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Abstract 

The U.S. Treasury market is highly intermediated by nonbank principal trading firms (PTFs). 

Limited capital forces PTFs to end the trading day roughly flat. We construct a continuous time 

market making model to analyze the trade-off faced by a profit-maximizing firm with overnight 

inventory costs, and develop closed-form representations of the optimal price policy functions. 

Our model reveals that bid-ask spreads widen as the end of the trading day approaches, and that 

increases in order arrival rates do not always lead to higher price volatility. Our empirical analysis 

shows that Treasury security trading costs increase as the close of trading approaches, consistent 

with model predictions. 
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Introduction

Since the turn of the century, new market makers have emerged across financial markets.1 For

U.S. Treasury securities, in particular, the Joint Staff Report of the U.S. Department of the

Treasury, the Board of Governors of the Federal Reserve System, the Federal Reserve Bank of

New York, the U.S. Securities and Exchange Commission, and the U.S. Commodity Futures

Trading Commission (Joint Staff Report (2015)) provides an unprecedented glimpse into

the market’s evolving structure. Through the use of non-public data including participant

names, the report identifies a new class of highly active non-bank intermediaries in the

secondary market, collectively termed principal trading firms (PTFs).2 Absent from this

market before the mid-2000s, PTFs now account for over half of the volume on electronic

trading platforms and close to 80 percent of message traffic.

Many PTFs are active liquidity providers, submitting passive orders to central limit order

books and trading on their own accounts. PTFs tend to employ limited capital, relying on

prime brokers for their funding and clearing needs. To limit the amount of capital held in

margin accounts, PTFs keep their positions small and short-lived (Menkveld (2016)). It

follows that PTFs largely unwind positions by the end of the trading day, even though they

trade actively intraday. The practice of ending the day flat is in stark contrast to bank

dealers, which tend to carry significant positions overnight.3

Our paper focuses on the overnight inventory management motive as a distinguishing

characteristic of market making PTFs. To shed light on this characteristic, we consider a

model consisting of a representative PTF – intermediating between randomly arriving buyers

and sellers – which dynamically places bid and ask prices in order to maximize end-of-day

profits, but with the additional objective of unwinding its positions before the market closes.

1See, for example, Securities and Exchange Commission (2010) and Menkveld (2013) for equity markets
and Bank for International Settlements (2011) and Chaboud et al. (2014) for foreign exchange markets.

2The report’s characterization of PTFs (“principal investor, deploys proprietary automated trading strate-
gies, low latency typically key element of trading strategies”, p. 50), is similar to that commonly used to
describe high-frequency trading firms (HFTs). For consistency, and because low latency is not a feature of
our model, we use the PTF and not the HFT terminology throughout the paper.

3Aggregated dealer positions in U.S. Treasuries are reported in the FR 2004 Weekly Report of Dealer
Positions, Transactions, and Financing available at the Federal Reserve Bank of New York’s website:
https://www.newyorkfed.org/markets/primarydealers
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In this context, the PTF can be interpreted as having access to unlimited financing intraday

while facing an exogenously specified cost for remaining inventory at the end of the day. Our

main contribution is to rigorously analyze the arising trade-off: the PTF balances profits

from crossing the bid-ask spread against the present value, or shadow cost, of incurring

inventory costs at the end of the day.

We derive closed-form representations for the PTF’s optimal value function and price

policy functions, and show that the PTF’s intertemporal hedging demand feeds into liquidity

and trade price dynamics throughout the day. Our model predicts that price impact and bid-

ask spreads will rise toward the end of the trading day as the need of reaching a zero inventory

target becomes stronger. Thus, in markets in which a significant proportion of liquidity

providers operate with end-of-day inventory constraints, one would expect to see a similar

widening of bid-ask spreads and rise in price impact. To verify this model implication, we

analyze an anonymized data set of the same interdealer electronic communications network

(ECN) reviewed in the Joint Staff Report (2015). We find statistically robust evidence

of widening bid-ask spreads and heightened price impact as the end of the trading day

approaches, consistent with our model predictions.

As a gauge of welfare, we study the extent to which the end-of-day inventory motive

affects the value of the PTF, and surplus of buyers and sellers. Our analysis reveals that,

while the PTF’s overnight inventory costs always negatively affect the PTF’s value as well as

buyer/seller’s surplus, the magnitude of the loss depends nontrivially on the arrival rate of

market orders. Specifically, in markets where orders arrive more frequently, the buyer/seller’s

surplus per trade and the PTF’s value have very little sensitivity to changes in the overnight

inventory cost. By contrast, in markets with low order arrival rates, these quantities are

highly sensitive to changes in the overnight inventory cost. These findings suggest that

market makers that seek to limit their overnight inventories do not necessarily decrease

buyer/seller’s surplus, as long as the market is intrinsically active.

The endogenous price impact generated by the end-of-day inventory cost adds novel

economic insights on market quality relative to the existing literature. We find that higher

overnight inventory costs unambiguously lead to realizations of wider spreads. However, the
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effects on price volatility are more subtle. The magnitude of the overnight inventory costs

and the time of day can significantly tilt the relationship between the arrival rates of orders

and measures of price volatility. On the one hand, higher arrival rates mitigate the impact

of the overnight inventory cost on prices, and hence lower the resulting volatility, if trades

occur earlier in the day. On the other hand, higher arrival rates also increase the trading

frequency, which raises price volatility if the price impact is large, especially near the end

of the trading day. Moreover, if the overnight inventory cost is very high, the instantaneous

volatility exhibits a small, sudden drop before the day’s close. This is because the aversion

towards holding residual inventory near the day’s close is so strong that the PTF trades very

low volumes to avoid fluctuations in its inventory levels.

Our paper contributes to the broad literature on market microstructure theory and mar-

ket making. In contrast to existing models of inventory-based market making (e.g. Hen-

dershott and Menkveld (2014)), time-to-close is a key state variable in the market maker’s

value function in our setup. We show that the proposed finite horizon approach is crucial

to explaining intraday price and liquidity dynamics observed in high-frequency U.S. Trea-

sury data. Furthermore, we show that the intraday market maker’s aversion to overnight

inventory generates price impact and bid-ask spread dynamics that are absent in other finite-

time horizon approaches or models of market making under asymmetric information (e.g.

Kyle (1985), Glosten and Milgrom (1985) and Admati and Pfleiderer (1988)). Our model

is well-suited to capture end-of-day dynamics for assets with little asymmetric information

like Treasuries (there is arguably less asymmetric information about the value of public debt

than, for instance, about the equity value of individual firms).

Bradfield (1979) studies a discrete-time dynamic model for market making of a profit

maximizing specialist who targets an end-of-day inventory level. Similar to our paper, he

finds that inventory hedging motives of the specialist increase price variability as the trading

day unfolds. In contrast to our findings, he shows that the specialist maintains his inventory

at the targeting level if his limit order book is in its average position, which results in a

flat price trajectory. Furthermore, he does not analyze the impact of inventory control on

bid-ask spreads, price impact, and welfare of market participants.
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The structure of our market making setup is quite unique, and it requires solving an

inventory control problem driven by jump processes. In contrast to existing literature on

this topic (e.g. Bayaraktar and Ludkovski (2012) and Cartea and Jaimungal (2015)), the

control state variable is the size of the jumps and not the jump intensity. Stochastic control

problems of this kind are associated with non-dominated probability measure changes, and

are described by a second order backward stochastic differential equation (see Soner et al.

(2012)). By deriving analytical representations for the optimal strategies and associated

quantities, we are able to obtain economic insights on the endogenous price impact after

constructing an explicit mapping from inventories/volumes to prices.

A methodological contribution of our paper is the solution of the inventory control prob-

lem. Our solution concept requires an extension of techniques used for standard market

making problems, because the end-of-day inventory constraint generates dynamic hedging

motives. The proposed methodology opens the door to solving nonstandard control prob-

lems, i.e., those driven by pure-jump systems in which the control is applied at random times

on the size of jumps.

The rest of the paper is organized as follows. We discuss institutional details of PTFs in

Section 1. We introduce the market making model with overnight costs in Section 2. Section

3 formulates the PTF’s decision making problem and performs an intertemporal analysis

of the optimal bid and ask price policies. Section 4 presents a comparative statics analysis

for price stability measures and welfare of market participants. Section 5 provides empirical

evidence of our model predictions against U.S. Treasury data. Section 6 concludes. Technical

proofs are delegated to the Appendix.

1 The Importance of Overnight Inventory Costs

We believe our paper is the first to explicitly consider the impact of an end-of-day inventory

cost on intraday pricing, liquidity dynamics, and welfare of market participants. As shown

in the next section, the overnight inventory cost represents the disutility of the market maker

from carrying inventory overnight, and therefore captures a preference for ending the day
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“flat”. The desire to end the day flat is an agreed upon characteristic of PTFs. For example,

in its concept release on equity market structure, the Securities and Exchange Commission

(2010), p. 45, describes “professional traders acting in a proprietary capacity that engage

in strategies which generate a large number of trades on a daily basis.” The concept release

describes the common characteristics of these firms, including “ending the trading day in as

close to a flat position as possible (that is, not carrying significant, unhedged positions over-

night).” Menkveld (2016) corroborates these statements, highlighting that PTFs (HFTs)

are best thought of as a new type of financial intermediary that trades in large volumes

intraday but avoids carrying positions overnight. Cvitanic and Kirilenko (2010) argue that

high-frequency traders manage inventories to ensure that no positions are carried overnight

after markets close.

Duffie and Ashcraft (2007)’s empirical study is supportive of this characterization and

presents findings that can be viewed as testable implications of our model.4 While not having

an explicit model, they predicate their empirical analysis on the idea that, towards the end

of the day, traders in the federal funds market are more desperate to run their inventory

levels towards the target values, and therefore adjust the prices they quote, and are willing

to accept, accordingly.5 Quoting their paper:

“Banks do not have much incentive to hold reserve balances in large amounts

at the close of the business day because these balances do not earn interest

from the Fed. Unnecessary end-of-day balances could have been exchanged for

interest-bearing overnight assets such as federal funds loans or reverse purchase

agreements. During the business day, financial institutions are permitted to have

negative balances at a below-market interest rate in their accounts ... Motivated

in part by discussions with federal funds traders, we find that federal funds

trading is significantly more sensitive to balances in the last hour of the day. For

4A separate empirical study by Benos and Sagade (2016) analyzes proprietary data from U.K. equity
markets over a four-month period and finds that “HFTs generally end the day with a relatively flat position”,
with a volume-weighted end-of-day position corresponding to 5% of their total intraday volume on average.

5Duffie and Ashcraft (2007) invoke models from the over-the-counter search literature, where trading
opportunities are random and valuations of different agents load more significantly on individual properties
when there are less trading opportunities, and conversely are more similar when the asset can still be traded.
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example, at some large banks, federal funds traders responsible for targeting a

small, nonnegative, end-of-day balance ask other profit centers of their banks to

avoid large unscheduled transactions (for example currency trades) near the end

of the day .... Once a federal funds trader has a reasonable estimate of the day’s

yet-to-be-executed send and receive transactions, he or she can adjust pricing and

trading negotiations with other banks to push the bank’s balances in the desired

direction. We show evidence of this behavior and, further, find that lending is

more active when federal funds rate volatility in the trailing half hour is high.”

We believe our paper is the first to provide theoretical support for the temporal pattern

highlighted in the above quote. Existing market making models of inventory management are

not able to generate this pattern. For instance, in Amihud and Mendelson (1980)’s monopo-

listic market making model, a specialist incurs costs of inventory replenishment throughout

an infinite trading horizon. In their model, the dealer is constrained to hold the inventory

within a pre-specified interval at all times, and optimally chooses bid/ask prices to maxi-

mize the long-term/stationary growth rate of its wealth process. Hendershott and Menkveld

(2014) use a classical stochastic optimal linear regulator framework, and effectively solve

a discrete-time perpetual optimization problem with a quadratic intraday inventory cost,

coming from the aversion of the market maker to the risk of distributed dividends. As in our

model, the demand and supply functions of buyers and sellers are linear and exogenously

specified. Because of the perpetual nature of the problem, both in Amihud and Mendelson

(1980) and Hendershott and Menkveld (2014), the optimal bid-ask spread and price pressures

are time-homogenous. In contrast, the time-to-close plays a crucial role in our model because

an unbalanced inventory position held by the PTF near the day’s close may generate high

price instability: the management of the inventory executed by the PTF to restore a position

close to flat may lead to large purchases and sales, which in turn cause high fluctuations in

ask and bid prices.

The December 2015 Senior Credit Officer Survey on Dealer Financing Terms of the

Board of Governors of the Federal Reserve System (2016) summarizes answers to special
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questions on intraday and overnight credit extended to PTFs. Overnight positions of PTFs

are reported to be de minimis when compared to intraday positions. Importantly, intraday

exposure management is primarily done via exposure limits, not margining. In addition to

this survey, evidence from the margining documentation of central clearing platforms and

exchanges paints a complementary picture on the limited usage of intraday margin. Central

clearing counterparties tend to compute variation margins at discrete times during the day or

at the end of the day. This evidence on the intraday credit risk management of exchanges,

central clearing counterparties, and dealers suggests that intraday inventory costs might

be close to, or exactly, zero, depending on when the PTF is trading, and that PTFs face

incentives to carry little inventory overnight.

