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Abstract
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1 Introduction

Lucas (1987) suggested a way of calculating an upper bound for the welfare gain associated with the
elimination of business cycles. His calculation resulted in a very, very small number. If one accepts
his analysis, indeed it is a major puzzle why so much effort is aimed at discussing stabilization
policy, be it monetary or fiscal. Significant amounts of research have been generated during the
20 years since Lucas wrote his paper in an aim to justify an interest in stabilization. In a paper
published in the Review of Economic Dynamics in 1999 by a subset of the authors of the present
paper (Krusell and Smith), we argued that one possible motivation for an interest in the welfare
effects of business cycles is an asymmetric effect of cycles on different groups of consumers. The idea
we put forth is that although cycles do not affect the “average household” much at all in welfare
terms—Lucas considered a representative consumer in his calculation—some consumers may suffer
significantly, especially the poor or unemployed. We considered a setting with significant and, in
important respects, realistic consumer heterogeneity and assessed the welfare effects of removing
cycles for all subgroups of the population. Our results suggested larger, but still very small effects.
However, in our 1999 analysis we made an assumption—inadvertently—that, we have realized, is
of great quantitative consequence. The goal of the present paper is to revisit our 1999 model and
report the results of the much more appropriate assumption. The result is far greater scope for
business cycles to generate welfare costs, especially for the poor and the unemployed.

Lucas did not address how aggregate cycles could be removed; his calculation was based on
simply replacing, at no cost to society (hence the upper-bound nature of the results), an estimate
of the aggregate consumption process with its mean. In our work, which uses a dynamic general-
equilibrium model based on the stochastic growth model with idiosyncratic consumer productivity
shocks and incomplete insurance against these shocks, we replace the aggregate productivity pro-
cess, which is exogenous, with its mean, thus implementing the spirit of Lucas’s approach. However,
when aggregate shocks are removed, what might the implications be for individuals’ shocks? The
assumption adopted here turns out to be key, and the central purpose of the present paper is to
argue for and explore a more appropriate assumption than the one we used in our earlier paper.
There, our aim was to again stay as close in spirit as possible to Lucas’s approach: we argued

that the idiosyncratic shock process should be replaced, when aggregate cycles are removed, by



one that “integrates out” the aggregate component of the individual shock. However, we imple-
mented our integration principle incorrectly and thereby instead, in effect, made the assumption
that individual shocks were unaffected by the removal of cycles. In the present paper, we instead
show that a correct implementation of this principle implies that when the aggregate component
is integrated out, the individual income process becomes less risky, thus by itself representing a
(direct) welfare improvement. In addition, the lower amount of individual risk induces changes in
equilibrium prices which also have important indirect effects on welfare.

By integrating the aggregate risk out of an income process we mean averaging over the aggregate
states conditional on each idiosyncratic state. However, since individual employment—the source
of income fluctuations for individuals in our model—is correlated with the aggregate state (the
employment rate is procyclical), the individual (employment) variable is not fully idiosyncratic,
which makes integration a nontrivial task. With correlation, one thus first needs to construct a pure
process for idiosyncratic luck that, by definition, is uncorrelated across individuals. Conditional
on every realization of this new idiosyncratic variable, one can then integrate out the influence of
aggregate risk on individual employment. Following this procedure, we now find that the removal
of aggregate risk lowers individual employment risk by about 16% in the long run in our baseline
model.

The effect on individual risk has two implications. One is quantitative: it turns out to generate
much larger effects on welfare, on average a bit more than one magnitude larger than those Lucas
found. But there is also a qualitative effect regarding who gains and who loses from removing
cycles: the effect is U-shaped in wealth. First, with less idiosyncratic risk, the poorest consumers
gain significantly since they suffer most from risk; quantitatively, they gain up to several percentage
points in consumption equivalents from eliminating cycles, thus contrasting Lucas’s numbers, which
are orders of magnitude lower. Second, due to the lower income risk, the amount of precautionary
saving in the economy falls. In the closed economy that we study, this raises the interest rate. This
effect is small but nevertheless significantly raises the welfare of the very richest, who own very
large amounts of wealth; the wealth distribution in the initial state reproduces the observed Gini
coefficient for wealth and thus has (a small number of ) very wealthy individuals. This effect on the

welfare of the very richest also amounts to several percentage points of consumption equivalents.



The middle class, in contrast, sees an improvement because of the lowering of risk, but it is very
well insured in utility terms, so this effect is almost nil. Moreover, the middle class, of which a
typical agent is employed, sees a fall in the wage, and as a result the middle class—in total around
65% of the agents—experience a welfare loss from eliminating aggregate cycles.

In addition to calculating welfare costs across individuals who differ in their economic status
at the moment of eliminating cycles, we now obtain striking implications for long-run inequality.
The Gini coefficient for wealth distribution in the steady state without aggregate cycles is over 0.9,
which is substantially larger than the initial average Gini coefficient of about 0.8 in the economy
with cycles. Behind this result is the assumption that discount rates differ across consumers: as
there is less risk, consumers with different discount rates tend to corners, thus making wealth more
dispersed. In particular the poorest can afford to become even poorer, given that their income risk
is less severe and their discount rates tend to be significantly above the interest rate: they “want
to” become poorer. For example, the number of households with negative assets goes from 10% to
29%. On the other hand, the very richest become even richer, due to the increase in interest rates.

An extension of our model distinguishes between short- and long-term unemployment: in
essence, we assume here that once unemployed long enough, the probability of reentrance into
employment falls significantly. In this case, we find that the removal of aggregate risk lowers indi-
vidual employment risk by about 37% in the long run. Moreover, the gain from eliminating business
cycles is much larger than in the model with only one kind of unemployment. Now everyone realizes
a positive gain from eliminating business cycles; the average gain across the population, taking into
account the transition to a new steady state, is as large as 1%. The gains are very large for the
consumers with very little wealth and very high wealth. In the long run, the wealth dispersion
becomes very large. In particular, the fraction of agents with negative assets becomes 76%.

Because we are using the exact same model here as in the original paper, we describe it very
compactly and otherwise move directly to the new analysis. Therefore, Section 2 discusses the
methodology and model used for answering our main question and Section 3 describes parameter
choice and numerical issues. The main results are contained in 4 and the conclusions in 5; several

appendices contain details on computation and other technical aspects of the analysis.



2 Preliminaries

In Section 2.1, we first briefly discuss different routes one might take in answering our main question.
We then discuss our theoretical model framework in Section 2.2 and, in Section 2.3, discuss in detail

how we eliminate cycles.
2.1 Methodology

Lucas’s (1987) model economy is very simple: consumption is exogenous and there is only one
shock—one to the aggregate consumption process. In this economy, Lucas views the elimination of
cycles as simply setting the shock to zero (its unconditional mean). To allow for heterogeneity, one
way to extend what Lucas did is to use data on individual consumption. In particular, postulate
and estimate the dependence of individual consumption on a purely idiosyncratic component and on
aggregate variables. Next, for any value of the idiosyncratic component, take the average across the
aggregate variables: this delivers a new consumption process. Finally, evaluate individual utility
given this new process. We did not follow this procedure for two reasons. First, the procedure
requires a long enough panel of individual consumption data so that one can reliably estimate a
process for individual consumption which not only identifies the aggregate from the idiosyncratic
component but also delivers an accurate assessment of the serial correlation properties of the
shocks to individual consumption. Existing data do not grant this possibility. Second, this kind of
calculation tends to underestimate the costs of cycles: if one instead models the randomness the
agents are subject to, it may be better for them to change consumption in some other way than
just averaging it across the aggregate states. That is, the utility value of not having aggregate
cycles is underestimated. Although this is a problem also in Lucas’s analysis, it is likely more
quantitatively important here, where individual consumption volatility is much higher than in a
representative-agent setup calibrated to aggregate data.

An alternative is to use individual income—for which data is arguably more reliable—and
employ a model to infer consumption by assuming rational behavior given a certain set of asset
markets. A first step would be to estimate a wage process and a process for asset returns and then
to compare the utility outcome for a rational agent facing these processes with one where the same

agent faces the same processes with their aggregate components removed. A second step would



be to add an equilibrium component to the analysis, i.e., to also model where wages and rental
rates come from. Since savings likely change as a result of eliminating risk, this seems a potentially
important channel not to forget, at least if one believes that the economy is closed. Moreover, labor
supply could change, leading to changes in the wage rate.

In this paper we follow a simple version of the latter procedure: we only model idiosyncratic
differences in employment (and not in wage per hour worked), we assume that labor supply is
inelastic, and we assume that all agents face the same return on saving. The asset structure is
simple: there is only one asset—aggregate capital—and an exogenous borrowing constraint. The
aggregate shock is modeled as exogenous changes in aggregate productivity and labor demand, and
we study the general equilibrium effects for different groups of consumers by replacing the latter

shocks with their conditional means.
2.2 Model setup

Except in the details of the individual’s income process, the model is that in Krusell and Smith
(1998); thus, we describe it compactly and, for the most part, without comment.

Consumers are ex-ante the same, with preferences

EO Z ﬁt U(Ct>7
t=0

where U(c) = log(c) and f; is a stochastic variable which is idiosyncratic—i.i.d. across agents—and
describes the cumulative discounting between period 0 and period t. In particular, Bi41 = Bﬁt,
where B is a three-state, first-order Markov process.

The aggregate production function is
Py Eaﬁl—a

where k is capital (a bar refers to a total) and n is labor. There is also home production, which
accrues in the amount 1 to all unemployed agents.! Aggregate output, including undepreciated
capital, can be used to either consume or invest.

In the model with homogeneous unemployment, we denote the employment status ¢ = 0 for un-

employment and € = 1 for employment. When we distinguish short- and long-term unemployment,

!Below, we interpret “home production” as unemployment insurance, thereby avoiding, for simplicity, the explicit
modelling of a government budget constraint.



we introduce a new notation: € = [ for long-term unemployed, ¢ = s for short-term unemployed,
and € = e for employed. The distinction between short- and long-term unemployment allows us to
consider differences among the unemployed both in terms of their income when unemployed and
their prospects for future employment. In particular, in the calibration we assume (i) that short-
term unemployed receive higher unemployment insurance benefits (for the unemployment benefit
e, s > Y > 1. = 0 holds); and (ii) that their probability of employment is higher, with the dif-
ference being more pronounced in recessions than in booms. As before, the individual employment
status, jointly with the aggregate shock z, follows a first-order Markov chain.

