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Abstract

We compare forecasts of recessions using four different specifica-
tions of the probit model: a time invariant conditionally independent
version; a business cycle specific conditionally independent model; a
time invariant probit with autocorrelated errors; and a business cycle
specific probit with autocorrelated errors.
The more sophisticated versions of the model take into account

some of the potential underlying causes of the documented predic-
tive instability of the yield curve. We find strong evidence in favor of
the more sophisticated specification, which allows for multiple break-
points across business cycles and autocorrelation. We also develop a
new approach to the construction of real time forecasting of recession
probabilities.
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1 Introduction
A large recent literature has shown that asset prices have significant pre-
dictive content for future economic activity.1 In particular, recent empirical
work has found evidence of systematic movements in the yield curve and
future real output growth or recessions across a number of countries2

In general, the yield curve is upward sloped since long-term rates are
higher than short-term ones. However, the slope of the curve tends to become
flat or inverted before NBER-dated recessions. One of the possible reasons
is that a tight monetary policy may precede a recession. Further, long-term
rates reflect financial markets’ expectation for future short-term rates. Hence,
a flat or inverted curve might indicate that the market expects that future
real interest rates should fall in face of a potential future recession or weak
economic activity.
Although the yield curve is a statistically significant predictor of future

activity, the predictive power of the spread is not stable over time. In par-
ticular, most models using the yield curve found it difficult to signal the
1990 recession in real time.3 One of the possible reasons for parameter in-
stability of models using the yield curve is that its predictive power may
depend on whether the economy is responding to real or monetary shocks
(and implicitly on the monetary policy reaction function see Hamilton and
Kim 2000 for a decomposition of the spread). In addition, there have been
have been numerous changes in the market for U.S. Treasury debt over the
last two decades. For example, recently the Treasury has been buying back
debt leading to a reduction in the supply of long-term Treasury bonds.
Another potential reason is the recent changes in the volatility of the

U.S. economy. In particular, McConnell and Perez (2000), Kim and Nelson
(1999), and Chauvet and Potter (20001b) find evidence of a break towards
more stability in the economy since 1984. Since these factors might affect
the relationship between the yield curve and economic activity, models that
do not take into account these evolving dynamics may lead to poor real time
forecasts.

1See Stock and Watson (2000) for a comprehensive literature review.
2The terms ‘yield curve‘, ‘term structure of interest rates’, or simply ‘term spread’ refer

to the difference in return between between long term and short term government bonds.
3The exception is Laurent (1989). Harvey (1989) and Stock andWatson (1989) signaled

the economic slowdown that started in 1989. See Stock and Watson’s (2000) for a more
detailed discussion.
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In general, linear regression models that use output growth as the de-
pendent variable indicate that the forecasting ability of the term spread has
reduced since mid 1980s.4 However, models that focus instead on predicting
a binary indicator of recession or expansion are more successful and stable
over time than continuous ones.5 This evidence is corroborated in the recent
work by Estrella, Rodrigues, and Schich (2000) (ERS hereafter), who exam-
ine the stability of the predictive model using classical tests for an unknown
single breakpoint. They find evidence of structural break in the continuous
model of U.S. industrial output in late 1983, but no evidence of instability
over the full sample using binary models.6

In contrast with the results of ERS, Chauvet and Potter (2001a) find over-
whelming evidence of structural instability when the binary probit model is
estimated using the Gibbs sampler. The probability of recessions is sub-
stantially affected by consideration of a breakpoint as well as its location.
Although the model used considered only a single break, there was evi-
dence of the presence of multiple breakpoints. One possible resolution of
these differing results is the presence of autocorrelated errors in the probit
model. ERS adjust their test statistics for the presence of autocorrelation
and heteroscedasticity under the null hypothesis, whereas Chauvet and Pot-
ter (2001a) use Bayesian tests that are not amenable to such non-parametric
adjustment techniques.7 The potential effects on forecasting of not explicitly
modeling correlation in the errors is large, and examining its importance is
one of the main goals of this paper.
We extend the probit specification of Estrella and Miskin (1998) (EM

hereafter) to account for these two forms of potential misspecifications: time-
varying parameters due to existence of multiple breakpoints, and the pres-
ence of autocorrelated errors. We examine the predictive content of the term

4See, for example, Haubrich and Dombrosky (1996), Dotsey (1998), Friedman and
Kuttner’s (1998) or Stock and Watson’s (2000) survey.

5See Neftci (1996), Dueker (1997), Estrella and Mishkin (1998), and Estrella, Ro-
drigues, and Schich (2000).

6They use real industrial production and the spread between 10 year and 1 year interest
interest rates from 1967:01 to 1998:12.

7For example, if we assume a break in the first month of 1984, the maximized likelihood
of the model with a break is 1000 times that of a model without a break. In the classical test
used by ERS this difference is not statistically significant after allowing for autocorrelated
errors under the null hypothesis and the endogenity of the breakpoint. In contrast, the
Bayesian test compares the average (over the prior distribution) height of the likelihood
between the two models and makes no correction for misspecification of either model.
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structure in forecasting recessions under four different specifications: a time
invariant conditionally independent version, as in EM, a time-varying con-
ditionally independent version that takes into account multiple breakpoints
across business cycles, a time invariant probit model with autocorrelated la-
tent variable, and a time-varying probit model with autocorrelated latent
variable.
In the standard probit model of EM conditional on the observed yield,

