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Abstract 

Over the past sixty years, semiconductor sizes have decreased by 50 percent every eighteen months, a 

trend known as Moore’s Law. Moore’s Law has increased productivity in virtually every industry, both 

by increasing the computational and storage power of electronic devices, and by allowing the 

incorporation of electronics into existing products such as vehicles and industrial machinery. In this 

paper, I examine the physical channel through which Moore’s Law affects GDP growth. A new model 

incorporates physical constraints on firms’ production functions and allows for new types of spillovers 

from the physical characteristics of products. I use the model, and a new data set of product weights, to 

estimate the effect of the electronic miniaturization channel on productivity growth. The results show that 

between 11.74 and 18.63 percent of productivity growth during 1960 to 2019 can be attributed to physical 

changes in the size of electronic components. This effect is highest during the 1990s and early 2000s. 
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1 Introduction

Developing new combinations of existing materials is a key driver of economic growth.

The discovery of these new combinations is often driven by improvements in the

physical properties of the materials being combined. For example, modern computers

and electronics only exist because semiconductor sizes have been decreasing by a

factor of 50% every 18 months since the 1960s, a fact known as Moore’s Law. In spite

of this, most economic models of innovation do not take into account improvements

in materials’ physical properties when modeling technological progress.

To capture how improvements in the properties of materials lead to new techno-

logical innovations, this paper builds a model where firms have physical constraints

on their production functions, and where these constraints dictate which inputs can

and cannot be combined. This captures real-world examples of physical limitations

in production, such as engines needing to be above a certain efficiency threshold,

airplanes having to satisfy strict weight limits, and electronics needing to be small

enough to fit into office equipment, cars and industrial machines.

As the physical properties of materials improve, industries’ constraints are relaxed

and new productivity-enhancing combinations are developed. I use this observation

to develop a dynamic version of the model where the physical properties of materi-

als change over time, allowing for new feasible combinations of inputs. I apply this

dynamic model to study how Moore’s Law affects economic growth. As semicon-

ductors shrink, electronic components can be incorporated into exponentially many

new combinations that can be used to produce goods and services. Each different

combination of input electronic components corresponds to a different “recipe” to

make a machine, and each recipe corresponds to a random productivity draw from

a thick-tailed distribution. Through this process, More’s law leads to exponentially

many new ways to provide goods and services, yielding exponential growth in pro-

ductivity. Conversely, I show that if the individual electronic components do not

shrink beyond a positive lower bound, then no growth in productivity is possible.

Using the predictions of the model, and a new dataset on product weights, I

estimate how the physical channel of Moore’s Law affected productivity growth.

More concretely, I answer the following counterfactual question: How much lower

would aggregate productivity be if electronics were just as powerful as today, but

as large in size as they were in the 1960s? I focus on the special case where the
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combinatorial constraints are Knapsack constraints limiting the weight of materials

that can be used in a manufactured product such as a car or an industrial machine.

A structural estimation exercise shows that electronic miniaturization leads to an

annualized productivity increase between 0.07% and 0.12% in the entire 1960-2019

period, accounting for 11.74% to 18.63% of all TFP growth. In the second half of this

period (1990-2019), when computers and electronics were adopted by a large number

of industries and households, the productivity increase from miniaturization ranged

between 0.12% and 0.20%, accounting for 18.91% to 30.03% of all TFP growth.1

Empirically, the closest point of comparison to this paper are the results by Jor-

genson and Stiroh (1999,2000) and Jorgenson (2005), and the more recent work by

the Bureau of Economic Analysis (Barefoot et al. 2018). Jorgenson and Stiroh

show that information technology (including computers, software and communica-

tions equipment) accounted for a majority of TFP growth in the 1973-2002 period.2

The Bureau of Economic Analysis reports that, for the 2006-2016 period, the digital

economy accounted for 28% of real GDP Growth. An important distinction between

existing results and those in this paper is that I estimate only the physical channel

of Moore’s Law, and not any other gains in productivity due to semiconductors be-

coming faster or memory becoming larger. Nevertheless, the results in Sections 5

show that a substantial fraction of productivity growth is due to miniaturization.

1.1 Making Combinatorial Growth More Realistic

The theoretical model in this paper is motivated by Romer (1993)’s observation

that, as ideas arrive to the market, they can be combined with each other to yield

exponential growth in the number of existing products. Weitzman (1998) made this

intuition formal by proposing a model of recombinant growth, where new ideas are

generated by researchers who combine existing ideas. Acemoglu and Azar (2020) and

Jones (2021) built on Weitzman’s work by developing models where growth is driven

by the ability of firms to choose from an exponentially increasing number of sets of

1The range in estimates depends on whether one wants to capture productivity spillovers using
Hulten’s Theorem. The lower bound assumes that Hulten’s Theorem does not apply (e.g. because
production functions are very rigid), while the upper bound applies Hulten’s theorem to obtain
productivity spillovers.

2Table 8 in Jorgenson (2005) shows that information technology contributed 68% of all TFP
growth in the 1973-1989 period, 88% of all TFP growth in the 1989-1995 period, and around 66%
of all TFP growth in the 1995-2002 period.
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input suppliers. Each combination is a “recipe” with a different level of productivity,

and firms choose the cost-minimizing combination. As new inputs arrive, the number

of recipes increases exponentially, and economic output grows.

One issue with the existing combinatorial growth models is that they allow for

arbitrary combinations of inputs. In reality, many combinations of inputs are not fea-

sible or non-sensical.3 My model addresses this objection head-on by incorporating

combinatorial constraints restricting which sets of inputs can be feasibly combined.

Figure 1: Knapsack Constraint in Automobile Manufacturing

Note: When manufacturing a car, the total sum of component weights cannot exceed the weight
of the car, which in this figure is 4000 pounds. Small electronic components, such as modern GPS
devices (0.5 lbs), cameras (0.06 lbs) and Electronic Control Units (2 lbs) all fit comfortably inside
the car. However, state-of-the-art supercomputers (5500 lbs) cannot be incorporated into the car
without violating the weight constraint.

As a simple example of these combinatorial constraints, consider the production

a car, illustrated in Figure 1. Each unit produced requires an engine, wheels, tires,

a chassis, as well as fuel, exhaust, cooling, lubrication and electrical systems. In

addition, there are optional components such as GPS navigation systems, rear and

front-view cameras, and, more recently, specialized computers for self-driving.4 Dif-

ferent combinations of these systems will lead to different quality cars. The quality-

adjusted production function can be represented using a menu of Leontief functions,

indexed by the set S of components used in production:

Y = A(S) min{L,min
j∈S
{Xj

aj
}} (1)

3An early objection attributed to Akerlof by Jones (2021), states that “Yes the number of
possible combinations is huge, but aren’t most of them like chicken ice cream!”

4Other components, such as anti-lock breaking systems (ABS), used to be optional but are now
mandatory in the United States and other jurisdictions.
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where A(S) represents the quality of a car that uses a set of inputs S, and aj is the

number of units of component j that need to be used to produce one car.

Of course, not every set of inputs S is feasible. For example, if the set S does

not include an engine, or a steering system, then the car cannot be produced. This

can be expressed more formally by saying that there’s a set E of essential inputs

such that E ⊂ S for every feasible set S of components that car manufacturers could

choose. Furthermore, and crucial to the model introduced in this paper, there are

physical constraints on the elements of the set S. The simplest such constraint is a

weight constraint: a car that is designed to weigh at most 4000 pounds has to have

components whose weights add up to less than 4000 pounds. More formally, if θj

represents the weight of the jth component in pounds, the set S of input components

must satisfy the Knapsack constraint∑
j∈S

ajθj ≤ 4000. (2)

Because of this weight constraint, a state-of-the-art supercomputer which weighs

5500 pounds cannot be used as a component in a car. This fact links advances

in computer miniaturization to advances in car quality. As transistors have shrunk

over the last few decades, new productivity-enhancing components such as Electronic

Control Units and GPS navigation have become increasingly available to be used in

production.

Besides providing a more realistic framework for combinatorial growth, the intro-

duction of physical constraints allows for new and interesting comparative statics.

A change in one product’s physical characteristics can trigger “physical spillovers”,

which affect the physical properties of materials that are downstream in the supply

chain. In Section 5, I illustrate these physical spillovers with an empirical exercise

that shows how changes in the weight of semiconductors affect the weight of comput-

ers and electronics. As semiconductors shrink by 50% every 18 months, computers

and electronics also shrink, and become easier to embed into manufactured products.

I use the hetereogeneity in product weights and thresholds induced by these spillovers

to estimate the effect of electronic miniaturization on aggregate productivity.

4



1.2 Further Related Work

Production Networks and Distortions This paper belongs within the input-

output network literature started by Leontief. In particular, it relies on the models

of input-output linkages proposed by Long and Plosser (1983) and analyzed further

by Ciccone(2002), Gabaix (2011), Jones (2011), Acemoglu et. al. (2012), Acemoglu

et. al (2017), Bartleme and Gorodnichenko (2015), Bigio and La’o (2020), Baqaee

(2018), Fadinger, Ghiglino and Teteryatnikova (2018), Liu (2017), Baqaee and Farhi

(2019a, 2019b), Caliendo et. al (2018) and Liu and Tsyvinski (2021).

The main modeling contribution of this paper is to augment the Long and Plosser

model by having physical constraints which distort firms’ production sets, leading

to endogenous adoption of suppliers. The main empirical contribution is to use

this augmented model to estimate how changes in the physical characteristics of

computers and electronic devices increased manufacturing productivity in the United

States.

Because the input-output weights in the model are endogenous, this paper is

closely related to work by Jones (2013), Bigio and La’O (2020), Liu (2018), Fadinger

et. al. (2018), and Caliendo et. al. (2018) who analyze models of production

networks with distortions. This paper is also related to work by Carvalho et. al.

(2016) and Baqaee and Farhi (2019a), who study models of endogenous input-output

networks where firms’ production functions are not Cobb-Douglas. In all of these

models, the input-output structure of the economy is endogenous. The economic in-

tuition is that—in the presence of distortions such as markups, taxes and subsidies—

the allocation of goods in the economy may be inefficient. Furthermore, when the

production function is not Cobb-Douglas, increases in productivity in one sector may

not increase aggregate TFP as much as they would in a non-distorted economy.

In my model, distortions arise from the combinatorial constraints on production,

and affect allocative efficiency and the propagation of shocks. For example, if in-

dustry j has a weight constraint that binds from above, it will substitute away from

heavy inputs into lighter inputs. If a heavy machine in industry i becomes more

productive, this increase in productivity may not propagate to industry j because

industry j’s weight constraint will prevent it from demanding more units of that

machine.
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Endogenous Production Networks The literature on production networks and

distortions considers changes in the input-output network at the intensive margin.

However, there is a recent and growing literature that analyzes changes in the pro-

duction network at the extensive margin. Atalay et. al. (2011) and Carvalho and

Voigtlander (2015) give rule-based5 models of network formation. More recently,

Lim (2018), Oberfield (2018), Acemoglu and Azar (2020), Acemoglu and Tahbaz-

Salehi (2020), Taschereau-Dumouchel (2020) and Elliott, Golub and Leduc (2021)

consider models where the structure of the network is determined by individual firms

maximizing profit.

Lim (2018) builds a model where the structure of production networks is deter-

mined by the tradeoff between the benefits of new firm-to-firm linkages, and the costs

of maintaining these relationships. These costs are offset by the benefits of the new

relationships that are formed. In Oberfield’s (2018) model, each firm bargains with

a set of suppliers and chooses one input, leading suppliers with very high produc-

tivity to become “superstars”, supplying many firms at once. Acemoglu and Azar

(2020) present a model where firms choose arbitrary sets of suppliers, where each

possible set of suppliers induces a different production technology. They use this

framework to construct an endogenous growth model, where the source of growth

is the exponentially increasing number of combinations of suppliers that a firm can

use in its production function. Acemoglu and Tahbaz-Salehi (2020) develop a frame-

work where firms purchase inputs from “customized” suppliers and use bargaining

to reach agreement on how to split the surplus generated by their relationship. They

apply this model to understand how firm failures can cascade throughout the sup-

ply chain and amplify recessions. Taschereau-Dumouchel’s (2020) model studies the

cascading effect of firms deciding to enter or exit the market. An exiting firm will

have negative spillovers on its clients and suppliers, leading multiple firms to exit the

network simultaneously. Elliott, Golub and Leduc’s (2021) model shows how—when

firm-to-firm linkages can fail—arbitrarily small shocks to productivity can cause a

substantial decrease in output.

