures and index
options. The decrease in the deviation measure indicates that the prices of VIX futures do
not increase by as much as variance swap forward rates during these periods of heightened
systematic risk.8

3.5 Deviation Summary Statistics

Table 2 presents summary statistics of the deviation measure for a balanced panel of the
front six monthly contracts from January 3, 2007 to December 31, 2018. The last column
averages the statistics across contracts. Panel A shows that the deviation measure is negative

versus synchronized prices (99% correlation for the average deviation across contracts). The baseline measure
uses the synchronized observations to account for the days when the VIX makes a large move between 4pm
and 4:15pm such as on February 5, 2018.

8The Appendix shows that similar results hold when comparing the prices of VIX futures to their no-
arbitrage lower bound. The decline in the deviation measure when risk increases thus reflects the cheapening
of VIX futures relative to index option prices and not just a widening of the no-arbitrage bounds.
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on average with a bias that increases to around -1.5% for the longer-dated contracts. The
negative bias is consistent with the definition of the deviation measure which is the futures
price minus its option-implied upper bound. In terms of variability, the standard deviation
of around 1% across contracts is the same order of magnitude as the bias. The result is that
all contracts exhibit law of one price violations, with more frequent upper bound violations
for the shorter-dated contracts that exhibit a smaller bias.

The summary statistics also highlight the persistence of the deviation measure. In the
time-series, Panel A shows that the deviations are positively autocorrelated within contract
across daily, weekly, and monthly horizons. In the cross-section, Panel B shows that the
deviations are positively correlated across contracts. Panel C reports the average deviation
by contract over time and reveals that the decline in the average deviation from the time-
series plot in Figure 1 is driven by the longer-dated contracts rather than the front contract.

3.6 Frequency of Law of One Price Violations

Table 3 investigates the law of one price violations in more detail. Panel A.I reports the
fraction of days when the futures price exceeds its no-arbitrage upper bound by contract.
This occurs for 12% of contract-date observations from January 3, 2007 to December 31,
2018. The upper bound violations are most frequent for the front-month and second-month
contracts which exhibit positive values of Deviationt,n on 31% and 16% of days respectively.
Panel B.I reports the analogous results for lower bound violations. Lower bound violations
occur on 25% of contract-date observations with more frequent violations for longer-dated
contracts. Taken together, the results indicate that VIX futures exhibit frequent law of one
price violations relative to their no-arbitrage bounds.

Are these results driven by the early years in the sample when VIX futures were less
liquid? Panels A.II and B.II show that the answer is no. In a post-crisis sample from 2010
to 2018, the number of upper bound violations declines slightly from 12% to 9%, but the
number of lower bound violations increases from 25% to 30%. Figure 4 illustrates this point
graphically for the front-month contract. The deviation measure in the top plot reveals
frequent law of one price violations throughout the sample period. In the bottom plot
the VIX futures price and variance swap forward rate appear to track each other closely
throughout the sample, but large deviations are observed after differencing. The results
indicate that the arbitrage violations do not go away after VIX futures liquidity improved or
after traders learned of the no-arbitrage relationships. Instead, they are pervasive throughout
the sample.

In addition, the table demonstrates that many of the no-arbitrage violations are large
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in magnitude. Panel A.I shows that the futures price is above the upper bound by more
than .25% (.50%) for 6% (3%) of observations. Panel B.I shows that the futures price is
below the lower bound by more than .25% (.50%) for 16% (10%) of observations. Similar to
before, Panels A.II and B.II show that large upper bound violations decrease slightly in the
post-crisis period, while large lower bound violations increase slightly. Combined with the
summary statistics, the results indicate that there are large and persistent law of one price
deviations across the VIX futures and index option markets.

4 VIX Futures Return Predictability

This section shows that the no-arbitrage deviation measure is highly significant at predicting
VIX futures returns in excess of synthetic variance swap forward and index option straddle
and stock market returns. A trading strategy based on the deviation measure earns econom-
ically significant alpha-to-margin across a range of assumptions. The results are consistent
with the interpretation that the deviation measure is identifying an arbitrage spread across
the VIX futures and index options markets.

4.1 VIX Futures and Variance Swap Forward Returns

To investigate the return predictability of the deviation measure, define the excess return
from selling the n-th VIX futures contract over horizon h as,

RFut
t+h,n = Futt,n − Futt+h,n, (6)

where Futt,n is the settlement value for the n-th contract on date t. Similarly, define the
excess return from receiving fixed in a synthetic variance swap forward for the n-th futures
contract as,

RFwd
t+h,n = Fwdt,n − Fwdt+h,n. (7)

The variance swap forward associated with the n-th futures contract has a floating leg that
pays realized variance from the futures expiration date to the index options expiration thirty
calendar days later as in the definition of the deviation measure.

Table 4 reports summary statistics for the prices and returns of VIX futures and synthetic
variance swap forwards from January 3, 2007 to December 31, 2018. Panel A shows that the
unconditional term-structure of implied volatility is upward sloping on average for futures
and forwards. The declining standard deviation across contracts reflects the mean reversion
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of implied volatility. The prices are positively skewed and exhibit excess kurtosis. Panel
B shows that the average return for being exposed to implied volatility shocks through
VIX futures and variance swap forwards is positive but not statistically significant. These
results are similar to the findings in Dew-Becker et al. (2017) and Andries et al. (2015) who
find a larger risk premium for being exposed to realized volatility in comparison to implied
volatility. The returns also exhibit negative skewness and excess kurtosis which is common
for volatility selling strategies.

4.2 Predicting Returns with the Deviation Measure

Table 5 reports return predictability regressions for VIX futures hedged with variance swap
forwards over a weekly horizon (h = 5),

RFut
t+h,n − β̂nRFwd

t+h,n = αn + γnDeviationt,n + εt+h,n (8)

The regression is a two-step procedure for each contract. First, the VIX futures return
is regressed onto the variance swap forward return to obtain a hedge ratio β̂n. Second, the
hedged return is regressed onto the deviation measure. The hedged or excess return is defined
as the VIX futures return minus the variance swap forward return multiplied by the hedge
ratio. The hedged return and deviation measure are z-scored or standardized in the second
step for ease of interpretation. The hypothesis being tested in these regressions is that the
deviation measure is identifying valuation differences across VIX futures and variance swap
forwards. When the deviation measure is high (low), VIX futures are expensive (cheap)
relative to variance swap forwards, so the returns from selling (buying) VIX futures and
paying (receiving) fixed in variance swap forward rates should be high.

The results show that the deviation measure predicts hedged returns. Panel A considers
the full sample period from 2004 to 2018. In the first stage regressions in Panel A.I variance
swap forward returns are highly significant for VIX futures returns, exhibiting an average
explanatory power of 67% across contracts. In the second stage regressions in Panel A.II the
deviation measure significantly predicts hedged returns. A one-standard deviation increase in
the deviation measure for the front (sixth) contract predicts a .23 (.25) standard deviation
higher hedged return with an R2 of 5.2% (6.0%) over a weekly horizon. The average t-
statistic and R2 across contracts are 5.7 and 6.7%, with the deviation measure significantly
predicting returns for each contract. To interpret the magnitude of the predictability, the
standard deviation of the hedged returns is .71 across contracts on average. Thus, a .25
standard deviation higher hedged return corresponds to an increase of .71× .25 = .18 futures
points or .18/.05 = 3.6 bid-ask spreads. Panel A.III shows that the results are robust to
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including control variables such as the VIX index and realized variance over the past month
to proxy for the variance risk premium.9 If anything, including control variables increases
the strength of the deviation measure as a predictor.

Are the predictability results specific to the sample period, investment horizon, or de-
viation measure specification? The answer is no. The deviation measure robustly predicts
the returns of VIX futures hedged with variance swap forward rates across the specifica-
tions explored in the paper and Appendix. For example, Panel B runs the regressions for a
post-crisis sample period from 2010 to 2018 and finds similar results. The average t-statistic
and R2 of the deviation in Panel B.II are 7.5 and 13.3%, even stronger than the full sample
results. The Appendix includes additional results showing that the predictability holds over
daily and monthly horizons, for percentage and logarithmic returns, for lagged and bias-
adjusted versions of the deviation measure, and when the deviation measure is computed
with synthetic variance swap rates from alternative datasets like Bloomberg data or the
CBOE volatility indices.

Expanding on the results, Table 6 shows that the predictability is robust to the hedging
portfolio. In this case, VIX futures are hedged with CRSP value-weighted stock market
returns and at-the-money forward, delta-hedged straddle returns for the nearest index option
maturities before and after the futures contract expiration. The loadings in the first stage
regression have the expected signs. The returns from selling VIX futures load positively on
stock market returns, consistent with the leverage effect (Black 1976), and load positively
(negatively) on straddle returns with an expiration date after (before) the futures contract
expiration, which proxy for the variance swap forward return. As before, the deviation
measure significantly predicts hedged returns in the second stage regressions. The results
show that the predictability is not driven by the definition of variance swap forward returns
or by the estimation of variance swap forward rates.

4.3 VIX Futures Drive the Return Predictability

What drives the predictability results: the VIX futures or index options market? On one
hand, the large and established index options market may provide a fair-value measure for
VIX futures. On the other hand, given that VIX futures are traded directly, rather than
being synthesized from option portfolios across maturities, the VIX futures market may
provide a fair value measure for synthetic variance swap forwards. One way to test these

9The control variables include the VIX index, realized variance over the past month, CRSP value-weighted
stock market returns over the past week, and VIX futures trading volume for the n-th contract normalized
by open interest. The coefficients on the control variables are omitted to save space and to focus on how
including these variables impacts the predictability of the deviation measure.
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hypotheses is by investigating the predictability of the deviation measure for VIX futures and
variance swap forward returns in excess of returns from a separate, but related market. For
example, if VIX futures are mispriced and synthetic variance swap forwards are accurately
valued, the deviation measure should remain significant at predicting VIX futures excess
returns but not variance swap forward excess returns.

Tables A.6 and A.7 in the Appendix investigate these questions for VIX futures and
variance swap forward returns relative to stock market returns. The approach is analogous
to Tables 5 and 6. As before, VIX futures and variance swap forward returns are first re-
gressed onto stock market returns. The hedged returns are then regressed onto the deviation
measure. In the first stage, stock market returns are highly significant with an average R2 of
54% for VIX futures. This explanatory power is lower than in Tables 5 and 6 when variance
swap forwards and index option straddles are included, but illustrates that the stock mar-
ket still provides significant explanatory power by itself. In the second stage, the deviation
measure predicts the returns of VIX futures and variance swap forwards with the expected
sign relative to the stock market. In the post-crisis sample period, the deviation measure is
statistically significant for almost all of the contracts in both markets. While the strength
of the predictability is somewhat lower than before, the results suggest that the VIX fu-
tures and index options markets are both contributing to the predictability of the deviation
measure.

4.4 Trading Strategy and Alpha-to-Margin Estimates

The previous section shows that the deviation measure predicts VIX futures excess returns
across various regression specifications. How can this predictability be interpreted? Is it
robust out-of-sample?

One way to investigate these questions is by estimating the alpha-to-margin for a trad-
ing strategy based on the deviation measure (Garleanu and Pedersen 2011). To that end,
consider a relative value strategy that sells (buys) hedged VIX futures when the deviation
measure exceeds a high (low) threshold. To normalize the deviation measure within con-
tract and over time, the strategy converts the deviation measure into a rolling z-score using
one-year of lagged data,

Zt,n ≡
Deviationt,n − µt,n

σt,n
. (9)

Similarly, the hedge ratio for each contract βt,n is computed from rolling regressions with
one-year of lagged data. This approach is similar to the first stage in the return predictability
regressions, but accounts for time-variation in the hedge ratios and ensures the hedge ratios
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are in the investor’s information set.
The strategy trades when the deviation z-score exceeds a threshold, |Zt,n| ≥ T . If

there are multiple contracts to trade on the same day, the strategy forms an equal-weighted
portfolio. The return from selling a hedged VIX future over horizon h for the n-th contract
is defined as,

Rt+h,n ≡
Multiplier · (Futt,n − Futt+h,n)− βhedge

t,n ·Rhedge
t+h,n

Margint,n

−Rft ·
h

365
− tcost. (10)

This definition uses the maximum leverage to margin. The payoff is the change in the VIX
futures price times the contract multiplier minus the hedging return net of financing and
transaction costs. The financing cost is the risk-free rate times the actual number of days
h over 365 calendar days in a year. The proxy for the risk-free rate is the three-month U.S.
Treasury bill rate. The return for a long position is defined analogously.

Figure 5 plots the performance of the trading strategy with a threshold of T = .50 z-
scores and a one-week horizon h = 5 that trades the front six VIX futures contracts that are
hedged with variance swap forwards. The margin is the exchange-based initial margin for a
VIX futures contract from the CBOE and the transaction cost is assumed to be zero for now.
The performance is compared to the stock market with both return series being normalized
to 10% annualized volatility. From March 2004 to December 2018, the VIX futures trading
strategy earns a Sharpe Ratio (SR) of 3.0 versus .5 for CRSP value-weighted stock market
returns. Across market environments and even during the financial crisis, the relative value
strategy based on the deviation measure performs well and exhibits minimal drawdowns. The
results indicate that the predictability of the deviation measure is economically significant
and robust out-of-sample - consistent with the interpretation that the deviation measure is
identifying an arbitrage spread.

How sensitive is the performance of the relative value strategy to the specification? Table
7 answers this question by varying the hedging portfolio and transaction cost assumptions.
The first column (1) matches Figure 5. The weekly returns have annualized volatility of
.0139 ×

√
52 = .10 by construction and an annualized SR of .41 ×

√
52 = 2.96 or 3.0 rounded

to one significant digit. The maximum drawdown of 8.7% contrasts a maximum drawdown
of around 50% for the stock market over the same period of time. The second column (2)
uses S&P 500 E-mini futures as a hedge instead of variance swap forward returns.10 Similar
to the return predictability regressions, the performance declines somewhat when using the

10The motivation for using S&P 500 E-mini futures returns rather than CRSP value-weighted returns in
the trading strategy is that the initial margin and transaction costs for trading E-mini futures are directly
observable and incorporated into some specifications.
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less precise hedge, but the strategy still obtains a large, annualized SR of 1.38. The returns
remain positively skewed with a small maximum drawdown of 6.5%. The third column (3)
adds transaction costs of $50 and $12.50 per trade for VIX futures and E-mini futures which
further decreases the annualized SR to .62. The transaction costs are the minimum tick
size times the contract multiplier, which equals the median bid-ask spread for these liquid
futures contracts from recent years. The subsequent columns (4-6) repeat the analysis for a
post-crisis sample and show that similar results hold. For all specifications except column
(1), the strategy delivers positively skewed, fat-tailed returns.

