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Abstract

We suggest a way to perform parsimonious instrumental variables estimation in the

presence of many, and potentially weak, instruments. In contrast to standard methods,

our approach yields consistent estimates when the set of instrumental variables complies

with a factor structure. In this sense, our method is equivalent to instrumental variables

estimation that is based on principal components. However, even if the factor structure

is weak or nonexistent, our method, unlike the principal components approach, still

yields consistent estimates. Indeed, simulations indicate that our approach always

dominates standard instrumental variables estimation, regardless of whether the factor

relationship underlying the set of instruments is strong, weak, or absent.
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1 Introduction

Recent work in instrumental variable estimation has considered two distinct routes. The

first is one where instrumental variables are only weakly correlated with the endogenous

explanatory variables of an instrumental variables (IV) regression. Work by, e.g., Phillips

(1983), Rothenberg (1984), Stock and Yogo (2003b) and Chao and Swanson (2005) consider

a natural measure of instrument weakness (or strength) in a linear IV framework to be the

so-called concentration parameter. In standard analysis the concentration parameter is

taken to grow at the rate of the sample size whereas in the case of weak instruments this

parameter grows more slowly or in the extreme case introduced and considered by Staiger

and Stock (1997) it remains finite asymptotically. In the case of weak instruments, the

properties of IV estimators such as two stage least squares (2SLS) and limited information

maximum likelihood (LIML) are affected relative to the case of strong instruments and the

estimators may, in fact, be inconsistent.

Another direction in IV research involves the case where the number of available instru-

ments is large. This approach was first taken by Morimune (1983) and later generalized

by Bekker (1994). Other relevant papers include Donald and Newey (2001), Hahn et al.

(2001), Hahn and Kuersteiner (2002), and Chao and Swanson (2004). More recently, the

two different stands have been combined to provide a comprehensive framework for the

analysis of the properties of IV estimators in the case of many weak instruments. Work

on this includes Hansen et al. (2006), Stock and Yogo (2003a), Newey (2004) and Chao

and Swanson (2005). A clear conclusion from this work suggests that inconsistency of IV

estimators is a probable outcome when many weak instruments are used.

With this in mind, further recent developments focus on considering parsimonious mod-

eling assumptions for the set of instruments to avoid IV estimator inconsistency. In partic-

ular, Kapetanios and Marcellino (2006) suggest that imposing a factor structure on the set

of instruments, extracting estimates of these factors and using them as instruments can be

very useful. This factor-based IV estimation is powerful when factor structures exist but

loses its desirable properties in the absence of a factor structure. In this paper we suggest an

alternative parsimonious approach for carrying out IV estimation in the presence of many

(and therefore potentially partially weak) instruments. This approach is based on using

partial least squares (PLS) to obtain a fit for each of the endogenous explanatory variables
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using the instruments. The advantages of using PLS based IV estimation are many. We can

show that, in the presence of a factor structure, PLS is equivalent to principal component

based Factor IV estimation. However, if the factor structure is weak or even non-existent

PLS IV remains consistent.

The paper is structured as follows: Section 2 develops the theoretical properties of the

PLS instrumental variable estimator. Section 3 studies the finite sample properties of PLS-

IV estimation using Monte Carlo experiments. Finally, Section 4 summarizes and concludes.

All proofs are contained in the Appendix.

2 Theory

Let the equation of interest be

yt = x′tβ + εt, t = 1, . . . , T, (1)

where the k regressors in xt = (x1,t, ..., xk,t)′ are possibly correlated with the error term εt.

A usual source of endogeneity is, of course, simultaneity, which is widespread in applied

macroeconomic applications based on single equation estimation. Let us assume that there

exist N instrumental variables, zt = (z1,t, ..., zN,t)′, generated by a factor model with r ≥ k

unobservable factors, ft = (f1,t, ..., fr,t)′:

zt = Λ0′ft + vt, (2)

where r is much smaller than N . Therefore, each instrumental variable can be decomposed

into a common component (an element of Λ0′ft) that is driven by a few common forces,

the factors, and an idiosyncratic component (an element of vt). When the latter is small

compared to the former, the information in the large set of N instrumental variables zt can

be efficiently summarized by the r factors ft. We will not solely focus our analysis to the

above factor model since we will consider the case Λ0 = 0 which implies the lack of a factor

structure.