In my model, changes in the parameters of the model can lead to a change in

the input-output network at the extensive margin. A sudden change in the size of

a product (say, because of technological advancement) can lead to a change in the

structure of the input-output network and a jump in output. For example, desktop

5For example, Atalay et. al. (2011) use a preferential attachment model.
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computers replaced mainframes in the 1980s, laptops replaced desktops in the 1990s

and 2000s, and tablets replaced laptops in the 2010s. In all these changes, the

shift in demand toward lower-weight products was made possible by technological

improvements.

Endogenous Growth Another close point of comparison for this paper is Weitz-

man (1998) together with the follow-up work of Auerswald, Kauffman, Lobo, and

Shell (2000) and Ghiglino (2012). The main difference with these models of recom-

binant growth is that they assume that there is an idea-generating function that

grows exponentially when new ideas are obtained by combining existing ideas. In

contrast, I assume that materials arrive more slowly, linearly with time instead of

exponentially. Firms can use combinations of products in production, with each com-

bination yielding a different productivity draw. As there is an exponentially growing

number of combinations—under the right distributional assumptions—productivity

grows exponentially as new materials and new combinations arrive.

Physical Properties and International Trade In the international trade lit-

erature, Hummels and Skiba (2004) show that products’ physical features, such as

their weight, affect trading costs. They use this observation to argue for the existence

of the Alchian-Allen effect, where high quality varieties within an industry are more

likely to be exported than low quality varieties. Evans and Harrigan (2003), Har-

rigan (2005), Baldwin and Harrigan (2007) and Harrigan and Deng (2010) expand

on this observation and show that heavier goods are traded between physically close

countries, while lighter goods are traded by physically distant countries. Similarly,

lighter goods are much more likely to be traded by air than by sea.

Other papers in the international trade literature study how trading frictions af-

fect supply chains. Chaney (2014) uses firm-level data from French exports to develop

a model of supply chain formation with informational frictions. Antràs and Chor

(2013) develop a model with contracting frictions to study vertical integration along

the supply chain. Antràs, Fort, and Tintelnot (2017) build a model where countries

choose a combinatorial set of other countries to import from. In contrast with the

first two papers—which deal with informational and contracting barriers to supply

chain formation—the friction affecting supply chain formation in this paper comes

from physical constraints which prevent the adoption of some suppliers. The model
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of Antràs, Fort, and Tintelnot (2017) is closer to mine, with the main differences be-

ing that they use supermodularity of the profit function to ensure tractability. This

supermodularity property may not apply when firms have combinatorial constraints

on which sets of inputs are feasible. To obtain tractability, I assume that productiv-

ity draws for different combinations of suppliers are drawn from independent random

distributions.

1.3 Roadmap

The rest of the paper is organized as follows. Section 2 shows the baseline static

model of production with combinatorial constraints. Section 3 shows that a gener-

ically unique equilibrium exists, characterizes the equilibrium under standard as-

sumptions on productivity distributions, and derive comparative statics showing

how changes in physical properties affect output. Section 4 develops a dynamic

model where improvements in products’ physical characteristics drives GDP growth.

Section 5 shows the results of an empirical exercise, illustrating how shrinking semi-

conductors affected US productivity during the 1960-2019 period. Section 6, dis-

cusses potential future work, and concludes. The Appendices contain proofs along

with additional discussion of the algorithms used to compute the number of feasible

combinations.

2 A Static Model

This section presents a tractable general equilibrium model that captures how changes

in the physical properties of primary goods allows them to be combined in new ways,

expanding the production possibilities frontier.

In the model, there is a finite number N of primary industries, which one

can think of as producing materials or components that have physical properties.

Changes in the physical properties of one primary good have effects on the physi-

cal properties of other primary goods as well. In particular, this type of spillover

effect captures the notion that smaller semiconductors have led to smaller electronic

components and smaller electronic machines in general.

Firms in the final industry can choose the subset of primary industries’ goods

that they use as inputs. Different subsets S of primary inputs represent the many
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different “recipes” that can be used to produce the final good. Each subset S further

corresponds to an independent random productivity draw A(S), so that new com-

binations of inputs—such as replacing mechanical buttons with touchscreens—may

lead to a higher quality version of the final good.

A novel aspect of the model is that firms in the final industry cannot choose the

set S of inputs in an arbitrary way. Instead, S is restricted by constraints that may

depend on the physical properties of the primary goods contained in S.

2.1 Market Structure

Primary Industries Let N = {1, ..., N} be the set of primary industries. Each

primary industry i ∈ N has a strictly quasi-concave, continuous and increasing

production function with constant returns to scale Yi = Fi((Xij)
N
j=1, Li), where Xij

is industry i’s demand for good j and Li is industry i’s demand for labor. Good i has

a vector of physical characteristics θi ∈ Rp, which is determined by a continuously

differentiable function θj = θj(ζ). The input ζ is a vector of fundamental properties

which can affect any primary industry.

In addition to the standard assumptions of quasi-concavity, continuity, and mono-

tonicity, I make the assumption that labor is essential in the production of every

primary good, so that Fi(X, 0) = 0 for all X. This assumption prevents equilibria

where production is fully automated.

Example 1 (Leontief Production Functions and Size Spillovers). Consider an econ-

omy where primary industry i has a Leontief production function Yi = Ai min{Li,min{Xij
αij
}}.

With some abuse of notation, we can write αij = 0 when industry i does not use in-

dustry j’s good as an input.

In this example, each primary good has only one physical property, its size, de-

noted by θi ∈ R≥0. Since producing one unit of good i requires αij units of good j,

the size of one unit of good i will be given by θi =
∑N

j=0 αijθj + ζi, where ζi ≥ 0 is

an idiosyncratic factor affecting the size of good i. In matrix form, this equation is

given by

θ = αθ + ζ (3)
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As long as (I − α)−1 exists, we can write

θ = (I − α)−1ζ, (4)

which is a continuously differentiable function of ζ. For convenience of notation, we

denote the Leontief inverse matrix (I − α)−1 by L, and write θ = Lζ. The intuition

behind this specification is that if the idisosyncratic weight ζj of good j decreases by

∆ζj, then the weight θi of industry i’s good will decrease, through network spillover

effects, by Lij∆ζj.

The Final Industry The final industry produces a single good using primary

industries’ goods as inputs. The production technology is given as a menu of pro-

duction functions, indexed by the subset S ⊂ N of primary inputs used in pro-

duction. More concretely, given a set of inputs S, the final industry has a strictly

quasi-concave, continuous and increasing production function with constant returns

to scale Yf (S) = A(S)F (S, (Xfi)i∈S), where A(S) ∈ R>0 is a Hicks-Neutral produc-

tivity shifter that depends on S and (Xfi)i∈S is a vector of demands for primary

goods.

Firms in the final industry cannot use arbitrary sets S of primary inputs. Instead,

they are bound by a constraint

G((θi)i∈S, S) ≤ τ (5)

where G is a vector-valued function and τ is a vector of thresholds. I denote by

F(θ, τ) the collection of all feasible input subsets S ⊂ N for which the constraint

(5) holds.6

6Throughout this paper, I use the combinatorial constraint given by equation (5). There is a
more general constraint which allows the feasibility of set S to vary with the demands (Xfi)i∈S of
primary goods in the set S. This constraint is given by

G(Y, (Xfi)i∈S , (θi)i∈S , S) ≤ τY (6)

where G is a vector-valued function that has constant returns to scale in (Y, (Xfi)i∈S) and is quasi-
convex as a function of (Y, (Xfi)i∈S). Since G(Y, (Xfi)i∈S , (θi)i∈S , S) has constant returns to scale,

the general constraint (6) is equivalent to G(1, (
Xfi

Y )i∈S , (θi)i∈S , S) ≤ τ . When the production

function F is Leontief, the intermediate demands per unit of output
Xfi

Y are fixed, and (6) reduces
to (5).

10



Example 2 (Spanning Tree Constraints). A very prominent example of a real world

constraint is the construction of a spanning tree in a network. Let G = (V , E) be a

graph where the vertices V represent cities, and edges E represent connections between

cities. These connections could be roads, telecommunication links or electric cables.

A spanning tree is a subset of edges S ⊂ E satisfying the following two conditions:

• Spanning Condition. For every city v ∈ V, there is at least one edge e ∈ S
such that v is an endpoint of e.

• Tree Condition. No set of edges in e ∈ S form a cycle.

The spanning condition ensures that every city is connected by the tree S. The tree

condition ensures that S has no cycles, preventing waste in many applications. For

example, in electricity transmission, sending energy through a cycle v1 → v2 → ...→
vn → v1 would be less efficient than not using that cycle in the transmission path.

Figure 2: Illustration of Spanning Tree Constraint from Example 4

Note:This figure illustrates a spanning tree in a graph G = (V,E). The seven vertices represent
different cities. The edges represent possible routes between pairs of cities, and each edge e has a
price Pe. The selected edges in red represent the minimum-cost spanning tree. That is, they are a
cost-minimizing subset of edges which visit every city in the network, while not having any cycles.

One can model these kind of applications more concretely as a production problem

with combinatorial constraints. The primary goods are the edges e ∈ E, each of

which may have a cost Pe. The final good is produced using a constant returns to

scale function Yf (S) = F ((Xe)e∈S) subject to the combinatorial constraint that S is

a tree.7 For instance, if F ((Xe)e∈S) = mine∈S(Xe), then industries in the final firm

solve the minimum-spanning tree problem minS is a tree

∑
e∈S Pe.

7For the purposes of this paper, we only need to know that F = {S ⊂ E : S is a tree} is a well-
defined collection of subsets. This collection can be defined in a standard way, via an inequality
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Households There is a representative household which consumes C units of the fi-

nal good, and has a strictly increasing and concave utility function U(C). The house-

hold supplies one unit of labor inelastically, and has a budget constraint PfC ≤ W ,

where Pf is the price of the final good and W is the wage paid to labor. Throughout,

I assume that the wage is the numeraire, so that its price W = 1.

2.2 Equilibrium

In this subsection, I give a definition of equilibrium. Because final industry firms can

choose their set of inputs, their overall production technologies may be non-convex.

Thus, in some situations, it will be more appropriate to state firms’ optimization

objectives in terms of cost-minimization instead of profit maximization.8

Definition 1 (Marginal Cost Functions). Let Pi denote the price of industry i’s

good. The marginal cost functions of primary industries, and the final industry are

defined as follows:

1. For a primary industry i,

Ki(P1, ..., PN) = min
Li,(Xij)Nj=1

N∑
j=1

PjXij + Li, subject to Fi((Xij)
N
j=1, Li) = 1. (7)

2. For the final industry,

Kf (P1, ..., PN) = min
S∈F(θ,τ),(Xfi)i∈S

∑
i∈S

PiXfi (8)

Subject to: A(S)F (S, (Xfi)i∈S) = 1 and G((θi)i∈S, S) ≤ τ. (9)

Definition 2. An equilibrium is a tuple E = (P ∗1 , ..., P
∗
N , P

∗
f , C

∗, L∗, Y ∗, X∗, S∗) such

that

such as the one given in Equation (5). The interested reader is referred to http://www.columbia.

edu/~cs2035/courses/ieor6614.S16/mst-lp.pdf for an integer programming formulation in the
form of Equation (5).

8More concretely, a firm in the final industry with a constant returns to scale production function
will obtain zero profits by choosing any feasible set of inputs S and choosing (Xfi)i∈S to maximize
profits. This does not mean that all feasible sets S are equally likely to be used in equilibrium.
Instead, firms which choose S to minimize marginal costs will be the only ones that will receive
positive demand in equilibrium, since they can charge the lowest prices and undercut all competitors.

12



1. Markets are competitive

P ∗i = Ki(P
∗
1 , ..., P

∗
N) for all i ∈ N and P ∗f = Kf (P

∗
1 , ..., P

∗
N). (10)

2. Firms in the final industry choose input sets to minimize marginal costs

S∗ ∈ arg min
S∈F(θ,τ)

min
(Xfi)i∈S

∑
i∈S

P ∗i X
∗
i subject to the constraints in (13). (11)

3. Given S∗ and P ∗, firms choose X∗ and L∗ to minimize marginal costs.

4. Households choose C∗ to maximize utility subject to their budget constraint.

5. Markets clear, so that

Y ∗i = Fi((X
∗
ij)

N
j=1, L

∗
i ) =

N∑
j=1

X∗ji +X∗fi ∀i ∈ N (Primary Market Clearing)

Y ∗f = A(S∗)F (S∗, (X∗fi)i∈S) = C∗ (Final Market Clearing)

N∑
i=1

L∗i = 1. (Labor Market Clearing)

3 Equilibrium Analysis and Comparative Statics

In the model presented in Section 2, firms in the final industry face a menu of

mutually exclusive production technologies, indexed by the set S of primary inputs

that they choose. Thus, production technologies are non-convex. In spite of this non-

convexity, an equilibrium exists under very mild necessary and sufficient conditions.