Figure 6 illustrates these results graphically. The top plot shows the performance of the
trading strategy from columns (1-3) in Table 7 versus the stock market. The bottom plot
shows the robustness of the strategy to varying the number of contracts traded and the
trading threshold. Even when trading fewer contracts and for different thresholds near .50
z-scores, the strategy continues to earn a large SR. Once the threshold becomes sufficiently
large, the SR begins to decline as the strategy sits in cash more often and exploits fewer
opportunities.

The results so far highlight how the deviation measure can be used to convert the return
predictability regressions into a trading strategy that performs well as measured by its SR.
But what about the magnitude of the returns? Table 8 provides a perspective on the size
of the trading strategy returns by reporting alpha-to-margin estimates. The rows vary the
trading strategy assumptions. The columns vary the factor model and sample period.

Since the returns are hedged, the strategy is largely uncorrelated with traditional risk
factors and thus earns large alpha-to-margin. For example, column (1) in Panel A of Table
8 shows that the baseline strategy from Figure 5 has a CAPM alpha-to-margin of 5.23%
per week. The returns in Table 7 are de-levered to obtain 10% annualized volatility. The
unlevered mean return is 5.31%. This is close to the alpha-to-margin estimate, indicating
that the maximally leveraged strategy delivers large returns that are largely unexplained by
the market factor. The second (2) and third (3) columns show that this result is robust to
including the Fama-French three factors and Carhart momentum factor (FFC4) and a six-
factor model (FFCV6) that adds realized and implied volatility factor returns for one-month
variance swaps and front-month VIX futures. The Appendix reports the factor loadings.
The following columns (4-6) repeat the analysis for a post-crisis sample from 2010 to 2018.
Across specifications, the alpha-to-margin remain high, ranging from 4.5% to 5.2% per week.

The subsequent panels (B-D) report the alpha-to-margin when the assumptions about
the trading strategy are varied. In particular, Panel B hedges with E-mini futures. Panel C
adds transaction costs, and Panel D adds the margin from the E-mini contract.11 The CAPM

11The margin assumption in Panel D is conservative. If an exchange or bilateral counterparty offered
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alpha-to-margin estimates in column (1) decline from 5.23% in Panel A to 3.32% in Panel
B, 1.59% in Panel C, and .78% in Panel D. While the hedging portfolio, transaction costs,
and margin assumptions all impact the estimates, the CAPM alpha-to-margin estimate of
.78% per week in Panel D is is still economically and statistically significant. Similar results
hold for the other specifications.

In summary, the results indicate that trading against the no-arbitrage deviation measure
earns significant returns with minimal exposure to traditional risk factors. The large alpha-
to-margin estimates and high SRs are robust across a range of specifications and sample
periods. The strongest results correspond to the relative value strategy that hedges with
synthetic variance swap forwards.

5 Discussion

5.1 Deviation Measure versus Risk and Demand Factors

What drives the no-arbitrage deviation measure over time? Two channels identified by the
limits-to-arbitrage literature are risk and demand. If arbitrageurs are risk averse or have
limited capital, demand shocks can push prices away from fundamental values. In addition,
when risk increases, financing constraints may bind more tightly and force arbitrageurs to
exit positions. The resulting effects can be anomalies such as return predictability and
no-arbitrage violations.

To investigate how the deviation measure relates to risk and demand factors, the paper
estimates a vector autoregression (VAR) for yt = [DEVt V IXt DNPt]. The variables in the
VAR are the average deviation across the front six contracts (DEV), the CBOE Volatility
Index (VIX), and the dealer net position (DNP) in VIX futures from the CFTC’s CoT
report. The DEV variable is averaged across contracts to keep the VAR parsimonious. The
VIX and DNP variables are proxies for risk and demand factors.

Figure 2 motivates using DNP as a demand variable by illustrating its high correlation
with VIX ETP demand from Dong (2016), a proxy for retail demand. The advantage of
DNP relative to VIX ETP demand is that it only depends on quantities, not on prices. The
DNP variable is normalized as a fraction of open interest. This bounds DNP between 0
and 1 which removes the time trend in net position size that reflects the growth in the VIX

portfolio margin, the capital requirement for the hedged trade would be lower than the margin for a position
in VIX futures because of the reduced risk due to the hedge. In contrast, Panel D assumes that initial
margin is required for both the VIX futures and E-mini futures contracts. The average initial margin for
VIX futures and E-mini futures are around $4,400 and $4,100 over the sample period so including the E-mini
margin roughly halves the alpha-to-margin estimates versus Panel C.
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futures market in recent years.
The sample period for the VAR analysis is 2010 to 2018 using weekly observations on

CoT release dates when the DNP variable is reported. The sample period and start date
are motivated by prior studies investigating the relationship between the pricing of VIX
futures and demand (Cheng 2018). During this period there are no breaks in the reporting
of the DNP variable.12 In addition, the sample corresponds to a post-crisis period when
the VIX ETP market is growing. Dong (2016) argues that the introduction of VIX ETP
trading represents a structural break in the VIX futures market, with ETPs introducing
new channels for demand to impact futures prices. Finally, the sample period is beneficial
because a balanced panel is available to compute the average deviation measure across the
front six futures contracts.

Figure 7 presents the time-series relationship between the variables. The top plot shows
that the deviation measure decreases when the VIX increases. Since the deviation measure
tracks the difference in prices for nearly identical claims across two markets, it is surprising
to find a relationship with risk, as risk should play a similar role in both markets. One
hypothesis for what drives the result is that increases in risk may prevent traders from being
able to engage in arbitrage trades that would drive prices back to fundamental values, perhaps
as a result of binding margin or value-at-risk constraints. Alternatively, hedgers may take
profit on long positions when risk increases, leading to demand shocks that are correlated
with increases in risk and traders’ temporary inability to exploit arbitrage opportunities due
to financing constraints.

In addition to risk, the bottom plot shows that the deviation measure is also highly
correlated with the DNP demand variable. This correlation may be driven by systematic
demand shocks as discussed above or by idiosyncratic shocks such as mechanical roll effects
from VIX ETPs. To more precisely identify how the no-arbitrage deviation measure relates
to risk and demand and to better understand the lead-lag relationships, the paper estimates
a VAR and studies its associated impulse response functions in the next section.13

5.2 VAR Impulse Response Functions

The paper estimates a trivariate VAR for the standardized variables yt = [DEVt V IXt DNPt]

at a weekly frequency from 2010 to 2018. Figure 8 reports impulse response functions (IRFs)
12There is a gap in CoT report for VIX futures from December 2008 to June 2009 when open interest was

low and the position breakdown by trader type was not reported.
13The Appendix expands on this analysis by showing that similar qualitative results hold using other

proxies for risk and demand such as stock market returns and realized variance for risk and VIX ETP
demand and the delta of VIX options traded by retail customers for demand. As such, the results are not
limited to the specific variables selected here.

18



from the VAR. The IRFs are from a Cholesky decomposition with the variables ordered as:
VIX, DNP, DEV. The optimal lag length is selected by the SBIC criterion. The Appendix
reports the IRFs with different orderings as a robustness check and finds qualitatively similar
results.

The top row in Figure 8 reports the IRFs for DEV in response to VIX and DNP shocks.
The top left plot shows that a one-standard deviation increase in VIX corresponds to a .25
standard deviation decrease in DEV that mean reverts after one to two months. The top
right plot shows that a one standard deviation increase in DNP corresponds to a .05 to
.10 standard deviation increase in DEV that mean reverts over a longer horizon. These
responses are large in the sense that they represent several bid-ask spreads in VIX futures
and are the same order of magnitude as the coefficients on the deviation measure in the
return predictability regressions. The impact of the VIX shock is about 3-4 times larger
in magnitude than the impact of a demand shock over short horizons. Despite the tight
relationship between the deviation measure and demand in the time-series plot, the VAR
indicates that the risk shock is more significant over shorter horizons. For longer horizons
the demand shock remains more significant and has a slightly larger magnitude than the
VIX shock. Taken together, the results indicate that both the risk and demand channels
have an impact on the no-arbitrage deviation measure over different horizons.

The middle row in Figure 8 reveals how the DNP demand variable reacts to VIX and
DEV shocks. The middle left plot shows that a one standard deviation increase in the VIX
corresponds to a .10 decrease in DNP that persists for one to three months. The middle
right plot shows that a one standard deviation increase in DEV corresponds to an increase
in DNP by .10 standard deviations that peaks after one to two months and then persists
over a longer period of time. These results have a mixed interpretation. On one hand, DNP
decreases when risk increases. This result is consistent with dealers acting as hedgers that
take profit on long positions when risk increases. On the other hand, DNP increases when
the deviation measure increases. This result suggests that dealers also act as momentum
traders, increasing their long position in VIX futures when the prices of VIX futures increase
relative to their option-implied upper bounds. To the extent that the DNP variable is a veil
for retail demand, the results suggest that retail traders use VIX ETPs to hedge volatility
risk and chase momentum.

The bottom row in Figure 8 reports how the VIX responds to DNP and DEV shocks. The
responses are largely insignificant. This result provides a reassuring placebo test. One would
not expect changes in DNP or DEV to impact the VIX unless changes in these variables led
to arbitrage trading that moved index option prices and thus the VIX. For example, when
DEV increases, arbitrage traders might sell VIX futures and pay fixed in variance swap
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forwards. Implementing the variance swap forward trade synthetically could put downward
pressure on the VIX if traders synthetically pay fixed in long-dated synthetic variance swaps
by buying long-dated options and receive fixed in short-dated synthetic variance swap rates
by selling short-dated options. The IRF in the bottom right plot provides some evidence
that there is a negative effect of DEV shocks on the VIX over short horizons. Over longer
horizons, however, the response becomes insignificant and the point estimate is close to zero.
The insignificant responses are consistent with the null hypothesis of no effect on the VIX
which seems most plausible given the large size of the index options market relative to the
VIX futures market.

5.3 Panel Regressions

Another way to study the deviation measure and its relationship with risk and demand is
by exploiting a panel-regression approach. While the VAR accounts for the persistence of
the different variables and their joint interactions, it can be difficult to interpret large-scale
VARs. This observation motivates estimating the VAR with only three variables, one of
which is the average deviation measure across the front six contracts. In a panel-regression,
the deviation measure for different contracts can be studied directly along with fixed effects
to isolate within contract variation and broader control variables to account for the economic
environment.

Table 9 reports panel regressions and finds similar relationships between the deviation
measure and the risk and demand variables despite the different identification approach from
the VAR. The regression specification is,

Deviationt+h,n = β ·∆xt+h + ρ ·Deviationt,n + δ · Controlst + FEs+εt+h,n. (11)

The horizon is one-week h = 5 as in the VAR analysis. The regressions include overlapping
observations from daily data using the front six contracts. The explanatory variable ∆xt+h

and control variables are standardized but the deviation measure is not. Since the standard
deviation of the deviation variable is around 1% on average, this makes the results roughly
comparable to the IRFs from the VAR where the variables are standardized. The first
three columns (1-3) in Table 9 show how the deviation measure responds to changes in
the explanatory variable controlling for the persistence of the deviation measure. The next
three columns (4-6) repeat this analysis adding control variables and fixed effects. The
control variables include the time-to-maturity, initial margin, and open interest for the n-
th contract on date t as well as the lagged VIX index. Fixed effects are included for the
contract, calendar year, and contract number (i.e. first, second, etc. to maturity).
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Panels A reports the results for the risk variables from 2007 to 2018. Panel B finds similar
results from 2010 to 2018, showing that the results are not driven by the financial crisis. As
in the VAR analysis, the results indicate that the deviation measure is decreasing in risk.
When stock market returns are negative or volatility increases, the deviation measure tends
to decline. The magnitude of the point estimates is similar to the IRFs. For example, in the
panel regressions, a one-standard deviation increase in the VIX is associated with a decline
in the deviation measure of around -.12 in Panel A or -.16 in Panel B. In the VAR, the IRF of
the deviation measure to a VIX shock has a point estimate of around -.05 to -.25 in the first
few weeks after a shock. Despite the different approaches, the VAR and panel regression
reveal a similar relationship between the deviation measure and the VIX. Moreover, the
panel regressions highlight how the relationship between the deviation measure and risk is
not specific to the VIX index, but also holds for stock market returns and for the realized
variance of the S&P 500 index.

Panel C reports the results for the demand variables from 2010 to 2018. The post-crisis
sample period is motivated by data availability. As in the VAR, the deviation measure is
increasing in demand pressure. A one-standard deviation increase in dealer net position
(DNP) corresponds to a .05 standard-deviation increase in the deviation measure. This
response is similar to the IRF in which the deviation measure increases by around .05 to .10
in response to a DNP shock in the weeks following the shock. Beyond the DNP variable, the
regressions show that the deviation measure is also increasing in VIX ETP net demand (ETP)
and in the delta of VIX options traded by retail customers (VixOpt). Similar to the DNP
variable, the VIX ETP and VIX option demand variables are normalized by open interest
and then standardized. Compared to the risk variables in Panel B, the point estimates and
explanatory power of the demand variables is slightly lower in Panel C. Over short horizons,
changes in risk are associated with larger changes in the deviation measure than changes in
demand.

5.4 Other Channels

Beyond risk and demand, the limits-to-arbitrage literature highlights a number of events
that can lead to no-arbitrage violations and return predictability. For example, changes in
margin requirements may lead to binding financial constraints, resulting in margin spirals
if arbitrageurs are forced to unwind positions (Brunnermeier and Pedersen 2008). End-
of-month and end-of-quarter dates can result in dollar funding pressure that is associated
with heightened arbitrage deviations in foreign exchange markets (Du et al. 2018). Salient
events like FOMC announcements feature surprising return predictability patterns (Lucca
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and Moench 2015). How does the deviation measure relate to these events?
Figure 9 investigates this question by reporting event study plots to illustrate how the

average deviation across the front six contracts and VIX index change around various events.
The figure reports the average change with a 95% pointwise confidence interval for the
deviation measure for the ten trading days before and after the events.

