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Abstract 

A sender signals her private information to a receiver who privately monitors the sender’s behavior, while 

the receiver transmits his private inferences back through an imperfect public signal of his actions. In a 

linear-quadratic-Gaussian setup in continuous time, we construct linear Markov equilibria, where the state 

variables are the players’ beliefs up to the sender’s second order belief. This state is an explicit function 

of the sender’s past play—hence, her private information—which leads to separation through the second-

order belief channel. We examine the implications of this effect in models of organizations, reputation, 

and trading. We also provide a fixed-point technique for finding solutions to systems of ordinary 

differential equations with a mix of initial and terminal conditions, and that can be applied to other 

dynamic settings. 
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1 Introduction

This paper introduces a new class of signaling games featuring private signals of behavior.

These games can be seen as continuous-time versions of repeated noisy signaling games where

a receiver sees imperfect signals of a sender’s actions privately, and hence the receiver develops

a private belief about the sender’s type. In settings where this form of private information

is relevant for the sender’s behavior, private monitoring forces the players to construct non-

trivial beliefs about each other’s beliefs to determine their best courses of action. We offer a

framework where this complex forecasting issue is manageable and develop new methods to

study how higher-order uncertainty can affect outcomes in signaling games.

∗Cisternas: Federal Reserve Bank of New York, gonzalo.cisternas@ny.frb.org. Kolb: Indiana Univer-
sity Kelley School of Business, 1309 E. Tenth St., Bloomington, IN 47405 kolba@indiana.edu. We thank
Alessandro Bonatti, Isa Chavez, Yi Chen, Wouter Dessein, Mehmet Ekmekci, Eduardo Faingold, Robert
Gibbons, Nathan Kaplan, Marina Halac, Stephen Morris, Alessandro Pavan, Asani Sarkar, Andy Skrzypacz,
Bruno Strulovici, Juuso Toikka, Vish Viswanathan, and numerous seminar audiences for useful conversations
and comments. The views expressed in this paper are those of the authors and do not necessarily represent
the position of the Federal Reserve Bank of New York or the Federal Reserve System.
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Private signals of behavior are a central feature of many economic settings. In organi-

zations, it has long been recognized that individuals subjectively evaluate what others have

done (MacLeod, 2003). In the online world, data brokers secretly collect imperfect signals of

consumer behavior to quantify unobserved consumer characteristics (Bonatti and Cisternas,

2020). In financial markets, some traders have an advantage in picking up signals of others’

trades (Yang and Zhu, 2020). More generally, how do leaders of organizations transmit their

knowledge when they do not know how their actions are interpreted? How do agents manage

a reputation when they are uncertain about how they are being perceived? How do traders

respond to their own actions creating private information available to others?1

These questions can be difficult to answer for three main reasons. First, when beliefs

beyond the first order are needed, and these evolve over time, the state space may grow

without bound as a result of players trying to “forecast the forecasts of others” (Townsend,

1983). Second, these games have the potential to be asymmetric: for instance, a sender of

a fixed type can interact with a receiver possessing evolving private information in the form

of a belief. Third, many of these settings can be non-stationary due to endogenous learning

effects, stemming from the players signaling their information over time.

In our approach, a forward-looking sender (she) and a myopic receiver (he), both with

quadratic preferences, interact over a finite horizon. The sender has a fixed, normally dis-

tributed type. Our innovation is to allow the receiver to privately observe a noisy signal of

the sender’s action; meanwhile, the receiver transmits information back via a public signal of

his behavior. Time is continuous and the shocks in the signals are additive and Brownian. In

this linear-quadratic-Gaussian (LQG) set up, we construct linear Markov equilibria (LMEs)

with the players’ beliefs up to the sender’s second-order belief as the states.

Linear Markov strategies and representation of the second-order belief In dy-

namic games, players must estimate their rivals’ continuation strategies to determine their

best action. To see why this is complex if monitoring is private, consider our sender. First,

fixing her strategy, she must assign probabilities to the private signals that the receiver could

have seen; since these histories grow as play unfolds, this estimation problem gets worse over

time. Second, the sender’s resulting estimates will vary with her own private histories of

behavior: not knowing what the receiver has seen, higher (lower) past actions become in-

dicative of higher (lower) signals observed by the receiver; but this means that the receiver

in turn must assign probabilities to the sender’s private histories, and so forth.

With incomplete information, however, the players can use strategies that depend on

their beliefs emanating from the sender’s private type; further, with quadratic preferences,

1We discuss the differences from these papers in the literature review section.
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it is the means of such posterior beliefs, along with the sender’s type itself, that can be

used linearly in the strategies. A linear use of Gaussian information then implies that the

receiver’s posterior mean is a linear aggregate of his private signal’s realizations: the sender’s

aforementioned problem of assessing the receiver’s private histories is reduced to estimating

a one-dimensional statistic. In turn, the sender’s resulting second-order belief—her belief

about the receiver’s belief—is also a linear aggregate: of the sender’s past actions—reflecting

that her behavior is used in the forecasting exercise—and of the public signal’s history, which

carries the receiver’s private belief through the latter player’s action.

Since the sender’s second-order belief explicitly depends on her past actions, this state

is also her private information when she signals her type, and hence must be forecasted by

the receiver. The first key contribution of this paper corresponds to a novel representation

of the second-order belief along the path of play of a linear Markov strategy profile (Lemma

1 in Section 3). Specifically, this state variable is a convex combination of the sender’s type

and the belief about the latter based exclusively on the public signal whenever (i) the sender

uses her type, her second-order belief, and the aforementioned public state linearly; while

(ii) the receiver uses his private belief and the same public state also in a linear fashion.

These belief states constitute our candidate Markov states to be deployed linearly.

Importantly, since deviations are hidden due to the full-support monitoring, the receiver

always believes the sender is following her (equilibrium) linear Markov strategy; hence the

receiver always believes that the representation holds. The linear aggregation of private

histories—in particular, of the sender’s actions in her second-order belief—thus provides great

tractability: via the representation, forecasting the second-order belief reduces to simply

forecasting the type, and hence the players do not need other higher-order beliefs to assess

what the other will do. Since the receiver relies on the public belief state in this “third-order”

belief forecasting exercise, this state must be included in the players’ strategies.

The representation is therefore central to our analysis. Importantly, this result is not

merely a “proof of concept” that the state space does not explode: it is central to the new

insights that private monitoring brings to signaling games, and it is also key for setting up

the sender’s best-response problem to determine the coefficients that the players attach to

the belief states in their strategies. We discuss these properties in the next two topics.

Applications: the history-inference effect The representation encapsulates a natural

idea: different sender types, by having acted differently, necessarily develop different beliefs

about the receiver, even when seeing the same signals about the receiver’s inferences. This

differs from the traditional case in which the signals seen by the receiver are public: there,

at any history of these signals, all types would agree on the receiver’s (public) belief despite

having acted differently in the past. Economically, therefore, the representation reflects that
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private monitoring opens a new channel for separation: one that operates via the sender’s

second-order belief. We refer to the signaling implications of this new channel as the history-

inference effect, which we study in settings where higher-order uncertainty likely matters.

Section 4.1 explores a coordination game in organizations. A leader (sender) and a

follower (receiver) form a team. The team’s performance depends on the proximity of the

leader’s action to both a state of the world (the type) and the follower’s action. The follower

simply tries to coordinate. The issue is that as soon as the leader tries to signal the new

state, she loses track of the follower’s understanding, and the players need to think about

what the other knows to be able to coordinate. Importantly, because leaders facing higher

states of the world take higher actions in equilibrium, they believe that their followers also

develop higher beliefs—via the coordination motive, therefore, the history-inference effect

amplifies separation. Through this channel, a dichotomy between learning and performance

in organizations can arise: the leader can transmit more information to the follower compared

to when the follower’s belief is known, thus improving the receiver’s learning; but the team’s

performance is lower. Indeed, as we show, the follower’s more precise acquired knowledge of

the environment is a measure of the coordination costs incurred along the way.

Section 4.2 examines a reputation game. The sender is an individual with a privately

known bias—e.g., a politician with a stance on a relevant issue—with the prior mean cap-

turing the unbiased type. The sender finds it costly to take actions away from her type, but

wants to appear as unbiased in the eyes of a relevant receiver at the end of the game (e.g., for

a reappointment): the sender suffers a quadratic loss in the distance between the receiver’s

terminal belief and the prior mean. As higher types take higher actions due to their larger

biases, they expect their receivers to develop more extreme beliefs, which is reputationally

costly. Via the history-inference effect, therefore, higher types correct their actions more ag-

gressively than low-type counterparts, thereby reducing separation relative to the case when

the sender knows her reputation. A subtle tradeoff emerges: if the sender is uncertain about

her reputation, she may be unable to take the best actions to manage it, but she may also

reveal less about her bias in the first place. As we show, the latter effect can dominate, and

the sender can be better off by not knowing exactly how she is being perceived.

Section 4.3 then explores a trading game in an extension of our methods that allows

both players to affect the public signal. The sender is a trader who knows the true value of

an asset, while the receiver is a second trader who only sees a noisy leakage of the sender’s

orders. The public signal is the total order flow, which is used to set the asset’s price. As

higher sender types buy more shares, they expect the receiver to be more optimistic about

the asset. Anticipating an upward drift in future prices, the history-inference effect induces

high types to buy even more shares today. This effect amplifies separation and, coupled with
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the information conveyed by the receiver’s trades, leads to an extra layer of price impact

emerging. The sender responds by slowing down her trades relative to a world in which no

leakage takes place, yet price impact can be higher through the receiver’s trades gradually

correlating more with the type—a form of history-inference effect linked to the receiver’s

signaling. Low degrees of insider trading can then coexist with highly responsive prices.

Existence of LME and technical contribution. Having encoded the signals’ histories

into the belief states, the coefficients attached to them must be time-dependent to allow

time-horizon and learning effects that influence the sender’s behavior. These coefficients

are found via a best-response problem for the sender, where the representation again plays

a key role. The starting point is that the receiver must account for the total signaling

done by the sender—history-inference effect included—to correctly learn from his private

signal. The representation then shapes the receiver’s posterior variance, which measures the

extent of this player’s learning. With Gaussian updating, however, this variance affects the

posterior mean’s responsiveness to new information, and hence it shapes the sender’s ability

to influence the receiver’s belief—thus, this variance also affects the sender’s second-order

belief as a proxy for the receiver’s counterpart. But this means that a representation under

linear strategies is necessary to set up the sender’s best-response problem. In this problem

(Section 3.3), the second-order belief is used to evaluate the profitability of any strategy.

In equilibrium, of course, the receiver must perfectly anticipate the strategy followed by

the sender. The latter requirement implies that (i) the receiver takes an optimal action given

his beliefs; and (ii) his beliefs are correct at all times. While the receiver’s myopia simplifies

(i)—because his own coefficients become a simple function of the sender’s contemporaneous

ones—this is not a major advantage.2 The real hurdle is the feedback behind (ii): the

sender’s signaling coefficients affect the variance-representation pair, which in turn affects

the evolution of the belief states, and thus ultimately the choice of coefficients themselves.

Such a feedback loop is obviously present in any dynamic signaling game; the novelty is

how it plays out here. Concretely, in Section 5 we show that the LQG structure means that

finding an LME boils down to solving a system of ordinary differential equations (ODEs) with

a mix of initial and terminal conditions. Such a boundary value problem (BVP) consists of

ODEs for the coefficients in the sender’s strategy, but also two extra ODEs: one for receiver’s

posterior variance and another for the weight attached to the type in the representation,

which captures the sender’s learning about the receiver’s inferences. These “learning ODEs”

are fully coupled with the former “behavior ODEs,” in a reflection of the feedback at play.

This problem is complex because of the presence of multiple ODEs in both directions:

2In Section 6, we show that the same LMEs arise if a forward-looking receiver faces a prediction problem—
as in our coordination and reputation applications—and how our methods apply beyond this case.
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the learning ODEs are traced forward in time from their initial conditions, while the be-

havior ODEs are traced backward from the end game via backward induction. Existing

work—discussed shortly—has dealt with settings in which only one learning ODE arises

due to the symmetry of the environments studied: all the players signal and learn at the

same rate. When this occurs, a traditional one-dimensional shooting argument invoking the

intermediate-value theorem can be used to find a solution to the BVP. If signaling is asym-

metric, and hence the shooting problem multidimensional, this approach does not apply.

Our contribution is to introduce a natural fixed-point approach to this issue. Indeed, given

functions that proxy for solutions to our learning ODEs, we obtain candidate equilibrium

coefficients by solving their respective ODEs backwards. Equipped with these, we obtain so-

lutions to the learning ODEs by solving them forward. With this two-step shooting method,

we construct an infinite-dimensional fixed-point problem over candidate learning functions,

to which Schauder’s theorem applies. Via this approach, Theorem 1 in Section 5 shows the

existence of LMEs for horizon lengths up to a threshold time that is inversely proportional

to the prior variance about the sender’s type, for all discount rates. We discuss this method

extensively in Section 6: in particular, how it is a major step forward in the literature and,

by virtue of handling multiple ODEs in both directions, how it can be implemented in other

LQG games or other settings in which a similar feedback loop via ODEs is at play.

Related literature With private monitoring, it can be challenging to compute distribu-

tions over rivals’ histories, as these grow over time. Further, since such beliefs vary with a

player’s own past behavior, the game’s structure differs between on- and off-path histories

from any player’s perspective (Kandori, 2002). These issues are usually absent if signals are

public, such as with imperfect public monitoring (Abreu et al., 1990): if actions depend on

commonly observed signals, everyone knows what a rival should do at all times; and given

any public history, a player’s best response remains such regardless of her past actions.

Past work has dealt with these issues in games with multi-sided private monitoring, absent

incomplete information. Ely and Välimäki (2002) look for mixed-strategy equilibria where,

by construction, beliefs about histories are irrelevant. Belief-dependent equilibria instead

arise in Mailath and Morris (2002), who examine strategies represented by finite automata;

players then form beliefs about a finite set of states, but those beliefs can depend on their own

private histories. Building on this, Phelan and Skrzypacz (2012) show how to find equilibria

by only looking at extreme beliefs of such states. Our LME are also belief-dependent and

based on a reduction of the inference problem (to a finite set of real-valued, evolving states),

but we pin down the sender’s incentives at all possible values of her second-order belief. This

latter state varies with the sender’s past behavior, and the fact that it is spanned by the rest

of the states only along the path of play reflects that the game changes after deviations.
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Our model is one of dynamic noisy signaling in which the players’ beliefs are private at

all times due to the interplay between unobserved actions and private information.3 LQG

models have proven useful in this area, provided the environment has sufficient public infor-

mation and/or symmetry. For instance, Foster and Viswanathan (1996), Back et al. (2000),

and Bonatti et al. (2017) examine symmetric multi-sided incomplete information when ev-

eryone learns from an imperfect public signal of behavior; while first-order beliefs are private,

the public signal structure eliminates the need for higher-order beliefs. Bonatti and Cisternas

(2020) in turn examine two-sided signaling when firms price discriminate based on observ-

ing private signals of a consumer’s past behavior; the prices firms set, however, fully reveal

their beliefs. In none of these papers are higher-order beliefs needed as states; nor does a

muldimensional BVP arise, as any non-trivial learning is either symmetric or one-sided.4

Regarding our applications, our coordination game is reminiscent of the team theory of

Marschak and Radner (1972), where players’ incentives are aligned to study information fric-

tions in organizations; see Dessein and Santos (2006) and Rantakari (2008) for static models

using quadratic preferences. In turn, private (hence, subjective) evaluations of performance

have been studied in principal-agent models such as MacLeod (2003), albeit with complete

information. On reputation, Bouvard and Lévy (2019) study a model with quadratic payoffs

and symmetric Gaussian uncertainty in which beliefs are public in the linear equilibrium

studied. And on trading, Yang and Zhu (2020) find that mixed-strategy equilibria can arise

if there is leakage of an informed trader’s behavior; with only two rounds of trading, the

problem of how a player’s own histories are aggregated to forecast a rival’s belief is absent.

Finally, this paper belongs to a literature studying incentives using continuous-time meth-

ods. Sannikov (2007) examines games with imperfect public monitoring; Faingold and San-

nikov (2011) reputation effects with behavioral types; Cisternas (2018) games of symmetric

incomplete information; and Bergemann and Strack (2015) dynamic revenue maximization.

2 Model

In this section, we lay out our baseline model for examining two-player dynamic noisy sig-

naling games when the ex ante informed player does not directly observe the signals of her

actions. The framework is general enough to constitute a class of games, but it does not

3Noisy signaling with public beliefs has been extensively studied: in classic static settings (e.g., Matthews
and Mirman, 1983; Carlsson and Dasgupta, 1997), the receiver’s (prior) belief is common knowledge when
the sender acts; and this also occurs in dynamic settings with observable actions and exogenous public signals
(e.g., Kremer and Skrzypacz, 2007; Daley and Green, 2012; Kolb, 2019; Gryglewicz and Kolb, 2021).

4Private beliefs can also arise with exogenous private signals of a sender’s type (Feltovich et al., 2002;
Cetemen and Margaria, 2020; Kolb et al., 2021), or if types exhibit correlation (e.g, Cetemen et al., 2023).
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exhaust the realm of settings that we can analyze. To make these points, we develop two

applications under the umbrella of this model, and a third one based on an extension of it.

Model An informed agent—the “sender” (she)—interacts with an ex ante uninformed

agent—the “receiver” (he)—continuously over a time interval [0, T ], T < ∞. The sender

has payoff-relevant private information (her type) denoted by θ ∈ R . This type is normally

distributed with mean µ ∈ R and variance γo > 0, where (µ, γo) are model parameters.

We denote the sender’s chosen action at time t by at, while the receiver’s analog is denoted

by ât, t ∈ [0, T ]. Both actions take values over the real line. The sender is forward looking,

and given realized action paths (at)t∈[0,T ] and (ât)t∈[0,T ], her ex post payoff is given by

ˆ T

0

e−rtu(at, ât, θ) dt+ e−rTψ(âT ), (1)

where u : R3 → R is a quadratic function and r ≥ 0 is her discount rate. The terminal

payoff ψ in turn exhibits a dependence on the receiver’s endgame action, thus resembling

the traditional sequentiality of classic one-shot signaling games. Given the nature of the

applications that we study, we assume that ψ : R → R is a concave quadratic, which

includes the case where ψ is linear or identically zero.