Formally, a recursive competitive equilibrium for this economy is defined using the aggregate
state variables. Let I' denote the current measure of consumers over holdings of capital, employ-
ment, and preference status. Then, the state variable relevant to the individual includes (T, z) and

the idiosyncratic vector (k, e, B) Let H denote the equilibrium transition function for I':
I"'=HT,z7).
Consumers solve

v(k, e, 3:T, z) = mz;{:)/({U(c) + BE[v(k’7 ¢ 3T, 2|z, e,ﬁ] :}
C7

subject to:

c+k =rk,1—uy,2)k+wk,1—uy,2) leee + e + (1 — 6K
I"'=HT,z27)
K >k,

where I.—. = 1 if e = e (or e = 1 in the homogeneous unemployment case) and 0 otherwise. If

K = fk,e, 3T, 2)

denotes the optimal saving decision for the agent, then an equilibrium can be defined as a law of
motion H, individual functions (v, f), and pricing functions (r,w) such that (i) (v, f) solves the
consumer’s problem; (ii) (r,w) equal the marginal products of capital and labor, respectively; and

(iii) H is generated by f and the law of motion for (z,¢, 3).



Finally, the economy without cycles is defined in the same way, but using different processes
for z (which is now deterministic) and e. We will now describe in detail how these processes are

obtain.
2.3 The elimination of cycles

The heterogeneous-agent model we use here allows an indirect way—given the assumptions un-
derlying the model—of deducing how individuals’ consumption processes depend on aggregates.
Ideally, one would then perhaps introduce stabilization policy explicitly in the model and compute
the implied welfare effects. In our model, however, z and e, which are exogenous processes, would
then be left unchanged, and it is not clear that such an experiment would capture all potential
gains from stabilization. Instead, and with the kind of “upper-bound approach” Lucas used, we opt
for changing these processes directly, and more specifically changing them by removing any cyclical
components, without introducing policy explicitly.

How should the processes be altered, i.e., how should the cyclical components be removed? We

discuss this next.
2.3.1 Aggregates

With reference to Lucas’s procedure, which involved replacing the consumption shock in his model
with its mean, assuming that there could be no average consumption gain—or loss—from elimi-
nating cycles, we also adopt a “neutrality” assumption. For aggregate shocks, we replace z and
u by their conditional means. In the long run, our economy without cycles thus has productivity
Tg2g + mpzp and unemployment rate myug + myup, with w4 and m, representing the unconditional

probabilities of good and bad aggregate states, respectively.
2.3.2 Individual variables

One could remove the aggregate component of the individual shock in several ways. We proposed, in
our 1999 paper, to integrate over the aggregate shock. Suppose the individual variable of interest,
y, is a function g of two independent random variables, y = h(i,z), where i is an idiosyncratic
shock and z is an aggregate shock. The assumption that the two shocks are independent amounts

to a definition of “idiosyncratic”; the densities are denoted f;(i) and f,(z), respectively. We then



identify the idiosyncratic shock process in the absence of aggregate risk, y*/ °(7), with the following:

yIo(0) = [ i) ()

for each ¢, with density f;(4).
For the most straightforward example, suppose that y denotes an individual productivity level
and that this productivity is the sum of two jointly normal shocks, one individual-specific, but not

necessarily fully idiosyncratic, shock € and the aggregate shock z:
y=€c+z.

We assume first that the marginal distribution of each of these shocks is N(0,1) and that the
covariance between the two shocks is p. If p = 0, so that € and z are independent, we deduce that

y is N(0,2). Then we obtain, using our integration principle, that

which is N(0,1). Here, y®/° is clearly less risky—it has a lower variance than y.2
If € and z are correlated, integration requires first projecting y onto z. This projection is

(1 + p)z + i, where i and z are now independent by construction and i has variance 1 — p?

, since
we assumed that both € and z were N(0,1). Note that y in this case is distributed according to

N(0,2 + 2p). Now integration implies that

y“lo =i,

which is N(0,1 — p?): this process always has a lower variance than g, and this variance vanishes
entirely if the individual and aggregate components that comprise y are perfectly correlated.

In our model framework, the individual-specific income process y depends crucially on the
employment process €, which is not, in general, independent of z, like in the last example. In order
to find the €*/°—the employment process when there are no aggregate shocks—we therefore need
to do the equivalent of the linear projection that was appropriate in that last example: we need to

design a purely idiosyncratic variable ¢ such that the employment/income outcome € is a function

2 Atkeson and Phelan (1994) assume that when the aggregate shock is removed, the individual shocks remain the
same, but they become independent: they no longer move together. Thus, it is clear that the integration principle
we propose is different.



of i and 2.3 Tt turns out that this can be done as follows: let i be uniform on [0, 1], and define
€(i, 24) to be 1if i < my)y and 0 otherwise and €(7, z) to be 1 if i < 7y}, and 0 otherwise. We will
assume in this discussion that my), > 5, L.e., that € and z are positively correlated.

Integration is now straightforward. If ¢ < ), the individual is employed no matter what
happens to the aggregate shock, so the integration is trivial: ¢*/° = 1 for such values of i. Similarly,
if © > )y, the individual is unemployed no matter what: ¢®/° = 0. Finally, if mp < 1 < Ty,
the individual is employed only if the aggregate state is good, which occurs with probability my;
thus, integration for such values of i implies that €¥/° = g1+ (1 —my)-0=m,. Thus, our new
employment variable €*/° has the following 3-state distribution: 1 with probability T1|p, Tg With
probability 7y, — 715, and 0 with probability 1 — ;). Note that the new income variable thus
has a different support—one more state—and that it is less risky: some probability mass has been
moved from the extremes 0 and 1 into a middle state. In a dynamic economy, where individual
employment is correlated over time, one can follow the same principles but it is quite a nontrivial
affair to find the process for €?/°. Suffice it to say here that this new process (i) will change
nature—it will increase its support—as time evolves; (ii) will not be first-order Markov, but rather
will be a function of two state variables (in the homogeneous unemployment case) which in turn
are a function of all present and past values of i and evolve recursively; and (iii) will settle down to
a stationary process with full support on [0, 1]. With the short- and long-term unemployment, the
number of state variables becomes five. Section 4 and the Appendices A and B outline all the details
for the baseline case; Appendix D gives the details for the case with two kinds of unemployment

As stated above, has the integration principle been used in the existing literature? Imrohoroglu
(1989) did something in this direction but she restricted the new employment process to be first-
order Markov, something which is inconsistent with our integration principle. Similarly, the
procedure used in Storesletten, Telmer, and Yaron (2001) is also inconsistent with the integra-
tion principle, although both these authors and imrohoroé;lu propose individual processes in their

economies without aggregate cycles that have some intuitive appeal. Finally, Krebs (2003, 2006)

3Krusell and Smith (1999) stated the integration principle as we did here (although with somewhat less detail)
but failed to apply it correctly. The mistake amounted to treating € as independent of z in the actual application. As
a result the exact same employment process was applied for the models with and without aggregate shocks. Thus,
our results coincided with those that would follow from using Atkeson and Phelan’s procedure: no risk was removed
when cycles were removed.
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and Mukoyama and Sahin (2005, 2006) do adhere to the integration principle in their recent papers.*

3 Parameter Selection and Model Solution

We now turn to the quantitative experiment, starting with the calibration and then briefly com-

menting on computation.
3.1 Calibration

Our calibration here is identical to that in Krusell and Smith (1999); we therefore describe it only
very briefly. The calibration is quite standard and mostly based on Krusell and Smith (1998); the
main exception is the employment process, which in our alternative calibration now distinguishes
short- from long-term unemployment.

We set, with a period being one quarter, § = 0.025 and a = 0.36, and we use discount factors
(for the benchmark model, set primarily in order to match the wealth distribution) that are 0.9858,
0.9894, and 0.9930, with 80% of the population on the middle value and 10% on each extreme
point in any time period and an expected duration of the extreme discount values of 50 years
(approximating a lifetime); transitions can only occur to adjacent values. We let u; equal 10% and
ug equal 4%, and we set z, = 1.01 and 2z, = 0.99, with an expected duration of each aggregate
state to 2 years. We set the borrowing constraint to be very loose, with a limit of about 60-70% of
average annual income.

The first employment process we consider (the benchmark) has the short- and long-term unem-
ployment states collapsed into one state, as in Krusell and Smith (1998) exactly; this is our baseline
calibration. It has g = 0.0334, which is about 10% of the quarterly wage. The employment process

here is given by four 2-by-2 matrices, one for each (z, 2’):
0.33 0.67
0.03 0.97
for the transition (z,z') = (z4,24) (rows/columns stand for the current/next period’s state; row

1/2 is the unemployment /employment state),

0.75 0.25
0.07 0.93

“However, these papers appeared after the first working paper version of the present paper.
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for (24, 2p),

0.25 0.75
0.02 0.98

0.60 0.40
0.04 0.96

for (zp,2p). These parameters imply that the aggregate unemployment only take on two values

for (2, z¢), and

and that the expected duration of unemployment is 1.5/2.5 quarters conditional on the good/bad
aggregate state remaining. Because unemployment is higher in bad times than in good times, in-
come risk due to unemployment risk is countercyclical, and integrating out the aggregate aggregate
component from the employment dynamics will, as we shall see, lower the net risk facing the worker.
The second calibration uses the discount factors 0.9823, 0.9879, and 0.9935, along with 1, =
0.391, which is about 50% of the quarterly wage, to roughly replicate the U.S. replacement ratio
during the first quarter of unemployment; ¢; = 0.038, which helps us match the left tail of the
wealth distribution. The employment transition matrices here are:
0.50 0 0.50
( 025 0 0.75 )
0 0.03 097

for the (zg,z4) transition (1 means long-term unemployed, 2 short-term unemployed, and 3 em-

017 0 0.83
0.03 0 097

0 0.03 097

ployed),

for the (zp, 24) transition,

094 0 0.06

0.7 0 0.25

0.04 0.03 0.93
for the (zg4, 2) transition, and

099 0 0.01

0.03 0 0.97

0 0.03 097

for the (zp, zp) transition. These matrices imply the kinds of duration numbers mentioned above
and that (by definition) the long-term unemployed always has to be preceded by, and cannot transit

directly to, short-term unemployment. We also require that the probability of employment is always

higher for the currently employed than for the currently unemployed.?

