Federal Reserve Bank of New York Staff Reports

# Buyout Activity: The Impact of Aggregate Discount Rates

Valentin Haddad Erik Loualiche Matthew C. Plosser

Staff Report No. 606 March 2013 Revised August 2015



This paper presents preliminary findings and is being distributed to economists and other interested readers solely to stimulate discussion and elicit comments. The views expressed in this paper are those of the authors and are not necessarily reflective of views at the Federal Reserve Bank of New York or the Federal Reserve System. Any errors or omissions are the responsibility of the authors.

#### **Buyout Activity: The Impact of Aggregate Discount Rates**

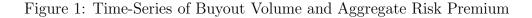
Valentin Haddad, Erik Loualiche, and Matthew C. Plosser *Federal Reserve Bank of New York Staff Reports*, no. 606 March 2013; revised August 2015 JEL classification: G11, G23, G34

#### Abstract

Buyout booms form in response to declines in the aggregate risk premium. We document that the equity risk premium is the primary determinant of buyout activity rather than credit-specific conditions. We articulate a simple explanation for this phenomenon: a low risk premium increases the present value of performance gains and decreases the cost of holding an illiquid investment. A panel of U.S. buyouts confirms this view. The risk premium shapes changes in buyout characteristics over the cycle, including their riskiness, leverage, and performance. Our results underscore the importance of the risk premium in corporate finance decisions.

Key words: buyouts, discount rates, illiquidity, governance

Haddad: Princeton University (e-mail: vhaddad@princeton.edu). Loualiche: Northwestern University (e-mail: e-loualiche@northwestern.edu). Plosser: Federal Reserve Bank of New York (e-mail: matthew.plosser@ny.frb.org). For helpful comments, the authors thank Douglas Diamond, Steven Kaplan, Anil Kashyap, Ralph Koijen, Adair Morse, Dimitris Papanikolaou, Jonathan Parker, Pietro Veronesi and participants in the Chicago Booth Junior Finance Symposium, SITE, the European Summer Symposium in Financial Markets, the Northwestern Finance Conference, the Chicago Booth Finance Brownbag, the Economic Dynamics Working Group at the University of Chicago, the Student Seminar and Macro Lunch at Northwestern University, and the Transatlantic Doctoral Conference, London Business School. They also appreciate research assistance from Tara Sullivan and Meru Bhanot. The views expressed in this paper are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of New York or the Federal Reserve System.


# 1 Introduction

Since their emergence in the 1980s, buyouts have been a powerful means to alter incentives in firms. But the use of this transaction varies widely over time. In the U.S., peak years experience close to one hundred public-to-private buyout transactions and trough years as few as ten. We propose a simple explanation for these fluctuations: buyout activity responds to changes in the aggregate risk premium. The discount rate affects firm valuations, and therefore the decision to engage in a transaction. We document that this integrated view of capital markets provides a detailed and powerful account of the cycle of buyout activity. Our elementary explanation is in stark contrast to the existing literature that focuses on the role of credit specific conditions.

Empirically, variation in buyout activity is better explained by changes in the risk premium than credit-market-specific conditions. Figure 1 illustrates how buyout activity decreases when the aggregate risk premium is high and increases when it is low. This factor alone explains over 30% of the total variation in activity, more than three times the variation explained by credit market conditions. To derive additional testable hypotheses at the firm level, we present a model linking the buyout decision to a single time varying cost of capital. We show that the characteristics of buyout targets and their variation across episodes of high and low risk premium uniquely reflect our mechanism.

We investigate the impact of the risk premium on buyout decisions through the central trade-off of performance gains versus the cost of providing incentives. In particular, a buyout brings better management to the firm at the cost of compensating the acquirer for holding skin in the game. The risk premium affects both sides of this trade-off. On the performance side, the gains are muted when the risk premium is high: following the Gordon-growth model intuition, the gains of a buyout increase with the difference between the firm's growth rate and the discount rate.<sup>1</sup> On the other hand, providing incentives to the acquirer is costly: she has to bear excess risk to be duly motivated to implement changes at the target. When the risk premium increases, i.e. when the marginal willingness to bear risk decreases, the willingness to bear this excess risk also decreases and compensating the acquirer becomes more costly.

<sup>&</sup>lt;sup>1</sup>The net present value of a cash-flow stream starting at X, growing exponentially at rate g and discounted at rate r is X/(r-g).



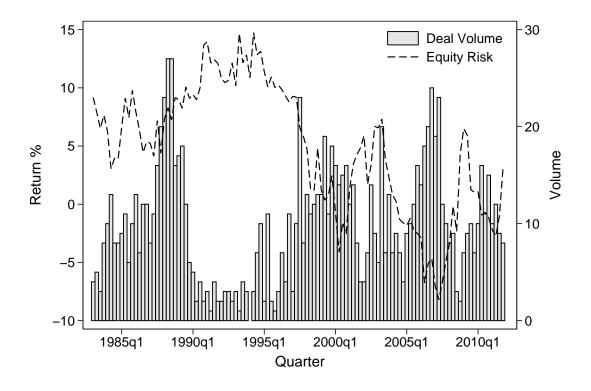



Figure 1 illustrates quarterly deal volume of buyout transactions. The equity risk premium is predicted using annual returns for a three-year period using D/P, cay, and the three-month T-bill as factors.

Using a panel of non-strategic, public-to-private deals from 1982 to 2011, we document a novel set of facts regarding the quantity and nature of buyout activity. Our simple explanation, focused on the risk premium, provides a unified explanation of these facts, whereas credit-centric hypotheses are difficult to reconcile with our results. At the aggregate level, buyout activity is negatively related to market-wide risk premium. This relation is robust to the inclusion of market signals corresponding to common hypotheses in the literature: credit market specific conditions (Axelson et al., 2013) or measures of debt-equity mispricing (Kaplan and Strömberg, 2009). The risk premium explains as much as 30% of the variation in activity whereas credit factors alone only explain up to 10%. Consistent with our emphasis on fundamental conditions, the market expected growth is also positively related to buyout activity. Finally, our theory rationalizes the correlation between buyout activity, leverage, deal pricing, and subsequent returns, documented for instance in Axelson et al. (2013).

While these aggregate facts strongly suggest the risk premium is the primary driver of buyout activity, we also exploit the cross-section of firms to further distinguish the risk premium from alternative hypotheses. First, riskier firms have a higher cost of capital and greater illiquidity costs, making them undesirable buyout targets. In the panel, we confirm the propensity of a firm to be bought out is sensitive to risk characteristics. Firms with high market beta or high idiosyncratic volatility are less likely targets.

Going further, the role of risk characteristics varies over time. The greater the systematic risk of the firm (i.e. beta), the more sensitive the cost of capital is to changes in the risk premium. In addition, the illiquidity costs of high beta firms are more sensitive to changes in the risk premium. Hence, among buyout targets, we expect fewer high beta firms when the risk premium is high. Congruent with this prediction, we show that the distribution of buyout firms' betas shifts towards lower values during high risk premium periods. In contrast, the idiosyncratic risk of buyout targets does not change with the risk premium – a fact consistent with our theory. These results distinguish our thesis from an explanation premised on changes in debt capacity which predicts that both systematic risk and idiosyncratic risk will vary with the buyout cycle.

A second battery of tests focuses on the the impact of the risk premium in the cross-section of firms. Firms with greater potential performance improvements should be more sensitive to the risk premium. We find evidence to this effect by proxying for higher potential gains using measures of agency problems: a corporate governance index, a measure of industry competition and a cash-flow proxy. Firms with poor corporate governance are more sensitive to changes in the risk premium, as are firms with more potential for a "free cash-flow" problem. In addition, our framework concludes that it is less costly to compensate the acquirer when it is easier to resell the firm, therefore the buyout activity of more liquid firms should be less sensitive to changes in the risk premium. We measure the ease of exit for acquirers using average industry-level M&A or IPO transaction activity and find more liquid industries are less sensitive to movements in the risk premium. These results are robust to the inclusion of credit market controls. The evidence confirms a unique role for the aggregate risk premium in shaping the costs and benefits of buyout activity.

The fundamental tradeoff we emphasize for buyouts is standard in corporate finance and can be generalized to other corporate transactions. We document the correlation between deal activity and the risk premium for M&A and IPO activity. M&A activity responds negatively to the risk premium, but less so than buyouts. This behavior is consistent with the view that the performance channel matters for M&A deals but that buyouts are also subject to the illiquidity channel which increases their sensitivity. For IPOs, the model suggests the two channels conflict; we do not find a strong response to the risk premium empirically.

Our paper's emphasis on aggregate discount rates is unique in the buyout literature. Kaplan and Strömberg (2009) outline the history of aggregate private equity activity, but a systematic explanation for buyout waves has remained elusive. Closest to us, Martos-Vila et al. (2012) provide an explanation for the dynamics of financial versus strategic acquisition activity. Their analysis focuses on mispricing in the debt market rather than changes in aggregate prices. These explanations are not mutually exclusive. Both aggregate fundamentals and relative mis-valuation can play a role. Motivated by our empirical findings, Malenko and Malenko (2014) provide an alternative theoretical model for the role of variation in risk premium for buyout activity. Rather than our basic tradeoff, they emphasize the ability of private-equity-owned firms to borrow against their sponsors' reputation with creditors and externalities in sponsor reputation due to club formation.

A number of papers isolate specific events that impact buyout activity. Shivdasani and Wang (2011) use cross-sectional evidence to argue that the advent of structured credit improved access to capital for buyout investors. Similarly, the emergence of the high-yield market likely stimulated activity, as Kaplan and Stein (1993) observe important changes in the structure of deals during this period. Particular innovations in financial markets indeed matter. For instance, discount rates fail to capture the intensity of the boom in the 1980s. Nevertheless, aggregate forces are first order contributors to oscillations in activity, and they should be considered as such when quantifying other hypotheses.

The literature on cross-sectional determinants of buyouts is more developed (Bharath and Dittmar (2010), Opler and Titman (1993)), but few papers focus on risk measures. Ewens et al. (2013) emphasize the role of exposure to diversifiable risk in the private equity decision. Sorensen et al. (2013) consider the pricing of idiosyncratic risk by limited partners (LPs) and build corresponding performance measures. In the context of this cross-sectional literature, we highlight that the role of these characteristics, influenced by changes in the aggregate risk premium, varies strongly over the cycle.

Our underlying theory of a buyout relies on an agency conflict between the LPs and the general partners of a fund. Our model is parsimonious and designed to emphasize the role of the aggregate risk premium. Axelson et al. (2009) provide an in-depth analysis of the role of agency frictions in shaping buyout contracts and investments. Others have followed a similar approach (Martos-Vila et al. (2012), Ewens et al. (2013) or Malenko and Malenko (2014)), but their analysis does not consider aggregate discount rates.

More generally, we contribute to the broader literature emphasizing the role of timevarying discount rates for corporate decisions. This literature is based on the insight that changes in discount rates affect the cost of capital, which is an important parameter for evaluating investments. Time variation in the discount rate has been shown to affect investment, as in Barro (1990), Cochrane (1991) and Berk, Green, and Naik (1999), and other forms of financial activity (for a survey see Cochrane (2011)). For instance, Pastor and Veronesi (2005) consider the role of pricing conditions for initial public offerings. This paper is the first to apply this idea to buyout activity. Furthermore, we introduce a novel channel through which changes in the aggregate risk premium impact financial decisions, our illiquidity channel.

# 2 The aggregate dynamics of buyout activity

We outline our main hypothesis on the role of the aggregate cost of capital and contrast it with the credit market view. We describe the cyclical properties of buyouts and examine their relation to capital markets conditions. The results document that a high aggregate risk premium is a strong negative predictor of buyout activity and has greater explanatory power than the relative cost of debt.

#### 2.1 Potential determinants of buyout activity

Aggregate discount rates. An important empirical fact about capital markets is that the cost of risky capital, or the risk premium, varies over time (Fama and French (1988), Campbell and Shiller (1988a)). Consistent with integrated capital markets, this variation is coordinated across types of financing, debt and equity (Fama and French (1989)). A buyout is a type of investment generating operational changes in the firm (e.g. Davis et al. (2014)). When the risk premium is large, future gains from investment are discounted more and investment is less attractive (e.g. Barro (1990)). Also, concentrated, illiquid positions – like those involved in buyout transactions – are particularly unattractive to investors when the risk premium is high. These two forces predict a negative association of buyout activity and prices with the risk premium.

The empirical importance of this hypothesis for buyout activity is the main conclusion of our paper. We develop further testable hypotheses related to this mechanism in Section 3.

**Credit market conditions.** In contrast to this simple approach, a more commonly emphasized factor in the buyout decision is the cost of debt rather than common changes in the cost of capital, e.g. Axelson et al. (2013). Underlying this view is the notion that buyout investors exploit a mispricing in securities markets such that low borrowing costs facilitate a transfer to buyout investors in the vein of Baker and Wurgler (2002). Another motivation is that buyout investors, to mitigate overinvestment tendencies, can only raise debt once they have obtained initial funding from their limited partners; therefore they are particularly sensitive to the cost of debt (Axelson et al., 2009). When debt is "cheap", transforming equity-financed firms into debt-financed firms is more profitable, thus buyouts are more attractive to investors. This view has implications for both the intensive and extensive margin of deals. On the intensive margin, conditional on a deal occurring cheaper credit should co-incide with greater deal leverage and higher takeout valuations. As for the extensive margin, advantageous credit conditions should correspond to periods with more buyout activity.

The extant literature on buyouts has primarily tested implications on the intensive margin of this theory. Most prominently, Axelson et al. (2013) relate the price and leverage of buyout deals to yields on high-yield debt. While Kaplan and Strömberg (2009) hypothesize that booms and busts in buyout activity are related to credit market conditions, we are the first to provide a systematic analysis of extensive margin fluctuations with respect to either credit conditions or the risk premium.

#### 2.2 Data

#### 2.2.1 Buyout activity

Our sample of U.S. buyouts comes from Thomson Reuters SDC M&A data. We identify public-to-private buyout transactions as completed deals for public targets that are described as a "leveraged buyout" or "management buyout". The SDC descriptor misses some notable buyout deals, therefore we screen for additional transactions by including firms purchased by private, financial acquirers where the acquisition is made for "investment purposes". We check the latter one-by-one to verify that the purchaser is a private equity firm. Announcement dates determine the timing of the transaction.

We begin our analysis in the fourth quarter of 1982, the starting point of consistent activity. The resulting sample of buyouts includes 1,143 deals between 1982Q4 and 2011Q4. Table 1 describes quarterly buyout activity in our sample. On average there are 9.8 deals per quarter. The quarterly average asset value of targets is \$8.7bn and the enterprise value (i.e. the transaction value) is \$5.4bn.<sup>2</sup> Both measures of value, book assets and enterprise value, are skewed toward higher values.

The discount rate channel we have in mind is agnostic as to firm size, therefore the volume of deals is our preferred measure of buyout activity. To account for the changing number of potential targets, we measure *Volume* using the number of deals scaled by the number of public firms in COMPUSTAT in the prior quarter. On average 0.19% of public firms are taken private each quarter in the sample period. We also generate a value based measure of buyout activity. We focus on book assets, as book assets are both more consistently reported and are a measure of value that is independent of pricing. We define *Value* as the logarithm of total target assets in 2010 dollars to reduce skewness. In the Supplementary Appendix, we demonstrate that our findings are similar using many alternative measures of activity.

Figure 2 illustrates the fluctuations in our buyout activity measures. Following the initial boom of the late 1980s with 20-30 deals a quarter (approximately 50bps of activity), the 1990s experienced a dearth of activity with less than 5 deals per quarter (10bps). Two spikes in activity occurred in the following years, one in the 1997-2000 period, and another around 2005-2007. Following the financial crisis of 2008 and a halt in activity, 2010 saw

 $<sup>^{2}\</sup>mathrm{A}$  key reason enterprise value averages less than book assets is that enterprise values are less consistently reported than asset values.



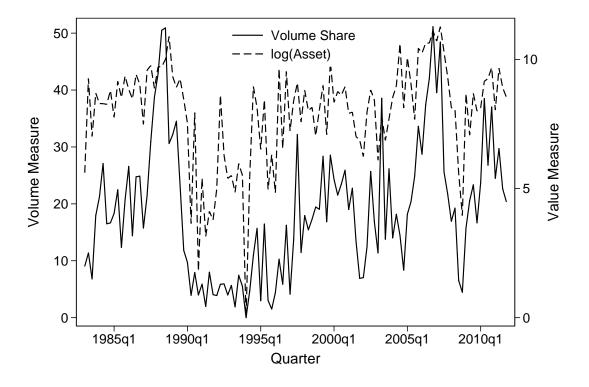



Figure 2 illustrates time-series variation in buyout activity. The volume-based measure is quarterly deal volume as a percent of public firms (in bps). The value-based measure is the log of target assets (in 2010 millions of dollars).

a modest rebound. These variations in number of deals are concomitant to variation in the value of deals; our two measures have a correlation of 74%. The average log value of activity is 8.3 or \$4.1bn dollars. Value varies between 7.0 (\$1.1bn) in the 25th percentile to 9.2 (\$9.5bn) in the 75th percentile. While not the focus of our study, other dimensions of the buyout transaction appear to experience cyclical variation. For instance, Axelson et al. (2013) document variation in the composition of financing, albeit more modest. In their sample the ratio of debt to enterprise value varies between 61% and 78% between the 25th and 75th percentile. They also show deals originating in a boom experience lower subsequent returns than those originating in periods of low activity. We revisit these quantities and their relation to our main hypothesis in Section 3.

#### 2.2.2 Capital market conditions

Aggregate risk premium. We measure the aggregate risk premium using an estimate of expected excess equity returns. We utilize three factors that have been shown to predict excess returns: the dividend-price ratio, cay, and the three-month T-bill yield.<sup>3</sup> The dividend-price ratio is constructed using CRSP data on monthly returns. cay is an empirical proxy for the log consumption-wealth ratio.<sup>4</sup> Interest rates are constant maturity rates according to the Federal Reserve's H.15 release.

The predictive regression is estimated quarterly from 1954Q1 to 2010Q3. The dependent variable is the annualized return of the value-weighted market portfolio over the next three years  $(R^e_{M,t+1})$  in excess of the current three-month T-bill yield. We use a three-year window to capture the longer-term nature of private equity investments. The regression yields the following coefficients,

$$\mathbb{E}(R^{e}_{M,t+1}) = -.76 + (2.89)(D/P)_{t} + (2.54)cay_{t} + (-0.97)(\text{T-Bill})_{t}.$$
<sup>[1.03]</sup>
<sup>[0.59]</sup>
<sup>[0.38]</sup>
<sup>[0.38]</sup>

For the buyout sample period, we calculate the predicted market return as a measure of the risk premium in the economy,  $\hat{rp}_{OLS}$ . This is a projection of equity returns on predictive factors; therefore, information in equity markets must explain the behavior of the predicted variable.

**Credit market conditions.** We compare the explanatory power of our aggregate measure of risk premium with several credit market factors other researchers have emphasized as important to explaining buyout activity. Axelson et al. (2013) find the yield on the Merrill Lynch High Yield Index less LIBOR is correlated with leveraged buyout, EV/EBITDA ratios and leverage. Using a composite of Merrill Lynch high-yield bond indices, we construct a similar measure less the yield on the three-month T-bill (*HY Spread*). Kaplan and Strömberg (2009) suggest firms' ability to finance profitably with high-yield debt is an important determinant of activity. We construct their proposed measure, *EBITDA Spread*, which is the median EV/EBITDA ratio for COMPUSTAT firms less the yield on our composite high

 $<sup>{}^{3}</sup>D/P$ : Campbell and Shiller (1988b), Fama and French (1988), Cochrane (2008); cay: Lettau and Ludvigson (2001); Term structure of interest rates: Campbell (1987), Fama and French (1989).

<sup>&</sup>lt;sup>4</sup>cay is constructed as in Lettau and Ludvigson (2001) and we download the data from Martin Lettau's website (http://faculty.haas.berkeley.edu/lettau/data\_cay.html)

yield bond index. We also consider a measure of the excess premium in corporate bonds (GZ Spread) shown to predict future macroeconomic activity (Gilchrist and Zakrajšek, 2012). Statistics for these variables are summarized in Table 1.

Not surprisingly, these measures are correlated with the equity risk premium,  $\hat{rp}_{OLS}$ . HY Spread has a positive correlation with the risk premium of 55%, because an aggregate discount factor is reflected in both debt and equity markets. This observation is consistent with evidence that the same factors price excess returns for both stocks and bonds, e.g. Fama and French (1993). Given this correlation, *EBITDA Spread* is negatively correlated with the risk premium (-36%). Finally, the *GZ Spread* is also negatively correlated with our risk premium measure, (-32%), though it is positively correlated with the spread on the high yield index.<sup>5</sup>

#### 2.3 Risk premium or credit factors?

Figure 1 illustrates the negative covariation between buyout activity and the risk premium over time. The decline in activity in the early 1990s corresponds to a high risk premium while the spikes in activity around 2000 and 2007 correspond to periods of lower expected returns. The modest rebound in volume in 2010 also matches a subsiding risk premium. The one boom that does not correspond as cleanly is the late 1980s.

In order to assess the importance of capital market factors, we compare the statistical significance and explanatory power of the risk premium versus that of credit market variables. We estimate the relation between activity and discount rates using OLS, where activity is either the volume or value-based measure.

$$Activity_t = \alpha + \lambda_{rp} \hat{rp}_t + \gamma' (\mathbf{Credit Factors})_t + u_t$$

We include quarterly dummy variables to account for seasonality. Given the persistence of independent variables, we estimate Newey-West standard errors lagged for the prior four quarters.<sup>6</sup>

The risk premium measure is negatively correlated with the volume of buyout activity

<sup>&</sup>lt;sup>5</sup>Correlations are detailed in Supplementary Appendix Table 12.