The top row plots the results for margin changes. The initial margin for the front month
VIX futures contract has 41 increases and 33 decreases from 2004 to 2018. Before a margin
increase (decrease) the VIX tends to increase (decrease) by around 4 (1) points. Based on
the panel regressions, the expected change in the deviation measure given the change in
the VIX is a decrease (increase) of around .5 (.1). For the margin increases, the deviation
measure only declines by around .25, which is about half the expected change. Before the
margin decrease, the deviation measure increases by around .20 which is somewhat more
than expected. This provides some evidence that margin increases (decreases) attenuate
(amplify) the relationship between the deviation measure and the VIX.

The subsequent plots highlight the change in the deviation measure around FOMC and
non-farm payroll announcements and around month-end and quarter-end dates. The results
reveal a decrease in the deviation measure following the FOMC announcement and an in-
crease leading into non-farm payrolls. This suggests that investors may reduce VIX futures
hedges after the FOMC and increase hedges ahead of non-farm payrolls. There is also a
decline in the deviation measure in the week prior to month-end and quarter-end, which
could be consistent with hedgers deleveraging and reducing positions during this period.

5.5 Deviation Measure versus VIX premium

How does the VIX futures no-arbitrage deviation measure relate to the VIX premium from
Cheng (2018)? The VIX premium measures the difference between the one-month futures
price and a statistical forecast of the VIX index at maturity.14 It can be interpreted as the
implied volatility risk premium or the expected return from going short $1 notional of a VIX
futures contract over a one-month horizon. In contrast, the deviation measure is a relative
pricing or no-arbitrage discrepancy across the VIX futures and index options markets.

Figure 10 plots the VIX premium against the weighted average of the deviation mea-
sure across the front two contracts for a constant, one-month maturity. The VIX premium
data is from Ing-Haw Cheng’s website and is presented for the expanding window model.
The deviation measure is computed as the weighted average deviation across the front two

14The VIX premium is constructed by rolling from the front contract to the second contract at the end of
the month. The definition adjusts for the number of days to maturity to scale the premium to a one-month
horizon.
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contracts for a one-month maturity.15 The plot highlights a strong time-series correlation
between the VIX premium and the deviation measures, showing that, despite the different
interpretations and estimation techniques, the measures are positively correlated.

Table 10 provides further analysis by regressing the VIX premium onto the deviation
measure, the VIX index, and realized variance (RV). As before, the variables are standardized
in each of the regressions. In column (1) the deviation measure explains around 11% of
the VIX premium and is statistically significant. A one-standard deviation increase in the
deviation measure is associated with a .34 standard deviation increase in the VIX premium.
Column (2) shows that the VIX index and realized variance are also related to the VIX
premium, with explanatory power of around 25%. Column (3) adds all of the variables
together and finds that the deviation measure remains significant. Columns (4-6) repeat
the analysis during a post-crisis sample. In this period, the deviation measure has higher
explanatory power than the VIX and RV and remains significant. These results are consistent
with the strong time-series correlation from Figure 10, showing the similarity in the measures
despite their different interpretations.

6 Conclusion

This paper documents systematic law of one price deviations across the VIX futures and S&P
500 index options markets. The prices of VIX futures violate estimates of their no-arbitrage
upper and lower bounds, revealing the presence of arbitrage opportunities. A deviation
measure equal to the difference between the VIX futures price and its corresponding variance
swap forward rate is found to significantly predict VIX futures excess returns. A relative
value trading strategy that exploits the deviation measure earns a significant Sharpe ratio
with minimal exposure to traditional risk factors.

The results are surprising because the no-arbitrage relationships investigated in the paper
are well known to option traders. Even if the arbitrage trade is difficult to implement in
practice, there is still significant return predictability when using the deviation measure
to predict VIX futures returns hedged with S&P 500 futures, both of which are liquid
futures contracts. The trading strategy obtains a sizeable Sharpe ratio and alpha-to-margin
estimate under a range of assumptions. The results cannot be explained by a mere appeal
to implementation challenges or transaction costs.

Instead, the paper finds evidence that the no-arbitrage deviations are related to sys-
15The one-month deviation measure is Deviationt,1 ·wt +Deviationt,2 ·(1−wt) so τ1,t ·wt +τ2,t ·(1−wt) =

1/12. Early in the sample there are some dates when the front contract has a maturity greater than one-month
in which case the weight is set to wt = 1.
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tematic risk and demand pressure as well as other channels like margin changes, economic
announcements, and quarter-end effects. To the extent that dealer positions reflect retail
demand, the results are consistent with retail traders using VIX ETPs to hedge volatility
risk and chase momentum, driving the prices of VIX futures away from fundamental values
implied by the index option market.

An implication of these results is that investors and policymakers should be cautious when
interpreting signals from equity volatility markets. Large no-arbitrage deviations indicate
that the VIX futures and index option markets are sending different messages about risk
and risk premia.
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Table 1: Estimating the Law of One Price Deviation Measure

This table provides examples for how the paper estimates the law of one price deviation measure
on February 27, 2012 and February 8, 2018. First, the paper estimates the variance swap forward
curve by assuming flat forward rates between observed index option maturities. Second, the paper
computes the deviation measure, Deviationt,n, for the n-month futures contract as the difference
between the futures price, Futt,n, and the corresponding variance swap forward rate,

√
Fwdt,n, in

volatility units. The variance swap forward rate is the average forward rate between the futures
expiration date and the index options expiration date thirty calendar days later.

Estimating the Deviation Measure on February 27, 2012

Variance swap forward Curve, annualized variance in percentage units
Fwdt,Tn−1,Tn = (V St,Tn · Tn − V St,Tn−1 · Tn−1)/(Tn − Tn−1)

Option Expiration 3/16/12 4/20/12 5/18/12 6/15/12 9/21/12 12/21/12
Maturity (Years) 0.05 0.15 0.22 0.30 0.57 0.82

V St,Tn
2.99 3.74 4.51 5.15 6.21 6.72

Fwdt,Tn−1,Tn
2.99 4.12 5.97 7.01 7.38 7.88

Deviation Measure, annualized volatility in percentage units
Deviationt,n = Futt,n −

√
Fwdt,n

Futures Expiration 3/21/12 4/18/12 5/16/12 6/20/12 7/18/12 8/22/12
Futures Contract (n) (1) (2) (3) (4) (5) (6)

Futt,n 21.40 24.38 25.87 27.02 28.17 28.78√
Fwdt,n 20.30 24.17 26.34 27.17 27.17 27.17

Deviationt,n 1.10 0.20 -0.46 -0.15 1.00 1.60

Estimating the Deviation Measure on February 8, 2018

Variance swap forward Curve, annualized variance in percentage units
Fwdt,Tn−1,Tn

= (V St,Tn
· Tn − V St,Tn−1

· Tn−1)/(Tn − Tn−1)

Option Expiration 3/16/18 4/20/18 5/18/18 6/15/18 9/21/18 12/21/18
Maturity (Years) 0.10 0.19 0.27 0.35 0.62 0.87

V St,Tn
11.94 9.26 8.31 7.84 6.40 6.18

Fwdt,Tn−1,Tn 11.94 6.51 5.90 6.16 4.53 5.63

Deviation Measure, annualized volatility in percentage units
Deviationt,n = Futt,n −

√
Fwdt,n

Futures Expiration 2/14/18 3/21/18 4/18/18 5/16/18 6/20/18 7/18/18
Futures Contract (n) (1) (2) (3) (4) (5) (6)

Futt,n 28.88 22.83 21.08 20.12 19.27 19.15√
Fwdt,n 34.56 25.51 24.37 24.79 21.30 21.30

Deviationt,n -5.68 -2.68 -3.30 -4.67 -2.02 -2.15
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Table 2: Summary Statistics for the Law of One Price Deviation Measure

Panel A reports summary statistics for the law of one price deviation measure for the front six
VIX futures contracts. Panel B reports the correlation of the deviation measure across contracts.
Panel C reports the average deviation for each contract by year. The last column reports the
average statistics across contracts. The sample period is January 3, 2007 to December 31, 2018 for
a balanced panel.

Summary Statistics of Deviationt,n = Futt,n -
√
Fwdt,n

Contract (n) (1) (2) (3) (4) (5) (6) Avg.

Panel A: Summary Statistics
Mean -0.38 -0.79 -0.98 -1.50 -1.44 -1.41 -1.08
Standard Deviation 0.98 0.90 1.10 1.00 0.95 1.03 0.99
t-statistic -5.62 -10.38 -10.68 -17.32 -15.70 -13.94 -12.28
Skewness -4.69 -1.21 0.38 -1.24 -0.53 -0.40 -1.28
Kurtosis 44.01 9.86 9.50 9.24 5.00 4.41 13.67
Minimum -12.55 -6.99 -7.30 -9.45 -7.78 -6.13 -8.37
25th-Percentile -0.62 -1.14 -1.57 -2.02 -1.97 -1.99 -1.55
Median -0.25 -0.69 -0.97 -1.46 -1.41 -1.39 -1.03
75th-Percentile 0.09 -0.27 -0.41 -0.86 -0.83 -0.74 -0.50
Maximum 3.83 5.52 6.60 2.76 1.74 3.42 3.98
Autocorrelation 1-day 0.65 0.76 0.76 0.82 0.85 0.86 0.78
Autocorrelation 5-day 0.40 0.58 0.62 0.67 0.72 0.77 0.63
Autocorrelation 21-day 0.26 0.36 0.31 0.33 0.47 0.47 0.37

Panel B: Correlation Matrix
Deviationt,1 1.00 0.26 0.06 0.20 0.20 0.18 0.18
Deviationt,2 0.26 1.00 0.23 0.55 0.49 0.49 0.40
Deviationt,3 0.06 0.23 1.00 0.29 0.28 0.39 0.25
Deviationt,4 0.20 0.55 0.29 1.00 0.58 0.44 0.41
Deviationt,5 0.20 0.49 0.28 0.58 1.00 0.67 0.44
Deviationt,6 0.18 0.49 0.39 0.44 0.67 1.00 0.43

Panel C: Average Annually
2007 -0.46 -0.27 -0.53 -0.46 -0.33 -0.29 -0.39
2008 -1.09 -0.59 -0.20 -1.30 -1.10 -1.16 -0.91
2009 -0.31 -0.82 -0.42 -1.73 -1.81 -1.76 -1.14
2010 -0.32 -0.46 -0.45 -0.98 -1.16 -1.27 -0.77
2011 -0.42 -1.05 -1.49 -2.12 -2.06 -2.12 -1.54
2012 -0.12 -0.57 -0.88 -1.16 -0.89 -0.64 -0.71
2013 -0.07 -0.43 -0.57 -0.95 -0.89 -0.85 -0.63
2014 -0.22 -0.71 -1.02 -1.68 -1.49 -1.49 -1.10
2015 -0.54 -1.43 -1.71 -1.96 -1.97 -2.12 -1.62
2016 -0.28 -1.08 -1.46 -1.85 -1.79 -1.73 -1.36
2017 -0.16 -0.90 -1.42 -1.90 -1.83 -1.67 -1.31
2018 -0.55 -1.13 -1.69 -1.96 -1.88 -1.84 -1.51
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Table 3: The Frequency of the Law of One Price Violations

This table reports the frequency of law of one price violations for VIX futures contracts from their
no-arbitrage bounds. Panel A reports the frequency of upper bound violations for varying thresholds
for sample periods from 2007-2018 in A.I and from 2010-2018 in A.II. Panel B reports the analogous
frequency of lower bound violations. The last column reports the average frequency across contracts.

Frequency of Law of One Price Violations
Contract (n) (1) (2) (3) (4) (5) (6) Avg.

Panel A.I: Futures > Upper Bound + Threshold from 2007-2018
Threshold = 0 0.31 0.16 0.12 0.03 0.04 0.06 0.12
Threshold = .25 0.14 0.08 0.07 0.02 0.02 0.04 0.06
Threshold = .50 0.06 0.03 0.04 0.01 0.01 0.02 0.03

Panel A.II: Futures > Upper Bound + Threshold from 2010-2018
Threshold = 0 0.32 0.11 0.06 0.01 0.02 0.03 0.09
Threshold = .25 0.14 0.05 0.02 0.01 0.01 0.02 0.04
Threshold = .50 0.06 0.02 0.01 0.00 0.01 0.02 0.02

Panel B.I: Futures < Lower Bound - Threshold from 2007-2018
Threshold = 0 0.12 0.17 0.29 0.37 0.29 0.24 0.25
Threshold = -.25 0.07 0.11 0.19 0.25 0.20 0.15 0.16
Threshold = -.50 0.04 0.07 0.11 0.17 0.13 0.10 0.10

Panel B.II: Futures < Lower Bound - Threshold from 2010-2018
Threshold = 0 0.11 0.20 0.36 0.47 0.37 0.30 0.30
Threshold = -.25 0.06 0.12 0.24 0.32 0.25 0.19 0.20
Threshold = -.50 0.03 0.07 0.14 0.21 0.16 0.12 0.12
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Table 4: Summary Statistics for the Prices and Returns of
VIX Futures and Variance Swap Forwards

Panel A reports summary statistics for VIX futures prices and for their corresponding variance swap
forward rates. Panel B reports summary statistics for one-week excess returns for VIX futures and
variance swap forwards (h = 5). The sample period is January 3, 2007 to December 31, 2018.

