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1 Introduction

Since the introduction of rational expectations there have been issues with mul-

tiple equilibria and equilibrium selection. One generally accepted selection crite-

rion appeals to the notion of equilibrium determinacy, advanced by Blanchard

and Kahn (1980). This approach advocates selecting equilibria that are sad-

dlepath stable and deliver a unique bounded rational expectations equilibrium.

An alternative approach to equilibrium selection has been advanced by the adap-

tive learning literature, in particular by Marcet and Sargent (1989) and Evans

and Honkapohja (2001). This approach replaces rational expectations with an

econometric model whose reduced form is consistent with the equilibrium law of

motion. An equilibrium is expectationally stable (or E-stable) if it is attainable

as the limiting outcome of a learning process where the parameters of the model

are updated in real time.1

In this paper we study the connection between determinacy and E-stability

in a class of in�nite-horizon dynamic stochastic general equilibrium (DSGE)

models. A number of authors have studied the connection between determinacy

and E-stability. For example, if there was an equivalence between E-stability and

determinacy, then there would be a powerful argument for focusing attention on

determinate models. Conversely, if for a large class of economic models determi-

nacy does not imply E-stability, then �robust�rational expectations equilibria

should satisfy both determinacy and E-stability conditions. A recent debate

between Cochrane (2009) and McCallum (2009b) on equilibrium selection in

New Keynesian models indicates that the relationship between determinacy and

learnability is still an open issue. On the one hand, Cochrane (2009) argues that

1We use the terms expectational stability, E-stability, and learnability interchangably in this

paper. The connections between the expectational stability condition and local convergence of

systems under real time recursive learning are discussed extensively in Evans and Honkapohja

(2001).
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determinacy cannot rule out explosive equilibria, while learning cannot select

bounded equilibria. On the other hand McCallum (2007, 2009a) argues that

learning in the sense of Evans and Honkapohja (2001) can be used to rule out

explosive equilibria and will generally select a determinate equilibrium.

In the literature there is no general presumption that determinacy implies

learnability. An examination of the �general linear model� case in Evans and

Honkapohja (2001) makes it plain that determinacy does not imply learnability.

Nevertheless, the discussion in Woodford (2003a, 2003b) as well as in Bullard

and Mitra (2002) highlights cases where the conditions for determinacy of equi-

librium are the same as the conditions for expectational stability.2 There ap-

pears to be a close relationship between the two criteria in many applications,

and this is a puzzle we would like to help resolve. In particular, we would like

to better understand the nature of the relationship between determinacy and

learnability in economic terms.

Two approaches have emerged to the analysis of learning dynamics and E-

stability in in�nite-horizon DSGE models. The �rst approach, discussed in

Evans and Honkapohja (2001), uses �rst order conditions from agents�dynamic

optimization as decision rules3 under learning. In this paper we refer to this

approach as �learning under Finite-Horizon (FH) decision rules�, given that the

models��rst order conditions can often be expressed in terms of one-step-ahead

forecasts. Preston (2005, 2006) notes, however, that such a model of learning

dynamics does not share the same microfoundations as the model under rational

expectations, where agents make plans with an in�nite horizion.4 We refer to

this approach as �learning under In�nite-Horizon (IH) decision rules�.

2Woodford (2003a, p. 1180) states, �Thus both criteria ... amount in this case to a property

of the eigenvalues of [a matrix] A, and the conditions required for satisfaction of both criteria

are related, though not identical.�
3This is also known as the Euler equation approach.
4See also Sargent (1993) and Woodford (2003b) for further discussion.
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These alternative approaches to the study of E-stability can, but do not

always, change the conclusions one would draw concerning the learnability of a

particular rational expectations equilibrium. We would like to understand more

about the economics of the relationship between determinacy and learnability

under both �nite-horizon and in�nite-horizon decision rules.

To meet these aims, we consider a general class of purely forward-looking

models where, in equilibrium, current endogenous variables are determined by

in�nite horizon expectations (as in most microfounded macroeconomic mod-

els). We then investigate when the conditions for determinacy are the same as

the conditions for stability under learning. We also investigate what aspects of

the economic model might cause learnability and determinacy to be governed

by di¤ering conditions. To further understand these economic aspects we ap-

ply our general results to a fairly general version of the New Keynesian (NK)

macroeconomic model.

Our work is closely related to both McCallum (2007) and Ellison and Pearl-

man (2011). These authors explore the connection between E-stability and

determinacy in a general class of models and isolate conditions under which

determinacy implies E-stability. However, they do not consider learning under

in�nite horizon decision rules. Another point of departure relative to this pre-

vious research is the treatment of information available to the model�s agents

when they learn. This is discussed in detail in section 3.1.

In the next section we illustrate our framework using a simple model of

consumption determination. In section 3 we develop the general in�nite-horizon

model and review and characterize the E-stability conditions. We then discuss

the propositions indicating when determinacy and learnability conditions will

coincide, and when they will not. In section 4 we discuss the application to

the microfounded New Keynesian model. We summarize our �ndings in the
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concluding section, and we also include two appendices to the paper which

contain details about the general model and proofs of the propositions.

2 A simple model of consumption

In this paper we discuss equilibrium uniqueness and stability under adaptive

learning in a class of economic models where agents make decisions with an

in�nite planning horizon. We begin with a simple model of consumption in

order to introduce the framework and to preview the results from the general

model. There is a continuum of measure-zero households and each agent i

maximizes her intertemporal utility function in consumption (Cit)

Eit
1X
T=t

�T�t lnCiT

subject to

Ait + C
i
t = (1 + rt)A

i
t�1 + y

and the transversality condition limT!1 Eit�
T CT
CT+1

AT = 0. Each household

shares the same discount factor 0 < � < 1, rt is the market risk-free real interest

rate, Ait is the agent�s holding of the risk-free asset (in zero net supply) and y

is an exogenous income process, assumed to be constant and identical across

households. The operator Et de�nes expectations and is discussed in detail in

the next section. The problem�s �rst order conditions yield the familiar Euler

equation for consumption

Eit
Cit+1
Cit

= �(1 + rt):

Under rational expectations the unique equilibrium implies that the interest rate

is constant and equal to the inverse of households�discount factor. Assuming for
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simplicity that initial asset holdings for each household i are zero, consumption

in equilibrium is equal to the endowment y.

2.1 Decision rules under learning

When analyzing learning, we assume that agents do not have rational ex-

pectations at the outset but form expectations using adaptive learning rules.