5An exception to one of these restrictions can be found in the transition from the good to the bad aggregate
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% of wealth held by top Fraction with Gini
1% 5% 10% 20% 30% || wealth <0 || coefficient

One kind of unemployed | 24% 54% 72% 86% 91% 10% 0.81
Two kinds of unemployed || 26% 56% 72% 83% 87% 10% 0.77
Data 30% 51% 64% 9% 88% 11% 0.79

Table 1: The distribution of wealth

This calibration means that the expected duration of unemployment conditional on a bad ag-
gregate state is quite long: 80 periods for long-term unemployed; it is only 2 periods in the good
aggregate state. However, note that recessions last only 8 periods on average, so the average dura-
tion of an unemployment spell is relatively short. Relatedly, the fraction of all unemployed agents
consisting of long-term unemployed is 73% in bad times and 33% in good times, with the total num-
ber of short-term unemployed barely changing at all across aggregate states. Thus, employment
dynamics change a lot with the aggregate state and eliminating the risk of unemployment by inte-
grating out the aggregate fluctuations will be a potentially important reduction in unemployment
risk; we will get back later to just how much, given this calibration.

We obtain long-run wealth distributions as tabulated in Table 1.6 These distributions are
roughly consistent with the data in Wolff (1994) and Diaz-Giménez, Quadrini, and Rios-Rull
(1997)).

3.2 Model solution: approximate aggregation

The models with aggregate uncertainty are solved as in Krusell and Smith (1998). We also com-

pute transition paths for economies without aggregate shocks; here, we postulate a time path for

state; there, it is possible to go directly from ¢ = e to € = [, an outcome necessitated by the requirement that the
probability of employment next period be higher for unemployed agents than for employed agents. Because we insist
that all newly unemployed receive v, this actually requires using a third aggregate state in the formal analysis
along with a fourth individual state. Thus, we denote a bad aggregate state following a good aggregate state zq4
(for “downturn”), to be distinguished from a bad aggregate state following a bad aggregate state (denoted z3), and
we denote the long-term unemployed who directly transited from employment, and therefore receive ¢s, by f (for
“fired”). By construction, the state f appears only when the aggregate state is z4. The implied, larger transition
matrices are tabulated in Appendix D.
5We use the following formula for the Gini coefficient:

1 Yo (n4+1—i)k;
SEIGSE G )

for the simulated values of the individual wealth k;, ¢ = 1,...,n and k; is ordered in a non-decreasing manner
(ki < ki+1). Here we use this formula directly to the simulated data although the simulated data contains substantial
number of the individuals with negative wealth.
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aggregate capital, solve for agents’ decisions given this path, and then verify that the time path
for aggregate capital implied by agents’ aggregated decisions matches the postulated time path.
Appendices B and D describe the algorithm in detail.

We obtain equilibrium laws of motion for aggregate capital, which also describe the accuracy

of our computations, as follows. For the baseline calibration,
log k' = 0.102 + 0.960 log k

R? =0.999985, & = 0.0075%

in good times (state z,4) and

log k' = 0.094 + 0.961 log k
R? = 999946, & = 0.0141%

in bad times (state zp), where ¢ is the estimated standard deviation of the error in a regression
using simulated time-series data. For the calibration with short- and long-run unemployed, the

corresponding equations are

log k' = 0.104 + 0.959 log k
R? =0.99998, & = 0.0087%

in good times (state z),

log k' = 0.117 4+ 0.951 log k
R? =0.99968, & = 0.0307%

in bad times when the last period was bad as well (state zp), and
log k' = 0.093 + 0.963 log k

R? =0.99998, & = 0.0077%

in bad times when the last period was good (state z;). The fit is a little worse here than in the

baseline case, especially when two bad aggregate shocks hit in succession, but it is still impressive.
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4 Welfare Effects of Eliminating the Business Cycle

One of our main objectives is to record the welfare effects of removing cycles for different types of
consumers at the time of the removal of cycles, since we expect these effects to vary substantially
across different groups of the population. Therefore, we need to solve for transition paths; if we
solved only for long-run outcomes, we would be able to comment only on how certain groups do
in the long run, and we would not be able to ask the question “How is agent x affected by the
removal of cycles?”, where x refers to a consumer’s type on the date that cycles are (unexpectedly)
removed. As in Krusell and Smith (1999), in the transition experiment we therefore replace the
stochastic z process with its conditional expectation as of the initial date, leaving a deterministic
movement in z and u which disappears in the long run.

The wage income process without aggregate shocks is significantly more complex than the one
with aggregate shocks. Using the baseline case as an illustration, recall from the discussion of
the one-shot case of aggregate risk in Section 2.3.2 that the employment process in the economy
without cycles has a 3-point support: 0, 1, and a number strictly between 0 and 1, namely, the
conditional probability of a good aggregate state. In the fluctuating economy, a lucky agent with a
low realization of the “pure idiosyncratic shock” i is employed no matter what the aggregate state is,
and an unlucky consumer with a high realization of 7 is unemployed no matter what the aggregate
state is. Therefore, the application of the integration principle for these consumers is simple—assign
the new employment value 1 to the former consumer, and assign the new employment value 0 to
the latter consumer. A consumer with an intermediate value of i is employed only if the aggregate
state is good. The integration principle assigns the expected value (with respect to the aggregate
state) of the employment value in the fluctuating economy as the new employment value for this
consumer. Since the underlying employment variable € in the fluctuating economy takes either 1
or 0, the expected value 7y -1+ 7, - 0 = 7, is assigned as the new employment value, where 7, is
the probability that the aggregate state is good and m, is the probability that the aggregate state
is bad.

The same logic applies when we adapt this procedure to our infinite-horizon economy. In the
economy with cycles, the employment status of a consumer at time ¢, €;, depends on the histories of

idiosyncratic and aggregate shocks up to that time, i.e., on i* = {iy, ...,4;} and 2 = {z0, ..., 2t }. Asin
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the one-shot case described in Section 2.4, the i;s are assumed to be i.i.d. and uniformly distributed
on [0,1]. In the economy without cycles, following the integration principle, we determine the
employment value of a consumer with “luck” history i¢ by calculating the expected value of his
employment outcome at time ¢, where the expectation is taken with respect to the set of possible
histories {z'} of aggregate shocks. In other words, and again using the (two-state) baseline case as
an illustration, we set the consumer’s employment value at time ¢ in the economy without cycles
equal to his probability of employment in the economy with cycles, given his history of “luck” it. If
the consumer is unlucky and the elements of his history i‘ are all close to 1, then he is unemployed
at time ¢ regardless of the realization of the aggregate history z'; by the same token, if the consumer
is lucky and the elements of it are all close to 0, then he is employed at time ¢ regardless of z'.
For histories it with intermediate values, the consumer’s employment value in the economy without
cycles (i.e., his probability of employment given i!) depends on the aggregate history 2!, and in this
case we compute the consumer’s average employment outcome across different histories z?.

It turns out that we can calculate the “averaged” employment values in the economy without
cycles by tracking the evolution of two state variables for each consumer. One of these state
variables is Py, the probability (in the economy with cycles) that a consumer with history i* is
employed at time ¢ and that the aggregate state at time t is good; the other, Py, is the probability
(again in the economy with cycles) that a consumer with history i is employed at time ¢ and that
the aggregate state at time ¢ is bad. The new employment value in the economy without cycles
is then Py + Py, or the probability that a consumer with history i* would have been employed at
time ¢ in the economy with cycles.

As we move forward in time, the set of possible individual and aggregate histories grows, and
consequently the number of possible values that the “averaged” employment value can take on
increases too. Indeed, for any subinterval contained in [0, 1], there is a positive probability that the
employment value in the economy without cycles lies in that interval as time approaches infinity.

Appendices A and B provide further details of the updating procedure in the baseline case.
When there are two types of unemployment, the employment process is summarized by a five-
dimensional vector. The “integration” procedure is more involved in this case, but the principle

remains the same; see Appendix D for complete details.
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Initial state | Fraction Average utility gains in percentage consumption

k z gaining | All |e=1 e=0|F=low [=middle S =high
11.2 Zg 0.343 0.081 | 0.076 0.197 | 0.201 -0.009 0.677
11.2 2 0.386 0.103 | 0.083 0.288 | 0.259 0.017 0.634
123z 0.329 0.083 | 0.081 0.136 | 0.225 -0.001 0.617
12.3 2 0.347 | 0.090 | 0.081 0.170 | 0.245 0.003 0.614

Table 2: Welfare gains from eliminating business cycles

4.1 The baseline case: homogeneous unemployed

First, we present the results for the case where there is only one type of unemployment. To begin,
Table 2 contains summary measures of welfare changes across different groups. We convert the
difference between the two expected values into a consumption equivalent in the same way that
Lucas did; see Appendix C for the exact formula.

Table 2 contains four transition experiments: starting from two different initial capital stocks
(each one is associated with a randomly drawn distribution of assets from the stationary stochastic
process for this distribution under aggregate uncertainty) and from two different values of the
aggregate shock. The results in the table reveal, first, that the average welfare gain from eliminating
cycles is a little more than one magnitude larger than that computed by Lucas for the same period
utility function: up to 0.08-0.11% of consumption from Lucas’s 0.008%. Second, the distribution
of welfare gains reveals substantial heterogeneity. For example, only a little over a third of the
population even realize a gain; the rest lose from eliminating cycles. Summary statistics from the
point of view of employment and patience type, as of the point in time when cycles are removed,
are also displayed in the table. They reveal that unemployed agents lose on average 2-3 times
more from cycles and that, across agents with different time preference rates, the most and least
patient gain the most. In contrast, the middle group has a welfare gain that on average is similar
to Lucas’s number. The largest gainers are actually the most patient group, with numbers over
0.6%, i.e., close to two orders of magnitude larger than Lucas’s representative-agent number.