Furthermore, the equilibrium is generically unique and efficient.

Existence and Uniqueness It is immediate that, for an equilibrium to exist with

competitive markets, prices have to equal marginal costs, and Equation (10) has to

hold. The first Theorem in this section shows that, if Equation (10) has a solution,

then an equilibrium exists.9

9All proofs in this section follow standard techniques, and are deferred to Appendix A.
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Theorem 1. An equilibrium exists if and only if there exists a vector of positive

prices P1, ..., PN > 0 such that Equation (10) holds.

Uniqueness Under mild conditions, the equilibrium will be generically unique.

First, I show that if the marginal cost functions are strictly concave, the equilibrium

price vector is always unique.

Proposition 1. If the primary industry cost functions (Ki(P ))Ni=1 are strictly con-

cave as a function of prices, then the equilibrium price vector is unique if it exists.

Proposition 1 holds, for example, when the primary industry production func-

tions are CES with non-zero elasticity of substitution. For the special case where

production functions are Leontief, the cost function Kj(P ) is linear in prices, and

not strictly concave. Nevertheless, when the Leontief coefficients add up to less than

1, there is a unique price vector.

Proposition 2. Let Fi(Ai, Li, X) = min{AiLi,minj∈N{Xijαij
}}. If the matrix (I −α)

is invertible and all entries in (I −α)−1 are non-negative, then there exists a unique

equilibrium price vector P ∗.

Even when prices are unique, equilibrium quantities may not be. This is because

there may exist two different input sets S∗, S∗∗ which both minimize the final in-

dustry’s costs. If this happens, the final industry may have two different primary

input demands X∗, X∗∗ corresponding to the two different input sets. I show below

that this only happens for a subset of productivity parameters (A(S))S∈F that has

measure zero. More formally, I define an equilibrium to be generically unique as

follows.

Definition 3 (Generically Unique Equilibrium). The equilibrium is generically unique

if the set

A = {(A(S))S∈F : There exist at least two distinct equilibria E , E ′}

has Lebesgue measure zero in R|F|.

Theorem 2. If the equilibirum price vector P ∗ is unique, then the equilibrium E is

generically unique.
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3.1 Efficiency

Because each intermediate industry faces a non-convex production function, the

welfare theorems no longer apply. Thus, one may ask whether a social planner may be

able to produce an allocation of goods that is welfare-improving over the equilibrium

allocation. I show below that this does not happen. The underlying economic

intuition is that firms in the final industry will choose a set S which minimize their

marginal costs. If they do not, then another firm will undercut them. These cost

savings are passed down to households. To simplify the proof, I make the additional

assumption that production and utility functions are differentiable.

Theorem 3. Assume that all production functions are continuously differentiable in

labor and intermediate inputs, and that the household utility function is continuously

differentiable in consumption. Then the equilibrium E is Pareto Efficient.

3.2 A Tractable Formula for Expected Output

To derive analytical equilibrium aggregates, I make the following standard assump-

tion.

Assumption 1. For all sets S ∈ F , the productivity term A(S) = Ā(S)φ(S), where

Ā(S) is a deterministic component that may depend on the set S, and φ(S) is a

random variable drawn independently from a Frechet distribution with CDF Ψ(x) =

e−x
−κ

.

This assumption is used by Acemoglu and Azar (2020) on their model of endoge-

nous production networks, and is inspired by the use of Frechet productivity draws

in Kortum (1997) and Eaton and Kortum (1998) to microfound gravity equations

in international trade models. To give a tractable formula for aggregate output, I

define what the cost of intermediate products would be if all productivity terms were

deterministic (that is, if A(S) = Ā(S), and φ(S) = 1).

Definition 4 (Deterministic Cost Function). Given an input set S ∈ F , a vector P

of primary prices, and a threshold τ , the deterministic cost function is given by

K̄f (S, P, τ) = min
(Xfi)i∈S

∑
i∈S

PiXfi (12)

Subject to: Ā(S)F (S, (Xfi)i∈S) = 1. (13)
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I can now characterize the equilibrium output as a function of deterministic cost

functions and the feasible collection F(θ, τ).

Theorem 4 (Static Output Characterization). Suppose that Assumption 1 holds.

Then the output of the final industry is a Frechet Random variable with shape pa-

rameter κ and scale parameter (
∑

S∈F(θ,τ) K̄f (S, P, τ)−κ)
1
κ .

Corollary 1. Suppose that Assumption 1 holds. Then, expected log-output is given

by

E[log Yf ] =
1

κ
log(

∑
S∈F(θ,τ)

K̄(S, P, τ)−κ) +
γ

κ
(14)

where γ is the Euler-Mascheroni constant.

3.3 Comparative Statics

Using equation (14), one can derive comparative statics for expected log-output.

Because of the combinatorial nature of production, these comparative statics will be

discontinuous: a small change in the physical properties of a product may lead to

a large change in aggregate GDP. This is a reflection of a realistic pattern, where

productivity growth can often be drastic.

To state the discontinuous comparative statics results, I use Dirac’s Delta function

δ(·), which can be informally understood as a distribution with an infinite point mass

at 0, and zero mass everywhere else on the real line. More formally, we have the

following definition.

Definition 5. Dirac’s Delta function is a linear functional operating on the space

of smooth distributions with compact support, defined by 〈δ, ν〉 =
∫∞
−∞ δ(τ)ν(τ)dτ =

ν(0).

Lemma 1. Let δ(·) be Dirac’s Delta function. Then,

∂

∂θi

∑
S∈F(θ,τ)

K(S, P, τ)−κ = −
∑
S⊂N

δ(τ −G(θ, S))K(S, P, τ)−κ
∂G

∂θi
(15)

Applying the chain rule to equation (14) and applying Lemma 1, one can derive

the following first-order comparative static.

16



Proposition 3.

∂E[log Yf ]

∂θi
= −1

κ

∑
S⊂N δ(τ −G(θ, S))K(S, P, τ)−κ ∂G

∂θi∑
S∈F(θ,τ) K̄(S, P, τ)−κ

(16)

Proposition 3 gives the expected change in log-output given a change in the

physical properties of one good. We can see that when θi increases, the effect on

expected log-output depends on how this increase affects the function G. If ∂G
∂θi

is

positive (as in a knpasack constraint), then log-output will decrease because the

constraint G(θ, S) ≤ τ gets closer to being binding. On the other hand, if ∂G
∂θi

is negative, then expected output will increase, because the constraint G(θ, S) ≤ τ

becomes more relaxed. While this is intuitive, it allows us to capture general physical

constraints, where changes in the physical property θ may make the constraint tighter

or looser, depending on what we are modeling.

Making the comparative statics continuous with a continuum of indus-

tries. We can think of our model in Section 2 as representing the supply chain of

one final industry. With only one industry that has a combinatorial constraint, it is

natural for comparative statics to be discontinuous because technological progress is

drastic: either a new feasible recipe S is discovered, or it is not.

In practice, there may be multiple industries, with different threhsolds τ—something

that is reflected in the data in Section 5. To capture this heterogeneity in thresholds,

I make the following assumption.

Assumption 2. There is a continuum of industries with different thresholds. The

mass of industries with threshold τ is given by a measurable function ν(τ), which has

support in [0,+∞).

Under this assumption, I derive a continuous analogue of Proposition 4.

Proposition 4. Suppose Assumption 2 holds. Then

∂E[log Yf ]

∂θi
= −1

κ

∑
S⊂N ν(G(θ, S))K(S, P, τ)−κ ∂G

∂θi∑
S∈F(θ,τ) K̄(S, P, τ)−κ

(17)
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Proposition 4 adds another layer of intuition. If the mass ν(G(θ, S)) of industries

with threshold G(θ, S) is large, then the effect that a change in θ will have on

expected output will be larger. The reason for this is immediate: an industry with

threshold τ = G(θ, S) will have a binding combinatorial constraint for a new recipe

S. When the combinatorial constraint binds, a small change in θ will make the new

recipe S feasible, leading to increased productivity.

3.4 Spillovers of Physical Properties

In this subsection, I give a quantitative formula for how changes in the physical

properties of one primary good propagate through the economy and have an effect

on aggregate output. As in Section 2, the vector θ of physical properties is a dif-

ferentiable function θ(ζ) of some fundamental properties ζ1, ..., ζK .10 The following

result is an immediate corollary from Proposition 4 and the chain rule.

Corollary 2.

∂E[log Yf ]

∂ζj
= −1

κ

N∑
i=1

∑
S⊂N ν(G(θ, S))K(S, P, τ)−κ ∂G

∂θi

∂θi
∂ζj∑

S∈F(θ,τ) K̄(S, P, τ)−κ
(18)

This result is very general, and applies to many areas outside miniaturization. To

give a concrete example, room temperature superconductors that can be produced

reliably would have impacts across the energy, transportation, defense, industrial

and medical sectors (Johns et. al. 1990). The conductivity, temperature, and

size of superconducting inputs could be modeled as property vectors θ(ζ) which

may depend on the properties ζ of the materials used to create these inputs. The

impact of superconductors across industries could be modeled through a constraint

function G(θ, S), which would specify size, temperature and conductivity constraints

of different industrial machines using superconductors.

4 A Dynamic Model With Empirical Implications

In this section, I extend the model to allow for multiple periods and to allow for

changes in the physical characteristics θ(t) of primary inputs over time. In this

10Here I emphasize that the number of fundamental properties K may be different from the
number of primary industries N , or the dimension p of the property vector θ.
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general dynamic setting, I show that changes to the physical characteristics of pri-

mary goods can lead to long-run growth. In the more specific setting of electronic

miniaturization, I will show a converse: long run growth is impossible without minia-

turization.

One qualitatively novel aspect of this model is that changes in the physical prop-

erties of materials can allow for the organic introduction of new products. In contrast,

most existing models of economic growth have an abstract notion of research which

leads to the arrival of new products.11 Using combinatorial constraints, I can give a

more concrete notion of what this research entails. Some primary products may not

be feasibly used at all—i.e. because they are too heavy to be used in the final good,

as computers were in the 1930s and 1940s.12 Only once their physical characteristics

change, do those products “enter the market,” and they can be used as intermediate

goods in the production of the final good.

Market Structure The dynamic model is exactly the same as the static model,

with two exceptions:

1. there is a countable number of time periods indexed by t ∈ N; and

2. there are a countable number of primary goods indexed by i ∈ N.

Let F(t) = {S ⊂ N : G(θ(t), S) ≤ τ} denote the set of all feasible combinations

at time t, and let N (t) = {i ∈ N : there exists S ∈ F(t) such that i ∈ S} denote the

set of all primary goods which can be used in at least one feasible input combination.

I call this the set of usable primary inputs at time t. Note that |F(t)| ≤ 2|N (t)|. To

ensure that output at any time t is finite, I make the following assumption.

11Romer (1990)’s model assumes that there’s an infinite number of varieties in the world, and
that they can be unlocked by investing in research. Aghion and Howitt (1992)’s model assumes that
there’s an infinite number of quality improving ideas, which themselves are unlocked by research.
In both of these models, a positive research intensity yields an exponentially increasing flow of new
varieties or ideas, which itself leads to economic growth. Acemoglu and Azar (2020) take a different
approach, allowing only one new product or idea to arrive at each period of time. In their model,
as in this one, exponential growth comes from the exponential combination of products. However,
this kind of growth still requires a new product to arrive periodically (in an exogenous fashion), so
that the number of combinations increases exponentially.

12Another good example of this phenomenon is steam engines. James Watt worked on steam
engines for 15 years before the invention of high-precision machining tools made steam engines
energy-efficient and commercially feasible.
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Assumption 3. For every time t ∈ N, the number of usable primary inputs |N (t)|
is finite.

Assumption 3 allows the model to have an infinite number of products, almost

all of which have not entered the market yet. However, at any point in time, only a

finite number of primary goods can be used in production of the final good. Quantum

computers are a good example of a good which exists today, but cannot be feasibly

used in production. While they exist in very specific laboratory conditions, it would

require significant advances in engineering and physics to make them practical to

use in any application.