Our model predicts that PTFs become more and more hesitant to post competitive

quotes and transact toward the end of the day, reflecting their aversion to holding positions

overnight. We would therefore expect activity to shift toward standard bank dealers at

this time, and we present empirical evidence consistent with this prediction later in the

paper. Moreover, as shown in the Joint Staff Report (2015), the median absolute end-of-day

position for PTFs is 4.4% of its daily volume, but the comparable figure for bank-dealers

is 19.0%, consistent with the idea that PTFs are especially averse to holding overnight

positions. The median maximum absolute intraday position for PTFs is 15.3% versus 28.3%

for bank-dealers, suggesting that PTFs are willing to hold substantial positions intraday.

The academic literature discusses a few additional underlying reasons for closing out

positions at the end of the trading day. Brogaard and Garriott (2019) suggest a risk man-

agement motive, as PTFs wish to avoid exposure to the risk that asset values might change

overnight. While such a motive may purely be driven by risk aversion, it may also be driven

by the desire to avoid overnight margin requirements or other funding costs. For example,

overnight positions might have to be funded in the repo or securities lending markets, re-

quiring haircuts. Furthermore, a reduction in inventory results in a reduction of the PTF’s

value-at-risk, which in turn reduces any overnight margining costs. Indeed, brokers typically

require additional initial and maintenance margins for positions held overnight.6

6See, for example, https://gdcdyn.interactivebrokers.com/en/index.php?f=marginnew&p=overview1
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2 The Model

This section introduces our mathematical model of market making. We consider a trading

day which runs continuously from time 0 through T . We assume a single dealer model, i.e.,

the PTF market maker is the sole price maker. We do not consider the interactions between

PTFs resulting from their competition over bid/ask prices or traded quantities.

There is a single asset traded in a dealer market. A PTF market maker always takes the

other side of arriving market orders. It sells for (market) buy orders and buys for (market)

sell orders. Buy and sell orders arrive in the market according to two independent Poisson

processes. The staggered arrival of buy and sell orders implies that the PTF is the only

counterparty available for trade when an order arrives.

In the next two subsections, we introduce the model of buy/sell order arrival and the

PTF objectives. Section 2.1 introduces the demand function and arrival times of buy and sell

orders. Section 2.2 introduces the PTF’s objective function, which is used to determine the

bid price b, and the ask price a. Throughout the paper, we fix a complete filtered probability

space (Ω,P,F = (Ft)t∈[0,T ]) capturing all randomness.

2.1 Buy and Sell Orders

Buy orders arrive with a deterministic time-varying intensity πB(t) > 0, and we use NB to

denote the F-adapted non-homogeneous Poisson process which counts the number of such

arrivals. Similarly, the arrival of sell orders is described by an independent F-adapted non-

homogeneous Poisson process NS with a deterministic time-varying intensity πS(t) > 0. We

assume that the fundamental price of the asset follows a Brownian motion with volatility

σ > 0:

dSt = σdBt, t ≥ 0, (1)

where (Bt)t≥0 is a standard F-Brownian motion, independent of the Poisson processes NB

and NS, and S0 > 0 is a positive constant. We use −p < 0 to denote the minimum price

(relative to the fundamental) at which a sell order is placed, and p > 0 the maximum price
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Figure 1: Example of Demand and Supply Functions. This figure illustrates the supply
and demand functions of buyers and sellers. The price (x-axis) is in terms of percentage
of par, and the quantity (y-axis) is measured in lots of $1 million. We set the current
fundamental price S = 100, p = 0.017 and slope c = 30 (lots of $1 million per basis point of
par). The quantity supplied by a seller (solid) is an increasing function of price. Similarly,
the quantity demanded by a buyer (dashed) is a decreasing function of price.

(relative to the fundamental) at which a buy order is placed. That is, at time t, St − p is

the reservation price for sell orders and can be interpreted as a stop loss, while St + p can be

viewed symmetrically for buy orders. For a given ask price x at time t ∈ [0, T ], the number

of shares demanded by buyers is given by

QB(St, x) = c (St + p− x) , (2)

where c > 0 is a constant. For a given bid price x at time t ∈ [0, T ], the number of shares

supplied by sellers is given by

QS(St, x) = c (x+ p− St). (3)

Above, we have assumed that both the demand and supply curves have the same slope

c.7 Note that the demand and supply functions QB and QS are reduced form models for

(stochastic) preferences, beliefs, investment objectives, and hedging motives of buyers and

sellers. A similar form of linear demand and supply function for buy and sell orders is

considered by Hendershott and Menkveld (2014), where the traded quantity depends on

7This assumption can be relaxed at the expenses of sacrificing analytical tractability, but without quali-
tatively changing the conclusions of our analysis.
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the deviation of the quoted price from the unobserved efficient price. In contrast to our

setup, buyers and sellers arrive synchronously at all times in their model, and they do not

focus on intraday trading patterns. Our model assumes deterministic continuous arrival

rates for buyers and sellers, but makes the demand and supply function price-dependent.

In the context of optimal liquidation, Bayaraktar and Ludkovski (2012) and Cartea and

Jaimungal (2015) model order arrivals through a point process whose intensity depends on

the liquidation price. Hence, while in our model a lower bid price reduces liquidity supply,

in their model a similar effect may be obtained by reducing the arrival rate of sell orders.

2.2 PTF

In our model of market making, the PTF optimally chooses bid and ask prices through time.

The PTF’s cash holdings at time t, Wt, are given by its initial cash holdings, W0, plus its

trading revenue, i.e., cumulative proceeds from trades with buyers less cumulative outlays

from trades with sellers. Specifically, a trade with a buyer at time t results in QB(St, at)

shares of the asset sold at price at; likewise, a trade with a seller at time t results in QS(St, bt)

shares of the asset purchased at price bt. This leads to the following expression for the PTF’s

cash holdings at time t:

W
(a,b)
t = W0 +

∫ t

0

auQ
B(Su, au) dN

B
u −

∫ t

0

buQ
S(Su, bu) dN

S
u , (4)

where we set dNS
u := NS

u −NS
u− and dNB

u := NB
u −NB

u−, and W0 is a constant. The PTF’s

inventory accumulated in the interval [0, t] is given by the number of shares purchased from

sellers minus the number of shares sold to buyers until time t. That is,

I
(a,b)
t = I0 +

∫ t

0

QS(Su, bu) dN
S
u︸ ︷︷ ︸

Shares purchased
from sellers

−
∫ t

0

QB(Su, au) dN
B
u︸ ︷︷ ︸

Shares sold
to buyers

, (5)

where I0 is a constant.

The PTF maximizes the expected value of its end-of-day wealth, which is given by the sum
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of its cash holdings WT and the value of its end-of-day inventory marked at the fundamental

price ST , minus the cost for holding end-of-day inventory. Altogether, this leads to the

following maximization problem for the PTF:

max
(a·,b·)∈A0,T

E
[
W

(a,b)
T + ST I

(a,b)
T − λ

(
I

(a,b)
T

)2
]
, (6)

subject to the budget constraint (4) and inventory dynamics (5). Above, E[·] is the expecta-

tion operator under the probability measure P, W
(a,b)
T +ST I

(a,b)
T is the PTF’s total end-of-day

wealth, and λ > 0 is a constant quantifying the severity of the overnight inventory cost, which

is assumed to be quadratic in the size of inventory held at T . For on-the-run securities, in

particular, prices remain near par, so a $3 million par value position has a market value of

roughly $3 million, and variation in the market value of a position is closely approximated

by variation in the par value of the position.8 In other markets such as equities, where shares

can trade for arbitrary prices, one would need to penalize the dollar amount of the inventory.

Because ST I
(a,b)
T − λ

(
I

(a,b)
T

)2

= I
(a,b)
T

(
ST − λI(a,b)

T

)
, one can interpret the inventory

penalty as driven by a linear instantaneous price impact generated when selling the whole

terminal inventory I
(a,b)
T via a market order at time T . We use A0,T to denote the collection

of all admissible controls (which will be specified below) over the time period [0, T ].

The PTF’s problem amounts to optimally choosing the ask and bid trajectories (a·, b·) =

(at, bt)t∈[0,T ] which maximize the expected end-of-day wealth net of overnight inventory costs.

The ask at and bid bt are decided based on the information available before any trading at

t occurs. Formally, we have:

Definition 2.1. Let F = (Ft)t∈[0,T ] be the filtration generated by (St, N
B
t , N

S
t )t∈[0,T ], then the

admissible control set A0,T includes all real-valued, F-predictable, left continuous ask and bid

strategies over the period [0, T ], such that

∫ T

0

(
(au)

2 + (bu)
2
)
du <∞. (7)

8Treasury securities are issued at a price close to par. The securities are then only on the run for a short
time (e.g., one month in the case of the 5-year note), until another security of the same original maturity is
issued. As a result, there is not much time for their prices to move away from their initial values.
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From the linear demand and supply functions (2)-(3), dynamics of cash holdings and

inventory (4)-(5), we immediately realize that the condition in (7) ensures that the first order

variation of W
(a,b)
t has bounded expectation, and E[(I

(a,b)
t )2] <∞ and

∫ T
0
E[(I

(a,b)
t )2]dt <∞.

In particular, the condition requires that the expected overnight cost of any admissible

strategy must be finite.

Note that our PTF only provides liquidity, and is the only counterparty available for

trade when an order arrives. It employs limit orders only, and always crosses against market

orders. In a model with informational asymmetries, Rosu (2019) studies the optimal order

choice of an informed trader, who dynamically decides between a market order or a limit

order, based on the magnitude of privately observed mispricing. In his model, the informed

trader submits a market order if there is extreme mispricing, and a limit order otherwise.

Moreover, our model considers a single monopolistic dealer. In a possible future extension to

a competitive environment, PTFs could have different beliefs and each PTF might submit

limit orders that could be crossed by other PTFs.

3 The Control Problem

In this section, we analyze the control problem solved by the PTF. We formulate the PTF’s

dynamic optimization problem in terms of the Hamilton-Jacobi Bellman (HJB) equation in

Section 3.1. We characterize its optimal solution in Section 3.2. We present an intertemporal

analysis of the price policies and formulate the theoretical predictions of the model through

formal statements in Section 3.3. We discuss the endogenous nature of the price impact in

our model in Section 3.4.
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3.1 Dynamic Programming Formulation

The value function of the control problem, defined as the PTF’s optimal expected utility at

time t given its current cash holdings w and inventory level i, is given by

Vt := ess sup
(a·,b·)∈At,T

E
[
U
(
ST ,W

(a,b)
T , I

(a,b)
T

)∣∣Ft] , P-a.s.

where At,T is the collection of admissible strategies in Definition 2.1 restricted in the time

interval [t, T ], and the PTF’s end-of-day utility is

U(S,w, i) = w + Si− λi2.

By virtue of the dynamic programming principle, for 0 ≤ t ≤ u ≤ T , we have that

Vt = ess sup
(a,b)∈At,T

E
[
Vu
∣∣Ft] , P-a.s. (8)

To determine the optimal value V0 and the optimal price policies, we first restrict our

attention to admissible strategies that are Markovian in the fundamental price S, the cash

holdings W , and the inventory level I (we will later show in Theorem 3.2 that the optimal

price policies are indeed Markovian). Then there exists a deterministic function v such that

Vt = v(t, St,W
(a,b)
t , I

(a,b)
t ), P-a.s.. (9)

From our pre-specified supply and demand curves, we know that an incoming buy or-

der at time t will reduce the PTF’s inventory by QB(St, at), and increase its cash hold-

ings by atQ
B(St, at). Likewise, an incoming sell order at time t will increase the PTF’s

inventory by QS(St, bt), but reduce its cash holdings by btQ
S(St, bt). Therefore, for any

Markovian admissible control on the ask and bid prices (at, bt)t∈[0,T ], the controlled state

process (W
(a,b)
t , I

(a,b)
t )t∈[0,T ] constitutes a pure jump process. Specifically, given the state

{St− = S,W
(a,b)
t− = w, I

(a,b)
t− = i} and the control pair (at, bt), we have the time t transition

13



of the cash holdings and inventory processes given by

(W
(a,b)
t , I

(a,b)
t ) =


(w + atQ

B(S, at), i−QB(S, at)), with probability πB(t)dt,

(w − btQS(S, bt), i+QS(S, bt)), with probability πS(t)dt,

(w, i), with probability 1− (πB(t) + πS(t))dt.