The receiver is assumed to be myopic, and thus concerned only about maximizing his

flow utility at all instants of time. This assumption is useful for isolating how the sender’s

incentives vary due to the presence of higher-order uncertainty, and we discuss its relaxation

in Section 6. Given realized actions at and ât, this player’s ex post time-t payoff is denoted

û(at, ât, θ) (2)

with û : R3 → R also a quadratic function. We will be interested in the case where u and

û are strictly concave in a and â, respectively; i.e., taking actions is costly for each player

according to a quadratic function. For simplicity, we set ∂2u/∂a2 = ∂2û/∂â2 = −1; with

quadratic preferences, this simply amounts to a normalization of the players’ payoffs.

As argued, the sender knows θ at the outset, while the receiver only knows its distribution

θ ∼ N (µ, γo) (and this is common knowledge). There are also two one-dimensional noisy

signals of the players’ actions. In this baseline model, these signals have a product structure:

dXt = âtdt+ σXdZ
X
t and dYt = atdt+ σY dZ

Y
t , (3)

where ZX and ZY are orthogonal Brownian motions, while σX and σY are strictly positive

volatility parameters. Our key innovation is to make Y—which carries information about
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the sender’s actions—privately observed by the receiver ; meanwhile, X carrying the receiver’s

action remains public. This mixed private-public information structure is important for our

construction, but it is also appropriate for two reasons: it makes the departure from the

existing literature minimal, and it suits the applications we study.5

The signals in (3) have full support, so the players cannot observe each other’s actions.

As the sender conditions her actions on her type, the receiver will then rely on his private

signal Y to update his belief about θ. Our focus is on the cases in which the sender needs to

forecast the resulting private belief for her best response.6 The next assumption narrows the

analysis to those non-trivial cases; subscripts in utility functions denote partial derivatives.

Assumption 1. (i) uaθ ̸= 0; (ii) |ûâθ|+ |ûaâ| ≠ 0; (iii) |uaâ|+ |uââ|+ |ψââ| ≠ 0.

By part (i), the sender’s action is sensitive to her type, so there is scope for information

transmission. Part (ii) is needed for the receiver’s action to be sensitive to his private belief;

this happens when he cares about the type directly (ûâθ term) or when he does so indirectly

through the sender’s action (ûaâ term). Part (iii) in turn guarantees the use of a second-order

belief: in the sender’s utility, either a non-trivial strategic interaction term (uaâ ̸= 0), or a

nonlinearity stemming from the receiver’s action (|uââ| + |ψââ| ̸= 0) will force the sender

to forecast the receiver’s belief to determine her optimal course of action. In Section 5,

we complement these conditions with minimal technical ones that ensure the existence of

equilibria in which there is separation through the second-order belief channel.

Examples Let us briefly make our model concrete by illustrating three examples that we

explore in Section 4. The first two are specific instances of our baseline model, while the

third is based on an extension of our methods presented in the Supplementary Appendix.7

(The multiplicative factors are simply used to conform to our normalization of payoffs.)

1. A coordination game. Suppose that the players’ payoffs are given by

sender:
1

4

ˆ T

0

e−rt{−(at − θ)2 − (at − ât)
2}dt; receiver: û(at, ât, θ) = −1

2
(ât − at)

2.

Consider a team/organization: a leader (the sender) tries to adapt her organization to new

economic conditions—the state of the world, θ—but successful adaptation requires coor-

dination between her actions and those of the rest of the organization (the receiver). For

simplicity, the receiver only wants to coordinate. In reality, one expects that when leadership

5Other papers displaying a public “flavor” in their information structures are Bhaskar and Obara (2002),
studying almost-perfect monitoring, and Mailath and Morris (2002), examining almost-public monitoring.

6The public signal X will be used in this forecasting exercise, but it will not be the sole input.
7Specifically, both signals’ drifts are allowed to depend on both players’ actions in an additive way.
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introduces important changes, organizations’ inferences are likely subjective, so both parties

need to think about each other’s understanding to coordinate. We model this situation as

a signaling game in which the receiver develops a private belief about θ via observing Y ;

in turn, X can be seen as a traditional imperfect public signal of the receiver’s performance.8

2. A reputation game. For notational simplicity, set the prior mean µ to zero and consider:

sender:
1

2

[
−
ˆ T

0

e−rt(at − θ)2dt− e−rTψâ2T

]
; receiver: û(at, ât, θ) = −1

2
(ât − θ)2,

where ψ ∈ R+. Suppose now that θ represents a privately known bias on a relevant issue,

with the prior mean µ = 0 capturing an unbiased type. The sender (e.g., a politician or

expert), finds it costly to take actions away from her type (−(at− θ)2 term) but she benefits

from appearing as unbiased at a terminal time T ; this is because the receiver’s action is, at

all times, his current best estimate of the sender’s type, and âT = µ = 0 fully eliminates the

terminal loss. For interpretation, the receiver could be a news outlet that gets private signals

Y of the sender’s behavior and that reports its perception of the bias;9 the reporting process

X is imperfect, but fair on average (the shocks have zero mean)—and naturally public.

3. A trading game. Consider a public signal dXt = (at + ât)dt+ σXdZ
X
t and payoffs

sender:

ˆ T

0

[
(θ − E[θ|FX

t ])at −
a2t
2

]
dt; receiver: (θ − E[θ|FX

t ])ât −
â2t
2
.

The sender is an informed trader who knows the fundamental value θ of an asset, while the

receiver is an ex ante uninformed investor who sees a leakage Y of the sender’s actions.10 The

term E[θ|FX
t ] corresponds to the asset’s price at time t, based on the public total order flow

X, as in Kyle (1985). For the sender (and analogously, for the receiver) (θ − E[θ|FX
t ])at dt

represents her trading gains over [t, t + dt) if at dt units are bought/sold in that instant; in

turn, the convex costs a2t/2 capture other types of transaction costs.11 The game departs

from our baseline model because (i) the public signal carries the informed player’s action

too; and (ii) there is a “third action”—the price—based exclusively on the public information.

8Obviously, communication renders the problem trivial; the interpretation is of a situation where, what
should be done (here, θ, of dimension 1), is considerably more complex than the richness of the communication
channel available (completely shut down here; hence, of dimension zero).

9Actions such as voting, contributions, favors, statements to groups of influence, etc. often have a private
nature, and hence are likely to be leaked with error, justifying the noise in Y .

10Yang and Zhu (2020) argue that, by handling retail order flow (proxy for noise trading), proprietary
trading firms can construct private signals of institutional investors’ (proxy for informed traders) behavior.

11E.g., taxes from trades (Subrahmanyam, 1998). Additional costs from large “long” positions also arise
from limited resources within a fund; and on the “short” side, due to the use of brokers for borrowing shares.
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Strategies and Equilibrium Concept. Since the full-support monitoring prevents each

player from seeing what the other has done, deviations by the counterparty go undetected.

This means that, from the perspective of any player, the only off-path histories are those in

which that same player himself/herself has deviated. We can therefore use the Nash equilib-

rium concept for defining the equilibrium of the game, leaving off-path behavior unspecified

for now; indeed, as is well-known in games with unobserved actions, imposing full sequential

rationality—i.e., specifying optimal behavior also after deviations—does not further refine

the set of equilibrium outcomes.12

From this perspective, a (pure) strategy for the sender corresponds to any square-

integrable real-valued process (at)t∈[0,T ] that is progressively measurable with respect to the

filtration generated by (θ,X). For the receiver, the measurability restriction is with respect

to (X, Y ), with the same integrability condition at play.13 Let Et[·] and Êt[·], t ∈ [0, T ],

denote the sender’s and receiver’s expectation operators, respectively.

Definition 1 (Nash equilibrium). A pair of strategies (at, ât)t≥0 is a Nash equilibrium if:

(i) the process (at)t∈[0,T ] maximizes E0

[´ T
0
e−rtu(at, ât, θ) dt+ e−rTψ(âT )

]
; and (ii) for each

t ∈ [0, T ], ât maximizes Êt[û(at, ât, θ)] when (âs)s<t has been followed.

The LQG structure suggests looking for Nash equilibria in strategies that are linear func-

tions of the signals observed by each player. While this is a simple task in static settings,

it is far more challenging in dynamic environments. Indeed, recall that evaluating the can-

didacy of an equilibrium profile necessarily requires assessing the profitability of deviations;

but with incomplete information and unobserved actions, the sender will find it optimal to

condition on more information than (θ,X) after she deviates, in a reflection that the game’s

structure changes after deviations. The next section formalizes these ideas. Specifically,

we will develop a method for finding Nash equilibria that relies on imposing full sequential

rationality for the sender under a richer set of strategies than above. In this equilibrium,

the players linearly aggregate their relevant histories as play unfolds, and the sender’s ac-

tions will effectively be a function of (θ,X) along the path of play (i.e., when the strategies

prescribed by the equilibrium are followed).

12See Mailath and Samuelson (2006), pp. 395-396. With hidden actions, a Nash equilibrium fails to be
sequentially rational only if it dictates suboptimal behavior for a player after her own deviation. Since such
off-path histories are not reached, the same outcome arises if optimal behavior is specified after the deviation.

13Square integrability refers to
´ T
0
a2t dt and

´ T
0
â2t dt being finite in expectation. Coupled with progressive

measurability for the dependence of actions on information (Karatzas and Shreve, 1991, Ch. 1), it ensures
that a (strong) solution to (3) exists, i.e., that the outcome of the game is well-defined. These conditions
are standard in continuous-time optimization; see Ch. 1.3 and 3.2 in Pham (2009) for decision problems.
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3 Equilibrium Analysis: Linear Markov Equilibria

Let us begin by offering a high-level overview of the idea behind our construction.

3.1 Belief States: An Overview

The presence of incomplete information opens the possibility of our players employing strate-

gies that depend on the beliefs that originate from the sender’s type. With quadratic prefer-

ences, one first expects the means of such posterior beliefs—henceforth, beliefs—to become

the key states, and second that these states are used linearly. Specifically, in addition to the

sender’s type θ, our construction employs the following belief states:

M̂t := Êt[θ], Mt := Et[M̂t], and Lt := E[θ|FX
t ]. (4)

Here, M̂t is the receiver’s first-order belief, i.e., his belief about the sender’s type; Mt is the

sender’s second-order belief, i.e., her belief about the receiver’s first-order belief; and Lt is the

belief about θ using the public information exclusively, t ∈ [0, T ]. These states will encode

how the players aggregate their own histories (the signals they have observed, and possibly

their past actions taken), to forecast what their counterparty knows and hence might do.

Equipped with these states, we characterize equilibria in which, on and off the path of

play, the sender and receiver take actions according to linear Markov strategies of the form

at = β0t + β1tMt + β2tLt + β3tθ (5)

ât = δ0t + δ1tM̂t + δ2tLt. (6)

The coefficients βit, i = 0, 1, 2, 3, and δjt, j = 0, 1, 2, will be differentiable functions of

time. Intuitively, having encoded the players’ histories into their belief states, the weights

attached to them must be allowed to be time-dependent to capture how behavior changes

due to end-game and learning effects that vary without abrupt changes over time.

For illustration, consider our coordination game, where u(a, â, θ) ∝ −(a− θ)2 − (a− â)2

and û(a, â, θ) ∝ −(a − â)2. First, the type is obviously a relevant state for the sender

because she cares about her action’s proximity to it. The players’ coordination motive

then kicks in: because the receiver wants to match the sender’s action, M̂ is relevant for

the receiver; as a result, the sender is forced to forecast M̂ , and the second-order belief

M appears. Naturally, the sender would like M̂ to always coincide with θ; thus, from the

sender’s perspective, discrepancies between M—which proxies for M̂—and θ matter for her

payoffs. But the sender’s incentives to correct such discrepancies depend both on how much
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time is left in the game—with longer horizons creating stronger incentives—and on her ability

to move the receiver’s belief—which depends on the latter’s precision/variance, which will

be deterministic. Thus, the coefficients in the strategy must be time-dependent.

More generally, Assumption 1 part (iii) ensures thatM is needed as a proxy for M̂ for the

sender to determine her best course of action in every instance of our class of games. This

state is central to our construction; let us preview two of its properties that we establish later.

First, after all private histories of the sender, Mt is an explicit linear function of her past

actions (as)s<t and past realizations of the public signal (Xs)s<t (Remark 1). The dependence

on X is clear given that this signal carries the receiver’s action, and hence ultimately M̂ .

Due to the private monitoring, however, the sender also relies on her past play : higher past

actions are indicative of higher realizations of Y observed by the receiver, so M is higher

for any fixed public history of X; by contrast, if Y were public, past behavior would be

irrelevant, as the receiver’s belief would be fully determined by the realizations of Y .

The upshot is that, because of this dependence on past play,M is also the sender’s private

information, and must be forecasted by the receiver. This brings us to the second property:

along the path of (5)–(6), Mt is a convex combination of θ and Lt, where the dependence on

the type stems fromMt conditioning on the sender’s past actions (Lemma 1). There are two

consequences of this representation of the sender’s second-order belief. First, when it is used

by the receiver to forecast M , the public state L becomes payoff-relevant, and so it must be

added to the strategies. Second, this private-public structure of the representation ensures

that the players do not need additional higher-order beliefs to forecast their behavior—i.e.,

the state space does not explode. The next section formally presents this result, which is

instrumental to our analysis—even beyond ensuring that the state space is bounded.

3.2 Representation of the Second-Order Belief

Representation Suppose that the players follow the linear-Markov strategies (5)–(6).

Given the LQG structure, it is natural to expect a representation of the form

Mt = χtθ + (1− χt)Lt, (7)

where Lt := E[θ|FX
t ] (or by the law of iterated expectations, E[M̂t|FX

t ]) and (χt)t∈[0,T ] is

deterministic. Intuitively, to forecast the receiver’s belief, the sender takes the information

in the public signal and adjusts it based on her additional private information—her own past

actions, carrying θ under (5).14 The weight χ captures how this balancing changes over time:

14For intuition, note that with pure strategies, the outcome of the game should be a function of the signals
available to the players. Thus, M must be a function of θ and X exclusively.
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early on, past actions have little forecasting value, so χ should be low; but as more signaling

takes place and the sender expects the receiver to learn the type, θ is given a higher weight.

All this is intuitive, but in equilibrium the players need to know the exact dependence of

(χ, L) on the associated linear Markov strategy profile. This is where our first contribution

lies: we establish laws of motion for χ and L as a function of the coefficients in (5)–(6).

Let us briefly outline our constructive approach: we begin by assuming that (7) holds with

(Lt)t∈[0,T ] a generic process depending only on the public information. Inserting (7) into (5)

then delivers the sender’s actions along the path of play of a strategy profile (5)–(6):

at = α0t + α2tLt + α3tθ, (8)

where α0t := β0t, α2t := β2t + β1t(1− χt), and α3t := β3t + β1tχt. (9)

In particular, note that information transmission is guided by the total weight on the type,

α3t, which carries χt—this means that the receiver needs to know the exact form of χ partly

because he must anticipate the precise informational content in his private signal Y .

Assuming that the sender’s actions satisfy (8), the receiver’s problem of learning θ from

Y is (conditionally) Gaussian (Liptser and Shiryaev, 1977, Theorems 12.6 and 12.7). The

receiver’s belief is characterized by a stochastic mean (M̂t)t∈[0,T ] and a deterministic variance

γt := Êt[(θ − M̂t)
2], t ∈ [0, T ],

where we have omitted the hat symbol for notational convenience.15 Importantly, the lin-

earity of the signal structure renders the sender’s problem of filtering M̂ using X under (6)

(conditionally) Gaussian again: a second mean-variance pair emerges, where the mean M

depends explicitly on the sender’s past actions (i.e., for any given history of the public signal,

changes in actions imply a shift in the mean of her belief). Imposing that the second-order

beliefM coincides with (7) when (5) is followed then delivers differential equations for (χ, L).

Lemma 1. Suppose that (X, Y ) is driven by (5)–(6) and the receiver believes that (7) holds,

with (Lt)t∈[0,T ] a process that depends only on the public information.16 Then (7) holds at

all times if and only if Lt = E[θ|FX
t ] and χt = Et[(M̂t −Mt)

2]/γt, where

γ̇t = −γ
2
t (β3t + β1tχt)

2

σ2
Y

, γ0 = γo, (10)

χ̇t =
γt(β3t + β1tχt)

2(1− χt)

σ2
Y

− γtχ
2
t δ

2
1t

σ2
X

, χ0 = 0, (11)

15The law of motion of M̂ is presented in (A.1) in the appendix. It responds to changes in Y in a linear
way, with a sensitivity that is proportional to γ (i.e., more precise beliefs are less responsive to news).

16Formally, (Lt)t∈[0,T ] can be any square-integrable process progressively measurable w.r.t. (FX
t )t∈[0,T ].
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dLt = (l0t + l1tLt)dt+BtdXt, L0 = µ, (12)

with (l0t, l1t, Bt) deterministic and given in (A.10). Also, 0 < γt ≤ γo and 0 ≤ χt < 1 for all

t ∈ [0, T ], with strict inequalities over (0, T ] if β3,0 ̸= 0.