the probabilities of the recession states are independent of each other (this
follows directly from the assumption of independent errors). Figure 2a shows
the implied probability of a recession state each month from 1955 through
the end of 2000.8 Notice that until 1995-96 the probability of any particular
month being a recession state was relatively low in the current expansion.
Under the independence assumption, one can easily calculate the probability
of not observing a recession over the 117 months from April 1991 to Decem-
ber 2000. For example, if the probability of a recession had remained fixed
at the low value of 0.025, the probability of not observing a recession (i.e.,
continuing expansion for 117 months) would be (0.975)117, which is approx-
imately 5%. In other words, the probability of a recession occuring would
be 95% (i.e., the probability that the first hitting time to a recession is 117
months or less). Alternatively, if we use the 60 estimated probabilities since
the end of 1995 to 2000 from Figure 2a, we obtain a 12.5% probability of no
recession through the period of 1996-1997, 5% through the period of 1996-
1998, 0.5% through the period of 1996-1999, and an effectively 0 probability
of no recession through the period of 1996-2000.9 These low probabilities
of continuing expansion indicate that either the 1990s represent a period of
extraordinary good luck or that the probit model suffers from some severe
misspecification.
In this paper we estimate and compare probabilities of recession using al-

ternative probit specifications. We use probabilities of continuing expansion
and first recession time as described in the previous paragraph for producing
forecasts. We believe that these probabilities provide more accurate real time

8The probabilities come from a standard probit model estimated by the Gibbs sampler
(maximum likelihood techniques produce virtually identical results), using yield data from
January 1954 to December 1999 and NBER business cycle dates from January 1955 to
December 2000. Thus, we are assuming that the U.S economy was still expanding in
December 2000.

9Note that the decrease in the probabilities of no recession around 1997 and 1999 is
associated with the Asian and Russian currency crisis, respectively.
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predictions of the likelihood of turning points.10 The models are estimated
and analyzed using Bayesian methods. There are two motivations for the use
of Bayesian techniques. The first is that maximum likelihood estimation for
probit models with an autoregressive component is impractical for the size of
dataset used.11 In contrast, the Gibbs sampler can be used to simulate the
latent variable of the probit model, which drastically reduces the computa-
tional complexity. Second, we are interested in presenting distributions over
the forecast probabilities that contain information on both parameter un-
certainty and uncertainty over the most recent value of the latent variable.
These can be directly obtained from the output of the Gibbs sampler. In
addition, it is computationally simple to calculate Bayes factors to compare
the various models using the Savage-Dickey Density ratio within the Gibbs
sampler.
The Bayes factor indicates overwhelming evidence in favor of the more

complicated specifications. Plots of the in-sample predicted recession proba-
bilities indicate that specifications with autocorrelated errors provide a much
cleaner classification of the business cycle into expansion and recession peri-
ods. We also compare the performance of the alternative models in a real-
time forecasting exercise using yield curve data from January 2000 to March
2001. While all the models considered indicate that the yield curve is cur-
rently signaling weak future economic activity in 2001-2002, we find that the
strength of a recession signal differs substantially across specifications with
weaker signals coming from the more complicated specfications.
The paper is organized as follows. The next section introduces the probit

model and discusses our various extensions. The third section outlines the
Gibbs sampler and the construction of the Bayes factors. In the fourth
section the empirical results from the alternative specifications are discussed
and some real time forecasting results presented. The fifth section concludes.

2 Extending the Probit Model
The probit model assumes an underlying latent variable Y ∗t for which there
exists a dichotomous realization of an indicator Yt denoting the occurrence or

10These probabilities consider uncertainty on both the parameters and the most recent
values of the latent variable.
11The difficulty comes from the fact that it is necessary to evaluate multiple integration

over the unobserved lagged variable.
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non-occurrence of an event. Here we assume that the variable Y ∗t represents
the state of the economy and we use as its indicator the recession dating
provided by the NBER. Yt can take on two values, 0 if the observation is an
expansion or 1 if it is a recession:

Yt =

½
0 if Y ∗t < 0
1 if Y ∗t ≥ 0 . (1)

In addition, it is useful to have a notation for the specific dates of the business
cycles. We assume that a business cycle starts the month after a NBER
trough and continues up to the month of the next NBER trough. We denote
the business cycle dates n by tn−1+1, . . . tn. Further, we indicate the dates of
the expansion and recession phases of business cycle n by the sets En and Rn,
respectively. Hence, the dates of business cycle expansions and recessions are
given by E = ∪En and R = ∪Rn, respectively.
The unobservable variable Y ∗t is related to the yield curve according to

following regression:

Y ∗t+K = β0 + β1St + εt, (2)

where St is the spread between the 10-year and 3-month Treasury Bill rates,
K is the forecast horizon of the latent variable in months, and βi ( i = 0, 1)
are the regression coefficients. The error term εt is assumed to be indepen-
dently distributed over time with a standard normal distribution. Notice
that multiplying Y ∗t+K by any positive constant does not change the indica-
tor variable Yt+K . This implies that the coefficients βi can be estimated only
up to a positive multiple. Thus, the standard probit model assumes that the
variance of the errors is equal to one in order to fix the scale of Y ∗t+K .
From equations (1) and (2) we obtain:

P (Y ∗t+K ≥ 0|St, β) = Φ[β0 + β1St], (3)

where Φ is the cumulative distribution function of the standard normal dis-
tribution, and P (Y ∗t+K ≥ 0|St, β) is the conditional probability of a recession
at the forecast horizon K. Note that this is not necessarily the probability
of most interest in forecasting.
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As an alternative way of constructing probabilities considers the first
hitting time to a recession given by:

HR(t) = {H : Y ∗t+H > 0, Y
∗

t+H−1 < 0, . . . , Y
∗

t+1 < 0},

with the associated probability:

πR(k, t) = P [HR(t) = k] = P [Y
∗

t+k > 0|Y ∗t+k−1 < 0, . . . , Y
∗

t+1 < 0](1− πR(k − 1, t)).