<sup>&</sup>lt;sup>6</sup>Technically the sample is censored at zero, though this only binds once in 1993. The coefficient estimates are quantitatively similar in a Tobit specification; however, this limits the ability to make straightforward R-squared comparisons.

and explains significantly more variation than debt spread measures (Table 2 Panel A). In Column (1), the univariate coefficient on the risk premium is negative and statistically significant at the 1% level, consistent with the discount rate hypothesis. And as conjectured by credit-centric stories, the EBITDA spread is positively correlated with activity and the High Yield spread is negatively correlated, Columns (2) and (4) respectively. Both are significant at the 10% level. However, comparing statistical significance of these coefficients is not a test of their relative importance nor do these results account for the fact that the time-series variation in spreads is correlated.

To better assess the relative importance of these factors we compare their R-squareds and the impact of a one standard deviation change. The risk premium accounts for 31.7% of the variation in deal activity, Column (1), and the economic magnitude of the risk premium coefficient is meaningful – a one standard deviation rise in the risk premium decreases the volume of activity by 34%. In contrast, no credit market factor alone accounts for more than 8% of the variation in buyout activity (Columns 2,4, and 6) and all three credit measures combined explain 10.7% (Column 8). Similarly, a one standard deviation change for any single credit factor accounts for *at most* a 15% change in activity.<sup>7</sup>

To verify that the risk premium coefficient is robust to credit spreads, we consider the risk premium in the presence of each credit factor, Columns (3,5, and 7). In each case, the risk premium coefficient retains its magnitude and statistical significance whereas the coefficients on the credit factors are attenuated when included in isolation with the risk premium. Column (9) considers an even stronger challenge to the risk premium as we include all three credit factors at once. Again, the risk premium retains its magnitude and is statistically significant at the 1% level.

We obtain similar results when we consider a value-based measure of activity (Panel B). The risk premium explains 31% of activity whereas all three factors explain no more than 8.7% of activity. One notable difference with the value based measure is that the GZ Spread is statistically significant and negative conditional on the risk premium, Column (7), but not in isolation, Column (6). Hence, there are specifications that suggest a role for credit markets, although not a role as a substitute for the discount rate explanation but rather as a complement playing a minor role. Across both volume and value specifications the dominant

<sup>&</sup>lt;sup>7</sup>We say "at most", because each of the credit factors contains variation attributable to the aggregate risk premium.

factor in buyout activity is the risk premium: the risk premium measure explains 2.5 to 10 times the variation that credit factors explain, the risk premium is negative and statistically significant, and the estimates of the risk premium coefficient are robust to the inclusion of credit measures as controls.

We find a similarly significant coefficient on the risk premium in the early buyout waves of 1982-1991 as in the later waves, 1992-2014. However, the *R*-squared is lower in the earlier period (16%) versus the later period (54%). The lower explanatory power in the 1980s is consistent with an initial burst in activity facilitated by the development of the buyout investment technology (Figure 1).

We use another method to link buyout activity and the risk premium. If buyout decisions do indeed reflect agents' expectations about the level of the risk premium, then buyout activity should predict future stock returns. A monthly regression of annualized excess returns for the next three years on the volume measure of buyout activity from July 1982 to September 2010 yields,<sup>8</sup>

$$R^{e}_{M,t+1} = 10.52 + (-0.65)(Volume\%_{t}) + \varepsilon_{t+1}.$$
<sup>[0.28]</sup>
<sup>[0.28]</sup>

demonstrating that buyout activity has statistically significant predictive power on long term stock market returns.

**Robustness.** These conclusions are robust to other measures of buyout activity, additional credit metrics, and alternative estimates for the risk premium. Supplementary Appendix Table 13 considers six different measures of buyout activity. The first three are alternative value measures: the log of enterprise value in a quarter, the log of buyout assets to total public assets, and the log share of buyout enterprise value to total public enterprise value. The next three are measures of activity based on a matched sample to account for time-variation in firm composition. For example, if potential buyout targets vary over time then our results may proxy for changes in firm type. For each measure, we compare the explanatory power of the risk premium to that of the three credit factors. We also consider the risk premium in the presence of all three factors to see if the credit variables attenuate the role of the

 $<sup>^{8}\</sup>mathrm{The}$  standard errors are Newey-West with autocorrelation over the prior 36 months and the R-squared is 0.11.

risk premium. Across all of these measure of buyout activity the explanatory power of the risk premium is 1.5-5x that of the credit factors. In addition, the magnitude and statistical significance of the risk premium is not diminished by the inclusion of credit variables.

We focus our analysis on public-to-private buyout activity for several reasons: there is more information about transactions with public targets, it is possible to consider a counterfactual set of similar firms, and the change in funding is particularly dramatic from publicto-private. Nevertheless, the discount rate may play a role in private-to-private buyout transactions as well. In Supplementary Appendix Table 14 we repeat the analysis of Table 2 using the private-to-private buyout volume from Thomson SDC. Again, the risk premium explains more variation than credit factors and is robust to their inclusion; however, it is difficult to directly compare these results with public-to-private activity because we have no way of controlling for the set of potential targets.

We also find that our results are robust to alternative estimates of the risk premium, Supplementary Appendix Table 15. We estimate three alternative measures: a rolling measure that eliminates look-ahead bias, a measure that excludes the T-bill yield as a factor to eliminate any form of credit predictor, and a risk premium estimate that assumes perfect foresight by using actual future excess returns on the market portfolio. We test these alternative risk premia for both the volume and value measures of activity. In five of the six specifications the risk premium R-squared exceeds the credit factor alone. In six of six specifications the risk premium coefficient is robust to the inclusion of credit factors.

For the volume measure of activity, Panel A, the risk premia R-squareds vary from a low of 16.6% on the rolling risk premium and actual returns to a high of 23.7% on the measure excluding the T-bill, Columns (1), (5) and (3) respectively. Albeit lower in explanatory power than our composite measure, they are in excess of the 10.7% credit factors achieve (Table 2 Panel A, Column 8) and they are robust to including credit factors in the regression, Columns (2), (4), and (6). For the value measure of activity, the R-squareds range from 11.3% on the actual return (Column 5) to 23.2% using the measure excluding the T-Bill (Column 3). Two of the three specifications exceed the explanatory power of the three credit factors (13.8%). All three risk premium measures are significant in the presence of credit factors.

Finally, we explore additional credit metrics, Supplementary Appendix Table 16, including the corporate bond spread, aggregate market leverage, book leverage, and the change in credit standards as measured by the Federal Reserve Senior Loan Officer Survey. For both volume and value based measures of activity, the risk premium accounts for a sizable portion of the variation and the R-squared is well in excess of the credit metrics. Again, the role of the risk premium is not mitigated by the inclusion of alternative credit metrics.

#### 2.4The three fundamental components of valuation

Our central argument is that aggregate changes in the valuation environment affect the decision to enter a buyout. Thus far we have focused our analysis on the most important driver of prices, the risk premium; however, it is not the only component of valuation. Following Campbell and Shiller (1988a) and subsequent work, we decompose aggregate valuations between expected future returns and expected future earnings growth. Further, we separate expected future returns between the risk premium and a risk-free component. We then study how fluctuations in buyout activity can be ascribed to these three distinct components.

We follow the standard approach of representing the joint dynamics of these quantities by a vector autoregression (VAR), which results in a simple representation of expectations. We include the same variables as Campbell and Ammer (1993), augmented by cay of Lettau and Ludvigson (2001).<sup>9</sup> We estimate the dynamics of the VAR on a long sample from 1972Q1 to 2012Q4. We extract a time series forecast for two components: stock market excess return  $\hat{r}p_{VAR}$  and earnings growth  $\hat{g}$ , for the next three years. For the third component, the risk-free rate, we directly observe the three-year Treasury yield.<sup>10</sup>

For each component we construct annualized rates; Table 3 contains a summary of the resulting estimates. The predicted risk premium from the VAR is remarkably similar to our OLS measure with a correlation coefficient of 0.89. Future earnings growth is also positively correlated with the OLS measure. A potential concern for time series analysis is the persistence of the three variables. While the quarterly autocorrelation of the risk premium and earnings growth are below 0.4, that of the risk-free rate is 0.96. This high persistence hinders our ability to draw strong inferences about the role of the risk-free rate.

Consistent with valuation predictions, buyout activity is negatively related with the risk

<sup>&</sup>lt;sup>9</sup>Our VAR specification includes the following 7 variables: excess returns, risk-free rate, earnings growth, dividend-price ratio, cay, the change in the 3-month yield  $y_t^{(3m)} - y_{t-1}^{(3m)}$ , the slope between the 10 year and one month yield  $y_t^{(10y)} - y_t^{(1m)}$ , and the one-month yield minus its moving average over the previous 12 months  $y_t^{(1m)} - 1/12 \sum_{\tau=t-12}^{t-1} y_{\tau}^{(1m)}$ . <sup>10</sup>Constant maturity three-year yields are obtained from the Federal Reserve Board FRB H.15 release.

premium component and positively related with expected earnings growth for both the volume and value of activity, Table 4. Columns (1) and (4) consider the VAR risk premium alone and find coefficients of similar magnitude as our OLS estimates in the prior section. In addition the explanatory power exceeds that of the credit factors by at least 1.5x (see Table 2). We add expected earnings growth to the specification and find a positive and statistically significant relation between buyout activity and earnings growth, Columns (2) and (5). The impact of earnings growth is smaller than that of the risk premium. A one standard deviation change in expected growth has approximately half the impact of a similar change in risk premium (17-25% for volume, 6-9% for value).

The risk-free rate estimates are more difficult to interpret. The risk-free yield is positive but statistically indistinguishable from zero for volume (3) and positive for value (7). A simple discount rate argument would predict a negative relation with activity. As discussed earlier, the persistence of the risk-free rate makes statistical inference unreliable. In addition, if the risk-free rate proxies for economic conditions it further complicates interpretation (e.g. Stock and Watson (1999) show that periods of high risk-free rates coincide with economic growth). Augmenting these factors with the credit measures in Columns (4) and (8) does little to alter the estimated coefficients.

**Robustness.** We consider several alternative proxies for market expectations in Table 5 and examine their relation with the volume of buyout activity. For each set of alternative forecasts, we estimate the role of the forecasts alone and then in the presence of credit market controls. These two specifications give us the explanatory power of the forecasts and the robustness of the coefficients to the presence of credit controls.

The first specification is based on a VAR using dividends rather than earnings. The dividend VAR, Columns (1) and (2), results in qualitatively similar estimates to those in Table 4. The salient difference is that while the coefficient on dividend growth is positive, it is not statistically significant.

We also consider several non-VAR measures of the market's expectations. Thomson IBES provides S&P earnings estimates based on a survey of equity analysts. Using the average from the survey, we construct the annual growth rate over the next two years to serve as a proxy for expected growth. The survey-based growth measure, in tandem with the OLS risk premium from 2.3, results in similar coefficients to prior specifications and an R-squared of

37.4%, (3) and (4).

In Columns (5)-(8), we assume perfect foresight and replace forecasts and surveys with realized future growth and equity returns. For growth we aggregate EBIT for the sample of COMPUSTAT firms and calculate one-year forward growth rates. We choose EBIT growth in order to focus on a measure of growth that is independent of capital structure, though we obtain similar results using realized net income growth. In (5) and (6) we use the actual forward EBIT growth and the OLS risk premium prediction. Both specifications resemble prior estimates, with an R-squared of 38.8%, a coefficient on the risk premium of -1.17, a coefficient on EBIT growth of 0.25 and a coefficient on the risk-free rate of 0.75 (statistically insignificant). In the final two columns we use EBIT growth and realized future equity returns rather than predicted equity returns. The risk premium coefficient and R-squared estimates are lower at -0.52 and 24.8%, respectively; however, this is not surprising given the additional noise in realized returns.

The message is consistent across specifications: the aggregate risk premium is the largest explanatory factor, expected growth enters positively, and the risk-free rate is generally positive but frequently indistinguishable from zero. The evidence in this section strongly suggests the risk premium is the most important driver of buyout activity. To further test this explanation against alternative hypotheses, we articulate a parsimonious theory of the buyout decision which provides a clear rationale for the role of aggregate valuation conditions.

# 3 A simple model of the buyout transaction

We develop a two-period model that relates the buyout decision to the aggregate risk premium. Our theory relies on two key intuitions. First, performance improvements generated by buyout deals are valued using a Net Present Value (NPV) rule.<sup>11</sup> When the risk premium is large, the cost of capital lowers valuations and fewer projects are undertaken. Second, because of an agency problem, the general partner (GP) has to bear excess risk to be duly motivated to implement changes in the firm. When the risk premium increases, i.e. when the marginal willingness to bear risk decreases, the willingness to bear this excess risk also

 $<sup>^{11}{\</sup>rm The}$  private equity industry explicitly incorporates an NPV rule by relying on Discounted Cash Flow models to assess potential investments.

decreases and compensating the GP becomes more costly.

The model not only provides a precise rationale for the results in Section 2, but also allows us to make additional empirical predictions. We rationalize both the positive correlation between buyout activity and deal leverage, as well as the positive correlation between pricing and subsequent returns. Moreover, we develop further insights on the changing characteristics of buyout targets as the risk premium fluctuates, providing additional predictions we test in Section 4.

#### 3.1 Setup

There are two periods. At time 0, an acquirer, the GP hereafter, considers a firm, the target, for a buyout deal. The target's output is realized at time 1 and is unknown as of 0. The following describes the distribution of firm output,

$$\tilde{Y} = \mu + \beta \varepsilon_m + \varepsilon_i,$$

where  $\mu$  is the average output,  $\varepsilon_m$  is an aggregate shock and  $\varepsilon_i$  is an idiosyncratic shock. The shock variables are independent from each other, normally distributed with mean 0 and variances  $\sigma_m^2$  and  $\sigma_i^2$  respectively. The loading  $\beta$  captures the target's exposure to systematic risk. The target's outcome at time t = 1 is contingent upon the GP's actions:

- 1. If she decides not to acquire the target, output is Y.
- 2. If she implements a buyout deal and improves management of the target, output is  $p_H \tilde{Y}$  with  $p_H > 1$ .
- 3. If she implements the deal without improving management, output is  $p_L \tilde{Y}$ , with  $\Delta p = p_H p_L > 0$ . She receives a private benefit linear in output:  $b\tilde{Y}$ .

The GP must find a contractual arrangement with outside investors, i.e. financial markets, to finance the deal. We assume the GP's action is not directly contractible. Therefore an agency friction is present: without a stake in the firm, the GP does not implement managerial changes and instead chooses to collect her private benefit. We now introduce assumptions about how those agents make decisions.

Preferences of the GP. The GP has initial wealth  $W_0$ . She can invest on public markets or engage in a buyout. She has constant absolute risk aversion (CARA) preferences over consumption with risk aversion  $\gamma$ :  $-\mathbb{E}[-\exp(-\gamma C)]$ . If consumption is normally distributed, this utility function corresponds to a mean-variance evaluation,  $\mathcal{U} = \mathbb{E}[C] - \frac{\gamma}{2} \operatorname{var}[C]$ .

Cost of capital on public markets. We assume no-arbitrage on financial markets, hence there is a stochastic discount factor. We also assume the stochastic discount factor solely loads on the aggregate risk factor,  $\varepsilon_m$ , and the risk premium for exposure to the market is  $\bar{R}_m^e = \mathbb{E}_0[R_m^e]$  which is proportional to the market risk  $\sigma_m^2$ .<sup>12</sup> Risk-free claims are discounted at the rate  $1 + r_f$ . Therefore, the cost of capital is determined by the Capital Asset Pricing Model (CAPM). For instance, the price of a payoff  $1 + \beta \varepsilon_m + \varepsilon_i$  is **NPV** $(1 + \beta \varepsilon_m + \varepsilon_i) =$  $(1 - \beta \bar{R}_m^e)/(1 + r_f)$ . We detail the equivalence to a standard Discounted Cash-Flow (DCF) analysis in Appendix A.1. Current owners of the target and outside investors value their claims using this cost of capital because these claims are traded on competitive markets.

#### 3.2 Solution

A buyout of the target occurs if the GP and outside investors find an arrangement that is valuable to both. To find whether such contracts exist, we first derive the minimum cost of providing incentives to the GP, then we verify if the net returns to outside investors of the buyout deal are positive under such an arrangement

*GP's outside option.* If the GP does not engage in the buyout, she invests her wealth on public markets. Without loss of generality, she chooses her portfolio investment between the risk-free rate ( $\theta_0$ ), a zero-cost portfolio that pays off the market excess return ( $\theta_m$ ) and a zero-cost portfolio that loads on idiosyncratic risk ( $\theta_i$ ). Given her absolute risk aversion  $\gamma$ , her utility is:

$$\mathcal{U}_{\text{outside}} = \max_{(\theta_0, \theta_m, \theta_i)} \theta_0 + \theta_m \bar{R}^e_m - \frac{\gamma}{2} (\theta_m^2 \sigma_m^2 + \theta_i^2 \sigma^2).$$

Her budget constraint is  $\theta_0 \cdot \frac{1}{1+r_f} + \theta_m \cdot 0 + \theta_i \cdot 0 \leq W_0$ , which gives  $\theta_0^*$ . Her position in the market is determined by the price of market risk and her risk aversion,  $\theta_m^* = \bar{R}_m^e / (\gamma \sigma_m^2)$ .

<sup>&</sup>lt;sup>12</sup>These assumptions arise exactly if we assume buyout transactions constitute an infinitesimal part of an economy where total output is exposed to  $\varepsilon_m$  and all investors have CARA preferences. Investors may have heterogeneous risk aversion that is, in particular, different from the GP. While we focus on variation in risk premium driven by changes in aggregate risk, all of our predictions also hold for a change in risk premium in response to a proportional change in risk aversion in the economy. In other words we are agnostic as to the source of variation in risk premium: quantity or price of risk.

Idiosyncratic risk is not compensated by a risk premium, hence her optimal allocation is zero,  $\theta_i^* = 0$ . Given our assumptions about pricing, the investments in the outside option do not depend on market conditions.

Cost of incentives. The GP will only invest in the deal and implement productive changes if she is adequately incentivized to do so. Outside investors must design a contract such that the GP implements changes that exceed the value of private benefits – the incentive compatibility constraint (IC). The contract must also incentivize the GP to partake in the buyout deal rather than invest in her outside option, i.e. the individual rationality constraint (IR).

For simplicity we restrict ourselves to linear contracts. A contract features a fixed component  $k_0$  and a variable part proportional to the target's output with coefficient  $k_1$  controlling its riskiness. Outside investors minimize the cost of providing incentives to the GP, the agent.<sup>13</sup> To find the cheapest contract, outside investors solve:

$$\min_{\{k_0,k_1\}} \mathbf{NPV}(k_0 + k_1 p_H \tilde{Y}) - W_0$$
  
= 
$$\min_{\{k_0,k_1\}} \left( k_0 + k_1 p_H (\mu - \beta \bar{R}_m^e) \right) / (1 + r_f) - W_0,$$

under the IC and IR constraints

$$\mathcal{U}(k_0 + k_1 p_H \tilde{Y}) \ge \mathcal{U}(k_0 + k_1 p_L \tilde{Y} + b\tilde{Y}) \tag{IC}$$

$$\mathcal{U}(k_0 + k_1 p_H Y) \ge \mathcal{U}_{\text{outside}} \tag{IR}.$$

The IC constraint reduces to a lower bound on the slope of the incentive contract,  $k_1 \geq b/\Delta p$ . Indeed the GP must have a large enough stake in the firm so that her returns from exerting action  $p_H$  rather than  $p_L$  dominate her private benefit of not implementing the changes b.

To understand the IR constraint it is helpful to represent the payoff as an equivalent

<sup>&</sup>lt;sup>13</sup>For most of our analysis we consider whether feasible deals exist, so bargaining power or the surplus sharing rule is irrelevant.

portfolio invested in the risk-free asset, market excess return, and idiosyncratic risk:

$$\begin{cases} \theta_0 = k_0 + k_1 p_H (\mu - \beta \bar{R_m^e}) \\ \theta_m = k_1 p_H \beta \\ \theta_i = k_1 p_H. \end{cases}$$

$$(3)$$

Recall the utility is linear in  $\theta_0$  and quadratic in the two risky components  $\theta_m$  and  $\theta_i$ . Hence the IR constraint is equivalent to the difference with the optimal portfolio  $\theta^*$ :<sup>14</sup>

$$\theta_0 - \theta_0^* \ge \frac{1}{2} \bar{R}_m^e \frac{1}{\theta_m^*} (\theta_m - \theta_m^*)^2 + \frac{1}{2} \gamma \sigma_i^2 \theta_i^2.$$

Under this form, the left-hand side of the constraint coincides with the objective function and the right-hand side with the cost for the GP of bearing risk that deviates from her outside option.