VIX Futures and VS Forwards Summary Statistics
Contract (n) (1) (2) (3) (4) (5) (6) Average
Panel A.I: VIX Futures Prices Futt,n
Mean 20.07 20.81 21.31 21.65 21.95 22.20 21.33
Standard Deviation 8.57 7.66 7.06 6.60 6.28 6.02 7.03
Skewness 2.17 1.82 1.59 1.38 1.21 1.10 1.54
Kurtosis 9.04 7.21 6.20 5.10 4.33 3.90 5.96
Median 17.55 18.58 19.27 19.67 20.08 20.27 19.24

Panel A.II: VS Forward Rates
√
Fwdt,n (annualized volatility units)

Mean 20.45 21.60 22.29 23.15 23.38 23.62 22.41
Standard Deviation 8.99 7.90 7.03 6.76 6.50 6.32 7.25
Skewness 2.28 1.92 1.71 1.47 1.32 1.25 1.66
Kurtosis 9.94 7.66 6.84 5.45 4.77 4.56 6.54
Median 17.97 19.56 20.67 21.42 21.70 21.90 20.54

Panel B.I: VIX Futures Returns (percent) RFut
t+h,n = Futt,n − Futt+h,n

Mean 0.17 0.15 0.09 0.06 0.06 0.05 0.10
Standard Deviation 2.43 1.99 1.57 1.34 1.19 1.10 1.60
Sharpe Ratio 0.07 0.08 0.06 0.05 0.05 0.05 0.06
t-statistic 1.81 1.89 1.48 1.19 1.24 1.22 1.47
Skewness -1.56 -1.20 -1.03 -0.86 -0.80 -0.74 -1.03
Kurtosis 12.76 10.53 9.42 8.21 8.29 7.35 9.43
Median 0.27 0.30 0.20 0.15 0.10 0.10 0.19

Panel B.I: VS Forward Returns (basis points) RFwd
t+h,n = Fwdt,n − Fwdt+h,n

Mean 0.48 0.47 0.39 0.54 0.05 0.13 0.34
Standard Deviation 16.31 12.90 10.27 8.47 7.29 6.64 10.31
Sharpe Ratio 0.03 0.04 0.04 0.06 0.01 0.02 0.03
t-statistic 0.78 0.89 1.06 1.69 0.20 0.56 0.86
Skewness -3.98 -2.92 -1.73 -0.60 -1.27 -1.05 -1.92
Kurtosis 65.65 45.73 27.82 16.22 18.70 16.38 31.75
Median 0.93 1.15 0.68 0.61 0.26 0.30 0.66
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Table 5: Deviation Measure Predicts VIX Futures Returns
Hedged with Variance Swap Forwards

This table reports return predictability regressions for hedged VIX futures over a weekly horizon,
h = 5. The first step regresses VIX futures returns onto variance swap forward returns to estimate
the hedge ratios β̂n. The second step regresses the hedged return onto the deviation measure. The
variables in the second step are z-scored for ease of interpretation. Panel A (B) reports results
for the full (post-crisis) sample. The results show that the deviation measure significantly predicts
hedged returns across contracts and sample periods and is robust to the presence of control variables
such as the VIX and realized variance that proxy for the variance risk premium.

Return Predictability Regression: RFut
t+h,n − β̂nRFwd

t+h,n = γ′nxt,n + εt+h,n

Contract (n) (1) (2) (3) (4) (5) (6)

Panel A: Full Sample Period from 2004 to 2018

Panel A.I: First Stage - Hedge Ratios
βn 12.72∗∗∗ 13.26∗∗∗ 12.15∗∗∗ 12.90∗∗∗ 13.55∗∗∗ 13.56∗∗∗

(1.43) (1.26) (1.02) (0.72) (0.71) (0.87)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.680 0.727 0.618 0.654 0.682 0.672

Panel A.II: Second Stage - Predicting Returns with Deviation
Deviation 0.23∗∗∗ 0.25∗∗∗ 0.30∗∗∗ 0.28∗∗∗ 0.25∗∗∗ 0.25∗∗∗

(0.05) (0.04) (0.05) (0.04) (0.04) (0.04)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.052 0.063 0.092 0.076 0.061 0.060

Panel A.III: Second Stage - Predicting Returns with Deviation and Controls
Deviation 0.32∗∗∗ 0.34∗∗∗ 0.34∗∗∗ 0.32∗∗∗ 0.31∗∗∗ 0.28∗∗∗

(0.04) (0.04) (0.06) (0.04) (0.04) (0.04)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.073 0.106 0.120 0.091 0.089 0.075

Panel B: Post-Crisis Sample from 2010 to 2018

Panel B.I: First Stage - Hedge Ratios
βn 19.46∗∗∗ 20.34∗∗∗ 18.49∗∗∗ 15.49∗∗∗ 16.15∗∗∗ 15.05∗∗∗

(1.34) (0.79) (0.70) (0.75) (0.66) (0.57)
Observations 2029 2245 2245 2245 2245 2245
Adjusted R2 0.775 0.823 0.757 0.711 0.722 0.725

Panel B.II: Second Stage - Predicting Returns with Deviation
Deviation 0.47∗∗∗ 0.35∗∗∗ 0.38∗∗∗ 0.32∗∗∗ 0.35∗∗∗ 0.30∗∗∗

(0.08) (0.04) (0.04) (0.05) (0.04) (0.05)
Observations 2029 2245 2245 2245 2245 2245
Adjusted R2 0.225 0.123 0.143 0.101 0.119 0.087

Panel B.III: Second Stage - Predicting Returns with Deviation and Controls
Deviation 0.56∗∗∗ 0.42∗∗∗ 0.42∗∗∗ 0.33∗∗∗ 0.35∗∗∗ 0.29∗∗∗

(0.09) (0.05) (0.05) (0.05) (0.04) (0.05)
Observations 2029 2245 2245 2245 2245 2245
Adjusted R2 0.240 0.158 0.159 0.106 0.126 0.090

Newey-West SEs with 15 lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table 6: Deviation Measure Predicts VIX Futures Returns
Hedged with Stock Market and Index Option Straddle Returns

This table reports return predictability regressions for VIX futures hedged with stock market and
straddle returns over a weekly horizon, h = 5. The hedging portfolio includes CRSP value-weighted
returns and at-the-money forward delta-hedged straddle returns for the nearest index option matu-
rities before and after the futures contract expiration.

Contract (n) (1) (2) (3) (4) (5) (6)

Panel A: Full Sample Period from 2004 to 2018
Panel A.I: First Stage - Hedge Ratios
RMRFt+h 0.58∗∗∗ 0.44∗∗∗ 0.32∗∗∗ 0.26∗∗∗ 0.22∗∗∗ 0.20∗∗∗

(0.03) (0.03) (0.02) (0.02) (0.02) (0.02)
RStrad

t+h,Tn+1
8.68∗∗∗ 13.68∗∗∗ 21.99∗∗∗ 17.44∗∗∗ 25.64∗∗∗ 29.79∗∗∗

(0.82) (1.17) (1.68) (5.20) (2.88) (2.42)
RStrad

t+h,Tn
-1.61∗∗∗ -2.58∗∗∗ -6.90∗∗∗ -3.67 -8.87∗∗∗ -12.19∗∗∗

(0.62) (0.47) (0.81) (3.24) (2.04) (1.60)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.694 0.751 0.765 0.741 0.770 0.759

Panel A.II: Second Stage - Predicting Returns with Deviation
Deviation 0.17∗∗ 0.14∗∗∗ 0.09∗∗ 0.12∗ 0.14∗∗∗ 0.15∗∗∗

(0.08) (0.05) (0.04) (0.07) (0.04) (0.04)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.030 0.020 0.008 0.015 0.020 0.021

Panel A.III: Second Stage - Predicting Returns with Deviation and Controls
Deviation 0.24∗∗∗ 0.12∗∗∗ 0.08∗∗ 0.09∗ 0.10∗∗∗ 0.10∗∗∗

(0.08) (0.04) (0.04) (0.05) (0.04) (0.04)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.053 0.052 0.046 0.038 0.042 0.045

Panel B: Post-Crisis Sample from 2010 to 2018
Panel B.I: First Stage - Hedge Ratios
RMRFt+h 0.65∗∗∗ 0.53∗∗∗ 0.41∗∗∗ 0.32∗∗∗ 0.26∗∗∗ 0.24∗∗∗

(0.03) (0.02) (0.02) (0.02) (0.02) (0.01)
RStrad

t+h,Tn+1
7.67∗∗∗ 11.47∗∗∗ 19.80∗∗∗ 22.97∗∗∗ 27.12∗∗∗ 26.47∗∗∗

(0.91) (0.67) (1.30) (1.78) (2.16) (1.91)
RStrad

t+h,Tn
-0.69 -1.70∗∗∗ -6.17∗∗∗ -8.10∗∗∗ -10.88∗∗∗ -10.34∗∗∗

(0.48) (0.33) (0.69) (1.04) (1.44) (1.25)
Observations 2029 2245 2245 2245 2245 2245
Adjusted R2 0.698 0.821 0.849 0.842 0.832 0.826

Panel B.II: Second Stage - Predicting Returns with Deviation
Deviation 0.05 0.14∗∗ 0.16∗∗∗ 0.13∗∗∗ 0.13∗∗∗ 0.09∗∗

(0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
Observations 2029 2245 2245 2245 2245 2245
Adjusted R2 0.002 0.019 0.024 0.016 0.017 0.008

Panel B.III: Second Stage - Predicting Returns with Deviation and Controls
Deviation 0.13∗∗ 0.14∗∗ 0.11∗∗ 0.09∗∗ 0.10∗∗ 0.05

(0.06) (0.06) (0.05) (0.04) (0.04) (0.04)
Observations 2029 2245 2245 2245 2245 2245
Adjusted R2 0.036 0.036 0.035 0.035 0.033 0.029

Newey-West SEs with 15 lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table 7: Summary Statistics for Deviation-Based Trading Strategy

This table reports summary statistics for weekly returns from the deviation-based trading strategy
that are levered for 10% annualized volatility. The columns vary the specifications which include
hedging with variance swap forwards (1), E-mini S&P 500 futures (2), and E-mini futures including
transaction costs (3). Columns (4-6) report analogous results for a 2010-2018 post-crisis sample.

Weekly Return Summary Statistics
Specification (1) (2) (3) (4) (5) (6)
Mean 0.57 0.27 0.12 0.58 0.23 0.09
Standard Deviation 1.39 1.39 1.39 1.39 1.39 1.39
Skewness -1.12 1.46 1.43 2.32 1.60 1.56
Kurtosis 54.46 14.02 14.01 28.11 16.42 16.37
Sharpe Ratio 0.41 0.19 0.09 0.42 0.17 0.06
t-statistic 14.85 5.89 2.65 12.39 4.34 1.63
Maximum Drawdown 8.74 6.54 15.30 4.00 6.36 12.83
Hedge Fwd E-mini E-mini Fwd E-mini E-mini
Transaction Costs No No Yes No No Yes
Post-Crisis No No No Yes Yes Yes
Observations 3697 3697 3697 2245 2245 2245

Table 8: Alpha-to-Margin Estimates for Deviation-Based Trading Strategy

This table reports weekly alpha-to-margin estimates for the deviation-based trading strategy using
the maximum leverage to required initial margin. Panels A-D vary the hedge and whether trans-
action costs and the E-mini margin are included. Columns 1-3 vary the factor model. Columns
4-6 report results for a 2010-2018 post-crisis sample. The alpha-to-margin estimates are large and
significant across the various specifications. The Appendix reports the factor loadings.

Weekly Alpha-to-Margin Estimates
Specification (1) (2) (3) (4) (5) (6)
Panel A: Variance swap forward hedge
Alpha 5.23∗∗∗ 5.23∗∗∗ 5.00∗∗∗ 4.68∗∗∗ 4.72∗∗∗ 4.55∗∗∗

(0.37) (0.37) (0.42) (0.39) (0.39) (0.43)
Adjusted R2 0.009 0.009 0.022 0.005 0.007 0.014
Panel B: E-mini hedge
Alpha 3.32∗∗∗ 3.35∗∗∗ 3.89∗∗∗ 2.68∗∗∗ 2.76∗∗∗ 3.19∗∗∗

(0.52) (0.52) (0.49) (0.60) (0.61) (0.61)
Adjusted R2 0.027 0.029 0.110 0.010 0.026 0.102
Panel C: E-mini hedge and t-costs
Alpha 1.59∗∗∗ 1.62∗∗∗ 2.15∗∗∗ 1.11∗ 1.19∗∗ 1.60∗∗∗

(0.51) (0.51) (0.49) (0.60) (0.60) (0.61)
Adjusted R2 0.026 0.029 0.106 0.010 0.026 0.098
Panel D: E-mini hedge, t-costs, and margin
Alpha 0.78∗∗∗ 0.78∗∗∗ 1.08∗∗∗ 0.52∗ 0.56∗ 0.77∗∗∗

(0.26) (0.26) (0.24) (0.29) (0.29) (0.30)
Adjusted R2 0.026 0.028 0.110 0.008 0.025 0.086
Factor Model CAPM FFC4 FFCV6 CAPM FFC4 FFCV6
Post-Crisis No No No Yes Yes Yes
Observations 3697 3697 3697 2245 2245 2245
Newey-West SEs with 15 lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table 9: The No-Arbitrage Deviation Measure is Decreasing in Risk
and Increasing in Demand Pressure for VIX Futures

This table reports a panel regression of the deviation measure onto changes in different risk and
demand variables over a one-week horizon h = 5. Specifications 1-3 control for the lagged deviation.
Specifications 4-6 add controls variables and fixed effects. The control variables include the contract-
specific time-to-maturity, open interest, and initial margin and the lagged VIX index to proxy for
the economic environment. The fixed effects include the contract, contract number, and calendar
year. The explanatory variables are z-scored for ease of interpretation. Across the different variables
proxying for risk and demand and regression specifications, the results indicate that the deviation
measure is decreasing in risk and increasing in demand.

