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Horizon Problems and Extreme Events

in Financial Risk Management

Peter F. Christoffersen, Francis X. Diebold, and Til Schuermann

I. INTRODUCTION

There is no one “magic” relevant horizon for risk manage-

ment. Instead, the relevant horizon will generally vary by

asset class (for example, equity versus bonds), industry

(banking versus insurance), position in the firm (trading

desk versus chief financial officer), and motivation (private

versus regulatory), among other things, and thought must

be given to the relevant horizon on an application-by-

application basis. But one thing is clear: in many risk

management situations, the relevant horizons are long—

certainly longer than just a few days—an insight incorpo-

rated, for example, in Bankers Trust’s RAROC system, for

which the horizon is one year.

Simultaneously, it is well known that short-

horizon asset return volatility fluctuates and is highly

forecastable, a phenomenon that is very much at the center

of modern risk management paradigms. Much less is

known, however, about the forecastability of long-horizon

volatility, and the speed and pattern with which forecast-

ability decays as the horizon lengthens. A key question

arises: Is volatility forecastability important for long-

horizon risk management, or is a traditional constant-

volatility assumption adequate?

In this paper, we address this question, explor-

ing the interface between long-horizon financial risk

management and long-horizon volatility forecastability

and, in particular, whether long-horizon volatility is

forecastable enough such that volatility models are use-

ful for long-horizon risk management. In particular, we

report on recent relevant work by Diebold, Hickman,

Inoue, and Schuermann (1998); Christoffersen and Diebold

(1997); and Diebold, Schuermann, and Stroughair

(forthcoming).

To assess long-horizon volatility forecastability, it

is necessary to have a measure of long-horizon volatility,

which can be obtained in a number of ways. We proceed in

Section II by considering two ways of converting short-

horizon volatility into long-horizon volatility: scaling and

formal model-based aggregation. The defects of those pro-

cedures lead us to take a different approach in Section III,

estimating volatility forecastability directly at the horizons

of interest, without making assumptions about the nature

of the volatility process, and arriving at a surprising con-

clusion: Volatility forecastability seems to decline quickly

with horizon, and seems to have largely vanished beyond

horizons of ten or fifteen trading days.
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If volatility forecastability is not important for

risk management beyond horizons of ten or fifteen trading

days, then what is important?  The really big movements

such as the U.S. crash of 1987 are still poorly understood,

and ultimately the really big movements are the most

important for risk management. This suggests the desir-

ability of directly modeling the extreme tails of return

densities, a task potentially facilitated by recent advances

in extreme value theory. We explore that idea in Section IV,

and we conclude in Section V.

II. OBTAINING LONG-HORIZON 
VOLATILITIES FROM SHORT-HORIZON 
VOLATILITIES: SCALING AND FORMAL 
AGGREGATION1

Operationally, risk is often assessed at a short horizon, such

as one day, and then converted to other horizons, such as

ten days or thirty days, by scaling by the square root of

horizon [for instance, as in Smithson and Minton (1996a,

1996b) or J.P. Morgan (1996)]. For example, to obtain a

ten-day volatility, we multiply the one-day volatility by

. Moreover, the horizon conversion is often signifi-

cantly longer than ten days. Many banks, for example, link

trading volatility measurement to internal capital alloca-

tion and risk-adjusted performance measurement schemes,

which rely on annual volatility estimates. The temptation

is to scale one-day volatility by . It turns out, how-

ever, that scaling is both inappropriate and misleading.

SCALING WORKS IN IID ENVIRONMENTS

Here we describe the restrictive environment in which

scaling is appropriate. Let  be a log price at time t, and

suppose that changes in the log price are independently

and identically distributed, 

.

Then the one-day return is

,

with standard deviation . Similarly, the h-day return is

,
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with variance  and standard deviation . Hence,

the “  rule”: to convert a one-day standard deviation to

an h-day standard deviation, simply scale by . For some

applications, a percentile of the distribution of h-day

returns may be desired; percentiles also scale by  if log

changes are not only iid, but also normally distributed.