The methodology to analyze the convergence properties of the agent�s learn-

ing process has been developed by Marcet and Sargent (1989) and Evans and

Honkapohja (2001). As mentioned in the introduction Evans and Honkapohja

(2001) and Preston (2005) present alternative approaches to study the model�s

dynamics under learning. The two approaches share the same learning rule

(based on adaptive learning algorithms) and thus the same methodology to eval-

uate the convergence properties of the learning process. However, they di¤er in

the assumed decision rules (or behavioral rules) used by the model�s agents.

In�nite horizon decision rule. The in�nite horizon (IH) decision rule,

here expressed in log-deviations from its steady state,5

Ĉit = �Eit
1X
T=t

�T�t+1r̂T : (1)

is obtained by combining the Euler equation with the intertemporal budget con-

straint: the familiar permanent income theory of consumption determination.

According to this decision rule consumption deviations from steady state de-

pend on the expected evolution of the real interest rate6 . Examples of models

that incorporate IH decision rules under learning are Sargent (1993), which uses

the same approach to study learning in a �rm�s investment problem with ad-

5That is, for a variable Xt : X̂t = lnXt � ln �X, where �X denotes its steady state value.
6Notice that current asset holdings and the income process do not enter the decision rule

because current asset holding are assumed to be zero and the income process is a constant.
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justment costs; Preston (2005) which studies the New Keynesian model, and

Eusepi and Preston (2011) which focuses on a real business cycle (RBC) model.

Finite horizon decision rule. Under the �nite horizon (FH) approach7

the agents�Euler equation is assumed to be the behavioral rule for consumption

decisions

Ĉit = �r̂t + EitĈit+1 (2)

so that current consumption is determined by both the current interest rate

and the expected future consumption in the next period. More generally, the

FH or Euler equation approach uses the �rst-order conditions of the agents�

maximization8 as behavioral rules. Examples include Evans and Honkapohja

(2001), Chapter 10, which studies the standard RBC model, Bullard and Mitra

(2002), documenting E-stability conditions in the New Keynesian model and

Slobodyan and Wouters (2012), introducing learning in an estimated medium-

scale DSGE model.9

Quasi-di¤erencing. As discussed in Evans, Honkapohja and Mitra (2013)

and Preston (2005), a useful way to link (1) and (2) is to �quasi di¤erencing�

(1). That is, leading (1) one period ahead and applying the expectation operator

gives

ÊtĈ
i
t+1 = �Eit

1X
T=t

�T�t+1r̂T+1 (3)

which, combined with (1) and after re-arranging gives (2). We regard this link

between the two decision rules as a useful mathematical formulation enabling

us to compare their properties in the general class of models that we introduce

7See for example Evans, Honkapohja and Mitra (2013).
8 In more complex models the Euler equations are combined with static equilibrium condi-

tions, leading to a lower dimensional model. See for example the treatment of the RBC model

in Evans and Honkapohja (2011).
9For a survey of the recent contributions in the literature, see Evans and Honkapohja

(2013).
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in next section. Under rational expectations, where consumption depends on

the expected path of the real interest rate, the two decision rules yield the same

optimal consumption decision. Hence, under rational expectations the model�s

properties are the same regardless of the FH or IH representation. However, this

is generally not true under learning:10the two decision rules can deliver di¤erent

convergence properties under learning dynamics. It is important to stress that

neither of the two decision rules is fully optimal under learning. According to

the IH decision rule agents revise their consumption plan every period as if they

will never change the plan, even though that is exactly what they do. Under the

FH decision rule, agents forecast their own decision variables and ignore their

intertemporal budget constraint. Evans, Honkapohja and Mitra (2013), Preston

(2005) and Eusepi and Preston (2011) discuss more broadly the relative merits

and limits of these two approaches.

2.2 E-stability

Agents are endowed with a perceived law of motion (PLM) for Y it , the variable

they need to forecast, where Y FHt = Ĉit (FH learning) and Y
IH
t = r̂t (IH

learning). Throughout this paper we focus on a PLM which is consistent with

the Minimum State Variable (MSV) solution of the model: here it takes the

form

Y jt = a; j = FH; IH (4)

where a denotes a constant. Agents use (4) to form expectations. Substituting

agents�forecasts in the decision rules, and using the market clearing condition

that consumption needs to be equal to the endowment y (so that Ĉit = 0) we

obtain the actual law of motion (ALM) of the equilibrium interest rate, r̂t, and

10 In particular, (3) only holds under rational expectations.
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consumption under learning dynamics. This is de�ned as

Y jt = T (a)

where the form of T (a) depends on the speci�c decision rule used. A mapping

can be then de�ned between the PLM, de�ned as a, and the ALM, de�ned

as T (a). At the rational expectations equilibrium (REE), the PLM and ALM

coincide, that is T (a) = a = 0. The notion of E-stability describes the inter-

action between PLM and ALM which arises during the learning process, where

T (a) 6= a. The mapping captures the self-referential aspect of learning dynam-

ics. Changes in beliefs (agents�PLM) a¤ect consumption/saving decisions and

thus the equilibrium interest rates (the ALM). This in turn has an impact on

beliefs as agents update their PLM by observing recent consumption and inter-

est rate outcomes. This interaction between PLM and ALM is captured by the

following di¤erential equation

d

d�
a = T (a)� a (5)

where � denotes a measure of �arti�cial�time. The rational expectations equi-

librium is de�ned to be E-stable if equation (5), evaluated at the REE, is locally

stable �that is, if the PLM converges to the ALM. The ODE intuitively describes

a stylized learning rule under which the parameter a is adjusted towards its REE

value. In this simple model E-stability depends on the sign of T 0(a)� 1, where

T 0(a) denotes the �rst derivative of T (a). Evans and Honkapohja (2001) discuss

the tight connection between the convergence properties of real time learning

algorithms, such as recursive least squares, and the concept of E-stability.

It is easy to verify that under the IH decision rule the E-stability condition
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is

d (T (a)� a) =da = � 1

1� �

so that the REE is always stable. The intuition is that if agents expect interest

rates to be higher than in steady state (the REE), they would want to lower their

consumption, thus increasing the supply of saving. This drives down the equi-

librium real interest rate, inducing the desired correction in agents expectations

about the real rate until convergence.

Under the FH decision rule the E-stability condition is simply

d (T (a)� a) =da = �1

so that, again, the REE is always stable. Actual consumption is always constant

and equal to the endowment, independently of the interest rate: there are no

feedbacks from the interest rate to expected consumption (i.e. T (a) = 0). As a

result, expected consumption and the real interest rate will revert back to their

steady state equilibrium values.