From the lemma, the public state in the representation must coincide with E[θ|FX
t ]; its

linearity in the history of X—virtue of the Gaussian learning—is clear from (12) being linear

in L and in the increment dX. The lemma also characterizes the weight χt attached to the

type in (7) as a ratio of the players’ posterior variances. This is not surprising, as the players’

learning is necessarily connected: if the sender has signaled her type more aggressively, she

will expect the receiver to be more certain about it, so lower values of γ are likely associated

with higher values of χ in the representation. These observations are clear from the system

of ODEs (10)–(11) for (γ, χ): the system is fully coupled (i.e., χ affects γ̇ while γ affects χ̇),

thus reflecting that learning is interconnected; and higher values of the signaling coefficient

α3 = β3 + β1χ prompt both a faster decay of γ and a faster growth of χ.17

The advantage of this ODE system, which we will leverage later in the paper, is that it

explicitly tells us how these learning coefficients γ and χ depend on the coefficients in the

player’s strategies linked to information transmission: β3 and β1 for the sender, and δ1 for

the receiver. The initial conditions in (10)–(12) simply reflect the absence of higher-order

uncertainty in the beginning of the game: M = M̂ = L = µ at t = 0, and so χ0 = 0 in the

representation. In turn, the bounds γt < γo and 0 < χt when β3,0 ̸= 0 capture that some

learning must take place if signaling occurs at t = 0, while 0 < γt and χt < 1 capture that,

with finite signaling coefficients, this learning is never complete. Finally, the last term in

(11) reflects how the informativeness of the public signal affects the weight on the type in

the representation: as the signal-to-noise ratio of X, δ21t/σ
2
X , grows, more downward pressure

is put on the growth of χ. In other, words, as the public signal becomes more informative,

the sender increasingly favors this source of information over his own past history of play.

Equipped with this characterization, we can establish two important observations.

The belief states are sufficient statistics Observe that the receiver always believes

that the representation holds. Indeed, the receiver always assumes that the sender uses

(5) because deviations are undetected; by construction, the representation holds from his

perspective if he follows (6). But the same occurs if he deviates from (6): since his own

deviations are hidden, the receiver expects the sender to believe that (i) he always uses (6)

and that (ii) the representation holds from his perspective. From the receiver’s standpoint,

therefore, the sender always constructs her second-order belief as if (5)–(6) is being followed.

17If σX = +∞ (the public signal is uninformative), the solution to (10)–(11) satisfies χ = 1 − γt

γo , so γ
and χ are inversely related—see Lemma B.1 in the appendix, and Section 6 for a generalization.
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As a result, the players do not need additional higher-order beliefs to infer their counter-

parties’ states if these are being used linearly: in fact, the receiver’s third-order belief, via the

representation, combines M̂ and L linearly; so the sender’s fourth-order belief is also a linear

combination between M and L; which means that the receiver resorts to the representation

again for his fifth-order belief, and so forth. Thus, the state space does not explode.

Signaling: history-inference effect The representation captures the new effects that

private monitoring brings to signaling games: if different types take different actions in

equilibrium, their reliance on past play to assess the continuation game will necessarily lead

them to hold different beliefs M , even after seeing the same public information. In the

sender’s strategy (5), this leads to M becoming an additional channel for separation on top

of the direct contribution that the type has on behavior. The signaling implications of this

new channel are captured by β1tχt in the signaling coefficient α3 = β1χ+ β3—we refer to it

as the history-inference effect on signaling, which we study in Section 4. Importantly, this

effect is absent if the environment is public: after observing a history of signal realizations

of Y , all sender types would agree on the value that the receiver’s belief takes.

3.3 The Long-Run Player’s Best-Response Problem

The representation reveals that, on the path of play of the linear Markov profile (5)–(6), the

sender’s actions depend only on the pair (θ, L) via at = α0t + α2tLt + α3tθ (see (8)–(9)). To

determine these coefficients, however, the sender must evaluate deviations from the previous

action path. The need for another state is obvious, as both θ and L are unaffected by the

sender’s actions (the latter because her action does not influence the public signal). That

additional state is our second-order belief M . The next result presents laws of motion for

M and L for arbitrary strategies of the sender (up to technical conditions specified shortly).

Lemma 2 (Controlled dynamics). From the sender’s perspective, if she follows (a′t)t∈[0,T ],

dMt =
γtα3t

σ2
Y

(a′t − [α0t + α2tLt + α3tMt])dt+
γtχtδ1t
σX

dZt (13)

dLt =
γXt χtδ1t
σ2
X

[δ1t(Mt − Lt)dt+ σXdZt], (14)

where Zt :=
1
σX

[Xt −
´ t
0
(δ0s + δ1sMs + δ2sLs)ds] is a Brownian motion, and γXt := γt

(1−χt)
=

E[(θ − Lt)
2|FX

t ]. Also, Et[(M̂t −Mt)
2] = γtχt for any such (a′t)t∈[0,T ].

When the sender deviates from (5), the representation need not hold (as it assumes that

the sender follows a linear Markov strategy) and hence the sender must keep track of M and
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L separately. The appearance of an additional payoff-relevant state demonstrates that the

game’s structure changes after deviations: the sender will behave differently there because

her past behavior will lead her to perceive a different continuation game, an issue that we will

explore in more depth in our applications. Note the importance of the second-order belief

state in this respect: since the sender’s actions only affect M in (13)–(14), any approach for

finding an equilibrium must be linked to establishing optimality with respect to M . It is for

this reason that we start with an extended strategy (5) that involves both M and L.

The law of motion of M , (13), encapsulates how the sender expects the receiver’s private

belief M̂ to evolve in response to different continuation strategies by the sender. On the other

hand, changes in L matter for the sender’s incentives because the receiver uses this state

to predict M in his third-order belief exercise. To understand why M feeds into L in (14),

suppose that the sender has taken “high” actions in the past: expecting high values of the

receiver’s belief, the sender predicts a steep growth in L through the channel of the receiver’s

actions influencing X. Our applications will shed light on these “prediction channels.”

But the sender’s ability to influence M̂ naturally depends on the extent of the receiver’s

learning: in (13), the sender’s action has a slope that is proportional to γ—the receiver’s

posterior variance—which falls as more learning has taken place. Importantly, this variance

depends on χ through the signaling that occurs through the second-order belief channel.

In other words, having upfront knowledge of a representation is necessary for setting up a

best-response problem, because the receiver’s learning must account for the total signaling

done by the sender in equilibrium. Much of the complexity of the fixed point at play in

these games in fact operates through this “variance” channel: the pair (γ, χ) depends on the

signaling coefficients (5)–(6); but by also shaping the responsiveness of (M,L) to the sender’s

actions, the same pair affects the choice of coefficients in the strategies themselves.18

Remark 1. To see why M is an explicit function of the past actions of the sender and past

realizations of X, we can first insert the definition of Zt into the law of motion (13) of M .

This yields a dynamic that is linear in M , from which the solution Mt is a linear function of

(as, Ls, Xs)s<t; but the same procedure applied to (12) shows that Ls is a function of (Xτ )τ<s

(because (12) holds on- and off-path from each player’s perspective).

We can now state the sender’s best-response problem. By the last part of Lemma 2, the

18The responsiveness of (M,L) also depends on the (perceived) strength of the players’ signaling: α3

influences M , while δ1 affects L. In the latter state, the variance with respect to the public information, γX ,
plays the role that γ plays inM : the appearance of χ multiplying δ1γ

X
t stems from the covariance between θ

and dXt conditional on the public information taking the form γXt χtδ1t after using the representation and that
Et[θ|FX

t ] = Et[M |FX
t ]. (And by Lemma 1, χ < 1, so the law of motion of L is always well-defined.) Finally,

the drift ofM reflects that the sender expects M̂ to be revised upward only when a′t > Et[α0t+α2tLt+α3tM̂t],
i.e., when she expects to beat the receiver’s expectation of her behavior.
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sender’s posterior variance satisfies Et[(M̂t −Mt)
2] = γtχt, i.e., it has a value invariant to

deviations by the sender; intuitively, linear signals coupled with Gaussian noise imply that

changes in the sender’s actions simply shift the receiver’s belief. Using this fact and that

payoffs are quadratic, we obtain Et[u(at, δ0,t + δ1,tM̂t + δ2tLt, θ)] = Et[u(at, δ0t + δ1,tMt +

δ2tLt, θ)] +
1
2
uââδ

2
1tγtχt, and likewise for the terminal payoff ψ in place of u at t = T . In

other words, no higher moments are needed as states—i.e., our states do capture the payoff-

relevant aspects of the players’ own histories. We conclude that, up to an additive constant

in the sender’s objective, her best-response problem consists of maximizing

E0

[ˆ T

0

e−rtu(at, δ0t + δ1tMt + δ2tLt, θ)dt+ e−rTψ(δ0T + δ1TMT + δ2TLT )

]
(15)

subject to the dynamics (13)–(14) of (M,L), and where (γ, χ) follow the ODEs (10)–(11).19

The space of admissible strategies for this problem is the set of R-valued square-integrable

processes (at)t∈[0,T ] that are (θ,M,L)-progressively measurable. This space is richer than

that used in the Nash equilibrium concept due to the explicit conditioning on past behavior

via M , and it is the traditional strategy space in continuous-time optimization.20

Assuming a myopic receiver simplifies the determination of the coefficients (δ0, δ1, δ2) in

his strategy as simple functions of the sender’s contemporaneous counterparts (and possibly

of (γ, χ) too, via the inferences made). As argued, this is conceptually useful, but it provides

only a modest technical advantage, as we explain in Section 6. From this perspective, a tuple

β⃗ := (β0, β1, β2, β3) of differentiable functions of time induces a linear Markov equilibrium if

β0t + β1tM + β2tL+ β3tθ is an optimal policy for the sender when the coefficients (δ0, δ1, δ2)

satisfy the myopic best reply condition for the receiver:

ât := δ0t + δ1tM̂t + δ2tLt = argmax
â′∈R

Êt[û(α0t + α2tLt + α3tθ, â
′, θ)]. (16)

This notion of equilibrium is clearly perfect in that it specifies optimal behavior by the sender

after deviations—and along the path of play of such a policy, at = α0t + α2tLt + α3tθ, where

(Lt)t∈[0,T ] follows (12) in Lemma 1, so a Nash equilibrium in linear strategies ensues.21

In the next section, we discuss the equilibrium coefficients that arise in each of our three

applications, deferring the question of the existence of LME to Section 5.

19The sender’s problem is, in practice, one of optimally controlling an unobserved state M̂ . We are allowed
to filter first and then optimize due to the separation principle. See the proof of Lemma 2.

20See Chapter 3.1 in Pham (2009). Obviously, it is not limited to a linear use of the states and so forth.
21While deviations by the receiver do affect L, it is clear that no additional states other than (t, L, M̂) are

needed after deviations. Also, all the payoff-relevant histories for this player are reachable on-path, so the
sequential rationality requirement is trivial for this player. All this is true if the receiver is forward-looking.
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4 Applications

Our applications showcase how the history-inference effect can be a relevant phenomenon in

a variety of settings—existence results for our coordination and reputation games fall under

the umbrella of our general existence theorem of Section 5, while an existence result for our

trading game is presented in Section S.4 in the Supplementary Appendix.

4.1 Application 1: A coordination game in organizations

From Section 2, up to positive factors, the payoffs take the form

sender :

ˆ T

0

e−rt{−(at − θ)2 − (at − ât)
2}dt; receiver : û(at, ât, θ) = −(ât − at)

2.

The interpretation is one of a leader (the sender) trying to introduce changes into an or-

ganization in order to adapt it to a new economic environment (−(at − θ)2 term), with

those changes requiring a coordinated response by the rest of the organization (the receiver;

−(ât − at)
2 term). Note that if the state of the world were common knowledge, everyone

would coordinate on θ, and no losses would take place—all sender types thus have a revela-

tion motive, but this is hindered by the imperfect, private, signals seen by the receiver. How

does the leader, through her actions, guide the organization towards its new goal?22

Proposition 1. Suppose that r ≥ 0 and σX ∈ (0,∞). In any LME, the coefficients satisfy

β0t = 0, β1t + β2t + β3t = 1, and α3t := β3t + β1tχt > 0. On the equilibrium path, therefore,

at = α3tθ + (1− α3t)Lt and ât = α3tM̂t + (1− α3t)Lt. (17)

Further, if r > 0, α3t is non-monotonic and decreasing at T . And if the time horizon is not

too long, β3t ∈ [1/2, 1), β1t, β2t ∈ (0, 1/2), and α3t ∈ (0, 1) can be shown analytically.

Panel (a) in Figure 1 illustrates typical coefficients (β1, β2, β3, α3): the leader’s action

is a convex combination of her states (θ,Mt, Lt), and also of (θ, L) in equilibrium via (17).

Since the signs of these coefficients do not change, they can be explained by the incentives

that arise at the endgame T when the players act myopically. The starting point is that the

sender’s adaptation motive leads to β3 > 0, after which the coordination motive kicks in:

since higher types take higher actions, higher receiver types M̂ must also take higher actions,

which induces the sender to take even higher actions via M (β1 > 0). But this means that

22In organizations, information transmission through actions or practice is important due to knowledge
often having a “tacit” form: Garicano (2000) describes it as “production know-how is [...] ‘embodied’ in
individuals” (p. 875) such that it is “acquired [...] in the form of learning by doing” (p. 894).
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is effectively public. At the other extreme, if the leader observes nothing she must rely only

on her past play to forecast the receiver’s belief. This case is obtained by setting σX = +∞,

which offers the maximum scope for the history-inference effect. The cases are very tractable.

Proposition 2. Suppose that σX ∈ {0,+∞}. Then, an LME exists for all T > 0 and r ≥ 0.

(i) If σX = 0, at = β3tθ+(1−β3t)M̂t, where
dβ3t
dt

< 0, β3t ∈ (1/2, 1), t < T , and β3T = 1/2.

(ii) If σX = +∞, at = α3tθ + (1− α3t)µ, where α3t ∈ (1/2, 1), t ∈ [0, T ]. Also, dα3t

dt
> 0 if

r > 0 (and constant for r = 0).

When σX = 0, M̂ is publicly observable. The signaling coefficient α3 ≡ β3 is then

decreasing, so separation effectively shrinks over time; but β3 remains above the terminal

value 1/2 due to the steering motive at play. On the other hand, in the absence of a public

signal (in which case L ≡ µ), the history-inference effect coupled with the coordination

motive reinforce separation over time. The monotone solid lines in Figure 1b illustrate this.

The non-monotone pattern of α3 is thus the net effect of a decreasing steering incentive

and an increasing history-inference effect. Two additional effects help explain why a hump-

shaped pattern arises. First, since the history-inference effect increases the responsiveness

of the receiver’s belief to Y later in the game, the leader does not need to sacrifice as much

on coordination relative to the public case: the leader reduces β3 (to increase β1 + β2) in

the beginning of the game, thus favoring the growth of β1χ—in Figure 1b, the dashed α3

coefficients start below the public counterpart, and they exhibit an initial positive slope

that is absent in the case σX = 0. Second, relative to the case σX = +∞, introducing an

informative public signal makes L carry more weight in the representation; the receiver’s

action then becomes more sensitive to L relative to M̂ , which leads the sender to favor L

over M when her need for coordination is strong. As discussed, the latter occurs at the end

of the game—see Figure 1a where β2 has a steeper growth than β1 close to the endgame. In

other words, compared to the σX = +∞ case, the history-inference effect is tapered off at

the end of the game both by the direct effect of a public signal available and the strategic

effect of the players coordinating in L (flatter β1). The decreasing steering motive becomes

dominant, and α3 is decreasing at T , unlike in (ii) of Proposition 2.

If we interpret the signaling coefficient in the sender’s action as the magnitude of “change”

introduced by a leader in an organization during a pre-specified transition period, the robust

prediction is as follows: change starts small; then, it gradually increases as leaders expect

their organizations to understand their ultimate goals; but it eventually declines as the

sender acquiesces to the organization’s understanding due to the increasing importance of

coordination as the transition period approaches its end.
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Outcomes: a dichotomy between learning and performance Figure 1b illustrates

that when the public signal is noisier, the total signaling coefficient increases for most of

the game. This suggests that there can be more information transmission in a setting with

higher-order uncertainty than if beliefs were public. To make our points, it suffices to compare

the extreme cases of σX = 0 and σX = ∞ already introduced—we can think of them as limits

of our general model. We do this when r = 0, where we obtain analytic solutions.

Proposition 3. Suppose that r = 0. For all T > 0, the sender’s ex ante payoff is larger if

σX = 0 than if σX = +∞, but the receiver’s terminal belief is more precise if σX = +∞.

The first part of the result says that a leader is better off when she knows the follower’s

belief with certainty, which is natural given that this is a coordination game. The second

part says that there is always more total information transmission to the sender when the

leader is forced to rely on his actions exclusively. Figure 2 in fact confirms that these extreme

values maximize the leader’s ex ante payoff and the receiver’s terminal precision.

1 2 3 4 5
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Figure 2: Leader’s payoff (unnormalized) and follower’s learning: (T, γo, r, σY ) = (4, 1, 0, 1).

The leader’s payoff is a natural measure of an organization’s performance, while the pre-

cision of the receiver’s terminal belief is a proxy for an organization’s attained understand-

ing during a relevant transition period. From this perspective, the proposition uncovers a

potential dichotomy between learning and performance: organizations exhibiting a better

understanding of the environment can in fact exhibit worse performance. Indeed, with in-

formation transmission through actions, learning is a measure of coordination costs.24 For

intuition, consider the public case (e.g., σX = 0): the leader could opt to take the follower’s

action in any period, thereby eliminating any miscoordination, but this implies that the

leader neglects her private information, and hence that no information is transmitted. Our

model predicts that the quality of the information fed back to organizations’ leaders can be

a key explanatory variable behind this tension between learning and performance.

24Formally, E0

´ T
0
(at−ât)2 dt =

´ T
0
α2
3tE0(θ−M̂t)

2 dt =
´ T
0
−σ2

Y
γ̇t

γt
dt = σ2

Y ln( γo

γT
), which falls in γT < γo.
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4.2 Application 2: Reputation for Neutrality

Recall the reputation game of Section 2: up to positive factors, the players’ payoffs are:

sender: −
ˆ T

0

e−rt(at − θ)2dt− e−rTψâ2T , ψ > 0; receiver: − (ât − θ)2.