SCALING FAILS IN NON-IID ENVIRONMENTS

The scaling rule relies on one-day returns being iid, but

high-frequency financial asset returns are distinctly not iid.

Even if high-frequency portfolio returns are conditional-

mean independent (which has been the subject of intense

debate in the efficient markets literature), they are cer-

tainly not conditional-variance independent, as evidenced

by hundreds of recent papers documenting strong volatil-

ity persistence in financial asset returns.2

To highlight the failure of scaling in non-iid

environments and the nature of the associated erroneous

long-horizon volatility estimates, we will use a simple

GARCH(1,1) process for one-day returns,

,

. We impose the usual regularity and covari-

ance stationarity conditions, , and

. The key feature of the GARCH(1,1) process is

that it allows for time-varying conditional volatility, which

occurs when  and/or  is nonzero. The model has been fit

to hundreds of financial series and has been tremendously

successful empirically; hence its popularity. We hasten to

add, however, that our general thesis—that scaling fails in

the non-iid environments associated with high-frequency

asset returns—does not depend in any way on a GARCH(1,1)

structure. Rather, we focus on the GARCH(1,1) case because

it has been studied the most intensely, yielding a wealth of

results that enable us to illustrate the failure of scaling

both analytically and by simulation.

Drost and Nijman (1993) study the temporal

aggregation of GARCH processes.3 Suppose we begin with

a sample path of a one-day return series, , which
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Ninety-Day Volatility, Scaled and Actual

Chart 1
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follows the GARCH(1,1) process above.4 Then Drost and

Nijman show that, under regularity conditions, the cor-

responding sample path of h-day returns, ,

similarly follows a GARCH (1,1) process with

,

where 

,

and  is the solution of the quadratic equation,

,

where

    

,

and  is the kurtosis of . The Drost-Nijman formula is

neither pretty nor intuitive, but it is important, because it

is the key to correct conversion of one-day volatility to

h-day volatility. It is painfully obvious, moreover, that the

 scaling formula does not look at all like the Drost-

Nijman formula.

Despite the fact that the scaling formula is incor-

rect, it would still be very useful if it was an accurate

approximation to the Drost-Nijman formula, because of its

simplicity and intuitive appeal. Unfortunately, such is not

the case. As , the Drost-Nijman results, which

build on those of Diebold (1988), reveal that 

and , which is to say that temporal aggregation

produces gradual disappearance of volatility fluctuations.

Scaling, in contrast, magnifies volatility fluctuations.

A WORKED EXAMPLE

Let us examine the failure of scaling by  in a specific

example. We parameterize the GARCH(1,1) process to be

realistic for daily returns by setting =0.10 and
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.85, which are typical of the parameter values

obtained for estimated GARCH(1,1) processes. The choice

of  is arbitrary; we set .

The GARCH(1,1) process governs one-day volatil-

ity; now let us examine ninety-day volatility. In Chart 1,

we show ninety-day volatilities computed in two different

ways. We obtain the first (incorrect) ninety-day volatility

by scaling the one-day volatility, , by . We obtain

the second (correct) ninety-day volatility by applying the

Drost-Nijman formula.

It is clear that although scaling by  produces

volatilities that are correct on average, it magnifies the

volatility fluctuations, whereas they should in fact be

damped. That is, scaling produces erroneous conclusions

of large fluctuations in the conditional variance of long-

horizon returns, when in fact the opposite is true. More-

over, we cannot claim that the scaled volatility estimates

are “conservative” in any sense; rather, they are sometimes

too high and sometimes too low.