The �one-dimensional�model of consumption described above conveys the

main intuition for the general proposition to follow. Finite and in�nite horizon

decisions rules yield the same stability conditions because the �direction�in the

adjustment of expectations is the same. The only di¤erence here is in the �size�

of the adjustment, which depends on the agents�discount rate �. The IH model

displays a 1=(1 � �) times faster adjustment as changes in the PLM imply

revisions in the whole forecast path in the in�nite horizon. In the next section

we discuss this �nding in a general class of models.
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3 The �general model�

In this section, we follow Evans and Honkapohja (2001) and think in terms of a

general linear model.11 We consider a class of in�nite horizon purely forward-

looking models. As in the simple model of consumption, we exploit the connec-

tion between FH and IH through quasi-di¤erencing the IH decision rule. We

�rst de�ne a class of IH decision rules generalizing (1)

A0Yt = A1Et�`Yt +
nX
d=1

A2;dEt�`
1X
T=t

�T�td YT+1

+
nX
d=1

A3;dEt�`
1X
T=t

�T�td XT ; (6)

where Yt denotes an n�dimensional vector of endogenous variables and Xt de-

notes a k�dimensional vector of shocks which evolve according to

Xt = HXt�1 + �t: (7)

The matrixH is assumed to be diagonal with elements 0 � hi;i < 1, for i = 1:::k.

We assume that A2;d and A3;d, (i) must have nonzero elements in their dth

row and, (ii) must have only zero elements in the remaining rows. This amounts

to an assumption that each equation uses only one �discount factor�and that

each equation must have at least one �discount factor�(possibly zero).12 Any

�discount factors�in (6) need not be discount factors in the traditional sense of

economic theory, but may instead capture reduced-form discounting of future

variables in the equilibrium dynamics of the model.13

11We relate the results from this section to a New Keynesian DSGE model in the next

section.
12We stress that even with a discount factor of zero, say �d = 0, the d

th row in A2;d would

still have nonzero elements.
13We thank the editor, Jesus Fernandez-Villaverde, for pointing this out.
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3.1 Timing of expectations and informational delays

A key aspect of our approach is that we allow for di¤ering information sets to be

available to agents at the time expectations are formed and decisions are made.

To accomplish this, we use the operator Et�`, where ` � 0; which we think of

as an information lag or a �delay�when ` > 0; and which is just the standard

Et when ` = 0:

Many models in macroeconomics envision date t quantities and prices being

determined simultaneously with date t expectations. For many purposes under

the rational expectations assumption it may not be too important, although it

is rarely analyzed in the literature. In an environment with learning, the dating

of the expectations operator may be more critical, and Evans and Honkapohja

(2001) have suggested that the t�1 dating of the expectations operator may be

more natural when learning is explicitly considered. In fact, for a given dating

structure under rational expectations, learning is generally implemented using

a variety of dating assumptions.14 In this paper, we assume the same dating

of expectations under both learning and rational expectations. Accordingly, in

models with ` > 0, expectations of the current state, Et�`Yt, determine Yt; that

is, quantities and prices at time t are determined using t � ` periods old infor-

mation and thus without knowledge of Yt, independently of how expectations

are formed. Conversely, under ` = 0, expectations are formed using the current

values of Yt and Xt:
15

14See Evans and Honakpohja (2001).
15 In the case of real time learning we would need to assume that agents use t�1 information

to update model coe¢ cients while using time t variables to form expectations. This avoids

simultaneity problems in using real time learning algorithms. See for example Eusepi and

Preston (2011).
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3.2 An equivalence result

Before illustrating the general results we provide an example that reveals, at

a more general level than the one-dimensional consumption models presented

above, the connection between E-stability conditions under FH and IH decision

rules. We thus consider a two-dimensional version of the �general model�, where

A0 = I2; A1 = A3 = 02 so that agents learn with time t information and only

learn about the steady state of the economy. By following the same steps as

in the consumption decision model16 the E-stability conditions under the two

decision rules are related to the following matrices

MFH = A21 + �1 � I2 +A22 + �2 � I2 � I2

and

M IH = A21 � (1� �1)
�1
+A22 � (1� �2)

�1 � I2:

E-stability implies that the real part of eigenvalues of M i, i = FH; IH, should

be negative. Below we present two examples that compare E-stability condi-

tions under the two decision rules.

Case 1: �1 = �2 = �. It is easy to verify that

MFH = (1� �) �M IH

so the eigenvalues of the two matrices have the same sign and are in fact propor-

tional. As in the one dimensional consumption model, the direction of adjust-

ment in expectations is the same while the size of the adjustment is proportional

to the discount factor. Hence the two decision rules imply the same stability

16See Appendix A.
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conditions.

Case 2: �1 6= �2. Here the E-stability conditions for the two rules need

not coincide. An immediate way to see this is to look at the trace of the two

matrices (that is the sum of the two eigenvalues). When the discounts rates are

di¤erent the trace (Tr) of the matrices is

Tr(MFH) = �1 � �2 + Tr(A21) + TrA22 � 2(1� �2)

and17

Tr(M IH) = (1� �2)�1
�
Tr(A22) +

(1� �2)
(1� �1)

Tr(A21)� 2(1� �2)
�
:

For �2 �small�and �1 �large�it is easy to verify that a set of parameters exists

such that the trace of MFH can be negative while the trace of M IH is positive.

For example, let us assume18 �1 = :98; �2 = 0:2, A21(1; 1) = 0:1, A21(1; 2) =

0:1, A22(2; 1) = �10, A22(2; 2) = 0:01. It is straightforward to verify that under

the FH decision rule the REE is E-stable, while it is E-unstable under the IH

decision rule. Conversely, by setting �1 = 0:2; �2 = 0:98, A21(1; 1) = 10,

A21(1; 2) = 1:2, A22(2; 1) = �10, A22(2; 2) = �1 the stability properties of

the equilibrium are reversed. E-stability is obtained under the FH horizon rule

while the equilibrium is unstable under the IH rule. Here di¤erent discount

rates imply that both the size and the direction of adjustment in expectations

are di¤erent under the two decision rules. This is because the adjustment in

expectations about one variable depends not only on the discount rate related

to that variable but possibly on all (di¤erent) discount rates in the model.

In other words, the direction of adjustment in expectations depends on the

17Recall that Tr(A21) = A21(1; 1) and Tr(A22) = A22(2; 2).
18Recall that the other entries of the two matrices are zero by assumption.
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relative size of the adjustment of each variable which, in turn, is connected to

the di¤erent discount rates. Of note, the two examples suggest that neither of

the two decision rules has a more stabilizing e¤ect on the learning dynamics.