The type θ captures a sender’s form of bias (e.g., a politician’s true stance on a topic). The

mean µ is normalized to zero and is interpreted as an unbiased type. The receiver (e.g.,

a media outlet) wants to accurately predict the bias, i.e., ât = M̂t. Hence, the lump-sum

terminal payoff in the sender’s payoff captures a long-term concern for being perceived as

unbiased: she wants M̂T to match µ = 0. Thus, all sender types have a concealment motive,

but this conflicts with their short-run temptations (−(at−θ)2) term. Does better information,

as measured by a more precise signal X, help the sender to manage her reputation?

The following result characterizes equilibrium behavior.

Proposition 4. Suppose that r ≥ 0 and σX ∈ (0,∞). In any LME, the sender’s strategy

satisfies β0t = 0 and β1t, β2t ≤ 0 < β3t ≤ 1 for all t ∈ [0, T ], with all inequalities strict over

[0, T ), while ât = M̂t (i.e., δ1 = 1 and δ0 = δ2 ≡ 0). Moreover, α3t := β3t + β1tχt ∈ (0, 1).
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Figure 3: Sender’s strategy coefficients in the reputation game: (ψ, γo, r, σX , σY ) = (1, 2, .1, 1, 1).

Let us use Figure 3 to understand these coefficients. First, if the sender were myopic,

she would attach a weight of 1 to θ at all times, precisely the terminal value of β3. The

sender then deviates from this value at earlier times in an effort to manage her reputation.

Specifically, from a time-t perspective, her reputational concerns are captured by

−e−r(T−t)ψEt[M̂2
T ] = −e−r(T−t)ψ(Et[M2

T ] + χTγT ), (18)

where χTγT is the variance of the sender’s second-order belief (Lemma 2). Two conclusions

immediately follow. First, since higher types take higher actions (α3 > 0) due to their higher
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biases, these types will anticipate greater upward drift in their reputation M all else equal.

To preempt a large terminal loss, the sender moderates her actions, resulting in β3t < 1

until time T ; this deviation is stronger earlier in the game, as more time is left to reap the

benefits of it. Second, senders with biased reputations Mt from their perspective expect to

be perceived as biased at the end, so they will attempt corrective actions early on: the weight

β1 onM is negative so as to prevent this state from growing. And sinceMt becomes a better

predictor of MT as time progresses, such corrections becomes stronger: β1t is decreasing.

Finally, note that L is used in the strategies despite not appearing in the players’ payoffs.

This is because the receiver needs to anticipate the sender’s action to update his belief after

changes in Y , and this updating matters for the sender’s intertemporal incentives. Indeed,

since the receiver, via the representation, expects Êt[at] = α3tM̂t + [β1t(1− χt) + β2t]Lt, the

sender predicts M̂t to update in the direction of Et[dYt − Êt[at] dt] = [at − (α3tMt + [β1t(1−
χt) + β2t]Lt)] dt, i.e., the drift of M in (13) (up to a constant). Because β1 < 0, the sender’s

second-order belief has a tendency to drift up if L > 0, which induces the sender to correct

his behavior today—β2 < 0. The case θ = 0, at an off-path history where Mt = 0, illustrates

this issue: despite being unbiased and perceived as such, this type deviates from at = 0

because her reputation would otherwise deteriorate at rate β1(1− χt)Lt given the receiver’s

identification problem. As this predictability ceases to matter at T , β2T = 0 in Figure 3.

History-inference effect and concealment. As more extreme types take more extreme

actions in equilibrium, such types will also develop more extreme beliefs about themselves;

hence, those types will correct their reputations more aggressively than less extreme types.

The history-inference effect now goes against information transmission: β1χ and β3 have

opposite signs in α3. But this creates scope for less separation, and hence a better chance

to conceal the bias. A subtle trade-off emerges: with higher-order uncertainty, the sender

loses her ability to take the best actions to manage her reputation, but she may transmit less

information in the first place. Conversely, in a public environment, the sender can perfectly

tailor her actions to her current reputation M̂ , but the history-inference effect is absent:

while higher types do take higher actions in the analog LME, given any fixed public history

all types agree on their reputation and hence use M̂ to correct their actions in the same way.

To make our main point, we again examine the cases σX = 0 and σX = +∞, which are

particularly tractable for computing outcomes: the former being a public setting, and the

latter maximizing the potential for the history-inference effect shutting down separation.

Proposition 5. Suppose that r = 0 and ψ < σ2
Y /γ

o. Then for all T > 0, there exists a

unique LME when σX = 0 or +∞. If σX = +∞, the receiver’s terminal belief is less precise,

and the sender’s ex ante payoff is higher, than when σX = 0.
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superior information relative to market makers (who believe E[M̂t|FX
t ] = Lt); the fact that

β1 > 0 reflects an incentive to buy more aggressively in anticipation of higher future prices,

an effect that decays over time (β1T = 0)—see Figure 5a. This phenomenon is similar to

that in the reputation game, albeit in reversed form, where the sender used L to predict M .

The resulting extra persistence shapes equilibrium price impact: Λ in the proposition

features β3 augmented by β1χ + δ1χ = β1χ + χ, the sender’s history-inference effect plus

the receiver’s own trades. The appearance of χ in the latter stems from θ and M̂ becoming

more correlated over time from the perspective of “market makers,” which is a form of

history-inference effect linked to the receiver’s signaling: indeed, by not observing Y , such

price setters must construct a (second-order) belief about M̂ using the sender’s conjectured

equilibrium play.25 The sender then scales back along the β3 dimension for fear of high future

prices: in Figure 5b, α3 for σY < +∞ falls below the “no-leak” benchmark case σY = +∞.

The total signaling coefficient α3 + χ from the perspective of market makers is shown in

dashed in Figure 5b: it is low early on due to the sender’s reduced signaling and the total

history-inference effect just getting started, but it increases as the latter effect builds. As

a result, in panel 5c, price impact begins below the no-leak benchmark, but it eventually

surpasses it (falling at the end due to the market maker’s learning). For the most part, then,

high price impact is consistent with a low degree of insider trading, as we formalize next.

Proposition 7. Fix σY ∈ (0,+∞), and suppose that a LME exists over [0, T ]. For any such

LME, there exists a nonzero measure of times t for which Λleak
t > Λno leak

t .

5 Existence of Linear Markov Equilibria

In this section we show that the problem of finding LMEs is effectively one of solving a system

of ODEs carrying a mix of initial and terminal conditions—a “boundary value problem”

(BVP). We provide time horizons for which such a problem admits a solution.

Setting up a BVP We postulate a quadratic value function for the sender of the form

V (θ,m, ℓ, t) = v0t + v1tθ + v2tm+ v3tℓ+ v4tθ
2 + v5tm

2 + v6tℓ
2 + v7tθm+ v8tθℓ+ v9tmℓ,

where vi·, i = 0, ..., 9 are differentiable functions of time. We can then write the Hamilton-

Jacobi-Bellman (HJB) equation for the sender’s problem: for all t < T ,

rV = sup
a′

{
ũt(a

′,Et[ât], θ) + Vt + µM(a′)Vm + µLVℓ +
σ2
M

2
Vmm + σMσLVmℓ +

σ2
L

2
Vℓℓ

}
, (19)

25Indeed, by the representation, Cov(M̂t, θ) conditional on the public information takes the value χtγ
X
t .

27



where ũt(·) := u(·) + 1
2
uââδ

2
1tγtχt, µM(a′) and µL (respectively, σM and σL) denote the drifts

(respectively, volatilities) in (13) and (14), and ât is determined via the static best response

(16). Recall that implicit in this problem is a tuple (β0, β1, β2, β3) used by the receiver to

construct his best response and form beliefs about the sender; this tuple thus affects the

sender’s flow utility u and the drift and volatility terms in both M and L.

Let a(θ,m, ℓ, t) denote the maximizer of the right-hand side in the HJB equation. It is

easy to see that the first-order condition (FOC) reads

∂u

∂a
(a(θ,m, ℓ, t), δ0t + δ1tm+ δ2tℓ, θ) +

γtα3t

σ2
Y︸ ︷︷ ︸

dMt/dat

[v2t + 2v5tm+ v7tθ + v9tℓ]︸ ︷︷ ︸
Vm(θ,m,ℓ,t)

= 0, (20)

which is a linear equation in a(θ,m, ℓ, t) and (θ,m, ℓ). One can then solve for a(θ,m, ℓ, t) in

(20) and impose the equilibrium condition a(θ,m, ℓ, t) = β0t + β1tm+ β2tℓ+ β3tθ. Since the

resulting equation must hold at all possible values of (θ,m, ℓ), the equilibrium condition boils

down to equating the terms in each of the variables in (θ,m, ℓ) and the constant terms. This

procedure links strategy coefficients (β0, β1, β2, β3) to (v2, v5, v7, v9) in the value function.

At this stage, one can always obtain a system of ODEs for vi, i = 0, ..., 9 after returning to

the HJB equation. The structure of the problem, however, permits a reduction. Concretely:

1. We can solve for (v2, v5, v7, v9) directly in terms of β⃗ and (γ, χ) (see (C.1)-(C.4) in

the Appendix); the associated mapping is well-defined provided that α3 and γ never

vanish, which will be the case in the equilibrium we construct (more in this shortly);

2. We can then insert the expressions from the previous step into the HJB equation, along

with a(θ,m, ℓ, t) = β0t + β1tm + β2tℓ + β3tθ, to obtain a system of ODEs for both the

coefficients (β0, β1, β2, β3) and the remaining coefficients in the value function. These

ODEs are coupled with those of (γ, χ) because the learning coefficients affect the law of

motion of (M,L). The resulting system of ODEs can be further reduced by eliminating

(v0, v1, v3, v4, β0) which are “downstream” of the remaining variables.26

This procedure yields a system of ODEs for (β1, β2, β3, v6, v8, γ, χ), which can be found in

Appendix C.27 We need to complement this system with boundary conditions. First, γ and

χ satisfy exogenous initial conditions γ0 = γo > 0 and χ0 = 0 reflecting the players’ initial

26Note that (v0, v1, v4) are the coefficients of the constant, θ- and θ2-terms in the leader’s value function,
none of which the leader controls, so they have no impact on the rest of the system. Meanwhile, the equations
for (β0, v3) are coupled as these encode the deterministic component of the leader’s incentive to manipulate
beliefs, which by definition is independent of the values that the beliefs take.

27We use a change of variables there to simplify the ODEs. The fact that v6 and v8 cannot be eliminated
from the system is a consequence of the sender indirectly controlling L via changes in M (see (14)).
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uncertainty. Second, there are endogenous terminal values for the remaining variables that

are determined by the static (Bayes) Nash equilibrium played at time T . For expositional

simplicity, we provide these for the case in which there are no terminal payoffs, i.e., ψ ≡ 0:

β0T =
u0 + uaâû0
1− uaâûâa

, β1T =
uaâ[uaθûâa + ûâθ]

1− uaâûâaχT
, β2T =

u2aâûâa[uaθûâa + ûâθ](1− χT )

(1− uaâûâa)(1− uaâûâaχT )
,

β3T = uaθ, v6T = v8T = 0.

(21)

This fully specifies a BVP that the coefficients (β1, β2, β3, v6, v8), along with (γ, χ), must

satisfy in a LME. (The general expressions for the terminal conditions in the presence of a

terminal payoff are presented in Section S.3.2 in the Supplementary Appendix.)

Technical conditions on primitives and existence technique Since the players en-

gage in a static game of two-sided incomplete information at time T , a minimal requirement

is that this static game always admits an equilibrium—in the terminal conditions (21), this

amounts to all the denominators being different from zero after all possible histories of the

game, which are encoded in the value that χT takes at the endgame. For intuition, notice

that absent any incomplete information, the sender’s best-response function is linear in â

with slope uaâ, while the receiver’s counterpart has slope ûâa on a (due to uaa = ûââ = 1);

thus, the players’ best responses would (generically) never intersect if uaâûâa = 1. Since in

our setting we require that both 1 − uaâûâa and 1 − uaâûâaχT never vanish, and χT takes

values in [0, 1) (Lemma 1), the requirement that the best response functions always intersect

boils down to 1− uaâûâaχT never changing sign, and so we require that uaâûâa < 1.

Second, we want the sender to signal her type at all times. While this requirement can

be perceived as minimal too, we note also that it guarantees that there is information trans-

mission via the second-order belief channel: if α3 := β1χ+ β3 never vanishes, in equilibrium

different types do take different actions after each history of the public signal, as the sender’s

action takes the form α0 + α2L + α3θ along the path of play. As it turns out, to guarantee

that the coefficient α3 never changes sign it suffices to ensure that its terminal value α3T

never vanishes. To compute the latter, we use (21) again to obtain:

α3T = β1TχT + β3T =
uaθ + uaâûâθχT
1− uaâûâaχT

.

Since χT ∈ [0, 1), the numerator is guaranteed to never vanish when uaθ and uaθ + uaâûâθ

have the same sign.28 Our technical conditions then read as follows:

28If α3 < 0 in equilibrium, higher types take lower actions (e.g., more negative), yet naturally develop
higher second-order beliefs. This is because the weights that M attaches to past actions are negative due
to the receiver responding negatively to large realizations of Y . Also, note that we do allow the receiver to
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Assumption 2. Flow payoffs satisfy (i) uaâûaâ < 1 and (ii) uaθ(uaθ + uaâûâθ) > 0.

Establishing the existence of a solution to the BVP is nontrivial not only because solu-

tions to the ODEs must exist over the whole time horizon, but also because these solutions

must land at potentially endogenous values. This problem is particularly challenging due

to the presence of multiple ODEs in both directions: the “behavior” ODEs for (β⃗, v6, v8)

are traced backward from their terminal values by backward induction, while the “learn-

ing” ODEs for (γ, χ) are traced forward from their initial values. In BVPs where only

one variable has an initial condition and the remaining variables have terminal conditions

(or vice-versa), a traditional one-dimensional shooting argument applies: introduce a guess

variable for the candidate terminal value of the solution to the ODE going forward, trace

all variables backward in time using that guess variable as the initial condition, and argue

via the intermediate value theorem that some guess hits the target (the exogenous initial

condition). With multiple ODEs in both directions, this method does not apply.29

The problem of existence of LME, however, is fundamentally a fixed-point problem of

functions : the evolution of the learning coefficients (γ, χ) depends on the signaling that takes

place during the game, but the signaling coefficients depend on the path of the learning

coefficients because these are taken as given by the sender in the best-response problem.

Thus, we translate the BVP into a fixed-point equation in the space of functions (γ, χ).

That is, our fixed-point argument is infinite-dimensional. It works as follows.

First, we choose an arbitrary pair λ := (γ, χ) in a closed-convex domain Λ that nests

all functions (γ, χ) that can be obtained as solutions to their coupled ODEs (10)–(11) for

continuous (β1, β3) satisfying a particular uniform bound. Taking λ as an input, we “shoot

back”: we pose an initial value problem in time-reversed form consisting of the ODEs for

(β⃗, v6, v8) taking λ as an input, and where initial conditions for the ODEs are given by the

static time-T conditions of the game (which may depend on λT ). We then derive a sufficient

condition on the time horizon such that: (i) this initial value problem has a unique solution

for all λ in the domain; (ii) the solution satisfies the uniform bound referred to above (we

expand on this after the theorem); and (iii) the solution is continuous in λ. We then “shoot

forward”: we feed the resulting (β1, β3) pair into the learning ODEs for (γ, χ) to get a

solution for this system that we denote λ. As we prove, the mapping from input pairs λ to

λ is continuous, and λ lies in Λ, making Schauder’s infinite dimensional fixed-point theorem

applicable. By construction, the fixed-point coefficients found induce an LME. Figure 6

suspend information transmission, which happens when δ1 = ûâθ + ûâa[β3t + β1tχt] vanishes. Indeed, this is
not an issue: the sender simply ignores the public signal, while the second-order belief continues updating
through the use of the sender’s past history of play. That said, if this occurs, it is only temporary due to
(β1, β3) themselves changing over time—and it can never happen if exactly one of (ûâθ, ûâa) is zero.

29Special cases for which the one-dimensional shooting is applicable are discussed in Section 6.
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are traced backward that greater discounting limits their growth; we exploit this to find times

for existence that apply for all r ≥ 0. Second, the learning ODEs always admit solutions if

traced forward, but not necessarily backwards from generic values. Thus, the approach fully

exploits the natural tractability of the system in each direction: behavior determined in a

backward fashion via backward induction and Bayesian updating naturally evolving forward.

But to leverage this structure, only a subset of the ODEs can be used in each “shooting”

step, which means that candidate solutions for the remaining ODEs are needed as inputs.

The need for input functions means that the approach must be infinite dimensional.

Finally, all the steps in this existence technique can be refined: we can include more

general terminal payoffs, obtain better uniform bounds (we only use the degree of the poly-

nomials involved), and potentially find horizons of existence that increase with the discount

rate; the latter because behavior must be closer to myopic as r increases, and an LME for

myopic players exists for all T by Assumption 2.30 In the next section we discuss this method

in light of the existing literature, as well as areas for future applicability.

6 Discussion

Forward-looking receiver A forward-looking receiver would actively control L via her

actions affecting X, but no states beyond (t, M̂ , L) would be necessary for this player. Also,

the same strategies found in Applications 1 and 2 would remain an LME. To see why, consider

the coordination game, and suppose that the receiver deviates from choosing the myopic

best response Êt[at] over [t, t + dt), thus incurring in a loss over that instant. Importantly,

because the deviation is hidden, the receiver continues thinking that the sender takes actions

according to α3θ + (1 − α3)L. Since α3 is deterministic, however, only L is affected by the

deviation, but the latter state is always perfectly observed anyways. In other words, the

receiver cannot affect the informativeness of Y (α3 is unaffected), and hence cannot affect

his speed of learning. This means that the deviation does not improve the receiver’s ability

to predict at at future times, so there is no future benefit associated with the deviation. The

same logic applies to the reputation game, and more generally to prediction problems.

Proposition 8. Suppose that û(a, â, θ) = −1
2
(c0 + c1θ + c2a − â)2, with c0, c1, c2 ∈ R, and

that an LME in our baseline model exists. Then, for all r̂ ≥ 0, the same LME arises when

the receiver has the payoff
´ T
0
e−r̂tû(at, ât, θ) dt+ e−r̂T û(aT , âT , θ)

2.