As the data generation mechanisms for xt we consider

xt = A0′
Z zt + ut, (3)

with E(u′tεt) 6= 0 to introduce simultaneity in (1).
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We will consider estimation of β based on a variant of two stage least squares where

each of the first stage regressions (xj,t on zt) is carried out using partial least squares (PLS)

and for this we now review PLS. Introduced by Herman Wold and co-workers between 1975

and 1982,1 partial least squares (PLS) is a relatively new method for estimating regression

equations, that has received much attention in a variety of disciplines and especially in

chemometrics. The basic idea is similar to principal component analysis in that factors or

components, which are linear combinations of the original regression variables, are used,

instead of the original variables, as regressors. A major difference between PC and PLS is

that, whereas in PC regressions the factors are constructed taking into account only the

values of the zt variables, in PLS, the relationship between xt and zt is considered as well

in constructing the factors.

There are a variety of definitions for PLS and accompanying specific PLS algorithms that

inevitably have much in common. We provide a brief description of these definitions and

algorithms we feel are most appropriate for conveying the essence of PLS. A conceptually

powerful way of defining PLS is to note that the PLS factors are those linear combinations

of zt, denoted by Λzt, that give maximum covariance between xt and Λzt while being

orthogonal to each other. Of course, in analogy to PC factors, an identification assumption

is needed, to construct PLS factors, in the usual form of a normalization.

A simple algorithm to construct k1 PLS factors is discussed among others, in detail, in

Helland (1990). Assuming for simplicity that both xt and zt have been normalised to have

zero mean, a simplified version of the algorithm for xj,t is given below

Algorithm 1

1. Set uj,t = xj,t and vt = (v1,t, , ..., vN,t)′, vi,t = zi,t, i = 1, ...N . Set s = 1.

2. Determine the N×1 vector of indicator variable weights or loadings wjs = (w1js · · ·wNjs)′

by computing individual covariances: wijs = Cov(uj,t, vi,t), i = 1, ..., N . Construct

the s-th PLS factor by taking the linear combination given by w′jsvt and denote this

factor by fj,s,t.

1See, e.g., Wold (1982).

3



3. Regress uj,t and vi,t, i = 1, ..., N on fj,s,t. Denote the residuals of these regressions by

ũj,t and ṽi,t respectively.

4. If s = k1 stop, else set uj,t = ũj,t, vi,t = ṽi,t i = 1, .., N and s = s + 1 and go to step

2.

This algorithm makes clear that PLS is computationally tractable for very large data

sets. Once PLS factors are constructed xt can be modeled or forecast by regressing xj,t

on fj,s,t s = 1, ..., k1. Helland (1988, 1990) provide a general description of the partial

least squares (PLS) regression problem. Helland (1988) shows that the PLS estimates of

the regression coefficients, αj , of the regression of xj,t on zt obtained implicitly via PLS

Algorithm 1 and a regression of xj,t on fj,s,t s = 1, ..., m, can be equivalently obtained by

the following formula

α̂j,PLS = Vk1(V
′
k1

Z ′ZVk1)
−1V ′

k1
Z ′xj (4)

where Vk1 = (Z ′xj , Z
′ZZ ′xj , ..., (Z ′k1−1Z ′xj), Z = (z1, ..., zT )′ and xj = (xj,1, ..., xj,T )′.

Having briefly reviewed PLS we refer to Groen and Kapetanios (2008) for a more detailed

discussion. Next, we introduce our estimator. Stacking observations across time for our

model presented above gives:

y = Xβ + ε (5)

Z = FΛ0 + v (6)

X = ZA0
Z + u (7)

where y = (y1, ..., yT )′, F = (f1, ..., fT )′, u = (u1, ..., uT )′, v = (v1, ..., vT )′ and ε =

(ε1, ..., εT )′. We define the PLS-IV estimator as:

β̂2SPLS =
(
X ′

PLSX
)−1

X ′
PLSy, (8)

where XPLS = (x1,PLS , . . . , xT,PLS)′ denote the matrix of fitted values for X using a PLS

regression.

We make the following assumptions which are standard in the principal component (PC)

based factor estimation literature.

Assumption 1 1. E||ft||4 ≤ M < ∞, T−1
∑T

t=1 ftf
′
t

p→ Σf for some r × r positive

definite matrix Σf . Λ0 has bounded elements. Further ||Λ0Λ0/N −D|| → 0 where D

is a positive definite matrix.
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2. E(vi,t) = 0, E|vi,t|8 ≤ M where vt = (v1,t, ..., vN,t)′ The variance of vt is denoted by

Σv. fs and vt are independent for all s, t.