We can now solve for the optimal contract. If, to have incentives to properly manage the firm, the agent must receive excessive amounts of risk relative to her outside option, which we assume, increasing  $k_1$  tightens the right-hand-side.<sup>15</sup> Hence the principal minimizes the slope of the contract such that the IC constraint binds:  $k_1^* = b/\Delta p$ . To find the optimal level, we find the lowest fixed payment  $k_0$  that satisfies the IR constraint:

$$k_0^* + k_1^* p_H(\mu - \beta \bar{R_m^e}) - W_0(1 + r_f) = \frac{1}{2} \bar{R_m^e} \frac{1}{\theta_m^*} (k_1^* p_H \beta - \theta_m^*)^2 + \frac{1}{2} \gamma \sigma_i^2 k_1^{*2} p_H^2$$

#### 3.3 When do deals occur?

**Proposition 1.** A buyout deal occurs if it yields positive returns net of the GP's compensation. This translates into the following condition:

<sup>&</sup>lt;sup>14</sup>We are using the observation that if  $f(x) = ax^2 + bx + c$  with extremum reached at  $x^*$ , then  $f(x) - f(x^*) = a(x - x^*)^2$ .

<sup>&</sup>lt;sup>15</sup>Formally, the condition is  $\sigma_m^2 p_H \beta (k_1 p_H \beta - \theta_m^*) + \sigma_i^2 k_1 > 0$  at  $k_1 = b/\Delta p$ . Two different sufficient conditions for this relation to hold are that the agent bears excessive amounts of aggregate risk,  $k_1 p_H \beta > \theta_m^*$ , or that idiosyncratic risk is large relative to aggregate risk,  $\sigma_i^2 \gg \sigma_m^2$ . Both assumptions are likely to hold empirically; we discuss the first one more precisely later in this section.

$$\underbrace{(p_H - 1)\left(\mu - \beta \bar{R}_m^e\right)}_{Performance \ Channel} \ge \underbrace{\frac{1}{2} \bar{R}_m^e \frac{1}{\theta_m^*} (k_1^* p_H \beta - \theta_m^*)^2 + \frac{1}{2} \gamma \sigma_i^2 k_1^{*2} p_H^2}_{Illiquidity \ Channel}$$
(4)

The deal surplus is:

- 1. decreasing in expected market return  $\bar{R}^e_m$  (via the performance and illiquidity channel)
- 2. decreasing in the market risk exposure  $\beta$  (via the performance and illiquidity channel if  $k_1^* p_H \beta > \theta_m^*$ ).<sup>16</sup>
- 3. decreasing in idiosyncratic volatility (via the illiquidity channel).

*Performance channel.* The left-hand side of condition (4) is the performance channel. It corresponds to the net value of the cash-flow gains from improving management. In periods of high risk premium, those cash-flows are discounted more, and this value is lower, which decreases the likelihood of a deal.

Illiquidity channel. The right-hand side of (4) is the illiquidity channel.<sup>17</sup> It is the monetary cost of compensating the GP for taking excessive amounts of risk relative to her outside option. The cost of this deviation is larger when the risk premium is larger. Indeed, the equilibrium risk premium corresponds to the marginal cost of bearing risk. Similarly, the illiquidity cost is the total cost of deviating from the optimum, also driven by the convexity in the utility function — here determined by  $\gamma$  — and the risk facing the investor. In other words, periods where investors do not want to bear risk at the margin correspond to periods where investors ask a large compensation for bearing excessive risks.

The main restriction we imposed on the contracting space is the absence of benchmarking to the market. While in practice buyout contracts are not benchmarked, we consider the impact of relaxing this assumption in Appendix A.2. Clearly, this change has no impact on the performance channel. If the market exposure  $\beta$  is known at the time contracting,

<sup>&</sup>lt;sup>16</sup>In other words, the illiquidity channel is impacted by market exposure if the GP has to bear more aggregate risk than in her outside option. If we assume that her outside option is entirely invested in the equity market, and the leverage is 70% post-buyout and 35% pre-buyout (consistent with the evidence in Axelson et al. (2013)), then this condition holds as long as the pre-buyout equity  $\beta$  is larger than 0.5, which holds for most firms.

<sup>&</sup>lt;sup>17</sup>We use the term illiquidity to signify the inability to trade out of a position. In our framework, illiquidity arises as a contractual solution to the agency problem. It differs from the inability to find a buyer on short notice in the case of an adverse shock.

then the contract brings the GP back to her optimal loading on aggregate risk. However, in the more realistic case where the target's  $\beta$  is not known at the time of contracting, we show the GP always ends up with an inappropriate amount of aggregate risk, maintaining an illiquidity cost increasing in the risk premium.<sup>18</sup>

#### **3.4** Predictions

Changes in aggregate conditions affect the surplus of each potential deal; therefore, we are able to derive several empirical predictions related to the aggregate facts documented in Section 2. We also focus on how particular firms are impacted by aggregate conditions.

**Prediction 1.** Buyout activity is larger in times of low risk premium.

The role of the risk premium is driven by both the performance and illiquidity channels. Table 4 confirms this prediction and shows a significant negative impact of the risk premium. The impact of the aggregate risk premium on the illiquidity compensation, combined with its contribution to the performance channel, rationalizes the observed sensitivity of buyout activity to the risk premium.

The model yields additional predictions about the composition of buyout waves. We show firms' risk characteristics impact their likelihood of being a deal target.

**Prediction 2.** A firm is more likely to be in a buyout if it has (1) low market beta, or (2) low idiosyncratic risk.

The negative impact of the market beta comes through both channels, whereas idiosyncratic risk only affects the illiquidity channel. The distinct roles of the systematic and idiosyncratic risk of a firm are a novel prediction of our model.

Beyond their unconditional impact, risk characteristics interact with aggregate conditions. Changes in the risk premium affect not only the quantity but also the composition of buyouts.

<sup>&</sup>lt;sup>18</sup>Ewens et al. (2013) also assumes the target's characteristics are unknown at the time of contracting. However they find empirical support for this assumption studying the role of idiosyncratic risk. We draw novel implications for the role of the risk premium.

**Prediction 3.** Over time, (1) firms with high market beta are more sensitive to fluctuations in the risk premium, and (2) firms with large potential performance gains (high  $p_H$ ) are more sensitive to the risk premium.

The first interaction comes from both channels, whereas the second is due to the performance channel alone. Interestingly, such a result is not present for idiosyncratic risk. This difference allows us to distinguish our approach from an explanation of buyout waves related to changes in debt capacity. Section 4.3 considers the role of risk characteristics in the data, and Section 4.4 examines the changing composition of buyouts.

The structure of outside financing between debt and equity is not pinned down in our theory: all capital is provided at the public markets' cost of capital. However, a natural way to implement outside financing is to split between an equity claim proportional to the GP's payoff and a safer debt claim.<sup>19</sup> In this case, leverage is determined by the slope of the contract  $k_1^*$ . To understand variations in leverage, we extend the model in Appendix A.3 to allow for heterogeneity across targets. The optimal level of leverage  $k_1^*$  varies with the parameters. A higher private benefit relative to the impact on the firm requires a more highly levered position to incentivize effort. However, higher leverage is costly because of the increased illiquidity costs. High-leverage deals are only feasible when it is relatively cheap to compensate the acquirer for her levered position, i.e. when the risk premium is low. Therefore, our framework predicts that the leverage of the average buyout is higher in times of low risk premium and high deal activity.

#### **Prediction 4** (Leverage). Buyouts are more levered in times of low risk premium.

Axelson et al. (2013) study fluctuations in buyout leverage concomitant with variations in mispricing measures. More generally, they find leverage covaries positively with fluctuations in aggregate buyout activity. The prediction demonstrates this result can be explained in a model in which there is no notion of mispricing between debt and equity.

The model implies that pricing of targets and performance of private equity investments vary over the buyout cycle. All investors, controlling and non-controlling, receive the stan-

<sup>&</sup>lt;sup>19</sup>Such an approach is similar to Axelson et al. (2009) who focus on a particular contractual implementation in an environment where outside capital is also provided at an exogenous cost irrespective of debt and equity.

dard compensation for risk on public markets which is larger when the risk premium is high. The GP receives additional compensation for her excess risk, which also positively varies with the risk premium. These variations in returns are reflected in the transaction price: higher future returns are related to a lower transaction price.

**Prediction 5** (Returns and deal pricing). (1) When the risk premium is low, outside investors and the acquirer receive lower expected returns on their private equity investments. (2) The acquirer receives positive abnormal returns after adjusting for the market pricing of risk, and those abnormal returns are larger in times of high risk premium. (3) When the risk premium is low, the transaction price is high.

The recent literature on private equity returns largely confirms these inferences (Kaplan and Schoar (2005), Robinson and Sensoy (2013a), Harris et al. (2014)). Buyout fund returns exhibit cyclical patterns consistent with our first prediction; investments in "hot" deal markets suffer from lower returns. Moreover, these findings are in direct contradiction with a credit market view where buyout investors are optimally timing credit market conditions to obtain high returns in booms, as pointed out by Axelson et al. (2013). Given the GPs receive fees and carried interest in addition to their ownership stake, their returns will be higher on average and covary with the fund (e.g. Metrick and Yasuda (2010), Robinson and Sensoy (2013b)). On deal pricing, Axelson et al. (2013) document higher valuation ratios (EV/EBITDA) for buyout deals in periods of high activity.

# 4 The composition of buyout activity

Our theory provides a precise rationale for the link between the risk premium and buyout activity. It also delivers insights into the types of firms targeted by buyout investors across episodes of high and low risk premium. In this section we use a panel dataset of public firms to document that the composition of buyout activity reflects the forces of our model. Our results further emphasize the role of the risk premium in the buyout decision and in their totality cannot be reconciled with alternative views of the buyout cycle.

### 4.1 Data

We construct a quarterly panel of U.S. public companies using annual accounting data from COMPUSTAT and quarterly share price information from CRSP. As we are looking to exploit accounting data, we exclude the financial industry as defined by the Fama-French 12 classification. Once a firm announces a buyout, they exit our sample. Bias resulting from the exit of buyout firms is small, given the low number of deals relative to the number of public firms. The resulting unbalanced panel of 501,176 firm-quarters tracks 14,386 unique firms over 117 quarters and contains 1,043 deal firm-quarters, where a deal firm-quarter is defined as the quarter of a buyout announcement.

We use this panel to consider cross-sectional predictions related to the risk characteristics of firms. The model predicts that firms with greater volatility will be less attractive targets. We proxy for volatility using the monthly return volatility over the past two years,  $\sigma(R^e)$ , as well as an accounting based metric, the standard deviation of EBITDA,  $\sigma(EBITDA/Assets)$ . The model ascribes different roles to systematic and idiosyncratic risk. We estimate the market regression to calculate each firm's market beta,  $\beta$ , and the volatility of residuals,  $\sigma(\varepsilon)$ , as measures of systematic and idiosyncratic risk. We unlever these equity-based measures of risk, as the model specifies total firm risk.<sup>20</sup> We trim the top and bottom 1% of accounting ratios and the top and bottom 5% of market based risk measures to reduce the impact of large outliers on our analysis.

Our theory is not meant to be comprehensive on the determinants of what makes a good buyout in the cross-section. Rather, our model focuses on the elements of a deal that relate to risk and discount rates. Therefore, we consider several firm characteristics that Opler and Titman (1993), and more recently Bharath and Dittmar (2010), identify as empirically important to explaining which types of firms are bought out or go-private: cash-flow (*EBITDA/Assets*), capital intensity (*CapEx/Sales*), costs of financial distress (*R&D/Sales*), liquidity (*Turnover*), payout policy (*Dividend Dummy*), and net leverage (*Net Debt/Assets*).<sup>21</sup> In addition we control for firm size (*log(Assets*)). Table 6 summarizes the characteristics of our sample. The broad picture is consistent with prior findings in the

<sup>&</sup>lt;sup>20</sup>Both  $\beta$  and  $\sigma(\varepsilon)$  are unlevered by rescaling by  $\frac{1}{1+(1-\tau)*\frac{Debt}{Mkt\ Cap}}$  where we assume  $\tau = 35\%$ .

<sup>&</sup>lt;sup>21</sup>We also note the book-to-market of firms, although this is not a factor in our analysis, as it is a pricing factor. In unreported results we find our conclusions are robust to this additional control, but this is not our preferred specification.

literature: deal firms are more profitable, spend less on capital expenditures and research and development, are less liquid and have higher net debt than the average public firm. A comparison of deal firm-quarters to the full panel of firm-quarters demonstrate that the average buyout has lower risk across the set of risk proxies.

### 4.2 The role of aggregate factors

Before analyzing cross-sectional heterogeneity in buyout propensity, we revisit the role of aggregate factors. The panel specification allows us to explicitly control for changes in firm composition. We cannot observe the surplus from going private, but the likelihood of a firm being a target is increasing in the difference between their private and public valuation. We use a dummy variable equal to one for the firm-quarter of a deal announcement and estimate the likelihood of a firm going private via OLS conditional on the risk premium and credit-market conditions at the beginning of the quarter.

$$Deal_{it} = \alpha_i + \lambda_{rp} \hat{r} p_t + \gamma' (\text{Credit Factors})_t + \epsilon_{it}.$$
(5)

Firm fixed effects capture the heterogeneity across firms. Standard errors are clustered in two dimensions, by firm and quarter, and robust to arbitrary serial correlation within a bandwidth of one year.<sup>22</sup>

The panel introduces significant additional variation to the exercise; we are not only predicting when deals occur, but we are also predicting which firms are targeted. Consequently, R-squared comparisons are not all that informative, but we can verify the sign, statistical significance, and robustness of the discount rate measures conditional on firm-level controls. Consistent with the aggregate results of Section 2, Table 7 demonstrates that a higher risk premium lowers the probability of a deal even in the presence of credit controls and firm fixed effects. This result is true for both the reduced form risk premium,  $\hat{rp}_{OLS}$  in Columns (1) and (9), and the VAR estimates, (10) and (11). The latter also demonstrates a positive relation between earnings growth and deal likelihood. The risk premium and growth rate results are consistent with Prediction 1. In contrast to the aggregate tests, the risk-free rate is negatively correlated in this specification and statistically significant. However, we

 $<sup>^{22}</sup>$ The estimator is intended to account for autocorrelation in common disturbances (like changes in the risk premium) across the panel.

reiterate that the risk-free rate coefficients are unreliable because the risk-free rate is highly persistent.

When we consider specific credit market factors we find both the EBITDA spread and the high yield spread are statistically significant in isolation, Columns (2) and (4), but statistically indistinguishable from zero when regressed in conjunction with the risk premium, (3) and (5). The GZ Spread is positive and statistically significant at the 1% level in both specifications, but does not attenuate the risk premium. The positive correlation (the higher the risk premium in bonds the more buyout activity) is not consistent with the aggregate results in Table 4 nor is it easily reconciled with a simple credit story of buyout activity. We confirm these results in a Probit specification (Supplementary Appendix Table 17).<sup>23</sup>

#### 4.3 The role of risk characteristics

The remaining columns of Table 8 consider the role of risk characteristics in the cross-section of firms. According to our framework, riskier firms are relatively more costly to acquirers and therefore less likely to be targeted. Greater systematic risk decreases the surplus via both the performance and illiquidity channels, while idiosyncratic risk increases the cost of a deal to private investors via the illiquidity channel. We estimate the likelihood of a firm going private via OLS conditional on firm risk factors and controls,

$$Deal_{it} = \alpha + \lambda_{\beta}\beta_{it} + \lambda_{\sigma}\sigma(\varepsilon)_{it} + \gamma' \mathbf{Controls_{it}} + \epsilon_{it}.$$
(6)

The risk characteristics exhibit time-variation, and this variation may be correlated with other factors, particularly discount rates. Therefore, we include time fixed effects to focus the analysis on cross-sectional differences between firms rather than time-series differences in firm risk estimates. We also consider specifications that control for firm-level characteristics using industry fixed effects and the firm variables discussed earlier (cash-flow, capital intensity, etc.). Standard errors are clustered in two dimensions, by firm and quarter, and robust to arbitrary serial correlation within a bandwidth of one year.

Congruent with Prediction 2, several proxies for risk are negatively correlated with deal likelihood, as shown in Table 8. Columns (1)-(3) include quarter fixed effects and (4)-(6) include firm-level controls. Both stock return volatility and cash-flow volatility decrease the

<sup>&</sup>lt;sup>23</sup>The one exception is that the risk-free rate is positive in the Probit specification.

likelihood of a deal, (1) and (2), even when controlling for other factors, (4) and (5), at the 1% significance level. Market beta and idiosyncratic risk decrease the likelihood of a deal in both specifications (3) and (6) at the 1% significance level. Again, we verify our findings in a non-linear probability specification in Supplementary Appendix Table 18.

These results are consistent with our model. But they can also be explained by a creditbased narrative where risk increases the probability of default thereby limiting debt capacity and reducing the attractiveness of the firm to buyout investors. To further separate these explanations we turn to cyclical variation in the role of firm risk and characteristics.

#### 4.4 The composition of buyouts over the cycle

To directly test the channels outlined in the model, we consider whether the composition of buyout firms varies with the risk premium in the manner outlined in Prediction 3. Firms with high betas are particularly sensitive to changes in the risk premium as a decline simultaneously increases performance gains and lowers illiquidity costs. We go on to test each channel independently by exploring predictions constrained to only one channel. The performance channel predicts that firms with greater potential for improvement are more sensitive to changes in the discount rate. The illiquidity channel predicts that more illiquid firms should be more sensitive to the risk premium. We find empirical support for both mechanisms.

#### 4.4.1 The riskiness of buyout targets

As the risk premium declines, firms with higher betas are more likely to satisfy the positive surplus condition (Equation (4)). Indeed, if we compare the distribution of deal betas for low and high quartile risk premium observations, as shown in Figure 3(a), the low quartile distribution exhibits more mass above one, whereas the high risk premium observations are more concentrated below one. This pattern is consistent with a rising cut-off as buyout investors exhibit an increased willingness to purchase higher beta firms.

The sensitivity of target betas to the risk premium could also be consistent with a credit market story in which credit investors are more willing to take risks in boom times and less willing during busts. If "hot" credit markets drive this pattern we would expect to see a similar shift in idiosyncratic risk. Our model predicts deals are less likely the higher the

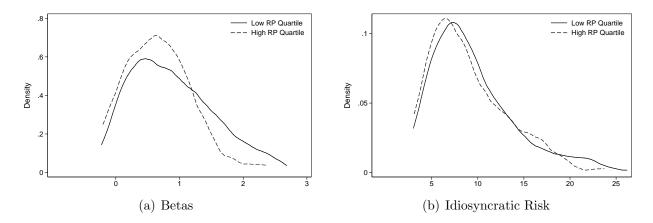



Figure 3: Density of LBO Risk Measures in Low and High Risk Premium Periods

Figure 3(a) illustrates the kernel density of unlevered beta for buyout transactions in the top and bottom quartiles of risk premium. 3(b) illustrates the kernel density of idiosyncratic risk (the s.d. of unlevered residuals from the market regression) for buyout transactions in the top and bottom quartiles of risk premium. Unlevered betas and residuals are trimmed at the top and bottom 5% to remove extreme outliers. The risk premium is predicted using annual returns for a three-year period using D/P, cay, and the three-month T-bill as factors.

idiosyncratic risk, but that idiosyncratic risk does not directly interact with expected market returns. Hence, our characterization of the discount rate channel suggests the standard deviation of the idiosyncratic risk measure should be relatively insensitive to changes in the risk premium.<sup>24</sup> Figure 3(b) demonstrates that the peak density of our idiosyncratic risk measure is shifted slightly higher during periods of low risk, but the difference is markedly less pronounced than the shift in beta. Further, the direction of this shift is not uniform over the distribution.

We formally test the correlation between target risk and the risk premium by regressing our measures of risk for buyout firms (buyout firm-quarters) on measures of buyout activity or the risk premium. On average, deal betas should be higher when activity is high because this is when the risk premium is low. In fact, there is a statistically significant positive relation between target betas and the level of buyout activity, as shown in Table 9 Column (1). We go a step further and verify that our proxies for the risk premium are negatively related to the average deal beta, Columns (2) and (3).

The idiosyncratic risk of the target is negatively correlated with buyout activity (Column (4)), at odds with the "hot" credit markets hypothesis. Idiosyncratic risk is negatively related

<sup>&</sup>lt;sup>24</sup>We thank an anonymous referee for suggesting this comparison.

to the risk premium measures but the coefficients are not statistically significant, Columns (5) and (6). Taken together, the results demonstrate that targets have higher betas during periods of greater deal activity or lower risk premia and that the idiosyncratic riskiness of buyout targets is relatively unchanged in response to valuation conditions. As a whole this evidence favors our discount rate hypothesis rather than the credit market story.

Another way to interpret Prediction 3 is that a firm's propensity to be a buyout target varies more with risk premium the higher a firm's beta. In order to test this and other predictions that interact with the risk premium we consider an alternative regression specification. We estimate how the elasticity of deal activity to the risk premium varies across firms and in response to the risk premium. To do so, we form portfolios by sorting firms into quartiles based on the characteristic of interest, in this case beta. Quartiles are calculated for each quarter, t. We calculate buyout activity relative to the sample of firms in portfolio j,  $Activity_{jt}$ . Finally, we scale this level of activity by the average level of activity over time in the portfolio,  $\overline{Activity_j}$ . We then regress re-scaled activity for the high and low quartile portfolios on time fixed-effects,  $\tau_t$ , a dummy indicating the high quartile for the characteristic of interest,  $X_{jt}$ , and an interaction with the risk premium,

$$\frac{Activity_{jt}}{\overline{Activity_j}} = \lambda_X X_{jt} + \lambda_{X*rp} (X_{jt} * \hat{rp}_t) + \tau_t + \epsilon_{jt}.$$
(7)

The coefficient of interest,  $\lambda_{X*rp}$ , conveys the difference in sensitivity to the risk premium between the high and low quartiles. Given the unconditional relation between activity and the risk premium is negative, a negative coefficient suggests the high quartile is more sensitive to changes in the risk premium and a positive coefficient suggests the high quartile is less sensitive. Given activity is re-scaled, the coefficient on the dummy variable,  $\lambda_X$ , cannot be easily interpreted. Standard errors are clustered in two dimensions, by portfolio and quarter.<sup>25</sup> While a simple approach, we believe it makes clear that we are comparing the differential response of firms to the risk premium based on a characteristic. In Supplementary Appendix Table 19 we draw similar conclusions when we exploit the entire cross-section of firms by forming portfolios based on the underlying characteristic and then regressing activity for these portfolios on an interaction with the average value of the characteristic in

<sup>&</sup>lt;sup>25</sup>Time fixed effects absorb aggregate time-series variation. An alternative formulation without time fixed effects but with the risk premium as a regressor yields similar conclusions.

the portfolio.

