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1 Introduction

Lucas (1987) suggested a way of calculating an upper bound for the welfare gain associated with the

elimination of business cycles. His calculation resulted in a very, very small number. If one accepts

his analysis, indeed it is a major puzzle why so much effort is aimed at discussing stabilization

policy, be it monetary or fiscal. Significant amounts of research have been generated during the

20 years since Lucas wrote his paper in an aim to justify an interest in stabilization. In a paper

published in the Review of Economic Dynamics in 1999 by a subset of the authors of the present

paper (Krusell and Smith), we argued that one possible motivation for an interest in the welfare

effects of business cycles is an asymmetric effect of cycles on different groups of consumers. The idea

we put forth is that although cycles do not affect the “average household” much at all in welfare

terms—Lucas considered a representative consumer in his calculation—some consumers may suffer

significantly, especially the poor or unemployed. We considered a setting with significant and, in

important respects, realistic consumer heterogeneity and assessed the welfare effects of removing

cycles for all subgroups of the population. Our results suggested larger, but still very small effects.

However, in our 1999 analysis we made an assumption—inadvertently—that, we have realized, is

of great quantitative consequence. The goal of the present paper is to revisit our 1999 model and

report the results of the much more appropriate assumption. The result is far greater scope for

business cycles to generate welfare costs, especially for the poor and the unemployed.

Lucas did not address how aggregate cycles could be removed; his calculation was based on

simply replacing, at no cost to society (hence the upper-bound nature of the results), an estimate

of the aggregate consumption process with its mean. In our work, which uses a dynamic general-

equilibrium model based on the stochastic growth model with idiosyncratic consumer productivity

shocks and incomplete insurance against these shocks, we replace the aggregate productivity pro-

cess, which is exogenous, with its mean, thus implementing the spirit of Lucas’s approach. However,

when aggregate shocks are removed, what might the implications be for individuals’ shocks? The

assumption adopted here turns out to be key, and the central purpose of the present paper is to

argue for and explore a more appropriate assumption than the one we used in our earlier paper.

There, our aim was to again stay as close in spirit as possible to Lucas’s approach: we argued

that the idiosyncratic shock process should be replaced, when aggregate cycles are removed, by
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one that “integrates out” the aggregate component of the individual shock. However, we imple-

mented our integration principle incorrectly and thereby instead, in effect, made the assumption

that individual shocks were unaffected by the removal of cycles. In the present paper, we instead

show that a correct implementation of this principle implies that when the aggregate component

is integrated out, the individual income process becomes less risky, thus by itself representing a

(direct) welfare improvement. In addition, the lower amount of individual risk induces changes in

equilibrium prices which also have important indirect effects on welfare.

By integrating the aggregate risk out of an income process we mean averaging over the aggregate

states conditional on each idiosyncratic state. However, since individual employment—the source

of income fluctuations for individuals in our model—is correlated with the aggregate state (the

employment rate is procyclical), the individual (employment) variable is not fully idiosyncratic,

which makes integration a nontrivial task. With correlation, one thus first needs to construct a pure

process for idiosyncratic luck that, by definition, is uncorrelated across individuals. Conditional

on every realization of this new idiosyncratic variable, one can then integrate out the influence of

aggregate risk on individual employment. Following this procedure, we now find that the removal

of aggregate risk lowers individual employment risk by about 16% in the long run in our baseline

model.

The effect on individual risk has two implications. One is quantitative: it turns out to generate

much larger effects on welfare, on average a bit more than one magnitude larger than those Lucas

found. But there is also a qualitative effect regarding who gains and who loses from removing

cycles: the effect is U-shaped in wealth. First, with less idiosyncratic risk, the poorest consumers

gain significantly since they suffer most from risk; quantitatively, they gain up to several percentage

points in consumption equivalents from eliminating cycles, thus contrasting Lucas’s numbers, which

are orders of magnitude lower. Second, due to the lower income risk, the amount of precautionary

saving in the economy falls. In the closed economy that we study, this raises the interest rate. This

effect is small but nevertheless significantly raises the welfare of the very richest, who own very

large amounts of wealth; the wealth distribution in the initial state reproduces the observed Gini

coefficient for wealth and thus has (a small number of) very wealthy individuals. This effect on the

welfare of the very richest also amounts to several percentage points of consumption equivalents.
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The middle class, in contrast, sees an improvement because of the lowering of risk, but it is very

well insured in utility terms, so this effect is almost nil. Moreover, the middle class, of which a

typical agent is employed, sees a fall in the wage, and as a result the middle class—in total around

65% of the agents—experience a welfare loss from eliminating aggregate cycles.

In addition to calculating welfare costs across individuals who differ in their economic status

at the moment of eliminating cycles, we now obtain striking implications for long-run inequality.

The Gini coefficient for wealth distribution in the steady state without aggregate cycles is over 0.9,

which is substantially larger than the initial average Gini coefficient of about 0.8 in the economy

with cycles. Behind this result is the assumption that discount rates differ across consumers: as

there is less risk, consumers with different discount rates tend to corners, thus making wealth more

dispersed. In particular the poorest can afford to become even poorer, given that their income risk

is less severe and their discount rates tend to be significantly above the interest rate: they “want

to” become poorer. For example, the number of households with negative assets goes from 10% to

29%. On the other hand, the very richest become even richer, due to the increase in interest rates.