3. For τi,j,t,s ≡ E(vi,tvj,s) the following hold

• (NT )−1
∑T

s=1

∑T
t=1 |

∑N
i=1 τi,i,t,s| ≤ M

• |1/N
∑N

i=1 τi,i,s,s| ≤ M for all s

• N−1
∑N

i=1

∑N
j=1 |τi,j,s,s| ≤ M

• (NT )−1
∑T

s=1

∑T
t=1

∑N
i=1

∑N
j=1 |τi,j,t,s| ≤ M

• For every (t, s), E|(N)−1/2
∑N

i=1(vi,svi,t − τi,i,s,t)|4 ≤ M

Assumption 2 εt is a martingale difference sequence with finite fourth moment and E(ε2t |Ft) =

σ2 < ∞ where Ft is the σ-field generated by (fs, zs), s ≤ t.

Assumption 3 (x′t, z′t) are jointly stationary. zt is predetermined, so that E(zitεt) = 0,

i = 1, ..., N . The probability limit of ztz′t
T is finite and nonsingular. E(ztx

′
t) has full column

rank k. xt and zt have finite fourth moments.

Assumption 1 is standard in the factor literature. In particular, it is used in, e.g.,

Stock and Watson (2002) and Bai (2003) to prove consistency and asymptotic normality

(at certain rates) of the principal component based estimator of the factors, and by Bai and

Ng (2006) to show consistency of the parameter estimators in factor augmented regressions.

Assumption 3 guarantees that standard IV estimation using zt as instruments is feasible,

and Assumption 2 that it is efficient.

We make the following additional assumptions:

Assumption 4 Let Σ = ΣN = [σij ] denote the N ×N second moment matrix of Z. Σ can

be factorised as follows:

Σ = S̃Ψ̃S̃′ + R

where S̃S̃′ = I, Ψ̃ = diag(ψ̃N1, ..., ψ̃Nr), r < N and ||R|| = o(N).

Assumption 5 Uniformly over i, j = 1, ..., N

1
T

T∑

t=1

xj,tzi,t − σji,xz = Op

(
T−1/2

)

where σji,xz = E (xj,tzi,t).
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These assumptions deserve some comment. Assumption 4 states that the variables in

Z are asymptotically with respect to N collinear. It is instructive to compare this assump-

tion with the standard factor assumption. In one sense this assumption is stronger than

the standard factor assumption because in standard factor models the sum of all bounded

eigenvalues of the covariance matrix is O(N) whereas under assumption 4 it is o(N). On

the other hand this assumption is weaker. Under a standard factor assumption there can

be only a finite number of unbounded eigenvalues, and hence unbounded singular values,

for the covariance matrix of the data. In our case we can have an infinity of unbounded

eigenvalues as long as the sum of all but the first r eigenvalues is o(N). In particular the

remainder term, R, can, in fact, be parameterized as a neglected ‘weak’ factor model whose

eigenvalue characterisation allows for unbounded eigenvalues which, however, have to grow

at a rate slower than N . Assumption 2 is a mild, high level, assumption. It is sufficient

to have a central limit theorem for (zi,tzj,t − σi,j) for this assumption to hold. The above

assumptions are needed to derive an equivalence between PC and PLS which in turn will

lead to desirable properties for PLS-IV following the analysis of Factor-IV of Kapetanios

and Marcellino (2003).

We therefore need to impose both sets of assumptions to obtain our first result. Note

that the combination of both sets of assumptions is basically restrictive only to the extent

that it implies that the eigenvalues of the population covariance matrix of the idiosyncratic

term are both bounded and their sum does not grow as fast as N . We now present our first

result

Theorem 1 Let assumptions 4-5 hold. Let β̂2SPLS and β̂2SPC denote the PLS IV estimator

and Factor-IV estimator of Kapetanios and Marcellino (2003) respectively. Then, there

exists a finite number of PLS factors such that for that number of PLS factors

√
T (β̂2SPLS − β̂2SPC) = op(1).

If further, assumptions 1-3 hold then, for the same number of PLS factors

√
T (β̂2SPLS − β) d→ N

(
0,

((
A0′

Z Λ0′
Z

)
Σf

(
Λ0

ZA0
Z

))−1
)

where Σf denotes the covariance matrix of ft.
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As we said in the Introduction, the above result is of secondary importance given the

existence of Factor-IV. However, the next result provides a powerful justification for con-

sidering PLS-IV. For this, we need the following assumption

Assumption 6 E(ztx
′
t) is full column rank. E(ztz

′
t) is nonsingular. Uniformly on j,

1√
T

∑T
t=1(zj,t −E(zj,t))

d→ N(0, σ2
j ) where σ2

j denotes the variance of zj,t.