Conditional on a sequence of values for Sk
t−K = {St−K+1, St−K+2, . . . , St−K+k}

we can evaluate these expressions by:

πR(k, t) = Φ[β0 + β1St−K+k]
k−1Y
s=1

{1−Φ[β0 + β1St−K+s]} . (4)

Notice that this expression reflects a conditionally constant probability of
recession, and it is directly related to the likelihood function of the observed
data:

`(Y T |ST−K,β) =
Y
t∈R

Φ[β0 + β1St−K ]
Y
t∈E

{1−Φ[β0 + β1St−K ]} , (5)

where β = [β0, β1]
0.

In addition, the ordering of
Qk−1

s=1 {1− Φ[β0 + β1St]} makes no difference
to the hitting probability or to the value of the likelihood function. This
is a direct consequence of the assumption of conditional independence and
constant relationship between the yield spread and the probability of reces-
sions. In particular, if we consider two expansions where the values of the
term spread are given by permutations on the set

{St−K+1, St−K+2, . . . , St−K+k−1},

and fix the most recent value at St−K+k, they will have exactly the same
probabilities of the expansion ending at time T + k.
We extend this framework in two main ways. First, we allow the variance

of the innovation to change with the business cycle, which accounts for po-
tential structural breaks in the relationship between the yield curve and the
economy. Second, we add an autoregressive component to the model.
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2.1 Business Cycle Specific Model

We consider a more general specification of the probit model in which the
variance of the innovation may change across the N business cycles:

Y ∗t = β0 + β1St−K + σ(t)εt, (6)

where

σn = σ(t) if tn−1 < t ≤ tn, n = 1, . . .N,

and the initial business cycle is partially observed starting at t = K + 1
(t1 = K). Hence, even in the case that the collection of yield spreads is the
same, we can obtain different hitting probabilities across business cycle, since
now we have:

πR(t, k) = Φn [β0 + β1St−K+k]
k−1Y
s=1

{1− Φn[β0 + β1St−K+k]} . (7)

where

Φn[β0 + β1St] = Φ[(β0 + β1St)/σn].

There are two interpretations of this model. The first is the literal one that
shocks to the latent variable may change over business cycles. For example,
one could imagine that a long business cycle has a smaller innovation variance
than a short one. The alternative interpretation arises from the fact that the
scale of the innovation and the coefficient parameters βi can not be separately
identified. Thus, we can think of this as a time-varying parameter model, in
which the innovation variance is normalized to 1 across all business cycles,
but each cycle has a unique intercept βn0 = β0/σn and slope βn1 = β1/σn.
The likelihood function for the business-cycle specific variance is now:

`(Y T |ST−K,β, {σn}) =
NY

n=1

µ Q
t∈Rn

Φn[β0 + β1St−K ]Q
t∈En

{[1−Φn[β0 + β1St−K ]}
¶
, (8)

and now is grouped into particular expansions and contractions.
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2.2 Dependence in the Latent Variable

In another generalization of the probit model we allow the latent variable Y ∗t
to follow a first order autoregressive process. In this case we can no longer
take permutations on the order of the yield spread over the previous k − 1
periods and obtain the same hitting probability. The latent variable model
becomes:

Y ∗t = β0 + β1St + θY
∗

t−1 + σ(t)εt, n = 1, . . . N. (9)

where the autoregressive parameter |θ| < 1. The hitting probabilities require
one to integrate out over the unknown lagged value of the latent variable.
Starting from an expansion state at time t in business cycle n we have:

πR(t, 1) =

Z
y∗t <0

Φn(β0 + β1St−k+θy
∗
t )f(y

∗
t |St)dy∗t ,

where the complete sequence of yield spreads is part of the conditioning
set, since it is now useful for inferring the unobserved value of Y ∗t . The k-
period ahead hitting probability requires multiple integration over the values
of {Y ∗t+s : s = 0, . . . , k − 1} :

πR(t, k) =

Z
y∗t <0

· · ·
Z

y∗t+k−1<0

Φn[β0 + β1St+θy
∗
t+k−1]

k−1Y
s=0

©
1− Φn[β0 + β1St−k+s+θy

∗
t+s]
ª

f(y∗t+k−1, . . . , y
∗
t |St)dy∗t+k−1 · · · dy∗t . (10)

The likelihood function can then be written as the product of the reces-
sion hitting probabilities and the analogous expansion hitting probabilities,
πE(t, k), using the appropriate business cycle dates and recession lengths rn:

`(Y T |ST−k,β,{σn},θ)

= πI(tN−1, T − tN−1)
N−1Y
n=2

½
πR(tn−1 + 1, tn − tn−1 − rn + 1)

πE(tn − rn, rn)

¾
, (11)

where πI(tN−1, T − tN−1) is the probability of not observing a recession in
the last T − tN−1 periods of the sample, that is, the probability associated
with the current continuing business cycle. This likelihood function now
fully encodes the information on the lengths of particular expansions and
contractions.
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3 Estimation and Forecasting Techniques
The model with an autoregressive process for the latent variable is difficult
to estimate using maximum likelihood, since multiple integration over the
unobserved lagged variable is required. Thus, we use the Gibbs sampler to
evaluate the likelihood function.12 Further, since we are interested in out-of-
sample estimates of the hitting probabilities of recessions, we focus on the
properties of the joint posterior distribution of the model parameters and
most recent value of the latent variable.

3.1 Obtaining Draws of the Latent Variable

The Gibbs sampler proceeds by generating draws of the latent Y ∗t conditional
on (β0,β1, {σn}, θ) and the observed term spread. To simplify notation, let
X 0

tβ = β0 + β1St−k. If θ = 0, then the sampler would have the following
simple form:

1. Draw εt from the truncated normal on (−∞,−X 0
tβ/σn) if t is an ex-

pansion period of business cycle n .