Deviationt+h,n = β∆xt+h + ρDeviationt,n + δControlst + FEs + εt+h,n

Panel A: Risk Factors from January 3, 2007 to December 31, 2018
Specification (1) (2) (3) (4) (5) (6)
Explanatory Variable RMRF RV VIX RMRF RV VIX
∆xt+h 0.10∗∗∗ -0.08∗∗∗ -0.12∗∗∗ 0.11∗∗∗ -0.22∗∗∗ -0.15∗∗∗

(0.03) (0.02) (0.02) (0.02) (0.05) (0.02)
Deviationt,n 0.73∗∗∗ 0.72∗∗∗ 0.74∗∗∗ 0.49∗∗∗ 0.50∗∗∗ 0.49∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Observations 17683 17683 17683 17683 17683 17683
Adjusted R2 0.544 0.541 0.549 0.604 0.602 0.612
Controls and FEs No No No Yes Yes Yes

Panel B: Risk Factors from January 4, 2010 to December 31, 2018
Specification (1) (2) (3) (4) (5) (6)
Explanatory Variable RMRF RV VIX RMRF RV VIX
∆xt+h 0.17∗∗∗ -0.11∗∗∗ -0.16∗∗∗ 0.18∗∗∗ -0.36∗∗∗ -0.19∗∗∗

(0.02) (0.03) (0.02) (0.02) (0.05) (0.02)
Deviationt,n 0.79∗∗∗ 0.77∗∗∗ 0.80∗∗∗ 0.51∗∗∗ 0.50∗∗∗ 0.50∗∗∗

(0.02) (0.02) (0.02) (0.03) (0.03) (0.03)
Observations 13254 13254 13254 13254 13254 13254
Adjusted R2 0.635 0.618 0.635 0.695 0.690 0.699
Controls and FEs No No No Yes Yes Yes

Panel C: Demand Factors from January 4, 2010 to December 31, 2018
Specification (1) (2) (3) (4) (5) (6)
Explanatory Variable DNP ETP VixOpt DNP ETP VixOpt
∆xt+h 0.05∗∗∗ 0.02∗∗ 0.07∗∗∗ 0.05∗∗∗ 0.03∗∗ 0.08∗∗∗

(0.01) (0.01) (0.02) (0.01) (0.01) (0.02)
Deviationt,n 0.79∗∗∗ 0.79∗∗∗ 0.78∗∗∗ 0.51∗∗∗ 0.51∗∗∗ 0.51∗∗∗

(0.02) (0.02) (0.02) (0.03) (0.03) (0.03)
Observations 13254 13254 13254 13254 13254 13254
Adjusted R2 0.614 0.613 0.617 0.675 0.674 0.677
Controls and FEs No No No Yes Yes Yes

SEs double-clustered by date and contract, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table 10: Deviation Measure versus VIX premium

This table compares the deviation measure to the VIX premium from Cheng (2018). The deviation
measure is the weighted average of the deviation across the front two contracts for a constant, one-
month maturity to match the maturity of the VIX premium. The table regresses the VIX premium
onto the one-month deviation measure, VIX, and realized variance.

VIX premium Regressed onto Deviation, VIX, and RV
Specification (1) (2) (3) (4) (5) (6)
Deviation 1mn 0.34∗∗∗ 0.33∗∗∗ 0.39∗∗∗ 0.46∗∗∗

(0.09) (0.06) (0.05) (0.06)
VIX 0.68∗∗∗ 0.80∗∗∗ 0.43∗∗∗ 0.54∗∗∗

(0.12) (0.12) (0.15) (0.11)
RV -0.93∗∗∗ -0.87∗∗∗ -0.84∗∗∗ -0.54∗∗∗

(0.17) (0.18) (0.19) (0.15)
Observations 3697 3697 3697 2245 2245 2245
Adjusted R2 0.115 0.251 0.331 0.168 0.057 0.244
Sample Period Full Full Full Post Post Post
Newey-West SEs with 15 lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01

35



Figure 1: Law of One Price Deviation between VIX Futures and Index Option Prices

G
M

 a
n
d

 F
o
rd

 D
o

w
n
g

ra
d

e

A
m

a
ra

n
th

 n
a

tu
ra

l 
g

a
s
 l
o
s
s

G
re

e
n
s
p

a
n

 r
e
c
e

s
s
io

n
 w

a
rn

in
g

B
e

a
r 

S
te

a
rn

s
 c

o
lla

p
s
e

Q
E

1
L

e
h
m

a
n
 b

a
n

k
ru

p
tc

y

E
q

u
it
y
 F

la
s
h
 C

ra
s
h

S
&

P
 d

o
w

n
g

ra
d

e
s
 U

S
 d

e
b
t

G
re

e
c
e
 s

e
c
o

n
d
 b

a
ilo

u
t 

p
a

c
k
a

g
e

O
il 

d
ro

p
s
 b

e
lo

w
 $

5
0

B
la

c
k
 M

o
n
d
a

y
 i
n

 C
h
in

a

D
e
c
e

m
b

e
r 

2
0
1

5
 F

e
d

 l
if
to

ff

F
e
b

ru
a
ry

 V
IX

 S
p
ik

e

D
e
c
e

m
b

e
r 

2
0
1

8
 R

a
te

 H
ik

e

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

Date

-5

-4

-3

-2

-1

 0

 1

 2

P
e

rc
e
n
t

Deviation

Deviation 21d MA

This figure plots the deviation measure averaged across the front six VIX futures contracts as a
daily time-series and a one-month moving average from March 26, 2004 to December 31, 2018. The
no-arbitrage deviation measure for the n-month VIX futures contract is the difference between the
futures price and its corresponding variance swap forward rate, Deviationt,n = Futt,n −

√
Fwdt,n.

Positive values are law of one price violations. Gray shading indicates an NBER recession.
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Figure 2: Equity Volatility Market Size and Dealer Positions
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Levered Fund: Corr(D,L) =-91%

Asset Manager: Corr(D,A) =-4%

Other Reportable: Corr(D,O) =-53%

This figure provides an overview of equity volatility markets including the market size and investor
positioning in the S&P 500 index options and VIX futures markets. The index options market is
much larger than the VIX futures market as measured by open interest in Black-Scholes vega (top
left). Since 2009, there has been substantial growth in the VIX futures and ETP markets which has
coincided (top right). Focusing on the behavior of certain traders, dealer positions in VIX futures
are highly related to demand for VIX ETPs (bottom left). Within the VIX futures market, dealers
and leveraged funds generally take large and opposing positions (bottom right). The break in the
time-series of CoT positions corresponds to a period in early 2009 when VIX futures open interest
was low and the breakdown was not reported.
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Figure 3: Estimating the Law of One Price Deviation Measure
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This figure plots the prices of VIX futures and variance swap forwards from Table 1 that are used to
construct the law of one price deviation measure on February 27, 2012 and February 8, 2018. The
top plot illustrates static arbitrage opportunities in which the prices of VIX futures are above their
upper bounds for the first, fifth, and sixth contracts. In these cases, an arbitrageur could sell VIX
futures and buy variance swap forwards (pay fixed) to lock in a riskless profit. The bottom plot
illustrates arbitrage opportunities in which the prices of VIX futures are below their lower bounds.
The lower bound is equal to the upper bound minus the difference in bounds from a dynamic
term-structure model.
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Figure 4: Law of One Price Deviation for the Front Month VIX Futures Contract

04 06 08 10 12 14 16 18

Date

-15

-10

 -5

  0

  5
D

e
v
ia

ti
o
n

Front Contract: Deviation Measure

Deviation
Deviation 21d MA

04 06 08 10 12 14 16 18

Date

 0

10

20

30

40

50

60

70

80

P
ri
c
e

Front Contract: VIX Futures and VS Forward Prices

VS Fwd Price (Upper Bound)
VIX Futures Price

The top figure plots the deviation measure for the front month VIX futures contract. The bottom
figure plots the VIX futures price and variance swap forward rate that are used to compute the
deviation measure. While the futures price and forward price tend to track each other closely in
the bottom plot, there are periods with prolonged and significant law of one price deviations as
evidenced by the top plot.
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Figure 5: Performance of Deviation-Based Trading Strategy
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This figure plots the performance of the relative value trading strategy in VIX futures and variance
swap forwards against stock market returns. The relative value strategy goes long (short) VIX
futures when the deviation measure exceeds a low (high) threshold of T = .50 z-scores for the front
six contracts and hedges with variance swap forwards. Each trade is held for a one-week horizon,
with the strategy forming an equally-weighted portfolio when multiple contracts are traded on the
same day. The plot reports the cumulative sum of weekly returns for the strategy and stock market
which are normalized to 10% annualized volatility for comparison. The relative value strategy earns
a large Sharpe ratio and exhibits low drawdowns compared to the stock market.
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Figure 6: Robustness of Deviation-Based Trading Strategy
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This figure illustrates the robustness of the relative value trading strategy to hedging with stock
market returns, including transaction costs, trading different numbers of contracts, and varying
the trading threshold. The top plot reports the time-series of cumulative returns for the different
strategies in comparison to the stock market. The plot normalizes the annualized volatility of each
series to 10% for comparison. The bottom plot reports the Sharpe ratios for the baseline strategies
varying the number of contracts traded and threshold for trading. Across specifications, the relative
value trading strategy earns a large Sharpe ratio and produces returns that are largely uncorrelated
with traditional risk factors.
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Figure 7: Time-Series of Deviation, VIX, and Dealer Net Position for VAR
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This figure plots the deviation measure averaged across the front six VIX futures contracts against
the VIX index and dealer net position at a weekly frequency from 2010 to 2018. The VAR is
estimated with these variables which are standardized for comparison. The deviation measure is
negatively correlated with the VIX index which serves as a proxy for risk (top plot). The deviation
measure is positively correlated with the dealer net position which serves as a proxy for demand to
buy VIX futures (bottom plot).
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Figure 8: Impulse Response Functions of the No-Arbitrage Deviation Measure and
Dealer Net Position to Shocks in the VIX index and Dealer Net Position
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This figure reports the impulse response functions (IRFs) from the VAR. The IRFs are identified from
a Cholesky decomposition with the ordering: VIX, DNP, DEV. The VAR is estimated using weekly
data from 2010 to 2018 (T = 469). The IRFs in the first row show that DEV is decreasing (increasing)
in VIX (DNP) shocks. The IRFs in the second row show that the DNP is decreasing (increasing) in
VIX (DEV) shocks. The IRFs in the third row show that the VIX exhibits little response to DEV
or DNP shocks, except for a short term-response to DEV shocks that becomes insignificant after a
few weeks. The 95% pointwise confidence intervals in gray are block bootstrapped.

43



Figure 9: Event Study of Deviation Measure Around VIX Futures Margin Changes,
FOMC days, Nonfarm Payrolls, Month-End, and Quarter-End Dates
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This figure plots the event time reaction of the deviation measure and VIX index to changes in the
initial margin for the front month VIX futures contract, FOMC announcements, non-farm payrolls
announcements, end-of-month dates, and end-of-quarter dates. The figure reports the change in the
VIX index in red and the change in the average deviation measure across the front six contracts in
blue with a 95% pointwise confidence interval in gray for the ten days before and after the event.
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Figure 10: Deviation Measure versus VIX premium
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This figure plots the VIX premium from Cheng (2018) against the weighted average of the deviation
measure across the front two contracts for a constant, one-month maturity. The measures exhibit
a positive and significant time-series correlation.
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A Appendix

A.1 Arbitrage Hedge Ratio and VIX Futures Lower Bound

Consider an arbitrage opportunity in which the price of a VIX futures contract exceeds
the corresponding variance swap forward rate Futt,T > Fwdt,T,T+1. The payoff function
ΠT (V IXT ) for the arbitrage trade can be decomposed as,

ΠT (V IXT ) = V IX2
T − Fwdt,T,T+1 − ω · (V IXT − Futt,T )

= V IX2
T − Fut2t,T + (Fut2t,T − Fwdt,T,T+1)− ω · (V IXT − Futt,T )

= (Fut2t,T − Fwdt,T,T+1)︸ ︷︷ ︸
Arbitrage Violation

+ g(V IXT )− g(Futt,T )− g′(Futt,T )(V IXT − Futt,T )︸ ︷︷ ︸
Taylor series approximation when hedge ratio ω=g′(Futt,T )

.

(12)
The first term reflects the arbitrage violation and is thus non-negative by assumption. Setting
the hedge ratio to ω = g′(Futt,T ) = 2·Futt,T , the second term is non-negative because it is the
residual from a first-order Taylor series approximation of a convex function g(x) = x2 around
the futures price. This shows that the hedge ratio ω = 2 · Futt,T ensures ΠT ≥ 0 ∀V IXT .

The lower bound for the price of a VIX futures contract is a volatility swap forward rate.
To see this, let variance swaps be modeled as the risk-neutral expected value of realized
variance,

V St,T = EQ
t [RVt,T ]. (13)

The VIX is defined to closely approximate the square-root of a one-month variance swap
V IXt ≡

√
V St,t+1. It follows by Jensen’s inequality that,

Futt,T = EQ
t [V IXT ]

= EQ
t

[√
V ST,T+1

]
= EQ

t

[√
EQ

T [RVT,T+1]

]
≥ EQ

t

[
EQ

T

[√
RVT,T+1

]]
= EQ

t

[√
RVT,T+1

]
≡ Fvolt,T ,

(14)

where the last line defines a volatility swap forward rate. Thus, VIX futures prices are
bounded above by variance swap forward rates and below by volatility swap forward rates.
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A.2 No-Arbitrage Deviation Measure Estimation

The deviation measure has two components: the VIX futures price and the variance swap
forward rate. The baseline measure in the paper takes the futures price to be the settlement
price until March 3, 2008 and then the mid-quote at 4pm ET from TRTH data to be
synchronous with the option quotes from OptionMetrics. The forward rate is computed from
synthetic variance swap rates by assuming flat forward rates between index option maturities.
The synthetic variance swap rates are estimated following the approach in Van Tassel (2020)
for traditional expirations on the third Friday of the calendar month with at least two weeks
to maturity.

Is the deviation measure robust to this specification? Table A.1 answers this question by
reporting the correlation of the baseline deviation measure with alternative measures in levels
and in monthly and weekly changes. The alternative measures vary the estimation method
and data sources for computing the deviation measure. Across specifications, the baseline
deviation measure from the paper is found to be highly correlated with the alternative
measures. The advantage of the baseline measure is its availability throughout the full
sample period.