Then, we have the following result

Theorem 2 Let assumptions 5 and 6 hold. Let β̂2SPLS denote the PLS IV estimator where

the PLS factors have been obtained from steps 1-3 of Algorithm 1. Then,

∥∥∥β̂2SPLS − β
∥∥∥ = Op

((
N

T

)−1/2
)

This theorem has a number of implications. Firstly, a cursory examination of the proof

immediately suggests that, for finite N , PLS-IV is
√

T -consistent and asymptotically nor-

mal. Secondly, we note that the result is not just a consistency result as is common in the

literature on many instruments but also a rate result under reasonably mild assumptions.

Finally, we note that the setup of (3) is one where not all instruments can be strong, in

the sense that some elements of A0′
Z are either zero or implicitly become smaller as N in-

creases. Two leading cases can be mentioned: One is where a finite subset of zt are strong

instruments, in the sense that their coefficients in A0′
Z , remain bounded away from zero as

N and the rest are weak. The other leading case is one where all instruments are weak. In

both cases PLS-IV will be consistent as long as limN→∞E(ztx
′
t) has full column rank. We

do not explore formally such issues preferring to leave our formal analysis to the level of

generality posited in Theorem 2.

3 Monte Carlo Study

The setup of the Monte Carlo experiments is:

yt =
k∑

i=1

xit + εt (9)

zit = c
r∑

j=1

N−pfjt + c1eit, i = 1, ..., N (10)
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and either

xit =
r∑

j=1

c−1
1 fjt + uit, i = 1, ..., k (11)

or

xit =
N∑

j=1

N−qdjzjt + uit, i = 1, ..., k (12)

or

where eit ∼ i.i.d.N(0, 1), fit ∼ i.i.d.N(0, 1) and cov(eit, esj) = 0 for i 6= s. Let

κt = (εt, u1t, ..., ukt)′. Then, κt = Pηt, where ηt = (η1,t, ..., ηk+1,t)′, ηi,t ∼ i.i.d.N(0, 1)

and P = [pij ], pij ∼ i.i.d.N(0, 1). The errors eit and uis are independent for each i and s.

We only report results for k = 1, r = 1, since there are no qualitative changes by increasing

the number of endogenous variables or of factors.2

The instrumental variables zit are generated by the model in (10). The parameter p con-

trols the ”strength” of the factor structure. We consider the values p = 0, 0.1, 0.25, 0.33, 0.45, 0.5.

When p = 0 we are in the standard case analyzed by, e.g., Stock and Watson (2002) and Bai

(2003). When p > 0 we are in the weak factor structure case, as discussed in Kapetanios

and Marcellino (2003). The parameter c1 controls the relative size of the idiosyncratic com-

ponent, so that a larger value of c1 makes factor estimation harder, at least for small values

of N . In the base case we set c1 = 1, but we also consider experiments with c1 = 0.5. Note

also that c1 appears in (10) so that high values of c1 will reduce the influence of ft on xt.

So, overall increasing the value of c1 should have a negative influence on the performance

of a factor based IV estimator although not necessarily PLS-IV in view of Theorem 2. We

use two different generating mechanisms for xit: (11) and (12). We also consider two cases

that relate to the presence of factors. In the first case, c = 1, and in the second case, c = 0.

If c = 1 we set q = 1 since the cross-sectional sum of zjt needs to be normalised by N−1,

in this case, to remain bounded in probability. whereas the normalisation should be N−1/2

when c = 0. Finally, if c = 1 we set dj = 1 whereas if c = 0, we consider two cases: In the

first case, we set dj ∼ N(1, 1). This implies that all the variables, zit, get the same weight

on average in determining xit. In the second case we wish to have different weights on dif-

ferent zjt. This is important as it is likely in practical applications for different instruments

to be of different importance for the first-stage regression. Therefore, we adopt the scheme
2Results for k and r larger than one are available upon request.
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used in Model 1 of the simulation study of Donald and Newey (2001), which is given by

dj = c(N)
(
1− j

N+1

)4
where c(N) is chosen so that the R2 of (12) is 0.5. Results on the

MSE of the PLS-IV and Standard IV estimators are reported in Tables 1-3.