The rest of the section proceeds as follows. In subsection 4.1, I show a result

that illustrates a linear relationship between growth and the number of feasible com-

binations log |F(t)|, which can be taken to the data. In subsection 4.2, I relax the

assumptions in the simplified example of subsection 4.1, and show an asymptotic

linear relationship between expected log-output and log |F(t)|. The results in sub-

sections 4.1 and 4.2 allow for arbitrary combinatorial constraints, not just Knapsack

ones. In subsection 4.3, I focus on the context of electronic miniaturization with

Knapsack constraints, and give an example illustrating how new goods can become

usable over time and drive growth via miniaturization. In subsection 4.4, I show

that long-run growth is impossible if primary goods do not shrink beyond a given

threshold. Subsection 4.5 show how—even when there are a finite number of com-

binations and long-run growth is impossible—the short-run growth patterns reflect

the data. The results in subsection 4.6 show how the growth rate of the economy

can be affected by different combinatorial constraints.

4.1 A Simplified Model

In this subsection, I show a simplified model that illustrates the log-linear relationship

between output and the number of feasible combinations. Each primary good is

produced using only labor, so that Yi = Li. The final good is produced using a menu

of Leontief production functions

Yf (S) = A(S) min
i∈S

(Xi)i∈S (19)
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subject to the combinatorial constraint∑
i∈S

θi(S)(t) < 1. (20)

The marginal cost of good i is Ki = 1, and the marginal cost of the final good is

Kf (S) = |S|
A(S)

. Since markets are competitive and the household’s budget constraint

binds, final output is equal to Yf (S) = 1
Kf (S)

= A(S)
|S| .13 To further simplify, I use the

following instantiation of Assumption 1.

Assumption 4. The productivity term A(S) is equal to φ(S)|S|, where {φ(S)} is a

family of i.i.d. Frechet random variables with shape parameter κ and scale parameter

1.

Under Assumption 4, we have Yf (S) = φ(S), where φ is a Frechet random vari-

able. Letting F(t) denote the collection of all feasible sets at time t, the optimal S

is given by S∗(t) = arg maxS∈F(t) φ(S). Using Corollary 1, write

E[log Yf (S
∗(t))] =

1

κ
log |F(t)|+ γ

κ
.

Let g(t) = ∆E[log Yf (S
∗(t))]. The following Theorem is immediate from the above

analysis

Theorem 5. Suppose Assumptions 3 and 4 hold. Then the expected growth rate at

time t is given by

g(t) =
1

κ
∆ log |F(t)|. (21)

Theorem 5 holds for arbitrary combinatorial constraints G(θ, S) < τ , and does

not require these constraints to be Knapsack constraints. Even with the simplified

production structure where all primary goods are produced using only labor, it gives

a very strong empirical connection between log-output and the log-number of feasible

combinations log |F(t)|. In Section 5, I estimate equation (21) and use the estimated

parameter κ to simulate the effect of Moore’s Law on economic growth.

13More concretely, if S∗ is the set chosen by firms in the final industry, then Pf = Kf (S∗). The
household’s budget constraint is PfYf = 1, yielding Yf = 1

Pf
= 1

Kf (S∗) .
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4.2 A General Dynamic Model with Asymptotic Empirical

Implications

The simplified model of subsection 4.1 yields a very precise empirical implication,

but does not allow for more general production structures. I now show an asymptotic

equivalent of equation (21) that holds under much more general conditions. Using

Corollary, 1, we can write expected log-output at time t for a general production

structure as

E[log Yf (t)] =
1

κ
log(

∑
S∈F(t)

K̄(S, P, τ)−κ) +
γ

κ
.

To gain some tractability, I need to ensure that growth is driven by the fact that new

combinations allow new random productivity draws, and not by the fact that newly

arriving sets become exponentially cheaper over time. Similarly, newly arriving sets

S cannot become so expensive that they are impossible to use. To capture this more

formally, I make the following assumption on how the deterministic costs of different

input combinations change over time.

Assumption 5. Let P (t) be the equilibrium vector of primary good prices at time t.

There exist functions Ku(t), K`(t) such that

K`(t) ≤ K̄(S, P (t), τ) ≤ Ku(t) for all t, S ∈ F(t) (22)

lim
t→∞

logK`(t)

t
= lim

t→∞

logKu(t)

t
= 0. (23)

The economic content of Assumption 5 is straightforward: growth isn’t driven by

the fact that any one combination becomes exponentially cheap over time, nor is it

hampered by the possibility that new combinations become prohibitively expensive

to use. While new primary goods arrive over time and new combinations S may

be unlocked, the prices K̄(S, P (t), τ) of these new combinations don’t increase or

decrease exponentially over time.

Assumption 5 is not onerous. In fact, it is satisfied under very mild conditions

for CES functions and very general specifications of the deterministic component of

the productivity term Ā(S) , as shown in the following proposition.
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Proposition 5. Consider the family of constant elasticity of substitution production

functions with elasticity σ < 1:

Fi(Xi, Li) = [(1−
|N (t)|∑
j=1

αij)L
σ−1
σ

i +

|N (t)|∑
j=1

αijX
σ−1
σ

ij ]
σ
σ−1 , (24)

where
∑∞

i=1 α
σ
ij < χ for some constant χ < 1, and for all i ∈ N. Furthermore, the

final good production function is given by

Yf (S,X) = φ(S)Ā(S)(
∑
i∈S

X
ρ−1
ρ

i )
ρ
ρ−1 , (25)

where φ(S) is a Frechet random variable and Ā(S) satisfies t−ν ≤ Ā(S) ≤ tν for

some constant ν and all S ∈ F(t). Then Assumption 5 holds.

According to proposition 5, production functions can be arbitrary CES functions,

and the deterministic productivity terms Ā(S) can oscillate through a very broad

range [t−ν , tν ] over time.

Assumption 5 and Corollary 1 yield an asymptotic version of Equation (21) which

holds on average across all time periods, instead of pointwise at every time period.

More concretely, we have the following Theorem.

Theorem 6. Suppose Assumptions 1, 3, and 5 hold, and assume further that limt→∞
log |F(t)|

t
=

D for some constant D > 0. Then

lim
t→∞

E[log Yf (t)]

t
=
D

κ
. (26)

Theorem 6 characterizes the average growth rate
E[log Yf (t)]

t
in terms of the asymp-

totic average number of feasible combinations at time t. The assumption that

limt→∞
log |F(t)|

t
= D guarantees that new primary goods (and new feasible com-

binations) arrive at a steady average rate over time. For example, if there were

no combinatorial constraints and D goods arrived on average each period, then

|F(t)| ≈ 2Dt, and log |F(t)| ≈ log 2 ·Dt. More generally—when there are combina-

torial constraints—D measures the rate at which new input combinations become

feasible. If D was zero, then there wouldn’t be enough new combinations to generate

growth. Similarly, if log |F(t)|
t

oscillated with time and had no limit, then the growth
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rate sequence g(t) would also oscillate.

4.3 Physical Characteristics and Product Arrival

In this subsection, I give an example of how changing physical characteristics of

products can be an engine for product arrival. We can think of the final product as a

computer or a phone, and the primary products as different electronic components,

such as CPUs, GPUs, microphones, cameras and gyroscopes. The combinatorial

constraint is a Knapsack constraint∑
i∈S

θi(t) < 1 (27)

with a threshold τ for the final industry is normalized to 1. At time t, the size of

product i is given by θi(t) = 2i−t−1. This formula reflects the fact that—while almost

all products are too large to use in production at any given time t— they shrink over

time so that every product can be feasibly used in production in the long run. Table

1 shows the changing size of the first 4 products over the first 3 time periods.

t θ1(t) θ2(t) θ3(t) θ4(t) |F(t)|
1 0.5 1 2 4 1
2 0.25 0.5 1 2 3
3 0.125 0.25 0.5 1 7

Table 1: Changing product sizes over time for the example in Subsection 4.3. The
last column shows the number of feasible combinations at each period t. In period
1, only good 1 can be used in production

At any given time t, only the first t primary goods can be used in the production

of the final good, since θi(t) = 2i−t−1 ≥ 1 for all i > t. Furthermore, the sizes of the

first t goods are 1
2t
, 1

2t−1 , ...,
1
2
. Since

∑t
i=1 2i−t−1 <

∑∞
n=1 2−n = 1, any non-empty

combination of the first t goods can be feasibly used to produce the final good.

These two facts combined imply that |F(t)| = 2t − 1. The growth rate at time t is

g(t) = 1
κ

log(2t−1)− log(2t−1−1). As t grows large, the exponential term 2t is much

larger than 1. Using Theorem 6, we can approximate the asymptotic growth rate by

g∗ ≈ log 2
κ

.
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4.4 No Growth Without Miniaturization

The previous subsection characterized the growth rate when all electronic compo-

nent sizes shrank over time. In this subsection, I show a converse result: if the

combinatorial constraint takes a Knapsack form
∑

i∈S θi(t) ≤ τ , and the sizes θi(t)

are bounded below by a constant θlower, then there can be no long-run growth from

the combination of electronic components.

Theorem 7. Suppose Assumptions 1 and 5 hold. Assume further that |N (t)| ≤ tν

for some constant ν > 0, and that there exists a lower bound θlower > 0 such that

θi ≥ θ` for all i ∈ {1, 2, 3, ...}. Then g∗ = 0.

The intuition behind Theorem 7 is that—if primary goods do not shrink over

time—then any input combination S used to produce the final good will only have a

bounded number of items. Even if the potential number |N (t)| of items that can be

combined grows to infinity, the number of combinations will grow at a subexponential

rate, and asymptotic growth will be 0. The assumption that |N (t)| ≤ tν prevents

growth from being driven by an exponential number of new primary goods arriving,

rather than an exponential number of combinations.

4.5 Short-run Growth Waves with a Finite Number of Pri-

mary Goods

Throughout this section, I have assumed that there is an infinite number of pri-

mary goods, which may arrive slowly over time. If the number of primary goods

is finite, then there will exist bounds such that |N (t)| ≤ N̄ and |F(t)| ≤ F̄ , and

g∗ = limt→∞
log |F(t)|

t
= 0. Nevertheless, even with a finite number of primary goods,

there can be short-run growth. Furthermore, this short-run growth can exhibit inter-

esting wave patterns, where productivity undergoes a drastic phase transition where

productivity increases nearly overnight. This reflects our intuition that computers

and electronics were specialized tools in the 60s, 70s and 80s, but then were adopted

almost immediately overnight in the 90s and early 2000s by most industries. This in-

tuition is captured theoretically by the results in this subsection, and is also reflected

in the structural estimation exercise of Section 5.

As in Subsection 4.3, I normalize the final good threshold τ = 1. There is a finite

number of products N that does not change over time. Each product i ∈ {1, ..., N}
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has a size θi(t) = 1
t
.14 At time t = 1, the number of feasible combinations is(

N
1

)
. At time t = 2, combining pairs of inputs becomes feasible, so the number of

feasible combinations is
(
N
1

)
+
(
N
2

)
. At time t, the number of feasible combinations

is |F(t)| =
∑t

i=1

(
N
i

)
.

As shown in Figure 3, |F(t)| grows slowly at first, increases sharply around t = N
2

,

and then quickly flattens out. This is consistent with the economic intuition of a

drastic phase transition, and is reflected in the data in Figure 4.

4.6 Spanning Tree Constraints

So far, subsections 4.1 and 4.2 have illustrated results for general combinatorial

constraints at a very abstract level, and subsections 4.3, 4.4 and 4.5 have focused

on the electronic miniaturization context. In this subsection, I show how the growth

rate depends on the combinatorial structure of the economy in the spanning tree

context of Example 2. For example, we can think of the telecommunications industry

connecting cities across the US. As the number of cities grows, the number of ways

|F(t)| in which the network can be connected also grows, and productivity increases.

More concretely, consider a network of cities G(t) = (V(t), E(t)) that grows over

time. The combinatorial constraint is a spanning tree constraint, as in Example 2.

Every time period, a new city is founded, so that |V(t)| = t. The degree of each city

in the network—that is, the number of links connecting it to to other cities—is a

constant d that does not change with time. Alon (1990) shows that the number of

spanning trees in G(t) is equal to |F(t)| = {d[1−σ(G(t))]}t, where 0 ≤ σ(G(t)) ≤ ε(d),

and limd→∞ ε(d) = 0.