The model predicts high beta stocks will be more sensitive to changes in the risk premium. We consider two portfolios, a portfolio of high quartile betas and a portfolio of low quartile betas, where the characteristic is a dummy variable indicating a high quartile beta. In Table 10 Column (1) Panel A, the negative coefficient on the interaction term implies high beta stocks have a greater sensitivity to the risk premium; the difference is statistically significant at the 5% level.

The specification of Equation (7) helps alleviate some identification concerns of the pure time-series approach of Section 2. While we make an effort to control for the primary competing explanations of buyout activity, namely credit market specific conditions, we cannot explicitly address all possible alternative explanations. The inclusion of time fixed effects mitigates this issue. The fixed effects absorb aggregate shocks that have a common impact across firm types. The only alternative explanations left on the table are aggregate factors correlated with the risk premium that have a similar differential impact across firms with different characteristics  $X_{jt}$ . Hence, we believe the results of this section regarding beta, as well as the two sections hereafter, strongly support the role of the risk premium in shaping buyout cycles.

#### 4.4.2 Performance channel

We go one step further and consider evidence directly related to specific channels. Firms with greater potential for improvement, higher values of  $p_H$  in the model, should be more sensitive to changes in the discount rate via the performance channel. The potential for earnings improvement is difficult to directly observe, so we use two proxies for the potential benefits of a firm, appealing to the agency literature for inspiration. The first proxy is the Governance Index of Gompers, Ishii, and Metrick (2003), *GIM*. The index uses a firm's governance rules to measure shareholder rights. Unfortunately this metric is only available for a subset of larger firms beginning in 1990.

The second proxy is based on the the free-cash flow hypothesis of Jensen (1986), which states that managers with more free-cash flow will invest it in negative net present value projects. We measure firms' exposure to the free-cash flow problem using an upstream profitability measure, EBITDA scaled by assets. A caveat in interpreting these results as direct evidence of the performance channel is that we must assume these measures are uncorrelated with the illiquidity of the deal.<sup>26</sup>

The third proxy for performance is the competitiveness of a firm's industry. Giroud and Mueller (2010) find firms in non-competitive industries perform worse when laws are put in place to limit takeovers while firms in competitive industries perform no differently under the same circumstances. Hence, competition acts as a disciplining force that improves management and limits the potential for improvement. Using data on public firms from COMPUSTAT, we construct their measure of competition the Herfindahl Index (HHI) of sales at the three-digit SIC code level.

Estimates of these proxies in Table 10 are consistent with the the model's predictions. The governance index is increasing in the weakness of shareholder rights; a higher GIM implies greater potential for improvement. The interaction term in Column (2) indicates that higher GIM firms are more sensitive to changes in the risk premium at the 5% significance level. Column (3) considers the profitability measure, EBITDA/Assets, and finds that more profitable firms are more sensitive to changes in the risk premium but the coefficient is statistically indistinguishable from zero. When we compare less competitive firms (high HHI quartile) to more competitive firms, Column (4), we find that the less competitive firms are more sensitive to changes in the 1% significance level. These results, along with the alternative specifications in Supplementary Appendix Table 19, are consistent with predictions of the model and support the performance channel as a mechanism for variation in buyout activity.

#### 4.4.3 Illiquidity channel

We also test whether the role of the risk premium flows through the illiquidity channel by considering heterogeneity in liquidity across firms. While the model assumes the illiquidity of the buyout contract lasts one period, we can relax this assumption and think about some firms being easier to exit than others.<sup>27</sup> The longer the acquirer has to hold onto the firm, the greater the illiquidity costs. Periods of high risk premium reduce the attractiveness of an illiquid firm more so than a liquid firm. The time during which the firm's ownership is illiquid has no impact on the performance channel so long as we believe the aggregate

<sup>&</sup>lt;sup>26</sup>One potential mechanism is that bigger improvements take more time to implement. We are not aware of any evidence to this effect with respect to the particular measures we consider.

<sup>&</sup>lt;sup>27</sup>One can extend the model to account for this heterogeneity by changing the horizon at which the acquirer receives his payoff as a function of firm value.

performance gains are independent from their ease of exit. We focus on measures that have no strong reason to exhibit such a correlation.

We develop several proxies for the duration of investment using industry differences in the liquidity of assets. We consider the volume and value of M&A and IPO activity to proxy for the ease with which assets in a particular industry are traded. Using data from Thomson SDC, we compile a list of all reported value, completed M&A transactions and a list of IPOs. We organize this activity into Fama-French 48 industry classifications and scale the number of deals by the the number of public firms in the industry. Similarly, we scale the enterprise value of activity by the enterprise value of public firms in the industry. We calculate threeyear moving averages of industry activity to reflect persistent liquidity conditions, and not the current level of liquidity, which may also be driven by the risk premium.

We follow the specification in Equation (7) and regress the scaled activity measure for a high and low quartile portfolios on time fixed effects, the high quartile dummy, and the interaction of the risk premium and the high quartile dummy. In Table 10 Panel B, the elasticity of activity to the risk premium is decreasing with M&A measures of activity, Columns (1) and (2), the former at the 1% significance level. The volume and value of IPO activity are positive, Columns (3) and (4), at the 10% significance level. Overall, deal activity in more liquid industries is less sensitive to variation in the risk premium. These predictions are distinct from the performance channel above and speak directly to sensitivity of investors to liquidity concerns.

We repeat this analysis in the presence of our credit market controls to ensure that these differences are not explained by changes in credit spreads (See Supplementary Appendix Table 20). The sign and significance of our coefficients is similar in the presence of these additional controls.

# 5 Other corporate transactions

The two channels of our model reflect a basic trade-off in corporate finance between productivity gains due to organizational changes and the funding structure necessary to implement these changes. In this section, we consider the implications of this trade-off for other types of corporate finance activity: mergers and initial public offerings (IPOs). We document the relation between fluctuations in activity and the risk premium and conclude that they broadly match the predictions of our theory.

**Mergers.** M&A deals increase future earnings by exploiting synergies between the acquirer and the target, echoing the performance channel for buyouts. Unlike buyout deals, the typical M&A transaction does not meaningfully change the liquidity of the acquirer. Thus M&A activity should respond negatively to the risk premium, though we predict the sensitivity to be lower than for buyouts.

We consider M&A deals for public targets as reported by Thomson SDC beginning in 1981Q1.<sup>28</sup> The resulting sample includes 5,913 deals. Similarly to our core analysis, we standardize activity over time by scaling the number of deals by the number of public firms and the asset value of deals by the total value of public assets. In order to compare magnitudes across different left-hand-side variables we take the log of activity and estimate a time-series regression of activity on our base risk premium which reveals the (semi-)elasticity of activity to the risk premium.

The results in Table 11 demonstrate that the volume of M&A activity, Panel A Column (1), is negatively related with an increase in the risk premium at the 1% significance level. A one percentage point increase in the risk premium corresponds to a 5.4% decrease in M&A activity. A similarly constructed measure for LBOs finds an elasticity of 8.5% on the risk premium.

We repeat the analysis controlling for two alternative explanations emphasized in the literature on M&A activity. The first explanation emphasizes the availability of credit as the main driver of activity in the time series; see for instance Harford (2005) or Maksimovic et al. (2013). We use various sets of controls for credit market conditions in Table (11). In Column (2), we consider the measures we use for buyout activity: *HY Spread*, *EBITDA Spread* and *GZ Spread*.<sup>29</sup> Dittmar and Dittmar (2008) argue changes in economic growth drive a wedge between debt and equity. Column (3) documents this effect by adding realized GDP growth to the analysis; again the role for the risk premium is broadly unchanged.

The second explanation considers the role of investor sentiment, e.g. Rhodes-Kropf and

 $<sup>^{28}</sup>$ We focus on transactions where 100% of the equity in the firm is purchased and the deal value is disclosed by Thomson. These two restrictions effectively minimize small transactions for minority interest or assets. We find similar results when we consider M&A activity for private targets as well.

<sup>&</sup>lt;sup>29</sup>In unreported analysis we focus on other credit specific measures emphasized in the aforementioned papers: *Tighter Standards* and *Corporate Spread*. Neither of those controls affect the sensitivity to the risk premium.

Viswanathan (2004), Rhodes-Kropf et al. (2005), and Lamont and Stein (2006). Following this work, we control for sentiment using the discount on closed-end funds (Lee et al., 1991) and the sentiment index of Baker and Wurgler (2006). As shown in Column (4), these measures capture some of the variation in activity but do not drive out the predictive power of the risk premium. In Column (5), we consider all six candidate variables for M&A activity against our measure of the risk premium. Across each of these specifications the risk premium is a negative, statistically significant predictor of M&A activity.

The typical response of M&A to the risk premium is smaller than that of buyouts, consistent with the lack of a liquidity channel. Indeed, an equivalent procedure finds a 6.3% decline in buyout activity in response to a one percentage point increase in the risk premium. In Columns (6) and (7) we consider the elasticity of the ratio of buyouts to M&A activity to the risk premium. In line with the findings of Martos-Vila et al. (2012), buyout activity is 3.2% more responsive to the risk premium than M&A activity. We find the differential response is robust to controlling for alternative explanations of M&A activity, Columns (7).<sup>30</sup> All of this analysis is repeated on the asset value of M&A targets, resulting in similar conclusions and higher magnitudes (Table 11 Panel B).

**IPOs.** Initially, IPOs appear to be the opposite of buyouts. A public offering moves a firm from an illiquid private ownership to public capital markets. And, dispersion of control in the new structure exacerbates agency problems. Therefore, a naive interpretation of our hypothesis for buyouts predicts a positive link between the risk premium and IPOs. We explore this idea empirically. We consider IPO activity recorded in Thomson SDC since 1970Q1 —again taking the log of activity relative to the size of the public market. We find IPO activity does not respond to changes in the risk premium (Table 11, Column (9)).<sup>31</sup> The lack of a strong relation is true for both volume and value based measures of IPO activity, Panels A and B.

Perhaps our empirical findings are unsurprising in light of a more acute interpretation of what constitutes an IPO transaction. For instance, in a survey of IPOs Mikkelson et al.

<sup>&</sup>lt;sup>30</sup>See Supplementary Appendix Table 21 for specifications with individual controls.

 $<sup>^{31}</sup>$ One concern is that IPO activity influences the size of public markets in future quarters. However, in unreported robustness checks we find similar results when we consider the level of activity rather than the share.

(1997) note that 85% of firms cite financing growth as their main reason to go public.<sup>32</sup> Thus an IPO often includes an investment component, suggesting a negative role for the risk premium rather than the positive link implied by "reverse-buyout" logic. IPOs not only face different investment opportunities, they also have a direct impact on the employees of the firm who have been paid with equity, leading to another alternative channel for the risk premium.<sup>33</sup> In contrast to our results, Pastor and Veronesi (2005) find a role for the risk premium by using a more structural analysis to account for variation in the risk premium and uncertainty.

Overall, fluctuations in merger activity negatively co-vary with the risk premium, but mergers are less sensitive than buyouts, consistent with our framework. IPO activity does not fluctuate with the risk premium. While outside the scope of this paper, it suggests that there are important differences between IPOs and buyouts. A more in-depth study of these differences using the cross-section of deals could shed more light on the relevance of our approach in the context of these transactions.

## 6 Final remarks

In this paper we show that changes in the aggregate risk premium explain buyout waves. Using a simple model of a buyout transaction, we reproduce the salient features of buyout cycles. At the aggregate level, total activity is high when the aggregate risk premium is low. Consistent with the literature on buyouts, boom markets are characterized by high deal leverage and low returns to private equity investors. We document a novel set of facts regarding the composition of buyout targets over the cycle, further supporting the importance of the risk premium for buyout activity. For instance, high beta firms are more likely to enter a transaction in periods of low risk premium. In their totality, these facts are difficult to reconcile with a view of buyouts driven by debt market conditions.

We believe our approach provides a backdrop against which to evaluate the choices of general partners and limited partners. In this paper, we take a simple view of the participants in a private equity deal. In practice, there is significant cross-sectional heterogeneity in

 $<sup>^{32}\</sup>mathrm{Eighty}\textsc{-five}$  percent of the firms intend to use the proceeds of the IPO to raise working capital, 64% to finance capital expenditures.

<sup>&</sup>lt;sup>33</sup>Thanks to an anonymous referee for suggesting the latter.

private equity funds. They vary in age, size, and past success – characteristics that shape their investment style. These characteristics might impact their response to changes in the risk premium. Similarly, private equity firms associate themselves with different limited partners (Lerner and Schoar, 2004), perhaps strategically, and we suspect variation in the risk premium could affect these choices as well.

More generally, the empirical success of our approach suggests exploration of other types of corporate decisions. The importance of the risk premium for asset prices is well studied, but the role of the risk premium in corporate decisions is less understood – in particular, corporate financial decisions. Much like buyouts, other corporate decisions exhibit significant cyclicality. Given the prominent role the risk premium plays for the buyout cycle, the risk premium's ability to coordinate corporate activity more broadly represents a promising avenue for further research.

## References

- AXELSON, U., T. JENKINSON, P. J. STROMBERG, AND M. S. WEISBACH (2013): "Borrow Cheap, Buy High? The Determinants of Leverage and Pricing in Buyouts," *Journal of Finance*, 68, 2223–2267.
- AXELSON, U., P. STRÖMBERG, AND M. S. WEISBACH (2009): "Why Are Buyouts Levered? The Financial Structure of Private Equity Funds," *Journal of Finance*, 64, 1549– 1582.
- BAKER, M. AND J. WURGLER (2002): "Market timing and capital structure," *Journal of Finance*, 57, 1–32.
- (2006): "Investor Sentiment and the Cross-Section of Stock Returns," *Journal of Finance*, 61, 1645–1680.
- BARRO, R. (1990): "The stock market and investment," *Review of Financial Studies*, 3, 115–131.
- BERK, J. B., R. C. GREEN, AND V. NAIK (1999): "Optimal investment, growth options, and security returns," *Journal of Finance*, 54, 1553–1607.
- BHARATH, S. T. AND A. K. DITTMAR (2010): "Why do firms use private equity to opt out of public markets?" *Review of Financial Studies*.
- CAMPBELL, J. Y. (1987): "Stock returns and the term structure," *Journal of Financial Economics*, 18, 373–399.
- CAMPBELL, J. Y. AND J. AMMER (1993): "What Moves the Stock and Bond Markets? A Variance Decomposition for Long-Term Asset Returns," *Journal of Finance*, 48, 3–37.
- CAMPBELL, J. Y. AND R. J. SHILLER (1988a): "The dividend-price ratio and expectations of future dividends and discount factors," *Review of Financial Studies*, 1, 195–228.

(1988b): "Stock prices, earnings and expected dividends," *Journal of Finance*, 43, 661–676.

- COCHRANE, J. H. (1991): "Production-based asset pricing and the link between stock returns and economic fluctuations," *Journal of Finance*, 209–237.
  - (2008): "The dog that did not bark: A defense of return predictability," *Review of Financial Studies*, 21, 1533–1575.

(2011): "Presidential address: Discount rates," The Journal of Finance, 66, 1047–1108.

- DAVIS, S. J., J. HALTIWANGER, K. HANDLEY, R. S. JARMIN, J. LERNER, AND J. MI-RANDA (2014): "Private equity, jobs, and productivity," *Working Paper*.
- DITTMAR, A. K. AND R. F. DITTMAR (2008): "The timing of financing decisions: An examination of the correlation in financing waves," *Journal of Financial Economics*, 90, 59–83.
- EWENS, M., C. M. JONES, AND M. RHODES-KROPF (2013): "The Price of Diversifiable Risk in Venture Capital and Private Equity." *Review of Financial Studies*, 26, 1853 – 1889.
- FAMA, E. F. AND K. R. FRENCH (1988): "Dividend yields and expected stock returns," Journal of Financial Economics, 22, 3–25.
- (1989): "Business conditions and expected returns on stocks and bonds," *Journal of Financial Economics*, 25, 23–49.
- ---- (1993): "Common risk factors in the returns on stocks and bonds," *Journal of Financial Economics*, 33, 3 56.
- GILCHRIST, S. AND E. ZAKRAJŠEK (2012): "Credit Spreads and Business Cycle Fluctuations," *American Economic Review*, 102, 1692–1720.
- GIROUD, X. AND H. M. MUELLER (2010): "Does corporate governance matter in competitive industries?" Journal of Financial Economics, 95, 312–331.
- GOMPERS, P., J. ISHII, AND A. METRICK (2003): "Corporate governance and equity prices," *The Quarterly Journal of Economics*, 118, 107–156.
- HARFORD, J. (2005): "What drives merger waves?" Journal of Financial Economics, 77, 529–560.
- HARRIS, R. S., T. JENKINSON, AND S. N. KAPLAN (2014): "Private equity performance: What do we know?" *Journal of Finance*.
- JENSEN, M. C. (1986): "Agency costs of free cashflow, corporate finance, and takeovers," *American Economic Review*, 76, 323–329.
- KAPLAN, S. N. AND A. SCHOAR (2005): "Private equity performance: Returns, persistence, and capital flows," *Journal of Finance*, 60, 1791–1823.
- KAPLAN, S. N. AND J. C. STEIN (1993): "The evolution of buyout pricing and financial structure in the 1980s," *The Quarterly Journal of Economics*, 108, 313–357.
- KAPLAN, S. N. AND P. STRÖMBERG (2009): "Leveraged buyouts and private equity," Journal of Economic Perspectives, 23, 121–146.

- LAMONT, O. A. AND J. C. STEIN (2006): "Investor Sentiment and Corporate Finance: Micro and Macro," *American Economic Review Papers and Proceedings*, 96, 147–151.
- LEE, C. M. C., A. SHLEIFER, AND R. H. THALER (1991): "Investor Sentiment and the Closed-End Fund Puzzle," *Journal of Finance*, 46, 75–109.
- LERNER, J. AND A. SCHOAR (2004): "The illiquidity puzzle: theory and evidence from private equity," *Journal of Financial Economics*, 72, 3–40.
- LETTAU, M. AND S. LUDVIGSON (2001): "Consumption, Aggregate Wealth, and Expected Stock Returns," *Journal of Finance*, 56, pp. 815–849.
- MAKSIMOVIC, V., G. PHILLIPS, AND L. YANG (2013): "Private and Public Merger Waves," Journal of Finance, 68, 2177–2217.
- MALENKO, A. AND N. MALENKO (2014): "A Theory of LBO Activity Based on Repeated Debt-Equity Conflicts," *Working Paper*.
- MARTOS-VILA, M., M. RHODES-KROPF, AND J. HARFORD (2012): "Financial Vs. Strategic Buyers," *Harvard Business School Working Paper*.
- METRICK, A. AND A. YASUDA (2010): "The Economics of Private Equity Funds," *Review* of Financial Studies, 23.
- MIKKELSON, W. H., M. MEGAN PARTCH, AND K. SHAH (1997): "Ownership and operating performance of companies that go public," *Journal of Financial Economics*, 44, 281–307.
- OPLER, T. AND S. TITMAN (1993): "The determinants of leveraged buyout activity: Free cash flow vs. financial distress costs," *Journal of Finance*, 48, 1985–1999.
- PASTOR, L. AND P. VERONESI (2005): "Rational IPO Waves," Journal of Finance, 60, 1713–1757.
- RHODES-KROPF, M., D. T. ROBINSON, AND S. VISWANATHAN (2005): "Valuation waves and merger activity: The empirical evidence," *Journal of Financial Economics*, 77, 561–603.
- RHODES-KROPF, M. AND S. VISWANATHAN (2004): "Market valuation and merger waves," Journal of Finance, 59, 2685–2718.
- ROBINSON, D. T. AND B. A. SENSOY (2013a): "Cyclicality, Performance Measurement, and Cash Flow Liquidity in Private Equity," *NBER Working Paper*.