Which rule delivers (in)-stability under learning will depend on the speci�c

model and parameter values. The following proposition generalizes this insight

to the general model (6).

Proposition 1 Consider the model (6) and assume that �d = � 8 d. Then

�nite horizon (FH) and in�nite horizon (IH) learning models deliver the same

E-stability conditions.

Proof. See Appendix B.

The next proposition explores the links between determinacy and E-stability.

Proposition 2 Consider the model (6) with ` = 0.

1. Under FH decision rules, determinacy implies learnability (McCallum,

2007).

2. Assume �d = � 8 d. Then determinacy implies E-stability under both FH

and IH decision rules.

Proof. See Appendix B.

These results for the general model are summarized in Table 1. From the two

propositions it is immediate that determinacy implies E-stability under both IH

and FH decision rules only in a subset of cases, namely when economic agents

have: (i) information about contemporaneous variables and (ii) the same �dis-

count factors.�The �rst result in Proposition 2 is the speci�c case considered

in McCallum (2007). In contrast with McCallum (2007), the proposition makes

14



Table 1.
Does determinacy imply E-stability?

` = 0 ` > 0
�d = � yes no
�d 6= �d0 no no

Table 1: Conditions under which determinacy does and does not imply E-
stability.

clear that, even under contemporaneous information, determinacy need not im-

ply E-stability under IH learning.

Concerning informational delays, it is immediate to recognize that, in the

class of models considered here, the key to our results is the matrix A1. If

A1 = 0, E-stability conditions are independent of `.19 However, as discussed

in Section 2.1, in a model with delays agents do not observe contemporaneous

variables when taking date t decisions. Hence, we generally expect the model

to deliver A1 6= 0. The example in the next section clari�es this issue further.

Related to this point, McCallum (2007) and Ellison and Pearlman (2011)

provide learning environments where lagged information does not matter for E-

stability conditions. Here we describe brie�y how we can reconcile our �ndings

with theirs. To use one example,20 McCallum (2007) re-writes the �nite horizon

representation21 of (6), with ` = 1, as

zt =MEtzt+1 +Nzt�1 + et; (8)

where zt = (Yt;EtYt+1;EtYt+2) and M and N are de�ned appropriately, and

concludes that this model is E-stable as its variables depend on current informa-

19This case has been proved in McCallum (2009a). However this equivalence is only valid

for purely forward-looking models. For a counter-example in a model with lagged endogenous

variables, see Bullard and Mitra (2002).
20The comparison with Ellison and Pearlman (2011) yields similar arguments.
21See Appendix A, equation (35).
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tion only. The model (8) relies on two speci�c assumptions. First, despite the

assumption that decisions are taken with date t�1 information, according to (8)

agents are assumed to form date t expectations after observing zt.22 Second,

agents are able to observe aggregate expectations EtYt+1 and EtYt+2.23 This

assumption is rather unusual in the learning literature where agents learn us-

ing VARs which include only realized endogenous and exogenous variables (see

Evans and Honkapohja, 2001). Regardless of the validity of such an assumption,

in (8) agents have a larger information set than what is assumed in this paper.

Therefore, we should not expect the stability conditions to be the same.

Summing up, the above propositions and the atheoretical examples indicate

that, for the class of models and equilibria considered here, determinacy and

E-stability do not generally select the same equilibria. In the next section we

apply our results to a simple monetary model that has been widely studied in

the New Keynesian literature. We �nd this a compelling case to examine, given

that the literature has devoted much attention to issues about determinacy and

learnability.

4 A simple monetary model

4.1 Model environment

In the recent literature, problems of equilibrium selection have often been con-

nected to monetary policy design. Below we describe a simple New Keynesian

(NK) model that has been widely explored in the literature. It is simple enough

to �t the general class of models described above and it provides a useful starting

point to discuss the connection between determinacy and E-stability in mone-

22That is, agents form expectations according to Etzt+1 = 
zt where zt clearly contains

time t variables.
23That is, the agents�PLM is zt = 
zt�1 + et where zt contains aggregate expectations.
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tary policy design.

4.1.1 Households

There is a continuum of households that consume, save, and supply labor in

a homogeneous labor market. A household i maximizes utility over an in�nite

horizon

Eit�`
1X
T=t

�T�t
�
ln
�
CiT
�
�  hiT

�
; (9)

where the parameter � 2 (0; 1) is the discount factor,  is the parameter con-

trolling the disutility of labor and we assume time separable preferences with log

utility of consumption (Cit), and linear disutility in labor (h
i
t). For tractability

we assume that in the case of informational delays, ` > 0, only consumption

decisions are predetermined.24 This means that labor supply decisions and sav-

ing decisions are taken with date t information, independently of the value of

`. Consumption Ct and the price level Pt are given by standard Dixit-Stiglitz

aggregators,

Cit �
�Z 1

0

cit (j)
��1
� dj

� �
��1

; Pt �
�Z 1

0

pt (j)
1��

dj

� 1
1��

:

The budget constraint of household i is given by

M i
t+1 + PtC

i
t �M i

t �Di
t + (1 + it)D

i
t +Wth

i
t + Pt

Z
�ft (j)dj + Pt�

M
t ; (10)

where M i
t denotes money holdings

25 at the beginning of the period and Dt

denotes the amount on deposit at the �nancial intermediary, which pays the

24The assumption allows hours to adjust in the current period so that equilibrium output

(partially determined by the current shock to productivity) equals consumption (which is

predetermined). The evolution of hours (the labor supply) has no implications for the stability

conditions discussed below.
25We assume that money bears no interest.
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gross nominal interest rate (1 + it). The variable Wt is the economy-wide nom-

inal wage determined in a perfectly competitive labor market, and �t(j) and

�Mt denote real pro�ts from �rms and the �nancial intermediary. Each agent

i is assumed to have an equal share of each �rm j and the �nancial interme-

diary. These assumptions guarantee that the households� income pro�les are

identical, even in the case of incomplete markets. The household also faces the

cash-in-advance constraint

PtC
i
t �M i

t +Wth
i
t �Dt; (11)

which takes this form because households receive their wages at the beginning

of the period.26 Solving the household problem gives the optimal consumption

decision given current beliefs27 in log-linear deviations from the nonstochastic

steady state

Ĉit = Eit�`
1X
T=t

�T�t
h
(1� �)Ŷ iT � �(iT � �T+1)

i
; (12)

where Ŷt denotes real income.28 The labor supply, decided with period t infor-

mation is

 Cit =
wt
Pt
: (13)

26 In an equilibrium with a positive nominal interest rate, the cash in advance constraint is

binding in every period.
27This is solved by combining households�intertemporal budget constraint and consumption

Euler equation.
28Following Preston (2005), for simplicity we assume that each agent forecasts total income

and not its single components. This has no implication for our conclusions.
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4.1.2 Firms

Each �rm j produces a di¤erentiated good and has market power. They face a

demand for their output given by

Y Dt (j) = Atht (j) =

�
pt (j)

Pt

���
Ct (14)

where Ct denotes aggregate consumption and where labor is the only input in

the (linear) production function. The term At denotes an AR(1) technology

exogenous process. The labor market is viewed as economy-wide and perfectly

competitive. Firms are subject to a cash constraint, which gives rise to a cost

channel for monetary policy.29 In particular, the �rms must anticipate their

wage bill to the workers and therefore have to borrow funds from the �nan-

cial intermediary in the amount corresponding to a fraction  of the wage bill

ht (j)Wt. In the sequel we only consider a model with cost channel ( = 1) and

without cost channel ( = 0).