(10)

The time when a transition occurs is thus completely determined by the arrival sequences

of buy and sell orders. Yet, as seen from (10), the control on ask and bid prices influences

the possible states reached after a trade, and hence serves as an effective means for the PTF

to control inventory. From equations (1), (8), (9) and (10), we obtain the HJB equation

satisfied by the function v:

∂tv +
1

2
σ2∂2

Sv + sup
(a·,b·)∈R2

H(t, S, w, i, a, b) = 0, (11)

with terminal condition v(T, S, w, i) = U(S,w, i), where H denotes the Hamiltonian given

by

H(t, S, w, i, a, b) := πB(t)[v(t, S, w + aQB(S, a), i−QB(S, a))− v(t, S, w, i)]

+πS(t)[v(t, S, w − bQS(S, b), i+QS(S, b))− v(t, S, w, i)].

3.2 Optimal Price Policies

We determine the Markovian bid and ask price policies which maximize the PTF’s expected

utility by solving the HJB equation (11). The linearity of the value function U in the cash

holdings variable w suggests that we can rewrite

v(t, S, w, i) = w + F (t, S, i),

where F (t, S, i) = v(t, S, 0, i) is the optimal expected utility of a PTF which starts with zero

cash holdings and an inventory level i at time t (more precisely, after the trade at time t, if it

14
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Figure 2: The Optimal Price Policy Functions. The optimal policy functions (of the
current inventory level i) for bid (gray) and ask (black) prices, b∗t (S, i) and a∗t (S, i), at a
fixed time t = 0, with S = 100. We set T = 10. When the inventory is low (i.e. i ≤ L2

0),
the ask price is higher than S + p, so that buyers do not buy from the PTF, but sellers sell
QS(S, b∗0(S, i)) shares to the PTF in each trade (see Figure 1). When the inventory is high
(i.e. i ≥ L1

0), the bid price is lower than S − p, so that sellers do not sell to the PTF, but
buyers purchase QB(S, a∗0(S, i)) shares from the PTF in each trade. When the inventory is
in the active trading region (i.e. L2

0 < i < L1
0), both ask and bid prices are between S − p

and S + p, and the PTF can trade with both buyers and sellers and earn a positive bid-ask
spread. Moreover, for these moderate inventory levels, it is shown in Theorem 3.2 that both
the ask and bid price functions are linear in the inventory level, hence their slope can be
measured by the reciprocal of the width of the active trading region, L1

0 − L2
0. A detailed

analysis of the inventory boundaries is given in the next subsection.

occurs). Our methodology exploits the concave property of the function F (t, S, i), which we

will establish in Theorem 3.2. For the moment, let us assume that for t ∈ [0, T ], the function

F (t, S, i) is strictly concave and continuously differentiable in i with a derivative mapped

onto R. This means, broadly speaking, that the function F (t, S, i) behaves like a quadratic

function with a negative leading coefficient. In particular, when |i| is very large, the optimal

expected utility F (t, S, i) � 0 and the marginal optimal expected utility ∂iF (t, S, i) > 0 if

i < 0 and ∂iF (t, S, i) < 0 if i > 0. Using this function F (t, S, i), we will derive the optimal

ask price a∗t and the optimal bid price b∗t , as well as their monotonicity properties with

respect to the inventory level.
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Lemma 3.1. For any t ∈ [0, T ), we have

a∗t (S, i) =S +
1

c
G−1
t,S

(
S + p− 2i

c

)
− i

c
+ p, (12)

b∗t (S, i) =S +
1

c
G−1
t,S

(
S − p− 2i

c

)
− i

c
− p, (13)

where G−1
t,S is the i-inverse function of a strictly decreasing function Gt,S:

Gt,S(i) := ∂iF (t, S, i)− 2

c
i.

The mappings i 7→ at(S, i) and i 7→ bt(S, i) are all strictly decreasing, continuous, and

mapping onto R. Moreover, for all λ > 0 we have

p < a∗t (S, i)− b∗t (S, i) < 2p. (14)

Lemma 3.1 implies a number of properties for the optimal ask and bid prices. First and

foremost, it shows that both a∗t (S, i) and b∗t (S, i) are continuous, non-increasing functions of

the inventory level at time t− (see Figure 2). This can be intuitively understood as follows.

As its inventory gets larger, the PTF would like to offload inventory to reduce the penalty

for holding a large inventory position at the close. To that end, the PTF wants to sell a

larger number of shares to the buyer, and consequently sets a low ask price a∗t (S, i). At the

same time, it wants to reduce the bid so that the seller is only willing to supply a small

number of shares (or none) and its inventory thus does not increase much. Second, when the

reservation prices of the buyers and sellers, S + p and S − p, are close, the bid-ask spread is

narrow (see (14)).

3.3 Intertemporal Analysis of Optimal Price Policies

We know from Lemma 3.1 that the optimal ask and bid prices both depend on the PTF’s

inventory level (see Figure 3 for a simulation of the price and inventory trajectories). Next,

we want to identify the critical inventory thresholds, i.e., the levels at which the PTF decides
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Figure 3: Simulated Trajectories of the Mid-Quote Price, Fundamental Price,
and PTF’s Inventory Level. Simulated trajectories of the fundamental price process
(gray in Panel (a)), the mid-quote price process (black in Panel (a)), and the corresponding
inventory path (Panel (b)). The demand and supply functions are those specified in Figure
1. We choose the arrival rates πB(t) = πS(t) ≡ 10, the end-of-day inventory cost λ = 0.02
per $100 million par, and assume a zero initial inventory. We set the annualized volatility of
the fundamental price process σ = 3.75%. The trajectory of the price pressure process (the
difference between the mid-quote and the fundamental price process) is negatively correlated
with that of the PTF’s inventory process, consistent with what is theoretically shown in
earlier sections. The strength of this dependence increases as the day’s close approaches.
Noticeably, over the course of the day, the PTF’s inventory crosses above and below 0
multiple times.
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Figure 4: The Critical Inventory Thresholds. When the PTF’s accumulated inventory
crosses the thresholds Lit, i = 1, 2, the PTF’s trading activity will qualitatively change. When
the PTF’s inventory level (in lots of $1 million) is between L1

t and L2
t , the PTF actively

trades with both buyers and sellers. As time passes, the active trading region specified by
the inventory levels at which the PTF trades with both buyers and sellers shrinks, because
the impact of the end-of-day inventory cost becomes stronger. This means that the PTF
will manage its inventory so as to keep it inside the active trading region, in order to avoid
any one-sided trading near the day’s close. Notice that, when the arriving intensity are
constants, i.e. πS(t) ≡ πS > 0, πB(t) ≡ πB > 0 (shown in the figure), the boundaries L1

t and
L2
t are essentially linear. The underlying reason is that the function α(t) ∼ 1

c(πB+πB)(T−t)
when t� T . See (16) and Proposition 3.5 below.

to post ask and bid prices equal to St + p and St − p so as to prevent trading with buyers

and sellers, respectively. Specifically, we define the critical inventory boundaries L1
t and L2

t

as the unique solutions to the following equations:

b∗t (St, L
1
t ) = St − p, a∗t (St, L

2
t ) = St + p. (15)

Recall that Lemma 3.1 asserts that the bid-ask spread a∗t (St, i)− b∗t (St, i) stays inside the

open interval (p, 2p) for all i, and thus at(St, L
1
t ) < bt(St, L

1
t ) + 2p = p = at(St, L

2
t ), so that

the boundaries L1
t , L

2
t satisfy

L1
t > L2

t .

When the inventory level i is between L2
t and L1

t , the PTF actively trades both with buyers

and sellers. We refer to this range of inventories as the Buy & Sell region (see Figure 4).

If the PTF’s inventory level i is higher than L1
t , then it only trades with buyers to unload

its inventory. We refer to this range of inventories as the No Buy region. Conversely, if

18



the PTF’s inventory level i is lower than L2
t , then it only trades with sellers to build up its

inventory. We refer to this range of inventories as the No Sell region. This result shows that,

because of aversion to inventory, a monopolistic PTF may not always quote on both sides of

the market and capture every spread, even in the absence of competition from other PTFs.

The main theorem (Theorem 3.2 below), proven in the Appendix, derives a closed-form

expression for the value function v(t, S, w, i), and shows that it possesses certain time-

invariant properties with direct economic interpretations. We stress that the value function

also determines the optimal value when the price policies are not restricted to the Markovian

class.

Theorem 3.2. Let α(t) be the unique negative root to the following equation 9

α′(t) = −c(πB(t) + πS(t))
α2(t)

1− cα(t)
, t ∈ [0, T ), (16)

with terminal condition α(T ) = −λ. Define v(t, S, w, i) = w + F (t, S, i), with

F (t, S, i) = α(t)i2 + Si+ cp2

∫ T

t

(πB(u) + πS(u))

4(1− cα(u))
du. (17)

Then the PTF’s optimal value at time t is given by Vt = v(t, St,Wt, It), P-a.s. where Wt and

It are the PTF’s cash holdings and inventory level, respectively, at time t ∈ [0, T ]. Moreover,

the optimal price policy functions are given by

at(S, i) =S +
(1− 2cα(t))

2(1− cα(t))
p+

α(t)

1− cα(t)
i, (18)

bt(S, i) =S − (1− 2cα(t))

2(1− cα(t))
p+

α(t)

1− cα(t)
i. (19)

That is, this strategy beats all Markovian/non-Markovian admissible strategies in solving the

optimization (6).

9The ordinary differential equation for α(t) is obtained by imposing that v(t, S, w, i) = w + F (t, S, i)
satisfies the HJB equation (11), where the function F (t, S, i) given in (17) is quadratic in i (see the proof in
the Appendix). It follows from Eq. (16) that if the terminal condition α(T ) = −λ < 0, then α′(t) < 0 for all
t ∈ [0, T ]. Hence, α(t) is a decreasing function of time throughout the whole interval.
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Figure 5: The Optimal Present Values of the Inventory Constraint. The value
function F (t, S, i) measures the PTF’s optimal expected utility at T , as seen from time t,
and given that the level of inventory at t is i. Suppose that the PTF can cash out its
inventory immediately in the secondary market at the fundamental price St = S per share.
Then the residual value P (t, i) = F (t, S, i)−Si, which is independent of S as seen from (17)
or (20), gives the optimal present value of the end-of-day inventory cost. This figure plots
P (t, i) (in lots of $1 million) for t = 0, as a function of i (in lots of $1 million), given constant
arriving intensities πB(t) ≡ πB > 0, πS(t) ≡ πS > 0.

At any time t ∈ [0, T ], the value function F (t, S, i) is strictly concave in i. This means

that the PTF is always averse to holding inventory, because it accounts at any point in time

for the cost incurred at T if it holds residual inventory. The intercept of F (t, S, i), given by

F (t, S, 0), quantifies the optimal expected trading revenue less the overnight cost if the PTF

begins with a zero inventory at time t. The positivity of F (t, S, 0) for all times t ∈ [0, T )

indicates that the PTF will trade throughout the entire day, even if its inventory returns

to zero and the time is close to the end of the day. Moreover, consider the time t optimal

expected utility of the PTF given in (17), net of inventory holdings valued at the current

fundamental price, i.e.,

P (t, i) := F (t, S, i)− Si = α(t)i2 + cp2

∫ T

t

(πB(u) + πS(u))

4(1− cα(u))
du. (20)

We can interpret P (t, i) as the optimal present value of the inventory cost (see Figure 5).

Then ∂iP (t, i) gives the PTF’s marginal gain stemming from an infinitesimal change in its

inventory. In particular, from (20) we notice that ∂iP (t, i) > 0 if i < 0 and ∂iP (t, i) < 0 if

i > 0, hence it is always beneficial for the PTF to trade in a way that targets a zero inventory
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position. Hence, the PTF’s inventory will exhibit mean-reversion around the zero inventory

level during the trading period [0, T ], see Figure 3.

In what follows, we focus on the optimal policy determined in Theorem 3.2, and drop

the subscript (a∗, b∗) in the notation for the inventory level. The following corollary formally

characterizes the dynamics of the PTF’s inventory process.

Corollary 3.3. The inventory process under the optimal market making, (It)t∈[0,T ], follows

the linear stochastic differential equation

dIt =

(
p(πS(t)− πB(t))

2(1− cα(t))
+

2(πB(t) + πS(t))α(t)

1− cα(t)
It−

)
c dt

−p− 2α(t)It−
2(1− cα(t))

c (dNB
t − πB(t)dt) +

p+ 2α(t)It−
2(1− cα(t))

c (dNS
t − πS(t)dt), (21)

for all t ∈ [0, T ]. The expected inventory level is given by

E[It] = I0 exp

(∫ t

0

2c(πB(u) + πS(u))α(u)

1− cα(u)
du

)
+

∫ t

0

cp(πS(u)− πB(u))

2(1− cα(u))
exp

(∫ t

u

2c(πB(v) + πS(v))α(v)

1− cα(v)
dv

)
du. (22)

Corollary 3.3 shows that when the buy and sell orders arrive at the same intensity, i.e.,

πB(t) ≡ πS(t) for all t ∈ [0, T ], the PTF’s expected inventory converges to 0 as time moves

forward. Mathematically, this is because the exponent of the first term in (22) is the integral

of a strictly negative function. It reflects the effectiveness of the PTF’s inventory control

strategy to avoid paying high overnight costs. Furthermore, if the initial inventory I0 = 0,

then the expected inventory stays at 0 at all times. This means that the PTF has, on

average, a neutral inventory position at any point in time. We know from (16) that α(t)

only depends on the sum of arrival rates πB(t) + πS(t). Hence, in the case of an asymmetric

market, i.e., πB(t) = π0(t) + ε(t), πS(t) = π0(t) − ε(t) for some ε(t) ∈ (−π0(t), π0(t)), the

expected inventory of the market maker is given by

E[It] = I0 exp

(∫ t

0

4cπ0(u)α(u)

1− cα(u)
du

)
−
∫ t

0

cp ε(u)

1− cα(u)
exp

(∫ t

u

4cπ0(v)α(v)

1− cα(v)
dv

)
du.
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Recall that α(t) < 0 for t ∈ [0, T ], and its value only depends on π0(t) and not on ε(t).