- (2013b): "Do Private Equity Fund Managers Earn Their Fees? Compensation, Ownership, and Cash Flow Performance," *Review of Financial Studies*, 26, 2760–2797.
- SHIVDASANI, A. AND Y. WANG (2011): "Did structured credit fuel the LBO boom?" *Journal of Finance*, 66, 1291–1328.
- SORENSEN, M., N. WANG, AND J. YANG (2013): "Valuing private equity," Working Paper.
- STOCK, J. H. AND M. W. WATSON (1999): "Chapter 1 Business Cycle Fluctuations in U.S. Macroeconomic Time Series," Elsevier, vol. 1, Part A of Handbook of Macroeconomics, 3 – 64.

| VARIABLE                    | Obs. | Mean      | Median    | Max        | Std. Dev.  |
|-----------------------------|------|-----------|-----------|------------|------------|
| Buyout Activity             |      |           |           |            |            |
| Volume (No. of Deals)       | 117  | 9.8       | 9.0       | 27.0       | 6.1        |
| Volume / Public Firms (bps) | 117  | 18.7      | 17.3      | 51.1       | 11.8       |
| Asset Value (\$ mm)         | 117  | 8,717     | 4,189     | $78,\!533$ | $13,\!298$ |
| Enterprise Value (\$ mm)    | 107  | $5,\!396$ | $1,\!119$ | 74,098     | 11,369     |
| Log Assets                  | 117  | 7.93      | 8.34      | 11.27      | 1.96       |
| Aggregate Factors           |      |           |           |            |            |
| $\hat{rp}_{OLS}$ (%)        | 117  | 4.82      | 5.82      | 14.75      | 5.53       |
| EBITDA Spread               | 117  | -2.20     | -2.02     | 1.73       | 1.86       |
| HY Spread                   | 117  | 11.54     | 11.14     | 19.51      | 2.69       |
| GZ Spread                   | 117  | 1.90      | 1.58      | 7.82       | 1.10       |

 Table 1: Aggregate Summary Statistics

Table 1 contains quarterly summary statistics for buyout activity and aggregate factors for 117 quarters from 1982Q4 to 2011Q4. The value of deals is in 2010 dollars. Volume (bps) is the volume of buyouts scaled by the number of public firms in basis points.  $\hat{rp}_{OLS}$  is the predicted market excess return using D/P, cay, and the 3-month T-Bill as factors. EBITDA Spread is the difference between the median public firm EBITDA/EV and the yield on a composite index of high-yield bonds. HY Spread is the yield on a composite index of high-yield bonds less the 3-month T-Bill. GZ Spread is excess bond premium as measured by Gilchrist and Zakrajšek (2012).

| Dep. Var.:    |          |            |          | Volu        | ume of Act   | ivity  |          |            |             |
|---------------|----------|------------|----------|-------------|--------------|--------|----------|------------|-------------|
| Panel A       | (1)      | (2)        | (3)      | (4)         | (5)          | (6)    | (7)      | (8)        | (9)         |
| $\hat{rp}$    | -1.17*** |            | -1.14*** |             | -1.26***     |        | -1.22*** |            | -1.50***    |
|               | (0.25)   |            | (0.25)   |             | (0.24)       |        | (0.25)   |            | (0.24)      |
| EBITDA Spread |          | $1.50^{*}$ | 0.27     |             |              |        |          | 1.01       | $2.10^{*}$  |
|               |          | (0.81)     | (0.48)   |             |              |        |          | (0.99)     | (1.09)      |
| HY Spread     |          |            |          | $-1.07^{*}$ | 0.34         |        |          | -0.59      | $1.92^{**}$ |
|               |          |            |          | (0.63)      | (0.42)       |        |          | (0.93)     | (0.97)      |
| GZ Spread     |          |            |          |             |              | 1.21   | -0.76    | $1.82^{*}$ | -1.17       |
|               |          |            |          |             |              | (1.34) | (0.72)   | (1.08)     | (0.95)      |
| Observations  | 117      | 117        | 117      | 117         | 117          | 117    | 117      | 117        | 117         |
| $R^2$         | 0.317    | 0.074      | 0.319    | 0.077       | 0.322        | 0.031  | 0.322    | 0.107      | 0.360       |
| Dep. Var.:    |          |            |          | Va          | lue of Activ | vity   |          |            |             |
| Panel B       | (1)      | (2)        | (3)      | (4)         | (5)          | (6)    | (7)      | (8)        | (9)         |
| $\hat{rp}$    | -0.20*** |            | -0.19*** |             | -0.19***     |        | -0.21*** |            | -0.23***    |
| -             | (0.039)  |            | (0.038)  |             | (0.041)      |        | (0.036)  |            | (0.038)     |
| EBITDA Spread | . ,      | $0.28^{*}$ | 0.077    |             | . ,          |        |          | -0.0066    | 0.16        |
|               |          | (0.16)     | (0.11)   |             |              |        |          | (0.16)     | (0.13)      |
| HY Spread     |          |            |          | -0.24**     | -0.022       |        |          | -0.25*     | 0.13        |
|               |          |            |          | (0.11)      | (0.088)      |        |          | (0.13)     | (0.12)      |
| GZ Spread     |          |            |          |             |              | 0.10   | -0.24**  | 0.20       | -0.26*      |
|               |          |            |          |             |              | (0.21) | (0.12)   | (0.19)     | (0.15)      |
|               |          |            |          |             |              | (**==) | (- )     | (0110)     | (0110)      |
| Observations  | 117      | 117        | 117      | 117         | 117          | 117    | 117      | 117        | 117         |

Table 2: Explaining Buyout Activity: Aggregate Risk Premium versus Credit Market Factors

Table 2 contains coefficient estimates from regressing quarterly buyout activity on estimates of the aggregate risk premium, credit spreads, and credit market factors from 1982Q4 to 2011Q4. The dependent variable in Panel A is the volume of activity (the number of deals scaled by the number of public firms in bps) and in Panel B is the value of activity (the log asset value of deals).  $\hat{rp}$  is the predicted market excess return using D/P, cay, and the 3-month T-Bill as factors. *EBITDA Spread* is the difference between the median public firm EBITDA/EV and the yield on a composite index of high-yield bonds. *HY Spread* is the yield on a composite index of high-yield bonds less the 3-month T-Bill. *GZ Spread* is the excess bond premium as measured by Gilchrist and Zakrajšek (2012). Quarter dummies are included to account for seasonality. Standard errors in parentheses are calculated using Newey-West (4 lags); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

Table 3: VAR Summary Statistics

| VARIABLE             | Mean | Median | Max  | Std. Dev. |
|----------------------|------|--------|------|-----------|
| $r_{f}$              | 5.6  | 5.6    | 13.5 | 2.9       |
| $\hat{rp}_{VAR}$ (%) | 5.2  | 6.4    | 14.4 | 5.3       |
| $\hat{g}_{VAR}~(\%)$ | 6.3  | 8.5    | 58.6 | 15.8      |

Table 3 contains quarterly summary statistics for the 117 quarters from 1982Q4 to 2011Q4.  $r_f$  is the annual risk-free yield at a three year horizon.  $\hat{rp}_{VAR}$  is the annual expected market excess return for the next three years based on a VAR.  $\hat{g}_{VAR}$  is the annual expected S&P earnings growth for the next three years based on a VAR.

|                             |                                             | Vol                                         | ume                                       |                                           | Value                                       |                                           |                                           |                                  |  |
|-----------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|--|
|                             | (1)                                         | (2)                                         | (3)                                       | (4)                                       | (5)                                         | (6)                                       | (7)                                       | (8)                              |  |
| $\hat{rp}$                  | $-0.88^{***}$<br>(0.33)                     | $-1.20^{***}$<br>(0.33)                     | $-1.41^{***}$<br>(0.32)                   | $-1.09^{***}$<br>(0.37)                   | $-0.18^{***}$<br>(0.053)                    | $-0.22^{***}$<br>(0.051)                  | $-0.26^{***}$<br>(0.054)                  | $-0.14^{**}$<br>(0.060)          |  |
| $\hat{g}$                   | ()                                          | $0.23^{***}$<br>(0.072)                     | $0.30^{***}$<br>(0.095)                   | $0.25^{**}$<br>(0.10)                     | ()                                          | $0.031^{***}$<br>(0.010)                  | $0.047^{***}$<br>(0.012)                  | $0.035^{***}$<br>(0.010)         |  |
| rf                          |                                             | (0.072)                                     | (0.035)<br>0.82<br>(0.57)                 | $2.65^{**}$                               |                                             | (0.010)                                   | (0.012)<br>$0.17^{**}$<br>(0.068)         | 0.66***                          |  |
| EBITDA Spread               |                                             |                                             | (0.57)                                    | (1.14)<br>1.46<br>(1.10)                  |                                             |                                           | (0.008)                                   | (0.12)<br>0.041                  |  |
| HY Spread                   |                                             |                                             |                                           | (1.19)<br>-0.83                           |                                             |                                           |                                           | (0.15)<br>-0.51***               |  |
| GZ Spread                   |                                             |                                             |                                           | (1.26)<br>$5.43^{***}$<br>(1.97)          |                                             |                                           |                                           | $(0.17) \\ 1.26^{***} \\ (0.24)$ |  |
| Observations $\mathbb{R}^2$ | $\begin{array}{c} 117 \\ 0.176 \end{array}$ | $\begin{array}{c} 117 \\ 0.247 \end{array}$ | $\begin{array}{c} 117\\ 0.277\end{array}$ | $\begin{array}{c} 117\\ 0.348\end{array}$ | $\begin{array}{c} 117 \\ 0.247 \end{array}$ | $\begin{array}{c} 117\\ 0.296\end{array}$ | $\begin{array}{c} 117\\ 0.345\end{array}$ | $117 \\ 0.457$                   |  |

Table 4: OLS: Buyout Activity on Discount Rates and Growth

Table 4 contains coefficient estimates from regressing quarterly buyout activity on the components of a Campbell-Shiller decomposition at a three-year horizon from 1982Q4 to 2011Q4. The dependent variable in Columns (1)-(4) is the volume of activity (the number of deals scaled by the number of public firms in bps) and in Columns (5)-(8) is the value of activity (the log asset value of deals).  $\hat{rp}$  is the annual expected market excess return for the next three years based on a VAR.  $\hat{g}$  is the annual expected S&P earnings growth for the next three years based on a VAR.  $r_f$  is the annual risk-free yield at a three year horizon. *EBITDA Spread* is the difference between the median public firm EBITDA/EV and the yield on a composite index of high-yield bonds less the 3-month T-Bill. *GZ Spread* is the excess bond premium as measured by Gilchrist and Zakrajšek (2012). Quarter dummies are included to account for seasonality. Standard errors in parentheses are calculated using Newey-West (4 lags); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

|               | VAR: D   | ividends | $\hat{rp}_{OLS},$ | $\hat{g}_{IBES}$ | $\hat{rp}_{OLS},$ | $g_{EBIT}$ | $rp_{Actual}$ | , $g_{EBIT}$ |
|---------------|----------|----------|-------------------|------------------|-------------------|------------|---------------|--------------|
|               | (1)      | (2)      | (3)               | (4)              | (5)               | (6)        | (7)           | (8)          |
| $\hat{rp}$    | -0.96*** | -0.72*   | -1.42***          | -1.29***         | -1.34***          | -1.30***   | -0.52***      | -0.50***     |
|               | (0.31)   | (0.40)   | (0.22)            | (0.28)           | (0.22)            | (0.30)     | (0.15)        | (0.15)       |
| $\hat{g}$     | 0.34     | 0.29     | $0.15^{**}$       | $0.16^{**}$      | $0.22^{*}$        | 0.30**     | 0.32**        | 0.38**       |
|               | (0.48)   | (0.46)   | (0.074)           | (0.076)          | (0.12)            | (0.15)     | (0.15)        | (0.16)       |
| rf            | 0.24     | 2.31**   | 1.04*             | 1.93**           | $0.88^{*}$        | $1.56^{*}$ | -0.082        | 2.40***      |
| -             | (0.49)   | (1.03)   | (0.53)            | (0.86)           | (0.52)            | (0.84)     | (0.51)        | (0.78)       |
| EBITDA Spread | ~ /      | 5.72***  | · · /             | $2.88^{*}$       | ~ /               | 3.13*      |               | 7.36***      |
|               |          | (1.92)   |                   | (1.52)           |                   | (1.75)     |               | (1.66)       |
| HY Spread     |          | 2.32*    |                   | $2.00^{*}$       |                   | 1.67       |               | $2.50^{**}$  |
|               |          | (1.25)   |                   | (1.10)           |                   | (1.02)     |               | (1.14)       |
| GZ Spread     |          | -0.52    |                   | 0.40             |                   | 0.81       |               | -0.38        |
| -             |          | (1.28)   |                   | (0.86)           |                   | (0.89)     |               | (1.08)       |
| Observations  | 117      | 117      | 116               | 116              | 113               | 113        | 113           | 113          |
| $R^2$         | 0.200    | 0.302    | 0.374             | 0.413            | 0.388             | 0.435      | 0.248         | 0.409        |

Table 5: Buyout Activity on Alternative Measures

Table 5 contains coefficient estimates from regressing quarterly buyout activity on alternative estimates of growth and the risk premium from 1982Q4 to 2011Q4. The dependent variable is the volume of activity scaled by the number of public firms (in basis points). (1)-(2),  $\hat{rp}$  is the expected market excess return based on a VAR using dividend growth rather than earnings growth.  $\hat{g}$  is expected S&P dividend growth based on a VAR. (3)-(4),  $\hat{rp}$  is the predicted market excess return using D/P, cay, and the 3-month T-Bill as factors.  $\hat{g}$  is the mean IBES estimate of S&P dividend growth for the next two years. (5)-(6),  $\hat{rp}$  is the predicted market excess return using D/P, cay, and the 3-month T-Bill as factors.  $\hat{g}$  is the actual aggregate EBIT growth for the next year for firms in Compustat. (7)-(8),  $\hat{rp}$  is the actual annual market return for the next three years.  $\hat{g}$  is the actual aggregate EBIT growth for the next year for firms in Compustat.  $r_f$  is the risk-free yield at a three year horizon. *EBITDA Spread* is the difference between the median public firm EBITDA/EV and the yield on a composite index of high-yield bonds. *HY Spread* is the yield on a a composite index of high-yield bonds less the 3-month T-Bill. *GZ Spread* is the excess bond premium as measured by Gilchrist and Zakrajšek (2012). Quarter dummies are included to account for seasonality. Standard errors in parentheses are calculated using Newey-West (4 lags); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

|                         |             | All Firm | n-Quarte | ers       |           | LBO F | irm-Qua | rters     |
|-------------------------|-------------|----------|----------|-----------|-----------|-------|---------|-----------|
| VARIABLE                | Ν           | Mean     | Median   | Std. Dev. | Ν         | Mean  | Median  | Std. Dev. |
| Deal Dummy              | $501,\!176$ | 0.002    | 0.000    | 0.046     | $1,\!043$ | 1.000 | 1.000   | 0.000     |
| Firm Characteristics:   |             |          |          |           |           |       |         |           |
| Assets (mm)             | $501,\!176$ | \$2,027  | \$155    | \$12,728  | 1,043     | \$978 | \$211   | \$2,960   |
| $\log(Assets)$          | $501,\!176$ | 5.19     | 5.04     | 2.13      | 1,043     | 5.48  | 5.35    | 1.59      |
| EBITDA/Assets           | $487,\!597$ | 0.05     | 0.11     | 0.22      | 1,031     | 0.11  | 0.13    | 0.15      |
| CapEx/Sales             | $485,\!577$ | 0.14     | 0.04     | 0.39      | 1,030     | 0.07  | 0.03    | 0.17      |
| R&D/Sales               | $485,\!195$ | 0.16     | 0.00     | 0.84      | 1,030     | 0.03  | 0.00    | 0.18      |
| Net Debt/Assets         | $494,\!072$ | 0.07     | 0.11     | 0.36      | 1,035     | 0.14  | 0.18    | 0.35      |
| Turnover                | 488,367     | 1.15     | 0.63     | 1.89      | 1,036     | 1.05  | 0.59    | 3.73      |
| Dividend Dummy          | $501,\!176$ | 0.32     | 0.00     | 0.46      | 1,043     | 0.31  | 0.00    | 0.46      |
| Book/Market             | 484,578     | 0.74     | 0.55     | 0.71      | 998       | 0.94  | 0.74    | 0.79      |
| <b>Risk Proxies:</b>    |             |          |          |           |           |       |         |           |
| $\sigma(R)$             | $431,\!467$ | 15.83    | 13.44    | 10.69     | 963       | 14.26 | 12.25   | 8.22      |
| $\beta$                 | $387,\!071$ | 0.88     | 0.78     | 0.65      | 899       | 0.78  | 0.69    | 0.59      |
| $\sigma(arepsilon)$     | $430,\!077$ | 11.65    | 9.24     | 9.61      | 959       | 9.44  | 8.01    | 6.72      |
| $\sigma(EBITDA/Assets)$ | 488,410     | 0.12     | 0.08     | 0.14      | 992       | 0.08  | 0.05    | 0.08      |

Table 6: Summary of Firm-Quarters: Full Sample and LBO Firm-Quarters

Table 6 contains summary statistics for the sample of firm-quarters from 1982Q4 to 2011Q4. Assets are book assets in 2010 dollars. Accounting ratios trimmed at the 99% level. Dividend Dummy is equal to one if the firm pays a dividend.  $\sigma(R)$  is the standard deviation of the prior two-years monthly returns.  $\sigma(EBITDA/Assets)$  is the standard deviation of the EBITDA-to-assets ratio over the observable life of a firm.  $\beta$  is the unlevered market beta of the firm based on lagged two-years of monthly returns.  $\sigma(\varepsilon)$  is the standard deviation of the unlevered residuals from the market regression. Unlevered betas and residuals are trimmed at the top and bottom 5% to remove extreme outliers. Deal Dummy is equal to one if a firm announces a deal in the upcoming quarter.

|                    | (1)                     | (2)                   | (3)                     | (4)                     | (5)                     | (6)                    | (7)                                                 | (8)                              | (9)                              | (10)                          | (11)                          |
|--------------------|-------------------------|-----------------------|-------------------------|-------------------------|-------------------------|------------------------|-----------------------------------------------------|----------------------------------|----------------------------------|-------------------------------|-------------------------------|
| $\hat{rp}_{OLS}$   | $-2.39^{***}$<br>(0.28) |                       | $-2.29^{***}$<br>(0.28) |                         | $-2.15^{***}$<br>(0.29) |                        | $-2.27^{***}$<br>(0.29)                             |                                  | $-1.59^{***}$<br>(0.35)          |                               |                               |
| $\hat{rp}_{VAR}$   | ~ /                     |                       |                         |                         |                         |                        | ( )                                                 |                                  | ~ /                              | -0.61***                      | -0.57***                      |
| $\hat{g}_{VAR}$    |                         |                       |                         |                         |                         |                        |                                                     |                                  |                                  | (0.11)<br>$0.11^{***}$        | (0.13)<br>$0.12^{***}$        |
| rf                 |                         |                       |                         |                         |                         |                        |                                                     |                                  |                                  | (0.031)<br>-4.16***<br>(0.47) | (0.032)<br>-2.98***<br>(1.01) |
| EBITDA Spread      |                         | $2.58^{**}$<br>(1.00) | 1.22<br>(0.97)          |                         |                         |                        |                                                     | -1.11 $(1.98)$                   | 0.36<br>(2.36)                   | (0.47)                        | (1.01)<br>-0.088<br>(2.26)    |
| HY Spread          |                         | (1.00)                | (0.97)                  | $-2.90^{***}$<br>(0.75) | -1.13<br>(0.71)         |                        |                                                     | (1.98)<br>-5.24***<br>(1.37)     | (2.30)<br>-2.63<br>(1.72)        |                               | (2.20)<br>-0.90<br>(1.93)     |
| GZ Spread          |                         |                       |                         | (0.75)                  | (0.71)                  | $5.97^{***}$<br>(1.41) | $\begin{array}{c} 4.47^{***} \\ (0.97) \end{array}$ | (1.37)<br>$10.4^{***}$<br>(1.42) | (1.72)<br>$7.83^{***}$<br>(1.35) |                               | (1.93)<br>3.65<br>(2.41)      |
| Firm FE            | Х                       | Х                     | Х                       | Х                       | Х                       | Х                      | Х                                                   | Х                                | Х                                | Х                             | Х                             |
| Observations $R^2$ | $501,\!176 \\ 0.064$    | $501,\!176 \\ 0.063$  | $501,\!176 \\ 0.064$    | $501,\!176 \\ 0.063$    | $501,\!176 \\ 0.064$    | $501,\!176 \\ 0.063$   | $501,\!176 \\ 0.064$                                | $501,\!176 \\ 0.064$             | $501,\!176 \\ 0.064$             | $501,\!176 \\ 0.064$          | $501,\!176\ 0.064$            |

Table 7: Deal Likelihood and Discount Rates

Table 7 contains coefficient estimates from regressing quarterly deal indicator (*Deal*) on the risk premium, credit market factors, and firm fixed effects from 1982Q4 to 2011Q4.  $\hat{r}_{P_{OLS}}$  is the predicted market excess return using D/P, *cay*, and the 3-month T-Bill as factors.  $\hat{r}_{P_{VAR}}$  is the annual expected market excess return for the next three years based on a VAR.  $\hat{g}_{VAR}$  is the annual expected S&P earnings growth for the next three years based on a VAR.  $r_f$  is the annual risk-free yield at a three year horizon. *EBITDA Spread* is the difference between the median public firm EBITDA/EV and the yield on a composite index of high-yield bonds. *HY Spread* is the yield on a composite index of high-yield bonds less the 3-month T-Bill. *GZ Spread* is the excess bond premium as measured by Gilchrist and Zakrajšek (2012). Quarter dummies are included to account for seasonality. Standard errors in parentheses are calculated by clustering two-ways (by firm and quarter); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

|                                 | (1)         | (2)      | (3)      | (4)      | (5)      | (6)           |
|---------------------------------|-------------|----------|----------|----------|----------|---------------|
| $\sigma(R)$                     | -0.31***    |          |          | -0.28*** |          |               |
|                                 | (0.11)      |          |          | (0.088)  |          |               |
| $\sigma(\frac{EBITDA}{Assets})$ |             | -49.2*** |          | . ,      | -45.3*** |               |
| 1100000                         |             | (8.20)   |          |          | (7.66)   |               |
| $\beta$                         |             |          | -5.14*** |          |          | $-5.16^{***}$ |
|                                 |             |          | (1.34)   |          |          | (1.38)        |
| $\sigma(arepsilon)$             |             |          | -0.47*** |          |          | -0.56***      |
|                                 |             |          | (0.15)   |          |          | (0.11)        |
| Time FE                         | Х           | Х        | Х        | Х        | Х        | Х             |
| Firm Controls                   |             |          |          | Х        | Х        | Х             |
| Industry FE                     |             |          |          | Х        | Х        | Х             |
| Observations                    | $431,\!467$ | 488,410  | 387,071  | 402,189  | 451,080  | $362,\!885$   |
| $R^2$                           | 0.001       | 0.001    | 0.001    | 0.001    | 0.001    | 0.002         |