The alternative measures in Panel A consider different ways of removing the bias from
the upper bound. Panel A.I uses the residual from a regression of the deviation measure onto
a constant and time-to-maturity. While the regression-adjusted measure has lower bias, it
is almost perfectly correlated with the baseline measure in the time-series dimension. Panel
A.II uses a term-structure model from Van Tassel (2020) to remove the bias. In this case
the deviation measure is defined as,

Devationts
t,n ≡ Deviationt,n + (UBmodel

t,n − Futmodel
t,n ), (15)

where UBmodel
t,n and Futmodel

t,n are the upper bound and futures price from the estimated
term-structure model. As with the regression-adjusted measure, the term-structure adjusted
measure has a correlation of 95% to 99% with the baseline measure in levels and changes.
These high correlations indicate that the time-series properties of the bias-adjusted measures
are similar to those of the baseline measure. The implication is that similar results hold when
using these measures for return predictability or for constructing trading strategies, as will
be shown shortly.

Panel B considers alternative estimation methods and data sources. Panel B.I linearly
interpolates synthetic variance swap rates at index option maturities onto a fixed monthly
grid of maturities. The interpolation is linear in total variance following Carr and Wu
(2009). The forward rate is then computed from the interpolated rates. Panel B.II uses VIX
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settlement prices for the futures price rather than using mid-quotes after March 3, 2008.
Panel B.III uses Bloomberg synthetic variance swap rates which are available on a fixed
monthly grid. Panel B.IV uses the CBOE 1, 3, and 6-month indices and Bloomberg data
for longer maturities. Panel B.V uses over-the-counter variance swap quotes from Markit
which are available at a monthly frequency. The table indicates the available sample period
for each data source.

Across the different measures, the correlation for the average deviation across contracts
is often 90% or greater. Figures A.1 and A.2 illustrate this result. In the top plot in Figure
A.1 from February 27, 2012, the futures price is above the forward rate for the fifth and
sixth contracts for all of the measures and for the front contract for all measures except the
CBOE VIX indices. Similarly, in the bottom plot from February 8, 2018, the futures prices
are below the forward rates and an estimate of the lower bound across specifications.

The top plot in Figure A.2 shows that the alternative specifications are more than 95%
correlated with the baseline measure as a five-day moving average. The bottom plot reports
three time-series that correspond to the baseline deviation measure (futures price minus
upper bound), the deviation measure that is bias-adjusted with the term-structure model,
and the futures price minus a lower bound. These measures are also highly correlated and
show that the variation in the deviation measure is not driven by changes in the size of the
no-arbitrage bounds.

A.3 VIX Futures Return Predictability Robustness

The next set of tables illustrates the robustness of the return predictability regressions to
the deviation measure specification, forecast horizon, and return definitions. Table A.2
repeats the return predictability regression from Panel A.II in Table 5 for different deviation
measures. Whether the deviation measure is lagged, computed as a five-day moving average,
bias-adjusted, computed from linearly interpolated variance swap rates, or estimated from
different datasets over different sample periods, the no-arbitrage deviation remains significant
at predicting VIX futures returns hedged with variance swap forward rates. Throughout
these regressions, only the predictor variable on the right-hand side changes. The hedged
return on the left-hand side remains the same.

Table A.3 shows that the predictability holds over daily, weekly, and monthly horizons
for the full sample period and for a post-crisis sample from 2010 to 2018. The explanatory
power increases with the forecast horizon for the longer-dated contracts as measured by the
R2. These regressions require at least two days to maturity and use the hold-to-maturity
return if the contract expires before the forecast horizon for the first and second contract.
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Tables A.4 and A.5 are analogous to Table 5 in the paper. They show that the return
predictability results continue to hold when using percentage and logarithmic returns. In the
paper, the motivation for defining returns as the change in prices is that this more closely
corresponds to the payoff of a futures contract or a forward swap on a fixed notional, and
thus is more directly comparable to the relative value trading strategy. Obtaining percentage
or logarithmic returns would require a trading strategy that dynamically adjusts the position
size to account for the level of the futures and forward prices. For the sake of simplicity, the
return predictability regressions and trading strategy avoid this complication in the paper.

A.4 VIX Futures vs. Variance Swap Forward Return Predictability

Tables A.6 and A.7 report return predictability regressions for VIX futures and variance
swap forwards in excess of CRSP value-weighted stock market returns. The approach is
analogous to Table 5 in the paper and speaks to the question raised in the paper: which
market drives the return predictability of the deviation measure, the VIX futures market
or the index options market? The results indicate that the deviation measure is significant
at forecasting VIX futures and variance swap forward excess returns relative to the stock
market, particularly in the post-crisis sample period. The sign on the deviation measure is
positive for VIX futures and negative for variance swap forwards as expected. For example,
a high deviation measure indicates that variance swap forwards are cheap relative to VIX
futures, predicting low returns from receiving fixed in variance swap forwards, hence the
negative sign in Table A.7. The results provide evidence that both VIX futures and syn-
thetic variance swap forwards implied by the index options market are contributing to the
predictability of the deviation measure.

A.5 Alpha-to-Margin Loadings and Trading Strategy Position

Table A.8 reports the factor loadings from the alpha-to-margin regressions in Table 8. While
there are some significant factors, the CAPM and FFC4 models only explain the trading
strategy returns with an R2 of 1%-3%. The realized and implied volatility factors increase
the explanatory power somewhat in Panels B and C to 10%-11% with the negative loadings
on the volatility factors increasing the alpha-to-margin by around 50 basis points. Except for
this change, the primarily insignificant factor loadings and low R2 highlight how the hedge
in the trading strategy removes most of the systematic risk stemming from traditional risk
factors.

Figure A.3 presents additional results for the deviation-based trading strategy. The top
plot shows the net position in VIX futures as a five-day moving average. A long position
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corresponds to buying VIX futures that are hedged with variance swap forwards. The net
position is the number of long contracts minus the number of short contracts. The results
are presented for the strategy that hedges with variance swap forwards, uses a threshold of
T = .50 z-scores, and trades the front six contracts. The strategy goes long (short) hedged
VIX futures when VIX futures look cheap (expensive) relative to variance swap forwards.
This generates a negative correlation with the deviation measure as reported in the plot.
The bottom plot repeats the analysis from Figure 6 for a 2010 to 2018 sample. As before,
the strategy obtains a high Sharpe Ratio for thresholds around .5 z-scores and when trading
fewer than six contracts, showing that the results continue to hold post-crisis.

A.6 Deviation Measure by Contract

Figure A.4 reports the time-series of the deviation measure alongside the futures price and
forward rate by contract. This plot breaks out the average deviation from Figure 1 into
the contributions from each contract and shows when the fifth and sixth contracts enter the
sample. As the plot makes clear, violations of the upper bound occur for all contracts but
are most pervasive for the front contract, consistent with the summary statistics in Table
3. The plot also highlights how the futures price and forward rate seem to track each other
well in the left plot before computing the deviation measures in the right plot. The lower
average deviation for the longer-dated contracts is consistent with Table 2.

Figures A.5 and A.6 build on Table 2 by reporting histograms of the futures price minus
the no-arbitrage upper and lower bounds. Figure A.5 reports histograms of the deviation
measure, or the futures price minus the upper bound. While the distributions are negatively
skewed, the positive mass for each contract indicates the presence of arbitrage opportunities
that match the frequency estimates in Panel A.I from Table 2 for a threshold of zero. Simi-
larly, Figure A.6 reports histograms of the futures price minus the lower bound in which the
negative mass indicates the presence of arbitrage opportunities, matching Panel B.I from
Table 2 for a threshold of zero.

A.7 Risk and Demand Factors and VAR Robustness

Figure A.7 plots the average deviation measure against the risk and demand factors. The
data is weekly from 2010 to 2018 to match the release of the CoT report (T = 469). The
risk factors include stock market returns, realized variance, and the VIX index. The stock
market return is the CRSP value-weighted return over the past month. The realized variance
estimate is the realized variance of the S&P 500 Index over the past twenty-one trading days
using one-minute TRTH high frequency data and a two-scale approach as in Van Tassel

5



(2020). The demand factors include the dealer net position in VIX futures from the CoT
report, VIX futures ETP demand from Dong (2016) as a proxy for retail demand, and the
net delta from customer VIX options trades over the past month.16 The demand variables
are normalized by VIX futures open interest to account for the growth in the VIX futures
market over the sample period. The variables in the plot are standardized for comparison
and the time-series correlation with the deviation measure is included in the subplot titles.

The plots in Figure A.7 reveal a similar pattern to Figure 7 in the paper. An increase in
risk as measured by negative stock market returns or higher volatility is associated with a
decline in the deviation measure. An increase in demand for VIX futures is associated with
an increase in the deviation measure.

Figure A.8 expands on these results by reporting IRFs from bivariate VARs that are
estimated with the deviation measure and each of the different risk and demand variables.
Similar to the time-series pots, the IRFs show that an increase in risk is associated with a
decline in the deviation measure that reverts after a few weeks. An increase in demand is
associated with a more persistent increase in the deviation measure for shocks to the dealer
net position and VIX ETP demand variables. The impact of a shock to the VIX options
customer delta variable is positive and reverts more quickly.

Figure A.9 illustrates the robustness of the IRFs from the paper that describe how the
deviation measure responds to VIX and dealer net position shocks. The top row repeats
the ordering from the paper. The second and third row vary the ordering and the final row
uses a spectral decomposition. The qualitative results are similar across the specifications.
Overall, these results show that the findings in the paper are robust to using different risk
and demand variables and various VAR specifications.

16The VIX ETP demand variable is computed from Bloomberg data following Dong (2016). It equals the
leverage-weighted market capitalization of short-term ETPs net of short interest, DETP =

∑
i∈ST (Shrouti−

ShortInti) · Pi ·Mi, where Shrouti is shares outstanding, ShortInti is short interest, Pi is price, and Mi is
the direction and leverage multiplier. The variable DETP includes data for the VXX, VIIX, VIXY, UVXY,
TVIX, XIV, SVXY, IVOP, XXV, and VXXB ETPs. The multipliers are equal to M = [1 1 1 2 2 -1 -1 -1 -1
1]. The multipliers for UVXY and SVXY change to 1.5 and -.5 after February 28, 2018. The paper divides
DETP by the VIX index to express the variable in $ million of vega. Similarly, the total vega in Figure 2
is
∑

i∈ST Shrouti · Pi · |Mi|/V IX. The data for constructing the VIX options customer demand variable is
from the CBOE open-close data merged with Black-Scholes-Merton Greeks from OptionMetrics. This data
is used in Cheng (2018) as a demand variable for VIX futures contracts and is described in Garleanu et al.
(2009).
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Table A.1: Correlation of Deviation Measure with Alternative Specifications

This table presents the correlation of the baseline deviation measure with alternative specifications.
Panel A considers different ways of removing the bias from the upper bound, using a regression-
based model (A.I) or term-structure model (A.II). Panel B considers alternative data sources. B.I
uses VIX settlement prices that are not synchronized with SPX option quotes during the later years
in the sample. B.II through B.V use alternative data sources for computing variance swap forward
rates. The columns report the correlation for different contracts and for the average deviation across
contracts. Overall, the alternative measures are highly correlated with the baseline measure.

Correlation of Baseline Deviation Measure with Alternative Estimates
Contract (n) (1) (2) (3) (4) (5) (6) Avg.

Panel A: Convexity Adjustments

Panel A.I: Regression-based convexity adjustment (Mar04-Dec18)
Correlation in levels 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation in monthly changes 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation in weekly changes 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel A.II: Term-structure model convexity adjustment (Mar04-Dec18)
Correlation in levels 0.99 0.97 0.98 0.97 0.96 0.96 0.95
Correlation in monthly changes 0.99 0.99 0.99 0.99 0.99 0.99 0.98
Correlation in weekly changes 0.99 0.99 0.99 0.99 0.99 0.99 0.97

Panel B: Alternative Estimation Methods and Data Sources

Panel B.I: Linear VS Interpolation (Mar04-Dec18)
Correlation in levels 0.90 0.89 0.76 0.82 0.85 0.83 0.99
Correlation in monthly changes 0.89 0.85 0.66 0.64 0.65 0.62 0.97
Correlation in weekly changes 0.88 0.86 0.61 0.59 0.68 0.62 0.97

Panel B.II: VIX settlement prices, not synchronized (Mar04-Dec18)
Correlation in levels 0.97 0.97 0.99 0.99 0.99 0.99 0.98
Correlation in monthly changes 0.96 0.96 0.98 0.99 0.98 0.99 0.95
Correlation in weekly changes 0.95 0.94 0.97 0.98 0.97 0.98 0.90

Panel B.III: Bloomberg data for VS forward (Nov08-Dec18)
Correlation in levels 0.55 0.72 0.54 0.58 0.69 0.68 0.91
Correlation in monthly changes 0.59 0.58 0.37 0.40 0.49 0.43 0.81
Correlation in weekly changes 0.62 0.49 0.31 0.34 0.40 0.41 0.73

Panel B.IV: CBOE VIX, VIX3M, VIX6M for VS forward (Nov08-Dec18)
Correlation in levels 0.58 0.52 0.56 0.58 0.74 0.69 0.94
Correlation in monthly changes 0.65 0.33 0.39 0.51 0.54 0.46 0.87
Correlation in weekly changes 0.66 0.08 0.31 0.39 0.46 0.42 0.79

Panel B.V: Markit OTC quotes for VS forward (Monthly Sep06-Dec15)
Correlation in Levels 0.53 0.60 0.57 0.71 0.80 0.77 0.87
Correlation in monthly changes 0.41 0.52 0.26 0.62 0.66 0.64 0.81
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Table A.2: Deviation Measure Return Predictability Across Specifications

This table reports return predictability regressions for VIX futures hedged with variance swap
forwards over a weekly horizon using different specifications of the deviation measure. Panel A
repeats Panel A.II from Table 5 in the paper. The other panels follow the same approach. Across
specifications, the deviation measure significantly predicts VIX futures hedged returns.