The time t growth rate is g(t, d) = ∆ log |F(t)| = t log d + t log(1 − σ(G(t))) −
(t− 1) log d− (t− 1) log(1−σ(G(t− 1))) = log d+ t log(1−σ(G(t)))− (t− 1) log(1−
σ(G(t− 1))). Since 0 ≤ σ(G(t)) ≤ ε(d), the following inequality is immediate

Theorem 8. For any fixed degree d, the growth rate at time t satisfies the bound

|g(t, d)− log d| ≤ ε(d). (28)

14Note here that the product sizes are not declining exponentially. This captures something we
do observe in the data, where computers and other electronic products which partially depend on
semiconductors, but which also partially depend on plastics, metals and other fixed-weight inputs,
will decline in size over time at a sub-exponential rate.
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Figure 3: Number of New Combinations with Finite Number of Goods

Note: This figure illustrates the example in subsection 4.5, where there are N = 20
goods and the size of all goods at time t is θi(t) = 1

t
. The number of new combinations

at time t is
(
N
t

)
. The number of new combinations over time follows a binomial bell

curve, which is reflected in the data in Figure 4
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Theorem 8 states that the growth rate of the economy hovers around log d, with

the error term ε(d) shrinking as d grows large. Thus, for very large d, we have that

g∗ ≈ log d. This is just one example of many, relying on existing combinatorics

results, that shows how the growth rate depends on the combinatorial structure of

the economy.

5 Structural Empirical Analysis

In this Section, I leverage the theoretical results of Section 4 to estimate how the

physical channel of Moore’s Law affected productivity growth. Assuming produc-

tion functions have a Leontief functional form, I estimate that between 11.74% of all

productivity growth in the 1960-2019 period can be attributed to electronic minia-

turization. This estimate—which does not include productivity spillovers in the

supply chain captured by Hulten’s Theorem—can also be interpreted as a robust

lower bound on the effect of Moore’s Law on productivity growth, which applies to

all CES functions. If instead we assume that production functions take the Cobb-

Douglas functional form, then 18.63% of all productivity growth in the 1960-2019

period can be attributed to the physical channel of Moore’s Law.

A structural estimation of the physical channel of Moore’s Law on GDP growth

must take into account a handful of factors. First, semiconductor weights in the

simulation must decline by a factor of 2 every 18 months. Second, it must account

for the physical spillover effects that smaller semiconductors have had on the weight

of computers and electronics. Third, it must compute the larger number of feasi-

ble input combinations for manufacturing and service industries as semiconductors,

computers and electronics become smaller over time. Finally—if Hulten’s Theorem

applies—such a simulation has to include the productivity spillover effects that more

productive machines have on the rest of the economy.

The rest of this section describes this structural estimation. Subsection 5.1 de-

scribes the data, including a novel dataset of product weights. Subsection 5.2 shows

how to compute weight spillover effects from semiconductors to other electronic com-

ponents and computers. Subsection 5.3 estimates the coefficient 1
κ

in Equation (21),

to obtain the elasticity of productivity with respect to the number of feasible combi-

nations.15 Finally, Subsection 5.4 puts everything together, and shows an estimate

15Appendix B describes the dynamic programming algorithm to compute the number of feasible
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over time of how changes in electronic component weights increased productivity—

both under the assumption that production functions are Leontief, and under the

assumption that production functions are Cobb-Douglas.

5.1 Data

To estimate the effect of electronic miniaturization on productivity, I use the most

recent detail-level BEA input-output table, corresponding to the year 2012, as well

as a new dataset of products’ weights, measured in 2019. The weights are computed

using IHS Markit’s PIERS database of Schedule B information for imports into

the United States. This dataset contains shipment-level information on products,

including 6-digit harmonized-system (HS) codes, price paid, volume (in Twenty-

Foot Equivalent Units, or TEUs),16 weight (in pounds), units and quantities. I use a

crosswalk to merge the datasets and compute the median weight for every tradeable

BEA industry.17 Observations where the units are not boxes, packages or containers

are dropped. The remaining observations represent 87.1% of the data.

Table 2 shows the top 5 and bottom 5 industries separately ranked by four met-

rics. Panel A shows industries ranked by volume, measured in TEUs. We can see that

the largest products are trucks, buses, conveyors, and machine tools.18 The smallest

products are parts of other transportation equipment, parts of dental equipment,

parts of telephones, ammunition and lamps. Panel B shows the top and bottom

5 industries ranked by weight. Again, the heaviest products are trucks and buses,

followed now by metal-forming machine tools and rolling mill machinery. The light-

est products are missile and aerospace parts, phone parts, dental equipment parts,

combinations for every industry i at every time t.
16A TEU is the volume of a standard 20-foot cargo container, which is approximately 1172 cubic

feet or 33 cubic meters. While I observe the size, measured in TEUs, I rely on weight observations
because weight observations are less noisy since they are precisely measured with a scale, as opposed
to estimated as fractions of a container.

17Tradeable BEA industries are those which have an HS counterpart in the PIERS data, and
represent 191 out of 391 industries. Farming, Fishing, Oil and Gas Production, Mining and Man-
ufacturing are included. Services are excluded and assigned a weight of 0.

18Except for truck and bus bodies, all products are smaller in volume than one 20-foot container.
While it may seem that the volume of truck and bus bodies (12 TEUs) is too large, the average
semi truck is around 8,262 cubic feet (72 feet long, 8.5 feet wide, 13.5 feet tall) or 7.05 TEUs which
is in the ballpark of the data. The weight of an average semi truck (without any cargo) is around
35,000 pounds, which is also in the ballpark of the data, as Panel B shows. For these reasons, I do
not consider the size and weight of truck and bus bodies to be an error in the data.
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Table 2: Top and Bottom Industries by Physical Characteristics

Panel A: Manufacturing Industries Ranked by Volume (TEUs)

Top 5 Industries Bottom 5 Industries

Truck and bus bodies 12.000 Other transportation equipment, nspf, and parts, nspf 0.001
Truck trailers 1.000 Dental equipment, supplies, and parts, nspf 0.001
Travel trailers and campers 0.670 Small arms ammunition, nspf 0.001
Machine tools, metal-forming, and parts, nspf 0.220 Electric lamps 0.002
Conveyors and conveying equipment, and parts, nspf 0.208 Telephone and telegraph apparatus, and parts, nspf 0.002

Panel B: Manufacturing Industries Ranked by Weight (Lbs)

Top 5 Industries Bottom 5 Industries

Truck and bus bodies 31,378.010 Guided missiles and space vehicles, and parts, nspf 9.645
Truck trailers 7,607.040 Telephone and telegraph apparatus, and parts, nspf 10.907
Travel trailers and campers 3,179.060 Dolls and stuffed toy animals 11.352
Machine tools, metal-forming, and parts, nspf 2,601.450 Electric lamps 12.138
Rolling mill machinery, and parts, nspf 2,416.508 Dental equipment, supplies, and parts, nspf 13.553

Panel C: Manufacturing Industries Ranked by Density (Lbs/TEUs)

Top 5 Industries Bottom 5 Industries

Other transportation equipment, nspf, and parts, nspf 36,788.140 Guided missiles and space vehicles, and parts, nspf 857.333
Fabricated plate work 28,377.130 Truck and bus bodies 2,614.834
Structural metal parts, nspf 28,208.570 Aircraft 3,306.925
Fabricated structural metal products, nspf 25,487.860 Aircraft equipment, nspf 3,748.971
Small arms ammunition, nspf 23,185.870 Travel trailers and campers 4,744.866

Panel D: Manufacturing Industries Ranked by Price ($/Lbs)

Top 5 Industries Bottom 5 Industries

Guided missiles and space vehicles, and parts, nspf 259.448 Structural metal parts, nspf 0.617
Aircraft 117.643 Architectural and ornamental metal work, nspf 0.797
Missile and rocket engines 90.623 Fabricated structural metal products, nspf 1.008
Aircraft equipment, nspf 68.309 Truck trailers 1.102
X-ray apparatus and tubes and related irradiation apparatus 38.773 Bolts, nuts, screws, rivets, and washers 1.367

Note: This table shows how different industries are ranked according to different physical features

of their median product. Panel A ranks industries by volume. Panel B ranks industries by weight.

Panel C ranks industries by density. Panel D ranks industries by Price-Per-Pound. The data is

obtained from Schedule B reports of imports into the United States, which provide shipment level

details on product quantities, weights, volumes, units and prices.

toys, and lamps. Panel C shows products ranked by density, with fabricated metal

products and parts of transportation equipment and ammunition being the most

dense, and missiles, space vehicles, trucks and aircraft being the least dense. Panel

D shows the industries ranked by price per pound. Advanced industries such as the

aerospace and X-ray apparatus industries are the most expensive per pound. The

cheapest products per pound are structural metal products, ornamental metal work,

and bolts, nuts, and screws.

I use this data to compute the number of possible input combinations |F(θ, τi)|
for each industry in the machinery manufacturing and service sectors. I catego-

rize industries that have BEA codes starting with 333 (Machinery), 335 (Electronic

Equipment, Appliances and Components), 336 (Transportation Equipment), 337
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(Furniture) and 339 (Miscellaneous Manufacturing) as industries that produce ma-

chines. Industries whose BEA code starts with 4 are either retail or transportation.

Industries with an initial BEA digit of 5 provide services.19 Following the model,

each machine-producing industry has a weight constraint of the form∑
j∈Si

αijθj ≤ τi. (29)

I use industry j’s share of industry i’s revenue
PjXij
PiYi

, observed in the 2012 input-

output matrix, as a proxy for αij. For each industry j available in the PIERS data,

and each shipment σ, I observe the weight θjσ of the shipment. I compute θj by

taking the median over all shipments σ for industry j.

For machine-producing industries, I compute the threhsold τi from the dataset.

Because thresholds represent the largest plausible weight a machine could take, I

compute τi = maxσ θiσ, so that the threshold weight is the maximum observed

weight over all shipments. The service sector is not present in the trade data, so the

threshold must be assigned in a different way. I choose τi = 30lbs for industries in

the service sector, representing the maximum weight an adult service worker could

carry comfortably in a knapsack throughout an entire day.

I use the NBER-CES dataset on manufacturing productivity to obtain a mea-

sure of Total Factor Productivity (TFP) for manufacturing industries. This dataset

spans the years 1958-2018. For non-manufacturing industries, I use the BEA-BLS

productivity dataset which spans the years 1987-2019.

19It is important to note that this excludes computers and electronics manufacturing (BEA code
334). When mapping the data to the model in Section 2, it is helpful to think of computers
and electronics as primary inputs which can change in weight, and machines as final goods which
can take different combinations of primary inputs, but which have fixed thresholds. The reason
for this distinction is that—while the possible inputs that go into a machine might change—the
ultimate weight of the machine, and its corresponding knapsack threshold will not. As a concrete
example, the weight of a hydraulic press have not varied substantially over time, while the weight
of computers and electronics have changed dramatically. The effect of shrinking electronics on
hydraulic presses has not been to decrease the weight of machines, but rather to improve their
productivity by allowing electronics to be embedded into the machine.
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5.2 Computing Weight Spillovers and the Number of Feasi-

ble Combinations

Weight Spillovers. To implement this simulation, I begin by taking the weight

θs(2019) of semiconductors in 2019 as exogenous. In this simulation, the weight of

semiconductors is an idiosyncratic factor, and in particular does not depend on the

weight of any other manufactured products. To match the notation in Section 2, I

write θs(t) = ζs(t), where the ζ notation emphasizes that the weight of semiconduc-

tors is idiosyncratic.

For every year t between 1960 and 2019, I use Moore’s Law to extrapolate the

weight ζs(t) = 2
1
1.5
·(2019−t)ζs(2019) of semiconductors in year t going back to 1960.

I denote the change in weight of semiconductors by ∆ζs(t) = ζs(t) − ζs(2019) =

(2
1
1.5
·(2019−t) − 1)ζs(2019).

As a second step, I use the input-output matrix α to compute the weight spillover

effects of semiconductors on computers and electronics for year t. Applying the

formula

∆θ(t) = (I − α−1)∆ζ

from Equation (4). To isolate the effect of semiconductor miniaturization on com-

puter and electronics’ prices, I set ∆ζ = (0, 0, . . . , 0,∆θs(t), 0, ..., 0)′, so that the only

idiosyncratic changes in weight are coming from semiconductor miniaturization.

However, applying Equation (4) directly would yield an overestimate of the effect

of miniaturization for two reasons. First, this formula would imply that a change in

weight of semiconductors would change the weight of every other product, not just

computers and electronics. Second, this formula does not treat semiconductor weight

as exogenous, as we assumed in the previous step. Indeed, there is a feedback loop

through which smaller semiconductors would imply smaller machines, which would

themselves lead to even smaller semiconductors beyond the shrinking dictated by

Moore’s Law.