30To find horizons that apply for all r ≥ 0, we perform two modifications to the BVP before constructing a
fixed point. For expositional ease, we defer a detailed explanation of those modifications and the underlying
motivation to the proof in Appendix C (see ‘Centering’ and ‘Auxiliary Variable’ steps).
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Beyond these settings, non-trivial dynamic incentives for the receiver can arise. First,

non-strategic intertemporal “smoothing” motives: e.g., if the terminal payoff were different

from the flow counterpart, a forward-looking receiver would depart more from the static

best-response as the endgame approaches, while the myopic policy would exhibit a disconti-

nuity at T . Second, more interestingly, there can be strategic incentives to manipulate the

sender’s belief. Since these incentives operate through affecting a public signal, however, they

correspond to traditional signal-jamming motives (e.g., Holmström, 1999). Importantly, our

methods can be adapted to find LME in these cases: no additional learning ODEs would

arise, but the “backward part” of the BVP would have to be augmented to account for ODEs

that characterize the (now) dynamic coefficients (δ0, δ1, δ2) in the receiver’s strategy. Our

two-step shooting method would then have to be applied to this new system.31

Private-value environments and one-dimensional shooting The presence of two

learning dynamics γ and χ is at the core of the complications behind our BVP. Economically,

this results from the players potentially signaling at very different rates, so it is natural to

examine environments with some symmetry. With private values, i.e., ûâθ = 0, the receiver

strategically cares about the sender’s action only, and so the players signal at proportional

rates (δ1 = ûâaα3). In those settings, a one-to-one mapping between γ and χ exists.

Proposition 9. If ûâθ = 0, χt =
c1c2(1−[γt/γo]d)
c1+c2[γt/γo]d

for some positive scalars c1, c2 and d. Thus,

χt ∈ [0, c2) when γt ∈ (0, γo], where c2 is increasing in σX with lim
σX→0

c2 = 0 and lim
σX→+∞

c2 = 1.

With private values, the shooting problem is one-dimensional and traditional continuity

arguments apply—see Bonatti et al. (2017). Three observations are instructive. First, the

upper bound c2 for χ confirms our intuition that less weight is given to the type when the

public signal improves. Second, while the multidimensional case is both conceptually and

technically more challenging, the general horizons for which we can guarantee the existence

of LME in Theorem 1 are of the same order as in the one-dimensional case. The reason

is that the horizons found are pinned down, in both settings, by uniformly bounding the

ODEs associated with the behavior coefficients exclusively (i.e., the dependence of the learn-

ing ODEs is only implicit); thus, our infinite-dimensional method establishes itself as the

“right” extension of the one-dimensional shooting case. Third, Proposition 9 is a contribu-

tion in itself: analog results for first-order private beliefs had been derived in settings where

types come from symmetric distributions (e.g., Foster and Viswanathan, 1996); instead, the

sender’s type is fixed and exogenous here, while the receiver’s type is evolving and its dis-

31See spm.nb on our websites. There, (as discussed) the system is stated in terms of the value function
coefficients (rather than the strategy counterparts) because that domain is more convenient for the receiver’s
problem. (This stems from the fact that χ = 0 at t = 0, and thus the receiver cannot initially affect L.)
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tribution determined in equilibrium. More generally, by extending to a second-order belief

and involving a system of ODEs, our representation is a novel result in the literature.

Further applications of the existence technique Our fixed-point technique is useful in

BVPs featuring multiple ODEs in both directions, and where a non-trivial feedback between

the forward and backward components is at play. LQG games of incomplete information are a

natural area of exploitation—forward ODEs encoding learning, with backward counterparts

arising from quadratic value functions—and there are two sub-areas in which our methods

immediately apply. First, games of one-sided noisy signaling involving multidimensional

types: there, the receiver would in general need to keep track of a nontrivial variance-

covariance matrix when updating from a linear strategy in the multidimensional type of an

informed player. Second, in games with multi-sided private information and noisy public

signals, where types have different prior variances: any player would again have to construct

a variance-covariance matrix to form beliefs about rivals, as different precisions of prior

beliefs are a natural trigger for different signaling rates.32 In both cases, such a matrix

evolves deterministically; but in the second, beliefs can be private.

That said, our methods can be applied to other economic settings, the constraint being

that equilibrium variables must be encoded in a system of ODEs. One potential area of study

are models of search and bargaining in continuous time, akin to Duffie et al. (2005), who study

over-the-counter markets. There, different agents’ (investors, dealers) willingness to pay for

an asset satisfy ODEs stemming from Bellman equations. Such “behavior” ODEs depend on

the masses of agents looking to buy/sell an asset, because the number of agents determine

the contact rates—and hence, changes in utility—when matching is random; further, these

masses can also obey deterministic dynamics. With stationary solutions as the typical object

of study, the ODEs becomes algebraic equations and the distinction between forward and

backward ODEs is absent. Out of steady state, however, this need not be the case: if a

crisis hits and, say, some dealers are not willing to intermediate, the initial size of the dealer

segment will matter for recovery. Further, if subsequent entry is allowed, this decision will

naturally depend on future market profitability—utilities now enter the ODEs that govern

the evolution of the aforementioned masses, and a full feedback is at play.33 Finite horizon

versions of settings like these can be used to approximate an infinite horizon market.34

32See Cetemen (2020), who uses a finite-dimensional fixed-point method from an earlier version of our pa-
per, suited for undiscounted games. Multiple learning variables also arise in Foster and Viswanathan (1994),
where types can be multi-dimensional and asymmetric; their fixed-point problem is confronted numerically.

33Our fixed point arises from behavior depending on past learning, which depends on past behavior, which
depends on future learning/behavior via backward induction. This temporal circularity arises at the filtering
stage in LQG macroeconomic models with forward-looking variables (Svensson and Woodford, 2003).

34Bonatti et al. (2017) use this “sequence” approach to show the existence of an LME in an infinite-horizon
version of their model of dynamic oligopoly with incomplete information.
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Private-public information structure Our mixed private-public information structure

is crucial for closing the state space at the level of the sender’s second-order belief. If instead

the receiver’s actions were privately monitored, the receiver would have to resort to his past

history of play to forecast the sender’s “M” (as opposed to using our representation). The

problem is that the resulting linear aggregate of past actions can become a non-trivial state

variable: because past actions carry the receiver’s past beliefs, and beliefs change over time,

the linear aggregate need not coincide with the receiver’s contemporaneous first-order belief.

This means that the sender has to form a second type of second-order belief—one about a

historical average of past values of the receiver’s first-order belief—which the receiver would

have to forecast again relying on his past play, and so forth. So, not only would the players

have to move up in the belief hierarchy (e.g., the receiver constructing a non-trivial third-

order belief), but in their forecasting exercises the players also would move “horizontally,”

constructing different types of first- and second-order beliefs. Whether this information

structure is manageable—and, equally important, how relevant for behavior and outcomes

is this movement up and across the belief hierarchy—is an open question.

7 Concluding Remarks

We have developed a dynamic model of strategic behavior that is at the intersection of

two long-standing areas in game theory: signaling and private monitoring games. With

respect to signaling games, we have uncovered a new higher-order belief channel for sepa-

ration. Importantly, this channel rests on an intuitive logic: when agents need to rely on

their past actions to forecast what others have seen, different types necessarily develop dif-

ferent beliefs—despite this clearly being the generic case (rarely is all information public),

this area has largely been unexplored. On the other hand, with respect to private mon-

itoring games, our setup demonstrates that examining asymmetric environments—here, a

combination of one-sided incomplete information with one-sided private monitoring—can be

a fruitful endeavor, especially if the focus is on studying equilibria that are belief-based.

The tractability of a linear-quadratic-Gaussian structure has been key in this regard.

While LQG models have been exploited in many static settings, it is far less obvious what

to expect in dynamic environments featuring complex information structures like ours. This

paper demonstrates that, despite the substantial gap in difficulty when transitioning to the

latter world, it is still possible to obtain new answers and insights, while at the same time

contributing methodological tools that can be implemented in other domains. It is our belief

that the stylized nature of these games, rather than being a limitation, is an asset that helps

uncover forces that are robust to other, more nonlinear settings.
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Appendix A: Proofs for Section 3

Preliminary results. We state standard results on ODEs (Teschl, 2012) which we use in

the proofs that follow. Let f(t, x) be continuous from [0, T ]× Rn to Rn, where T > 0.

- Peano’s Theorem (Theorem 2.19, p. 56): There exists T ′ ∈ (0, T ), such that there is

at least one solution to the IVP ẋ = f(t, x), x(0) = x0 over t ∈ [0, T ′).

If, moreover, f is locally Lipschitz continuous in x, uniformly in t, then:

- Picard-Lindelöf Theorem (Theorem 2.2, p. 38): For (t0, x0) ∈ [0, T ) × Rn, there is an

open interval I over which the IVP ẋ = f(t, x), x(t0) = x0 admits a unique solution.

- Comparison theorem (Theorem 1.3, p. 27): If x(·), y(·) are differentiable, x(t0) ≤ y(t0)

for some t0 ∈ [0, T ), and ẋt − f(t, x(t)) ≤ ẏt − f(t, y(t)) ∀t ∈ [t0, T ), then x(t) ≤ y(t)

∀t ∈ [t0, T ). If, moreover, x(t) < y(t) for some t ∈ [t0, T ), then x(s) < y(s) ∀s ∈ [t, T ).

Proof of Lemma 1. Let L in (7) denote a process that is measurable with respect to X.

Inserting (7) into (5) yields at = α0t+α2tLt+α3tθ which the receiver thinks drives Y , where

α0t = β0t, α2t = β2t + β1t(1− χt), and α3t = β3t + β1tχt.

The receiver’s filtering problem is then conditionally Gaussian. Specifically, define

dŶt := dYt − [α0t + α2tLt]dt = α3tθdt+ σY dZ
Y
t ,

which are in the receiver’s information set, and where the last equalities hold from his

perspective. By Theorems 12.6 and 12.7 in Liptser and Shiryaev (1977), his posterior belief

is Gaussian with mean M̂t and variance γ1t (simply γt in the main body) that evolve as

dM̂t =
α3tγ1t
σ2
Y

[dŶt − α3tM̂tdt] and ˙γ1t = −γ
2
1tα

2
3t

σ2
Y

. (A.1)

(These expressions still hold after deviations, which go undetected.)

The sender can affect M̂t via her choice of actions. Indeed, using that dŶt = (at − α0t −
α2tLt)dt+ σY dZ

Y
t from her standpoint,

dM̂t = (κ0t + κ1tat + κ2tM̂t)dt+BY
t dZ

Y
t , where (A.2)

κ1t = α3tγ1t/σ
2
Y , κ0t = −κ1t[α0t + α2tLt], κ2t = −α3tκ1t, B

Y
t = α3tγ1t/σY . (A.3)

On the other hand, since the sender always thinks that the receiver is on path, the public

signal evolves, from her perspective, as dXt = (δ0t+δ1tM̂tdt+δ2tLt)dt+σXdZ
X
t . Because the

dynamics of M̂ and X have drifts that are affine in M̂—with intercepts and slopes that are in

the sender’s information set—and deterministic volatilities, the pair (M̂,X) is conditionally
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Gaussian. Thus, by the filtering equations in Theorem 12.7 in Liptser and Shiryaev (1977),

Mt := Et[M̂t] and γ2t := Et[(Mt − M̂t)
2] satisfy

dMt = (κ0t + κ1tat + κ2tMt)dt︸ ︷︷ ︸
=Et[(κ0t+κ1tat+κ2tM̂t)dt]

+
γ2tδ1t
σ2
X

[dXt − (δ0t + δ1tMt + δ2tLt)dt] (A.4)

γ̇2t = 2κ2tγ2t + (BY
t )

2 − (γ2tδ1t/σX)
2 , (A.5)

where dZt := [dXt − (δ0t + δ1tMt + δ2tLt)dt]/σX is a Brownian motion from the sender’s

standpoint.35 Observe that since (A.4) is linear, one can solve for Mt as an explicit function

of past actions (as)s<t and past realizations of the public history (Xs)s<t.

Inserting at = β0t + β1tMt + β2tLt + β3tθ in (A.4) and collecting terms yields dMt =

[κ̂0t + κ̂1tMt + κ̂2tLt + κ̂3tθ]dt+ B̂tdXt, where,

κ̂0t =

(
α3tγ1t
σ2
Y

)
(β0t − α0t)− δ0t

γ2tδ1t
σ2
X

κ̂1t =

(
α3tγ1t
σ2
Y

)
(β1t − α3t)− δ1t

γ2tδ1t
σ2
X

κ̂2t =

(
α3tγ1t
σ2
Y

)
(β2t − α2t)− δ2t

γ2tδ1t
σ2
X

κ̂3t =

(
α3tγ1t
σ2
Y

)
β3t, B̂t =

γ2tδ1t
σ2
X

.

Now let R(t, s) = exp(
´ t
s
κ̂1udu). Since M0 = µ, we have

Mt = R(t, 0)µ+ θ

ˆ t

0

R(t, s)κ̂3sds+

ˆ t

0

R(t, s)[κ̂0s + κ̂2sLs]ds+

ˆ t

0

R(t, s)B̂sdXs.

Imposing (7) yields the equations

χt =

ˆ t

0

R(t, s)κ̂3sds

Lt = [R(t, 0)µ+

ˆ t

0

R(t, s)[κ̂0s + κ̂2sLs]ds+

ˆ t

0

R(t, s)B̂sdXs]/[1− χt].

The validity of the construction boils down to finding a solution to the previously stated

35Theorem 12.7 in Liptser and Shiryaev (1977) is stated for actions that depend on (θ,X) exclusively,

but it also applies to those that condition on past play (i.e., on M). Indeed, from (A.2), M̂t = M̂†
t + At

where M̂†
t = M̂†

t [Z
Y
t ; s < t] and At =

´ t
0
e
´ s
0
κ2uduκ1sasds. Applying the theorem to (M̂†

t , Xt)t∈[0,T ], yields a

posterior mean M†
t and variance γ†2t for M̂

† such that M† +At =Mt as in (A.4) and γ2t = γ†2t.
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equation for χ that takes values in [0, 1). Indeed, when this is the case, it is easy to see that

dLt =
Lt[κ̂1t + κ̂2t + κ̂3t]dt+ κ̂0tdt+ B̂tdXt

1− χt
, (A.6)

from which it is easy to conclude that L is a (linear) function of X as conjectured.

We will find a solution to the χ-equation that is C1 with values in [0, 1). Differentiating

χt =
´ t
0
R(t, s)κ̂3sds then yields an ODE for χ as below that is coupled with γ1 and γ2:

γ̇1t = −γ21t(β3t + β1tχt)
2/σ2

Y (A.7)

γ̇2t = −2γ2tγ1t(β3t + β1tχt)
2/σ2

Y + γ21t(β3t + β1tχt)
2/σ2

Y − (γ2tδ1t)
2 /σ2

X (A.8)

χ̇t = γ1t(β3t + β1tχt)
2(1− χt)/σ

2
Y − (δ1tχt) (γ2tδ1t) /σ

2
X . (A.9)

In the proof of Lemma A.1, we take the system above as a primitive and establish that

χ = γ2/γ1. Equipped with this, we set γ2 = χγ1 in the third ODE, and after writing γ for

γ1, the first and third ODEs become (10)–(11). The same Lemma A.1 further establishes

the bounds 0 < γt ≤ γo and 0 ≤ χt < 1, with strict inequalities for all t > 0 if β3,0 ̸= 0.

Using (i)–(v) that define (⃗̂κ, B̂), (A.6) becomes dLt = (ℓ0t + ℓ1tLt)dt+BtdXt, where

l0t = − γtχtδ0tδ1t
σ2
X(1− χt)

, l1t = −γtχtδ1t(δ1t + δ2t)

σ2
X(1− χt)

, Bt =
γtχtδ1t

σ2
X(1− χt)

. (A.10)

That Lt coincides with E[θ|FX
t ] is proved in the Supplementary Appendix. □

Proof of Lemma 2. Using (A.3), (A.4) becomes

dMt =
γtα3t

σ2
Y

(at − [α0t + α2tLt + α3tMt])dt+
χtγtδ1t
σX

dZt,

where dZt := [dXt − (δ0t + δ1tMt + δ2tLt)dt]/σX a Brownian motion from the sender’s

standpoint. As for the law of motion of L, this follows from (12) using (A.10) and that

dXt = (δ0t + δ2tLt + δ1tMt)dt+ σXdZt from the sender’s perspective.

We conclude with three observations. First, from (A.2) and (A.4), M̂t−Mt is independent

of the strategy followed, and hence so is Zt due to σXdZt = δ1t(M̂t −Mt)dt+ σXdZ
X
t under

the true data-generating process. This strategic independence enables us to fix an exogenous

Brownian motion Z and then solve the best-response problem with Z in the laws of motion

of M and L—i.e., the so-called separation principle for control problems with unobserved

states applies (see, for instance, Liptser and Shiryaev, 1977, Chapter 16).

Second, it is clear from (15), (A.4)–(A.5), and the proof of Lemma A.1 that no additional

38



state variables are needed due to γ2t := Et[(Mt − M̂t)
2] = χtγt holding irrespective of the

strategy chosen. Third, the set of admissible strategies for the best-response problem then

consists of all square-integrable processes that are progressively measurable with respect to

(θ,M,L). This set is clearly the appropriate set, and richer than that in Definition 1. □

Lemma A.1 (Learning ODEs). Suppose that (β1, β3, δ1) are differentiable. Then, there is

a unique solution to (10)–(11), and this solution satisfies 0 < γt ≤ γo and 0 ≤ χt < 1 for

all t ∈ [0, T ], with strict inequalities over (0, T ] if β3,0 ̸= 0. The same conclusions hold if

δ1t = ûâθ + ûaâα3t.