Compared with the case of a symmetric market, i.e., ε(t) ≡ 0, the expected inventory of the

market maker at any point in time is always higher if sell orders arrive more frequently, i.e.,

ε(t) < 0, and always lower if buy orders arrive more frequently, i.e., ε(t) > 0. The above

considerations highlight the importance of inventory control through price determination in

markets with asymmetric arrivals. If buy and sell orders arrive at the same rate, then the

optimal price policy needs to guarantee that the PTF’s inventory mean reverts to a flat

position. This is no longer the case in an asymmetric market. Even if the PTF starts with

zero inventory, the optimal price policy implies that the inventory builds up if sell orders

arrive more frequently than than buy orders.

Even though α(t) does not admit a closed-form representation, we can still analyze its

properties implicitly via the nonlinear equation (16) which defines it.

Lemma 3.4. The function α(t) defined in (16) is strictly decreasing over the interval [0, T ].

Suppose πB(t) ≡ πB and πS(t) ≡ πS are positive constants. For fixed t ∈ [0, T ) and λ > 0,

|α(t)| is strictly decreasing with πB+πS; while for fixed t ∈ [0, T ] and πB, πS, |α(t)| is strictly

increasing with λ.

We know from Theorem 3.2 that the function α(t) plays a pivotal role in the PTF’s

price policy and value functions. Lemma 3.4 states that the PTF exhibits different trading

behavior as time progresses. Such a behavior is reflected, for example, in the evolution of

the Buy & Sell region of the PTF’s inventory (Figure 4), which highlights a key feature of

optimal market making: the size of the Buy & Sell region increases as the time remaining

until the day’s end (T − t) increases. Intuitively, this can be understood from the fact that

the shadow cost of the end-of-day inventory will be lower if the PTF has more time to build

or offload its inventory, i.e., to execute multiple round-trip trades, before the day’s close. As

the end of the trading day approaches, the PTF may need to stop trading with sellers if it

has an excessive long position or with buyers if it has an excessive short position. For this

reason, we observe that both the No Buy region (L1
t ,∞) and the No Sell region (−∞, L2

t )

“grow” as the end of the day approaches . We formalize these statements in the following
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Figure 6: Optimal Bid-Ask Spread. This figure plots the optimal bid-ask spread, a∗t − b∗t ,
using the demand and supply functions specified in Figure 1. Define λ0 := 0.02 per $100
million par. (a) Flat benchmark (solid black): πB(t) = πS(t) ≡ 10; (b) U-shaped (dashed
black): πB(t) = πS(t) = 7 + 0.36(t− 5)2; (c) Increasing (solid gray): πB(t) = πS(t) = 5 + t.
The spreads at time T are all equal to 1+2cλ

1+cλ
p. In all cases, as the time until the end of the

day increases, the bid-ask spread approaches p (the spread when there are no end-of-day
inventory costs) under all parameter settings.

corollary.

Corollary 3.5. The upper inventory boundary (L1
t )t∈[0,T ] is positive and strictly decreas-

ing, while the lower inventory boundary (L2
t )t∈[0,T ] is negative and strictly increasing. In

particular, L1
t = − p

2α(t)
and L2

t = p
2α(t)

for all t ∈ [0, T ] (see Figure 4).

If the PTF starts off within the Buy & Sell region, then it will try to stay within this

region to avoid one-sided trading. It does so by adjusting its prices to encourage larger

sized trading orders in its favorable direction. Since the arrival rate of orders is constant,

such a market making behavior moves the PTF’s inventory towards zero. Notice that the

resulting effect is essentially the same as trading more frequently when the PTF’s inventory

is unbalanced - a phenomenon often observed in practice.

The larger the active trading region, the more aggressively the PTF can trade because

it is less concerned about the end-of-day inventory cost. This is also reflected in the price

policy functions. Indeed, we see from Theorem 3.2 that the optimal bid and ask price policy

functions are linear in the inventory level, with “slope” given by α(t)/(1 − cα(t)). Thus,

Lemma 3.4 asserts that the sensitivity of bid and ask prices to the inventory level becomes

weaker as the time remaining until the day’s end increases.
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Moreover, the bid-ask spread features a nontrivial temporal pattern, as a result of the

PTF’s market making activities. In particular, it follows from (18) and (19) that the bid-ask

spread is given by

at(S, i)− bt(S, i) =
1− 2cα(t)

1− cα(t)
p, (23)

which is independent of the inventory level and the fundamental price. This result contrasts

with O’Hara and Oldfield (1986), who consider an optimal market making problem in which

each day consists of n trading periods and the market maker maximizes utility over an

infinite number of trading days. In their model, the market maker profits from the bid-ask

spread but faces end-of-day inventory effects. If the market maker is short, it pays a broker

loan rate on borrowing overnight, but if it is long, it receives an interest rate from lending

to brokers overnight.10 The equilibrium bid-ask spread in O’Hara and Oldfield (1986) is

thus influenced by overnight inventory, whereas it is not in our model. The following result

follows from Lemma 3.4.

Corollary 3.6. The bid-ask spread is strictly increasing with time. Suppose πB(t) ≡ πB and

πS(t) ≡ πS are constants. For a fixed time t ∈ [0, T ), the bid-ask spread is strictly increasing

with λ, and strictly decreasing with πB + πS.

Observe that the optimal bid-ask spread depends on order arrivals only through α(t),

which in turn depends on the total arrival rate πB(t) + πS(t), but not on πB(t) and πS(t)

individually. Hence, whether or not arrival rates are symmetric does not affect the optimal

bid-ask spread. However, a higher arrival rate towards the end of the trading day implies

narrower bid-ask spreads, because it provides more opportunities for the PTF to manage its

inventory (see Figure 6).

The economic intuition for the results in Corollary 3.6 is as follows: as the market becomes

more active, i.e., buy and sell orders arrive more frequently, the bid-ask spread at a fixed

time before day’s close narrows. Recall that the overnight inventory cost λ only contributes

to widen the bid-ask spread at T , thus a more active market makes the end-of-day inventory

10O’Hara and Oldfield (1986) model the overnight market as a competitive repurchase market in which
short parties borrow securities and lend cash, while long parties lend securities and borrow cash. In contrast,
we do not model the overnight market.
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cost fade away faster as the time to the day’s close increases. Moreover, as the end of the day

approaches, the growing concern about the inventory cost discourages the PTF from trading

actively. Hence, it sets a wider spread to reduce the quantity traded in each time step (see

Figure 6), but at the same time, the per-unit trading profit increases from each buy-and-sell

roundtrip. This trading behavior reflects the tradeoff faced by the PTF between making

trading profits and holding a non-zero inventory at the end of the day. It follows directly

from the ordinary differential equation (16) that the higher the order arrival rates πB and

πS, the faster α(t) will decrease as T − t increases. As a result (see also Corollary 3.6),

the bid-ask spread will also narrow faster. Compared with the flat and increasing pattern of

arrival rates, the U-shaped pattern tends to have the widest bid-ask spreads and lower arrival

rates at intermediate times. As the end of the day approaches, arrival rates are the lowest

under the flat arrival pattern. This also explains why the spread curves associated with the

U-shaped and flat arrival patterns cross, resulting in the widest bid-ask spread under a flat

arrival rate.

Our prediction on the temporal pattern of bid-ask spreads contrasts with that of Ho and

Stoll (1981). In their model, the monopolistic market maker is averse to both fluctuations

in the market price of its inventory and to uncertainty in the execution time of transactions.

By contrast, our PTF is risk neutral with respect to the cash proceeds of transactions, and

only pays a cost on the size of its overnight inventory. At any point in time, it does not face

any aversion with respect to the value of inventory at the terminal time.11

To understand the impact of a high overnight inventory cost, we use the explicit formulas

in (18), (19) and (23) to study the ask and bid price policy functions, as well as the bid-ask

spread. As the end-of-day inventory cost increases, i.e. λ gets larger, we obtain that |α(t)|

also becomes larger via a standard comparison argument in (16). This in turn implies that

both a∗t (S, i) and b∗t (S, i) become more sensitive to the inventory level i, and the bid-ask

spread widens. In the limiting case λ→∞, a∗t (S, i)→ S + p− 1
c
i and b∗t (S, i)→ S − p− 1

c
i,

and the bid-ask spread tends to its maximum value, 2p. Given that the reservation prices

11We also note that Ho and Stoll (1981)’s prediction holds only for the case of a sufficiently short time
horizon, whereas our prediction holds true for any time horizon.
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for the buyers and sellers also differ by 2p, we know that the Buy & Sell region for the

PTF is then empty at all times. The same conclusion can be drawn from Corollary 3.5,

which implies that L1
t = L2

t = 0, i.e., the PTF will not be willing to trade at all if its initial

inventory is already 0.

3.4 Endogenous Temporary Price Impact

Price impact arises endogenously in our model, and can be analytically quantified and ex-

plained. As can be directly seen from Theorem 3.2, the relationship between the optimal

ask/bid price and the inventory level is linear, and the slope coefficient of this linear relation-

ship is time-dependent. In particular, from the optimal ask and bid price policy functions,

we deduce that the mid-quote price, Pt := 1
2
(a∗t + b∗t ), is given by

Pt = St +
α(t)

1− cα(t)
It. (24)

Taking the differential of the above expression with respect to t, we obtain

dPt = dSt −
c(πB + πS)α2(t)

(1− cα(t))3
Itdt+

α(t)

1− cα(t)
dIt. (25)

Equation (25) describes the dynamics of the mid-quote price. It indicates that the in-

stantaneous change of the mid-quote price is negatively related to the current level of the

PTF’s inventory. Moreover, the price jumps every time a trade is executed. Specifically,

if a buy order is fulfilled at time t i.e. dIt = −QB(St, a
∗
t ) < 0, then the mid-quote price

will increase by α(t)
1−cα(t)

dIt > 0, which is proportional to the size of the trade taking place at

time t, QB(St, a
∗
t ). Likewise, if there is a sell order coming at time t, then the mid-quote

price will decrease by − α(t)
1−cα(t)

dIt, in an effort to invite a larger sized trade with a buyer to

balance inventory. Because the mid-quote price moves by − α(t)
1−cα(t)

multiples of the trading

size whenever a trade is executed, we refer to this ratio as the price impact coefficient. In

conjunction with Lemma 3.4, we deduce that the price impact coefficient tends to be larger

as time moves towards the day’s end, a phenomenon we document in our empirical analysis
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(see Section 5).12

The time varying and endogenous nature of the price impact coefficient and bid-ask

spreads is a distinguishing feature of our model, and is driven by the forward looking nature

of the end-of-day inventory cost. By contrast, in Amihud and Mendelson (1980), the price

policy functions are time-homogeneous because both bid and ask are independent of time

due to the perpetual nature of the dealer’s decision making problem. Moreover, a unit

trading size is considered in their model, hence an identical price impact is observed in every

trade. Models with information asymmetries, such as Glosten and Milgrom (1985), can also

generate an endogenous price impact from trades (of a unit size) when the traded asset has a

binary valued fundamental price (being either high or low). In contrast to our current setup,

their price impact mechanism is generated from a Bayesian learning mechanism: namely,

an incoming buy (sell) order signifies a stronger belief that the underlying security has a

high (low) fundamental price, and leads the market maker to adjust prices for the next step

according to this updated belief. Moreover, Glosten and Milgrom (1985) also predict that,

as more trades take place, both ask and bid price will converge to the true fundamental

price, so bid-ask spreads become narrower, not wider, as time progresses.

4 Comparative Statics

We study the sensitivity of price stability and welfare measures to the severity of the overnight

inventory cost λ, as well as to the arrival rates πB(t) and πS(t) of buy and sell orders.

Section 4.1 provides comparative statics for the price volatility process. Section 4.2 studies

the dependence of the buyer/seller’s surplus, and the PTF’s value, on the inventory cost and

order arrival frequency. Throughout the section, we assume that the PFT starts with zero

inventory, i.e., I0 = 0.