2. Draw εt from the truncated normal on [−X 0
tβ/σn,∞) if t is a recession

period of business cycle n.

The presence of the lagged value of the latent variable in the conditional
mean complicates the sampler. Consider first generating the last value in
the observed sample, Y ∗T . If we could condition on a value for Y

∗
T−1, then we

could use the steps above by redefining X 0
Tβ = β0 + β1ST−K + θY

∗
T−1. This

would generate a draw of the last period value of the latent variable.
Now with this “new” value of Y ∗T and the “old” value of Y

∗
T−2, we can use

the a priori joint normality of the underlying latent variable model to form a
conditional normal distribution for Y ∗T−1. The exact form of this distribution
depends on an assumption about the initial value Y ∗K. We simplify the anal-
ysis by assuming that Y ∗K = β0+ β1S0 = 0. Then, as shown in the appendix,

12See Geweke 1999 and Chib 2001 for excellent introductions to modern Bayesian com-
putational techniques and references to earlier work on probit models that we implicitly
draw on.
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we have a priori the conditional normal distribution with mean:

eXT−1 + θ

"
V (eYT−1)

V (eYT−2)

#"
V (eYT ) θ2V (eYT−2)

θ2V (eYT−2) V (eYT−2)

#−1 "
Y ∗T − eXT

Y ∗T−2 − eXT−2

#
,

and variance:

V (eYT−1)− θ2

"
V (eYT−1)

V (eYT−2)

#"
V (eYT ) θ2V (eYT−2)

θ2V (eYT−2) V (eYT−2)

#−1 "
V (eYT−1)

V (eYT−2)

#0
,

where

V (eYt) =
t−K−1X

s=0

θ2sσ2(t− s)

and

eXt =
t−K−1X

s=0

θsX 0
t−sβ.

Hence, we draw from the appropriate truncated normal as above to obtain
a new draw of Y ∗T−1. This process continues until we arrive at the initial
observation period. The value of Y ∗K+1 is drawn in a similar manner to Y

∗
T ,

by conditioning on the new draw of Y ∗K+2. However, this value has a different
form, since its mean is given by:

X 0
K+1β +

θσ2(1)

σ2(1) + θ2σ2(2)

³
Y ∗K+2 − eX 0

K+2

´
,

and variance by:

σ2(1)− θ2σ4(1)

σ2(1) + θ2σ2(2)
.
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3.2 Obtaining Draws of Probit Model Parameters

Given this sequence of draws for {Y ∗t }, we then need to obtain draws of
the parameters (β, {σn}, θ). For simplicity, we use prior distributions from
parametric families that generate simple conditional distributions for the
posterior.13 We assume that the parameters of the conditional mean β are
a priori bivariate normal with mean vector µ(β) and variance matrix V (β).
In addition, the autoregressive parameter θ is assumed to have an a priori
truncated normal on (−1, 1) with mean µ(θ) and variance V (θ) independent
of β. Finally the N − 1 variance parameters are assumed to be a priori
independent with identical inverted gamma distributions.
For a draw of β, define the time series Zt = (Y

∗
t −θY ∗t−1). Then, conditional

on ({Y ∗t }, {σn}, θ), the parameters β are obtained from a normal distribution
with variance matrix:

V (β) =

"
V (β)−1 +

TX
t=K+1

XtX
0
t/σ

2(t)

#−1

,

and mean vector:

µ(β) = V (β)

"
V (β)−1µ(β) +

TX
t=K+1

XtZt/σ
2(t)

#
.

For a draw of θ, define the time series Wt = (Y
∗

t −X 0
tβ). Then, conditional

on ({Y ∗t }, {σn},β) a potential draw for θ is from a normal distribution with
variance:

V (θ) =

"
V (θ)−1 +

TX
t=K+1

Y ∗2
t−1/σ

2(t)

#−1

,

and mean:

µ(θ) = V (θ)

"
V (θ)−1µ(θ) +

TX
t=K+1

Y ∗t−1Wt/σ
2(t)

#
.

13The sampler will require draws from normal and gamma distributions. Random draws
from both types of distributions are available in widely used packages such as Gauss and
Matlab.
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If this draw satisfies the stationary condition, it is accepted. If not, it is
rejected and new draws are made until one is obtained that satisfies the
stationarity condition.
For draws of {σn}, we assume that the prior distributions are independent

inverted gammas with identical degrees of freedom ν and scale νs2. Hence,
the prior mean is νs2/(ν − 2). The prior parameters are then updated for
business cycle n ≥ 2 by:

νn = ν + tn − tn−1

νs2
n = νs2 +

tnX
t=tn−1+1

(Y ∗t −X 0
tβ − θY ∗t−1)

2.

3.3 Bayes Factors

We are interested in the recession probabilities obtained from four different
models:

1. Model 1: a probit specification with constant variance and serially
uncorrelated latent variable;

2. Model 2: a probit specification with business cycle specific variance
and serially uncorrelated latent variable;

3. Model 3: a probit specification with constant variance and autoregres-
sive latent process;

4. Model 4: a probit specification with business cycle specific variance
and autoregressive latent process.

We use Bayes factors to assess the value-added of the business cycle spe-
cific variances and autoregressive structure specifications. That is, we com-
pare the marginal likelihoods of the various models, which correspond to the
average height of the likelihood of the observed data (i.e., the NBER business
cycle dates) with respect to the prior distribution. In some situations, the
Bayes factor corresponds to the likelihood ratio statistic. For example, the
likelihood ratio and Bayes factor are equal for the case of testing the probit
model with autoregressive errors and time invariant variance, with θ = 0.8,
against the conditionally independent time invariant probit model with all
other parameters known.
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More generally, the Bayes factor differs from the likelihood ratio by the
way it integrates out nuisance parameters and averages over possible param-
eter values for the alternative model. In order for these operations to make
sense, it is necessary that the prior distributions are proper, that is, that
they integrate to 1. For example, if we place an improper prior distribution
on θ, its average height over the line is not well-defined. Further, even if we
arbitrarily fixed a height for the prior distribution by construction, it would
place zero weight on values of θ where the likelihood was higher than in the
restricted model.
The major disadvantage of marginal likelihoods is their dependence on