To avoid these pitfalls in the second step, I use the sub-matrix αE whose rows

and columns correspond only to electronic and computer manufacturing industries,

including semiconductor manufacturing.20 Furthermore, to ensure that the weight

of semiconductors remains exogenous, I set the row of αE corresponding to semi-

20Electronic and computer manufacturing industries are those whose BEA code starts with the
3-digit prefix 334. The semiconductor manufacturing industry has BEA code 334413.
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conductors to 0, so that no other products’ weight can influence the exogenously

set weight of semiconductors. With this specification, I can compute the effect the

spillover effect of semiconductor miniaturization on the weights of computers and

electronics as

∆θE(t) = (I − αE)−1∆ζ(t) (30)

where θE(t) is a vector representing the weight of computers and electronics industries

at time t.

Computing the number of feasible combinations. To compute |F(θ, τi)|, I

use a dynamic programming algorithm described in Appendix B. The results are

illustrated in Figure 4, which shows how Moore’s Law affected the number of feasible

combinations for the average manufacturing and non-manufacturing industries. The

figure clearly shows that manufacturing industries were early adopters: one can place

more computers in heavy machinery, even if these computers are very large as they

were in the 60s and 70s. The figure also captures the PC revolution of the 1980s, with

an increasing adoption of new input combinations in non-manufacturing industries,

peaking in the late 1990s and having a small bump in the early 2010s with the

introduction of smartphones and tablets.

5.3 Estimating The Productivity Parameter 1
κ

As we go back in time and the weight of semiconductors grows exponentially, some

machines which are feasible to build in 2019—such as cars with assisted navigation—

become infeasible. At the industry level, this means that machine-producing indus-

tries become less productive because they have fewer feasible input combinations

that they can turn into products. Equation (21) tells us that the expected log-

output of a machine-producing industry i is given by E[log Yi] = 1
κ

log |F(θ(t), τi)|.
The model in this paper abstracts away from capital, and normalizes labor to one

unit, supplied inelastically. Thus, within the context of the model, Equation (21)

measures expected output-per-capita as a function of the number of combinations.

Since output-per-capita growth is driven by productivity growth, it is standard to

use TFP as the left-hand-side variable in this equation. Thus, to compute 1
κ
, I
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Figure 4: Average Log-Change in Number Of Feasible Input Combinations for
Manufacturing and Non-Manufacturing Industries

Note: This figure illustrates how the number of feasible combinations changed over time for
manufacturing and non-manufacturing industries. The blue line represents the average value of
∆ log |Fi,t| for machine manufacturing industries, while the red line represents this value for non-
manufacturing industries. We can see that the effect of Moore’s Law on manufacturing peaked in
the mid 1970s, while the effect on non-manufacturing industries peaked in the late 1990s.
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estimate a regression of the form

∆ logAi,t =
1

κ
∆ log |Fi,t|+ β∆ logAi,t−1 + γi + δt + εi,t (31)

where 1
κ
∆ log |Fi,t| captures the effect of the change in the number of feasible combi-

nations on productivity, β∆ logAi,t−1 captures autoregressions in productivity, γi is

an industry-specific fixed effect, and δt captures time trends in productivity growth.21

Table 3 captures the summary statistics for the main variables ∆ logAi,t and

∆ log |Fi,t| in Equation (31). Table 4 shows that the Top 5 changes in |Fi,t| happened

across varied service sector industries—such as Insurance providers, Newspaper Pub-

lishers, Entertainment, and Photography—in 1999 and 1998. This is consistent with

these industries’ transition from analogue distribution methods, such as paper and

film, to digital distribution methods, which was enabled by the exponential increase

in hard-drive storage capabilities during the late 1990s.

Table 3: Summary statistics

Variable Mean Std. Dev. Min. Max. N
∆ log |Fi,t| 0.235 0.4 0 1.903 10089
∆ logAi,t 0.004 0.046 -0.399 0.543 6314

Note: This table shows summary statistics for the main variables in the regression equation (31).

Table 4: Top 5 changes in |Fi,t|

Year Industry ∆ log |Fi,t|
1999 Direct Life Insurance Carriers 1.902954
1999 Motion Picture and Video Industries 1.848053
1999 Newspaper Publishers 1.733246
1999 Software Publishers 1.713959
1998 Photographic Services 1.683655

Note: This table shows the Top 5 Year-Industry pairs sorted by the change in the number of
combinations due to Moore’s Law. We can see that the largest changes are concentrated in various
service industries (Financial, Entertainment, Publishing) and happen in the late 1990s.

21It is important to note that γi captures industry-level differences in baseline growth rates,
rather than industry-level differences in productivity levels. That is, an industry with higher γi
will have higher average productivity growth each year.
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Table 5 shows the estimates for this regression under different specifications.

The table has three panels. Panel A considers all industries. Panel B restricts the

regression only to non-manufacturing industries, and Panel C restricts the regression

to only machine manufacturing industries, excluding computers and electronics.22

Each Panel has 6 columns, representing different regression specifications. The first

column does not have industry-level fixed effects for growth rates (so γi is omitted).

The second column includes industry level fixed effects. The third and fourth column

repeat these specifications for the period 1960-1989. The fifth and sixth column

repeat these specifications for the period 1990-2019.23

The results in the table show that the coefficient κ−1 is significantly positive,

and hovers around κ−1 ≈ 0.004 when estimated on all industries or manufacturing

industries. This implies that a 1% increase in the number of input combinations

yields an approximate 0.004% increase in industry productivity. The size of the

coefficient is stronger for non-manufacturing industries, hovering around 0.01 for

most specifications. For manufacturing industries, results are significant for the

1960-1990 period, but not after.

5.4 Computing the Effect of Moore’s Law on Aggregate TFP

The last step is to compute the change in aggregate TFP given the estimated changes

∆ logAi,t in the productivity of machine-producing industries. One way to do this is

to assume that all production functions in the economy, together with the household

utility functions, are Cobb-Douglas and the Domar weights don’t change.24 In this

case, Hulten’s Theorem applies exactly, and we can compute

∆ log TFPt =
N∑
i=1

Di,t∆ logAi,t (32)

22Here, machine manufacturing industries are those with a NAICS code starting with 33, except
computers and electronics (those starting with 334). Computers and electronics are excluded be-
cause the threshold in Equation (5) changes over time, making the calculation of the number of
combinations inapplicable to them as described above in this section. Non-manufacturing industries
industries are those with NAICS codes starting with 4,5,6,7 or 8.

23Here it is important to note that—for non-manufacturing industries—we only have data going
back to 1987. Nevertheless, the results for the latter period are significant, even with a limited
timespan.

24For this calculation, I use the Domar weights from 2019. The implication of this simplifying
assumption is that the consumption shares and the input-output matrix don’t change over time.
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Table 5: Regression Estimates for κ−1

(1) (2) (3) (4) (5) (6)

Panel A: All Industries

κ−1 0.004*** 0.004** 0.006** 0.004* 0.004* 0.004
(0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

Observations 6162 6162 1928 1928 4234 4234

Panel B: Non-Manufacturing Industries

κ−1 0.011** 0.011** 0.026** 0.006 0.010* 0.010*
(0.005) (0.005) (0.011) (0.037) (0.005) (0.006)

Observations 2914 2914 188 188 2726 2726

Panel C: Manufacturing Industries

κ−1 0.003 0.003 0.004* 0.004* -0.017 -0.017
(0.002) (0.002) (0.002) (0.002) (0.011) (0.011)

Observations 3248 3248 1740 1740 1508 1508

Period 1960-2019 1960-2019 1960-1989 1960-1989 1990-2019 1990-2019
Growth Fixed Effects No Yes No Yes No Yes

Note: This table shows different estimates of the coefficient 1
κ in Equation (31) Panel A considers

all industries. Panel B restricts the regression to retail, transport and service industries, and Panel
C restricts the regression only to manufacturing. Each Panel has 6 columns, representing different
regression specifications. The first column does not have industry-level fixed effects for growth
rates. The second column includes industry level fixed effects. The third and fourth column repeat
these specifications for the period 1960-1989. The fifth and sixth column repeat these specifications
for the period 1990-2019.
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where Di is industry i’s Domar weight. Using this formula, I compute the effect of

electronic miniaturization on annual TFP growth for each year in the 1960 to 2019

period, which is the blue line in Figure 5.

The assumption that production functions are Cobb-Douglas may not always

apply, as discussed in Appendix C. While for short time horizons Hulten’s Theorem

and Equation (32) are still good approximations,25 for long horizons the quality of the

approximation degrades. When production functions are arbitrary, one can provide

a lower bound on the estimate ∆ log TFPt by ignoring the effect of productivity

spillovers. That is, we can assume that a change in ∆ logAi,t only affects consumers

of industry i’s good, but not other industries. If utility functions are CES, and βi is

the share of consumer spending on industry i’s good, then we have

∆ logGDP ≥
N∑
i=1

βi∆ logAi. (33)

I compute this lower bound for each year in the 1960 to 2019 period, and plot it as

a red line in Figure 5.

Figure 5 shows the simulated yearly changes in productivity obtained from elec-

tronic miniaturization. As mentioned above, the blue line uses the Cobb-Douglas

specification, while the red line uses the robust specification. A yellow line shows

the HP-filtered trend in realized TFP, obtained from FRED. We can see from the

figure that the change in productivity is not uniform, but comes in waves, with small

peaks in the late 1970s and early 2010s, and a large wave from the 1980s to the late

2000s. The largest effect is in the late 1990s, when computers and electronics were

introduced in nearly every industry. The effects are computed using 0.004 as the

estimate for κ−1.

The annualized growth rate due to electronic miniaturization in the Cobb-Douglas

specification is 0.12%, while the corresponding robust growth rate is 0.07%. If we

focus on the years 1990-2019, when the IT revolution was in full force, we obtain

that the annualized growth rate due to miniaturization for the Cobb-Douglas spec-

ification is 0.20%, while the robust specification yields an annualized 0.12% growth

rate.

For comparison purposes, the annualized TFP growth rate during the whole

25This is because the economy is efficient, as proved in Theorem 3.
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Figure 5: Productivity Growth Attributable to Electronic Miniaturization by Year
in Structural Simulation

Note: This figure illustrates the effects of electronic miniaturization on TFP growth over the
1960-2019 period. The blue line represents an estimate for the amount of growth attributable to
miniaturization assuming that production functions are Cobb-Douglas. The red line presents a
robust estimate that does not assume a functional form, but which shuts down all spillover effects
from productivity. The yellow line represents the HP-Filtered realized TFP trend. We can observe
from this figure that the effect of miniaturization comes in waves, small effects in the late 1970s
and early 2010s, and a large wave from the 1980s to the late 2000s, which peaked in the late 1990s.
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1960-2019 period—obtained from FRED—was 0.64%, and the annualized growth

rate in the 1990-2019 period was 0.66%. Thus, in the Cobb-Douglas specification,

electronic miniaturization accounts for 18.63% of all TFP growth in the entire period,

and 30.03% of TFP growth in the 1990-2019 period. In the robust specification,

electronic miniaturization accounts for 11.74% of all TFP growth in the entire period,

and 18.63% of TFP growth in the 1990-2019 period.

6 Conclusion

Over the past few decades, transistors have been getting exponentially smaller and

cheaper over time, leading to significant changes across industries and countries. The

effect of cheaper transistors on GDP has been widely studied. This paper is the first

attempt to build a model where the miniaturization of electronic components leads

to increases in aggregate productivity.

To study the effect of smaller electronics on GDP, I have introduced a new model

that incorporates physical constraints into the profit-maximization problem of the

firm. Even though the constraints are discrete, one can still derive tractable formulas

for aggregate output, growth rates, and compute simulated counterfactuals.

My model is flexible enough to allow for arbitrary combinatorial constraints in-

stead of the baseline weight constraint. This opens the door to more general models

that capture physical constraints in production. In future work, I hope to explore

these more general constraints from an empirical point of view.

I have left unexplored the competitive aspects of semiconductor innovation, and

the races between firms to develop ever-shrinking transistors. In future work, I hope

to develop the model further to include an oligopolistic market structure and an

endogenous growth model where firms invest in research and compete to develop

smaller varieties within an industry. Combining this model with micro-level data

on semiconductor production would yield new insights on how overcoming physical

constraints in production leads to economic growth.
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Online Appendix

A Proofs from Section 3

A.1 Proof of Theorems 1, 2 and 3

Proof of Theorem 1. It is immediate that Equation (10) is necessary for an

equilibrium to exist. To prove sufficiency, assume that we are given prices P1, ..., PN

which satisfy Equation (10). The rest of the proof shows how to construct a feasible

allocation that will satisfy all the equilibrium conditions.