β 0=
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FORMAL AGGREGATION HAS PROBLEMS 
OF ITS OWN

One might infer from the preceding discussion that formal

aggregation is the key to converting short-horizon volatil-

ity estimates into good, long-horizon volatility estimates,

which could be used to assess volatility forecastability. In

general, such is not the case; formal aggregation has at least

two problems of its own. First, temporal aggregation for-

mulae are presently available only for restrictive classes of

models; the literature has progressed little since Drost and

Nijman. Second, the aggregation formulae assume the

truth of the fitted model, when in fact the fitted model is

simply an approximation, and the best approximation to

h-day volatility dynamics is not likely to be what one gets

by aggregating the best approximation (let alone a mediocre

approximation) to one-day dynamics. 

III. MODEL-FREE ASSESSMENT 
OF VOLATILITY FORECASTABILITY 

AT DIFFERENT HORIZONS5

The model-dependent problems of scaling and aggregating

daily volatility measures motivate the model-free investiga-

tion of volatility forecastability in this section. If the true

process is GARCH(1,1), we know that volatility is fore-

castable at all horizons, although forecastability will decrease

with horizon in accordance with the Drost-Nijman formula.

But GARCH is only an approximation, and in this section

we proceed to develop procedures that allow for assessment

of volatility forecastability across horizons with no assump-

tions made on the underlying volatility model.

THE BASIC IDEA

Our model-free methods build on the methods for evalua-

tion of interval forecasts developed by Christoffersen

(forthcoming). Interval forecasting is very much at the

heart of modern financial risk management. The industry

standard value-at-risk measure is effectively the boundary

of a one-sided interval forecast, and just as the adequacy

of a value-at-risk forecast depends crucially on getting

the volatility dynamics right, the same is true for interval

forecasts more generally.

Suppose that we observe a sample path  of

the asset return series  and a corresponding sequence of

one-step-ahead interval forecasts,

, where  and

 denote the lower and upper limits of the inter-

val forecast for time t made at time  with desired cov-

erage probability p. We can think of  as a value-

at-risk measure, and  as a measure of potential

upside. The interval forecasts are subscripted by t as they

will vary through time in general: in volatile times a good

interval forecast should be wide and in tranquil times it

should be narrow, keeping the coverage probability, p,

fixed. 

Now let us formalize matters slightly. Define the

hit sequence, , as

 
for . We will say that a sequence of interval

forecasts has correct unconditional coverage if  for

all t, which is the standard notion of “correct coverage.”

Correct unconditional coverage is appropriately

viewed as a necessary condition for adequacy of an interval

forecast. It is not sufficient, however. In particular, in the

presence of conditional heteroskedasticity and other higher

order dynamics, it is important to check for adequacy of

conditional coverage, which is a stronger concept. We

will say that a sequence of interval forecasts has correct

conditional coverage with respect to an information set  if

 for all t. The key result is that if

, then correct conditional

coverage is equivalent to  Bernoulli , which can

readily be tested.

Consider now the case where no volatility dynamics

are present. The optimal interval forecast is then constant,

and given by . In that case,

testing for correct conditional coverage will reveal no evi-

dence of dependence in the hit sequence, and it is exactly the

independence part of the iid Bernoulli  criterion that is

designed to pick up volatility dynamics. If, however, volatil-

ity dynamics are present but ignored by a forecaster who
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erroneously uses the constant  forecast, then a

test for dependence in the hit sequence will reject the con-

stant interval as an appropriate forecast: the ones and zeros in

the hit sequence will tend to appear in time-dependent

clusters corresponding to tranquil and volatile times.

It is evident that the interval forecast evaluation

framework can be turned into a framework for assessing

volatility forecastability: if a naive, constant interval fore-

cast produces a dependent hit sequence, then volatility

dynamics are present.

MEASURING AND TESTING DEPENDENCE 
IN THE HIT SEQUENCE

Now that we have established the close correspondence

between the presence of volatility dynamics and depen-

dence in the hit sequence from a constant interval forecast,

it is time to discuss the measurement and testing of this

dependence. We discuss two approaches.