12Admati and Pfleiderer (1988) argue that traders prefer to trade when the market is “thick”, or, when
the price impact of their trades is small. In our model, buyers and sellers arrive according to Bernoulli
processes with fixed intensities. Nonetheless, our model predictions can be reconciled with those of Admati
and Pfleiderer (1988). This is because both the price impact and the bid-ask spread increase as the day’s
end approaches, which, according to Admati and Pfleiderer (1988), should cause buyers and sellers to arrive
less frequently.
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4.1 Price Stability

The overnight inventory cost steepens the market maker’s price impact function. We there-

fore expect price trajectories to be more volatile when market makers face higher inventory

costs. We measure price stability through the quadratic variation of the mid-quote price,

given by Pu = 1
2
(a∗u + b∗u) at time u, during the period [0, t], and denote it by QVt ≡ 〈P 〉t.

Formally, for an equidistant partition of the time interval [0, t] into n subintervals, we have13

QVt = lim
n→∞

n∑
k=1

(
P k

n
t − P (k−1)

n
t

)2

.

Equations (1) and (24) imply that the PTF’s market making activities subject to the

overnight costs will increase the quadratic variation of the mid-quote price. In particular,

the quadratic variation of the mid-quote price stays the same as that of the fundamental

price if overnight costs are absent. More specifically, we have

Proposition 4.1. Set πB(t) = π0(t)+ε(t), πS(t) = π0(t)−ε(t) for some ε(t) ∈ (−π0(t), π0(t)).

Then the expected quadratic variation during the period [0, t], for any t ∈ [0, T ], is given by

E[QVt] = σ2t+

∫ t

0

(
π0(u)c2α2(u)

2(1− cα(u))4

(
p2 + 4α2(u)E[I2

u]
)
− 2ε(t) c2pα(u)

(1− cα(u))2
E[Iu]

)
du,

where

E[I2
t ] =

∫ t

0

(
π0(u)(cp)2

2(1− cα(u))2
+ 2

(
π0(u)

c2pα(u)

(1− cα(u))2
− ε(u)

cp

1− cα(u)

)
E[Iu]

)
× exp(

∫ t

u

2π0(v)cα(v)(2− cα(v))

(1− cα(v))2
dv)du. (26)

Quadratic variation is a natural measure for price volatility. Specifically, it allows us to

introduce an instantaneous squared volatility measure

σ2(t) :=
d

dt
E[QVt] = σ2 +

π0(t)c2

2

α2(t)

(1− cα(t))4

(
p2 + 4α2(t)E[I2

t ]
)
− 2ε(t) c2pα(t)

(1− cα(t))2
E[It]. (27)

13This limit can be relaxed to any partition as long as the length of the longest subinterval eventually
converges to 0.
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Figure 7: Squared Volatilities and Squared Inventories for Symmetric Order Ar-
rival Rates. In all panels, dotted lines are for order arrival rates πB(t) = πS(t) = 30,
dashed lines are for πB(t) = πS(t) = 10, and solid lines are for πB = πS = 5. Panels (a)
and (c) plot, respectively, the squared volatility σ2(t) for the low overnight inventory cost
λ = 0.002, and the high overnight cost λ = 0.2, during the last 10% of the trading day.
Panels (b) and (d) plot the corresponding expected squared inventory of the PTF under the
low, respectively high, inventory cost. We set the annualized volatility of the fundamental
price process σ = 3.75%.

We conduct a comparative statics analysis of the squared volatility measure σ2(t) with respect

to the severity of the overnight inventory cost λ (per $100 million par) and the arrival rate

π. We use the demand and supply functions given in Figure 1.

Our analysis shows that both for the case of symmetric and time varying asymmetric

arrival rates (see Figures 7 and 8), the overnight inventory cost plays two distinct roles: it

generates an intensifying price impact intraday and an aversion towards holding excessive

inventory near the day’s close. For a low level of overnight costs, e.g. λ = 0.002, the aversion

towards inventory holdings is dominated by the phenomenon of intensifying price impact,
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Figure 8: Squared Volatilities and Squared Inventories for Time Varying Arrival
Rates. In all panels, the overnight inventory cost λ is fixed at 0.2 (per $100 million par).
Panels (a) and (c) plot, respectively, the squared volatility σ2(t) during the last 10% of the
trading day. Panels (b) and (d) plot the corresponding expected squared inventory of the
PTF. In panels (a) and (b), the solid lines are for the constant arrival rate πB(t) = πS(t) ≡ 10,
the dashed lines are for arrival rates πB(t) = πS(t) = t + 5. In panels (c) and (d), the solid
lines are for arrival rates πB(t) = t + 5, πS(t) = 15− t, and the dashed lines are for arrival
rates πB(t) = 7 + 0.36(t− 5)2, πS(t) = 13− 0.36(t− 5)2. We set the annualized volatility of
the fundamental price process σ = 3.75%.

and thus the instantaneous squared volatility process increases over time for all three levels

of arrival rates. In contrast, if overnight inventory costs are high, e.g. λ = 0.2, the aversion

towards holding inventory becomes the prevailing force and leads the PTF to drastically

reduce its trading volume near the day’s close. This brings down the instantaneous squared

volatility consistently across the levels of arrival rates.

Figure 7 shows the dynamics of the instantaneous squared volatility process defined in

(27), and of the second moment of the inventory process for the case of symmetric time

homogeneous arrival rates. The plot in Panel (a) of Figure 7, shows that the squared
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volatility increases over time, consistent with the bid-ask spread pattern highlighted in Figure

6. However, different from the bid-ask spread, the instantaneous squared volatility is not

monotone in the order arrival rates πB, πS. In particular, as πB, πS increase, the squared

volatility may decrease if the trading time is far from the day’s close, and increase if the

trading time is near the day’s close. This phenomenon can be attributed to the complex

relation between order arrival rates and the dynamics of price trajectories. On the one hand,

higher order arrival rates lead to higher trading volumes, and hence generate more volatility.

On the other hand, as the intensities of order arrivals get higher, the impact of the overnight

costs (see Theorem 3.2, Lemma 3.4, and Section 3.4) is attenuated faster as the trading time

gets further away from the day’s close, reducing both price impact and price volatility. The

overall trend depends on which of these two counteracting forces prevail: our analysis shows

that as the market becomes more active, the squared volatility decreases in earlier times of

the day but increases at later times of the day. Panel (b) of Figure 7 reflects the PTF’s

aversion towards holding excessive inventory. Both in the case of symmetric and asymmetric

arrival rates, as the end of the trading day approaches the size of the PTF’s expected squared

inventory decreases.

Panels (c) and (d) of Figure 7 show the dynamics of volatility and expected squared

inventory for higher overnight costs. Interestingly, apart from the increase in price volatility

of Panel (c) compared with Panel (a), we observe that the squared volatility always drops

near the day’s close. Comparing Panel (b) with Panel (d), we deduce that this difference can

be explained by the PTF’s aversion towards holding excessive inventory near the day’s close.

For large values of λ, the PTF chooses to trade very little towards the close, preferring to

maintain a near zero inventory rather than profiting from trade executions. As a consequence

of the very low trading activity, the price volatility declines.

Figure 8 shows that the temporal pattern of order arrivals strongly affects inventory

management and price volatility. The top panels of the figure indicate that, as order arrival

rates increase towards the end of the trading day, the PTF’s expected squared inventory

and price volatility also increase. Despite the symmetry in the arrival of orders, a higher

intensity increases the variance of inventory positions and thus results in higher instantaneous
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squared volatility. The bottom panels of the figure deal with the case of time varying, but

asymmetric, arrival rates. We consider two temporal patterns. In the first case, buy orders

increase linearly over time while sell orders decrease linearly over time. In the second case,

buy orders arrive at a high intensity at the beginning and end of the trading day but with

a moderate intensity during the trading day, while sell orders follow a reverse U-shaped

pattern. In both cases, the PTF has a higher imbalance in its inventory relative to the case

of symmetric arrivals, which results in increased volatility and inventory compared to the

case of symmetric arrivals. Noticeable in the case of U-shaped arrival rates, the expected

inventory and volatility are lower. This can be understood from the fact that the total level

of imbalance is lower as the expected inventory mean-reverts twice towards zero before the

end of the day, hence making it easier for the PTF to control inventory.

The above analysis is based on analytical results derived in Proposition 4.1. Next, we use

stochastic simulation to examine a specific sample path in which a larger number of sell or-

ders, relative to buy orders, is realized. As discussed earlier in the paper, asymmetric arrival

of buy/sell orders has been identified in the empirical literature as a typical characteristic

of flash events. We simulate buy and sell order arrivals, and then analyze the effects of two

different end-of-day inventory costs: λ = 0.002; and λ = 0.2.

As shown from the simulated trajectories of the mid-quote price reported in Figure 9,

higher end-of-day inventory costs amplify the downward pressure on prices caused by the

order imbalance. The figure suggests a strong link between the magnitude of the overnight

inventory cost and the volatility of price trajectories. As evident from the figure, managing

inventory is more challenging when arrival rates are asymmetric, and the failure to do so

effectively may result in large overnight positions (compare to the case when λ = 0 in the top

panels). This explains why the price exhibits abrupt downward jumps when the overnight

cost is high. By contrast, the PTF accumulates, on average, zero inventory if order arrivals

are symmetric. As a result, prices can be used to manage inventory without inducing big

volatility spikes towards the end of the trading day (compare price trajectories in the left

panels of Figure 9).
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Figure 9: Simulated Price and Inventory Trajectories for Different Overnight
Inventory Costs. This figure plots the trajectories of the mid-quote price and inventory
under the demand and supply functions specified as in Figure 1 for two different values of
λ: λ = 0.002 (per $100 million par) in the orange line; λ = 0.2 (per $100 million par) in
the blue line. The fundamental price, which can be viewed as the mid-quote price when
λ = 0, is shown in red. Top panels: asymmetric arrival rates πB(t) = 12, πS(t) = 8. Bottom
panels: symmetric arrival rates πB(t) = 10, πS(t) = 10. We set the annualized volatility of
the fundamental price process σ = 3.75%. For each choice of λ, we consider the same arrival
sequence of buy and sell orders. Noticeably, the larger the λ, the more volatile the price
trajectory, especially near the day’s close.

4.2 Welfare of Market Participants

We now conduct a comparative statics analysis on the surplus of the buyers and sellers, and

the value of the PTF. Throughout this section, we set πB(t) = πS(t) = π0, and I0 = 0. The

surplus for a buyer or a seller is defined as follows. If there is a buy order arriving at time t,

then we measure the surplus for this order as the area of the region bounded by the traded
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quantity QB(St, a
∗
t ), the demand curve QB(St, x), and the reservation price St + p:∫ St+p

a∗t

[QB(St, a
∗
t )−QB(St, x)]dx =

c

2
(St + p− a∗t )2.

Similarly, the surplus for a sell order arriving at time t is measured by c
2
(b∗s − St + p)2. If

λ = 0, the PTF acts as a period-by-period monopolist or monopsonist and implements the

constant ask and bid price policy functions S ± 1
2
p (see footnote 9). This yields a constant

surplus per trade for the buyers/sellers equal to c
8
p2.

To assess the effect of the end-of-day inventory cost λ on surplus, we compare the surplus

per trade for buy and sell orders with those in the benchmark case λ = 0. Recall that in

contrast to the benchmark case, a positive inventory cost λ will generate price impact from

trades. This in turn leads to a stochastic price process (which may be higher or lower than

the corresponding price when λ = 0) and random surplus in every trade. We thus use the

ratio between the expected total surplus for buy or sell orders and the expected number of

buy or sell trades during the whole period to measure the surplus per trade for each type of

order. These are respectively defined as

ASurplusB :=
c

2π0T
E
[ ∫ T

0

(St + p− a∗t )2dNB
t

]
,

ASurplusS :=
c

2π0T
E
[ ∫ T

0

(b∗t − St + p)2dNS
t

]
.

We also compute the ratio between the PTF market maker’s value function at the end

of the day and the expected number of trades, i.e.,

AV alueM :=
v(0, 0, S, 0)

2π0T
.

This quantity measures the PTF’s realized utility per trade under the price trajectory de-

termined by the optimal trading actions. A direct application of Theorem 3.2 yields the

following
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Figure 10: Plots of Average Buyer or Seller, and PTF’s Value per Trade. In all
panels, dotted lines refer to π0 = 30, dashed lines refer to π0 = 10, and solid lines refer to
π0 = 5. Panel (a): buyer or seller surplus per trade; Panel (b): PTF’s value per trade.

Proposition 4.2. The surplus per trade for buyers and sellers is given by

ASurplusB = ASurplusS =
c

2T

∫ T

0

(
p2

4(1− cα(t))2
+

α2(t)

(1− cα(t))2
E[I2

t ]

)
dt,

where E[I2
t ] is given in (26). The value per trade of the PTF is given by

AV alueM =
c

4T

∫ T

0

p2

1− cα(t)
dt.

We analyze the changes in realized surplus for buyers/sellers, and the value of the PTF,

relative to the benchmark case of λ = 0, as we vary the overnight cost parameter λ and the

order arrival rate parameter π.