Proof. Consider the system in (γ1, γ2, χ) from the proof of Lemma 1. By Peano’s Theorem,

a solution exists in some interval [0, T ′) where T ′ > 0. And since the system is locally

Lipschitz continuous in (γ1, γ2, χ) uniformly in t ∈ [0, T ], the solution is unique over any

interval of existence by the Picard-Lindelöf Theorem. By applying the comparison theorem

to γ1 and the zero function, we obtain γ1 > 0; and clearly, γ̇1 ≤ 0 so γ1 ≤ γo. Hence, γ2/γ1 is

well-defined, and it is easy to verify that it satisfies the χ-ODE. Since the solution is unique

whenever it exists, we conclude that χ = γ2/γ1, as promised in Lemma 1; in other words,

χt = Et[(M − M̂)2]/Ê[(θ− M̂)2]. We can therefore substitute γ2 = χγ1 into (A.7) and (A.9)

and abbreviate γ1 to γ to obtain (10)-(11). Next, we apply the comparison theorem to (11):

first, with the zero function, we obtain 0 ≤ χ, and second, with the constant function 1, we

obtain χ < 1.

Using these bounds, we argue that the solution to (10)-(11) exists over [0, T ]. Suppose

by way of contradiction that the maximum interval of existence is [0, T̃ ). Then since (γ, χ)

and their derivatives are bounded, the solution can be extended to T̃ . If T̃ = T , we are done,

and if T̃ < T , by Peano’s Theorem the solution can be further extended to T̃ + ϵ for some

ϵ > 0, contradicting that [0, T̃ ) is the maximum interval of existence. We conclude that the

solution exists over the whole horizon [0, T ].

If, moreover, β3,0 ̸= 0, then γ̇1,0 < 0 and χ̇0 > 0. Hence, by continuity of γ̇1 and χ̇, there

exists ϵ > 0 such that γ1t < γo and χt > 0 for all t ∈ (0, ϵ), and by the comparison theorem,

these strict inequalities hold up to time T .

Lastly, suppose that δ1t = ûâθ + ûaâα3t = ûâθ + ûaâ(β1tχt + β3t), where (β1, β3) are

differentiable. Then the system (10)-(11) changes in that the functional form of the operator

is altered, but importantly, it still satisfies the conditions for the Peano and Picard-Lindelöf

theorems, and the arguments above go through.
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Appendix B: Proofs for Section 4

In this section, we prove Proposition 1, and we highlight the main steps for proving Propo-

sition 2; the corner cases of the reputation game follow similar steps. All other results and

assertions made in Section 4 are proved in the Supplementary Appendix.

Proof of Proposition 1. As in the proof of Theorem 1, by the Picard-Lindelöf theorem applied

to the time-reversed ODEs, the strategy coefficients are pinned down by their terminal

values. It is straightforward to check that (β0, v1, v3) = (0, 0, 0), v6 = σ2
Y [−1 + 2β1(1− χ) +

α3]/(4α3γ)−v8/2 and β2 = 1−β1−β3 satisfy their respective ODEs and terminal conditions

in any LME, so by uniqueness, we have β0 = 0 and β1 + β2 + β3 = 1. As for α3, note that

its terminal value is β1TχT + β3T = 1
2−χT

> 0, and its ODE is

α̇3t = rα3t[α3t(2− χt)− 1]− 2α3
3tγtχt

σ2
Xσ

2
Y (1− χt)

{
σ2
Y χt[1− α3t − β1t(1− χt)] + α3tγtv8t

}
.

Applying the comparison theorem to α3 (going backward in time) establishes α3 > 0. Now

on the equilibrium path, at = α3tθ + α2tLt = α3tθ + (1− α3t)Lt, where α2 ≡ 1− α3 follows

from β1 + β2 + β3 = 1. The receiver thus plays ât = Êt[at] = α3tM̂t + α2tLt.

For the non-monotonicity result, assume r > 0. Using the strict inequalities in Lemma

A.1, we have α3T > 1/2 and α̇3T = − 2α3
3T γTχT

σ2
Xσ

2
Y (1−χT )

{
σ2
Y χT

1−χT

2(2−χT )

}
< 0 (i.e. α3 is eventually

decreasing). Now at t = 0, we have χ0 = 0 and thus α̇3,0 = rα3,0(2α3,0 − 1); it follows that

α̇3,0 > 0 iff α3,0 >
1
2
. Consider two cases: (i) α3,0 >

1
2
and (ii) α3,0 ≤ 1

2
. In case (i), we have

α̇3,0 > 0. In case (ii), we have α3T >
1
2
≥ α3,0, so by the mean value theorem, α̇3t > 0 for

some t ∈ (0, T ). In either case, since α̇3T < 0, α3 is non-monotonic.

For the last statement in the proposition, we make use of the proof of Theorem 1 and

(within it) the proof of Theorem C.1. Fixing ρ,K > 0, for sufficiently small T , it guarantees

the existence of a solution to the BVP in (γ, χ, β1, β̃2, β3, v6, v8) (where β̃2 := β2/(1 − χ))

with the following properties: the sender’s strategy coefficients (β1, β̃2, β3) differ from their

myopic counterparts (βm1t , β̃
m
2t , β

m
3t) =

(
1

2(2−χt)
, 1
2(2−χt)

, 1
2

)
by at most K; (βm1 , β̃

m
2 , β

m
3 ) are

bounded in magnitude by ρ; and (γ, χ) are Lipschitz continuous with uniform Lipschitz

constants (i.e., constants that depend on ρ and K but not T ). Hence, given any constant

K, for sufficiently small horizons, we can also ensure that |γt − γo| ≤ K and |χt| ≤ K. Now

as χT → 0, we have β1T → 1/4, β̃2T → 1/4, and α3T → 1/2, while β3T = 1/2, so choosing K

and T sufficiently small, (βm1 , β̃
m
2 , β

m
3 ) can be made arbitrarily close to those same values. In

turn, since (β1, β̃2, β3) and (βm1 , β̃
m
2 , β

m
3 ) differ by at most K, choosing K and T sufficiently

small ensures that β3t and α3t lie in (0, 1) and β1t and β̃2t lie in (0, 1/2); the latter implies

β2 = (1− χt)β̃2t ∈ (0, 1/2).
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To bound β3 below by 1/2, write the ODE for β3 as β̇3t = fβ3(γ, χ, β1, β̃2, β3, v6, v8), where

fβ3 is of class C1. It is easy to check that fβ3(z0) < 0, where z0 := (γo, 0, 1/4, 1/4, 1/2, 0, 0).

Hence, for sufficiently small K and associated T as above, β3 is strictly decreasing. Given

β3T = 1/2, this implies β3t ≥ 1/2 for all t.

Next, we highlight the main steps for characterizing LME of the coordination game in

the cases σX = 0 and σX = +∞, where the resulting boundary value problem is simpler.

Omitted details can be found in the Supplementary Appendix.

Main steps for σX = 0 case We aim to characterize an LME in which the leader backs

out the follower’s belief from his action at all times, with strategies of the form at = β0t +

β1tM̂t + β3tθ and ât = Êt[at] = β0t + (β1t + β3t)M̂t, where β1t + β3t ̸= 0, t ∈ [0, T ]. The laws

of motion for the follower’s belief are

dM̂t =
β3tγt
σ2
Y

{dYt − [(β0t + (β1t + β3t)M̂t)︸ ︷︷ ︸
=Êt[at]

dt]} and γ̇t = −
(
β3tγt
σY

)2

, (B.1)

with initial values M̂0 = µ and γ0 = γo. Clearly, (θ, M̂t, t) are the relevant states for the

leader’s problem, as M̂t is public. Let V : R2× [0, T ] → R denote the leader’s value function.

Given the law of motion for M̂t, the HJB equation is

rV = sup
a∈R

{
1

4
[−(a− θ)2 − (a− ât)

2] +
β3tγt
σ2
Y

[a− β0t − (β1t + β3t)m]Vm +
β2
3tγ

2
t

2σ2
Y

Vmm + Vt

}
.

We guess a quadratic solution V (θ,m, t) = v0t+v1tθ+v2tm+v3tθ
2+v4tm

2+v5tθm and derive a

system of ODEs for (β0, β1, β3) subject to terminal conditions (β0T , β1T , β3T ) = (0, 1/2, 1/2);

these ODEs depend on γ, which evolves according to γ̇t = −γ2t β2
3t/σ

2
Y with initial condition

γ0 = γo. The key step for establishing existence is establishing a solution to this BVP; after

that, it is easy to recover the value function coefficients.

Since this BVP only involes one ODE going forward, it can be solved using a traditional

shooting method. Specifically, we transform it into a backward IVP by reversing time and

using a parametrized initial value for γ. We then show that by the intermediate value

theorem, there is γF > 0 such that γT = γo in the backward system while all the other

ODEs admit solutions. As in Bonatti et al. (2017), it suffices to show that the solutions

are uniformly bounded when γt ∈ [0, γo] for t ∈ [0, T ]. Using the comparison theorem, we

show that β0, β1, β3 ∈ [0, 1] as long as γ does not explode, so there exists a solution to the

BVP, and hence an LME. The remaining arguments are carried out in the Supplementary

Appendix.
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Main steps for σX = +∞ case We look for an equilibrium in which the leader plays

at = β1tMt+β2tµ+β3tθ. We first derive a representation for the leader’s second-order belief.

Lemma B.1 (Belief Representation). Assume σX = +∞. Suppose the follower expects at =

α2tµ+α3tθ, where α2 = β2+β1(1−χ), α3 = β3+β1χ, χ = 1−γ/γo, and γt := Êt[(θ−M̂t)
2].

Then γ̇t = −
(
γtα3t

σ2
Y

)2
. Moreover, if the leader follows at = α2tµ+α3tθ, Mt = χtθ+(1−χt)µ

holds at all times.

The states (θ,Mt, t) are sufficient on and off path for the leader, since the follower’s

strategy will be linear in (µ, M̂t), and then in the leader’s expected flow payoff, Et[M̂t] =Mt

and Et[M̂2
t ] =M2

t +γtχt after all private histories. (See Supplementary Appendix for details.)

We can now set up the HJB equation. The leader controls M , which evolves as

dMt =
α3tγt
σ2
Y

(a− α2tµ− α3tMt) dt

with M0 = µ. The HJB equation is thus

rV = sup
a∈R

{
1

4
[−(a− θ)2 −

(
a2 − 2a[α2tµ+ α3tm] + α2

2tµ
2 + 2α2tα3tµm+ α2

3t[m
2 + γtχt]

)
]

+Vt +
α3tγt
σ2
Y

(a− α2tµ− α3tm)Vm

}
.

We then guess V (θ,m, µ, t) = v0t+v1tθ+v2tm+v3tµ+v4tθ
2+v5tm

2+v6tµ
2+v7tθm+v8tθµ+

v9tmµ and take analogous steps to those in the proof for the σX = 0 case. In particular, we

obtain a boundary value problem in (β1, β2, β3, γ), transform it in to an initial value problem,

and solve it using the same one-dimensional shooting method as for σX = 0 case.

Appendix C: Proofs for Section 5

Overview of approach Our overall proof strategy consists of reducing the HJB equation

(19) subject to the equilibrium condition (20) to a suitable boundary value problem that we

then solve using a fixed-point argument. The BVP will contain ODEs linked to behavior—

hence, involving terminal conditions—and also the learning ODEs for (γ, χ) that have initial

conditions. The fixed point will be over pairs of functions (γ, χ): a pair (γ∗, χ∗) that generates

mutual best responses that in turn induce learning ODEs whose solution is (γ∗, χ∗).

This overarching goal requires several intermediate steps, which we label core subsystem,

centering, auxiliary variable, fixed point and verification; we provide brief explanations of
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these when they arise. Throughout the proof, we refer to the myopic equilibrium coefficients

(βm0t , β
m
1t , β

m
2t , β

m
3t) =

(
u0 + uaâû0
1− uaâûaâ

,
uaâ(uaθûaâ + ûâθ)

1− uaâûaâχt
,
u2aâûaâ(uaθûaâ + ûâθ)(1− χt)

(1− uaâûaâ)(1− uaâûaâχt)
, uaθ

)
,

which correspond to the sender’s strategy coefficients in the unique linear Bayes Nash equilib-

rium involving states (θ,M, M̂, L) of the static game with flow utilities (u, û) if the receiver

believes Mt = χtθt + (1 − χt)Lt. By Assumption 2, (βm0t , β
m
1t , β

m
2t , β

m
3t) is well defined and

αmt := βm1tχt + βm3t ̸= 0 for all χt ∈ [0, 1]. Henceforth, given χt, we write βmit and αmt to refer

to these functions of χt, suppressing the dependence on χt, and we abbreviate α3 to α.

Core subsystem: We show that the problem of existence of LME reduces to a core subsystem

in (γ, χ, β⃗, v6, v8), where β⃗ := (β1, β2, β3), and perform a change of variables for (β2, v6, v8);

we denote the new system by (γ, χ, β1, β̃2, β3, ṽ6, ṽ8).

The first thing to note is that αt := β1tχt+ β3t ̸= 0 for all t ∈ [0, T ] in any LME. Indeed,

if αt = 0, it is then easy to verify from the HJB equation that βit = βmit for i ∈ {0, 1, 2, 3}:
since the sender’s actions transmit no information, both players must be using myopic best

responses. But this implies that αt = αmt ̸= 0 in such an LME, a contradiction. Second,

since the coefficients (β0, β1, β2, β3) and χ will be continuous, it follows that γt > 0 at all

times by Lemma A.1. From the HJB equation, it is easy to see that

v2t = −σ2
Y [uac + uaâûâc − (1− uaâûaâ)β0t]/(αtγt) (C.1)

v5t = −σ2
Y [uaâûâθ + uaâûaâαt − β1t]/(2αtγt) (C.2)

v7t = −σ2
Y [uaθ − β3t]/(αtγt) (C.3)

v9t = −σ2
Y [uaâûaâβ1t(1− χt)− β2t(1− uaâûaâ)]/(αtγt). (C.4)

Expressions (C.1)-(C.4) allow us to eliminate vi and v̇i, i ∈ {2, 5, 7, 9}, in the HJB equation

to get a system of ODEs for (γ, χ, β0, β⃗, v0, v1, v3, v4, v6, v8)—as a last step we verify that our

(α, γ) satisfy |αt||γt| > 0 all t ∈ [0, T ], recovering the value function through (C.1)-(C.4).

The expressions in this system can be found in the Mathematica file spm.nb on our

websites—we omit them in favor of stating the core subsystem with which we will be working

below. The omitted system has three properties easily verified by inspection in the same file:

(i) the ODEs for (β⃗, v6, v8) do not contain (v0, v1, v3, v4, β0);

(ii) given (β⃗, v6, v8), (v0, v1, v3, v4, β0) form a non-homogeneous linear ODE system; and

(iii) (β⃗, v6, v8) carries (1− χ) in the denominator.

Parts (i) and (ii) imply that we can focus on the sub-system (β⃗, v6, v8), as any linear

system with continuous coefficients admits a unique solution for all times (Teschl, 2012,
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Corollary 2.6).36 Part (iii) reflects that the dynamic for L carries a denominator of that

form; by Lemma A.1, however, we know that χ ∈ [0, 1) if the coefficients are continuous.

It is then convenient to use the change of variables (β̃2, ṽ6, ṽ8) = (β2/(1 − χ), v6γ/(1 −
χ)2, v8γ/(1− χ)) that eliminates this denominator in the resulting system for the functions

(γ, χ, β1, β̃2, β3, ṽ6, ṽ8)—because (χ, γ) only depend on (β1, β3) directly, it follows that χ ∈
[0, 1) and γ > 0 in any solution to this system, and we trivially recover (β2, v6, v8).

37

We can now state the core subsystem of ODEs for (γ, χ, β1, β̃2, β3, ṽ6, ṽ8) with which we

will be working. Recall that δ1t = ûâθ + ûaâ(β1tχt + β3t).

˙̃v6t = ṽ6t[r + α2
tγt/σ

2
Y + 2δ21tγtχt/σ

2
X ]− (γt/2)

{
β2
1tûaâ[2uaâ + uââûaâ]

+β̃2t(2β1t + β̃2t)[−1 + 2uaâûaâ + uââû
2
aâ]
}

˙̃v8t = ṽ8t[r + δ21tγtχt/σ
2
X ]− γt

{
(β̃2 + β1t)[uaθ + uâθûaâ]− β1tβ3t

}
β̇1t = r

αt
αmt

[β1t − βm1t ]− γt[σ
2
Xσ

2
Y (uaθ + uaâûâθχt)]

−1×{
β̃2t2(1− uaâûaâ)σ

2
Y δ

2
1tχt(uaθ + β1tχt) + β2

1t[σ
2
Xαt(uaθ + uaâûâθχt) + (1− 2uaâûaâ)σ

2
Y δ

2
1tχ

2
t ]

+β1tσ
2
Xαt[ûaâ(uaâ + uââûaâ)α

2
tχt + ûâθ(uâθ + uââûâθχt) + αt(−uaθ + uâθûaâ + 2uââûaâûâθχt)]

−β1tσ2
Y uaâδ

2
1tχt(2uaθûaâ + ûâθχt) + δ21tṽ8tαtχt(β1t − uaâûâθ)

−σ2
Xδ1tαt[uaâ(uâθûâθ − uaθαt)− uââuaθδ1t]

}
.