Final Industry Price Because markets are competitive, the final industry price

is given by its marginal cost Pf = Kf (P1, ..., PN).

Final Output and Consumption Since the utility function of the household

is strictly increasing, the budget constraint binds, and PfC = 1. If the equilibrium

exists, the final good market clearing condition implies that Y = C = 1
Pf

.

Final Industry Demands Let S ∈ F be a set that minimizes the final industry’s

marginal cost.26 Since the final industry’s production function is strictly quasi-

concave in (Xfi)i∈S, the final industry’s demands for primary industry products are

completely determined given Yf and S.

Primary Industry Output and Demands To determine the output of primary

industries, write primary good i’s market clearing condition as

PiYi = PiXfi +
N∑
j=1

PiXji.

Multiply and divide the term PiXji by PjYj, so that the market clearing condition

becomes PiYi = PiXfi+
∑N

j=1
PiXji
PjYj

PjYj. Let Ŷi = PiYi, X̂i = PiXfi, and α̂ij =
PiXji
PjYj

.

26Since F is finite, such a set always exists.
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Since production functions have constant returns to scale, the ratio
Xji
Yj

is completely

determined by primary good firms’ cost-minimization problem. The revenue share

α̂ij can be computed from this ratio and the given vector of prices.

Write the market clearing condition in matrix form as Ŷ = X̂+α̂Ŷ . Since labor is

an essential input to every primary industry, industry j’s payments to all of its non-

labor suppliers
∑N

i=1 PiXji are strictly less than its total revenue PjYj. This implies

that the matrix of revenue shares α̂ satisfies
∑N

i=1 α̂ij < 1, which itself implies that

(I − α̂)−1 exists. Therefore, the vector of primary industry revenues is given by

Ŷ = (I − α̂)−1X̂.

Checking the Equilibrium Conditions The constructed allocation satisfies the

primary and final good market clearing conditions by construction. In addition,

the sets S and the demands for primary inputs X are chosen to minimize firms’

marginal costs. Let Li
Yi

be the per-unit labor used to produce one unit of good i.

This ratio follows—like input demands—from primary industries’ cost minimization

problem. Finally, set Li = Li
Yi
· Yi, and note that the labor market clearing condition∑N

i=1 Li = 1 follows from Walras’ Law. Thus, all market clearing, firm optimization

and household optimization conditions are sastisfied, and the constructed allocation

is an equilibrium.

Proof of Proposition 1. The primary price vector, if it exists, satisfies the system

of equations

Pj =
K∑
k=1

αjkPk +
1

Aj
.

Letting B = ( 1
A1
, ..., 1

AJ
)′, write this in matrix form as

(I − α)P = B.

Since (I − α)−1 exists and all of its coefficients are non-negative, the unique price

vector is given by P = (I − α)−1B.

Proof of Proposition 1. Recall, from the proof of Theorem 1, that if there exists a

vector of primary prices (P1, ..., PN) which satisfies the equations Pi = Ki(P1, ..., PN),
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then there exists a unique equilibrium price vector P ∗ such that P ∗i = Pi. Thus, it

suffices to show that if Ki(·) is strictly concave, then there exists at most one vector

of primary prices that satisfies equation (10).

I use the following Lemma from Kennan (1999):

Lemma 2 (Kennan). If f : Rn → Rn is an increasing, strictly concave function

such that

1. fi(0, ..., 0) ≥ 0,

2. there exists a = (a1, ..., an) such that ai > 0 and fi(a) > ai for all i ∈ {1, ..., n},
and

3. there exists b = (b1, ..., bn) such that bi > ai and fi(b) < bi for all i ∈ {1, ..., n},

then there exists a unique positive vector x such that f(x) = x.

In the statement of Lemma 2, define f : RN → RN such that fi(P ) = Ki(P ).

Because equation (10) holds, f has a fixed point. I use Lemma 2 to prove that this

fixed point is unique. I proceed to show that all the conditions of the Lemma hold.

First, note that, by assumption f is strictly concave.

I now show that f(0) > 0. Recall that Ki(P ) = minXi,Li
∑Pj

j=1Xij + Li subject

to Fi(Xi, Li) = 1, and that labor is an essential factor of production, so that the

optimal Li must be greater than 0. This means that Ki(0) > 0, since—even if prices

were zero—the wage would still be equal to 1 (since labor is the numeraire), and

a non-zero quantity of labor will be demanded. Thus, the condition fi(0, ...0) in

Lemma 2 is satisfied.

I now show that there exists a > 0 such that f(a) > a. This follows from the

continuity of f . Let {a(n)}∞n=1 be a sequence of positive vectors a(n) such that

limn→∞ a(n) = 0. Since f is continuous, limn→∞ f(a(n)) = f(0) > 0 = limn→∞ a(n).

Thus, for n large enough, f(a(n)) > a(n).

Finally, I show that there exists b > a such that f(b) < b. Let P be a fixed point

of f (which exists by assumption). Then f(P ) = P . Since f is strictly concave,

f(2P ) < 1
2
f(P ) + 1

2
f(0) = f(P ). Thus, by setting b = 2P , the last condition of

Lemma 2 is satisfied.

I conclude that f has a unique fixed point. Therefore, there exists only one vec-

tor P ∗1 , ..., P
∗
N of primary prices such that equation (10) is satisfied, and a unique

47



equilibrium price vector P ∗.

Proof of Theorem 2. Let A = {A ∈ R|F| : | arg minSK(S, P ∗, A)| ≥ 2} be

the set of productivity parameters which admit more than one cost-minimizing set

for the final industry. Let S∗, S∗∗ be two different possible input sets, and define

A(S∗, S∗∗) = {A : K(S∗, P ∗, A(S∗)) = K(S∗∗, P ∗, A(S∗∗))}. The following set inclu-

sion holds

A ⊂
⋃

S∗,S∗∗

Ai(S∗, S∗∗).

Since the right-hand side of this set inclusion is a countable union of sets, it suffices

to show that each A(S∗, S∗∗) has measure zero for each pair S∗, S∗∗. For any such

pair, define the function

∆(A, S∗, S∗∗) = K(S∗, P ∗, A(S∗))−K(S∗∗, P ∗, A(S∗∗i ))

and note that A(S∗, S∗∗) is exactly the set of productivity parameters A for which

∆(A, S∗, S∗∗) = 0. Since K is strictly increasing in A, we have A ∈ A(S∗, S∗∗) if and

only if A(S∗) = A(S∗∗). But this implies that A(S∗, S∗∗) is an |F| − 1 dimensional

subset of a |F| dimensional space, so it must have measure zero. Since A is a subset

of a countable union of measure zero sets, it also must have measure zero.

The above argument shows that the set of cost-minimizing set of inputs chosen by

the final industry is generically unique. Given this unique set S∗, and the fact that

the final industry’s production function Yf (S
∗) = A(S∗)F (S∗, (Xfi)i∈S∗) is strictly

quasi-concave as a function of (Xfi)i∈S∗ implies that the final industry’s demands

for primary inputs are uniquely determined. Finally, given (Xfi)i∈S∗ and the fact

that primary industry production functions are strictly quasi-concave, we conclude

that primary industry demands (Xij)
N
i,j=1, (Li)

N
i=1 for industry and labor are uniquely

determined. Thus, the equilibrium is generically unique.

Proof of Theorem 3. To start the proof, assume that the set S of final in-

dustry inputs is fixed. Given S, welfare is given by U(S) = maxC,X,Y,L U(C) subject

to the the feasibility constraints (Primary Market Clearing, Final Market Clearing,

Labor Market Clearing). Let χi(S), χf (S), χL(S) be the respective Lagrange mul-

tipliers for the primary good, final good and labor feasibility constraints. Because
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production and utility functions are differentiable, the social planner’s problem has

the following first-order conditions:

∂Fi
∂Xij

=
χj(S)

χi(S)
,
∂Fi
∂Li

=
χL(S)

χi(S)
,
∂F

∂Xfi

=
χi(S)

χf (S)
and

dU

dC
= χf (S).

Given S, one can ask what the equilibrium allocation (C(S), X(S), Y (S), L(S))

and prices P (S) would be if final industry firms took S as their fixed set of suppliers.

This would be the same as the welfare-maximizing allocation taking S as given. To

see this, set χi(S) = Pi(S), χf (S) = Pf (S) and χL(S) = W (S). Then the first-order

conditions

∂Fi
∂Xij

=
Pj(S)

Pi(S)
,
∂Fi
∂Li

=
W (S)

Pi(S)
,
∂F

∂Xfi

=
Pi(S)

Pf (S)
and

dU

dC
= Pf (S).

match the first-order conditions of the firm’s problems and the household’s problem

in equilibrium. Thus, if we assign the Lagrange multipliers to match equilibrium

prices and take the equilibrium input sets S as given, any corresponding equilibrium

allocation (C(S), X(S), Y (S), L(S)) will maximize welfare.

Finally, note that since firms in the final industry choose S∗ to minimize Pf (S),

and the utility is strictly concave, we have that

dU

dC
|C=C(S∗) = Pf (S

∗) ≤ Pf (S) =
dU

dC
|C=C(S) =⇒ U(C(S)) ≤ U(C(S∗)).

The market clearing condition for the final good yields C(S) = W (S)
Pf (S)

. Using the

above equations, this implies that C(S) = ∂Fi
∂Li
· ∂F
∂Xfi

= χL(S)
χf (S)

.

A.2 Proof of Theorem 4

I begin by recalling some properties of the Frechet distribution. I use these properties

to solve for equilibrium quantities and prices.

Properties of the Frechet Distribution In this subsection, I recall the definition

of a Frechet distribution’s shape and scale parameters and show how these parameters
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change when under multiplication by a constant, exponentiation, and the maximum

operator.

Definition 6. Given a scale parameter s > 0 and a shape parameter κ > 0, a Frechet

distribution with scale s and shape κ is given by the CDF Ψ(x) = e−(x
s

)−κ.

Lemma 3. Let γ, c > 0, and let X be a random variable drawn from a Frechet

distribution scale parameter s and shape parameter κ. Then cXγ is a random variable

drawn from a Frechet distribution with scale parameter csγ and shape parameter κ
γ

.

Proof.

Φ(x) = Prob[cXγ ≤ x] = Prob[X ≤ (
x

c
)

1
γ ] = Ψ((

x

c
)

1
γ ) = e−(

(xc )
1
γ

s
)−κ = e−( x

csγ )
−κγ

Lemma 4. Let X1, ..., Xn be Frechet random variables drawn from independent dis-

tributions with shape parameter κ and scale parameters s1, ..., sn, respectively. Then

max(X1, ..., Xn) is drawn from a Frechet distribution with scale parameter (
∑n

i=1 s
κ
i )

1
κ

and shape parameter κ.

Proof. Let Ψi(x) = e
−( x

si
)−κ

be the CDF of Xi. Then

Prob[max(X1, ..., Xn) ≤ x] =
n∏
i=1

Ψi(x) =
n∏
i=1

e
−( x

si
)−κ

= e
−
(
x(
∑n
i=1 s

κ
i )−

1
κ

)−κ

Lemma 5. If U is a standard exponential distribution with CDF Φ(x) = 1 − e−x

and X = sU−
1
κ , then X is a Frechet distribution with scale parameter s and shape

parameter κ.

Proof.

Prob[X ≤ x] = Prob[sU−
1
κ ≤ x] = Prob[U ≥ (

x

s
)−κ] = e−(x

s
)−κ

where the sign change in Prob[sU−
1
κ ≤ x] = Prob[U ≥ (x

s
)−κ] is justified because

f(x) = (x
s
)−κ is a decreasing function.
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Proof of Theorem 4. Since the final good market is competitive, firms will choose

the set of inputs S which minimizes the cost function K(S, P, τ) = 1
φ(S)

K̄f (S, P, τ).