the prior distribution and the difficulty in their calculation. As explained
above, diffuse prior distributions are not appropriate when calculating Bayes
factors. However, we have prior distributions that are sufficiently uninfor-
mative so that the sample information will dominate. In our case, we have
the general restriction that θ ∈ (−1, 1). In addition, for the business cycle
specific variances model we choose a prior with a small number of degrees of
freedom and with a mean equal to 1.
With respect to their calculation, the Bayes factor can be greatly sim-

plified by using the Savage-Dickey Density ratio. If two models are nested,
then there exists at least one point in the parameter space of the unrestricted
model where its likelihood is equivalent to the restricted model. For exam-
ple, if we evaluate our most general model at θ = 0, then its likelihood is
equivalent to the business cycle specific probit. In the nested case, the Bayes
factor can be found by the ratio of posterior density at θ = 0 to the prior
density at θ = 0, under some mild regularity conditions. Continuing with
the example the Bayes factor would be:

BF2 vs 4 =
p(θ = 0|Data)
p(θ = 0)

.

Notice that with Gibbs sampling we do not have direct access to the
unconditional posterior densities. Instead, we can calculate them at each
iteration of the sampler as:

p(θ = 0|Data,Y∗, β, {σn}),
where Y∗ = [Y ∗K+1, . . . , Y

∗
T ]
0. However, since

p(θ = 0|Data)
=

Z
p(θ = 0|Data,Y∗, β, {σn})p(Y∗, β, {σn}|Data)dY∗dβdσ2 · · · dσn,
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we can average these values across draws of the sampler to obtain an estimate.
The Bayes factor (BF) is assessed using the recommendations of Jeffrey’s

(1961, Appendix B), which states the weight of evidence against the null
given by the following range of values:

• lnBF > 0 evidence supports null;
• −1.15 < lnBF < 0 very slight evidence against null;

• −2.3 < lnBF < −1.15 slight evidence against the null;
• −4.6 < lnBF < −2.3 strong to very strong evidence against the null;
• lnBF < −4.6 decisive evidence against null.

3.4 Real Time Forecasts

The main objective of the analysis of the relationship between the yield curve
and business cycle turning points is to provide better real time predictions of
turning points. In the original probit model of EM, forecasts were constructed
by using the maximum likelihood estimates and recent observations on the
yield curve. For example:

P (Y ∗T +K ≥ 0|ST , bβ) = Φ[bβ0 + bβ1ST ].

Note that since it is unlikely that the predicted probability is exactly equal
to 0 or 1 some judgement is required on how to interpret the predictions.
We have emphasized a different type of prediction in Section 2, namely the
probability of an expansion continuing for k more months. For the original
probit specification of EM, this forecast is obtained from:

kY
s=1

n
1−Φ[bβ0 +

bβ1ST +k−s]
o
,

where this forecast converges to 0 as k increases by construction.
The first difference in prediction using the Gibbs sampler approach is

that instead of evaluating the cumulative distribution function using the
maximum likelihood estimator, one evaluates it at each draw of the Gibbs
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sampler. The collection of forecasts can then be averaged to produce an
estimated posterior mean probability of recession:

bP (Y ∗T+K ≥ 0|ST , S
T−K ,ψ, YT ) =

1

I

IX
i=1

Φ[β
{i}
0 + β

{i}
1 ST ],

where ψ signifies the hyperparameters of the prior distributions and the as-
sumption on the initial conditions of the latent variable and the yield curve.
Alternatively, the posterior predictive distribution can be analyzed directly
and used to present probability intervals on the probability of recession.
Analogously, one can form the cumulative product of the individual prob-
abilities at each iteration of the Gibbs sampler and examine its posterior
properties.
The second difference arises from the more complicated model with an au-

toregressive component. In this case, as noted above, one needs to integrate
out over the unknown lagged value of the latent variable to form predictions.
This requires a numerical integration step at each iteration of the Gibbs sam-
pler. The Gibbs sampler produces a draw of Y ∗T , θ, and σN . These values
can be used to simulate J time series realizations of {Y ∗T +s; s = 1, . . . k} using
the observed yield values from T −K + 1 to T − 1. The average over these
J draws is formed as:bP (Y ∗T+K ≥ 0|ST , S

T−K,ψ, Y
∗{i}

T , ξ{i}) =

1

J

JX
j=1

Φ
h
(β
{i}
0 + β

{i}
1 ST + θ

{i}Y ∗{j}T +k−1)/σ
{i}
N

i
,

where ξ{i} denotes the set of parameter draws at the ith iteration of the Gibbs
sampler. Averaging this estimated probability over the I draws from the
Gibbs sampler produces an estimate of the posterior mean of the probability
of recession and the collection of draws provides an estimate of the posterior
distribution.

4 Results

4.1 Priors

We assume that the prior variance of β is the identity matrix. For the prior
mean we use the maximum likelihood estimate from model 1, which assumes
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unit variance and no autoregressive component, as in EM. Given the size of
the sample there is little influence from the prior. However, we decided to
give to EM’s standard probit model the advantage of a prior centered at its
MLE. For the autoregressive parameter θ the prior is taken to be a truncated
standard normal on (−1, 1). With respect to the prior for the business cycle
specific variances, we center it at 1, with diffuse degrees of freedom equal to
3.