Table 8: Deal Likelihood and Firm Risk Characteristics

Table 8 contains coefficient estimates from regressing quarterly deal indicator (*Deal*) on firm risk characteristics, cross-sectional controls and time fixed effects from 1982Q4 to 2011Q4.  $\sigma(R)$  is the s.d. of the monthly stock price for the past 2 years.  $\sigma(\frac{EBITDA}{Assets})$  is the s.d. of the firm's EBITDA/Assets ratio.  $\beta$  is the unlevered market beta of the firm based on lagged two-years of monthly returns.  $\sigma(\varepsilon)$  is the s.d. of the unlevered residuals from the market regression. Unlevered betas and residuals are trimmed at the top and bottom 5% to remove extreme outliers. Columns (1)-(3) contain time fixed effects, columns (4)-(6) contain firm level controls (*log(Assets)*, *EBITDA/Assets, CapEx/Sales, R&D/Sales, Net Debt/Assets, Turnover, Dividend Dummy*), industry fixed effects (Fama-French 12), and time fixed effects. Standard errors in parentheses are calculated by clustering two-ways (by firm and quarter); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

|                    |                            | $\beta$                    |                                                          |                                             | $\sigma(arepsilon)$ |                                             |
|--------------------|----------------------------|----------------------------|----------------------------------------------------------|---------------------------------------------|---------------------|---------------------------------------------|
|                    | (1)                        | (2)                        | (3)                                                      | (4)                                         | (5)                 | (6)                                         |
| Volume $\%$        | $0.0070^{***}$<br>(0.0025) |                            |                                                          | $-0.032^{*}$<br>(0.019)                     |                     |                                             |
| $\hat{rp}_{OLS}$   | · · · ·                    | $-0.018^{***}$<br>(0.0064) |                                                          | · · ·                                       | -0.017<br>(0.067)   |                                             |
| $\hat{rp}_{VAR}$   |                            |                            | $-0.0056^{*}$<br>(0.0029)                                |                                             |                     | -0.0050<br>(0.022)                          |
| $\hat{g}_{VAR}$    |                            |                            | $\begin{array}{c} 0.0022^{***} \\ (0.00054) \end{array}$ |                                             |                     | $0.0050 \\ (0.0084)$                        |
| rf                 |                            |                            | $0.0023 \\ (0.0076)$                                     |                                             |                     | $-0.28^{***}$<br>(0.087)                    |
| Observations $R^2$ | $899 \\ 0.019$             | $899 \\ 0.026$             | $899 \\ 0.024$                                           | $\begin{array}{c} 898 \\ 0.007 \end{array}$ | 898<br>0.000        | $\begin{array}{c} 898 \\ 0.043 \end{array}$ |

Table 9: Beta on LBO Activity, Discount Rates, and Growth

Table 9 contains coefficient estimates from regressing risk measures for LBO firm-quarters on LBO activity, discount rates, and growth measures from 1982Q4 to 2011Q4. In (1)-(3) unlevered beta is the dependent variable. In (4), the dependent variable is the s.d. of the unlevered residuals from the market regression,  $\sigma(\varepsilon)$ . Volume % is the volume of buyouts scaled by the number of public firms.  $\hat{r}p_{OLS}$  is the predicted market excess return using D/P, cay, and the 3-month T-Bill as factors.  $\hat{r}p_{VAR}$  is the annual expected market excess return for the next three years based on a VAR.  $\hat{g}_{VAR}$  is the annual expected S&P earnings growth for the next three years based on a VAR.  $r_f$  is the annual risk-free yield at a three year horizon. Unlevered betas and residuals are trimmed at the top and bottom 5% to remove extreme outliers. Standard errors in parentheses are calculated over time using Newey-West (4 lags); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01

| Panel A                | (1)                                         | (2)                                         | (3)                                         | (4)                                         |
|------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| Characteristic $(X)$ : | eta                                         | GIM                                         | EBITDA/Assets                               | Industry HHI                                |
| $(X)\hat{rp}$          | $-0.026^{*}$<br>(0.014)                     | $-0.058^{**}$<br>(0.025)                    | -0.0099<br>(0.011)                          | $-0.044^{***}$<br>(0.015)                   |
| Time FE                | Х                                           | Х                                           | X                                           | Х                                           |
| Observations $R^2$     | $\begin{array}{c} 234 \\ 0.015 \end{array}$ | $\begin{array}{c} 174 \\ 0.030 \end{array}$ | $\begin{array}{c} 234 \\ 0.002 \end{array}$ | $\begin{array}{c} 234 \\ 0.028 \end{array}$ |
| Panel B                | (1)                                         | (2)                                         | (3)                                         | (4)                                         |
| Characteristic (X):    | M&A Vol.                                    | M&A Val.                                    | IPO Vol.                                    | IPO Val.                                    |
| $(X)\hat{rp}$          | $0.060^{***}$<br>(0.014)                    | $0.015 \\ (0.013)$                          | $0.021^{*}$<br>(0.013)                      | $0.024^{*}$<br>(0.013)                      |
| Time FE                | Х                                           | Х                                           | Х                                           | Х                                           |
| Observations $R^2$     | $\begin{array}{c} 234 \\ 0.085 \end{array}$ | $\begin{array}{c} 234 \\ 0.006 \end{array}$ | $\begin{array}{c} 234 \\ 0.012 \end{array}$ | $\begin{array}{c} 234 \\ 0.015 \end{array}$ |

Table 10: Elasticity of Buyout Activity to the Risk Premium – High-Low Comparisons

Table 10 contains coefficient estimates estimating the differential sensitivity of high and low quartile portfolios to changes in the risk premium. Specifically, we regress deal activity scaled by its average on a dummy variable indicating the high quartile for a given characteristic, and interaction of the dummy with the risk premium and time fixed effects from 1982Q4 to 2011Q4.  $\hat{rp}$  is the predicted market excess return using D/P, cay, and the 3-month T-Bill as factors. In Panel A the portfolios and top quartile dummies are based on the following:  $\beta$ , the unlevered market beta of the firm; GIM, the Governance Index of the firm (Gompers et al., 2003); EBITDA/Assets, EBITDA/Assets, HHI the HHI of sales for public firms in the three-digit SIC code. In Panel B the portfolios and top quartile dummies are based on a three-year moving average. Volumes are scaled by the number of public firms in the industry, values are scaled by the value of public firms in the industry. Standard errors in parentheses are calculated by clustering two-ways (by portfolio and quarter); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

| Volume:            |                                             |                                             | M&A                                         |                                           |                                             | LBO                                         | / M&A                                       | IPO                                         |
|--------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| Panel A            | (1)                                         | (2)                                         | (3)                                         | (4)                                       | (5)                                         | (6)                                         | (7)                                         | (8)                                         |
| $\hat{rp}_{OLS}$   | -0.054***                                   | -0.052***                                   | -0.054***                                   | -0.054***                                 | -0.052***                                   | -0.032**                                    | -0.054***                                   | 0.0087                                      |
| EBITDA Spread      | (0.0062)                                    | (0.0065)<br>$0.058^{*}$                     | (0.0061)                                    | (0.0078)                                  | (0.0071)<br>0.033                           | (0.015)                                     | (0.018)<br>$0.14^{**}$                      | (0.026)                                     |
| HY Spread          |                                             | (0.033)<br>$0.027^*$                        |                                             |                                           | (0.038)<br>0.0040                           |                                             | (0.070)<br>$0.15^{**}$                      |                                             |
| GZ Spread          |                                             | (0.015)<br>0.00024                          |                                             |                                           | (0.025)<br>-0.015                           |                                             | $(0.061) \\ 0.13$                           |                                             |
| GDP Growth         |                                             | (0.047)                                     | -0.55<br>(2.44)                             |                                           | (0.040)<br>-0.82<br>(2.75)                  |                                             | (0.082)<br>$13.9^{***}$<br>(3.96)           |                                             |
| CE Fund Discount   |                                             |                                             | (2.44)                                      | $0.015^{*}$<br>(0.0083)                   | (2.15)<br>0.014<br>(0.0100)                 |                                             | (0.010)<br>(0.020)                          |                                             |
| Sentiment          |                                             |                                             |                                             | (0.0083)<br>0.059<br>(0.081)              | (0.0100)<br>0.064<br>(0.073)                |                                             | (0.020)<br>-0.12<br>(0.097)                 |                                             |
| Observations $R^2$ | $\begin{array}{c} 123 \\ 0.456 \end{array}$ | $\begin{array}{c} 123 \\ 0.488 \end{array}$ | $\begin{array}{c} 123 \\ 0.457 \end{array}$ | $\begin{array}{c} 120\\ 0.475\end{array}$ | $\begin{array}{c} 120 \\ 0.491 \end{array}$ | $\begin{array}{c} 116 \\ 0.079 \end{array}$ | $\begin{array}{c} 113 \\ 0.242 \end{array}$ | $\begin{array}{c} 164 \\ 0.007 \end{array}$ |
| Value:             |                                             |                                             | M&A                                         |                                           |                                             | LBO                                         | / M&A                                       | IPO                                         |
| Panel B            | (1)                                         | (2)                                         | (3)                                         | (4)                                       | (5)                                         | (6)                                         | (7)                                         | (8)                                         |
| $\hat{rp}_{OLS}$   | $-0.048^{**}$<br>(0.021)                    | $-0.11^{***}$<br>(0.023)                    | $-0.049^{**}$<br>(0.021)                    | $-0.056^{***}$<br>(0.021)                 | $-0.11^{***}$<br>(0.028)                    | $-0.10^{***}$<br>(0.030)                    | $-0.080^{***}$                              | 0.041<br>(0.033)                            |
| EBITDA Spread      | (0.021)                                     | 0.097                                       | (0.021)                                     | (0.021)                                   | 0.14*                                       | (0.050)                                     | (0.028)<br>0.12<br>(0.000)                  | (0.055)                                     |
| HY Spread          |                                             | (0.080)<br>$0.19^{***}$                     |                                             |                                           | (0.086)<br>$0.19^{***}$                     |                                             | (0.099)<br>-0.011                           |                                             |
| GZ Spread          |                                             | (0.053)<br>- $0.40^{***}$                   |                                             |                                           | (0.066)<br>-0.23*                           |                                             | (0.10)<br>0.18                              |                                             |
| GDP Growth         |                                             | (0.11)                                      | 18.4***                                     |                                           | (0.14)<br>13.6**                            |                                             | (0.15)<br>$16.7^{**}$                       |                                             |
| CE Fund Discount   |                                             |                                             | (5.15)                                      | 0.039<br>(0.032)                          | (6.10)<br>$0.045^{*}$<br>(0.026)            |                                             | (7.80)<br>0.028<br>(0.032)                  |                                             |
| Sentiment          |                                             |                                             |                                             | (0.032)<br>$0.46^{*}$<br>(0.27)           | (0.020)<br>0.18<br>(0.20)                   |                                             | (0.032)<br>0.050<br>(0.21)                  |                                             |
| Observations       | 117                                         | 117                                         | 117                                         | 114                                       | 114                                         | 116                                         | 113                                         | 164                                         |
| $R^2$              | 0.062                                       | 0.207                                       | 0.187                                       | 0.143                                     | 0.297                                       | 0.174                                       | 0.230                                       | 0.032                                       |

Table 11: Elasticity of Corporate Transaction Activity to the Risk Premium

Table 11 contains coefficient estimates from regressing quarterly M&A activity involving public targets on the risk premium. In Panel A, the dependent variable in (1)-(5) is the log of the ratio of M&A deals to the number of public firms. (6) and (7) consider the log of the ratio of LBO volume to M&A volume. (9) considers the log of the ratio of IPO deals to the number of public firms. Panel B repeats these measures using asset values. (1)-(5) is the log of the ratio of total assets for M&A targets to the assets of public firms. (6) and (7) use the log of the ratio of LBO assets to M&A assets. (9) considers the log of the equity value of the IPO to the total public market capitalization.  $\hat{r}_{POLS}$  is the predicted market excess return using D/P, cay, and the 3-month T-Bill as factors. *EBITDA Spread* is the difference between the median public firm EBITDA/EV and the yield on a composite index of high-yield bonds less the 3-month T-Bill. *GZ Spread* is the excess bond premium as measured by Gilchrist and Zakrajšek (2012). *GDP Growth* is the year-on-year growth region U.S. real GDP. *CE Fund Discount* is the discount on a closed-end fund. *Sentiment* is a measure of sentiment from Baker and Wurgler (2006). The M&A sample ranges from 1981Q2-2011Q4. The LBO sample ranges from 1982Q4 to 2011Q4. IPO activity ranges from 1981Q2-2011Q4. Each regression also includes quarter dummy variables to account for seasonality. Standard errors in parentheses are calculated over time using Newey-West (4 lags); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01

# A Model

#### A.1 Deriving the cost of capital

Pricing on public markets follows the CAPM.

- 1. Sure payoffs of 1 are discounted at the risk-free rate:  $\mathbf{NPV}(1) = 1/(1+r_f)$ .
- 2. Risky market exposure of  $1 + R_m = 1 + r_f + \bar{R}_m^e + \varepsilon_m$  is discounted using the risk premium:  $\mathbf{NPV}(1 + R_m) = 1$
- 3. Idiosyncratic risk  $\varepsilon_i$  is not priced: **NPV** $(\varepsilon_i) = 0$ .

Then, pricing is additive; the Law of One Price holds:  $\mathbf{NPV}(aX + bY) = a\mathbf{NPV}(X) + b\mathbf{NPV}(Y)$  for any constants a and b and payoffs X and Y.

To understand the equivalence with the standard Discounted Cash-Flow valuation, consider a cash-flow that pays one on average and loads on the aggregate risk factor  $\varepsilon_m$ . The payoff at time 1 is:  $P_1 = 1 + \beta^{\text{CF}} \varepsilon_m$ .  $\beta^{\text{CF}}$  represents the cash-flow exposure of the claim to aggregate risk. Our model of pricing gives immediately the initial price

$$P_0 = \frac{1 - \beta^{\mathrm{CF}} \bar{R}_m^e}{1 + r_f}.$$

Alternatively, one can focus on returns. The return on that claim given the initial price  $P_0$  is:

$$R_a = \frac{P_1}{P_0} - 1 = \frac{1}{P_0} + \frac{\beta^{\rm CF}}{P_0}\varepsilon_m - 1 = \frac{1}{P_0} + \beta^{\rm R}\varepsilon_m - 1$$

 $\beta^{\text{R}} = \beta^{\text{CF}}/P_0$  is the return exposure of the claim to aggregate risk. Expected returns are  $\mathbb{E}(R_a) = \frac{1}{P_0} - 1$ . According to the CAPM, we estimate the expected return from its covariance with the market excess return  $R_m^e$ :

$$\mathbb{E}(R_a) = r_f + \frac{\operatorname{Cov}(R_a, R_m^e)}{\operatorname{Var}(R_m^e)} \bar{R}_m^e = r_f + \beta^{\mathrm{R}} \bar{R}_m^e$$

Using this cost of capital to discount expected cash-flow, following DCF valuation, we obtain

$$P_0^{\rm DCF} = \frac{1}{1 + r_f + \beta^{\rm R} R_m^e}$$

It is immediate to verify that  $P_0 = P_0^{\text{DCF}}$ . Hence valuations follow the classic DCF formula with risk adjustment.

### A.2 Allowing for benchmarking.

We extend the contracting space to allow for the benchmarking of contracts. To do so we allow contracts to have a component depending on the market structure parameterized by  $k_2$ . The payout

to the private equity investor becomes  $k_0 + k_1 p_H \tilde{Y} + k_2 (\bar{R}_m^e + \varepsilon_m)$ . Following Equation (3), we represent the payoff as a portfolio:

$$\begin{cases} \theta_0 = k_0 + k_1 p_H (\mu - \beta \bar{R_m^e}) \\ \theta_m = k_1 p_H \beta + k_2 \\ \theta_i = k_1 p_H \end{cases}$$

This market loading  $k_2$  is costless to provide for outside investors because  $(\bar{R}_m^e + \varepsilon_m)$  is a zero cost portfolio. It does not affect the IC constraint as the GP receives it independently of its management decision. The only effect is in the IR constraint through the first-term of the right-hand side of Equation (4), the cost of bearing an inadequate amount of market risk. The optimal choice of  $k_2$  is then clearly to cancel out this term, so that the net exposure  $\theta_m$  coincides with  $\theta^*$ . This corresponds to  $k_2 = 1 - k_1 p_H$ .

Once the illiquidity cost of excess market risk disappears, the condition for the feasibility of a deal becomes

$$(p_H - 1) \left( \mu - \beta \bar{R}_m^e \right) \ge \frac{1}{2} \gamma \sigma_i^2 k_1^{*2} p_H^2 \sigma_i^2.$$

Benchmarking with pre-contracting. While benchmarking of contracts is useful, it is not always possible given the timing of private equity contracting. Similarly to Ewens et al. (2013), we assume the contract has to be specified before the target is known. There are two equally likely targets with market exposure  $\beta$  and  $\overline{\beta}$ , and otherwise identical.

We look for a pre-specified contract where both outside investors and the GP benefit by participating. The problem is

$$\min_{(k_0,k_1)} k_0 + k_1 p_H (\mu - \beta R_m^e) - W_0 (1 + r_f) 
s.t. \ k_1 \ge b/\Delta p 
k_0 + k_1 p_H \left(\mu - \frac{\beta + \bar{\beta}}{2} \bar{R}_m^e\right) - W_0 (1 + r_f) \ge 
\frac{1}{4} \gamma \sigma_m^2 \left[ (k_1 p_H \underline{\beta} + k_2 - \theta_m^*)^2 + (k_1 p_H \bar{\beta} + k_2 - \theta_m^*)^2 \right] + \frac{1}{2} \gamma \sigma_i^2 k_1^2 p_H^2 \sigma_i^2 \qquad (IR)$$

The optimal choice of  $k_2$  minimizes the illiquidity cost but they do not reach 0. The condition for such an arrangement to be feasible is

$$(p_H - 1)\left(\mu - \frac{\underline{\beta} + \overline{\beta}}{2}\overline{R}_m^e\right) \ge \frac{1}{2}\gamma\sigma_m^2(k_1^*p_H)^2\left(\frac{\underline{\beta} + \overline{\beta}}{2}\right)^2 + \frac{1}{2}\gamma\sigma_i^2k_1^{*2}p_H^2\sigma_i^2$$

We see that the illiquidity channel is still present through inadequate amounts of aggregate risk, and that this cost increases with the risk premium. The reason for this effect is that while the benchmarking is optimal, it cannot simultaneously completely eliminate illiquidity costs for the two potential deals. One might argue that if the risk premium becomes large enough, it is preferable to engage in contracts where only some of the deals are undertaken. While we do not explicitly consider this case, it goes along our main argument: a larger risk premium lowers the number of deals undertaken through the illiquidity channel.

### A.3 Variation in deal leverage

To consider variation in deal leverage we allow for heterogeneity across deals. The GP now has various possibilities for diversion across buyout deals, parameterized by b: some firms offer more private benefits than others. For a type b deal, the GP receives private benefit b, keeping all other parameters constant across deals. From the IR constraint, the leverage needed to provide incentives increases with the level of diversion b: the slope of the buyout contract is  $k_1 = b/\Delta p$ . We show deals with higher private benefits b need lower risk premium to generate positive returns net of fees. We define the surplus of a deal  $F(\cdot)$ , of type b as:

$$F(b,\bar{R}_m^e) = (p_H - 1)(\mu - \beta\bar{R}_m^e) - \frac{1}{2}\gamma\sigma_m^2(k_1(b)^*p_H\beta - 1)^2 - \frac{1}{2}\gamma\sigma_i^2k_1(b)^{*2}p_H^2$$

Since F is smooth, by the implicit function theorem it is enough to show that at break-even point  $\bar{R}_m^{e*}$  where  $F(0, \bar{R}_m^{e*}) = 0$ , we have  $\partial_b F(0, \bar{R}_m^{e*}) < 0$ . Taking the derivative of F with respect to b:

$$\partial_b F(0, \bar{R}_m^{e*}) = -\gamma \frac{p_H}{\Delta p} \left( \beta \sigma_m^2 \left( \beta p_H \frac{b}{\Delta p} - 1 \right) + \sigma_i^2 \frac{b}{\Delta p} \right) \le 0$$

Since the derivative is negative this concludes the proof. We have shown that deals that require higher leverage will only be realised in times of lower risk premium. In other words some deals will have higher leverage in times of lower risk premium.