We study a standard model of nominal pricing rigidities a là Calvo. In

order to simplify the analysis we assume that, independently of informational

delays, �rms can observe the current aggregate price level when deciding their

optimal price.30 With informational delays the optimal relative price depends on

the expected current and future marginal cost. Similarly to households, �rms

choose their labor input (and the amount of funds to borrow) using current

information� delays can occur only at the pricing stage. The (log-linearized)

pricing decision that maximizes discounted expected pro�ts subject to demand

29Empirical evidence in favor of a cost channel is shown in Ravenna and Walsh (2006).
30This assumption is made to simplify the exposition and has no important implications for

the stability conditions discussed below.
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and Calvo constraints is

p̂�t (j) = Et�`
1X
T=t

(��)
T�t

[(1� ��) ŝT + ���T+1] (15)

where p̂�t = ln (P
�
t =Pt) and

st =
wt
PtAt

(1 + it) ; (16)

is the real marginal cost of production, which is a function of the real wage

and the opportunity cost of holding cash.31 Given homogeneous factor markets

implies that each �rm that chooses the optimal price will choose the same price

p̂�t (j) = p̂�t . While Calvo pricing implies a distribution of prices across �rms,

nevertheless the model speci�cation leads to a simple log-linear relation between

the optimal price and in�ation

�t =
1� �
�

p̂�t : (17)

Finally, �nancial intermediaries make a pro�t of

Pt�
M
t = (1 + it) 

Z
Wth(j)dj � (1 + it)

Z
Di
tdi (18)

= (1 + it)Tt (19)

where Tt is a cash injection from the government to be de�ned below.

4.1.3 Monetary and �scal policies

We assume that the �scal authority operates a zero debt, zero spending �scal

policy. The �scal variable Tt denotes a cash injection from the government

31Financial intermediaries operate in a perfectly competitive market for funds. Therefore

the cost of borrowing for each �rm is it Wt
Pt
ht(j).

20



which is equal to

Tt =Mt+1 �Mt: (20)

Monetary policy is described by a simple Taylor-type rule of the (log-linear)

form

{̂t = ��Et�`�t+j + �yEt�`Ŷt+j (21)

where the monetary authority reacts to private sector expectations about in-

�ation and output, where j = 0 indicates a contemporaneous policy rule and

j = 1 is a forward-looking policy rule.

4.1.4 Equilibrium: IH and FH representations

Imposing equilibrium in the labor and goods markets and aggregating implies

that aggregate demand can be expressed as

Ŷt = Et�`
1X
T=t

�T�t
h
(1� �)ŶT � �(̂{T � �T+1)

i
; (22)

where Ŷt = Ĉt denotes aggregate spending. Quasi-di¤erencing this expression

we obtain the familiar forward-looking IS curve, including one extra term for

information delays

Ŷt = (1� �)Et�`Ŷt � �Êt�` (it � �t+1) + �Êt�`Ŷt+1: (23)

In�ation dynamics, obtained by combining (13) , (16) and (17) with (15),

are described by

�t = Et�`
1X
T=t

(��)
T�t

h
�
�
ŶT + ~{̂T � ÂT

�
+ �(1� �)�T+1

i
; (24)

where � = (1���)(1��)
� > 0; and where ~ = (1+�{)

1+�{ = 1 ( = 0) denotes the
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model with (without) a cost channel. Quasi-di¤erencing we obtain

�t = �Et�`�t+1 + �Et�`
�
Ŷt + ~{̂t � Ât

�
; (25)

which, again, depends only on one-period-ahead forecasts. Assuming no infor-

mation delays (` = 0), under the IH decision rule households forecast income,

the nominal interest rate and in�ation, while under FH decision rule they fore-

cast income and in�ation only. Conversely, in presence of information delays

(` = 1) the interest rate is forecasted under both FH and IH decision rules.

4.1.5 Knowledge about the monetary policy rule

Preston (2006), Eusepi (2005) and Eusepi and Preston (2010) show that knowl-

edge about the monetary policy rule has important consequences on E-stability

conditions in models with both FH and IH decision rules. If agents know the

policy rule (21) then they do not need to forecast the interest rate indepen-

dently: they can use the restriction implied by the policy rule to forecast the

interest rate as a function of their in�ation and output forecasts. That is (22)

becomes

Ŷt = Et�`
1X
T=t

�T�t
h
(1� �)ŶT � �(���T+j + �yYT+j � �T+1)

i

and the Phillips curve is

�t = Et�`
1X
T=t

(��)
T�t

h
�
�
ŶT + ~���T+j + ~�yYT+j � ÂT

�
+ �(1� �)�T+1

i
;

Notice that the interest rate forecast a¤ects in�ation only in the presence of a

cost channel. Under the FH decision rules agents need to forecast the interest

rate only in the presence of information delays. In this case agents may use

their knowledge of the policy rule when forming expectations about the cur-
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rent interest rate. Conversely, if the monetary policy is unknown, agents will

forecast the interest rate independently. In the sequel we evaluate E-stability

conditions under both assumptions and show that knowledge about the policy

rule is an important but not the unique factor breaking the equivalence between

determinacy and E-stability conditions under alternative decision rules.

4.2 Analysis of determinacy and learnability

Most papers in the adaptive learning literature use versions of equations (23) and

(25) to evaluate the E-stability properties of di¤erent policy rules.32 We compare

conditions for determinacy with the E-stability conditions obtained using (23)

and (25) and the E-stability conditions that arise when using (22) and (24).

In order to tease out the di¤erent factors breaking determinacy and E-stability

conditions we evaluate the model along four dimensions: 1) the existence of a

cost channel, 2) the monetary policy rule, 3) knowledge about the policy rule

and 4) the existence of information delays.