4.2 Empirical Results

The data on the yield curve cover the period from January 1954 to March
2001.14 We set the forecast horizon K to 12 and assume that no recession
will be called in the last three months of 2000.15 Thus, our business cycle
data run from January 1955 to December 2000. The last 15 observations of
the yield spread are used to form real time forecasts of the probability of
recession state for each month from January 2001 to March 2002, and the
probability of an expansion continuing through March 2002.
We use 40, 000 iterations to estimate the probit models using the Gibbs

sampler. We start the sampler from the maximum likelihood estimate for
the whole sample from Model 1, but calculate the posterior properties only
after 10, 000 draws (thus, 50, 000 draws in total).16

Table 1 summarizes the posterior means of the parameters for the four
alternative specifications and also gives some forecasts of the probability of
recession in 2001 − 2002. The results from all models corroborate previous
findings, indicating a significant relationship between inversions of the term
structure and the probability of a recession 12 months ahead.
The posterior means of the parameters for the different models can not

be directly compared due to the presence of the autoregressive component
and/or business cycle specific variance. However, we can observe that in

14The yield spread is defined as the difference between the 10-year constant maturity
Treasury Bond and the 3-month constant maturity Treasury Bill. We take the average of
the daily rates each month.
15Hall (2001) suggests that there the NBER is unlikely to call a recession in the last

quarter of 2000. Robert Hall is one the members of the NBER Business Cycle Dating
Committee.
16The computation time for the most complicated model is around 4 hours, including

the construction of the out-of-sample forecasts with the use of 1000 simulated draws for
each Gibbs draw.
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all cases the posterior mean of the intercept and slope coefficients are neg-
ative as expected. Further, the autoregressive parameters in Models 3 and
4 are relatively large and positive, implying highly persistent movements in
the underlying latent variable. These results affect the recession forecasts
substantially, as discussed below.
Table 1 shows the different values obtained for the variance across the

seven business cycles in the sample for Models 2 and 4, which allow the
variance to change over the business cycle. Except for a scale factor, the
estimated variances from these models capture the same features across dif-
ferent business cycles in the sample. In particular, the highest estimated
variance occurs during the short 1980-81 business cycle. This corresponds to
the period in which the Federal Reserve changed its operating procedures.
The level and volatility of interest rates and consequently, of the yield curve,
increased substantially during the 1979-82 period. On the other hand, the
variances with lowest values are associated with the long expansions of the
1960s, 1980s and 1990s.
The negative of the posterior means for the latent variable (Y ∗t ) are plot-

ted in Figure 1 together with the yield spread for all four models considered.
We can observe that the posterior mean of the latent variable from the sim-
plest version of the probit specification (Model 1) does not vary much as
compared to the other models, and essentially tracks the yield curve.
This can also be observed in Figure 2, which plots the posterior mean of

the probabilities of recession from January 1955 to March 2002 for all four
specifications. The probabilities consistently rise before each of the seven
full recessions in the sample dated by the NBER. However, the probabilities
of a recession for Model 1 are only above 50% for the 1974-75, the 1980,
and the 1981-1982 recessions. In addition, Model 1 gives more false signals
of recessions than the other specifications. Notice that the probabilities of
recessions from this model rise as much for recessions as for the low-growth
phases in the U.S. economy in 1966-67, in 1995, and in 1997, which are
associated, respectively, with slowdowns in Europe, with the Mexican crisis,
and with the East Asian crisis. As a result, interpretation of increases in
probabilities as an indication of future recessions is not unambiguous. This
is also the case for the current slowdown in 2000-2001, as discussed in the
next section.
Model 2 allows for the possibility of time-varying parameters or, more

specifically, for variances that may change for each of the recessions in the
sample. There are two main differences between the posterior probabilities
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of recession from Models 1 and 2. First, the posterior probabilities rise
substantially more before each of the NBER-dated recessions in Model 2
than in Model 1. Second, Model 2 gives only one false signal of recession —
the probabilities forecast the 1966-67 low-growth phase as a recession. Thus,
probabilities of recession from Model 2 are easier to interpret as signalling
turning points. An interesting feature of this model is that the posterior
latent variable increases substantially after the 1990-91 recession. Perhaps
the magnitude of the increase in the latent variable is associated with the
long extension of the 1990s expansion.
When allowing for an autoregressive process in the probit model, the esti-

mated parameters and posterior probabilities of recessions are quite different
from the other specifications. As seen in Figure 2, the posterior probabilities
from Model 3 and 4 are very similar to each other and very different from
Models 1 and 2. In particular, the probabilities of recession from Models 3
and 4 consistently increase above 80% before each of the recessions in the
sample. Thus, there is much less uncertainty regarding interpretation of these
probabilities. In addition, the probabilities increase only before recessions,
not before slowdowns. That is, the probabilities from these models do not
give any false signals of recession.
The Bayes factor allows us to evaluate the sample evidence in favor of

the alternative models. The Bayes factor indicates overwhelming evidence in
favor of the specification that includes both business cycle specific variance
and an autoregressive process for the latent variable. This could be expected
given the significant improvement in fit produced by the extensions to the
basic probit model, as exhibited in Figure 2. Further, the Bayes factor always
favors the more complicated model in each possible pairwise comparison.
First, the natural logarithm of the Bayes factor for constant variance versus
business cycle specific variance is −55 (for Model 1 versus 2) and −27 (for
Model 3 versus 4) showing decisive evidence for the time varying variance.
Second, the Bayes factor for no autoregressive term versus an autoregressive
term is impossible to distinguish from computer zero. Thus, the sample
evidence decisively supports Model 4.