Figure 10 reports the average surplus per trade for buyers or sellers, and the value of

the PTF, for different choices of λ and π. First, the two panels suggest that, for any λ > 0,

higher arrival rates improve the surplus per trade of buyers/sellers and the value of the PTF:

the dotted curves (π0 = 30) lie strictly above the dashed (π0 = 10) and solid (π0 = 5) ones.

Second, because all confidence bands are downward sloping, larger overnight inventory costs

λ have a negative effect on the buyer/seller’s surplus and PTF’s value. Third, increases in

the overnight inventory cost relative to the benchmark case λ = 0 have the greatest negative

impact on buyer/seller’s surplus and PTF value if the arrival rates are low (π0 = 5).
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Altogether, these results suggest that while the PTF’s overnight inventory cost has a

negative effect on the aggregate welfare, its magnitude depends crucially on market activity.

When buyers and sellers arrive intraday at a high intensity, the buyer/seller’s surplus and

PTF’s value per trade for small λ > 0 is not too different from the surplus per trade in the

benchmark case λ = 0. In contrast, the buyer/seller’s surplus and PTF’s value per trade

in markets with low trading activity is notably more sensitive to changes in the overnight

inventory cost. The loss in surplus per trade when λ goes from zero to a slightly positive

value is especially striking for buyers and sellers. This suggests that in markets with low

trading activity, the PTF is posting higher asks and lower bids per trade relative to the

static monopoly and monopsony setting. Panel (b) in the figure shows, however, that these

widened bid-ask spreads are not sufficient to compensate the PTF for the incurred inventory

costs, as the PTF is unable to achieve the utility realized in the benchmark case. The PTF

thus appears unable to fully transfer the overnight inventory cost to buyers and sellers.

5 Empirical Evidence from Treasury Data

Our theory has implications for markets that are intermediated by liquidity providers with

overnight inventory constraints. Based on the findings of the Joint Staff Report (2015),

we expect the BrokerTec interdealer ECN for U.S. Treasury securities to represent such

a market. Using non-public data from BrokerTec, the Joint Staff Report (2015) found

that PTFs have become leading liquidity providers in the interdealer Treasury market.14

Moreover, the report shows that PTFs carry significantly less inventory overnight than bank-

dealers, implying a strong end-of-day inventory aversion. We thus use BrokerTec data to

analyze whether price and liquidity dynamics are consistent with the activities of liquidity

providers facing overnight inventory constraints. We describe the data set in Section 5.1. We

empirically test the model prediction on the relation between price changes and inventory

changes in Section 5.2. We analyze the model predictions on intraday patterns of bid-ask

14Activity in the Treasury market is roughly split between the interdealer segment and the dealer-to-
customer segment (Brain et al. (2018)). Participation in the interdealer segment was historically limited to
dealers (hence the name), but expanded to include PTFs and hedge funds in the mid 2000s.
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spread in Section 5.3. Section 5.4 provides further empirical analysis on day-of-week effects

and Section 5.5 assesses possible alternative explanations for our empirical findings.

5.1 Description of Data Set

Our data is from the BrokerTec interdealer ECN. Nearly all interdealer trading of on-the-run

U.S. coupon securities occurs via electronic platforms among which BrokerTec accounts for

about 80% of trading.15 In contrast to the Joint Staff Report (2015), our BrokerTec data set

is anonymized to protect the identities and strategies of participating firms. Nonetheless, the

data set is very rich, containing every electronic message submitted to the trading platform

for the 1,376 trading days between January 2, 2013 and June 30, 2018, time-stamped to the

millisecond (through Tuesday, March, 31, 2015) or microsecond (from Wednesday, April, 1,

2015), and representing the same information available to computer-based traders in real-

time. The on-the-run 10-year Treasury note is the focus of our empirical analysis, following

the Joint Staff Report (2015). Over our sample period, daily trading volume in the note

averages $40.7 billion and the daily number of trades averages just over 16,000.

The BrokerTec platform operates as an electronic limit order market, in which buyers

are matched to sellers without human intervention (Fleming et al. (2018)). Traders send in

orders (minimum size $1 million par value) that can be aggressive (liquidity taking or market

orders) or passive (liquidity providing or limit orders). Limit orders remain in the book until

canceled or lifted. In addition to shown limit orders, BrokerTec allows traders to submit

iceberg orders, which conceal part of the total quantity the trader is willing to transact at

the posted price. BrokerTec also features a workup protocol by which each market order

triggers a temporary phase during which market participants can transact additional volume

at the same price as the original order (Fleming and Nguyen (2019)).

We use the BrokerTec message data to reconstruct the limit order book. The recon-

structed limit order book data allows us to calculate bid-ask spreads at the inside tier of the

15Electronic brokers account for 87% of trading in on-the-run coupon securities that oc-
curs through interdealer brokers (Brain et al. (2018)). According to Greenwich Associates
(https://www.greenwich.com/blog/does-cme-own-us-treasury-market), based on 2017 Q4 data, BrokerTec’s
market share in the electronic interdealer market is 80%.
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book as well as changes in the bid-ask midpoint (or mid-quote price). To analyze bid-ask

spreads, we calculate the average spread for each five-minute interval across all order book

snapshots within each interval. To analyze price impact, we relate changes in the bid-ask

midpoint for each 30-minute interval to our measure of market maker inventory changes over

the same interval. The BrokerTec platform operates 22-23 hours per day during the week,

but our focus is on New York trading hours, 7:30 a.m. - 5:30 p.m., when the market is most

liquid (Fleming (1997)).

Because our data set does not identify individual market participants, we proxy for

market makers’ aggregate inventory as the negative of the observed cumulative net volume,

a measure that is often also referred to as order imbalance. Intuitively, this proxy captures the

difference between the number of aggressive buy and sell orders submitted to BrokerTec. If

this number is zero, then the number of aggressive buy orders (that is, buyer-initiated trades)

equals the number of aggressive sell orders (seller-initiated trades), which translates into no

inventory change for intermediaries as a group. By contrast, a large positive cumulative

net volume or order imbalance means that more aggressive buy orders were placed than

aggressive sell orders. To satisfy this demand, a representative intermediary that started the

day with zero inventory is therefore interpreted as having sold short the difference, and thus

carries a negative inventory position.

We expect this proxy for market maker inventory to perform well. Boehmer et al. (2018)

present evidence that PTF intraday trading activity has a strong factor structure, suggesting

that PTFs pursue a handful of similar strategies. This finding suggests that it is reasonable

to treat many firms with highly correlated market making strategies as a single, represen-

tative firm. Furthermore, treating order imbalances as a proxy for market maker inventory

has found support in the literature (see, for example, Chordia et al. (2002)). Lastly, our

analysis explicitly excludes the period around the most important scheduled macroeconomic

announcements, when the asymmetric information component of order flow is likely to be

the highest, allowing us to focus on inventory-based interpretations of order flow.

To produce our cumulative net volume measure, we must classify trades as buys or sells.

Fortunately, the side that initiated a trade is a field in the BrokerTec data set, allowing us
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to classify trades directly. This is an advantage over indirect classification algorithms used

in the literature.

5.2 The Relation between Prices and Inventory

Our theory predicts that inventory changes and price changes are negatively related. To

see this explicitly, we derive a discrete-time version of (25). Fixing a given time increment

∆t > 0, we consider the Euler scheme

Pt+∆t − Pt ≈ St+∆t − St −
c(πB + πS)α2(t)

(1− cα(t))3
It ∆t+

α(t)

1− cα(t)
(It+∆t − It). (28)

We simplify (28) to facilitate the empirical analysis. In particular, notice that



(St+∆t − St)/
√

∆t ∼ N(0, σ2),

−c(π
B + πS)α2(t)

(1− cα(t))3
It∆t = O(∆t),

α(t)

1− cα(t)
(It+∆t − It) = O(1) if there are trades in period (t, t+ ∆t].

This gives rise to a regression equation of the form

Pn∆t − P(n−1)∆t = βn(In∆t − I(n−1)∆t) + γn + εn,

for n = 1, 2, . . . , bT/∆tc, where εn’s are i.i.d. N(0, σ2∆t), γn’s are constant coefficients, and

βn’s are negative coefficients that are decreasing with n.

The steepening of the slope coefficients βn intraday, i.e., as n increases and time ap-

proaches the day’s close, is the distinguishing feature of our theory relative to existing

market-making models with inventory constraints. To test this prediction empirically, we

regress half hour price changes on our proxy for inventory changes for each half hour interval

of the day, exploiting variation across days to identify the slope and intercept parameters.

Specifically, for each half hour window, starting with 9 a.m. - 9:30 a.m., we obtain the

mid-quote price change over that half hour for each day, as well as the inventory change over
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the same half hour.16 This results in 1,376 price and inventory changes for the 9 a.m. - 9:30

a.m. regression, one for each day in our sample.17 The process is repeated for subsequent

half hour intervals, allowing us to estimate price-inventory sensitivities over the course of

the trading day. Since the BrokerTec ECN closes at 5:30 p.m., the last regression uses data

over the 5 p.m. - 5:30 p.m. window. While these regressions can in principle be performed

on shorter intervals, we note that very high frequency estimates would result in intervals

containing zero buy and sell orders. Thus, the half hour frequency strikes a middle ground

between allowing a sufficient number of buy and sell orders to arrive, and at the same time

examining intraday variation in price-inventory sensitivities.

The results in Figure 11 show a statistically significant negative relationship between

price changes and inventory changes for each half hour between 9 a.m. and 5:30 p.m. Most

importantly, however, the figure shows a strong steepening of price-inventory sensitivities

near the market close, consistent with the theoretical predictions in Section 3.4. To verify

whether this steepening is statistically significant, Table 1 reports the results of t-tests on

the differences between near-close (5 p.m. - 5:30 p.m.) and earlier intraday price impact

coefficients. The table shows that the slope of the price-inventory relationship is not time-

homogenous as predicted by existing theories, but statistically steeper toward the end of the

day. Note that the left panel in Figure 11 shows that the intercepts from the regressions

of price changes on the market maker’s inventory changes are close to zero, suggesting that

price and inventory changes are linked by an approximate linear relationship over short time

windows, as described by equation (24).

5.3 The Intraday Pattern of Bid-Ask Spreads

We proceed to test the empirical implications of our model for bid-ask spreads. Corollary

3.6 asserts that bid-ask spreads are narrower intraday than near the close. This relation

16We deliberately start this analysis after the period surrounding the most important scheduled macroe-
conomic announcements, such as the employment report. These announcements, which are released at 8:30
a.m., are associated with worse liquidity and high information asymmetry (see, for example, Fleming and
Remolona (1999) and Green (2004)).

17There are as few as 1,344 observations available for some of the half hour intervals because of early
market closes, which occur around holidays.
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Figure 11: The Relation between 10-Year Treasury Price and Inventory Changes.
This figure plots intercepts γn (left panel) and slopes βn (right panel) from regressions of
10-year Treasury price changes on changes in market maker inventory, as proxied by the
negative of cumulative net volume. For each half hour interval, starting with 9 a.m. - 9:30
a.m., we calculate the mid-quote price change over that half hour for each day, as well as the
inventory change over the same half hour. We then regress the price changes on the inventory
changes. Analogous regressions are run for each subsequent half hour interval of the trading
day. Since the market closes at 5:30 p.m., the last regression uses price and inventory changes
from 5 p.m. - 5:30 p.m. The figure also plots 99% Newey-West confidence intervals for the
coefficient estimates. Prices are measured in basis points of par and inventories are measured
in hundreds of millions of dollars par. The sample period is January 2, 2013 - June 29, 2018.

is also graphically illustrated in Figure 6, which shows a pattern of model-implied bid-ask

spreads that are tight for most of the trading day and then widen rapidly near the close.

Our analysis of BrokerTec bid-ask spreads reveals a similar pattern: The left panel of Figure

12 shows that, on average, bid-ask spreads are relatively narrow from 7:30 a.m. - 5 p.m.,

hovering around 1.7 basis points of par.18 As the end of the day approaches, however, bid-ask

spreads widen sharply, mimicking the rapid widening in bid-ask spreads predicted by our

theoretical model and visualized in Figure 6. Moreover, the right panel of Figure 12 shows

that this is an empirical regularity that is maintained on almost all of the trading days in

our sample. That is, spreads near the market close (5:25 p.m. - 5:30 p.m.) are nearly always

18The spikes at 8:30 a.m. and 10 a.m. are associated with scheduled macroeconomic announcements at
those times, the 1 p.m. spike with Treasury auction closes, and the 2 p.m. and 2:15 p.m. spikes with Federal
Open Market Committee announcements.
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Table 1: Price Changes and Inventories: Tests of Equal Slopes on Intraday vs
Close

This table reports the results of tests of the null hypothesis that the relationship between price changes
and inventory changes is the same intraday as near the close of the trading day. Slope coefficients βn are
from regressions of 10-year Treasury price changes on changes in market maker inventory, as proxied by the
negative of the cumulative net volume. For each half hour interval, starting with 9 a.m. - 9:30 a.m., we
obtain the mid-quote price change over that half hour for each day, as well as the inventory change over
the same half hour. We then regress the price changes on the inventory changes. Analogous regressions
are run for each subsequent half hour interval of the trading day. Since the market closes at 5:30 p.m., the
last regression uses price and inventory changes from 5 p.m. - 5:30 p.m. The difference between the slope
coefficient for the 5 p.m. - 5:30 p.m. interval and the slope coefficient from each earlier half hour interval is
reported, along with the associated t-statistic and p-value. Prices are measured in basis points of par and
inventories are measured in hundreds of millions of dollars par. The sample period is January 2, 2013 - June
29, 2018.