# **B** Supplementary Empirical Appendix

|                  | $\hat{rp}_{OLS}$ | EBITDA Sprd. | HY Sprd. | GZ Sprd. | $\hat{rp}_{VAR}$ | $\hat{g}_{VAR}$ | $r_{f}$ |
|------------------|------------------|--------------|----------|----------|------------------|-----------------|---------|
| $\hat{rp}_{OLS}$ | 1.00             |              |          |          |                  |                 |         |
| EBITDA Spread    | -0.36            | 1.00         |          |          |                  |                 |         |
| HY Spread        | 0.55             | -0.85        | 1.00     |          |                  |                 |         |
| GZ Spread        | -0.32            | -0.22        | 0.16     | 1.00     |                  |                 |         |
| $\hat{rp}_{VAR}$ | 0.85             | -0.25        | 0.52     | -0.11    | 1.00             |                 |         |
| $\hat{g}_{VAR}$  | 0.09             | 0.27         | -0.09    | 0.09     | 0.47             | 1.00            |         |
| $r_{f}$          | 0.42             | -0.40        | 0.53     | -0.61    | 0.22             | -0.28           | 1.00    |

Table 12: Correlation Table

Table 12 contains correlation coefficients between explanatory variables.  $\hat{rp}_{OLS}$  is the predicted market excess return using D/P, cay, and the 3-month T-Bill as factors. EBITDA Spread is the difference between the median public firm EBITDA/EV and the yield on a composite index of high-yield bonds. HY Spread is the yield on a composite index of high-yield bonds less the 3-month T-Bill. GZ Spread is the excess bond premium as measured by Gilchrist and Zakrajšek (2012).  $\hat{rp}_{VAR}$  is the annual expected market excess return for the next three years based on a VAR.  $\hat{g}$  is the annual expected S&P earnings growth for the next three years based on a VAR.  $r_f$  is the risk-free yield at a three-year horizon.

| Dep. Var.:                                          |                                       | $\log(\mathrm{EV})$                                    |                                                                                  | Sha                          | are of Ass                                                            | ets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S                          | hare of E                                           | V                                                                                                                           |
|-----------------------------------------------------|---------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Panel A                                             | (1)                                   | (2)                                                    | (3)                                                                              | (4)                          | (5)                                                                   | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (7)                        | (8)                                                 | (9)                                                                                                                         |
| $\hat{rp}$                                          | -0.17***                              |                                                        | -0.18***                                                                         | -0.087***                    |                                                                       | -0.13***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.069**                   |                                                     | -0.13***                                                                                                                    |
| -                                                   | (0.042)                               |                                                        | (0.056)                                                                          | (0.025)                      |                                                                       | (0.023)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.028)                    |                                                     | (0.025)                                                                                                                     |
| EBITDA Spread                                       | , , , , , , , , , , , , , , , , , , , | -0.13                                                  | 0.022                                                                            | · · · ·                      | -0.020                                                                | 0.079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · ·                      | 0.048                                               | 0.14                                                                                                                        |
|                                                     |                                       | (0.19)                                                 | (0.18)                                                                           |                              | (0.096)                                                               | (0.092)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | (0.10)                                              | (0.11)                                                                                                                      |
| HY Spread                                           |                                       | -0.32**                                                | 0.00034                                                                          |                              | -0.095                                                                | 0.13*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | -0.028                                              | 0.19**                                                                                                                      |
|                                                     |                                       | (0.14)                                                 | (0.16)                                                                           |                              | (0.087)                                                               | (0.077)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | (0.093)                                             | (0.091)                                                                                                                     |
| GZ Spread                                           |                                       | 0.013                                                  | -0.32**                                                                          |                              | -0.094                                                                | -0.36***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | -0.18*                                              | -0.44***                                                                                                                    |
|                                                     |                                       | (0.16)                                                 | (0.14)                                                                           |                              | (0.10)                                                                | (0.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | (0.11)                                              | (0.10)                                                                                                                      |
| Observations                                        | 107                                   | 107                                                    | 107                                                                              | 117                          | 117                                                                   | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117                        | 117                                                 | 117                                                                                                                         |
| $R^2$                                               | 0.245                                 | 0.154                                                  | 0.275                                                                            | 0.204                        | 0.079                                                                 | 0.302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.139                      | 0.087                                               | 0.295                                                                                                                       |
| Dep. Var.:                                          | Matchao                               | 1 01                                                   |                                                                                  | 3.6 - 1                      | . ~                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                                     |                                                                                                                             |
| .T                                                  | matcheo                               | 1 Snare of                                             | Volume                                                                           | Matcheo                      | l Share of                                                            | Assets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Match                      | ned Share                                           | of EV                                                                                                                       |
| Panel B                                             | (1)                                   | (2)                                                    | (3)                                                                              | $\frac{\text{Matcheo}}{(4)}$ | $\frac{1 \text{ Share of}}{(5)}$                                      | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{\text{Match}}{(7)}$ | ed Share<br>(8)                                     | $\frac{\text{of EV}}{(9)}$                                                                                                  |
| Panel B                                             | (1)                                   |                                                        |                                                                                  |                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                                     | (9)                                                                                                                         |
|                                                     |                                       |                                                        | (3)                                                                              | (4)                          |                                                                       | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (7)                        |                                                     |                                                                                                                             |
| Panel B                                             | (1)                                   |                                                        | (3)<br>-22.9***                                                                  | (4)<br>-0.14***              |                                                                       | (6)<br>-0.19***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (7)<br>-0.14***            |                                                     | (9)<br>-0.21***                                                                                                             |
| Panel B<br>rîp                                      | (1)                                   | (2)                                                    | (3)<br>-22.9***<br>(3.55)                                                        | (4)<br>-0.14***              | (5)                                                                   | $(6) \\ -0.19^{***} \\ (0.031)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (7)<br>-0.14***            | (8)                                                 | $(9) \\ -0.21^{***} \\ (0.036)$                                                                                             |
| Panel B<br>rîp                                      | (1)                                   | (2)<br>23.4*                                           | $(3) \\ -22.9^{***} \\ (3.55) \\ 40.1^{***}$                                     | (4)<br>-0.14***              | (5)                                                                   | (6)<br>-0.19***<br>(0.031)<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (7)<br>-0.14***            | (8)                                                 | (9)<br>-0.21***<br>(0.036)<br>0.18                                                                                          |
| Panel B<br><i>r̂p</i><br>EBITDA Spread              | (1)                                   | (2)<br>$23.4^{*}$<br>(13.5)                            | $(3) \\ -22.9^{***} \\ (3.55) \\ 40.1^{***} \\ (13.6)$                           | (4)<br>-0.14***              | (5)<br>-0.039<br>(0.15)                                               | $(6) \\ -0.19^{***} \\ (0.031) \\ 0.10 \\ (0.13) \\ \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (7)<br>-0.14***            | (8)<br>0.027<br>(0.15)                              | $(9) \\ -0.21^{***} \\ (0.036) \\ 0.18 \\ (0.14)$                                                                           |
| Panel B<br><i>r̂p</i><br>EBITDA Spread              | (1)                                   | (2)<br>$23.4^{*}$<br>(13.5)<br>-5.24                   | $(3) \\ -22.9^{***} \\ (3.55) \\ 40.1^{***} \\ (13.6) \\ 33.2^{***} \end{cases}$ | (4)<br>-0.14***              | (5)<br>-0.039<br>(0.15)<br>-0.18                                      | $(6) \\ -0.19^{***} \\ (0.031) \\ 0.10 \\ (0.13) \\ 0.14 \\ (6) \\ 0.14 \\ (6) \\ 0.14 \\ (6) \\ 0.14 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6) \\ 0.10 \\ (6$ | (7)<br>-0.14***            | (8)<br>0.027<br>(0.15)<br>-0.14                     | $(9) \\ -0.21^{***} \\ (0.036) \\ 0.18 \\ (0.14) \\ 0.20^{*} \\ \end{cases}$                                                |
| Panel B<br>$\hat{rp}$<br>EBITDA Spread<br>HY Spread | (1)                                   | $(2)$ $23.4^{*}$ $(13.5)$ $-5.24$ $(12.7)$             | $(3) \\ -22.9^{***} \\ (3.55) \\ 40.1^{***} \\ (13.6) \\ 33.2^{***} \\ (12.8) $  | (4)<br>-0.14***              | $(5) \\ -0.039 \\ (0.15) \\ -0.18 \\ (0.12) \\ \end{cases}$           | $(6) \\ -0.19^{***} \\ (0.031) \\ 0.10 \\ (0.13) \\ 0.14 \\ (0.11) \\ \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (7)<br>-0.14***            | $(8) \\ 0.027 \\ (0.15) \\ -0.14 \\ (0.13) $        | $(9) \\ -0.21^{***} \\ (0.036) \\ 0.18 \\ (0.14) \\ 0.20^{*} \\ (0.12) \\ \end{cases}$                                      |
| Panel B<br>$\hat{rp}$<br>EBITDA Spread<br>HY Spread | (1)                                   | $(2)$ $23.4^{*}$ $(13.5)$ $-5.24$ $(12.7)$ $33.7^{**}$ | $(3)$ $-22.9^{***}$ $(3.55)$ $40.1^{***}$ $(13.6)$ $33.2^{***}$ $(12.8)$ $-12.1$ | (4)<br>-0.14***              | $(5) \\ -0.039 \\ (0.15) \\ -0.18 \\ (0.12) \\ -0.035 \\ \end{cases}$ | $\begin{array}{c} (6) \\ \hline & \\ -0.19^{***} \\ (0.031) \\ 0.10 \\ (0.13) \\ 0.14 \\ (0.11) \\ -0.42^{***} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (7)<br>-0.14***            | (8)<br>0.027<br>(0.15)<br>-0.14<br>(0.13)<br>-0.080 | $\begin{array}{c} (9) \\ & -0.21^{***} \\ (0.036) \\ & 0.18 \\ (0.14) \\ & 0.20^{*} \\ (0.12) \\ & -0.49^{***} \end{array}$ |

Table 13: Alternative Buyout Measures: Aggregate versus Credit Market Factors

Table 13 contains OLS estimates of quarterly buyout activity on estimates of the aggregate risk premium, credit spreads, and credit market factors from 1982Q3 to 2011Q4. For Panel A, Columns (1)-(3), the dependent variable is the log enterprise value of activity. In Columns (4)-(6), the dependent variable is the log share of public assets taken private. In Columns (7)-(9), the dependent variable is the log share of enterprise value taken private. Panel B considers volume, asset and enterprise value shares relative to a matched sample of firms. The matched sample is constructed by propensity score matching LBO firm quarters to those of firms in the same Fama-French 12 industry and with the same characteristics at any point in time in the sample period. Characteristics include log assets, FCF/Assets, Capex/Sales, R&D/Sales, book leverage, turnover, and a dummy indicating dividend payors.  $\hat{rp}$  is the predicted market excess return using D/P, cay, and the 3-month T-Bill as factors. *EBITDA Spread* is the yield on a composite index of high-yield bonds. *HY Spread* is the yield on a composite index of high-yield bonds less the 3-month T-Bill. *GZ Spread* is the excess bond premium as measured by Gilchrist and Zakrajšek (2012). Quarter dummies are included to account for seasonality. Standard errors in parentheses are calculated using Newey-West (4 lags); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

| Dep. Var.:     | Private-to-Private Volume |              |            |          |          |            |          |          |         |  |
|----------------|---------------------------|--------------|------------|----------|----------|------------|----------|----------|---------|--|
|                | (1)                       | (2)          | (3)        | (4)      | (5)      | (6)        | (7)      | (8)      | (9)     |  |
| $\hat{rp}$     | -3.60***                  |              | -3.22***   |          | -2.86*** |            | -3.55*** |          | -2.43** |  |
| -              | (0.89)                    |              | (0.85)     |          | (0.86)   |            | (0.96)   |          | (1.06)  |  |
| EBITDA Spread  |                           | $6.60^{***}$ | $3.13^{*}$ |          |          |            |          | -1.20    | 0.57    |  |
|                |                           | (2.43)       | (1.90)     |          |          |            |          | (2.79)   | (2.91)  |  |
| HY Spread      |                           |              |            | -5.98*** | -2.78*   |            |          | -7.26*** | -3.20   |  |
|                |                           |              |            | (2.03)   | (1.64)   |            |          | (2.58)   | (2.52)  |  |
| GZ Spread      |                           |              |            |          |          | $6.51^{*}$ | 0.77     | 8.89***  | 4.05    |  |
|                |                           |              |            |          |          | (3.57)     | (3.29)   | (3.16)   | (4.08)  |  |
| Observations   | 117                       | 117          | 117        | 117      | 117      | 117        | 117      | 117      | 117     |  |
| $\mathbb{R}^2$ | 0.391                     | 0.151        | 0.420      | 0.257    | 0.430    | 0.053      | 0.392    | 0.353    | 0.444   |  |

Table 14: Private-to-Private Buyout Activity: Aggregate Risk Premium versus Credit Market Factors

 $\overset{5}{0}$ 

Table 14 contains coefficient estimates from regressing quarterly private-to-private buyout volume on estimates of the aggregate risk premium, credit spreads, and credit market factors from 1982Q4 to 2011Q4.  $\hat{rp}$  is the predicted market excess return using D/P, cay, and the 3-month T-Bill as factors. *EBITDA Spread* is the difference between the median public firm EBITDA/EV and the yield on a composite index of high-yield bonds. *HY Spread* is the yield on a composite index of high-yield bonds less the 3-month T-Bill. *GZ Spread* is the excess bond premium as measured by Gilchrist and Zakrajšek (2012). Quarter dummies are included to account for seasonality. Standard errors in parentheses are calculated using Newey-West (4 lags); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

| Activity: Volume                                    | $\hat{rp}_{Rol}$             | ling                                                                                                                       | $\hat{rp}_{D/}$             | 'P,cay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $rp_A$             | ctual                                                                                                                             |
|-----------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Panel A                                             | (1)                          | (2)                                                                                                                        | (3)                         | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (5)                | (6)                                                                                                                               |
| $\hat{rp}$                                          | -0.58**                      | -0.76**                                                                                                                    | -0.94***                    | -1.45***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.46***           | -0.53***                                                                                                                          |
|                                                     | (0.24)                       | (0.31)                                                                                                                     | (0.27)                      | (0.33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.14)             | (0.14)                                                                                                                            |
| EBITDA Spread                                       |                              | $1.85^{*}$                                                                                                                 |                             | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | $3.34^{**}$                                                                                                                       |
|                                                     |                              | (1.07)                                                                                                                     |                             | (1.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | (1.42)                                                                                                                            |
| HY Spread                                           |                              | 1.33                                                                                                                       |                             | $1.68^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 1.11                                                                                                                              |
|                                                     |                              | (0.94)                                                                                                                     |                             | (0.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | (1.02)                                                                                                                            |
| GZ Spread                                           |                              | -1.17                                                                                                                      |                             | $-2.63^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | $1.82^{*}$                                                                                                                        |
|                                                     |                              | (1.40)                                                                                                                     |                             | (1.32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | (1.02)                                                                                                                            |
| Observations                                        | 117                          | 117                                                                                                                        | 117                         | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 113                | 113                                                                                                                               |
| $R^2$                                               | 0.164                        | 0.191                                                                                                                      | 0.237                       | 0.280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.166              | 0.256                                                                                                                             |
|                                                     |                              |                                                                                                                            | $\hat{rp}_{D/P,cay}$        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                   |
| Activity: Value                                     | $\hat{rp}_{Rol}$             | ling                                                                                                                       | $\hat{rp}_{D/}$             | P,cay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $rp_A$             | ctual                                                                                                                             |
| Activity: Value<br>Panel B                          | $\frac{\hat{rp}_{Rol}}{(1)}$ | $\frac{ling}{(2)}$                                                                                                         | $\frac{\hat{rp}_{D/}}{(3)}$ | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{rp_A}{(5)}$ | ctual (6)                                                                                                                         |
| U U                                                 |                              |                                                                                                                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                   |
| Panel B                                             | (1)                          | (2)                                                                                                                        | (3)                         | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (5)                | (6)                                                                                                                               |
| Panel B                                             | (1)<br>-0.091***             | (2)<br>-0.087*                                                                                                             | (3)<br>-0.15***             | (4)<br>-0.21***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (5)<br>-0.061***   | (6)<br>-0.057***                                                                                                                  |
| Panel B<br><i>r̂p</i>                               | (1)<br>-0.091***             | $(2) \\ -0.087^* \\ (0.046)$                                                                                               | (3)<br>-0.15***             | $(4) \\ -0.21^{***} \\ (0.057)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (5)<br>-0.061***   | $(6) \\ -0.057^{***} \\ (0.019)$                                                                                                  |
| Panel B<br><i>r̂p</i>                               | (1)<br>-0.091***             | $(2) \\ -0.087^* \\ (0.046) \\ 0.091$                                                                                      | (3)<br>-0.15***             | $(4) \\ -0.21^{***} \\ (0.057) \\ 0.020$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (5)<br>-0.061***   | $(6) \\ -0.057^{***} \\ (0.019) \\ 0.24$                                                                                          |
| Panel B<br><i>r̂p</i><br>EBITDA Spread              | (1)<br>-0.091***             | $(2) \\ -0.087^{*} \\ (0.046) \\ 0.091 \\ (0.14) $                                                                         | (3)<br>-0.15***             | $(4) \\ -0.21^{***} \\ (0.057) \\ 0.020 \\ (0.14) \\ \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (5)<br>-0.061***   | $(6) \\ -0.057^{***} \\ (0.019) \\ 0.24 \\ (0.19) \\ \end{cases}$                                                                 |
| Panel B<br><i>r̂p</i><br>EBITDA Spread              | (1)<br>-0.091***             | $(2) \\ -0.087^* \\ (0.046) \\ 0.091 \\ (0.14) \\ -0.030 $                                                                 | (3)<br>-0.15***             | $(4) \\ -0.21^{***} \\ (0.057) \\ 0.020 \\ (0.14) \\ 0.069 \\ \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (5)<br>-0.061***   | $(6) -0.057^{***} (0.019) 0.24 (0.19) -0.073$                                                                                     |
| Panel B<br>$\hat{rp}$<br>EBITDA Spread<br>HY Spread | (1)<br>-0.091***             | $\begin{array}{c} (2) \\ \hline & -0.087^{*} \\ (0.046) \\ & 0.091 \\ (0.14) \\ & -0.030 \\ (0.16) \end{array}$            | (3)<br>-0.15***             | $(4) \\ -0.21^{***} \\ (0.057) \\ 0.020 \\ (0.14) \\ 0.069 \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ (0.14) \\ $ | (5)<br>-0.061***   | $(6) \\ -0.057^{***} \\ (0.019) \\ 0.24 \\ (0.19) \\ -0.073 \\ (0.13) \\ (6)$                                                     |
| Panel B<br>$\hat{rp}$<br>EBITDA Spread<br>HY Spread | (1)<br>-0.091***             | $\begin{array}{c} (2) \\ \hline & -0.087^{*} \\ (0.046) \\ & 0.091 \\ (0.14) \\ & -0.030 \\ (0.16) \\ & -0.15 \end{array}$ | (3)<br>-0.15***             | $\begin{array}{c} (4) \\ \hline & \\ -0.21^{***} \\ (0.057) \\ 0.020 \\ (0.14) \\ 0.069 \\ (0.14) \\ -0.43^{*} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (5)<br>-0.061***   | $\begin{array}{c} (6) \\ \hline & \\ -0.057^{***} \\ (0.019) \\ & \\ 0.24 \\ (0.19) \\ -0.073 \\ (0.13) \\ & \\ 0.19 \end{array}$ |