4.3 Recession Forecasts for 2001-2002

In this section, we illustrate the differences between the various models and
also between the simple recession probabilities and hitting time probabilities
in a real time forecasting exercise. The exercise uses the 15 months of yield
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spread data after the end of the estimation sample in December 2000
Figure 3 plots the posterior mean of probabilities of recessions for 2001-

2002 for all models. As it can be observed, the probability of recessions
for this period differ considerably across the alternative specifications. In
particular, the simplest versions of the probit model that do not correct for
serially correlated errors have the highest probabilities of recession states in
2001-2002 (Models 1 and 2). Model 2 indicates that the U.S. economy may
experience a short recession during the second semester of 2001, while Model
1 gives more moderate signals of a weak economy. On the other hand, the
more sophisticated specifications that allow the latent variable to be serially
correlated yield substantially smaller probabilities of a recession in the near
future (Models 3 and 4).
More specifically, the probabilities of a recession state for particular months

in the second semester of 2001 for Model 1 are around 40%. They reach a
peak of 46% in December 2001 and decrease steadily to 27% in March 2002,
the last month in the forecast exercise. However, one of the problems with
Model 1, in addition to be misspecified, is that it equally signals both re-
cessions and slowdowns. Thus, the probabilities may be indicating either a
potential recession or simply the continuation of the low-growth phase in the
U.S. economy that started in 2000. For Model 2, the probabilities of a re-
cession in the second semester of 2001 are substantially higher (around 59%)
reaching a peak in December 2001 of 70%. Given the recession probability
history from this model, as observed in Figure 1b, these high values indicate
that the economy may experience a short recession in the second semester of
2001. However, the probabilities of recession decline quickly to only 11% in
March 2002.
A more accurate reading on the likelihood of recessions can be obtained

from the hitting probabilities. Some information on these is shown in the last
two rows of Table 1 and in Figures 4. The results are similar for Models 1 and
2, as the probability of continued expansion in March 2002 is less than 1% for
both models. Figures 4a and 4b plot the posterior cumulative distribution of
the hitting probabilities of no recession before March 2002 for these models.
As seen in the figures, under the assumption of no autoregressive component
in the latent variable 95% of the posterior on the probability of continued
expansion is between 0.1% and 0.4% for Model 1, and between 0% and 0.9%
for Model 2. Finally, Figures 5a and 5b show the cumulative distribution
function of the probability of a recession state in March 2002. As observed,
95% of the posterior on the probability of a recession is between 0 and 28%
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indicating that the positive steepening of the yield curve in early 2001 signals
stronger economic activity in 2002.
On the other hand, when we allow the latent variable to follow an autore-

gressive process, the resulting recession probability forecasts are substantially
smaller. In particular, the probability of a recession in the second semester
of 2001 is around 18% for both models 3 and 4 (Figures 3c and 3d). The
probabilities reach a maximum in January 2002 of only 25% for Model 3
and 31% for Model 4, and slowly decrease until March 2002. As observed in
Figures 2c and 2d, the probabilities from these models increase above 80%
before each of the recessions in the sample.
However, the evidence from the hitting probabilities show higher uncer-

tainty with respect to a future recession. In particular, the probabilities
that a expansion will continue in March 2002 are around 50% for Models 3
and 4 (Table 1). As illustrated in Figures 4c, 4d, 5c and 5d, if the model
explicitly addresses the error misspecification by introducing an autoregres-
sive process, the inferences of recession probabilities as well the forecasts of
recession in March 2002 change considerably. Figures 5c and 5d plot the pos-
terior distribution of the probability of a recession state in March 2002 for
these models. While the estimated mean recession probability for Model 3 is
24%, a symmetric probability interval of 95% around this mean is around 2%
and 51%. For Model 4, this symmetric probability interval around the mean
recession probability of 31% in March 2002 is between 0% to 64%. That is,
the uncertainty with respect to a recession probability increases somewhat
when taking into account multiple breakpoints and serial correlation in the
conditional mean of the term structure. Further, Figures 4c and 4d show
the cumulative distribution function of the probability of no recession before
March 2002 for Models 3 and 4. We observe that 95% of the posterior on
the probability of no recession before March 2002 is between 12% and 89%
for Model 3, and between 0.6% and 96% for Model 4.
In summary, the posterior recession probabilities for all four models peak

around either December 2001 or January 2002. Further, all models indicate
a subsequent smaller probability of recession state in 2002 with the reduction
in risk lower for the models with autocorrelation. However, the magnitude
of the probabilities differ substantially across model specifications.
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4.4 Previous Forecast Performance

We consider out-of-sample predictions for four periods, which were estimated
using data up to the month preceding the starting date of the forecast inter-
vals below:17

1. December 1988 to February 1990 using yield data up to February 1989,

2. December 1989 to February 1991 using yield data up to February 1990,

3. January 1999 to March 2000 using yield data up to March 1999,

4. January 2000 to March 2001 using yield data up to March 2000.

Notice that the first and third periods do not contain a recession, while
the second period includes the 1990-91 recession. It is possible that the fourth
period might contain a recession in its last two months.
Table 2 contains some posterior features of this modified out-of-sample

forecasting exercise implemented for Model 4. The quantities in parentheses
represent the analogous results obtained using the original probit model of
EM (Model 1). The first thing to note is that the posterior means of the
parameters are relatively stable across the estimation periods. The only
minor exception is when the data from January 1999 to December 2000 is
incorporated (i.e., moving from period 3 to period 4).
With respect to the hitting probabilities, the probability of continuing

expansion from January 1999 to March 2000 is relatively low at 0.66. Al-
though it is providing a stronger recession signal than period 2, it is not as
strong as the current prediction of 0.49 (Table 1). From Figure 1 we can
observe that the term spread was relatively low at the end of 1998, but the
lack of a subsequent recession in 1999 leads to an attenuation of the effect
of the spread compared to the constant term. On the other hand, the im-
portance of the spread increases with the introduction of the 1990s into the
sample, indicating that the large positive spreads for most of the period were
consistent with the long expansion observed18.