˙̃β2t = r
αt
αmt

[β̃2t − β̃m2t ]− γt[σ
2
Xσ

2
Y (uaθ + uaâûâθχt)(1− uaâûaâ)]

−1×{
δ21tαtχt[2ṽ6t(uaθ + uaâûâθχt)− u2aâûaâûâθṽ8t]

+β̃2tσ
2
Xαt[ûaâ(1− uaâûaâ)(uaâ + uââûaâ)α

2
tχt + ûâθ(uâθ + uaâuaθ − uaâuâθûaâ + uââuaθûaâ

+[u2aâ + uââ]ûâθχt) + αt(uâθûaâ[1− uaâûaâ] + uaθ[−1 + 2uaâûaâ + uââû
2
aâ]

+ûaâûâθχt[u
2
aâ + 2uââ − uaâuââûaâ])] + δ1t[σ

2
Xuaâûaâαt(uaθuââδ1t + uaâ[uaθαt − uâθûâθ])]

−β̃2tσ2
Y (1− uaâûaâ)δ

2
1tχt[uaθ(1− 2uaâûaâ) + χt(uaâûâθ − β1t[1− 2uaâûaâ])]

+αt(1− uaâûaâ)[β̃2tṽ8tδ
2
1tχt − σ2

Xβ
2
1t(uaθ + uaâûâθχt)] + 2σ2

Y δ
2
1tβ̃

2
2tχ

2
t (1− uaâûaâ)

2

+β1tδ1t[σ
2
Xαt(uaâ + uââûaâ)(uaθ + uaâûâθχt) + σ2

Y δ1tχtuaâuaθûaâ(1− 2uaâûaâ)]
}

36Intuitively, (v0, v1, v4) are the coefficients of the constant, θ- and θ2-terms in the sender’s value function,
none of which the sender controls, so they do not affect the rest of the system. The equations for (β0, v3)
are coupled and encode the deterministic component of the sender’s incentive to manipulate beliefs; they do
not enter the sub-system for (β⃗, v6, v8) but depend on the latter through the signal-to-noise ratio in Y .

37Our method for finding intervals of existence of LME relies on bounding solutions to ODEs uniformly,
and this denominator would unnecessarily complicate that task since there is no upper bound on 1/(1− χ)
that applies to all environments. This change of variables is akin to working with L̃ = (1−χ)L instead of L.
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β̇3t = r
αt
αmt

[β3t − βm3t ]− γt[σ
2
Xσ

2
Y (uaθ + uaâûâθχt)]

−1×{
β̃2t2(1− uaâûaâ)σ

2
Y δ

2
1tχ

2
t (β3t − uaθ)− β2

1tχt[σ
2
Xαt(uaθ + uaâûâθχt) + σ2

Y δ
2
1tχ

2
t (1− 2uaâûaâ)]

−β1tαtσ2
X [ûaâ(uaâ + uââûaâ)α

2
tχ

2
t + ûâθχt(uâθ + uââûâθχt)

+αt([uâθûaâ − uaâûâθ]χt − uaθ + [uaâ + 2uââûaâ]ûâθχ
2
t )]− β1tδ

2
1tχ

2
tσ

2
Y (1− 2uaâûaâ)(uaθ − αt)

+δ21tαtχtṽ8t(β3t + χtuaâûâθ) + σ2
Xδ1tαt[(uaâuâθ − uââuaθ)ûâθχt + (uaâ + uââûaâ)α

2
tχt

+αt(uâθ − χt[uaθ(uaâ + uââûaâ)− uââûâθ])]
}

γ̇t = −(β1tχt + β3t)
2γ2t /σ

2
Y , χ̇t = γt

[
(β1tχt + β3t)

2(1− χt)/σ
2
Y − δ21tχ

2
t/σ

2
X

]
.

This system has two initial conditions (γ0, χ0) = (γo, 0). It also has terminal conditions

for (β1T , β̃2T , β3T , ṽ6T , ṽ8T ) that depend on whether there are terminal payoffs. In what

follows, we focus on the case without terminal payoffs—i.e., where the terminal conditions are

(βm1T , β̃
m
2T , β

m
3T , 0, 0)—postponing the discussion of terminal payoffs to the end of the analysis.

We note that the remaining denominators never vanish thanks to Assumption 2, and that all

the ODEs carry r-independent terms that scale linearly in γ; this latter property will allow

us to find horizons for existence that are inversely proportional to γo.

Centering: To exploit discounting, we focus on the centered system (γ, χ, βc1, β̃
c
2, β

c
3, ṽ6, ṽ8),

where (βc1, β̃
c
2, β

c
3) denotes (β1, β̃2, β3) net of the myopic counterpart. The tuple (β1, β̃2, β3)

is constructed going backward in time from its terminal value as with backward induction

in discrete time. One would expect higher discount rates to pull these coefficients towards

the myopic values more strongly, thereby facilitating the existence of LME. Indeed, the

term −r α
αm (βi − βmi ) in the time-reversed version of the βi-ODE reflects this fact as long as

α := β1χ+β3 does not change sign. To exploit the effect of discounting when finding intervals

of existence, it is then useful to introduce the centered coefficients, i.e., xcit := xit − xmit for

x ∈ {β1, β̃2, β3}, and work with the ODEs of (βc1, β̃
c
2, β

c
3, ṽ6, ṽ8) in backward form.38

The next lemma states the key properties of this backward centered system, noting that

(i) the RHS of the ODEs for (β1, β̃2, β3) above are polynomials in (β1, β̃2, β3) = (βc1+β
m
1 , β̃

c
2+

β̃m2 , β
c
3+β

m
3 ), (ii) (βm1 , β̃

m
2 , β

m
3 ) are functions of χ and are independent of r, (iii) (β̇m1 ,

˙̃βm2 , β̇
m
3 )

carry a factor of γ through χ̇, and (iv) αmt = uaθ+uaâûâθχt

1−uaâûaâχt
. (The proof is straightforward and

hence omitted.) Without fear of confusion, in the lemma and in what follows we denote

the solution to the backward system by (βc1, β̃
c
2, β

c
3, ṽ6, ṽ8) (and unless otherwise stated, we

always refer to the backward system when invoking this tuple). Also, let β⃗c := (βc1, β̃
c
2, β

c
3).

38This centering step can be sometimes skipped when intervals of existence can be readily obtained
without resorting to the “worst” r = 0 case. See the proofs of Propositions ?? and ??. We also note that a
backward first-order ODE of a function f is obtained by differentiating f̃ = f(T − t), and hence only differs
with the original one in the sign. We maintain the labels to avoid further notational burden.
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Lemma C.1. For x ∈ {β1, β̃2, β3} and y ∈ {ṽ6, ṽ8}, the (backward) ODEs that xc and y

satisfy have the form

ẋct = −rxct
αt
αmt

+
γthx(β⃗

c, ṽ6t, ṽ8t, χt)

σ2
Xσ

2
Y (uaθ + uaâûâθχt)n1,x(1− uaâûaâχt)n2,x(1− uaâûaâ)n3,x

ẏt = −yt[r + γtRy(β⃗
c, ṽ6t, ṽ8t, χt)] +

γthy(β⃗
c, χt)

σ2
Xσ

2
Y (uaθ + uaâûâθχt)n1,y(1− uaâûaâχt)n2,y(1− uaâûaâ)n3,y

,

where ni,x, ni,y ∈ N, i = 1, 2, 3, and hx, hy, and Ry ≥ 0 are polynomials.39 The initial

conditions are (β⃗c0, ṽ60, ṽ80) = (0, 0, 0, 0, 0).

In particular, notice that (i) the terms not containing r continue scaling with γ, (ii)

the denominators are bounded away from zero, and (iii) the discount rate term pushes any

solution towards zero when α does not change sign. We turn to this issue in the next step.

Auxiliary variable: To exploit discounting, we introduce an auxiliary variable α̃ ̸= 0 and

work with an ODE-system for (γ, χ, βc1, β̃
c
2, β

c
3, ṽ6, ṽ8, α̃). Observe that α will indeed never

vanish in any solution to the centered system. In fact, a tedious but straightforward exercise

shows that in backward form, α = β1χ+ β3 satisfies

α̇t = αt

{
−r
(
αt
αmt

− 1

)
+ γt[σ

2
Xσ

2
Y (uaθ + uaâûâθχt)]

−1×{
δ1t[β1tχt + β3t]σ

2
Xuâθ + δ1tχt[δ1tχtσ

2
Y (2β̃2t[1− uaâûaâ] + β1t[1− 2uaâûaâ])

+(β1tχt + β3t)(δ1tṽ8t + σ2
X [uââδ1t + uaâ(β1tχt + β3t)])]

}}
, (C.5)

with initial condition α0 = αm0 = uaθ+uaâûâθχ0

1−uaâûaâχ0
(here, for consistency, χ0 is the terminal value

of χ going forward in time). By Assumption 2, αm0 always has the same sign as uaθ because

χ0 ∈ [0, 1]. Also, the right-hand side of (C.5) is proportional to α, so it vanishes at α ≡ 0.

By the comparison theorem, α is always nonzero, as the ODE is locally Lipschitz continuous

in α uniformly in time. Moreover, since αm never changes sign, α/αm > 0.

However, our fixed point argument will input general (γ, χ) pairs into the backward ODEs

of Lemma C.1, pairs that need not solve the learning ODEs (or even be differentiable). Thus,

we will not be able to use a comparison argument like that above to show that each induced

α := β1χ+ β3 never changes sign for any (γ, χ), allowing us to exploit the discount rate.

To circumvent this difficulty, we augment the BVP with an auxiliary variable α̃ to serve

as a proxy for α in the r term in the centered system; by construction, it will share the sign

of αm and, in any solution to the BVP, will coincide with α. Specifically, observe that using

the decomposition x = xc+xm for x ∈ {β1, β̃2, β3} yields that the r-independent term inside

39More precisely, we have n1,x = 1, n1,y = 0, and n3,β1
= n3,β3

= 0.
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the outer brace of (C.5) is of the form γthα(β⃗c,ṽ6,ṽ8,χt)

σ2
Xσ

2
Y (uaθ+uaâûâθχt)

n1,α (1−uaâûaâχt)
n2,α (1−uaâûaâ)n3,α , where

hα is a polynomial and nj,α ∈ N, j = 1, 2, 3. We introduce the (backward) linear ODE

˙̃αt = α̃t

{
−r
(
αt
αmt

− 1

)
+

σ−2
X σ−2

Y γthα(β⃗
c, ṽ6, ṽ8, χt)

(uaθ + uaâûâθχt)n1,α(1− uaâûaâχt)n2,α(1− uaâûaâ)n3,α

}
(C.6)

with initial condition α̃0 = αm0 . That is, the right-hand side of (C.6) is exactly as the

one in (C.5) except for α̃ now multiplying the bracket. The exact same application of the

comparison argument between α and 0 shows that α̃ never vanishes over its interval of

existence for any pair (γ, χ) Lipschitz taking values in [0, γo]× [0, 1], and α̃/αm > 0.

Our augmented BVP then consists of the ODEs of xc = βc1, β̃
c
2, β

c
3 in Lemma C.1 with

a modified r-term of the form −rxct α̃t

αm
t
, i.e., with α̃ replacing α in the numerator of the

fraction accompanying r. It also includes: the ODEs of y = ṽ6, ṽ8; the learning ODEs (10)-

(11); and the ODE (C.6) of α̃.40 The resulting system of ODEs—denote it żt = F (zt),

where z := (γ, χ, β⃗c, ṽ6, ṽ8, α̃)—is such that each component of F (z) is a polynomial divided

by a product of powers of 1− uaâûaâ, 1− uaâûaâχt, and uaθ + uaâûâθχt. Since the latter are

bounded away from zero, F is of class C1. We verify at the end of the proof that any solution

to this augmented BVP satisfies that α := β1χ+ β3 coincides with α̃ by construction.41

Fixed point: Use a fixed-point argument to show that there are horizon lengths of order

1/γo such that the augmented BVP admits a solution. We will prove the following result:

Theorem C.1. Under Assumptions 1 and 2, there is a strictly positive function T (γo) ∈
Ω(1/γo) such that if T < T (γo), there exists a solution to the BVP in z = (γ, χ, β⃗c, ṽ6, ṽ8, α̃).

Proof. The proof consists of converting the BVP into a fixed point problem over pairs λ :=

(γ, χ) in a suitable set. Specifically, for a given λ we can first solve the backward initial value

problem (IVP) in the variables (β⃗c, ṽ6, ṽ8, α̃) that takes λ as an input. Second, we can solve

the forward IVP for the two learning coefficients that takes as an input the solution from

the previous step. This procedure generates a continuous mapping from candidate λ paths

in a suitable set to itself, to which we apply Schauder’s fixed point theorem.

Step 1: Define the domain for our fixed point equation. Let C denote the Banach space

of continuous functions from [0, T ] to R, equipped with the sup norm || · ||∞ defined by

||x||∞ := sup{|xt| : t ∈ [0, T ]}. (To economize on notation, we use || · ||∞ to denote the

supremum norm for objects of all other dimensions too.) By the Arzela-Ascoli theorem (Ok,

2007, p. 198), the space of uniformly bounded functions with a common Lipschitz constant

40For consistency, the αt in the r-term in (C.6) and in (10)-(11) must be written as (βc
1t+β

m
1t)χt+β

c
3t+β

m
3t .

41In a slight abuse of notation, żt = F (zt) assumes that the ODEs have been stated in only one direction.
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is a compact subspace of C. In particular, for all ρ,K > 0, define Γ(ρ + K) ⊂ C as the

space of uniformly Lipschitz continuous functions γ : [0, T ] → [0, γo] with uniform Lipschitz

constant (γo)2(2[ρ +K])2/σ2
Y that satisfy γ0 = γo. Likewise, let X(ρ +K) ⊂ C denote the

space of Lipschitz continuous functions χ : [0, T ] → [0, 1] with uniform Lipschitz constant

γo [(2[ρ+K])2/σ2
Y + (|ûâθ|+ |ûaâ|2[ρ+K])2/σ2

X ] that satisfy χ0 = 0. Thus, the product

Λ(ρ+K) := Γ(ρ+K)×X(ρ+K) is a compact subspace of C2.

We note that the these Lipschitz constant are motivated by a bounding exercise of the γ

and χ ODEs that uses |βci | < K and |βmi | < ρ, implying that |βi| < ρ +K, i = 1, 3. Below,

we shall construct horizons over which any solution satisfies this property.

Step 2: Given (γ, χ) ∈ Λ(ρ + K), define a backward initial value problem (IVP) for

(β⃗c, ṽ6, ṽ8, α̃), and establish sufficient conditions for this IVP to have a unique solution.

For any function x, let us use x̂(·) := xT−(·) to emphasize the time-reversed version of x

whenever convenient (not to be confused with the hat notation used in the main body).

Given any λ ∈ Λ(ρ+K), where (ρ,K) ∈ R2
++, we can define a (backward) IVP consisting of

the ODEs for (β⃗c, ṽ6, ṽ8, α̃) previously stated, but where λ̂ is used in place of the solutions

of the learning ODEs. We write this problem as

ḃt = f λ̂(bt, t) s.t. b0 = (0, 0, 0, 0, 0, αm(λ̂0)), (IVPbwd(λ̂))

where the use of boldface distinguishes solutions to this IVP from those of our original BVP.

We write b(·;λ) for the solution as a functional of the input λ. The extra dependence on

time in the right hand side of (IVPbwd(λ̂)) is due to the role of λ in the system.

For all λt ∈ [0, γo]× [0, 1], let B(λt) := (βm1 (λt), β̃
m
2 (λt), β

m
3 (λt), 0, 0, α

m(λt)). From here,

we define ρ := supλt∈[0,γo]×[0,1] ||B−6(λt)||∞ > 0, with B−i denoting as usual the vector B

excluding Bi.
42 For arbitrary K > 0, we now establish sufficient conditions for (IVPbwd(λ̂))

to have a unique solution for each λ ∈ Λ(ρ+K).

Lemma C.2. Fix γo, K > 0. There exists a threshold T (γo;K) > 0 such that if T <

T (γo;K), then for all λ ∈ Λ(ρ + K), a unique solution b(·;λ) to (IVPbwd(λ̂)) exists over

[0, T ] and satisfies ||bi(·;λ)||∞ < K for all i ∈ {1, . . . , 5}. Moreover, T (γo;K) ∈ Ω(1/γo).

Proof. Fix any λ ∈ Λ(ρ +K). Since λ is continuous in t and f λ̂ is of class C1 with respect

to bt, f
λ̂ is locally Lipschitz continuous in bt, uniformly in t. By Peano’s theorem, a local

solution exists; and by the Picard-Lindelöf theorem, solutions are unique given existence.

Given K > 0, we now construct T (γo;K) such that a solution exists over [0, T ] and satisfies

42We exclude α̃ from the definition of ρ because it does not enter the ODEs for the learning coefficients
explicitly, and hence it does not affect the definition of Λ(ρ+K).

48



||bi(·;λ)||∞ < K for i ∈ {1, . . . , 5}.
We state two facts that hold over any interval of existence. First, using the ODEs adapted

from Lemma C.1 (using α̃ instead of α in the r terms), we have for i ∈ {1, 2, 3} and j ∈ {4, 5}

bit =

ˆ t

0

e
−r
´ t
s

α̃u
αm
u
du
γ̂shi(bs, χ̂s)ds and bjt =

ˆ t

0

e−
´ t
s (r+γ̂uRj(bu,χ̂u))duγ̂shj(bs, χ̂s)ds.

Here, hi and hj include the denominators that were factored out of hx and hy in Lemma C.1,

and do not contain α̃; Rj is only a relabeling of Ry from the same lemma. Second, as long as

the conjectured bounds |bit| < K for i ∈ {1, 2, . . . , 5} hold, a direct bounding exercise on hi

that uses χt ∈ [0, 1] yields the existence of a scalar hi(K) such that |γ̂shi(bs, χ̂s)| ≤ γohi(K),

i ∈ {1, 2, . . . , 5}, where we have used that γt ∈ [0, γo] at all times.

Equipped with the equations above for bi and with hi(K), i ∈ {1, . . . , 5}, notice that the
bound |bit| < K clearly holds for small t. And as long as it holds, α̃ is finite because b6t has

the form αm0 e
´ t
0 Gsds with |Gs| < +∞ as the latter depends only on (b−6, χ̂) at time s ∈ [0, t].