Results make interesting reading. PLS-IV dominates standard IV in all cases consid-

ered. This dominance is clearest when there is a strong factor structure in the data but it

extends to cases where the factor structure is weak or completely nonexistent. Interestingly

and in accordance with the results of Theorem 2, the performance of PLS-IV does not de-

teriorate sharply as the factor structure weakens and, unlike Factor-IV, remains dominant

over standard IV, irrespective of the coefficient pattern for the first-stage regression.

4 Conclusion

In this paper we suggest a parsimonious approach for carrying out IV estimation in the

presence of many (and therefore potentially partially weak) instruments. This approach is

based on using partial least squares (PLS) to obtain a fit for each of the endogenous explana-

tory variables using the instruments. The advantages of using PLS based IV estimation are

many. We have shown that, in the presence of a factor structure, PLS is equivalent to

principal component based Factor IV estimation. However, if the factor structure is weak

or even non-existent PLS IV remains consistent and can even outperform IV estimation

based on cross-sectional averages. Further PLS IV does not depend on a tuning parameter,

at least to the extent that shrinkage IV estimation does. Our Monte Carlo study suggests

that PLS-IV is as good as PC based factor IV when there exists a factor structure but

remains better than standard IV when there is no factor structure. As a result this method

combines the desirable properties of Factor-IV in the special case of a factor structure while

still providing very good performance in the general case where no factor structure appears

in the data.
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Appendix

Proof of Theorem 1

We have that

β̂PC =
(
X ′F̂PC(F̂ ′

PC F̂PC)−1F̂ ′
PCX

)−1
X ′F̂PC(F̂ ′

PC F̂PC)−1F̂ ′
PCy,

and

β̂PLS =
(
X ′F̂PLS(F̂ ′

PLSF̂PLS)−1F̂ ′
PLSX

)−1
X ′F̂PLS(F̂ ′

PLSF̂PLS)−1F̂ ′
PLSy.

Note that these estimators can be written as

β̂PC =
(
X ′

PCX
)−1

X ′
PCy

and

β̂PLS =
(
X ′

PLSX
)−1

X ′
PLSy,

respectively, where XPC = (x1,PC , . . . , xT,PC)′ and XPLS = (x1,PLS , . . . , xT,PLS)′ denote

the matrix of fitted values for X using a PC or PLS regression respectively. For future use

define xt = ( x1,t, . . . , xk,t)′ xt,PC = ( x1,t,PC , . . . , xk,t,PC)′ and xt,PC = ( x1,t,PLS , . . . , xk,t,PLS)′.

We wish to prove that ∥∥∥β̂PC − β̂PLS
∥∥∥ = op(T−1/2)

We need to prove that ∥∥∥∥
X ′

PLSX

T
− X ′

PCX

T

∥∥∥∥ = op(T−1/2) (13)

and ∥∥∥∥
X ′

PLSy

T
− X ′

PCy

T

∥∥∥∥ = op(T−1/2) (14)

It is sufficient to show that
∥∥∥∥∥

1
T

T∑

t=1

xj,txj,t,PC − 1
T

T∑

t=1

xj,txj,t,PLS

∥∥∥∥∥ = op(T−1/2) (15)

for j = 1, . . . k. Then, (13) immediately follows and (14) can be proven similarly. Let

α̂j,PC and α̂j,PLS denote the implied estimated regression coefficients from the PC or PLS

regression respectively. Then,
∥∥∥∥∥

1
T

T∑

t=1

xj,txj,t,PC − 1
T

T∑

t=1

xj,txj,t,PLS

∥∥∥∥∥ =

∥∥∥∥∥
1
T

T∑

t=1

xj,t

(
α̂′j,PC − α̂′j,PLS

)
zt

∥∥∥∥∥ ≤

12



‖α̂j,PC − α̂j,PLS‖
∥∥∥∥∥

1
T

T∑

t=1

xj,tzt

∥∥∥∥∥
Bu, by assumption 5 the LLN for stationary, ergodic processes implies that

∥∥∥∥∥
1
T

T∑

t=1

xj,tzt

∥∥∥∥∥
p→ ‖σj,xz‖

where σj,xz = E (xj,tzt). But ‖σj,xz‖ = O
(
N1/2

)
. Noting that, by theorem 1 of Groen and

Kapetanios (2008),

‖α̂j,PC − α̂j,PLS‖ = op

(
(NT )−1/2

)
,

(15) follows immediately, proving the result of the Theorem.