First, consider a runs test, which is based on

counting the number of strings, or runs, of consecutive

zeros and ones in the hit sequence. If too few runs are

observed (for example, 0000011111), the sequence exhibits

positive correlation. Under the null hypothesis of indepen-

dence, the exact finite sample distribution of the number of

runs in the sequence has been tabulated by David (1947),

and the corresponding test has been shown by Lehmann

(1986) to be uniformly most powerful against a first-order

Markov alternative.

We complement the runs test by a second mea-

sure, which has the benefit of being constrained to the

interval [-1,1] and thus easily comparable across horizons

and sequences. Let the hit sequence be first-order Markov

with an arbitrary transition probability matrix. Then

dependence is fully captured by the nontrivial eigenvalue,

which is simply , where  is the probabil-

ity of a j following an i in the hit sequence. S is a natural

persistence measure and has been studied by Shorrocks

(1978) and Sommers and Conlisk (1979). Note that under

independence , so S = 0, and conversely, under

strong positive persistence  will be much larger than

, so S will be large.

L p( ) U p( ),{ }

S π11 π01–≡ πi j

π01 π11=

π11

π01

AN EXAMPLE: THE DOW JONES COMPOSITE 
STOCK INDEX

We now put the volatility testing framework to use in an

application to the Dow Jones Composite Stock Index,

which comprises sixty-five major stocks (thirty industrials,

twenty transportations, and fifteen utilities) on the New

York Stock Exchange. The data start on January 1, 1974,

and continue through April 2, 1998, resulting in 6,327

daily observations.

We examine asset return volatility forecastability

as a function of the horizon over which the returns are cal-

culated. We begin with daily returns and then aggregate to

obtain nonoverlapping h-day returns, .

We set  equal to  standard deviations and

then compute the hit sequences. Because the standard

deviation varies across horizons, we let the interval vary

correspondingly. Notice that p might vary across horizons,

but such variation is irrelevant:  we are interested only in

dependence of the hit sequence, not its mean.

At each horizon, we measure volatility forecast-

ability using the P-value of the runs test—that is, the

probability of obtaining a sample that is less likely to con-

form to the null hypothesis of independence than does the

sample at hand. If the P-value is less than 5 percent, we

reject the null of independence at that particular horizon.

The top panel of Chart 2 on the next page shows the P-values

across horizons of one through twenty trading days. Notice

that despite the jaggedness of the line, a distinct pattern

emerges: at short horizons of up to a week, the P-value is

very low and thus there is clear evidence of volatility fore-

castability. At medium horizons of two to three weeks, the

P-value jumps up and down, making reliable inference

difficult. At longer horizons, greater than three weeks, we

find no evidence of volatility forecastability.

We also check the nontrivial eigenvalue. In order

to obtain a reliable finite-sample measure of statistical

significance at each horizon, we use a simulation-based

resampling procedure to compute the 95 percent confi-

dence interval under the null hypothesis of no dependence

in the hit sequence (that is, the eigenvalue is zero). In the

bottom panel of Chart 2, we plot the eigenvalue at each

h 1 2 3 … 20, , , ,=

L p( ) U p( ),{ } 2±
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Volatility Persistence across Horizons
in the Dow Jones Composite Index

Chart 2

Conditional standard deviation

Notes:  The hit sequence is defined relative to a constant ±2 standard
deviation interval at each horizon. The top panel shows the P-value for a runs
test of the hypothesis that the hit sequence is independent. The horizontal
line corresponds to a 5 percent significance level. The bottom panel shows
the nontrivial eigenvalue from a first-order Markov process fit to the hit
sequence. The 95 percent confidence interval is computed by simulation.
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horizon along with its 95 percent confidence interval. The

qualitative pattern that emerges for the eigenvalue is the

same as for the runs test:  volatility persistence is clearly

present at horizons less than a week, probably present at

horizons between two and three weeks, and probably not

present at horizons beyond three weeks.