Moreover, α̃/αmt > 0 (see ‘Auxiliary Variable’). Thus, for i ∈ {1, 2, 3} and j ∈ {4, 5},

|bit| ≤
ˆ t

0

e
−r
´ t
s

α̃u
αm
u
du
γohi(K)ds ≤

ˆ t

0

γohi(K)ds = tγohi(K)

|bjt| ≤
ˆ t

0

e−
´ t
s (r+γ̂uRj(bu,χ̂u))duγohj(K)ds ≤

ˆ t

0

γohj(K)ds = tγohj(K),

where we have used that the exponential term is less than 1. Imposing that the right-hand

sides above are themselves smaller than K leads us to T (γo;K) := mini∈{1,...,5}
K

γohi(K)
> 0

such that (IVPbwd(λ̂)) with T < T (γo;K) by construction admits a unique solution satisfying

|b−6| < K for all λ ∈ Λ(ρ+K). Moreover, since T (γo;K) is independent of r, the statement

holds for all r ≥ 0; also T (γo;K) ∈ Ω(1/γo).43

In what follows, assume T < T (γo;K). Lemma C.2 implies that λ ∈ Λ(ρ+K) 7→ b(·;λ)
is a well-defined function linking λ paths to corresponding solutions to the backward IVP.

We can then define the functional

q(λ) := (b̂1(·;λ), b̂3(·;λ)) + (B1(λ(·)),B3(λ(·)))

that for each λ delivers the induced “total” ‘β1’ and ‘β3’ forward-looking coefficients—the

centered components delivered by the previous IVP plus the myopic counterparts—that we

will use as an input in the learning ODEs below. (Clearly, each q(λ) function is a continuous

43It is clear from the argument that α̃ is also uniformly bounded for all λ ∈ Λ(ρ+K). Also, the linearity of
the α̃-ODE (C.6) implies that the interval of existence is constrained only by the ODEs for bi, i ∈ {1, . . . , 5}.
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function of time.) The continuity of this functional is key for our fixed-point argument.

Step 3: The operator λ 7→ q(λ) is continuous and ||q(λ)||∞ < ρ+K for all λ ∈ Λ(ρ+K).

Let us show, more generally, that λ 7→ b̂(·;λ) is continuous; since λ 7→ Bi(λ(·)) is clearly

continuous due to βmi = βmi (χ(·)) being of class C1, i ∈ {1, 3}, the result will follow. To this

end, we make use of the following lemma, proved in the Supplementary Appendix.

Lemma C.3. Let X ⊆ Rn, Y ⊆ Rm and U ⊆ Rn be compact sets. Consider F : X×Y → U

of class C1 and ω : Y → X. Suppose Y ⊂ C([0, T ];Y ) is a collection of functions such that

for all y ∈ Y, the initial value problem IVP(y) defined by ẋt = F (xt, yt) and x0 = ω(y0)

admits a solution defined over [0, T ]. Then there exist constants k1 and k2 (depending on T )

such that for all y1, y2 ∈ Y, the corresponding solutions xi to IVP(yi) satisfy

||x1t − x2t ||∞ ≤ k1||ω(y10)− ω(y20)||∞ + k2 sup
s∈[0,T ]

||y1s − y2s ||∞, for all t ∈ [0, T ].

Now consider any λ1, λ2 ∈ Λ(ρ+K). We apply Lemma C.3 to: x = b; yi = λ̂i, i = 1, 2;

ω(·) = (0, 0, 0, 0, 0, αm(·)); F (xt, yt) := f λ̂(bt, t); and X and Y the hypercubes defined by the

uniform bounds on b and λ, respectively. Using that ||x||∞ = ||x̂||∞, we obtain

||b̂(·;λ1)− b̂(·;λ2)||∞ = sup
t∈[0,T ]

||bt(λ1)− bt(λ
2)||∞ ≤ k1|αm(λ1T )− αm(λ2T )|+ k2||λ1 − λ2||∞,

for some constants k1 and k2. Since λT 7→ αm(λT ) is continuous, it follows that ||b̂(·;λ1)−
b̂(·;λ2)||∞ → 0 as ||λ1 − λ2||∞ → 0, yielding the desired result.

Finally, ||q(λ)||∞ < ρ+K follows from ||b̂i(·;λ)||∞ < K and ||Bi(λT )||∞ < ρ, i = 1, 3.

Step 4: Construct a continuous self-map on Λ(ρ+K) using the IVP for the learning ODEs.

Take λ ∈ Λ(ρ+K) and define the IVP for λ = (λ1,λ2)

λ̇t = fq(λ)(λt, t) s.t. λ0 = (γo, 0), (IVPfwd(q(λ)))

consisting of the two (forward) learning ODEs (10)-(11) that use as input q(λ) = (q1(λ), q2(λ))

playing the role of (β1, β3)—here, the first (second) entry of the system corresponds to the

γ-ODE (χ-ODE), while the boldface convention aims at distinguishing between inputs λ

via q and induced solutions λ to this IVP. Importantly, because for all λ ∈ Λ(ρ + K) the

function q(λ) is continuous in time, Lemma A.1 gives existence and uniqueness of a solution

to (IVPfwd(q(λ))) defined over [0, T ] that satisfies λt ∈ (0, γo]× [0, 1) for all such times.

Next, we argue that λ ∈ Λ(ρ +K). By construction, λ0 := (λ1,0,λ2,0) = (γo, 0), and as

noted above, λt ∈ (0, γo] × [0, 1) for all t ∈ [0, T ]. Moreover, from the γ-ODE and χ-ODE,
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we have that

|λ̇1t| = | − λ2
1t([q2(λ)]t + [q1(λ)]tλ2t)

2

σ2
Y

| ≤ (γo)2(2[ρ+K])2/σ2
Y and similarly

|λ̇2t| ≤ γo
[
(2[ρ+K])2/σ2

Y + (|ûâθ|+ |ûaâ|(2[ρ+K]))2/σ2
X

]
for all t ∈ [0, T ]. Since the Lipschitz bounds in the definition of Λ(ρ + K) are satisfied,

λ ∈ Λ(ρ+K).

Finally, by Lemma C.3 applied to (IVPfwd(q(λ))) by setting x = λ, y = q(λ), ω(y0) =

(γo, 0), F (xt, yt) = fq(λ)(λt, t), X = [0, γo]× [0, 1] and Y = [−ρ−K, ρ+K]2, we conclude that

q 7→ λ(q) is continuous. Since λ 7→ q(λ) is continuous (Step 3), it follows that g(λ) := λ(q(λ))

is a continuous map from Λ(ρ+K) to itself.

Step 5: Show that g has a fixed point. By Step 1, Λ(ρ+K) is a nonempty, compact, convex

Banach space, and by Step 4, g is a continuous map from Λ(ρ+K) to itself. By Schauder’s

Theorem (Zeidler, 1986, Corollary 2.13), there exists λ∗ ∈ Λ(ρ+K) such that λ∗ = g(λ∗). It

is clear, by construction, that (λ∗, b̂(·;λ∗)), with b(·;λ∗) the solution to (IVPbwd(λ̂)) under

λ = λ∗, is a solution to the centered-augmented BVP under study. Finally, maximizing

T (γo;K) over K > 0 yields a T (γo) > 0 that has the form C/γo.

Verification: Recover first a solution to the original BVP, and then to the full HJB equation.

We verify that the solution to the centered-augmented BVP induces a solution to the original

BVP stated in the ‘Core subsystem’ section. To do this, we first note that any solution

to the former BVP must satisfy the identity α̃ ≡ α, where αt := β1tχt + β3t, β1t := βc1t + βm1t

and β3t := βc1t+β
m
1t—consequently, (γ, χ, β⃗c, ṽ6, ṽ8) solves the centered system defined in the

‘Centering’ step. Indeed, using the definition of the myopic coefficients as well as the ODEs

for χ, βc1t, and β
c
3t yields that α in backward form satisfies

α̇t = −rα̃t(αt/αmt − 1) + αt
γthα(β⃗

c, ṽ6, ṽ8, χt)

σ2
Xσ

2
Y (uaθ + uaâûâθχt)n1,α(1− uaâûaâχt)n2,α(1− uaâûaâ)n3,α

.

Relative to (C.6), therefore, the r-term as well as the last fraction multiplying α coincide.

Call this last term Ht—a continuous function of time—and observe that p := α− α̃ satisfies

the ODE ṗt = ptHt with initial condition p0 = 0 due to α0 = α̃0 = αm0 (recall that time is

being reversed). By uniqueness, pt ≡ 0 for all t ∈ [0, T ], confirming that α ≡ α̃.

Given this equivalence, it follows that (γ, χ, β1, β̃2, β3, ṽ6, ṽ8) = (λ∗, b̂−6(·;λ∗) + B−6(λ
∗))

solves by construction the BVP stated in the ‘Core subsystem’ section. Moreover, as

argued in Step 4 in the proof of Theorem C.1, γ > 0 and χ < 1, so we can invert the change

of variables (β̃2, ṽ6, ṽ8) = (β2/(1 − χ), v6γ/(1 − χ)2, v8γ/(1 − χ)) to obtain (β2, v6, v8). And
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since α = α̃ never vanishes (see ‘Auxiliary variable’ section) and γ > 0, we can recover

the rest of the coefficients in the value function as explained in the same section.

We extend our existence result to the case of terminal payoffs in the following corollary,

proved in the Supplementary Appendix. The bound on curvature ensures that we can select

an equilibrium of the static terminal game with sufficient regularity for our method.

Corollary C.2. There exist Cψ ∈ {−∞}∪ (−∞, 0) and CT > 0, both independent of (r, γo),

such that if ψââ ∈ (Cψ/γ
o, 0] and T < C/γo, a linear Markov equilibrium exists for all r ≥ 0.

Moreover, α3 never vanishes.

Appendix D: Proofs for Section 6

Before proving Proposition 8, we present the laws of motion for (M̂, L) in the receiver’s best

response problem. These are obtained from (A.1) and (12), using â′t in dXt.

Lemma D.1 (Controlled dynamics: receiver). From the receiver’s perspective, if he follows

(â′t)t∈[0,T ],

dM̂t =
α3tγ1t
σY

dZt (D.1)

dLt =
γXt χtδ1t
σ2
X

[â′t − (δ0t + [δ1t + δ2t]Lt) + σXdZ
X
t ], (D.2)

where Zt :=
1
σY

[Yt −
´ t
0
(α0s + α2sLs + α3sM̂s)ds] is a Brownian motion.

Proof of Proposition 8. It suffices to show that the myopic policy is optimal for the receiver’s

best response problem when the receiver is forward looking. After all, in an LME of our

baseline model with myopic receiver, the sender’s strategy is already (by definition) a best

response to the myopic strategy of the receiver, and the learning variables (γ, χ) are already

consistent with these strategies.

To show this, consider the receiver’s HJB equation, which given the laws of motion for

(M̂, L) is

r̂V̂ = sup
â′

{
−1

2
(c0 + c1m̂+ c2[α0t + α3tm̂+ α2tℓ]− â′)2 − 1

2
(c1 + c2α3t)

2γt + V̂t (D.3)

+µM̂ V̂m̂ + µL(â
′)V̂ℓ +

σ2
M̂

2
V̂m̂m̂ +

σ2
L

2
V̂ℓℓ

}
, (D.4)

where µM̂ (= 0), σM̂ , µL(â
′), and σL are the drift and noise in (D.1) and drift and noise in

(D.2), respectively. There is no V̂m̂ℓ term since the innovations in M̂ and L are uncorrelated
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(i.e., they have zero quadratic covariation). The value function must also satisfy

V̂ (m̂, ℓ, T ) = sup
â′

1

2

{
−(c0 + c1m̂+ c2[α0T + α3T m̂+ α2T ℓ]− â′)2 − (c1 + c2α3T )

2γT
}
.

(D.5)

Now let (δm0t , δ
m
1t , δ

m
2t) = (c0 + c2α0t, c1 + c2α3t, c2α2t) denote the myopic strategy coefficients

and âmt = δm0t + δ
m
1tm̂+ δm2tℓ the myopic policy. It is easy to see that âmT attains the supremum

in (D.5) and the first quadratic term vanishes, so (D.5) yields the terminal condition

V̂ (m̂, ℓ, T ) = −1

2
(c1 + c2α3T )

2γT . (D.6)

Note that this terminal payoff is independent of (m̂, ℓ). In the same spirit, we conjecture a

solution to the HJB where the value function depends only on time; for such a solution, the

HJB equation (D.3) reduces to

r̂V̂ = sup
â′

{
−1

2
(c0 + c1m̂+ c2[α0t + α3tm̂+ α2tℓ]− â′)2 − 1

2
(c1 + c2α3t)

2γt + V̂t

}
.

It is easy to see that for all t < T , the right hand side is maximized at the myopic policy ât,

at which point the first quadratic loss term vanishes, so the HJB equation further reduces to

r̂V̂ = −1

2
(c1 + c2α3t)

2γt + V̂t. (D.7)

Simple integration using (D.6) and (D.7) yields the solution

V̂ (t) = −1

2

ˆ T

t

e−r̂(s−t)(c1 + c2α3s)
2γs dt−

1

2
e−r̂(T−t)(c1 + c2α3T )

2γT , (D.8)

which is indeed a function only of time. We conclude that the myopic policy is optimal.

Proof of Proposition 9. We first derive a candidate mapping. Suppose δ1 = ûaâα3. The

χ-ODE boils down to

χ̇t = γtα
2
3t

(
1− χt
σ2
Y

− (ûaâχt)
2

σ2
X

)
=: −γtα2

3tQ(χt).

If f : [0, χ̄) → [0, γo], some χ̄ ∈ (0, 1], is differentiable and f(χt) = γt for all t ≥ 0, then

f ′(χt)χ̇t = γ̇t. When α3t ̸= 0, f ′(χt)
f(χt)

= Σ
Q(χt)

. Hence, we solve the ODE f ′(χ)
f(χ)

= Σ
Q(χ)

for

χ ∈ (0, χ̄) where f(0) = γo.

To this end, let c2 :=

√
1/σ4

Y +4(ûaâ)2/[σXσY ]2−1/σ2
Y

2(ûaâ/σX)2
and −c1 :=

−
√

1/σ4
Y +4(ûaâ)2/[σXσY ]2−1/σ2

Y

2(ûaâ/σX)2
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be the roots of the convex quadratic Q above. Note that these are well-defined since ûâθ and

Assumption 1 part (ii) imply that ûaâ ̸= 0.

Clearly, −c1 < 0 < c2. Also, c2 ≤ 1 asQ(1) ≥ 0. Thus, Σ
Q(χ)

= − σ2
XΣ

(ûaâ)2(c1+c2)

[
1

χ+c1
− 1

χ−c2

]
is well defined (and negative) over [0, c2) with 1/(χ + c1) > 0 and −1/(χ − c2) > 0 over

the same domain. We can then set χ̄ = c2 and solve
´ χ
0

f ′(s)
f(s)

ds = − σ2
XΣ

(ûaâ)2(c1+c2)
log
(
χ+c1
c2−χ

c2
c1

)
,

which yields the decreasing function f(χ) = f(0)
(
c1
c2

)1/d (
c2−χ
χ+c1

)1/d
, where 1/d = σ2

XΣ/[(ûaâ)
2(c1+

c2)] > 0. Imposing f(0) = γo and inverting yields χ(γ) = f−1(γ) as given in the lemma.

Note that χ(γo) = 0 and χ(0) = c2.

We now verify that χ(γ) satisfies the χ-ODE (even when α3 = 0). We have

d(χ(γt))

dt
=

α2
3tγt

σ2
Y [c1 + c2(γ/γo)d]2

c1c2d[c1 + c2]

(
γt
γo

)d
.

By construction, moreover, c1c2 = c1 − c2 =
σ2
X

σ2
Y (ûaâ)2

, which follows from equating the first-

and zero-order coefficients in Q(χ) = û2aâχ
2/σ2

X + χ/σ2
Y − 1/σ2

Y = û2aâ(χ − c2)(χ + c1)/σ
2
X .

Thus, dc1c2 = c1 + c2. On the other hand,

[ûaâχ(γ)]
2

σ2
X

=
û2aâ
σ2
X

[
c1c2

1− (γ/γo)d

c1 + c2(γ/γo)d

]2
=
c21(1− c2)

σ2
Y

[
1− (γ/γo)d

c1 + c2(γ/γo)d

]2
where we used that c21c

2
2/σ

2
X = c21(1−c2)/σ2

Y follows from û2aâc
2
2/σ

2
X = (1−c2)/σ2

Y by definition

of c2. Thus, the right-hand side of the χ-ODE evaluated at our candidate χ(γ) satisfies

γ1α
2
3

(
1− χ

σ2
Y

− (ûaâχ)
2

σ2
X

) ∣∣∣∣∣
χ=χ(γ)

=
α2
3γ1
σ2
Y

(
1− χ− c21(1− c2)

[
1− (γ/γo)d

c1 + c2(γ/γo)d

]2)
.

Thus, using that c1c2d = c1 + c2 in our expression for d(χ(γt))/dt, it suffices to show that

[c1 + c2]
2

(
γt
γo

)d
= (1− χ)[c1 + c2(γ/γ

o)d]2 − c21(1− c2)[1− (γ/γo)d]2.

Using that χ[c1 + c2(γ/γ
o)d] = 1 − (γ/γo), it is easy to conclude that this equality reduces

to three equations 0 = c21 − c21c2 − c21 + c21c2, (c1 + c2)
2 = 2c1c2 − c1c2(c2 − c1) + 2c21(1 − c2)

and 0 = c22 + c1c
2
2 − c21(1 − c2), capturing the conditions on the constant, (γ/γo)d and

(γ/γo)2d, respectively. The first condition is trivially satisfied, and the third is easy to verify;

by canceling common terms, the second condition is also a rearrangement of this identity.

Thus, χ(γ) as postulated satisfies the χ-ODE; by uniqueness, χ = χ(γ).

We now prove the final statement of the lemma. When γt ∈ (0, γo], we have χt =
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c1c2(1−[γt/γo]d)
c1+c2[γt/γo]d

< c1c2
c1

= c2. Now c2 simplifies to

√
σ4
X+4σ2

Y σ
2
X û

2
aâ−σ

2
X

2û2aâσ
2
Y

=
4σ2

Y û
2
aâ

2û2aâσ
2
Y

(√
1+4σ2

Y û
2
aâ/σ

2
X+1

) ,
which by inspection is increasing in σX and has limits lim

σX→0
c2 = 0 and lim

σX→+∞
c2 = 1
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