Table 2 does not reveal who the losers from eliminating cycles are. We need a breakdown across
wealth groups to find the losers, and the following Table 3 provides this kind of information for one
of the four transition experiments. The tables corresponding to each of the other three transition

experiments differ only slightly from this one; they are contained in Appendix E.1.
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Utility gain in percentage consumption
<1 1-5 525 25-50 50-75 7595 9599 >99
All | 0.350 0.151 0.033 —-0.073 —0.108 0.233 1.135 1.761
e=10212 0.127 0.027 -0.075 -—-0.109 0.232 1.134 1.763
€= 1.051 0.395 0.149 —-0.021 —-0.084 0.250 1.159 1.667

Table 3: Average utility gains by wealth group (k = 11.2, z = 2,)

Wealth percentile
Type of agent constr.  0.005 0.05 0.5 0.95 0.995 0.999
e=1, 0 =low 0.516 0.413 0.275 0.063 0.437 1.255 1.560
e=1, 6 =middle | 0.221 0.134 0.021 —-0.109 0.690 1.552 1.857
e =1, § = high 0.063 0.010 —0.028 0.023 1.090 1.964 2.273
e=0, 0=Ilow 3.500 1.032 0.529 0.131 0.426 1.252 1.559
€ =0, § =middle | 2.629 0.640 0.225 —-0.071 0.677 1.550 1.856
e =0, 8 = high 1.911  0.382 0.076 0.001 1.077 1.962 2.272

Table 4: Utility gains for different types of agents (k = 11.2, z = z,)

Here, a sharp U-shape across wealth levels appears. We see, in particular, that the consumers
in the 25th—75th percentiles in the wealth distribution are significant losers. For example, those in
the 50th—75th percentile lose one order of magnitude more in consumption equivalents than Lucas’s
representative agent gains. Moreover, we see that the losses are larger for the employed than for
the unemployed. These agents are not very vulnerable to risk, and they lose particularly from the
lower wages that result from lower aggregate savings.

The very richest group gains the most; the top percentile in wealth gains more than 1.5% in
consumption equivalents. Clearly, the gains here derive from the increased interest rate. The
poorest, represented as the bottom percentile here, gain between around 0.2% (the employed) and
1.1% (the unemployed); for this group, the diminished risk seems to be the reason why the gains
are high.

Yet another cut of the heterogeneity in gains is compiled in Table 4, where there is a focus on
the groups at the extreme ends in the wealth distribution across different patience and employment
7

statuses.

The effect on agents who are borrowing-constrained can be seen in this table; if they are

"Note that not all the combinations of the individual states actually are realized in the simulation, since the
wealth holding is endogenous. However, we can think of an individual situated in a specific cell due to an unexpected
(positive or negative) wealth transfer.
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Pct. of wealth held by top Pct. with Gini
1% 5% 10% 20% 30% | wealth < 0 | coefficient

Cycles 24 b4 T2 86 91 10 0.81
No cycles | 25 59 79 95 98 29 0.90
Data 30 51 64 79 88 11 0.79

Table 5: The distribution of wealth

impatient and unemployed, the reduction in risk amounts to close to a 4% increase in utility
measured in consumption equivalents. This number is 500 times larger than the number provided
by Lucas and it is an answer of sorts to the main query in this paper: are there agents in the
population who would really gain a lot from the elimination of cycles? The answer is yes, if we
think of 4% as a large number, and even though it may not be on some level, relative to the numbers
we find in the literature, it is a large number!

The table also shows that those in the top one-thousandth of the wealth distribution gain
over 2% if they are patient. Neither the very poorest nor the very richest represent large groups.
Especially the losers among the poor need to be at, or very close to, the borrowing constraint in
order to lose significantly; just a little bit of wealth goes a long way toward lowering the utility
losses from the risk. The gains among the richest fall off somewhat less rapidly; there is a larger
group of big winners in this group.

Table 5 shows the long-run wealth distribution in the U.S. data and in the economies with and
without cycles. This table shows that inequality increases significantly; the interest rate goes up,
making the rich richer, and the lowering of individual risk makes the poor less concerned about
holding low levels of assets—they engage in less precautionary savings. In an economy without
discount-factor heterogeneity, these effects would not appear nearly as strongly (or at all). The
effect of removing uninsurable individual risk in an economy with discount-factor heterogeneity, at
least of the persistent kind we consider here, is to move close to the complete-markets outcome,
which we know will be rather extreme. It would not be degenerate here since the discount factors
do vary stochastically, but close enough that the effects on inequality of eliminating cycles are very
large. Consumption inequality also increases in the long run. The consumption Gini coefficient
increases from 0.13 to 0.14, despite the decline in the Gini coefficient for earnings (wage income plus

unemployment compensation). The Gini coefficient for income (earnings plus the interest income
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Initial state | Fraction Average utility gains in percentage consumption
k z gaining All |e=e e=s e=f e=1 | f=low [=middle = high

113 24 1.0 0.974 | 0.932 1.532 3.005 1.708 0.597 3.309
11.3 24 1.0 1.130 | 0.831 0.949 3.624 6.446 2.095 0.737 3.349
11.3 2z 1.0 1.522 | 0.853 0.931 10.022 | 2.840 1.134 3.294
121 2z 1.0 0.932 | 0.905 1.353 2.066 1.655 0.553 3.286
12.1 zy4 1.0 1.039 | 0.836 0.956 3.239 4.055 1.917 0.654 3.213
12.1 2 1.0 1.078 | 0.835 0.912 4.159 2.009 0.689 3.237

Table 6: Welfare gains from eliminating business cycles

Utility gain in percentage consumption
<1 1-5 525 25-50 50-75 7595 9599 > 99
All | 2312 1499 1.108 0.439 0.366 1.120 4.362 6.965
e=e | 1.769 1.190 1.056 0.418 0.351 1.113 4.360 6.973
=s | 4466 2.940 2.186 0.915 0.765 1.256 4.365 6.651
e=11]6.523 4.553 2824 1278 1.063 1.450 4.494 6.638

Table 7: Average utility gains by wealth group (k = 11.3, z = 2)

rk) increases from 0.32 to 0.35.
4.2 The case with short- and long-term unemployment

In this section, we present the results for the case where we make a distinction between short- and
long-term unemployment. Table 6 summarizes the welfare gains for different initial capital stocks
and aggregate productivity states.®

The average gain is now around 1%, which is more than 100 times larger than Lucas’s number.
In contrast to the previous case, everyone gains from eliminating business cycles. In particular, the
long-term unemployed realizes a very large gain.

Table 7 breaks down the welfare gains for different wealth levels. We see the U-shape pattern
again: very poor and very rich consumers receive the largest gains. The significant size of the
very rich’s gain indicates that the general equilibrium effect is very large. This is because the
precautionary savings are very large in the economy with cycles, due to agents fearing long-term
unemployment. To match the realistic wealth distribution (by “forcing” some people to borrow),

we assumed more dispersed discount factors; the difference between the smallest and the largest

8Recall that here we make distinction between the z; state (a bad state after a good state) and the z, state (a
bad state after a bad state) and that the individual state f exists only when the aggregate state is zq.
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Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
e=e¢e, f=low 2431 2305 1.912 1.011 1.153 3.969 5.004
e=e, 0=middle | 1417 1.311 0.987 0.363 2.023 5.475 6.553
€ = e, 3 = high 0.837 0.796 0.715 0.899 4.249 7.934 9.057
e=s, 0=low 5.957 5.275 3.876 1.659 1.148 3.965 5.004
€ =35, f=middle | 4.128 3.601 2.489 0.805 1.995 5.470 6.552
€
€
€
€

s, # = high 2.623 2.271 1.562 1.002 4.210 7.930 9.058
l, B =low 8775 7.696 5.331 2104 1.137 3.961 5.003
=1[, f=middle | 6.296 5.472 3.623 1.115 1.966 5.466 6.551
= [, 8 = high 4.086 3.521 2.257 1.068 4.174 7.925 9.057

Table 8: Utility gains for different types of agents (k = 11.3, z = z,)

G is 0.0112, while it was 0.0072 in the homogeneous unemployment case. The mean discount
factor is also lower here, to prevent people from saving too much. The elimination of the business
cycle reduces the risk of long-term unemployment substantially (since the risk was strongly tied
to being in a recession), and as a result, aggregate savings drop significantly. In the homogeneous
unemployment case, the average capital stock falls from 11.78 to 11.75, while in the short- and
long-term unemployment case, the change is from 11.67 to 11.48.

Table 8 describes the individual welfare gains.” The largest benefit among the poor agents is
realized by the constrained agents in long-term unemployment and with a low discount factor. For
them, current consumption is very important, implying that the constraint on borrowing is very
costly. Moreover, if the economy falls into a recession, these agents are likely to remain long-term
unemployed for a long period of time. This risk is substantially reduced by the elimination of the
business cycles. Among the richest agents, the most patient gain significantly, since they foresee
a large increase in the interest income in future, when the aggregate savings fall substantially. In
this case, very rich agents gain more than very poor agents: the general-equilibrium effect is larger
than the risk-reducing effect. This is not the case, however, when business cycles are eliminated at
a different point in time: if k = 11.3 and z = z,, the gain for a constrained agent with ¢ = [ and
B = low is 30.3% (which is the largest gain among all the scenarios) while the gains of the richest
are below 9%.

Table 9 compares the long-run wealth distributions before and after the removal of cycles.!® The

9Tables for other initial aggregate conditions are available in Appendix E.2.
The Gini coefficient is contained in [0, 1] when all consumers have positive asset levels. Here, the Gini exceeds
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Pct. of wealth held by top Pct. with Gini
1% 5% 10% 20% 30% | wealth < 0 | coefficient

Cycles 26 56 72 83 91 10 0.77
No cycles | 37 79 98 110 110 77 1.06
Data 30 51 64 79 88 11 0.79

Table 9: The distribution of wealth

change in the wealth distribution is qualitatively similar to that in the homogeneous unemployment
case—the wealth distribution is more dispersed and more people have negative asset holdings.
Quantitatively, the change is more extreme here—the majority of agents are at negative asset

levels.

