Staff Reports
Nonparametric Pricing of Multivariate Contingent Claims
March 2003 Number 162
JEL classification: G13, C14

Author: Joshua V. Rosenberg

In this paper, I derive and implement a nonparametric, arbitrage-free technique for multivariate contingent claim (MVCC) pricing. Using results from the method of copulas, I show that the multivariate risk-neutral density can be written as a product of marginal risk-neutral densities and a risk-neutral dependence function. I then develop a pricing technique using nonparametrically estimated marginal risk-neutral densities (based on options data) and a nonparametric dependence function (based on historical return data). By using nonparametric estimation, I avoid the pricing biases that result from incorrect parametric assumptions such as lognormality.

I apply this technique to estimate the joint risk-neutral density of euro-dollar and yen-dollar returns. I compare the nonparametric risk-neutral density with density based on a lognormal dependence function and nonparametric marginals. The nonparametric euro-yen risk-neutral density has greater volatility, skewness, and kurtosis than the density based on a lognormal dependence function. In a comparison of pricing accuracy for euro-yen futures options, I find that the nonparametric model is superior to the lognormal model.

Available only in PDFPDF40 pages / 1,169 kb

For a published version of this report, see Joshua V. Rosenberg, "Non-parametric Pricing of Multivariate Contingent Claims," Journal of Derivatives 10, no. 3 (spring 2003): 9-26.

tools
By continuing to use our site, you agree to our Terms of Use and Privacy Statement. You can learn more about how we use cookies by reviewing our Privacy Statement.   Close