MULTI-COUNTRY ANALYSIS OF EQUITY, FOREIGN 
EXCHANGE, AND BOND MARKETS

Christoffersen and Diebold (1997) assess volatility fore-

castability as a function of horizon for many more assets

and countries. In particular, they analyze stock, foreign

exchange, and bond returns for the United States, the

United Kingdom, Germany, and Japan, and they obtain

results very similar to those presented above for the Dow

Jones composite index of U.S. equities.

For all returns, the finite-sample P-values of the

runs tests of independence tend to rise with the aggrega-

tion level, although the specifics differ somewhat depend-

ing on the particular return examined. As a rough rule of

thumb, we summarize the results as saying that for aggre-

gation levels of less than ten trading days we tend to reject

independence, which is to say that return volatility is

significantly forecastable, and conversely for aggregation

levels greater than ten days.

The estimated transition matrix eigenvalues tell

the same story:  at very short horizons, typically from one to

ten trading days, the eigenvalues are significantly positive,

but they decrease quickly, and approximately monotoni-

cally, with the aggregation level. By the time one reaches

ten-day returns—and often substantially before—the esti-

mated eigenvalues are small and statistically insignificant,

indicating that volatility forecastability has vanished.

IV. FORECASTING EXTREME EVENTS6

The quick decay of volatility forecastability as the forecast

horizon lengthens suggests that, if the risk management

horizon is more than ten or fifteen trading days, less energy

should be devoted to modeling and forecasting volatility

and more energy should be devoted to modeling directly

the extreme tails of return densities, a task potentially

facilitated by recent advances in extreme value theory

(EVT).7 The theory typically requires independent and

identically distributed observations, an assumption that

appears reasonable for horizons of more than ten or fifteen

trading days.

Let us elaborate. Financial risk management is

intimately concerned with tail quantiles (for example, the

value of the return, y, such that .05) and tail

probabilities (for example, , for a large value y).

Extreme quantiles and probabilities are of particular inter-

est, because the ability to assess them accurately translates

into the ability to manage extreme financial risks effec-

tively, such as those associated with currency crises, stock

market crashes, and large bond defaults.

Unfortunately, traditional parametric statistical

and econometric methods, typically based on estimation of

P Y y>( ) =

P Y y>( )
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entire densities, may be ill-suited to the assessment of

extreme quantiles and event probabilities. Traditional

parametric methods implicitly strive to produce a good fit

in regions where most of the data fall, potentially at the

expense of a good fit in the tails, where, by definition, few

observations fall. Seemingly sophisticated nonparametric

methods of density estimation, such as kernel smoothing,

are also well known to perform poorly in the tails.

It is common, moreover, to require estimates of

quantiles and probabilities not only near the boundary of

the range of observed data, but also beyond the boundary.

The task of estimating such quantiles and probabilities

would seem to be hopeless. A key idea, however, emerges

from EVT:  one can estimate extreme quantiles and proba-

bilities by fitting a “model” to the empirical survival func-

tion of a set of data using only the extreme event data

rather than all the data, thereby fitting the tail and only

the tail.8 The approach has a number of attractive features,

including:

• the estimation method is tailored to the object of
interest—the tail of the distribution—rather than the
center of the distribution, and

• an arguably reasonable functional form for the tail can
be formulated from a priori considerations. 

The upshot is that the methods of EVT offer hope for

progress toward the elusive goal of reliable estimates of

extreme quantiles and probabilities.

Let us briefly introduce the basic framework. EVT

methods of tail estimation rely heavily on a power law

assumption, which is to say that the tail of the survival

function is assumed to be a power law times a slowly vary-

ing function:

,

where the “tail index,” , is a parameter to be estimated.

That family includes, for example, -stable laws with

(but not the Gaussian case,  ). 

Under the power law assumption, we can base an

estimator of  directly on the extreme values. The most

popular, by far, is due to Hill (1975). It proceeds by order-

ing the observations with  the largest,  the second

largest, and so on, and forming an estimator based on the

P Y y>( ) k y( ) y
α–

=

α
α

α 2< α 2=

α

y 1( ) y 2( )

difference between the average of the m largest log returns

and the m-th largest log return:

.