Table 2, which summarizes the results, complements Table 1 in showing

that determinacy implies E-stability only in a subset of cases. As stated in the

general Propositions, models with multiple �discount rates,� such as the one

discussed above,33 can display di¤erent E-stability conditions under IH and FH

decision rules. In turn, the disconnect between determinacy and FH E-stability

conditions depend only on the existence of information delays.

Model without information delays (` = 0). In the �baseline�version of

the model, with a contemporaneous monetary policy rule (j = 0) determinacy

32See for example Bullard and Mitra (2002), among others.
33 In particular, this model can be re-expressed in general form (6) with n = 3, �1 = � (for

aggregate demand), �2 = �� (for the Phillips curve) and �3 = 0 (for the policy rule).
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Table 2.
Determinacy and E-stability in the New Keynesian model

 = 0  = 1
j = 0 j = 1 j = 0 j = 1

MP rule is unknown
` = 0 FH=IH FH FH=IH FH
` = 1 NO NO NO NO

MP rule is known
` = 0 FH=IH FH=IH FH=IH FH=IH
` = 1 FH=IH FH=IH NO NO

Table 2: This table shows the relation between determinacy and E-stability
conditions for alternative model speci�cations. Entry FH/IH denotes that de-
terminacy implies E-stability for both IH and FH learning rules; entries FH
and IH correspond to the case where determinacy implies E-stability for FH
or IH only. Finally, NO refers to the case where determinacy does not imply
E-stability under either decision rules.

implies E-stability under both FH and IH decision rules.34 However, this is no

longer true with monetary policy rules that respond to expectations (j = 1).

In particular, while determinacy implies E-stability under FH decision rules

(consistently with the general results in McCallum, 2007), determinacy does

not imply E-stability under IH decision rules.35 As apparent from inspecting

Table 2, this result depends on agents�knowledge of the policy rule: that is,

whether or not they need to forecast the interest rate independently of in�ation

and output. Numerical experiments suggest that, under the IH decision rule,

forward-looking policy rules are both determinate and E-unstable for a wide

range of parameter values. In particular, a positive monetary policy response

to output together with a substantial degree of nominal rigidities are required

for determinate equilibria to be E-stable.36

34Bullard and Mitra (2002) and Preston (2005) show for FH and IH decision rules respec-

tively that determinacy implies E-stability.
35See Preston (2006).
36For example, assume � = 0:99,  = 0 and �� = 1:5. The equilibrium is both determinate
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Model with information delays (` = 1). In the presence of informa-

tion delays, the connection between E-stability under FH decision rules and

determinacy is broken; determinate equilibria can be E-unstable under either of

the two decision rules. As shown in Preston (2006), Eusepi (2005) and Eusepi

and Preston (2010), only monetary policy rules that, in addition to satisfying

the Taylor principle, display a su¢ ciently strong response to output induce E-

stability. As shown in the bottom section of the table, agents�full knowledge

about the monetary policy rule is not enough to guarantee E-stable equilibria

when the cost channel of monetary policy is active ( = 1). Under this model

speci�cation, for a wide range of parameter values determinate equilibria are

E-unstable unless monetary policy responds with enough strength to output.

Numerical experiments are discussed below.

E-stability under alternative decision rules. Comparing the E-stability

conditions under the two decision rules, we �nd that; a) FH and IH decision

rules generally imply di¤erent E-stability conditions and, b) neither decision

rule has more stabilizing e¤ects on learning dynamics. We focus the discussion

on the model with information delays (` = 1). First, when agents ignore the

monetary policy rule, numerical experiments suggest that the FH decision rule

implies E-stability for a larger set of parameter values than the IH rule. In par-

ticular, under the FH decision rule a lower response to output in the monetary

policy rule is required in order to guarantee E-stability.37 The result holds in-

and E-stable for � = 0:85 and �y = 1:8 and it becomes E-unstable for lower values of �y or

�.
37Assume � = 0:99;� = 0:6;�� = 1:5,  = 0. Under the FH decision rule the equilibrium

is E-stable for �y > 0:3 while a �y > 1:1 is required for E-stability under the IH decision

rule. The same condition holds under both conteporaneous and forward-looking policy rules

(j = 0; 1).
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dependently of the form of the monetary policy rule and the existence of a cost

channel of monetary policy. Second, consider the model where the monetary

policy rule is known to the public and the cost channel of monetary policy is

active ( = 1). Numerical experiments suggest that, in this case, the IH decision

rule implies a larger set of parameters for which E-stability occurs relative to

the FH decision rule.38

Summing up, determinacy does not imply E-stability in a simple New Key-

nesian model. The disconnect in this model can be sourced to the agents�

information set (the timing of information and their knowledge about the mon-

etary policy rule) and to the monetary transmission mechanism (the presence of

a cost channel of monetary policy). Moreover, FH and IH decision rules induce

di¤erent stability conditions and neither decision rule appears to exert a more

stabilizing e¤ect on the learning process.

5 Conclusions

We have studied a general class of models and investigated the connection be-

tween determinacy and E-stability. As an example we have applied our �ndings

to a New Keynesian model generalized on certain dimensions in an attempt

to delineate the di¤erences between conditions for equilibrium determinacy and

conditions for equilibrium learnability in terms of meaningful economic assump-

tions.

In general, we conclude that determinacy does not imply E-stability and

38Set � = 0:99;� = 0:6;�� = 1:5 and  = 1. Recall that the REE equlibrium is determinate

for values of �y which are positive and below 0:5. Under the IH decision rule the equilibrium

is E-stable for �y > 0:01 while �y > 0:4 is required to obtain E-stability under the FH decision

rule.

26



therefore that both conditions need to be veri�ed if the goal is to study robust

rational expectations equilibria. While there are important classes of models in

which determinacy does indeed imply learnability, we have shown how such a

result can be sensitive to the speci�c approach used to study learning dynamics

and to the information set available to the model�s agents.

James Bullard, Federal Reserve Bank of St Louis

Stefano Eusepi, Federal Reserve Bank of New York
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6 Appendix

A Framework

A.1 E-stability in the General Model

The Perceived Law of Motion (PLM) which is consistent with the Minimum

State Variable (MSV) solution of (6) takes the form

Yt = a+ bXt�`; (26)

where a denotes the intercept vector, and b denotes a n�k matrix of coe¢ cients.