Return Predictability Regressions: RFut
t+h,n − β̂nRFwd

t+h,n = γ′nxt,n + εt+h,n

Contract (n) (1) (2) (3) (4) (5) (6)
Panel A: Deviation from paper (h = 5, Mar04-Dec18, daily overlapping)
Deviation 0.23∗∗∗ 0.25∗∗∗ 0.30∗∗∗ 0.28∗∗∗ 0.25∗∗∗ 0.25∗∗∗

(0.05) (0.04) (0.05) (0.04) (0.04) (0.04)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.052 0.063 0.092 0.076 0.061 0.060
Panel B: Deviation 1-day lag (h = 5, Mar04-Dec18, daily overlapping)
Deviation - 1d Lag 0.18∗∗ 0.14∗∗∗ 0.15∗∗∗ 0.14∗∗∗ 0.10∗∗∗ 0.08∗∗∗

(0.08) (0.04) (0.03) (0.03) (0.03) (0.02)
Observations 3354 3681 3694 3647 3205 3037
Adjusted R2 0.018 0.023 0.028 0.036 0.024 0.018
Panel C: Deviation 5-day moving average (h = 5, Mar04-Dec18, daily overlapping)
Deviation - 5d MA 0.21∗∗ 0.15∗∗∗ 0.17∗∗∗ 0.14∗∗∗ 0.10∗∗∗ 0.09∗∗∗

(0.09) (0.04) (0.03) (0.03) (0.02) (0.02)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.023 0.025 0.036 0.038 0.022 0.020
Panel D: Regression convexity adjustment (h = 5, Mar04-Dec18, daily overlapping)
Deviation - Regression Adj. 0.30∗∗∗ 0.24∗∗∗ 0.27∗∗∗ 0.20∗∗∗ 0.16∗∗∗ 0.15∗∗∗

(0.07) (0.04) (0.05) (0.03) (0.03) (0.03)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.049 0.063 0.090 0.073 0.058 0.056
Panel E: Term-structure model convexity adjustment (h = 5, Mar04-Dec18, daily overlapping)
Deviation - Term-Structure Adj. 0.29∗∗∗ 0.26∗∗∗ 0.26∗∗∗ 0.20∗∗∗ 0.17∗∗∗ 0.15∗∗∗

(0.07) (0.04) (0.04) (0.03) (0.03) (0.03)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.046 0.076 0.083 0.073 0.065 0.062
Panel F: Linear VS Interpolation (h = 5, Mar04-Dec18, daily overlapping)
Deviation - Linear VS Interp. 0.24∗∗∗ 0.19∗∗∗ 0.15∗∗∗ 0.11∗∗∗ 0.12∗∗∗ 0.12∗∗∗

(0.06) (0.06) (0.03) (0.02) (0.03) (0.02)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.035 0.039 0.027 0.023 0.036 0.039
Panel G: Bloomberg data (h = 5, Nov08-Dec18, daily overlapping)
Deviation - Bloomberg Data 0.43∗∗∗ 0.17∗∗ 0.21∗∗∗ 0.15∗∗∗ 0.11∗∗∗ 0.11∗∗∗

(0.11) (0.07) (0.05) (0.03) (0.04) (0.03)
Observations 2266 2510 2510 2510 2510 2510
Adjusted R2 0.096 0.027 0.045 0.036 0.027 0.035
Panel H: VIX, VIX3M, VIX6M Indices (h = 5, Nov08-Dec18, daily overlapping)
Deviation - VIX Indices Data 0.18∗∗ 0.08 0.15∗∗∗ 0.12∗∗∗ 0.13∗∗∗ 0.11∗∗∗

(0.08) (0.05) (0.04) (0.04) (0.03) (0.02)
Observations 2266 2510 2510 2510 2510 2509
Adjusted R2 0.016 0.005 0.024 0.024 0.037 0.032
Newey-West SEs with 3 · h lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table A.3: Deviation Measure Return Predictability Across Horizons

This table reports return predictability regressions for VIX futures hedged with variance swap
forwards over one-day, one-week, and one-month horizons. Panel A (B) reports results for the full
(post-crisis) sample period. The deviation measure continues to significantly forecast returns across
horizons. The explanatory power increases with the forecast horizon for the longer-dated contracts.

Return Predictability Regression: RFut
t+h,n − β̂nRFwd

t+h,n = γ′nxt,n + εt+h,n

Contract (n) (1) (2) (3) (4) (5) (6)

Panel A.I: Sample period 2004-2018, daily returns h = 1
Deviation 0.32∗∗∗ 0.19∗∗∗ 0.17∗∗∗ 0.18∗∗∗ 0.17∗∗∗ 0.15∗∗∗

(0.05) (0.03) (0.03) (0.02) (0.03) (0.03)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.100 0.036 0.027 0.033 0.030 0.023

Panel A.II: Sample period 2004-2018, weekly returns h = 5
Deviation 0.23∗∗∗ 0.25∗∗∗ 0.30∗∗∗ 0.28∗∗∗ 0.25∗∗∗ 0.25∗∗∗

(0.05) (0.04) (0.05) (0.04) (0.04) (0.04)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.052 0.063 0.092 0.076 0.061 0.060

Panel A.III: Sample period 2004-2018, monthly returns h = 21
Deviation 0.12 0.32∗∗∗ 0.38∗∗∗ 0.38∗∗∗ 0.26∗∗∗ 0.38∗∗∗

(0.08) (0.06) (0.07) (0.07) (0.07) (0.06)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.013 0.105 0.147 0.140 0.070 0.144

Panel B.I: Sample period 2010-2018, daily returns h = 1
Deviation 0.37∗∗∗ 0.23∗∗∗ 0.21∗∗∗ 0.21∗∗∗ 0.20∗∗∗ 0.15∗∗∗

(0.08) (0.04) (0.03) (0.03) (0.03) (0.03)
Observations 2029 2245 2245 2245 2245 2245
Adjusted R2 0.135 0.051 0.045 0.042 0.038 0.023

Panel B.II: Sample period 2010-2018, weekly returns h = 5
Deviation 0.47∗∗∗ 0.35∗∗∗ 0.38∗∗∗ 0.32∗∗∗ 0.35∗∗∗ 0.30∗∗∗

(0.08) (0.04) (0.04) (0.05) (0.04) (0.05)
Observations 2029 2245 2245 2245 2245 2245
Adjusted R2 0.225 0.123 0.143 0.101 0.119 0.087

Panel B.III: Sample period 2010-2018, monthly returns h = 21
Deviation 0.47∗∗∗ 0.53∗∗∗ 0.54∗∗∗ 0.43∗∗∗ 0.48∗∗∗ 0.51∗∗∗

(0.05) (0.06) (0.06) (0.06) (0.05) (0.06)
Observations 2029 2245 2245 2245 2245 2245
Adjusted R2 0.220 0.277 0.292 0.187 0.230 0.265
Newey-West SEs with 3 · h lags, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table A.4: Deviation Measure Return Predictability – Percentage Returns

This table reports return predictability regressions for VIX futures hedged with variance swap
forwards for percentage returns. It is analogous to Table 5 in the paper. As before, the deviation
measure significantly predicts returns across contracts and sample periods.

Predictability Regression: RFut
t+h,n − β̂nRFwd

t+h,n = γ′nxt,n + εt+h,n

Return Definitions: RFut
t+h,n ≡

Futt,n−Futt+h,n

Futt,n
, RFwd

t+h,n ≡
Fwdt,n−Fwdt+h,n

Fwdt,n

Contract (n) (1) (2) (3) (4) (5) (6)

Panel A: Full Sample Period from 2004 to 2018

Panel A.I: First Stage - Hedge Ratio
βn 0.38∗∗∗ 0.38∗∗∗ 0.36∗∗∗ 0.36∗∗∗ 0.38∗∗∗ 0.36∗∗∗

(0.01) (0.02) (0.01) (0.01) (0.01) (0.01)
Observations 2837 3697 3697 3655 3207 3197
Adjusted R2 0.853 0.782 0.704 0.697 0.708 0.689

Panel A.II: Second Stage - Predicting Returns with Deviation
Deviation 0.37∗∗∗ 0.35∗∗∗ 0.34∗∗∗ 0.30∗∗∗ 0.27∗∗∗ 0.25∗∗∗

(0.04) (0.04) (0.03) (0.03) (0.04) (0.04)
Observations 2837 3697 3697 3655 3207 3197
Adjusted R2 0.133 0.122 0.115 0.090 0.072 0.061

Panel A.III: Second Stage - Predicting Returns with Deviation and Controls
Deviation 0.46∗∗∗ 0.44∗∗∗ 0.38∗∗∗ 0.34∗∗∗ 0.32∗∗∗ 0.28∗∗∗

(0.04) (0.05) (0.03) (0.03) (0.04) (0.04)
Observations 2837 3697 3697 3655 3207 3197
Adjusted R2 0.157 0.173 0.134 0.104 0.095 0.076

Panel B: Post-Crisis Sample from 2010 to 2018

Panel B.I: First Stage - Hedge Ratio
βn 0.38∗∗∗ 0.40∗∗∗ 0.41∗∗∗ 0.37∗∗∗ 0.40∗∗∗ 0.37∗∗∗

(0.02) (0.03) (0.01) (0.01) (0.01) (0.01)
Observations 1705 2245 2245 2245 2245 2245
Adjusted R2 0.869 0.817 0.773 0.732 0.736 0.735

Panel B.II: Second Stage - Predicting Returns with Deviation
Deviation 0.33∗∗∗ 0.29∗∗∗ 0.31∗∗∗ 0.32∗∗∗ 0.33∗∗∗ 0.27∗∗∗

(0.05) (0.04) (0.03) (0.04) (0.04) (0.05)
Observations 1705 2245 2245 2245 2245 2245
Adjusted R2 0.106 0.084 0.097 0.104 0.110 0.071

Panel B.III: Second Stage - Predicting Returns with Deviation and Controls
Deviation 0.44∗∗∗ 0.38∗∗∗ 0.37∗∗∗ 0.34∗∗∗ 0.34∗∗∗ 0.27∗∗∗

(0.05) (0.05) (0.04) (0.04) (0.04) (0.05)
Observations 1705 2245 2245 2245 2245 2245
Adjusted R2 0.140 0.150 0.118 0.112 0.117 0.074

Newey-West SEs with 15 lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table A.5: Deviation Measure Return Predictability – Log Returns

This table reports return predictability regressions for VIX futures hedged with variance swap
forwards for log-returns. It is analogous to Table 5 in the paper. As before, the deviation measure
significantly predicts returns across contracts and sample periods.

Predictability Regression: RFut
t+h,n − β̂nRFwd

t+h,n = γ′nxt,n + εt+h,n

Return Definition: RFut
t+h,n = ln(Futt,n/Futt+h,n), RFwd

t+h,n ≡ ln(Fwdt,n/Fwdt+h,n)

Contract (n) (1) (2) (3) (4) (5) (6)

Panel A: Full Sample Period from 2004 to 2018

Panel A.I: First Stage - Hedge Ratio
βn 0.43∗∗∗ 0.41∗∗∗ 0.38∗∗∗ 0.36∗∗∗ 0.39∗∗∗ 0.37∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Observations 2837 3697 3697 3655 3207 3197
Adjusted R2 0.875 0.811 0.716 0.692 0.709 0.692

Panel A.II: Second Stage - Predicting Returns with Deviation
Deviation 0.48∗∗∗ 0.40∗∗∗ 0.35∗∗∗ 0.32∗∗∗ 0.28∗∗∗ 0.26∗∗∗

(0.07) (0.04) (0.03) (0.03) (0.04) (0.04)
Observations 2837 3697 3697 3655 3207 3197
Adjusted R2 0.229 0.157 0.125 0.101 0.076 0.065

Panel A.III: Second Stage - Predicting Returns with Deviation and Controls
Deviation 0.55∗∗∗ 0.48∗∗∗ 0.39∗∗∗ 0.35∗∗∗ 0.33∗∗∗ 0.28∗∗∗

(0.06) (0.05) (0.03) (0.03) (0.04) (0.04)
Observations 2837 3697 3697 3655 3207 3197
Adjusted R2 0.253 0.206 0.146 0.111 0.101 0.079

Panel B: Post-Crisis Sample from 2010 to 2018

Panel B.I: First Stage - Hedge Ratio
βn 0.45∗∗∗ 0.45∗∗∗ 0.43∗∗∗ 0.38∗∗∗ 0.40∗∗∗ 0.38∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Observations 1705 2245 2245 2245 2245 2245
Adjusted R2 0.904 0.868 0.781 0.731 0.735 0.737

Panel B.II: Second Stage - Predicting Returns with Deviation
Deviation 0.52∗∗∗ 0.38∗∗∗ 0.36∗∗∗ 0.35∗∗∗ 0.34∗∗∗ 0.28∗∗∗

(0.05) (0.04) (0.03) (0.04) (0.04) (0.04)
Observations 1705 2245 2245 2245 2245 2245
Adjusted R2 0.268 0.144 0.127 0.122 0.117 0.078

Panel B.III: Second Stage - Predicting Returns with Deviation and Controls
Deviation 0.60∗∗∗ 0.47∗∗∗ 0.41∗∗∗ 0.36∗∗∗ 0.35∗∗∗ 0.28∗∗∗

(0.06) (0.06) (0.04) (0.05) (0.04) (0.05)
Observations 1705 2245 2245 2245 2245 2245
Adjusted R2 0.287 0.206 0.146 0.126 0.124 0.079

Newey-West SEs with 15 lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table A.6: Deviation Measure Predictability for VIX Futures Returns
Hedged with the Stock Market

This table reports return predictability regressions for VIX futures hedged with the stock market
returns over a weekly horizon, h = 5. The regressions are analogous to Table 5 except for hedging
with CRSP value-weighted returns instead of variance swap forward returns in the first step. Even
with this less precise hedge, as evidenced by the slightly lower explanatory power in the first step
regressions, the deviation measure remains significant at predicting VIX futures hedged returns for
almost all of the contracts in the full sample and post-crisis periods.