17EM find that the in-sample results for the standard probit specification did not nec-
essarily match with the out-of-sample performance. For the more complicated versions
considered here, the computational burden is too high to repeat the the comprehensive
recursive forecasting exercise conducted by these authors.
18That is, the slope coefficient divided by the innovation standard deviation is substan-

tially larger in absolute value.
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The model is relatively successful in forecasting the 1990-91 recession in
the sense that it did not produce a false signal in 1989. However, only a weak
recession signal is produced before the actual recession, as found by previous
models. In particular, the probability of continuing expansion for period 2 is
0.70. Notice that if we return to the recession forecast for the 1999 period,
there was considerable speculation regarding the end of the expansion in the
Fall of 1998, given the financial turmoil experienced by Russia and fears of
financial contagion. These discussions were cut short with the strong growth
of the US economy in the first quarter of 1999. Similar speculations were
taking place before the 1990 recession, but the strong economic growth in
the first quarter of 1990 also faded away discussions of a recession. However,
in 1990 a recession hit the economy in the third quarter of the year.
The performance of the EM model is similar to the more complicated

model in a qualitative sense. However, the standard probit model of EM
gives hitting probabilities that are poorly calibrated. In particular, the pos-
terior mean of the probability of continuing expansion from this model tend
to be very low. Even for the prediction in period 1, which does not include
a recession (but does include a slowdown), the upper 97.5% percentile of the
probability of a continuing expansion is only 0.5. Thus, the model is basi-
cally signalling the 1989 slowdown. Given that generally slowdowns precede
recessions, but not all slowdowns turn into recessions, this suggests that the
more complicated probit model gives a more accurate quantitative evidence
on the likelihood of recession.

5 Conclusions
This paper extends the probit specification of EM to account for the pos-
sibility of multiple breakpoints and serially correlated errors. We use the
alternative specifications to construct hitting probabilities to the next reces-
sion. We find that a probit model with business cycle specific innovation
variance and an autoregressive component has a much better in sample fit
than the original probit model of EM. In particular, the recession forecasts
from this more complicated model are very different from the ones obtained
from the standard probit specification. In addition, the hitting probabilities
suggest substantial misspecification in the standard probit model of EM.
All specifications considered indicate that the yield curve is signaling

weak future economic activity in 2000-2001. However, the strength of the
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recession signals differs substantially across the specifications. The versions
of the probit model that do not correct for serially correlated errors display
the highest posterior probability of a recession for 2001-2002. On the other
hand, the more sophisticated specifications that allow the latent variable to
be serially correlated lead to smaller probabilities of a recession in the near
future.

Appendix
In this appendix we derive the formula required for the Gibbs sampler draws
in the case of Model 4. First note that the full conditional distribution under
the first order autoregressive assumption

f(Y ∗t |Y ∗T , . . . , Y ∗t+1, Y
∗

t−1, . . . , Y
∗

K+1)

is equivalent to:

f(Y ∗t |Y ∗t+1, Y
∗

t−1).

Since Y ∗t+1, Y
∗

t , Y
∗

t−1 has a joint normal distribution, the conditional distribu-
tion is normal. Under the assumption that all initial values are zero, we can
write the latent time series Y ∗t at time t as:

Y ∗t = eXt +
t−K−1X

s=0

θsσ(t− s)εt−s.

Thus, the latent time series conditional on the yield is multivariate normal
with mean vector

h eXt+1, eXt, eXt−1

i
and variance matrix: V (eYt+1) θV (eYt) θ2V (eYt−1)

θV (eYt) V (eYt) θV (eYt−)
θ2V (eYt−1) θV (eYt−1) V (eYt−1)

 .
The results are then based on standard relationships between joint normals
and conditional normals.
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Table 1: Posterior Means Across Models
Estimated Parameters
and Probabilities

Model 1 Model 2 Model 3 Model 4

β0 −0.627 −0.342 −0.165 −0.099
β1 −0.718 −1.041 −0.209 −0.228
θ - - 0.875 0.848
Innovation Variance
1955-1957
1957-1961
1961-1970
1970-1975
1975-1980
1980-1982
1982-1991
1991-present

1
-
-
-
-
-
-
-

1
4.086
0.191
1.499
0.793
45.542
0.780
0.182

1
-
-
-
-
-
-
-

1
1.899
0.266
1.663
0.716
3.315
0.476
0.295

Probability of Continued
Expansion through
March 2002

0.009 0.003 0.517 0.493

Probability of Continued
Expansion
Lower 2.5th percentile
Upper 97.5th percentile

0.001
0.025

0.000
0.022

0.205
0.854

0.135
0.923
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Table 2: Simulated Out of Sample Properties For Model 4
Estimated Parameters
and Probabilities

Period 1 Period 2 Period 3 Period 4

β0

−0.11
(−0.59)

−0.11
(−0.60)

−0.08
(−0.59)

−0.11
(−0.62)

β1

−0.18
(−0.66)

−0.18
(−0.66)

−0.25
(−0.71)

−0.18
(−0.71)

θ 0.86 0.86 0.84 0.86
Innovation Variance
1982-1991
1991-present

0.44
-

0.44
-

0.44
0.37

0.51
0.32

Probability of
Continued Expansion
Next 15 months

0.95
(0.38)

0.70
(0.02)

0.66
(0.04)

0.82
(0.17)

The numbers between parentheses correspond to the results from Model 1, for
comparison.
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Figure 4 – Posterior Cumulative Distribution Function of the Probability of No Recession 
       Before March 2002 Under Different Assumptions  
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Figure 5 – Posterior Cumulative Distribution Function of the Probability of Recession in 
       March 2002 Under Different Assumptions  

 

 