Time of Day i βclose − βi t-stat p-value

9:00 - 9:30 -0.86 [-3.76] (0.00)
9:30 - 10:00 -0.89 [-3.95] (0.00)

10:00 - 10:30 -0.90 [-3.94] (0.00)
10:30 - 11:00 -1.00 [-4.43] (0.00)
11:00 - 11:30 -1.01 [-4.37] (0.00)
11:30 - 12:00 -1.08 [-4.80] (0.00)
12:00 - 12:30 -1.02 [-4.55] (0.00)
12:30 - 13:00 -1.18 [-5.27] (0.00)
13:00 - 13:30 -0.76 [-3.31] (0.00)
13:30 - 14:00 -0.89 [-3.94] (0.00)
14:00 - 14:30 -0.85 [-3.56] (0.00)
14:30 - 15:00 -1.29 [-5.57] (0.00)
15:00 - 15:30 -1.37 [-6.09] (0.00)
15:30 - 16:00 -1.12 [-4.91] (0.00)
16:00 - 16:30 -1.13 [-5.00] (0.00)
16:30 - 17:00 -1.10 [-4.83] (0.00)

wider than spreads earlier in the day (e.g., 9 a.m. - 9:05 a.m.). Together with steepening

price impacts, the widening of bid-ask spreads toward the end of the day is consistent with

the hypothesis that liquidity providing PTFs on the BrokerTec ECN are averse to carrying

inventory overnight.

5.4 Price Impact by Day of Week

A natural extension of the previous exercises is to ask whether the end-of-day inventory

effects vary by day of the week. In particular, Fridays are unique from the perspective

of an intraday trader in that the next trading session for managing risk and inventory is

49-50 hours away. By contrast, from Monday to Thursday, the overnight trading session in
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Figure 12: Bid-Ask Spreads: Intraday and in the Time Series. The left panel plots
intraday bid-ask spreads for the 10-year Treasury note, for the January 2, 2013 - June 29,
2018 sample period. Using tick-by-tick order book data, bid-ask spreads are averaged for
each 5 minute interval of each day, and then averaged across days for each 5 minute interval.
The right panel plots the time series of bid-ask spreads for the 10-year Treasury note early
in the New York trading day (9 a.m. - 9:05 a.m.) and near the market close (5:25 p.m. -
5:30 p.m.)

Treasuries opens 1-2 hours after the close, allowing some opportunity to trade out of residual

inventories (albeit with higher transaction costs).19 To the extent that news is revealed over

the weekend, one might expect PTFs to show an aversion to potentially large Friday-to-

Monday price swings, and therefore display a stronger desire to shed inventory before the

close on Friday.20

To investigate this hypothesis, we partition our data set into a Friday-only subsample

and a pooled Monday through Thursday subsample. For each subsample, we isolate the

same intraday time intervals starting with 9 a.m. to 9:30 a.m., and regress price changes

on changes in our inventory proxy, including a constant. We repeat this process for each

subsequent half hour interval until 5:30 p.m.

19The reason the gap to the next trading session is not constant is because the market close is fixed relative
to New York trading hours (5:30 p.m.) and the market open is fixed relative to Tokyo’s market open (8:30
a.m. local time), and Japan does not have daylight saving time.

20We thank the referee for making this suggestion.
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Figure 13: Price Impact and Bid-Ask Spreads by Day of Week. The left panel
plots slopes βn from regressions of 10-year Treasury price changes on changes in market
maker inventory, as proxied by the negative of the cumulative net volume, for subsamples
of Friday-only observations (orange) and pooled Monday through Thursday observations
(blue). For each half hour interval, starting with 9 a.m. - 9:30 a.m., we obtain the mid-quote
price change over that half hour for each day, as well as the inventory change over the same
half hour. We then regress the price changes on the inventory changes for our Friday-only
observations and for our Monday through Thursday observations. Analogous regressions are
run for each subsequent half hour interval of the trading day. Since the market closes at 5:30
p.m., the last regressions use price and inventory changes from 5 p.m. - 5:30 p.m. The right
panel plots intraday bid-ask spreads for the 10-year Treasury note on Fridays (orange) and
on other days of the week (blue). Using tick-by-tick order book data, bid-ask spreads are
averaged for each 5 minute interval of each day, and then averaged across days for each 5
minute interval for the subsamples of Friday-only observations and pooled Monday through
Thursday observations. In both panels, shaded areas represent 99% confidence intervals
based on standard errors (robust standard errors in left panel), and the sample period is
January 2, 2013 - June 29, 2018.

The left panel of Figure 13 plots the resulting slope estimates by time of day, including

their 99% confidence intervals. The slope estimates show a clear negative price-inventory

relationship that persists throughout the day and strengthens toward the close, consistent

with Figure 11. Moreover, the Friday closing (5 p.m. - 5:30 p.m.) price impact coefficient is

approximately three times larger in magnitude than the closing price impact coefficient for

the Monday through Thursday subsample.

The right panel of Figure 13 plots representative bid-ask spreads, obtained by averaging

bid and ask quotes within each five-minute interval on each day and then further averaging
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them across days for each five-minute interval within each subsample. Here, too, the end-

of-day widening of bid-ask spreads is significantly greater on Fridays than it is for the other

days of the week. Through the lens of the model, these price impact and bid-ask spread

patterns provide support for the hypothesis that PTFs have an especially strong aversion to

holding inventory over the weekend.

5.5 Alternative Explanations

Might there be alternative explanations for our findings? Fleming (1997) shows that Trea-

sury market trading volume trails off as the end of the trading day approaches. Market

participants exiting the market at the end of the day, reflecting reduced demand for liquidity

provision, might naturally cause spreads to widen and price impact to increase. Indeed, we

find average trading volume in the 5 p.m. - 5:30 p.m. interval to be lower than that in any

other half hour interval during New York trading hours (albeit higher than in any half hour

interval before 2 a.m.).

One way to address this question is to consider how PTFs behave relative to other market

participants near the end of the trading day. Unfortunately, our dataset is anonymized, as

mentioned earlier, precluding us from identifying specific firms or even firm types. That

said, we can proxy for firm type by observed behavior in the market. In particular, we can

proxy for the percent of trading volume accounted for by PTFs by the percent of trading

volume that appears to be low latency. We define a trade as low latency if it occurs with

0.01 seconds of the preceding trade, too short of an interval to reflect human reaction.21 Our

measure is motivated by Hasbrouck and Saar (2013)’s definition of low latency activity as

strategies that respond to market events in the millisecond environment and is similar to the

approach used by Salem et al. (2018), who also examine data from BrokerTec.

As shown in Figure 14, our proxy for the percent of trading volume accounted for by

PTFs is fairly steady across most of the trading day, and then declines sharply near the end

of the trading day. That is, not only is volume declining at the end of the trading day, but

21The measure is necessarily imprecise because low latency trades are an imperfect proxy for PTF trades
and because a trade that appears low latency may occur shortly after another trade by chance, or because
both trades are reacting to an earlier market event and arriving at the platform at about the same time.
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Figure 14: PTF Trading Volume Share over the Trading Day. This figure plots the
share of trading volume over the trading day attributable to PTFs, as proxied by the share
of trading volume that is estimated to be low latency. For each 5 minute interval of each
day, we calculate the share of trading volume attributable to trades that execute within 0.01
seconds of the preceding trade. We then average these shares across days for each 5 minute
interval. The sample period is April 1, 2015 - June 29, 2018.

PTFs’ share of volume is seemingly also declining. Hesitance to take on new positions as

the market close approaches may be causing PTFs to widen their spread and/or exit the

market, leaving a greater share of market making to firms with larger balance sheets and

lower inventory costs, such as broker-dealers.

Another possible explanation for the observed end-of-day empirical patterns is that they

reflect the earlier (5 p.m.) close of futures and options trading. Cross-market activity

accounts for a large share of trading in both the Treasury cash and futures markets (Dobrev

and Schaumburg (2015)). The cessation of futures and options trading on the Chicago

Board of Trade at 5 p.m. precludes cash market traders from immediately hedging positions

in these other markets and might cause market makers to widen their spreads regardless of
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the pending cash market close. We do in fact observe a discrete worsening of market liquidity

right at 5 p.m., as measured by reduced order book depth, for example.

That said, we also observe a widening of bid-ask spreads in the minutes before 5 p.m.

when both markets are open, and also in the minutes before 5:30 p.m., when only the cash

market is open. These patterns are especially evident when we calculate bid-ask spreads for

larger sized trades.22 The general pattern of liquidity worsening as the end of the trading

day approaches is thus replicated to a lesser degree in the period before the futures market

close at 5 p.m. and again before the cash market close at 5:30 p.m.

6 Conclusion

Principal trading firms now account for a large share of liquidity provision in the secondary

U.S. Treasury market (Joint Staff Report (2015)). The literature suggests that PTFs unwind

their trading books before the end of the day, because they face overnight funding costs

that are substantial relative to their limited capital bases. To study the effect of overnight

inventory aversion, we propose a continuous time model of intraday market making in which

a PTF balances trading profits from crossing the bid-ask spread against the costs of holding

residual inventory at the end of the trading day.

We characterize the optimal market making behavior of a PTF and provide closed-form

expressions for the PTF’s value function as well as for its optimal price policy functions.

The PTF’s optimal price setting strategy gives rise to endogenous price impact and bid-ask

spreads that vary as a function of the PTF’s shadow value of the overnight inventory cost.

Inventory aversion leads to bid-ask spreads and price impact that rise as the end of the

trading day approaches, even though buy and sell orders arrive at a constant rate. Higher

overnight inventory costs steepen the price impact function of the market maker, and lead

to a higher volatility of the price trajectories. A higher intensity of order arrivals attenuates

22Fleming et al. (2018) find that 97% of inside spreads for the on-the-run 2-year note equal the minimum
tick size (using BrokerTec tick data for 2010-2011). To detect changes in liquidity that are otherwise masked
by the minimum spread for a $1 million trade, we also calculate the spread for a ”large” trade, defined as a
trade size at the 95th percentile (based on all trades over the sample period), allowing for greater variation
in the spread.

47



the shadow cost of overnight inventory and reduces price volatility if the trading time is

sufficiently far from the day’s close. On the other hand, a more active market intensifies

price impact and increases price volatility if trading occurs towards the end of the day.

We also study price stability and provide comparative statics measuring the surplus per

trade for buyers, sellers, and the PTF’s value. Our results suggest that, while overnight

inventory costs increase price instability and reduce buyer/seller’s surplus, these effects can

be either offset or reversed depending on market activity. In markets with high order arrival

rates, increases in the overnight inventory costs have a negligible impact on the buyer/seller’s

surplus per trade and the PTF’s value. In contrast, overnight inventory costs have the most

detrimental effect in markets with low order arrival rates.

The theoretical predictions of our model are supported by empirical evidence based on

U.S. Treasury data. Our analysis confirms a statistically significant negative relationship

between intraday changes in prices and changes in inventory holdings, as well as the inten-

sification of price impact and the widening of bid-ask spreads toward the day’s close. The

finding that PTFs’ share of trading activity seems to decline as the end of the trading day

approaches provides further support for the hypothesis that these temporal patterns are

driven by PTFs’ aversion to holding excessive overnight inventory.

A Proofs

Proof of Lemma 3.1. For fixed t and S, because F (t, S, i) is assumed to be strictly concave in
i (its derivative is decreasing), we know that Gt,S(i) is strictly decreasing in i. Furthermore,
we have assumed that ∂iF (t, S, i) is increasing in i and maps onto R, thus we know that
Gt,S(−∞) =∞ = −Gt,S(∞).

To prove the results, we determine the optimal ask and bid prices by maximizing the
Hamiltonian H. Because the Hamiltonian H can be written as the sum of a function of the
ask price a and another function of the bid price b, we can separately determine the optimal
ask and bid prices.

For the optimal ask price, since the function F (t, S, i) is strictly concave in i, we know
that for each fixed i, the mapping

a 7→ v(t, S, w + aQB(S, a), i−QB(S, a))− v(t, S, w, i)

= ca(S + p− a) + F (t, S, i− c(S + p− a))− F (t, S, i)
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is strictly concave in a. Likewise, the mapping

b 7→ v(t, S, w − bQS(S, b), i+QS(S, b))− v(t, S, w, i)

= −cb(b− S + p) + F (t, S, i+ c(b− S + p))− F (t, S, i)

is strictly concave in b. Hence, for each fixed i, there is a unique optimal pair (at(S, i), bt(S, i))
that maximizes the Hamiltonian in (11) (notice that it may still occur that at(S, i) < bt(S, i)).
In addition, at(S, i), bt(S, i) are the solutions of the decoupled system of first order conditions
given by

∂iF (t, S, i− c(S + p− at(S, i))) + S + p− 2at(S, i) = 0,

∂iF (t, S, i+ c(bt(S, i)− S + p)) + S − p− 2bt(S, i) = 0.