Proof of Theorem 2

To prove this Theorem we need the following Lemma

Lemma 1 Let assumptions 5 and 6 hold. Then,

1
T

T∑

t=1

x′tx̃t,PLS
p→ Ψ

where x̃t,PLS = ( x̃1,t,PLS , . . . , x̃k,t,PLS)′, xj,t,PLS = z′tâj,PLS, âj,PLS = 1
T

∑T
t=1 xj,tzt, and

Ψ is a positive definite matrix.

To prove the required result, we assume without loss of generality that E(zt) = 0. We

need to show that
1
T

T∑

t=1

x′tx̃t,PLS
p→ Ψ

We first show that
1
T

T∑

t=1

xj,tx̃j,t,PLS
p→ c > 0

We note that

xj,t = z′tπj + vt

Further, note that

πj = Σ−1
zz σj,xz,

where σj,xz = E (xj,tzt). Then, it follows that

xj,tx̃j,t,PLS = â′PLSztz
′
tΣ
−1
zz σj,xz

13



It suffices to show that

â′PLS

(
1
T

T∑

t=1

ztz
′
t

)
Σ−1

zz σj,xz
p→ c > 0 (16)

But,
(

1
T

∑T
t=1 ztz

′
t

)
Σ−1

zz is positive definite for all T > N0 for some N0 > N , and therefore

(16) follows if ∥∥∥∥∥
1
T

T∑

t=1

xj,tzt − σj,xz

∥∥∥∥∥ = op(1) (17)

But, by assumption 5

1
T

T∑

t=1

xj,tzi,t − σj,xz = Op

(
T−1/2

)
, uniformly over i. (18)

Hence, (16) follows if N/T → 0. The result is proven if we note that, by assumption 6

Σxz = E (ztxt) is full column rank and p limT,N→∞ Z ′Z = Σzz is nonsingular. This proves

Lemma 1.

To prove Theorem 2, we have that

β̂2SPLS − β =
(

X ′
PLSX

T

)−1 X ′
PLSu

T

We first examine X′
PLSX
T . We have

X ′
PLSX = Â′PLSZ ′ZΠ + A′PLSZ ′V

By Lemma 1,

Â′PLSZ ′ZΠ/T
p→ Ψ.

We next examine Â′PLSZ ′V/T . By arguments similar to those used in the proof of Lemma

1, we have that ∥∥∥ZÂPLS − ZΣxz

∥∥∥ = op(1)

But given that xj,t and vt are independent and have finite variance, it follows that z′tπj has

finite variance. Since, further, zi,t follow uniformly a CLT, it follows that

Σ′xzZ
′V

T
= op(1)

Thus, overall
X ′

PLSX

T

p→ Ψ.

Next, we examine
X ′

PLSu

T
=

Â′PLSZ ′u
T

14



Then, using (18) and similarly to above we have that
∥∥∥∥∥
Â′PLSZ ′u

T
− Σ′xzZ

′u
T

∥∥∥∥∥ = Op

((
N

T

)−1/2
)

and ∥∥∥∥
Σ′xzZ

′u
T

∥∥∥∥ = Op

(
T−1/2

)

Overall, it then follows that

∥∥∥β̂2SPLS − β
∥∥∥ = Op

((
N

T

)−1/2
)

proving the Theorem.
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Table 1. Results for IV estimators in the case of Equation (11)
MSE Results

c2 0.5 1 0.5 1
p T/N 30 50 100 200 30 50 100 200 30 50 100 200 30 50 100 200

PLS IV Standard IV
0 30 0.139 0.135 0.141 0.143 0.198 0.188 0.192 0.194 0.253 0.256 0.255 0.251 0.372 0.369 0.373 0.369
0 50 0.106 0.107 0.107 0.103 0.153 0.147 0.146 0.146 0.183 0.250 0.244 0.247 0.284 0.360 0.368 0.371
0 100 0.071 0.072 0.072 0.074 0.103 0.100 0.104 0.099 0.106 0.148 0.244 0.241 0.181 0.242 0.358 0.359
0 200 0.052 0.049 0.051 0.052 0.072 0.071 0.071 0.069 0.069 0.088 0.143 0.235 0.108 0.150 0.240 0.352