5 Summary and Concluding Remarks

This paper revisits the question of how a heterogeneous-agent economy might be affected by the
elimination of aggregate fluctuations. Lucas (2003) surveys the previous work on the topic in
detail, and a number of papers have been written since, exploring new mechanisms and more
complex settings. Some of these departures lead to large effect and others do not; Krebs (2007)
looks at the uninsurable earnings risk associated with displacement and argues that the cycle can be
very costly for subgroups in the population; Mukoyama and Sahin (2006) find larger costs of cycles
when workers have different skill levels, especially for the low-skilled; and Schulhofer-Wohl (2008)
considers preference heterogeneity, regarding attitudes toward risk, and finds very small effects. In
this paper, we “go back to basics” and find that, even in a rather standard setting where cyclical
idiosyncratic wage risk is abstracted from entirely, when we make the require the model to match
the wealth distribution along the lines of Krusell and Smith (1998), the welfare costs of cycles are
rather high, and influence the population quite unevenly.

In particular, we find that the average gains from eliminating cycles are significantly higher in
the economy we consider here than those found in Lucas’s (1987) representative-agent calculations.
In the case of homogeneous unemployment, these gains are still quite low in absolute terms: about

0.1% of average consumption. However, in the case where we distinguish long- from short-run

one since we use the formula in footnote 5 applied to data that contain agents with negative asset holdings. The
percent of wealth held by the top 20% and top 30% exceed 100% because of the existence of negative asset holdings.
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employment, we obtain much larger gains: about one full percentage point of average consumption.
The reason for the much larger effect in the latter case is that, first, long-term unemployment is a
major risk—when it hits, it implies very low poor prospects of re-employment and therefore is a
large negative shock to present and future income—and, second, this risk is highly cyclical.

The largest gains from removing cycles are recorded in the poorest, most impatient group: close
to 4% of average consumption for the benchmark calibration. The gain for this group mainly derives
from lower risk: the employment process is less risky now since a part of this process derives from
the aggregate cycle (as unemployment is higher in recessions); moreover, there is also less wage
(and interest) rate risk, since these fluctuate if aggregate productivity does. The very richest also
gain substantially: over 2% in the benchmark calibration. The effect on the richest is due to
the increase in the interest rate that comes from a fall in precautionary savings. Precautionary
savings, of course, fall due to the lower risk exposure in the absence of cyclical fluctuations. On
the other hand, close to 65% lose from the elimination of cycles. The losing group is the large
middle class. This group typically is reasonably well insured because they have some wealth—so
they do not benefit much from a reduction in risk—and they are employed. Being employed, but
not too wealthy, their main income comes from working, and they lose on net since wages fall with
the fall in aggregate savings. All of these comparative (cross-group) effects are present also in the
alternative calibration, but they show up more significantly there since (the elimination of) risk is
more central when there is long-term unemployment. Also, in this case because risk issues are all
the more important, all agents gain from the elimination of aggregate risk.

Finally, we note that the effect on long-run wealth inequality from eliminating aggregate uncer-
tainty is rather drastic in our economy: the Gini coefficient goes up from just under 0.8 to around
0.9 in the benchmark calibration—and to a number exceeding 1 in the alternative calibration. This
effect is due to the heterogeneity in discount factors underlying the initial wealth distribution: with
less individual uninsured risk, wealth holdings of agents with different time preference rates choose
even more divergent asset levels, as the more patient lend even more to the less patient early on,
leading relative wealth levels go move apart. In the case with long-term unemployment, more than

half of the people hold negative levels of asset in the long run when aggregate risk is no longer
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present.
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Appendix
A The integration principle applied to the baseline model

The 4 x 4 Markov transition matrix for (e, z), in its calibrated form, reads

0.8507 0.1159 0.0243 0.0091
0.1229 0.8361 0.0021 0.0389
0.5833 0.0313 0.2917 0.0938 |’
0.0938 0.3500 0.0313 0.5250

with ordering (e, g), (e,b), (u,g), (u,b). This implies probabilities of finding a job, conditional on
last period’s employment status and on the aggregate shocks in the current and in the last period.
These job-finding probabilities can be ranked from least to most lucky as follows: the probability

of becoming employed next period (¢ = 1) is,
1. conditional on € =0, z = g, and 2’ = b, 0.0313/0.1250 = 0.2504 = iy;
2. conditional on € = 0, z = b, and 2’ = b, 0.3500/0.8750 = 0.4000 = is;
3. conditional on € = 0, 2z = g, and 2’ = g, 0.5833/0.8750 = 0.6666 = i3;
4. conditional on € = 0, 2 = b, and 2’ = g, 0.0938/0.1250 = 0.7504 = i4;
5. conditional on € = 1, 2 = g, and 2’ = b, 0.1159/0.1250 = 0.9272 = i5;
6. conditional on e =1, 2 = b, and 2’ = b, 0.8361/0.8750 = 0.9555 = ig;
7. conditional on € = 1, z = g, and 2’ = g, 0.8507/0.8750 = 0.9722 = i7; and
8. conditional on € = 1, z = b, and 2’ = g, 0.1229/0.1250 = 0.9832 = is.

Thus, our idiosyncratic shock i; can end up in 9 relevant subintervals, defined by the cutoff values
i1-19, in each period. Let us take an example: if i € [ig,i7), the agent would have been employed
currently only if the aggregate and idiosyncratic shocks leading up to the last period made the agent
employed in that period and the current aggregate state would have been bad (independently of
what the state was last period).

For a realized sequence of idiosyncratic shocks {is}!_; one can then compute an average em-

ployment outcome in period ¢ by brute-force averaging across all {zs}._; sequences (appropriately
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weighted by probabilities): given each such sequence of aggregate shocks, together with an employ-
ment status in period 0, the employment outcomes in all periods up to and including ¢ are known:
they follow applying the cutoff values above in every time period.

The resulting employment process will have long memory in terms of the idiosyncratic shocks:
one generally needs to know all prior values of i5, s < ¢, in order to know what the average
employment outcome is at ¢t. However, it is possible to represent the new employment process
recursively. To this end, let P, denote the probability (or fraction of the time) that, among all
possible outcomes of the aggregate process, (i) the individual would have been employed in time
t, given his initial (time-0) employment status and an initial (time-0) value for the aggregate state
AND (ii) the aggregate state at time ¢ would have been good. Similarly define Py as the probability
that the agent would have been employed in ¢ jointly with a bad aggregate state in that period.
Letting 7; denote the probability of a good aggregate state in period ¢ given zg, these definitions
imply that m; — Py is the probability that the agent would have been unemployed in ¢ jointly with
a good aggregate state in ¢ and similarly that 1 — m; — Py is the probability that the agent would
have been unemployed in ¢ jointly with a bad aggregate state in £. The key insight now is that
the variables P, = (P, Py:) summarize all there is to know from history in order to know the
expected (average) value for employment in period ¢ + 1 given a value for i;41. Le., P, summarizes
all the relevant knowledge about {i1,i2,...,4;}. This representation is possible because the joint
underlying process for employment and the aggregate state is first-order Markov.

The recursive structure needs to update P; into P,y given a value for 4;y1, and it needs to
assign a value for the average employment outcome in period t+ 1 conditional on the state variable
P, summarizing the individual’s idiosyncratic history and i:;1, the new idiosyncratic shock. The
latter is easy: the average value of employment across the aggregate shock outcomes will be eﬁ/lo =
Py 11+ Pyyq1, because g and b are disjoint outcomes.

To understand how to update P, given i,y (in order to obtain P;;1), note that in any given
period in the economy with cycles the consumer is in one of four possible states: he is either
employed or unemployed and the aggregate state is either good or bad. Denote these states by
(1,9), (1,b), (0,9), and (0,b). (As noted above, the probabilities of these four states can be

deduced from knowledge of Py, Py, and the probability that the aggregate state is good in period
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t.) Suppose that the consumer is in state (1,¢) in period t and that the aggregate state in period
t+1 is also good. If the consumer’s luck in period t + 1, 441, is sufficiently good, he will also be in
state (1, ¢) in period ¢+ 1. In this case, the consumer’s luck is “sufficiently good” if ;41 < 1199 =
P(ety1 = 1] = 1,2t = g, 241 = g). The conditional probability 7144, therefore, is a “cutoft”
that determines whether the consumer’s luck is good or bad, given that he is employed in ¢ and
that the aggregate state is good in both ¢ and ¢ 4+ 1. In total, there are eight such cutoffs, one for
each of the eight possible permutations of (e, ¢, 2¢+1), and these eight cutoffs define the 9 regions
described above.

In period ¢, the consumer could also be in state (1,b), (0,g), or (0,b). In each case, if the
aggregate state in period ¢t 4+ 1 is good and the consumer’s luck in ¢ + 1 is below the relevant
cutoff, he will be in state (1,g) in period ¢t 4+ 1. Py ;41 is then a weighted average of four indicator
functions (each of which indicates whether i;y1 is above or below the appropriate cutoff). The
weights corresponding to the period-t probabilities of the four states (1, g), (1,b), (0,¢), and (0,b),
multiplied in each case by the conditional probability of transiting to a good aggregate state in
t + 1 given the aggregate state in ¢t. Similarly, P, ;41 is also the weighted average of four indicator
functions, appropriately weighted.

As described above, in the baseline model the variable i;y1 can fall into any one of the 9 regions

defined by the cutoffs i1-ig above. The exact updating formulas for the baseline model are:
1. ig1 € [0,01): Pyey1 = mg1 and Pyyyq = 1 — mpq;
2. it+1 € [51,52)2 Pg,t+1 = Tt4+1 and Pb,t+1 = Pgtﬂ'b|g + (1 - 7Tt)77b|b
3. itg1 € [i2,43): Pyep1 = m and Pyyi1 = Ppmyg + Poymypp;
4. igy1 € [i3,94): Pyyy1 = Pymgyg + (1 — m)mg and Pyyiy = Pymyg + Poymypp;
5. dy1 € [i4,15): Pyir1 = Pyimglg + Pumgp and Pyyy1 = Pymyjg + Poymypp;
6. it11 € [i5,46): Pgir1 = Pyimglg + Pormgy and Py yy1 = Poymy)p;
7. i1 € [ig,i7): Py 41 = Pgmglg + Pomgp and Pyryq1 = 0;

8. 441 € [57,%)2 Pg7t+1 = Pbt7rg|b and Pb,t+1 = 0; and
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9. ir41 € [ig, 1]): Pyps1 = Poyy1 = 0.