It is a simple matter to convert an estimate of  into

estimates of the desired quantiles and probabilities. The

Hill estimator has been used in empirical financial settings,

ranging from early work by Koedijk, Schafgans, and de Vries

(1990) to more recent work by Danielsson and de Vries

(1997). It also has good theoretical properties; it can be

shown, for example, that it is consistent and asymptotically

normal, assuming the data are iid and that m grows at a

suitable rate with sample size.

But beware: if tail estimation via EVT offers

opportunities, it is also fraught with pitfalls, as is any

attempt to estimate low-frequency features of data from

short historical samples. This has been recognized in other

fields, such as the empirical finance literature on long-run

mean reversion in asset returns (for instance, Campbell, Lo,

and MacKinlay [1997, Chapter 2]). The problem as relevant

for the present context—applications of EVT in financial

risk management—is that for performing statistical infer-

ence on objects such as a “once every hundred years”

quantile, the relevant measure of sample size is likely bet-

ter approximated by the number of nonoverlapping hun-

dred-year intervals in the data set than by the actual

number of data points. From that perspective, our data

samples are terribly small relative to the demands placed

on them by EVT.

Thus, we believe that best-practice applications of

EVT to financial risk management will benefit from aware-

ness of its limitations, as well as the strengths. When the

smoke clears, the contribution of EVT remains basic and

useful: it helps us to draw smooth curves through the

extreme tails of empirical survival functions in a way that is

consistent with powerful theory. Our point is simply that we

should not ask more of the theory than it can deliver.

V. CONCLUDING REMARKS

If volatility is forecastable at the horizons of interest, then

volatility forecasts are relevant for risk management. But

α 1
m
--- ln y i( )( )

i 1=

m

∑ 
 
 

ln y m( )( )–
 
 
  1–

=

α
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our results indicate that if the horizon of interest is more

than ten or fifteen trading days, depending on the asset

class, then volatility is effectively not forecastable. Our

results question the assumptions embedded in popular risk

management paradigms, which effectively assume much

greater volatility forecastability at long horizons than

appears consistent with the data, and suggest that for

improving long-horizon risk management, attention is

better focused elsewhere. One such area is the modeling of

extreme events, the probabilistic nature of which remains

poorly understood, and for which recent developments in

extreme value theory hold promise.

The views expressed in this article are those of the authors and do not necessarily reflect the position of the Federal Reserve
Bank of New York or the Federal Reserve System. The Federal Reserve Bank of New York provides no warranty, express or
implied, as to the accuracy, timeliness, completeness, merchantability, or fitness for any particular purpose of any information
contained in documents produced and provided by the Federal Reserve Bank of New York in any form or manner whatsoever.
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1. This section draws on Diebold, Hickman, Inoue, and Schuermann
(1997, 1998).

2. See, for example, the surveys of volatility modeling in financial
markets by Bollerslev, Chou, and Kroner (1992) and Diebold and Lopez
(1995).

3. More precisely, they define and study the temporal aggregation of
weak GARCH processes, a formal definition of which is beyond the scope
of this paper. Technically inclined readers should read “weak GARCH”
whenever they encounter the word “GARCH” in this paper.

4. Note the new and more cumbersome, but necessary, notation: the
subscript, which keeps track of the aggregation level.

5. This section draws on Christoffersen and Diebold (1997).

6. This section draws on Diebold, Schuermann, and Stroughair
(forthcoming).

7. See the recent book by Embrechts, Klüppelberg, and Mikosch
(1997), as well as the papers introduced by Paul-Choudhury (1998).

8. The survival function is simply 1 minus the cumulative density
function, . Note, in particular, that because  approaches 1
as y grows, the survival function approaches 0.

1 F y( )– F y( )
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