Return Predictability Regression: RFut
t+h,n − β̂nRMRFt+h = γ′nxt,n + εt+h,n

Contract (n) (1) (2) (3) (4) (5) (6)

Panel A: Full Sample Period from 2004 to 2018

Panel A.I: First Stage - Hedge Ratios
βn 0.73∗∗∗ 0.58∗∗∗ 0.45∗∗∗ 0.38∗∗∗ 0.34∗∗∗ 0.30∗∗∗

(0.04) (0.03) (0.03) (0.02) (0.02) (0.02)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.574 0.566 0.551 0.534 0.519 0.496

Panel A.II: Second Stage - Predicting Returns with Deviation
Deviation 0.22∗∗∗ 0.11∗∗ 0.05 0.13∗∗ 0.08∗ 0.04

(0.08) (0.06) (0.05) (0.05) (0.05) (0.05)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.046 0.012 0.002 0.016 0.007 0.002

Panel A.III: Second Stage - Predicting Returns with Deviation and Controls
Deviation 0.26∗∗∗ 0.08∗ 0.05 0.09∗∗ 0.05 0.00

(0.08) (0.05) (0.05) (0.04) (0.04) (0.04)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.063 0.048 0.040 0.040 0.033 0.032

Panel B: Post-Crisis Sample from 2010 to 2018

Panel B.I: First Stage - Hedge Ratios
βn 0.84∗∗∗ 0.70∗∗∗ 0.56∗∗∗ 0.47∗∗∗ 0.41∗∗∗ 0.37∗∗∗

(0.05) (0.03) (0.02) (0.02) (0.02) (0.02)
Observations 2029 2245 2245 2245 2245 2245
Adjusted R2 0.592 0.676 0.669 0.651 0.620 0.606

Panel B.II: Second Stage - Predicting Returns with Deviation
Deviation 0.09 0.13∗∗ 0.15∗∗∗ 0.14∗∗∗ 0.15∗∗∗ 0.05

(0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
Observations 2029 2245 2245 2245 2245 2245
Adjusted R2 0.008 0.018 0.023 0.019 0.022 0.002

Panel B.III: Second Stage - Predicting Returns with Deviation and Controls
Deviation 0.14∗∗ 0.14∗∗ 0.13∗∗∗ 0.11∗∗ 0.13∗∗∗ 0.01

(0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
Observations 2029 2245 2245 2245 2245 2245
Adjusted R2 0.033 0.023 0.024 0.029 0.030 0.013

Newey-West SEs with 15 lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table A.7: Deviation Measure Predictability for VS Forward Returns
Hedged with the Stock Market

This table reports return predictability regressions for variance swap forwards hedged with the
stock market returns over a weekly horizon, h = 5. The regressions are analogous to Table A.6.
In comparison to VIX futures, the deviation measure exhibits less predictability for variance swap
forwards for most maturities, particularly in the post-crisis period. At the same time, the deviation
measure is significant for some contracts with the expected, negative, sign.

Return Predictability Regression: RFwd
t+h,n − β̂nRMRFt+h = γ′nxt,n + εt+h,n

Contract (n) (1) (2) (3) (4) (5) (6)

Panel A: Full Sample Period from 2004 to 2018

Panel A.I: First Stage - Hedge Ratios
βn 0.04∗∗∗ 0.03∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.509 0.383 0.321 0.379 0.409 0.389

Panel A.II: Second Stage - Predicting Returns with Deviation
Deviation 0.02 -0.07 -0.26∗∗∗ -0.10 -0.13∗∗ -0.18∗∗∗

(0.12) (0.07) (0.06) (0.07) (0.05) (0.04)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.000 0.004 0.065 0.011 0.017 0.034

Panel A.III: Second Stage - Predicting Returns with Deviation and Controls
Deviation -0.00 -0.16∗∗∗ -0.29∗∗∗ -0.18∗∗∗ -0.21∗∗∗ -0.25∗∗∗

(0.09) (0.05) (0.07) (0.05) (0.05) (0.05)
Observations 3355 3697 3697 3655 3207 3197
Adjusted R2 0.024 0.089 0.100 0.045 0.060 0.073

Panel B: Post-Crisis Sample from 2010 to 2018

Panel B.I: First Stage - Hedge Ratios
βn 0.04∗∗∗ 0.03∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Observations 2029 2245 2245 2245 2245 2245
Adjusted R2 0.550 0.613 0.572 0.530 0.537 0.524

Panel B.II: Second Stage - Predicting Returns with Deviation
Deviation -0.29∗∗∗ -0.12∗∗ -0.18∗∗∗ -0.14∗∗∗ -0.16∗∗∗ -0.23∗∗∗

(0.07) (0.06) (0.06) (0.05) (0.06) (0.06)
Observations 2029 2245 2245 2245 2245 2245
Adjusted R2 0.083 0.014 0.031 0.020 0.024 0.050

Panel B.III: Second Stage - Predicting Returns with Deviation and Controls
Deviation -0.28∗∗∗ -0.16∗∗∗ -0.22∗∗∗ -0.17∗∗∗ -0.18∗∗∗ -0.26∗∗∗

(0.10) (0.05) (0.06) (0.05) (0.05) (0.06)
Observations 2029 2245 2245 2245 2245 2245
Adjusted R2 0.109 0.025 0.046 0.033 0.042 0.062

Newey-West SEs with 15 lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table A.8: Factor Loadings for Alpha-to-Margin Estimates

This table reports the factor loadings for the alpha-to-margin estimates in Table 8. The loadings for
Panel D in Table 8 are omitted to save space but are qualitatively similar to the Panel C loadings.

Weekly Alpha-to-Margin Estimates
Specification (1) (2) (3) (4) (5) (6)
Panel A: Variance swap forward hedge
Alpha 5.23∗∗∗ 5.23∗∗∗ 5.00∗∗∗ 4.68∗∗∗ 4.72∗∗∗ 4.55∗∗∗

(0.37) (0.37) (0.42) (0.39) (0.39) (0.43)
RMRF 0.51 0.53 -0.01 0.40 0.37 0.15

(0.39) (0.45) (0.29) (0.27) (0.28) (0.40)
HML 0.14 0.21 0.06 0.02

(0.29) (0.29) (0.37) (0.36)
SMB -0.32 -0.25 0.10 0.13

(0.52) (0.48) (0.32) (0.33)
MOM -0.01 0.06 -0.39 -0.45∗

(0.17) (0.17) (0.25) (0.25)
VS1 10.41 11.34

(6.50) (8.55)
VX1 -0.00 -0.00

(0.00) (0.00)
Adjusted R2 0.009 0.009 0.022 0.005 0.007 0.014
Panel B: E-mini hedge
Alpha 3.32∗∗∗ 3.35∗∗∗ 3.89∗∗∗ 2.68∗∗∗ 2.76∗∗∗ 3.19∗∗∗

(0.52) (0.52) (0.49) (0.60) (0.61) (0.61)
RMRF -1.13∗∗∗ -1.27∗∗∗ 1.13∗∗∗ -0.75∗ -0.78 1.82∗∗∗

(0.35) (0.40) (0.42) (0.44) (0.50) (0.58)
HML -0.32 -0.43 -1.06∗∗ -0.77∗∗

(0.41) (0.34) (0.48) (0.39)
SMB 0.68 0.36 0.39 0.15

(0.49) (0.40) (0.62) (0.52)
MOM -0.32 -0.38 -1.21∗∗∗ -1.02∗∗∗

(0.27) (0.24) (0.42) (0.36)
VS1 -17.13∗∗∗ -18.11∗∗

(5.42) (8.09)
VX1 -0.00∗∗∗ -0.00∗∗

(0.00) (0.00)
Adjusted R2 0.027 0.029 0.110 0.010 0.026 0.102
Panel C: E-mini hedge and t-costs
Alpha 1.59∗∗∗ 1.62∗∗∗ 2.15∗∗∗ 1.11∗ 1.19∗∗ 1.60∗∗∗

(0.51) (0.51) (0.49) (0.60) (0.60) (0.61)
RMRF -1.12∗∗∗ -1.27∗∗∗ 1.09∗∗∗ -0.74∗ -0.77 1.76∗∗∗

(0.35) (0.39) (0.42) (0.44) (0.50) (0.58)
HML -0.34 -0.45 -1.05∗∗ -0.76∗∗

(0.41) (0.34) (0.48) (0.39)
SMB 0.70 0.39 0.41 0.18

(0.48) (0.40) (0.61) (0.52)
MOM -0.35 -0.40∗ -1.22∗∗∗ -1.03∗∗∗

(0.27) (0.24) (0.41) (0.36)
VS1 -16.59∗∗∗ -17.47∗∗

(5.47) (8.15)
VX1 -0.00∗∗∗ -0.00∗∗

(0.00) (0.00)
Adjusted R2 0.026 0.029 0.106 0.010 0.026 0.098
Factor Model CAPM FFC4 FFCV6 CAPM FFC4 FFCV6
Post-Crisis No No No Yes Yes Yes
Observations 3697 3697 3697 2245 2245 2245
Newey-West SEs with 15 lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Figure A.1: Estimating the Law of One Price Deviation Measure –
Robustness to Estimation Method and Data
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This figure compares VIX futures prices at 4pm and at 4:15pm (settlement) to variance swap forward
rates estimated from a variety of alternative data sources on two different days. The results illustrate
the robustness of Figure 3. Regardless of which of the four data sources are used to compute variance
swap forward rates or which of the two VIX futures prices are used, the top plot features examples
of static arbitrage opportunities in which the prices of VIX futures are above their non-parametric,
no-arbitrage upper bounds. The bottom plot illustrates the opposite case where the prices of VIX
futures are below estimates of the upper and lower bounds.
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Figure A.2: Deviation Measure Robustness Across Estimation Methods and Datasets
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As in Figure 1, this figure reports the average deviation across the front six futures contracts as a
five-day moving average. The top plot reports the baseline deviation measure from the paper against
alternative measures from different estimation approaches and data sources. The baseline measure
is highly correlated with the alternative measures as in Table A.1. The bottom plot reports the
baseline deviation measure plus convexity adjustments from a term-structure model. As in the top
plot, the measures remain highly correlated after the convexity adjustments. Adding the difference
between the model upper bound and model futures price reduces the bias in the deviation measure
(green line). Positive values relative to the upper bound (blue line) and negative values relative to
the lower bound (red line) are law of one price violations.
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Figure A.3: VIX Futures Trading Strategy: Position and Post-Crisis Sharpe Ratios
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The top figure plots the net position in the relative value trading strategy against the deviation
measure over time. A long position corresponds to buying VIX futures that are hedged with variance
swap forwards. Since the strategy trades the front six contracts, the number of net positions is
bounded between -6 and 6. The plot illustrates the negative correlation between the deviation
measure and the number of net positions. When the deviation measure is low (high), the strategy
tends to buy (sell) VIX futures that are hedged with variance swap forwards. The bottom plot
reports the SRs for the different strategies varying the number of contracts traded and threshold.
This is analogous to Figure 6 but for the 2010 to 2018 post-crisis period.
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Figure A.4: Law of One Price Deviations for the Front Six VIX Futures Contracts
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This figure plots the VIX futures price and variance swap forward rate against the deviation measure
on the right for each of the front six futures contracts. The prices and deviation measure for the
longer-dated contracts become available later in the sample, motivating the 2007-2018 and 2010-
2018 sample periods that are used in some of the regression and summary statistics analysis to
provide a balanced panel across contracts.
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Figure A.5: Distribution of VIX Futures Prices Relative to
the No-Arbitrage Upper Bound from January 3, 2007 to December 31, 2018

This figure plots histograms and kernel density estimates of the law of one price deviation measure
by VIX futures contract from January 3, 2007 to December 31, 2018. The distribution is negatively
skewed for the front contract and second contract. The histograms indicate the presence of law of
one price violations from the probability mass for the deviation measure being greater than zero
which corresponds to VIX futures prices being greater than the upper bound. The histograms also
reveal how the deviation measures exhibit large negative values that may also represent law of one
price violations to the extent that VIX futures prices go below volatility swap forward rates. The
lower bound violations cannot be measured directly from these histograms, but are reported in the
next figure.
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Figure A.6: Distribution of VIX Futures Prices Relative to
the No-Arbitrage Lower Bound from January 3, 2007 to December 31, 2018

This figure plots histograms and kernel density estimates of VIX futures prices relative to their
law of one price lower bound from January 3, 2007 to December 31, 2018. The lower bound is
computed as Fwdt,n − (UBt,n − LBt,n) where UBt,n is the variance swap forward rate and LBt,n

is the volatility swap forward rate estimated from a no-arbitrage term-structure model on day t for
the n-th contract following the approach in ?. In this case, the histograms indicate the presence of
law of one price violations from the probability mass below zero which corresponds to cases in which
the VIX futures price is below the lower bound. Lower bound violations are more pronounced for
the longer-dated contracts consistent with Table 3.
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Figure A.7: Deviation Measure versus Risk and Demand Variables
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This figure plots the deviation measure against different risk and demand variables. The risk
variables include stock market returns, realized variance, and the VIX index. Increases in risk as
measured by negative stock market returns or increases in volatility are negatively correlated with
the deviation measure. The demand variables are Dealer Position from the CoT Report, VIX ETP
demand, and VIX options customer delta. The demand variables are positively correlated with the
deviation measure. The sample period is 2010 to 2018 using weekly data.
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Figure A.8: Impulse Response Functions of Deviation Measure
to Risk and Demand Shocks in Bivariate VARs
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This figure plots impulse response functions from bivariate vector autoregressions to illustrate how
the deviation measure reacts to risk and demand shocks. The left column reports the IRFs from
bivariate VARs with risk variables. The right column reports the IRFs from bivariate VARs with
demand variables. The IRFs are from a Cholesky decomposition with the deviation measure ordered
second. The 95% confidence intervals in gray are block bootstrapped. The lag length is selected
using the SBIC criterion. Similar to the trivariate VAR discussed in the paper and the time-series
plots, the deviation measure decreases when risk increases and increases when demand increases.
The magnitude of the response is larger for the risk shocks, but more persistent for the dealer
position and VIX ETP demand shocks.
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Figure A.9: Impulse Response Functions of Deviation and Dealer Position to
VIX and Dealer Position Shocks Across Trivariate VAR Specifications
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This figure plots the impulse response function of of the no-arbitrage deviation and dealer position
to VIX and dealer position shocks across different trivariate VAR specifications. The first three rows
report different orderings of the variables for a Cholesky decomposition. The fourth row reports
the IRFs for a spectral decomposition. The variables in the vector autoregression are yt = [DEVt
V IXt DNPt] The VAR is estimated using weekly data from 2010 to 2018 with two lags. The IRFs
take on similar shapes across specifications. The deviation measure declines in response to a risk
shock and increases in response to a demand shock. The impact of the risk shock dies out after a
few weeks whereas the demand shocks are more persistent.
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