Substituting the agent forecasts obtained from (26) for aggregate expectations

we obtain the actual law of motion (ALM) of Yt under learning dynamics, de�ned

as

Yt = T (a; b) �

264 1

Xt�`

375 ;
which depends on exogenous variables and the coe¢ cients in the PLM. The

notion of E-stability describes the interaction between PLM and ALM which

arises during the learning process, where T (a; b) 6= (a; b). It is determined by

the following matrix di¤erential equations

d

d�
(a; b) = T (a; b)� (a; b) (27)

where � denotes �arti�cial�time. The local asymptotic stability of (27) depends

on the eigenvalues of the Jacobian of (27).
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A.2 In�nite horizon (IH) learning

To study the in�nite horizon approach to learning, we assume agents use the

PLM (26) to form expectations: the discounted in�nite sum in equation (6) can

then be expressed as

Et�`
1X
T=t

�T�td YT+1 =
1

1� �d
a+ b (1� �dH)

�1
HXt�`: (28)

Also, the discounted in�nite sum of exogenous variables is

Et�`
1X
T=t

�T�td XT = (1� �dH)
�1
Xt�`: (29)

Substituting (28) and (29) in (6) we obtain the actual law of motion (ALM) of

Yt,

Yt = ~A1 (a+ bXt�`)

+
nX
d=1

~A2;d

�
1

1� �d
a+ b (1� �dH)

�1
HXt�`

�
+A�XXt�`; (30)

where ~A1 = A�10 A1; and ~A2;d = A�10 A2;d; and where

A�X =
nX
d=1

~A3;d (1� �dH)
�1
: (31)

Equation (30) de�nes the following mapping between the PLM and the ALM

T IH (a; b) =

 
~A1a+

nX
d=1

~A2;d
1

1� �d
a; ~A1b+

nX
d=1

~A2;db (1� �dH)
�1
H+A�X

!
:

(32)

According to (27), the matrix governing expectational stability of the inter-

cept is thus

M IH(a) = ~A1 +
nX
d=1

~A2;d
1

1� �d
� In: (33)
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For the matrix of coe¢ cients b, after vectorizing the second argument of T IH (a; b)

we obtain

M IH (b) =
�
Ik 
 ~A1

�
+

(
nX
d=1

h
(Ik � �dH)

�1
H
i0

 ~A2;d

)
� Ik 
 In: (34)

E-stability obtains if and only if the real parts of the eigenvalues ofM IH(a) and

M IH (b) are negative. We stress that to obtain the case of contemporaneous

expectations (` = 0) all that is needed is to re-de�ne the matrix A0 and set

~A1 = 0.

A.3 Finite horizon (FH) learning

We de�ne FH learning as the outcome of quasi-di¤erencing (6). Forwarding (6)

one period we get

Et�`A0Yt+1 = A1Et�`Yt+1+
nX
d=1

A2;dEt�`
1X

T=t+1

�T�t�1d YT+1+Et�`A�XXt�`+1:

Next, we premultiply the above D = diag ([�1 : : : �n]) to get

DEt�`A0Yt+1 = DA1Et�`Yt+1+
nX
d=1

A2;dEt�`
1X

T=t+1

�T�td YT+1+DÊt�`A�XXt�`+1:

using DA2;d = A2;d�d. Second, we rewrite (6) as

A0Yt = A1Et�`Yt+
nX
d=1

A2;dEt�`Yt+1+
nX
d=1

A2;dEt�`
1X

T=t+1

�T�td YT+1+A�XXt�`

and combining the two expressions we get

Yt = ~A1Et�`Yt +

"
nX
d=1

~A2;d +A
�1
0 DA0

�
In � ~A1

�#
Et�`Yt+1+ ~A�XXt�`; (35)
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where ~A�X = A�10 (A�X �DA�XH). The ALM (35) gives the following map-

pings

TFH(a) = ~A1a+

"
nX
d=1

~A2;d +A
�1
0 DA0

�
In � ~A1

�#
a

and

TFH(b) = ~A1b�A�10 DA0 ~A1bH+
nX
d=1

~A2;dbH+A
�1
0 DA0bH+A

�1
0 (A�X �DA�XH) :

The mapping between the PLM and the ALM yields the following Jacobian

matrix for the intercept

MFH(a) = ~A1 +

"
nX
d=1

~A2;d +A
�1
0 DA0

�
In � ~A1

�#
� In (36)

which is the counterpart to (33). For the regression coe¢ cients we obtain (after

vectorization) the following Jacobian

MFH(b) = Ik
 ~A1�H
A�10 DA0 ~A1+H

nX
d=1

~A2;d+H
A�10 DA0�Ik
In (37)

which, in turn, is the counterpart to (34).

A.4 Determinacy

Finally, determinacy can be evaluated by inspecting the following matrix

MD =
�
In � ~A1

��1 " nX
d=1

~A2;d +A
�1
0 DA0

�
In � ~A1

�#
; (38)

obtained from (35), after imposing rational expectations on expected current

variables. Determinacy is obtained if and only if the eigenvalues of MD lie

within the unit circle.
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B Proofs

B.1 Proof of Proposition 1

Consider �rst the matrix MFH(a) in (36). Imposing �d = �; 8 d, we obtain

MFH(a) = ~A1 +

"
nX
d=1

~A2;d +A
�1
0 �InA0

�
In � ~A1

�#
� In

= (1� �) ~A1 +
nX
d=1

~A2;d � (1� �) In = (1� �)M IH(a)

where the last equality is immediate from (33) and the assumption �d = �, 8

d. Concerning the regression coe¢ cients, from (37) we obtain

MFH(b) = Ik 
 ~A1 �H 
 � ~A1 +H 

nX
d=1

~A2;d +H 
 �In � Ik 
 In

= Ik 
 ~A1 � �H 
 ~A1 +H 

nX
d=1

~A2;d + �H 
 In � Ik 
 In

= (Ik � �H)
 ~A1 +H 

nX
d=1

~A2;d � (Ik � �H)
 In

where the two equalities follow from the properties of the Kroneker product .