0.1 30 0.142 0.139 0.139 0.135 0.186 0.184 0.181 0.174 0.258 0.258 0.248 0.258 0.368 0.373 0.375 0.368
0.1 50 0.102 0.103 0.102 0.104 0.152 0.144 0.134 0.138 0.182 0.248 0.250 0.246 0.282 0.362 0.364 0.364
0.1 100 0.074 0.070 0.071 0.072 0.104 0.102 0.100 0.097 0.111 0.153 0.244 0.245 0.182 0.248 0.360 0.359
0.1 200 0.053 0.051 0.051 0.053 0.071 0.069 0.072 0.072 0.068 0.090 0.150 0.238 0.111 0.152 0.241 0.355
0.25 30 0.133 0.132 0.134 0.137 0.202 0.203 0.215 0.233 0.252 0.255 0.251 0.249 0.372 0.366 0.372 0.370
0.25 50 0.103 0.105 0.104 0.104 0.153 0.147 0.163 0.176 0.180 0.246 0.251 0.254 0.293 0.356 0.363 0.362
0.25 100 0.074 0.074 0.069 0.074 0.109 0.104 0.104 0.118 0.116 0.154 0.240 0.245 0.192 0.254 0.356 0.358
0.25 200 0.052 0.052 0.051 0.052 0.079 0.077 0.077 0.078 0.068 0.091 0.148 0.238 0.119 0.165 0.241 0.354
0.33 30 0.139 0.139 0.150 0.162 0.222 0.231 0.252 0.287 0.254 0.251 0.255 0.255 0.372 0.370 0.361 0.372
0.33 50 0.109 0.107 0.112 0.122 0.166 0.184 0.199 0.233 0.190 0.247 0.247 0.251 0.301 0.372 0.361 0.367
0.33 100 0.080 0.074 0.077 0.081 0.119 0.122 0.137 0.169 0.118 0.156 0.242 0.238 0.207 0.264 0.364 0.360
0.33 200 0.053 0.053 0.053 0.055 0.080 0.082 0.091 0.106 0.071 0.095 0.152 0.237 0.124 0.171 0.254 0.356
0.45 30 0.156 0.165 0.184 0.211 0.266 0.291 0.318 0.349 0.256 0.255 0.251 0.253 0.366 0.364 0.369 0.381
0.45 50 0.121 0.129 0.149 0.179 0.219 0.248 0.285 0.315 0.196 0.244 0.249 0.248 0.315 0.369 0.365 0.365
0.45 100 0.081 0.091 0.102 0.131 0.147 0.168 0.220 0.264 0.125 0.170 0.238 0.244 0.222 0.278 0.356 0.359
0.45 200 0.060 0.060 0.068 0.085 0.106 0.115 0.157 0.202 0.080 0.105 0.165 0.236 0.154 0.197 0.279 0.355
0.5 30 0.171 0.188 0.203 0.227 0.297 0.321 0.337 0.343 0.257 0.257 0.252 0.255 0.375 0.381 0.370 0.359
0.5 50 0.127 0.146 0.176 0.196 0.244 0.265 0.308 0.328 0.190 0.247 0.251 0.246 0.325 0.359 0.366 0.361
0.5 100 0.090 0.098 0.126 0.154 0.171 0.202 0.255 0.302 0.133 0.172 0.243 0.239 0.241 0.290 0.361 0.366
0.5 200 0.060 0.065 0.083 0.114 0.118 0.137 0.186 0.241 0.081 0.111 0.167 0.239 0.162 0.209 0.283 0.350

The table reports the Mean Squared Error for the standard and PLS-IV estimators. The Monte Carlo design is
as in (9)-(11), with r=1, k=1.

16



Table 2. Results for IV estimators in the case of Equation (12)
MSE Results

c2 0.5 1 0.5 1
p T/N 30 50 100 200 30 50 100 200 30 50 100 200 30 50 100 200

PLS IV Standard IV
0 30 0.205 0.214 0.210 0.207 0.186 0.191 0.195 0.202 0.377 0.369 0.368 0.378 0.369 0.368 0.369 0.372
0 50 0.155 0.142 0.153 0.152 0.147 0.145 0.139 0.151 0.283 0.365 0.360 0.362 0.273 0.360 0.359 0.363
0 100 0.095 0.105 0.101 0.106 0.101 0.098 0.097 0.105 0.176 0.240 0.361 0.359 0.175 0.241 0.357 0.360
0 200 0.069 0.071 0.069 0.072 0.070 0.072 0.071 0.072 0.108 0.149 0.237 0.353 0.104 0.147 0.236 0.357