After algebraic manipulations, we deduce that the following relations hold:

0 = ∂iF (t, S, i− c(S + p− at(S, i))) + S + p− 2at(S, i)

= Gt,S(i− c(S + p− at(S, i)))− (S + p− 2i

c
).

Using the definition of inverse functions, we obtain

i− c(S + p− at(S, i)) = G−1
t,S

(
S + p− 2i

c

)
,

leading to (12). Similarly, from

0 = ∂iF (t, S, i+ c(bt(S, i)− S + p)) + S − p− 2bt(S, i) = Gt,S(i+ c(bt(i)− S + p))− (S − p− 2i

c
),

we obtain (13).
To show that the mapping i 7→ at(S, i) is strictly decreasing, we consider i1 < i2, then

we have

∂iF (t, S, i2 − c(S + p− at(S, i1))) + S + p− 2at(S, i1)

< ∂iF (t, S, i1 − c(S + p− at(S, i1))) + S + p− 2at(S, i1)) = 0,

where we used the fact that ∂iF (t, S, i) is strictly decreasing in order to get the first inequality.
On the other hand, the mapping a 7→ ∂iF (t, S, i2 − c(S + p − a)) + S + p − 2a is clearly
strictly decreasing, and at(S, i2) is the zero of this mapping. So, it must hold

at(S, i2) < at(S, i1).

Applying the same argument to equation ∂iF (t, S, i + c(b − S + p)) + S − p − 2b = 0, we
obtain the same result for bt(S, i).

Finally, notice that

p− 2i

c
> −p− 2i

c
.
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By (12), (13) and the monotonicity of G−1
t,S, we have

at(S, i)− bt(S, i) =
1

c
G−1
t,S

(
− p− 2i

c
+ 2p

)
− 1

c
G−1
t,S

(
− p− 2i

c

)
+ 2p < 2p.

On the other hand, we notice that

bt(S, i) = at(S, i+ cp)− p,

which immediately implies

at(S, i)− bt(S, i) = p+ at(S, i)− at(S, i+ cp) > p,

where the inequality follows from the fact that at(S, i) is strictly decreasing in i. This
completes the proof.

Proof of Theorem 3.2. We begin by considering a quadratic ansatz for the value function.
We conjecture that the value function is of the form ṽ(t, S, w, i) = w+A(t)i2 +B(t)i+C(t),
where A(t), B(t), C(t) are differentiable functions of time t. Because the terminal value is
known to be U(S,w, i) = w + Si− λi2, it must hold that A(T ) = −λ,B(T ) = S,C(T ) = 0.
Plugging this conjectured value function into the HJB equation, we obtain

∂tṽ +
1

2
σ2∂2

S ṽ = − sup
a,b

{
πB(t)[ṽ(t, S, w + aQB(S, a), i−QB(S, a))− ṽ(t, S, w, i)]

+πS(t)[ṽ(t, S, w − bQS(S, b), i+QS(S, b))− ṽ(t, S, w, i)]
}
, (29)

where the supremum is attained if and only if a = a∗t (S, i) and b = b∗t (S, i) as in (18) and
(19) Assuming A(t) < 0 holds for all t ≤ T , and matching the coefficients of i2, i, 1 on both
sides of (29), we obtain that

A(t) = α(t), B(t) = S,C(t) = cp2

∫ T

t

(πB(u) + πS(u))du

2(1− cα(u))
,

where α(t) satisfies α(T ) = −λ and solves an ODE α′(t)+c(πB(t)+πS(t))α2(t)/(1−cα(t)) =
0. That is, α′(t) = f(t, α(t)) where the slope field

f(t, α) = −(πB(t) + πS(t))
cα2

1− cα
.

Using standard argument we can show that the ODE has a unique solution for any nonzero
terminal condition α(T ) and the solution is always negative if α(T ) < 0.

Conversely, because α solves the above ODE, and it is negative, the conjectured ṽ solves
the HJB equation given by ṽ(T, S, w, i) = U(S,w, i) = w+Si−λi2, and (29). Moreover, the
integrability condition (7) ensures that the stochastic integrals with respect to the Brownian
motion and the compensated Poisson processes are true martingales. Hence, for any (Marko-

vian or non-Markovian) admissible control (a·, b·) ∈ A0,T , the process (ṽ(t, St,W
(a,b)
t , I

(a,b)
t ))t∈[0,T ]
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is a supermartingale. Therefore, for any t ∈ [0, T ), we have P-a.s. that

ṽ(t, St,Wt, It) ≥ sup
(a·,b·)∈At,T

E
[
ṽ(T, ST ,W

(a,b)
T , I

(a,b)
T )|Ft

]
= sup

(a·,b·)∈At,T

E
[
U(ST ,W

(a,b)
T , I

(a,b)
T )|Ft

]
=Vt.

On the other hand, from the proofs of Corollary 3.3 and Proposition 4.1 we know that

E
[
|I(a∗,b∗)
t |

]
<∞ and E

[(
I

(a∗,b∗)
t

)2
]

is a continuous bounded function over [0, T ]. Since the

conjectured price policies (a∗, b∗) are linear in the inventory, it is straightforward to verify
that they are admissible strategies. By construction, we know that when au = a∗u(S, Iu) and

bu = b∗u(S, Iu) for all u ∈ [0, T ], (ṽ(t, St,W
(a∗,b∗)
t , I

(a∗,b∗)
t ))t∈[0,T ] is a true martingale, so we

must have
ṽ(t, St,Wt, It) = Vt, P-a.s..

The optimal price policy functions follow from Lemma 3.1. This completes the proof.

Proof of Corollary 3.3. The stochastic differential equation (SDE) for the inventory dynam-
ics given by

dIt =

(
p(πS(t)− πB(t))

2(1− cα(t))
+

2(πB(t) + πS(t))α(t)

1− cα(t)
It−

)
c dt

−p− 2α(t)It−
2(1− cα(t))

c (dNB
t − πB(t)dt) +

p+ 2α(t)It−
2(1− cα(t))

c (dNS
t − πS(t)dt)

follows from (5), (18) and (19). Let us now show that E [|It|] < ∞ for all t ∈ [0, t], so E[It]
is well-defined. To that end, we notice that It satisfies a SDE of the form

It − I0 =

∫ t

0

(c1(u) + c2(u)Iu)dN
B
u +

∫ t

0

(c3(u) + c4(u)Iu)dN
S
u ,

where ck(u), k = 1, 2, 3, 4 are four continuous functions of time u. Using standard arguments
based on the triangular inequality, localization and the monotone convergence theorem, we
obtain that

E|It − I0| ≤
∫ t

0

(d1(t) + d2(t)E|It − I0|)dt,

where d1(t) and d2(t) are two nonnegative continuous functions. By Grönwall’s inequality,
we know that E|It − I0| <∞ and so E|It| <∞ for all t ∈ [0, T ].

As a consequence, we can denote the expected inventory by g(t) = E[It], and treat it as
a solution to an ODE:

g′(t) =
cp(πS(t)− πB(t))

2(1− cα(t))
+

2c(πB(t) + πS(t))α(t)

1− cα(t)
g(t).
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Solving the above ODE we obtain that

g(t) = g(0) exp

(∫ t

0

2c(πB(t) + πS(t))α(u)

1− cα(u)
du

)
+

∫ t

0

cp(πS(t)− πB(t))

2(1− cα(u))
exp

(∫ t

u

2c(πB(t) + πS(t))α(v)

1− cα(v)
dv

)
du.

This completes the proof.

Proof of Lemma 3.4. Let h(x) = − 1
x

+ c log x for all x > 0, which is a strictly increasing
function. Then α(t) satisfies

h(λ)− h(|α(t)|) = c

∫ T

t

(πB(u) + πS(u))du, t ∈ [0, T ]. (30)

Because the right hand side of (30) is strictly decreasing in t, we know that h(|α(t)|) must
be strictly increasing, hence |α(t)| = −α(t) is strictly increasing. Suppose πB(t) ≡ πB and
πS(t) ≡ πS are constants. For fixed t ∈ [0, T ) and λ > 0, as we increase πB +πS, we see that
h(|α(t)|) decreases strictly, so does |α(t)|. For fixed t ∈ [0, T ] and πB, πS, we see from (30)
that h(|α(t)|) increases strictly, so does |α(t)|.

Proof of Corollary 3.5. The formulas for L1
t and L2

t follow directly from (15), (18) and (19).
Then the monotonicity of (L1

t )t∈[0,T ] and (L2
t )t∈[0,T ] follows form Lemma 3.4.

Proof of Proposition 4.1. We begin by deriving the second moment of the inventory E[I2
t ].

To that end, we use (5) and Itô-Lévy lemma to obtain that

dI2
t =[(It −QB(St, a

∗
t (St, It)))

2 − (It)
2]dNB

t + [(It +QS(St, b
∗
t (St, It)))

2 − (It)
2]dNS

t

=

(
(cp)2

4(1− cα(u))2
+
cα(t)(2− cα(t))

(1− cα(t))2
I2
t − [

cp

(1− cα(t))
− c2pα(t)

(1− cα(t))2
]It

)
dNB

t

+

(
(cp)2

4(1− cα(u))2
+
cα(t)(2− cα(t))

(1− cα(t))2
I2
t + [

cp

(1− cα(t))
+

c2pα(t)

(1− cα(t))2
]It

)
dNS

t .

Let g2(t) = E[I2
t ], then we have g2(0) = 0, and let g1(t) = E[It]. Using the same argument

as in the proof of Corollary 3.3, we can first prove that g2(t) <∞ for all t ∈ [0, T ]. Then we
know that g2(·) solves ODE

g′2(t) =
π0(t)

2

(cp)2

(1− cα(t))2
+ 2π0(t)

cα(t)(2− cα(t))

(1− cα(t))2
g2(t) + 2

(
π0(t)c2pα(t)

(1− cα(t))2
− ε(t)cp

1− cα(t)

)
g1(t).

The solution to the differential equation above is given by

g2(t) =

∫ t

0

(
π0(u)(cp)2

2(1− cα(u))2
+ 2

(
π0(u)c2pα(t)

(1− cα(t))2
− ε(u)cp

1− cα(t)

)
g1(u)

)
× exp(

∫ t

u

2π0(v)cα(v)(2− cα(v))

(1− cα(v))2
dv)du.

Let 〈I〉t be the quadratic variation of the inventory process during the interval [0, t]. Then
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we have

d〈I〉t =[QB(St, at(St, It))]
2dNB

t + [QS(St, bt(St, It))]
2dNS

t

=

(
(cp)2

4(1− cα(t))2
+

c2α2(t)

(1− cα(t))2
I2
t −

c2pα(t)

(1− cα(t))2
It

)
dNB

t

+

(
(cp)2

4(1− cα(t))2
+

c2α2(t)

(1− cα(t))2
I2
t +

c2pα(t)

(1− cα(t))2
It

)
dNS

t .

It follows that

E[〈I〉t] =

∫ t

0

(
π0(u)(cp)2

2(1− cα(u))2
+

2π0(u)c2α2(u)

(1− cα(u))2
g2(u)− 2ε(u) c2pα(t)

(1− cα(t))2
g1(t)

)
du.

On the other hand, from (1) and (24), we know that

E[QVt] =σ2t+ E[

∫ t

0

α2(u)

(1− cα(u))2
d〈I〉u]

=σ2t+

∫ t

0

α2(u)

(1− cα(u))2
dE[〈I〉u]

=σ2t+

∫ t

0

α2(u)

(1− cα(u))2

(
π0(u)(cp)2

2(1− cα(u))2
+

2π0(u)c2α2(u)

(1− cα(u))2
g2(u)− 2ε(u) c2pα(u)

(1− cα(u))2
g1(u)

)
du.

This completes the proof.

Proof of Proposition 4.2. From (18) we deduce that

(St + p− a∗t )2 =
p2

4(1− cα(t))2
+

α2(t)

(1− cα(t))2
I2
t −

pα(t)

(1− cα(t))2
It.

Hence, we obtain

E[(St + p− a∗t )2] =
p2

4(1− cα(t))2
+

α2(t)

(1− cα(t))2
E[I2

t ].

On the other hand, an application of Fubini’s theorem yields

ASurplusB =
c

2π0T
E
[ ∫ T

0

(St + p− a∗t )2dNB
t

]
=
c

2T

∫ T

0

E[(St + p− a∗t )2]dt

=
c

2T

∫ T

0

(
p2

4(1− cα(t))2
+

α2(t)

(1− cα(t))2
E[I2

t ]

)
dt.

Repeating the same analysis above, one can derive the corresponding expression forASurplusS.
The expression for AV alueM follows immediately from Theorem 3.2.
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