Setting �d = � 8 d in (34), which gives

M IH (b) =
�
Ik 
 ~A1

�
+

(
nX
d=1

h
(Ik � �H)�1H

i0

 ~A2;d

)
� Ik 
 In

=
�
Ik 
 ~A1

�
+
h
(Ik � �H)�1H

i0



nX
d=1

~A2 � Ik 
 In:

Post-multiplying by (Ik � �H)
 In we get

MFH (b) =M IH (b) � [(Ik � �H)
 In] ; (39)
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where we use the following equalities39

�
Ik 
 ~A1

�
[(Ik � �H)
 In] = Ik (Ik � �H)
 ~A1In;

(Ik 
 In) [(Ik � �H)
 In] = (Ik � �H) Ik 
 In;

and

 h
(Ik � �H)�1H

i0



nX
d=1

~A2

!
[(Ik � �H)
 In] =

"
(Ik � �H)�1H (Ik � �H)


nX
d=1

~A2

#

= H 

nX
d=1

~A2:

Back to (39), the matrix (Ik � �H)
 In is a nk � nk block diagonal matrix

(Ik � �H)
 In =

266664
(1� �h11) In ... 0

0 ::: 0

0 ... (1� �hkk) In

377775 ;

so that

M IH (b) � [(Ik � �H)
 In] =

266664
�A11 ... 0

0 ::: 0

0 ... �Akk

377775 : (40)

The eigenvalues of (40) are given by the eigenvalues of the sub-matrices

�Aii = (1� �hii)
"
~A1 + (1� �hii)�1 hii �

nX
d=1

~A2 � In

#
for i = 1:::k:

39 In particular, the mixed-product property of the Kroneker product implies

(A
B) (C 
D) = AC 
BD:
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We then obtain the eigenvalues as

eig

 
(1� �hii)

"
~A1 + (1� �hii)�1 hii �

nX
d=1

~A2 � In

#!
=

(1� �hii) eig
 "

~A1 + (1� �hii)�1 hii �
nX
d=1

~A2 � In

#!
for i = 1:::k;

which proves the claim. Similarly, the reverse also holds true, given that

M IH (b) =MFH(b) � [(Ik � �H)
 In]�1

is well de�ned under the maintained assumptions about H.

B.2 Proof of Proposition 2

1. Set A1 = 0 in (6) so that, quasi-di¤erencing yields

Yt =

"
nX
d=1

~A2;d +A
�1
0 DA0

#
EtYt+1+A�10 (A�X �DA�XH)Xt

= MDEtYt+1 +NXt

and thus belongs to the class of models considered in McCallum (2007).40

Hence determinacy implies learnability under FH learning.

2. This is straightforward from Proposition 2 and point 1 in Proposition 3.

C Results in Table 2

Most of the results (determinacy imply E-stability) shown in Table 2 can be

found in the existing literature or are implications of Proposition 2. The tables

40However, we also have a proof available in the working paper version of this paper.
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Table 3.
Determinacy and E-stability in the NK model ( = 0)

Finite Horizon
j = 0 j = 1

MP rule is unknown
` = 0 Proposition 2 Proposition 2

` = 1 NO NO

MP rule is known
` = 0 Proposition 2 Proposition 2

` = 1 Eusepi (2005) (1)

In�nite Horizon

MP rule is unknown
` = 0 Preston (2005) NO
` = 1 NO NO

MP rule is known
` = 0 Eusepi and Preston (2012) Preston (2006)

` = 1 Eusepi and Preston (2010) (2)

Table 3: This table refers to the model without cost-channel. NO refers to the
case where determinacy does not imply E-stability.

below details the sources. The proofs below �ll the gaps: they are numbered

from (1) to (5). To simply the analysis we assume no exogenous processes and

we focus only on the dynamics of the intercept.

Proof of (1-2). Consider �rst the model with the FH decision rule. Using

MFH(a), in equation (36) (appendix A.3) gives a 2 � 2 matrix: necessary and

su¢ cient conditions for E-stability are that the trace should be negative and the
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Table 4.
Determinacy and E-stability in the NK model ( = 1)

Finite Horizon
j = 0 j = 1

MP rule is unknown
` = 0 Proposition 2 Proposition 2

` = 1 NO NO

MP rule is known
` = 0 Proposition 2 Proposition 2

` = 1 NO NO

In�nite Horizon

MP rule is unknown
` = 0 (3) NO

` = 1 NO NO

MP rule is known
` = 0 (4) (5)

` = 1 NO NO

Table 4: This table refers to the model with cost-channel. NO refers to the case
where determinacy does not imply E-stability.
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determinant positive. The trace and determinant can be simpli�ed41 to yield

trace = �(1� �)� �y� < 0

and

determinant = � �
�
�(�� � 1) + (1� �)�y

�
so that the usual restriction �(�� � 1) + (1� �)�y > 0 holds. This corresponds

to the condition for determinacy also known as the Taylor Principle. Hence,

determinacy implies E-stability. Moving to the model with the IH decision rule,

Using M IH(a), in equation (33) (appendix A.2) gives the following trace and

determinant

trace = � 1� �
1� �� �

��y
1� � < 0

and

determinant =
� �
�
�(�� � 1) + (1� �)�y

�
(1� ��) (1� �)

so that, again determinacy implies E-stability.

Proof of (3-4). As shown in Preston (2005) and Eusepi and Preston (2012)

knowledge of the monetary policy rule does not matter for stability in the case

of a contemporaneous Taylor rule, as no feed-back e¤ects from learning are

present. We then focus on the case where agents know the policy rule, which

simpli�es the analytical calculations. Again, using equation (33) in appendix

A2 gives a 2� 2 matrix. The trace and determinant can be simpli�ed42 to yield

trace = �
�
� (�� � 1) + �y(1� � � �)

�
(1� �) +

�
�
1 + �y

�
(1� �)

(1� ��)
41These conditions are obtained after simplifying the output of the matlab �le EstabilityI-

Hgamma0j1.m. The �le is available on request.
42These conditions are obtained after simplifying the output of the matlab �le EstabilityI-

Hgamma1j0.m. The �le is available on request.
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determinant = � (�� � 1) + �y(1� � � �):

Necessary and su¢ cient condition for E-stability is then: � (�� � 1) + �y(1 �

� � �) > 0. As shown in Llosa and Tuesta (2009, Proposition 1) this is also a

necessary condition for determinacy.

Proof of (5). Following the same steps as above, the trace and determinant

associated to (36) (FH decision rule) give the following conditions43

trace = �y + � < 1� �

determinant = � (�� � 1) + �y(1� � � �) > 0:

Using Proposition 2, these are also necessary conditions for determinacy. The

trace and determinant associated with (33) (IH decision rule) are

trace =
(� + ��� � 1)
1� �� �

�y � � + ���
(1� �)

determinant = � (�� � 1) + �y(1� � � �):

By substituting the condition ��� > � � �y(1� � � �) in the expression for

the trace and after algebraic manipulation we get the following condition for

the trace �
� � �y

�
�  < 1� �

where

 = �y (� + �)
� (1� �)
1� �

so that determinacy implies E-stability.

43These conditions are obtained after simplifying the output of the matlab �le EstabilityI-
Hgamma1j1.m. The �le is available on request.
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