0.1 30 0.258 0.261 0.268 0.272 0.241 0.251 0.254 0.271 0.492 0.504 0.516 0.551 0.479 0.489 0.527 0.539
0.1 50 0.215 0.209 0.213 0.230 0.175 0.199 0.199 0.207 0.398 0.498 0.509 0.540 0.390 0.488 0.510 0.534
0.1 100 0.143 0.148 0.156 0.167 0.137 0.145 0.154 0.156 0.268 0.368 0.509 0.529 0.269 0.366 0.506 0.536
0.1 200 0.102 0.103 0.115 0.120 0.099 0.098 0.109 0.116 0.167 0.249 0.397 0.534 0.164 0.250 0.391 0.523
0.25 30 0.364 0.428 0.502 0.579 0.389 0.455 0.553 0.612 0.611 0.633 0.644 0.667 0.596 0.620 0.655 0.672
0.25 50 0.271 0.318 0.403 0.520 0.283 0.367 0.475 0.559 0.544 0.630 0.644 0.670 0.533 0.625 0.636 0.663
0.25 100 0.203 0.234 0.281 0.394 0.203 0.259 0.349 0.473 0.433 0.548 0.641 0.661 0.427 0.552 0.643 0.670
0.25 200 0.160 0.172 0.198 0.278 0.149 0.176 0.242 0.350 0.317 0.454 0.581 0.670 0.304 0.440 0.584 0.658
0.33 30 0.477 0.558 0.632 0.664 0.493 0.579 0.650 0.683 0.647 0.678 0.687 0.687 0.626 0.667 0.688 0.696
0.33 50 0.376 0.466 0.586 0.629 0.413 0.514 0.613 0.657 0.606 0.647 0.682 0.676 0.593 0.653 0.684 0.686
0.33 100 0.255 0.348 0.477 0.586 0.288 0.406 0.535 0.631 0.508 0.621 0.657 0.677 0.495 0.604 0.666 0.694
0.33 200 0.180 0.233 0.367 0.507 0.198 0.279 0.446 0.567 0.394 0.537 0.636 0.677 0.376 0.519 0.644 0.686
0.45 30 0.605 0.663 0.705 0.696 0.590 0.664 0.686 0.710 0.678 0.692 0.716 0.698 0.651 0.688 0.691 0.713
0.45 50 0.560 0.625 0.683 0.712 0.552 0.629 0.671 0.689 0.661 0.681 0.702 0.715 0.636 0.680 0.682 0.691
0.45 100 0.444 0.556 0.653 0.703 0.459 0.580 0.658 0.701 0.601 0.654 0.697 0.717 0.580 0.662 0.694 0.710
0.45 200 0.319 0.458 0.602 0.676 0.335 0.486 0.619 0.674 0.523 0.615 0.673 0.702 0.474 0.601 0.674 0.693
0.5 30 0.642 0.677 0.703 0.704 0.646 0.671 0.708 0.718 0.687 0.695 0.707 0.704 0.691 0.685 0.710 0.719
0.5 50 0.592 0.658 0.697 0.702 0.584 0.658 0.701 0.690 0.663 0.694 0.704 0.703 0.641 0.689 0.709 0.692
0.5 100 0.503 0.607 0.676 0.705 0.498 0.620 0.686 0.685 0.621 0.670 0.698 0.710 0.591 0.673 0.706 0.690
0.5 200 0.393 0.545 0.639 0.690 0.389 0.532 0.642 0.688 0.552 0.649 0.681 0.701 0.496 0.608 0.673 0.698

The table reports the Mean Squared Error for the standard and PLS-IV estimators. The Monte Carlo design is

as in (9)-(11), with r=1, k=1.

Table 3. Results for IV estimators using (12) with no factors.
MSE Results

Equal average weights for each zjt

T/N 30 50 100 200 30 50 100 200
PLS IV Standard IV

30 0.275 0.287 0.273 0.264 0.348 0.350 0.345 0.346
50 0.212 0.230 0.224 0.237 0.265 0.336 0.324 0.333
100 0.154 0.169 0.199 0.209 0.173 0.226 0.325 0.326
200 0.098 0.121 0.154 0.177 0.104 0.146 0.225 0.313

Unequal weights for each zjt

30 0.297 0.271 0.290 0.270 0.375 0.377 0.382 0.372
50 0.220 0.225 0.240 0.247 0.277 0.359 0.359 0.366
100 0.155 0.181 0.196 0.217 0.183 0.244 0.351 0.357
200 0.099 0.122 0.156 0.188 0.106 0.147 0.241 0.358

The table reports the Mean Squared Error for the standard and PLS-IV estimators. The Monte Carlo design is

as in (9)-(11), with k=1 and no factor structure (c = 0).
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