This is equivalent to maximizing 1
K(S,P,τ)

= φ(S)K̄f (S, P, τ)−1. By Assumption 1,

φ(S) is a Frechet random variable with scale parameter 1 and shape parameter

κ. By Lemma 3, 1
K(S,P,τ)

is a Frechet random variable with shape parameter κ and

scale parameter K̄f (S, P, τ)−1. By Lemma 4, maxS∈F(θ,τ)
1

K(S,P,τ)
is a Frechet random

variable with shape parameter κ and scale parameter (
∑

S∈F K̄f (S, P, τ)−κ)
1
κ . Since

markets are competitive, Pf = (maxS∈F(θ,τ)
1

K(S,P,τ)
)−1 = (

∑
S∈F K̄f (S, P, τ)−κ)−

1
κ .

We can solve for Yf from the household’s budget constraint PfYf = W = 1, so

that Yf = 1
Pf

, which is a Frechet random variable with shape parameter κ and scale

parameter (
∑

S∈F K̄f (S, P, τ)−κ)
1
κ .

A.3 Proofs from Subsection 3.3

Proof of Lemma 1. Let H(x) =

1 if x ≥ 0

0 if x < 0
and recall that δ(x) = dH

dx
. Write

∑
S∈F(θ,τ)

K(S, P, τ)−κ =
∑
S⊂N

K(S, P, τ)−κH(τ −G(θ, S)).

Using the chain rule and linearity of differentiation, one obtains the desired result

∂

∂θi

∑
S∈F(θ,τ)

K(S, P, τ)−κ = −
∑
S⊂N

δ(τ −G(θ, S))K(S, P, τ)−κ
∂G

∂θi
.

Proof of Proposition 3. This follows from applying the chain rule to equation

(14) and applying Lemma 1.

Proof of Proposition 4. This follows from Proposition 3 and the definition of

the Delta function.
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A.4 Proofs From Section 4

Proof of Proposition 5. Let N(t) = |N (t)| be the number of useful primary

goods. The cost function for industry i is

Ki(P ) = ((1−
N(t)∑
j=1

αij)
σ +

N(t)∑
j=1

ασijP
1−σ
j )

1
1−σ .

Since markets are competitive, prices are equal to marginal costs, so that P ∗i =

((1 −
∑N(t)

j=1 αij)
σ +

∑N(t)
j=1 α

σ
ijP

1−σ
j )

1
1−σ . It is convenient to raise both sides in the

previous equation to the 1−σ power to obtain the following system of linear equations

in Q∗(t) = ((P ∗1 )1−σ, ..., (P ∗N(t))
1−σ):

Q∗i = ((1−
N(t)∑
j=1

αij)
σ +

N(t)∑
j=1

ασijQ
∗
j)

1
1−σ .

The solution to this set of equations can be written as

Q∗(t) = (I −A(t))−1B(t)

where A(t) is an N(t) × N(t) whose (i, j)th entry is ασij, and B(t) is an N(t) × 1

vector whose ith entry is (1−
∑N(t)

j=1 αij)
σ.

We now use the fact that
∑∞

j=1 α
σ
ij < χ < 1. The first implication of this fact

is that ‖A(t)‖∞ =def max1≤i≤N(t)

∑N(t)
j=1 |Aij(t)| < χ < 1. The second implication is

that the Leontief inverse L(t) = (I −A(t))−1 always exists, and satisfies ‖L(t)‖∞ ≤∑∞
p=0 ‖A(t)‖p∞ ≤ 1

1−χ . The third implication is that the entries in the vector B(t)

are uniformly bounded below by 1− χ, since

Bi(t) = (1−
N(t)∑
j=1

αij)
σ > 1−

N(t)∑
j=1

αij > (1−
N(t)∑
j=1

ασij) ≥ 1− χ.
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The first fact yields Q∗(t) = (I − A(t))−1B(t) > I



1− χ
1− χ
...

1− χ
...

1− χ


=



1− χ
1− χ
...

1− χ
...

1− χ


. The

second fact yields

‖Q∗(t)‖∞ ≤
χ

1− χ
.

So far, I have shown that the equilibrium vector Q∗(t) = ((P ∗1 )1−σ, ..., (P ∗N(t))
1−σ)

is bounded above and below by constants. Raising all components to the 1
1−σ power,

we obtain the uniform bound on the equilibrium price vector:

(1− χ)
1

1−σ ≤ P ∗i (t) ≤ (
χ

1− χ
)

1
1−σ for all i, t. (34)

Since the final good has a CES production function with elasticity of substitution

ρ, the corresponding deterministic cost function is

K̄(S, P (t)) =
1

Ā(S)
(
∑
j∈S

P 1−ρ
j )

1
1−ρ (35)

Combining equations (34) and (35) yields the upper and lower bounds

|S|
Ā(S)

(1− χ)
1

1−σ ≤ K̄(S, P (t)) ≤ |S|
Ā(S)

(
χ

1− χ
)

1
1−σ . (36)

Let K`(t) = minS∈F(t)
|S|
Ā(S)

(1 − χ)
1

1−σ , and Ku(t) = maxS∈F(t)
|S|
Ā(S)

( χ
1−χ)

1
1−σ . Taking

logarithms and limits as t→∞, one obtains the following limit for the lower bound

K`(t):

lim
t→∞

logK`(t)

t
= lim

t→∞

minS∈F(t) log( |S|
Ā(S)

)

t
+

log(1− χ)
1

1−σ

t
=

= lim
t→∞

minS∈F(t) log( |S|
Ā(S)

)

t
. (37)
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Analogously, one can obtain the following limit for the upper bound Ku(t):

lim
t→∞

logKu(t)

t
= lim

t→∞

maxS∈F(t) log( |S|
Ā(S)

)

t
+

( χ
1−χ)

1
1−σ

t
=

= lim
t→∞

maxS∈F(t) log( |S|
Ā(S)

)

t
. (38)

To show that both of these limits go to 0, one can use the fact that t−ν ≤ |S|
Ā(S)
≤ tν

for all S ∈ F(t). This yields:

lim
t→∞

−ν log t

t
≤ lim

t→∞

minS∈F(t) log( |S|
Ā(S)

)

t
≤ lim

t→∞

maxS∈F(t) log( |S|
Ā(S)

)

t
= lim

t→∞

ν log t

t
.

Since limt→∞
−ν log t

t
= limt→∞

ν log t
t

= 0, the squeeze theorem implies limt→∞
logK`(t)

t
=

limt→∞
logKu(t)

t
= 0.

Proof of Theorem 6. Write expected log-output at time t as E[log Yf (t)] =
1
κ

log(
∑

S∈F(t) K̄(S, P, τ)−κ) + γ
κ
. Using Assumption 5, we can give upper and lower

bounds for expected output:

1

κ
(log |F(t)|+ logK`(t)) +

γ

κ
≤ E[log Yf (t)] ≤

1

κ
(log |F(t)|+ logKu(t)) +

γ

κ
.

Dividing by t, taking limits, and using the fact that limt→∞
logK`(t)

t
= limt→∞

logKu(t)
t

=

0 yields the desired result

lim
t→∞

E[log Yf (t)]

t
=
D

κ
.

Proof of Theorem 7. From Theorem 6, we can write g∗ = limt→∞
log |F(t)|

t
. Since

θi ≥ θ` for all i, each feasible set can combine at most q = d τ
θlower

e inputs. Thus

|F(t)| ≤
∑q

k=0

(
N(t)
k

)
. If N(t) < q

2
for all t, then |F(t)| is bounded for all t and

limt→∞
log |F(t)|

t
= 0. Thus, we can focus on the case where N(t) > q

2
for t large

enough. In this case, the binomial coefficients are increasing in q. This yields an

upper bound
∑q

k=0

(
N(t)
k

)
≤ q
(
N(t)
q

)
. The binomial coefficient

(
N(t)
q

)
is upper-bounded

by the formula ( eN(t)
q

)q. Combining this series of upper bounds yields

log |F(t)| ≤ q(1 + logN(t)− q).
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Since N(t) ≤ tν , logN(t) < ν log t. Dividing by t and taking limits as t goes to

infinity, we obtain g∗ = 0.

B Algorithms for Computing the Number of Fea-

sible Combinations with Size Constraints

In this Appendix, I give a recursive formula to compute |F(θ, τ)| = |S :
∑

j∈S θj ≤
τ |, the number of feasible combinations under a size constraint. Without loss of

generality, I assume that all θj and τ are rational numbers with p digits of precision.

Multiplying all of them by 10p, I can further assume that they are all integers in

{0, 1....,M} for some large integer M .

For any j ∈ J and m ∈ {0, ...,M}, define C(j,m) = |{S ⊂ {1, ..., j} :
∑

j∈S θj ≤
m}| to be the number of feasible sets which only contain the first j industries and

whose total size is less than or equal to m. For any j ∈ J , let N0(j) = |{j′ :

1 ≤ j′ ≤ j and θj = 0}| be the number of industries whose index is less than equal

to j and which have size θj = 0. Note that C(J,M) = C is the quantity that we

want to compute, and that C(j, 0) = 2N0(j) for any j ∈ J . Furthermore, note that

C(1,m) = 2 if θ1 ≤ m and C(1,m) = 1 if θ1 > m. Using {C(j, 0), C(1,m)}j≤J,m≤M as

the base cases, one can use the recursive formula

C(j,m) = C(j − 1,m) + C(j − 1,m− θj) (39)

to build up the dynamic programming table all the way up to C(J,M) = C.
The recursive formula (39) is justified because there are two kinds of sets S ⊂

{1, ..., j} which satisfy the constraint
∑

j′∈S θj ≤ m. The first kind is those sets which

do not contain j. The number of such sets which do not contain j is C(j − 1,m).

The second type of set is those that contain j. One can write each of these sets in a

unique way as S = {j} ∪ S ′ where S ′ ⊂ {1, ..., j − 1} and
∑

j′∈S θj′ ≤ m− θj. There

are exactly C(j − 1,m− θj) of these sets, which justifies formula (39).

This dynamic programming algorithm runs in time O(J ×M). This is tractable

when M is small, but quickly becomes intractable when M is very large. Dyer (2003)

gives a tractable approximation algorithm whose running time does not depend on

M , and which computes C with arbitrary precision.
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Both the exact and approximate counting algorithms can be generalized to sit-

uations where the feasible sets S have to satisfy multiple knapsack constraints.27

These running time of these algorithms increases exponentially with the number of

constraints (see Dyer (2003) for more details on these generalizations.)

C A note on the interpretation of the Cobb Dou-

glas Assumption

In Section 5, I use the assumption that production functions are Cobb-Douglas. This

assumption is used to plot the blue line in Figure 5, and needs to be examined care-

fully. More specifically, I am assuming that the production function of industry i

is Yi(Si) = Ai(Si)
∏

j∈Si X
αij
ij L

1−
∑
j∈Si

αij

i , with the corresponding weight constraint

being
∑

j∈Si αijθj ≤ τi. Here the weight constraint only on the set Si of chosen

inputs, and does not depend on the intermediate demands Xij, Yi, Li of the firm.

More importantly, not all of the 2N possible input sets will satisfy this weight con-

straint. For Leontief production functions, the constraint
∑

j∈Si αijθj ≤ τi has a

natural interpretation, given in Examples 1 and 2: the coefficient αij =
Xij
Yi

corre-

sponds to the number of units of good j needed to make one unit of good i, and

the linear combination
∑

j∈Si αijθj represents the sum of weights of all “ingredients”

in the production function. For Cobb-Douglas production functions, we can think

of the different inputs j ∈ Si as component systems in a machine (e.g. the fuel

system, engine system and exhaust system in a car). The components always have

the same size αijθj, but firms in industry i can choose different levels of quality Xij

to produce output of quality Yi. In this way, we can have a Cobb-Douglas produc-

tion function where input demands Xij can vary continuously, but the combinatorial

constraint is discrete. 28 Another justification for Cobb-Douglas production func-

tions follows a line of argument from Jones (2005), who argues that Cobb-Douglas

production functions arise organically at the aggregate level when individual firms in

an industry have a large menu of Leontief production functions. Jones (2005) proves

27These arise naturally, for example, if there are both size and weight constraints.
28Note that if we assumed instead that firms face the combinatorial constraint

∑
j∈Si

Xij

Yi
θj ≤ τi,

then any set may become feasible by substituting away from heavy inputs and towards lighter
inputs or labor (essentially, the firm can satisfy the constraint for any set Si by setting Xij to
be very small for all intermediate inputs and Li very large.) Thus, miniaturization in this setting
would not lead to TFP gains.
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this result for production functions that use only capital and labor as inputs. Azar

(2021b) extends this result to show that, if firms have a menu of Leontief production

functions with exogenous combinatorial constraints, then the aggregate production

function will be approximated by a Cobb-Douglas production function with the same

exogenous combinatorial constraint.
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