Table 15: Explaining Buyout Activity: Alternative Risk Premium Measures

Table 15 contains coefficient estimates from regressing quarterly buyout activity on estimates of the aggregate risk premium, credit spreads, and credit market factors from 1982Q4 to 2011Q4. The dependent variable in Panel A is the volume of activity (the number of deals scaled by the number of public firms in bps) and in Panel B is the value of activity (the log asset value of deals). Columns (1)-(2) use a rolling prediction of equity returns where D/P, cay, and the 3-month T-Bill are factors. Columns (3)-(4) use an estimate solely based on D/P and cay. Columns (5)-(6) use actual forward excess equity returns. *EBITDA Spread* is the difference between the median public firm EBITDA/EV and the yield on a composite index of high-yield bonds less the 3-month T-Bill. *GZ Spread* is the yield on a composite index of high-yield bonds less the 3-month T-Bill. *GZ Spread* is the excess bond premium as measured by Gilchrist and Zakrajšek (2012). Quarter dummies are included to account for seasonality. Standard errors in parentheses are calculated using Newey-West (4 lags); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

| Dep. Var.:                                                |                                             |                                             |                                             |                                             | Volume o                                    | of Activity                                 | y                                           |                          |                         |                                            |
|-----------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------|-------------------------|--------------------------------------------|
| Panel A                                                   | (1)                                         | (2)                                         | (3)                                         | (4)                                         | (5)                                         | (6)                                         | (7)                                         | (8)                      | (9)                     | (10)                                       |
| $\hat{rp}$                                                | $-1.17^{***}$<br>(0.25)                     |                                             | $-1.14^{***}$<br>(0.25)                     |                                             | $-1.26^{***}$<br>(0.24)                     |                                             | $-1.22^{***}$<br>(0.25)                     | $-1.40^{***}$<br>(0.19)  |                         | $-1.39^{***}$<br>(0.18)                    |
| Corp. Spread                                              |                                             | 0.87<br>(2.63)                              | 0.98<br>(1.73)                              |                                             |                                             |                                             | × ,                                         |                          |                         |                                            |
| Leverage (Mkt.)                                           |                                             |                                             |                                             | -0.058<br>(0.085)                           | 0.093<br>(0.083)                            |                                             |                                             |                          |                         |                                            |
| Leverage (Book)                                           |                                             |                                             |                                             | · · ·                                       |                                             | $0.16 \\ (0.51)$                            | $-1.01^{**}$<br>(0.47)                      |                          |                         |                                            |
| Tighter Standards                                         |                                             |                                             |                                             |                                             |                                             |                                             |                                             |                          | -0.076<br>(0.065)       | -0.041<br>(0.039)                          |
| $\begin{array}{c} \text{Observations} \\ R^2 \end{array}$ | $\begin{array}{c} 117 \\ 0.317 \end{array}$ | $\begin{array}{c} 117 \\ 0.019 \end{array}$ | $\begin{array}{c} 117 \\ 0.319 \end{array}$ | $\begin{array}{c} 117 \\ 0.023 \end{array}$ | $\begin{array}{c} 117 \\ 0.328 \end{array}$ | $\begin{array}{c} 117 \\ 0.020 \end{array}$ | $\begin{array}{c} 117 \\ 0.379 \end{array}$ | $\frac{86}{0.588}$       | $\frac{86}{0.056}$      | $86 \\ 0.595$                              |
| Dep. Var.:                                                |                                             |                                             |                                             |                                             | Value of                                    | Activity                                    |                                             |                          |                         |                                            |
| Panel B                                                   | (1)                                         | (2)                                         | (3)                                         | (4)                                         | (5)                                         | (6)                                         | (7)                                         | (8)                      | (9)                     | (10)                                       |
| $\hat{rp}$                                                | $-0.20^{***}$<br>(0.039)                    |                                             | $-0.19^{***}$<br>(0.038)                    |                                             | $-0.19^{***}$<br>(0.041)                    |                                             | $-0.21^{***}$<br>(0.036)                    | $-0.24^{***}$<br>(0.032) |                         | $-0.23^{***}$<br>(0.029)                   |
| Corp. Spread                                              | ( )                                         | 0.010<br>(0.38)                             | 0.030<br>(0.26)                             |                                             | ( )                                         |                                             |                                             | ( )                      |                         | ( )                                        |
| Leverage (Mkt.)                                           |                                             | ~ /                                         | · · /                                       | $-0.027^{*}$<br>(0.016)                     | -0.0038<br>(0.014)                          |                                             |                                             |                          |                         |                                            |
| Leverage (Book)                                           |                                             |                                             |                                             | . ,                                         | . ,                                         | $0.032 \\ (0.068)$                          | $-0.17^{***}$<br>(0.052)                    |                          |                         |                                            |
| Tighter Standards                                         |                                             |                                             |                                             |                                             |                                             | . ,                                         | 、 ,                                         |                          | $-0.020^{*}$<br>(0.012) | $-0.015^{**}$<br>(0.0067)                  |
| Observations $R^2$                                        | $\begin{array}{c} 117 \\ 0.330 \end{array}$ | $\begin{array}{c} 117 \\ 0.021 \end{array}$ | $\begin{array}{c} 117 \\ 0.330 \end{array}$ | $\begin{array}{c} 117 \\ 0.059 \end{array}$ | $\begin{array}{c} 117 \\ 0.331 \end{array}$ | $\begin{array}{c} 117 \\ 0.024 \end{array}$ | $\begin{array}{c} 117 \\ 0.390 \end{array}$ | $\frac{86}{0.503}$       | $\frac{86}{0.083}$      | $\begin{array}{c} 86 \\ 0.532 \end{array}$ |

Table 16: Explaining Buyout Activity: Additional Credit Market Factors

Table 16 contains OLS estimates of quarterly buyout activity on estimates of the aggregate risk premium, credit spreads, and credit market factors from 1982Q3 to 2011Q4. The dependent variable in Panel A is the volume of activity (the number of deals scaled by the number of public firms in bps) and in Panel B is the value of activity (the log asset value of deals).  $\hat{rp}$  is the predicted market excess return using D/P, cay, and the 3-month T-Bill as factors. Corp. Spread is difference between Moody's Seasoned AAA corporate bond yield and Moody's Seasoned BAA corporate bond yield. Leverage (Mkt.) is the aggregate book value of debt divided by the aggregate market capitalization plus book debt. Leverage (Book) is the aggregate book value of debt divided by aggregate book assets. Tighter Standards is the net percent of loan officers in the SLOS reporting tighter lending standards for C&I loans to medium and large businesses. Quarter dummies are included to account for seasonality. Standard errors in parentheses are calculated using Newey-West (4 lags); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

|                  | (1)                        | (2)     | (3)                        | (4)      | (5)                        | (6)                      | (7)                        | (8)                                 | (9)                          | (10)                       | (11)                                                            |
|------------------|----------------------------|---------|----------------------------|----------|----------------------------|--------------------------|----------------------------|-------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------------|
| $\hat{rp}_{OLS}$ | $-0.023^{***}$<br>(0.0030) |         | $-0.023^{***}$<br>(0.0032) |          | $-0.026^{***}$<br>(0.0035) |                          | $-0.023^{***}$<br>(0.0030) |                                     | $-0.028^{***}$<br>(0.0037)   |                            |                                                                 |
| $\hat{rp}_{VAR}$ | ~ /                        |         | · · · ·                    |          | · · · ·                    |                          | · · · ·                    |                                     | · · · ·                      | -0.0092***                 | -0.0059***                                                      |
| $\hat{g}_{VAR}$  |                            |         |                            |          |                            |                          |                            |                                     |                              | (0.0014)<br>$0.0022^{***}$ | (0.0016)<br>$0.0018^{***}$                                      |
| rf               |                            |         |                            |          |                            |                          |                            |                                     |                              | (0.00039)<br>$0.014^{*}$   | (0.00038)<br>$0.084^{***}$                                      |
| EBITDA Spread    |                            | 0.025** | 0.0038                     |          |                            |                          |                            | 0.018                               | 0.047**                      | (0.0075)                   | (0.015)<br>$0.038^{*}$                                          |
| HY Spread        |                            | (0.010) | (0.0088)                   | -0.018** | 0.0093                     |                          |                            | (0.019)<br>-0.014                   | (0.019)<br>$0.039^{***}$     |                            | (0.020)<br>-0.046**                                             |
| GZ Spread        |                            |         |                            | (0.0076) | (0.0066)                   | $0.037^{***}$<br>(0.014) | $0.010 \\ (0.013)$         | $(0.014) \\ 0.057^{***} \\ (0.015)$ | (0.015)<br>0.0049<br>(0.016) |                            | $\begin{array}{c} (0.020) \\ 0.20^{***} \\ (0.034) \end{array}$ |
| Firm Controls    | Х                          | Х       | Х                          | Х        | Х                          | Х                        | Х                          | Х                                   | Х                            | Х                          | Х                                                               |
| Industry FE      | Х                          | Х       | Х                          | Х        | Х                          | Х                        | Х                          | Х                                   | Х                            | Х                          | Х                                                               |
| Observations     | 455,972                    | 455,972 | 455,972                    | 455,972  | 455,972                    | 455,972                  | 455,972                    | 455,972                             | 455,972                      | 455,972                    | 455,972                                                         |

Table 17: Probit: Deal Likelihood and Discount Rates

Table 7 contains Probit estimates of a quarterly deal indicator (*Deal*) on the risk premium, credit market factors, and cross-sectional controls from 1982Q4 to 2011Q4.  $\hat{r}_{POLS}$  is the predicted market excess return using D/P, cay, and the 3-month T-Bill as factors.  $\hat{r}_{PVAR}$  is the annual expected market excess return for the next three years based on a VAR.  $\hat{g}_{VAR}$  is the annual expected S&P earnings growth for the next three years based on a VAR.  $r_f$  is the annual risk-free yield at a three year horizon. *EBITDA Spread* is the difference between the median public firm EBITDA/EV and the yield on a composite index of high-yield bonds. *HY Spread* is the yield on a composite index of high-yield bonds less the 3-month T-Bill. *GZ Spread* is the excess bond premium as measured by Gilchrist and Zakrajšek (2012). Quarter dummies are included to account for seasonality. Standard errors in parentheses are calculated by clustering two-ways (by firm and quarter); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

|                                         | (1)                         | (2)                     | (3)                               | (4)                         | (5)                     | (6)                                   |
|-----------------------------------------|-----------------------------|-------------------------|-----------------------------------|-----------------------------|-------------------------|---------------------------------------|
| $\sigma(R)$                             | $-0.0064^{***}$<br>(0.0018) |                         |                                   | $-0.0065^{***}$<br>(0.0018) |                         |                                       |
| $\sigma(\frac{EBITDA}{Assets})$         | · · · ·                     | $-1.61^{***}$<br>(0.24) |                                   | , ,                         | $-1.51^{***}$<br>(0.32) |                                       |
| β                                       |                             | (- )                    | $-0.079^{***}$<br>(0.022)         |                             | ()                      | $-0.073^{***}$<br>(0.023)             |
| $\sigma(arepsilon)$                     |                             |                         | (0.022)<br>-0.0084***<br>(0.0026) |                             |                         | (0.025)<br>$-0.010^{***}$<br>(0.0031) |
| Time FE<br>Firm Controls<br>Industry FE | Х                           | Х                       | Х                                 | X<br>X<br>X                 | X<br>X<br>X             | X<br>X<br>X                           |
| Observations                            | $431,\!467$                 | 488,410                 | 387,071                           | 402,189                     | 451,080                 | 362,885                               |

Table 18: Probit: Deal Likelihood, Discount Rates and Risk Characteristics

Table 18 contains Probit estimates of a quarterly deal indicator (*Deal*) on firm risk characteristics, cross-sectional controls and time fixed effects from 1982Q4 to 2011Q4.  $\sigma(R)$  is the s.d. of the monthly stock price for the past 2 years.  $\sigma(\frac{EBITDA}{Assets})$  is the s.d. of the firm's EBITDA/Assets ratio.  $\beta$  is the unlevered market beta of the firm based on lagged two-years of monthly returns.  $\sigma(\varepsilon)$  is the s.d. of the unlevered residuals from the market regression. Unlevered betas and residuals are trimmed at the top and bottom 5% to remove extreme outliers. Columns (1)-(3) contain time fixed effects, columns (4)-(6) contain firm level controls (*log(Assets)*, *EBITDA/Assets, CapEx/Sales*, R & D/Sales, *Net Debt/Assets, Turnover, Dividend Dummy*), industry fixed effects (Fama-French 12), and time fixed effects. Standard errors in parentheses are calculated by clustering two-ways (by firm and quarter); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

| Panel A                | (1)                                         | (2)                                         | (3)                        | (4)               |
|------------------------|---------------------------------------------|---------------------------------------------|----------------------------|-------------------|
| Characteristic $(X)$ : | eta                                         | GIM                                         | EBITDA/Assets              | Industry HHI      |
| $(X)\hat{rp}$          | $-0.016^{***}$<br>(0.0058)                  | $-0.013^{*}$<br>(0.0075)                    | $-0.043^{***}$<br>(0.0074) | -0.028<br>(0.044) |
| Time FE                | Х                                           | Х                                           | Х                          | Х                 |
| Observations $R^2$     | $\begin{array}{c} 1,170\\ 0.003\end{array}$ | $\begin{array}{c} 1,218\\ 0.007\end{array}$ | $1,170 \\ 0.002$           | $1,170 \\ 0.000$  |
| Panel B                | (1)                                         | (2)                                         | (3)                        | (4)               |
| Characteristic (X):    | M&A Vol.                                    | M&A Val.                                    | IPO Vol.                   | IPO Val.          |
| $(X)\hat{rp}$          | $1.87^{*}$<br>(1.11)                        | $1.16^{**}$<br>(0.54)                       | -0.025<br>(0.95)           | $3.48 \\ (5.34)$  |
| Time FE                | Х                                           | Х                                           | Х                          | Х                 |
| Observations $R^2$     | $4,914 \\ 0.002$                            | $4,914 \\ 0.001$                            | 4,914<br>0.000             | $4,914 \\ 0.000$  |

Table 19: Elasticity of Deal Activity to the Risk Premium – Full Cross-Section Comparisons

Table 19 contains coefficient estimates estimating the differential sensitivity of portfolios formed based on characteristics to changes in the risk premium. Specifically, we regress deal activity scaled by its average on the average value of the characteristic in a portfolio and an interaction of this value with the risk premium, and time fixed effects from 1982Q4 to 2011Q4.  $\hat{rp}$  is the predicted market excess return using D/P, cay, and the 3-month T-Bill as factors. In Panel A the portfolios are based on the following:  $\beta$ , the deciles of unlevered market beta of the firm; GIM, the Governance Index of the firm (Gompers et al., 2003); EBITDA/Assets, the deciles of EBITDA/Assets, HHI the deciles of HHI of sales for public firms in the three-digit SIC code. In Panel B the portfolios are based on a three-year moving average. Volumes are scaled by the number of public firms in the industry, values are scaled by the value of public firms in the industry. Standard errors in parentheses are calculated by clustering two-ways (by portfolio and quarter); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

| Panel A                        | (1)                                         | (2)                                         | (3)                                         | (4)                                         |
|--------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| Characteristic $(X)$ :         | $\beta$                                     | GIM                                         | EBITDA/Assets                               | Industry HHI                                |
| $(X)\hat{rp}$                  | $-0.047^{***}$<br>(0.018)                   | $-0.10^{***}$<br>(0.038)                    | $-0.045^{***}$<br>(0.017)                   | -0.031<br>(0.020)                           |
| Time FE<br>Credit Interactions | X<br>X                                      | X<br>X                                      | X<br>X                                      | X<br>X                                      |
| Observations $R^2$             | $\begin{array}{c} 234 \\ 0.036 \end{array}$ | $\begin{array}{c} 174 \\ 0.169 \end{array}$ | $\begin{array}{c} 234 \\ 0.146 \end{array}$ | $\begin{array}{c} 234 \\ 0.063 \end{array}$ |
| Panel B                        | (1)                                         | (2)                                         | (3)                                         | (4)                                         |
| Characteristic (X):            | M&A Vol.                                    | M&A Val.                                    | IPO Vol.                                    | IPO Val.                                    |
| $(X)\hat{rp}$                  | $0.051^{***}$<br>(0.016)                    | $0.0095 \\ (0.016)$                         | $0.056^{***}$<br>(0.016)                    | $0.052^{***}$<br>(0.014)                    |
| Time FE<br>Credit Interactions | X<br>X                                      | X<br>X                                      | X<br>X                                      | X<br>X                                      |
| Observations $R^2$             | $\begin{array}{c} 234 \\ 0.094 \end{array}$ | $\begin{array}{c} 234 \\ 0.015 \end{array}$ | $\begin{array}{c} 234 \\ 0.051 \end{array}$ | $\begin{array}{c} 234 \\ 0.055 \end{array}$ |

Table 20: Elasticity of Deal Activity to the Risk Premium – High-Low Comparisons with Credit Controls

Table 20 contains coefficient estimates estimating the differential sensitivity of portfolios formed based on characteristics to changes in the risk premium. Specifically, we regress deal activity scaled by its average on the average value of the characteristic in a portfolio and an interaction of this value with the risk premium, interactions between credit controls and the characteristic dummy, and time fixed effects from 1982Q4 to 2011Q4.  $\hat{rp}$  is the predicted market excess return using D/P, cay, and the 3-month T-Bill as factors. In Panel A the portfolios are based on the following:  $\beta$ , the deciles of unlevered market beta of the firm; GIM, the Governance Index of the firm (Gompers et al., 2003); EBITDA/Assets, the deciles of EBITDA/Assets, HHI the deciles of HHI of sales for public firms in the three-digit SIC code. In Panel B the portfolios are based on a three-year moving average. Volumes are scaled by the number of public firms in the industry, values are scaled by the value of public firms in the industry. The credit control interactions include: EBITDA Spread, HY Spread, and GZ Spread. Standard errors in parentheses are calculated by clustering two-ways (by portfolio and quarter); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

| Volume:                       | LBO / M&A      |                |                        |                              |                                                                    |  |  |  |  |
|-------------------------------|----------------|----------------|------------------------|------------------------------|--------------------------------------------------------------------|--|--|--|--|
| Panel A                       | (1)            | (2)            | (3)                    | (4)                          | (5)                                                                |  |  |  |  |
| $\hat{rp}_{OLS}$              | -0.032**       | -0.053***      | -0.033**               | -0.038**                     | -0.054***                                                          |  |  |  |  |
|                               | (0.015)        | (0.018)        | (0.014)                | (0.016)                      | (0.018)                                                            |  |  |  |  |
| EBITDA Spread                 |                | 0.081          |                        |                              | $0.14^{**}$                                                        |  |  |  |  |
|                               |                | (0.081)        |                        |                              | (0.070)                                                            |  |  |  |  |
| HY Spread                     |                | 0.11           |                        |                              | 0.15**                                                             |  |  |  |  |
| ~ ~ ~                         |                | (0.071)        |                        |                              | (0.061)                                                            |  |  |  |  |
| GZ Spread                     |                | -0.029         |                        |                              | 0.13                                                               |  |  |  |  |
| CDD C II                      |                | (0.078)        | - 00**                 |                              | (0.082)                                                            |  |  |  |  |
| GDP Growth                    |                |                | 7.23**                 |                              | 13.9***                                                            |  |  |  |  |
|                               |                |                | (3.56)                 | 0.010                        | (3.96)                                                             |  |  |  |  |
| CE Fund Discount              |                |                |                        | 0.018                        | 0.010                                                              |  |  |  |  |
| а,                            |                |                |                        | (0.023)                      | (0.020)                                                            |  |  |  |  |
| Sentiment                     |                |                |                        | 0.097                        | -0.12                                                              |  |  |  |  |
|                               |                |                |                        | (0.12)                       | (0.097)                                                            |  |  |  |  |
| Observations                  | 116            | 116            | 116                    | 113                          | 113                                                                |  |  |  |  |
| $R^2$                         | 0.079          | 0.121          | 0.130                  | 0.100                        | 0.242                                                              |  |  |  |  |
| Value:                        |                | Ι              | LBO / M&L              | A                            |                                                                    |  |  |  |  |
| Panel B                       | (1)            | (2)            | (3)                    | (4)                          | (5)                                                                |  |  |  |  |
| $\hat{rp}_{OLS}$              | -0.10***       | -0.086***      | -0.10***               | -0.11***                     | -0.080***                                                          |  |  |  |  |
|                               | (0.030)        | (0.024)        | (0.027)                | (0.030)                      | (0.028)                                                            |  |  |  |  |
| EBITDA Spread                 |                | 0.095          |                        |                              | 0.12                                                               |  |  |  |  |
|                               |                | (0.11)         |                        |                              | (0.099)                                                            |  |  |  |  |
| HY Spread                     |                | -0.020         |                        |                              | -0.011                                                             |  |  |  |  |
|                               |                | (0.11)         |                        |                              | (0.10)                                                             |  |  |  |  |
| GZ Spread                     |                | -0.016         |                        |                              | 0.18                                                               |  |  |  |  |
|                               |                | (0.12)         |                        |                              | (0.15)                                                             |  |  |  |  |
| GDP Growth                    |                |                | $12.7^{*}$             |                              | $16.7^{**}$                                                        |  |  |  |  |
|                               |                |                |                        |                              | ( = 0 0 )                                                          |  |  |  |  |
|                               |                |                | (7.68)                 |                              | (7.80)                                                             |  |  |  |  |
| CE Fund Discount              |                |                | (7.68)                 | 0.023                        | 0.028                                                              |  |  |  |  |
|                               |                |                | (7.68)                 | (0.029)                      | 0.028<br>(0.032)                                                   |  |  |  |  |
| CE Fund Discount<br>Sentiment |                |                | (7.68)                 | $(0.029) \\ 0.070$           | 0.028<br>(0.032)<br>0.050                                          |  |  |  |  |
|                               |                |                | (7.68)                 | $(0.029) \\ 0.070 \\ (0.21)$ | $\begin{array}{c} 0.028 \\ (0.032) \\ 0.050 \\ (0.21) \end{array}$ |  |  |  |  |
|                               | $116 \\ 0.174$ | $116 \\ 0.196$ | (7.68)<br>116<br>0.209 | $(0.029) \\ 0.070$           | 0.028<br>(0.032)<br>0.050                                          |  |  |  |  |

Table 21: Elasticity of LBO/M&A Activity Ratio to the Risk Premium

Table 21 contains coefficient estimates from regressing the ratio of LBO and M&A activity on the risk premium. In Panel A, the dependent variable is the log of the ratio of LBO volume to M&A volume. In Panel B it is the log of the ratio of LBO assets to M&A assets.  $\hat{r}p_{OLS}$  is the predicted market excess return using D/P, cay, and the 3-month T-Bill as factors. EBITDA Spread is the difference between the median public firm EBITDA/EV and the yield on a composite index of high-yield bonds. HY Spread is the yield on a composite index of high-yield bonds. HY Spread is the yield on a composite index of high-yield bonds. HY Spread is the yield on a composite index of high-yield bonds less the 3-month T-Bill. GZ Spread is the excess bond premium as measured by Gilchrist and Zakrajšek (2012). GDP Gradith is the year-on-year growth rate of U.S. real GDP. CE Fund Discount is the discount on a closed-end fund. Sentiment is a measure of sentiment from Baker and Wurgler (2006). The sample ranges from 1982Q4 to 2011Q4. Each regression also includes quarter dummy variables to account for seasonality. Standard errors in parentheses are calculated over time using Newey-West (4 lags); \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01