One needs to spell through these carefully to see that they are correct. We have, and for verification
we have also (i) simulated this process for various draws of the idiosyncratic process {i;}Z_; (where
T is large) and, based on the resulting {P;}1_; sequence, computed the associated employment
outcomes and (ii) made sure that the resulting values are replicated for the same {i;}._; draws by
a brute-force averaging across aggregate shock processes. They do.

Appendix B displays the general updating formula (expressed as a weighted average of indicator
functions), for the baseline case (expressed as a weighted average of indicator functions), and

Appendix D displays it for the model with short- and long-term unemployment.

B Computational algorithm for the benchmark model

B.1 General algorithm

This section outlines the computational algorithm applying the integration principle to our model
and computing the transition path.'! Note that the business cycle is eliminated in the beginning
of period 1, after all the period-1 shocks are realized. Thus z; and k; are given. At the individual
level, the distribution of ki, €1, and Bl are given from one point in the simulation that corresponds
to z1 and k;. € provides the initial conditions for each individuals: if 2 = ¢ and ¢ = 1, Py =1
and Py =0;if 2y =band e =1, Pjy =0 and P, = 1; and if g = 0, Py = 0 and P,; = 0. (Recall
that Py is the joint probability of z; = g and ¢ = 1 and that Py is the joint probability of z; = b
and ¢, = 1.)

The general computational strategy is to first postulate the time path of aggregate capital,
solve for the agents’ decisions given this path, and then verify that that the time path for aggregate
capital implied by agents’ aggregated decisions matches the postulated time path.

We postulate the time path for 600 periods. Then we divide the 600 periods into the first 125
periods and the final 475 periods. We solve the consumer’s problem backwards—first solve for the
final 475 periods and then for the first 125 periods. After the optimization problem is solved, we

simulate the economy with many consumers (we use 90,000 consumers) and generate the path for

' Also see Mukoyama and Sahin (2005, Appendix C and D) for a detailed exposition of the implementation of
the integration principle. Note that Krusell and Smith (2002) and Mukoyama and Sahin (2005, 2006) use Markov
approximations to the P processes while here we use the Ps directly in the computation.

29



aggregate capital by summing up individual savings. Finally, we check whether this simulated path
of capital stock is the same as the initially postulated time path. The following explains these steps

more in detail.

1. First, postulate the path of the aggregate capital stock for 600 periods. We use the average
of the law of motions of the capital stock in the fluctuating economy to generate the initial

guess.

2. We solve the consumer’s problem backwards. In the final 475 periods, the exogenous variables,
such as z, u, and 7, are set to their limit values (z = 1, u = (ug+up)/2, and 7, = 0.5). Thus,
we treat this economy as a stationary on except for the movement in k (k settles much more
slowly than do the exogenous variables). We summarize the movement of the capital stock
by the law of motion k' = H (k). In practice, we use a (log-)linear function for H(-), with the
initial value of the law of motion obtained by applying ordinary least squares to the data on

aggregate capital for the final 475 periods. The Bellman equation is:
V(k, Py, Py, B: ) = max{U (e) + BEV (K, Py, B}, 83 K| Py, Py, ]}
subject to
c+ kK =r(k,1—a)k+wk,1—ua)(Py+ P)+g(1—P,— B)+ (1 -9k,

and

K = H(k).
As is explained in Section A, P, and P} are functions of a random variable 7' ~ U[0, 1].

P/(i") =Prls/ =g, =1|i]

[Pr[z =g, =1|i',2,e = 1|P, + Pr[2/ = g, = 1|, z,e = 0](1/2 — P.)]

[Pr[e = 1]i,2 = g,2,e = ). Pz + Prle = 1]i,2 = g,2,e = O]WQ‘Z(1/2 — P,)]
[I(Zl S ﬂ-ll‘zg)ﬂ—g|ZPZ + I(Z/ § TrOI‘Zg)Trg|z(1/2 — Pz)]

and
Pi(i") =Pr[z/ =b,e =1|i]
=2 gplPr[e' = b€ = 1|i',z,e = 1]P, + Pr[z' = b,/ = 1]i’, 2,¢ = 0](1/2 — P,)]
=2 .gplPr ¢ =1li", 2" = b,z,e = 1]my, P, + Pr[' = 1|i', 2" = b, 2,¢ = O]y, (1/2 — P.)]
- Zz:g,b[l il < 7'['ll\zb)7"—b|zlgz + I(Zl < 7"'01|zb)7-rb|z(1/2 - Pz)]:
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where I(-) is the indicator function equaling 1 if the statement is true and 0 if it is false. Note

that this is just a compact way of writing the transition rules in Section A. The prices are:

r(k,1—a) = ak* (1 —a)~

and

w(k,1—a) = (1 —a)k*(1 —u)"“

The expectation operator in the Bellman equation is taken over 7' and B' values. In practice,
we divide the [0, 1] into 4 x 2+ 1 = 9 subintervals when we take an expectation with respect
to the i’s, as is explained in Section A. The dynamic-programming problem is solved in a
similar way to that used in Krusell and Smith (1998). We use 6 grids in each P direction
(or, more precisely, on the conditional probability ]5, as is detailed below) and apply linear
interpolation to the value function when evaluating the values under P’ (which are usually

not on the grid).

. Fort =1,...,125, we solve backwards for the path. Now the exogenous parameters move over
time and we treat each period differently (for example, the value function has the index t).
First, we provide the terminal value function: WQG(k,Pg,Pb,ﬁ) = V(k,Pg,Pb,B; k126), and
we then calculate the probability that the aggregate state is z at time ¢, 77, for t = 1,...,125:
7 = 1if 2 = g and 7{ = 0 if 23 = b. It is always the case that 77 = 1 — 7/, and

T = T gg + (1 — )Ty 2¢ can be calculated using z; = 7/g + (1 — 77 )b. u; can also be

calculated as z; = mfuy + (1 — 7 )up. Thus the prices are
e = azek® (1 — )T
and
wy = (1 — a)zek? (1 — uy) ™.
Given these, we can solve the consumer’s problem, working backwards. The Bellman equation
is:
Vi(k, Py, Py, §) = max{U(c) + BE[Vera (K, Py, Py, )| Py, Py, 5]}
subject to

c+ kK =rik+wi(Py+ Py) +g(1 = Py — By)+ (1 - 0)k,
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Again, P} and Py are functions of a random variable i’ ~ U[0, 1].

Py(i") =Pr[z' =g, = 1|¢]
=2 gplPr[ =g, =1]i', z,e = 1]P, + Pr[2 = g,¢' = 1], z,e = 0](7} — P)]
=2 gplPrle = 1|i',2" = g,2z,e = 1my. P, + Pr[’ = 1]i’, 2" = g,2,¢ = O]y, (7] — P,)]
=2 p (0 < 1)) g P + L(' < o1)2g) g1 (7F — P2)]
and
p(i) =Prle’= b, =1[i']

€
b[Pr[z’ =b,¢ =1Ji',z,e = 1]P, + Pr[z/ = b,¢ = 1|z z,e = 0|(nf — P,)]

o [Pr[e =11, 2" =b,z,e = 1]7rb|zP +Pr[e’ = 1], 2" = b, 2,¢ = O]my). (77 — P,)]
W@ < ) my P+ 10 < mop o) T (7 — Pr)]-

I
MMM
Il

4. Having solved the consumer’s decision problem, we can simulate the economy. We assign an
initial distribution for the individual state variables and then simulate consumers’ decisions
(we use 90,000 consumers). Adding up the implied saving choices, we obtain the time series
for k;. Using this path, we check whether it reproduces the initially postulated path. If not,
we update ks, ..., k126 and the law of motion H (k) by ordinary least squares. We repeat until

convergence.
B.2 Issues in actual implementation

In practice, we work on the conditional probabilities for Ps rather than with the joint probabilities.
We define P, as the probability of being employed conditional on the aggregate state z. Here, in

the first step (since the probability of each aggregate state is 1/2),

R P,

P =9 —9p 1

g 1/2 g ()
and

. P

P=-—=2P,. 2

T2 b (2)

The new problem becomes (with the new value function V')
V(k, Py, Py, B; k) = max{U (c) + BE[V (K, Py, By, B's k') | Py, By, B]}

c,k’

subject to

_ _ 1. 1.
etk = r(fy1 — )k +w(E, 1 — 1) (P9+Pb)+g(l—2Pg—2 b>+(1—6)k,
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and

]_C/

= H(k).

From (1) and (2), ]59’(2"), Pg’(z’) can be calculated by

P/(i") =2P)(i")
=2 Zz:g,b[l(i/ < Wll\zg)ﬂ'g\fpz + I(i/ < 7701|zg)7‘-g\z(1/2A_
= Zz:g,b[l(i/ < 7711|zg)7rg\sz + I(i, < 7701|zg)7rg|z(1 - PZ)]
and )
(i) =2R()

=2 Zz:g,b[ (Z < 7Tll|zb)7rb\ P, + I(l < 7701|zb>7rb|z(1/2 -
= Zz:g,b[I<Z < 71-1l|zb)7rb| P + I(Z < 7701|zb)7rb\ (1 - P )]

P

P)]

The advantage of using conditional probabilities is that we can ensure that the labor-income terms

in the budget constraint, w(k,1 —

@)(P,/2 + Py/2) and g(1 — P,/2 — P,/2), are positive as long

as Pg, P, € [0,1], and we can utilize the entire [0,1] domain for ]f’g and P,. (Here, it is not a big

advantage since we can instead just restrict Py, P, € [0,0.5]. However, the advantage is much larger

in the second step, since the corresponding domain becomes time-variant.)

Similarly, in the second step of the optimization, define

and

3)

(4)

Note that we have to be careful about the initial point—we cannot divide when 77 = 0. To avoid

this, we can start from 7}

The problem becomes

V;ﬁ(ka pgv Pbag) = r?%,X{U(C) + BEt[‘A/tJrl(k‘/a P;7pb7

subject to

c+k =nrk+ wt(wtgpg +7rf]f’b) +g(1— wfpg — Wflf’b) +

Again, P} and P are functions of a random variable i’ ~ U0, 1]:

Py(i') = —Py(i)

t+1
=gy |1 < 7T11|zg)

_Zz =g,b I(Z <7T11|zg)

K]

( < 7"-01|zg)

t+1

g|zP +I(Z <7r01|zg)
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=1—¢ and 7} = ¢ for a very small ¢, for example.

va }}

(1— 8)k.

(xi - P.)

g\z(

- P,)
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and .
P(i") = 3-P()

t+1

= Zz:g,b I( < 7r11|zb) = P +I( < 7r01|zb)7rbb7:(7rtz - Pz):|

- Zz =g,b I(Z < ﬂ—lllzb) 7Tb|zp +I(2 < WOl\zb) 7Tb|z( Pz)] .

C Calculating the welfare gain

As in Lucas (1987), our measure of the welfare gain from eliminating the business cycle, A, satisfies
(we now change the notation of the discount factor so that we can be explicit about its stochastic

nature)

[Z(Hﬁ >log 1+>\)Ct)‘|— lZ(Hﬁ )logctl,
t=0 =0

where ((j) is the discount factor from time j — 1 to j (known at time j) and 3(0) = 1. (1) is
known at time 0—it is an initial condition. ¢; is consumption in the economy with business cycles
and ¢; is consumption in the economy with business cycles.

A can be calculated as follows.!2

where

and

o /1 -
V=E | (H ﬂ(]’)) log(¢t)
Lt=0 \t=0 |
can easily be calculated from the value functions. d is defined as

o[ )]

t=0

Let d; be the value of d when 3(1) = 3; (i € {h,m,1}). Let the vector D be defined as

d,
D= dl”
dy
D satisfies the following equation:
D=1+ BQD,

12The welfare measure in the main text is in percentage points, i.e. A x 100.
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where

and

Therefore,

where I is the 3 x 3 identity matrix.

D Algorithm for the model with short- and long-run unemploy-

ment

D.1 Notation

Let € € {l, f,s,e} denote long-term unemployment after the second unemployment period, long-
term unemployment in the first unemployment period (“fired”), short-term unemployment, and

employment, respectively. z = g is the good state and z = b is the bad state (from the second

Whh  Whm  Whi

Wmh  Wmm  Wml s

Wih Wim wiy

B

D

B 0 0
0 Bm O
0 0 G
(I-BQ)"'1,

consecutive period). The transition matrix for z is now

The individual employment states evolve according to the following matrices.

i For (Z’ Z/) = (979)7

Tll\gg
Tfllgg
Tsllgg
Tellgg

i For (g’ b)7

T gb
T figb
Tsl|gb
Tel|gb

T1flgg
Tfflag
Tsflgg
Teflgg

Tif|gb
Tfflgb
Tsflgb
Teflgb

Tls|gg
Tfslgg
Tsslgg
Tes|gg

Ts|gb
Tfslgb
Tss|gb
Tes|gb

Tlelgg 0.50
Telgg | _ | 050
Tselgg 0.25
Teelgg 0

Wle\gb 0.94

er\gb _ 0.94

ﬂ-se\gb 0.75

Tee|gb 0
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0 0.50
0 0.50
0 0.75°
0.03 0.97
0 0.06
0 0.06
0 025°
0.03 0.93



e For (b,9g),

Tilbg  Tiflbg Tislbg Tlelbg 0.17 0 0 0.83
Tfibg Tfflbg Tfsibg Trepg | _ [ 017 00 0.83
Tsllbg  Tsflbg Tsslbg Tse|bg 003 0 0 097"
Tellbg  Teflbg Teslbg Teelbg 0 0 0.03 0.97
e For (b,0),
Ty Tifjbb Tis|pb  Tle|bb 099 0 0 0.01
Try  Trflpp Tfslph Tpepy | | 099 00 0.01
Tsijbp  Tsflob  Tsslbb  Tselbb 003 0 0 097"
Tellbp  Teflob  Teslbb  Teel|bb 0 0 0.03 097

Computation of equilibrium for the economy with aggregate shocks is more involved than in the

homogeneous unemployment case, since now we have 3 aggregate states and 4 individual states,

but does not significantly depart in complexity or difficulty from Krusell and Smith (1998).

D.2

Transition dynamics

The general computational strategy is the same as for the case of homogeneous unemployment in

Section B, though it is more involved because of the many state variables.

1. First we postulate the path for the aggregate capital stock.

2. As in the previous section, we start from ¢ > 126. The Bellman equation is:

subject to

V(k,P,B;k) = max{U(c) + BEV (K, P, 3K P, 5]}

c+k =rk,1—wk+wk,1—u) > Pi+vs > (PE+P)+y Y PL4+(1-0)k,

and

z=g,b

z=g,b

K = H(k).

z=g,b

Here, P is the vector of P¢s (the joint probability that the aggregate state is z and the
individual state is €, if there were aggregate fluctuations). We do not need to keep track of all
the Ps: it is sufficient to have Py, Py, P;, P, and be as state variables.! This is because
Pl =7* — P¢ — P? — P/ and ng = 0. P{ evolves according to

PS(1) = Pr[2!, ¢
= Zz:g,b Ze:e,s,f,l PI‘[Z/, ﬁl‘ila 2, 6] P;f (5)
= Zz:g,b Ze:e,s,f,l PI‘[E,|Z/, Zla 2, E]ﬂ-z’\zp,;

B Note that here we do not need to make distinctions between the z; state and the z4 state.
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Calculating Pr[€’|i’, 2/, z, €] is harder in this case. Before, we set Pr[¢’ = 1]i/,2/,z,¢] = 1 if

i" < Tee|.» and zero otherwise; and Prle’ = 0]/, 2, z,¢] = 1 if ' > 7o, and zero otherwise.
Now we have four idiosyncratic states instead of two, so we adopt the following cutoff rule:

1 lf 7:’ c [O7ﬂ—€e|zzl]

! -/ / —
Prle' =eli',2', 2,¢] = { 0 otherwise

o
Lifi' € (ﬂ-ee|zz’7 Tee|zz! + 7Tes\zz’]

Prle = s|i’, 2 =
r[e S”L )% 5 2y 6] { 0 otherwise

el
Lifd € <7T€6|ZZ/ + Tes|zz's Tee|zz + Tes|zz + 7ref|zz’]
0 otherwise

Prle’ = f|i', 2/, 2,¢] = {

Lifi' € (Wee|zz’ + Tes|z2! + Tef|zz's 1]
0 otherwise

Prle =1|i',2 2, €] = {

We keep the structure that a low 4 is “lucky” and a high ¢ is “unlucky.” In the computation,
we divide the interval of possible is in [0, 1] into subintervals by these cutoff thresholds when

we take expectations in the Bellman equation.

Again, in the actual computation, we work with conditional probabilities (but not conditional

only on the aggregate states); we define these conditional probabilities, PZE, as follows.

pe Pge
Pe= = (6)
Pe
=1 ™
Ty
S
- ()
(1 — P;)
PS
P = b ~ 9)
4y (1 - Pb)
. p/
bfz b (10)

Then, the problem becomes

A

V(k, P, 3 k) = max{U(c) + BE[V (K ,P', 3; K')|P, A]}

subject to

c+ kK =r(k,1 =0k +TLy+ZTu+Tu2+ (1 — 0)k
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and

k= H(E)
Here,
To=wk1—a) Y Pi=wk1-a) Y =iP:,
z=g,b z=g,b
Ta=vs Y (PI+P)) = | D mi(1— PP + 71— P)(1— BB |
z=g,b 2=g,b
and
Iu2 = le

The evolution of ]ADZe can be obtained from the above relationships. In particular, we can
convert Ps into Ps using the equations (6)-(10), calculate the transition of Ps by (5), and
transform the Ps back to Ps using (6)-(10) once again. Here, since all the exogenous variables

are already settled, we can use 77 = 1/2.

Again, the advantage of working on the conditional distributions is that we can ensure that
Tw, Zu1, and Z,o are all positive for ]5;, Pbe, Pgs, Pbs, be € [0,1]. We put 5 grid points in each

P direction and linearly interpolate the value functions when evaluating the value at P’

. The other steps are similar to those in Section B. For the first 125 periods, 7} changes over

. Lo . 2! _ 2
time: it evolves according to w7 4 = > . j T, T7 .
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E More tables

E.1 One type of unemployment

Utility gain in percentage consumption
<1 1-5 525 25-50  50-75 75-95 9599 >99
All | 0.861 0.261 0.070 —0.050 —0.093 0.228 1.088 1.689
e=110263 0.156 0.045 —-0.067 —0.096 0.228 1.090 1.691
e=011691 0.671 0.254 0.033 —0.057 0.233 1.067 1.643

Average utility gains by wealth group (k = 11.2, z = z)

Utility gain in percentage consumption
<1 1-5 525 25-50 50-75 7595 9599 >99
All | 0.278 0.175 0.043 —-0.059 —0.078 0.219 0.993 1.552
e=1]0.247 0.166 0.040 —-0.060 —0.078 0.219 0.994 1.551
e=0]0579 0345 0.113 -0.013 —-0.054 0.201 0.979 1.531

Average utility gains by wealth group (k = 12.3, z = z,)

Utility gain in percentage consumption
<1 1-5  5-25 25-50 50-75 7595 9599 > 99
All | 0.393 0.207 0.050 —-0.056 —0.079 0.224 1.020 1.577
e=1]0250 0.171 0.035 -0.064 —0.083 0.226 1.022 1.566
€= 0.821 0.416 0.169 0.012 —0.044 0.206 1.000 1.667

Average utility gains by wealth group (k = 12.3, z = 2)

Wealth percentile
Type of agent constr. 0.005  0.05 0.5 0.95 0.995 0.999

e=1, B =low 0636 0.470 0303 0.080 0432 1.202 1.510
e=1,3=middle | 0316 0.181  0.046 —0.095 0.668 1.479 1.787
¢ =1, 8 = high 0.120 0.033 —0.022 0.014 1.041 1.864 2.176
=0, 3 =low 3.808 1.867 0.732  0.182 0.419 1.199 1.509
=0, =middle | 2.890 1.314  0.390 —0.033 0.653 1.476 1.787
¢ =0, 8 = high 2.107 0.884 0.183  0.006 1.025 1.860 2.175

Utility gains for different types of agents (k = 11.2, z = z)
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Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999

e=1, 3 =low 0.563  0.356 0.241 0.099 0.369 1.069 1.338
e =1, f =middle | 0.264 0.090 0.010 —-0.076 0.599 1.343 1.613
e =1, B = high 0.089 0.001 —0.007 0.040 0.970 1.723 1.995
e=0, 8 =low 1.508 0.644 0.420 0.164 0.360 1.067 1.337
€ =0, S =middle | 1.034 0.321 0.138 —0.039 0.588 1.340 1.612
e =0, 8 = high 0.681 0.131 0.033 0.022 0.959 1.720 1.995

Utility gains for different types of agents (k = 12.3, z = z,)

Wealth percentile
Type of agent constr.  0.005 0.05 0.5 0.95 0.995 0.999

e=1, 3 =low 0.648 0.364 0.228 0.094 0.386 1.107 1.382
e=1, f =middle | 0.328 0.095 0.008 —0.080 0.619 1.382 1.659
e =1, 8 = high 0.134 0.004 —-0.009 0.035 0.992 1.765 2.044
e=0, 8 =low 3.022  0.850 0.507 0.188 0.375 1.104 1.381
e =0, # =middle | 2.259 0.487 0.208 —0.024 0.605 1.380 1.658
e =0, 8 = high 1.625  0.256 0.074 0.015 0.977 1.762 2.043

Utility gains for different types of agents (k = 12.3, z = z)
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E.2 Short- and long-term unemployment

Utility gain in percentage consumption

<1 1-5 5-25  25-50 H0-75 7595 95-99 > 99
All 7.415  2.640 1.225 0.525 0.397 1.136 4.463 6.960
€= 1.504 0917 0.825 0.336 0.267 1.092 4.464 6.951
€= 2.067 1.221 1.096 0.453 0.348 1.167 4.509 6.749
e=f | 14.512 9.071 6.059 3.020 2.355 1.746 4.566 6.976
e=1|18.973 10971 6.335 3.205 2.555 1.719 4.253 7.098
Average utility gains by wealth group (k = 11.3, z = z4)
Utility gain in percentage consumption
<1 1-5 5-25 25-50 5H0-75 7595 9599 > 99
All |20.632 9.994 1325 0421 0.332 1.137 4.233 6.595
e=e | 1579 1417 0917 0.393 0.323 1.116 4.237 6.580
€E=S 1.958 1.139 0.510 0.411 1.080 4.074 6.614
e=1120804 11.068 6.805 3.290 2.437 1.676 4.249 6.673
Average utility gains by wealth group' (k= 11.3, z = z,)
Utility gain in percentage consumption
<1 1-5 525 25-50 50-75 7595 9599 > 99
All 2092 1.684 0.838 0.456 0.392 1.135 4.264 6.672
€= 1.727  1.599 0.795 0.432 0377 1.131 4.270 6.670
= 3.207 3.067 1.613 0.925 0.791 1.210 4.062 6.811
e=1[11]4.830 3.810 1861 1278 1.091 1.371 4.213 5.937
Average utility gains by wealth group (k = 12.1, z = z,)
Utility gain in percentage consumption
<1 1-5 525 25-50 50-75 75-95 9599 > 99
All 3.385 2.010 1.026 0.576 0.447 1.148 4.212 6.627
€ 1.493 1.414 0.680 0.373 0.323 1.107 4.194 6.629
e=s | 1.925 1.722 0.855 0.472 0.410 1.106 4.301 6.827
e=f| 9.100 8185 4.679 2.936 2435 1.615 4.347 6.246
e=1]11.167 8.670 4.504 3.141 2.645 1.690 4.502 6.460

Average utility gains by wealth group (k = 12.1, z = z4)

11 the simulated data, there are no agents with € = s and asset holdings below the first percentile.
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Utility gain in percentage consumption

<1 1-5 525 25-50 50-75 7595 9599 >99

All | 5.339 2.153 1.188 0.594 0.361 1.137 4.215 6.620

e=e| 1517 1424 0.704 0.372 0.323 1.104 4.212 6.596

=s | 1777 1.713 0.894 0481 0.413 1.211 4.052 6.989

e=1|11.122 8517 4.411 3.143 2.663 1.637 4.304 6.655

Average utility gains by wealth group (k = 12.1, z = z)
Wealth percentile
Type of agent constr.  0.005 0.05 0.5 0.95 0.995 0.999
e=e, 0=low 1.960 1.844 1.524 0.885 1.191 4.017 5.101
e=e, 0 =middle | 1.062 0.957 0.695 0.277 2.089 5.540 6.669
€ =e, 0 = high 0.636  0.615 0.612 0.884 4.353 8.033 9.212
€e=s, f=low 2.749  2.508 1.904 1.027 1.181 4.014 5.104
€e=s,0=middle | 1.685 1477 0.988 0.370 2.071 5.537 6.668
€ = s, # = high 1.0564 0922 0.744 0.879 4.331 8.030 9.212
e=f, 5 =low 22.119 16.464 10.074 4.093 1.191 4.008 5.102
e=f, /=middle | 16.336 12.143 7.258 2.551 1.996 5.529 6.670
e = f, = high 10.755 7.913 4.497 1.606 4.218 8.020 9.213
e=1, f=low 30.194 21.159 11.223 4.333 1.182 4.006 5.101
e =1, f=middle | 22.226 15.627 &8.150 2.737 1982 5.527 6.669
e =1, = high 14.676 10.277 5.125 1.683 4.200 8.018 9.212
Utility gains for different types of agents (k = 11.3, z = zg)
Wealth percentile

Type of agent constr.  0.005 0.05 0.5 0.95 0.995 0.999
e=e, 0=low 2.066 1.981 1.643 0.966 1.155 3.606 4.617
e=e, =middle | 1.15)3 1.076 0.793 0.338 1.940 5.052 6.112
€ =e, 0 = high 0.663 0.644 0.625 0.861 4.072 7.429 8.527
€e=s, f=low 2.865 2.685 2.039 1.113 1.153 3.603 4.616
e=s,0=middle | 1.778 1.628 1.099 0.436 2.021 5.048 6.111
€ = s, # = high 1.085 0984 0.768 0.860 4.191 7.425 8.526
e=1, f=low 30.340 23.461 11.716 4.471 1.161 3.593 4.616
e =1, S =middle | 22.347 17.335 8539 2.850 2.038 5.035 6.110
e =1, § = high 14.728 11.397 5.371 1.711 4.211 7.409 8.526

Utility gains for different types of agents (k = 11.3, z = z)
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Wealth percentile

Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
e=e¢e, f=low 2.469 1.833 1.632 1.051 1.126 3.703 4.812
e=e, f=middle | 1.451 0.927 0.775 0.390 1.995 5.179 6.338
€ = e, 3 = high 0.861 0.727 0.730 0.904 4.209 7.613 8.821
e=s, B =low 5.8564 3.526 2.994 1.700 1.121 3.699 4.813
€ =s, f=middle | 4.056 2.215 1.797 0.834 1.967 5.174 6.339
€ = s, 3 = high 2.575 1.413 1.218 1.011 4.171 7.607 8.822
e=1,0=low 8.334 4.741 3.966 2.141 1.111 3.695 4.812
e=1[, 0 =middle | 5969 3.162 2.545 1.143 1.941 5.169 6.338
e = [, § = high 4.056 1.964 1.604 1.080 4.138 7.602 8.821
Utility gains for different types of agents (k = 12.1, z = z;)
Wealth percentile
Type of agent constr.  0.005  0.05 0.5 0.95 0.995 0.999
e=e, 0 =low 2.052  1.588 1.433 0.964 1.115 3.621 4.598
e=-e, =middle | 1.144 0.750 0.635 0.333 1.967 5.069 6.093
€ = e, # = high 0.661  0.627 0.651 0.860 4.138 7.455 8&.515
e=s, f=low 2.781  1.949 1.728 1.108 1.105 3.619 4.597
e=s, =middle | 1.722 1.030 0.858 0.430 1.949 5.066 6.092
€ = s, # = high 1.052  0.751 0.732 0.858 4.117 7.451 8.514
e=f, f=low 21.258 9.674 7974 4.172 1.120 3.611 4.598
e=f, f=middle | 15.720 6.961 5.627 2.619 1.882 5.056 6.092
e = f, /= high 10.330  4.269 3.347 1.609 4.012 7.451 8&.512
e=1, 0 =Ilow 27.883 10.670 8.656 4.405 1.112 3.609 4.597
e=1[, 0 =middle | 20.573 7.737 6.164 2.800 1.868 5.053 6.091
e =1, 8 = high 13.572 4817 3.715 1.685 3.997 7.435 8.511
Utility gains for different types of agents (k = 12.1, z = zg)
Wealth percentile
Type of agent constr. 0.005  0.05 0.5 095 0.995 0.999
e=e, f=low 2.060 1.609 1.439 0.964 1.107 3.621 4.647
e =-e, =middle | 1.149 0.766 0.639 0.334 1.963 5.074 6.147
€ = e, 3 = high 0.671  0.635 0.660 0.872 4.144 7.469 8.583
€e=s, 0 =low 2.790  1.9v7 1.734 1.109 1.098 3.618 4.645
€e=s, =middle | 1.729  1.051 0.862 0.430 1.946 5.070 6.146
€ = s, # = high 1.063 0.763 0.742 0.869 4.123 7.466 8.582
e=1,0=Ilow 27.910 10.884 8.661 4.389 1.105 3.608 4.646
e=1[0, 0 =middle | 20.592 7.903 6.167 2.787 1.865 5.058 6.145
e =1, = high 13.591  4.940 3.723 1.688 4.003 7.450 8.580

Utility gains for different types of agents (k = 12.1, z = z)
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