An extension of our model distinguishes between short- and long-term unemployment: in

essence, we assume here that once unemployed long enough, the probability of reentrance into

employment falls significantly. In this case, we find that the removal of aggregate risk lowers indi-

vidual employment risk by about 37% in the long run. Moreover, the gain from eliminating business

cycles is much larger than in the model with only one kind of unemployment. Now everyone realizes

a positive gain from eliminating business cycles; the average gain across the population, taking into

account the transition to a new steady state, is as large as 1%. The gains are very large for the

consumers with very little wealth and very high wealth. In the long run, the wealth dispersion

becomes very large. In particular, the fraction of agents with negative assets becomes 76%.

Because we are using the exact same model here as in the original paper, we describe it very

compactly and otherwise move directly to the new analysis. Therefore, Section 2 discusses the

methodology and model used for answering our main question and Section 3 describes parameter

choice and numerical issues. The main results are contained in 4 and the conclusions in 5; several

appendices contain details on computation and other technical aspects of the analysis.
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2 Preliminaries

In Section 2.1, we first briefly discuss different routes one might take in answering our main question.

We then discuss our theoretical model framework in Section 2.2 and, in Section 2.3, discuss in detail

how we eliminate cycles.

2.1 Methodology

Lucas’s (1987) model economy is very simple: consumption is exogenous and there is only one

shock—one to the aggregate consumption process. In this economy, Lucas views the elimination of

cycles as simply setting the shock to zero (its unconditional mean). To allow for heterogeneity, one

way to extend what Lucas did is to use data on individual consumption. In particular, postulate

and estimate the dependence of individual consumption on a purely idiosyncratic component and on

aggregate variables. Next, for any value of the idiosyncratic component, take the average across the

aggregate variables: this delivers a new consumption process. Finally, evaluate individual utility

given this new process. We did not follow this procedure for two reasons. First, the procedure

requires a long enough panel of individual consumption data so that one can reliably estimate a

process for individual consumption which not only identifies the aggregate from the idiosyncratic

component but also delivers an accurate assessment of the serial correlation properties of the

shocks to individual consumption. Existing data do not grant this possibility. Second, this kind of

calculation tends to underestimate the costs of cycles: if one instead models the randomness the

agents are subject to, it may be better for them to change consumption in some other way than

just averaging it across the aggregate states. That is, the utility value of not having aggregate

cycles is underestimated. Although this is a problem also in Lucas’s analysis, it is likely more

quantitatively important here, where individual consumption volatility is much higher than in a

representative-agent setup calibrated to aggregate data.

An alternative is to use individual income—for which data is arguably more reliable—and

employ a model to infer consumption by assuming rational behavior given a certain set of asset

markets. A first step would be to estimate a wage process and a process for asset returns and then

to compare the utility outcome for a rational agent facing these processes with one where the same

agent faces the same processes with their aggregate components removed. A second step would
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be to add an equilibrium component to the analysis, i.e., to also model where wages and rental

rates come from. Since savings likely change as a result of eliminating risk, this seems a potentially

important channel not to forget, at least if one believes that the economy is closed. Moreover, labor

supply could change, leading to changes in the wage rate.

In this paper we follow a simple version of the latter procedure: we only model idiosyncratic

differences in employment (and not in wage per hour worked), we assume that labor supply is

inelastic, and we assume that all agents face the same return on saving. The asset structure is

simple: there is only one asset—aggregate capital—and an exogenous borrowing constraint. The

aggregate shock is modeled as exogenous changes in aggregate productivity and labor demand, and

we study the general equilibrium effects for different groups of consumers by replacing the latter

shocks with their conditional means.

2.2 Model setup

Except in the details of the individual’s income process, the model is that in Krusell and Smith

(1998); thus, we describe it compactly and, for the most part, without comment.

Consumers are ex-ante the same, with preferences

E0

∞∑
t=0

βt U(ct),

where U(c) = log(c) and βt is a stochastic variable which is idiosyncratic—i.i.d. across agents—and

describes the cumulative discounting between period 0 and period t. In particular, βt+1 = β̃βt,

where β̃ is a three-state, first-order Markov process.

The aggregate production function is

z k̄αn̄1−α

where k is capital (a bar refers to a total) and n is labor. There is also home production, which

accrues in the amount ψ to all unemployed agents.1 Aggregate output, including undepreciated

capital, can be used to either consume or invest.

In the model with homogeneous unemployment, we denote the employment status ε = 0 for un-

employment and ε = 1 for employment. When we distinguish short- and long-term unemployment,
1Below, we interpret “home production” as unemployment insurance, thereby avoiding, for simplicity, the explicit

modelling of a government budget constraint.

6



we introduce a new notation: ε = l for long-term unemployed, ε = s for short-term unemployed,

and ε = e for employed. The distinction between short- and long-term unemployment allows us to

consider differences among the unemployed both in terms of their income when unemployed and

their prospects for future employment. In particular, in the calibration we assume (i) that short-

term unemployed receive higher unemployment insurance benefits (for the unemployment benefit

ψε, ψs > ψl > ψe = 0 holds); and (ii) that their probability of employment is higher, with the dif-

ference being more pronounced in recessions than in booms. As before, the individual employment

status, jointly with the aggregate shock z, follows a first-order Markov chain.

Formally, a recursive competitive equilibrium for this economy is defined using the aggregate

state variables. Let Γ denote the current measure of consumers over holdings of capital, employ-

ment, and preference status. Then, the state variable relevant to the individual includes (Γ, z) and

the idiosyncratic vector (k, ε, β̃). Let H denote the equilibrium transition function for Γ:

Γ′ = H(Γ, z, z′).

Consumers solve

v(k, ε, β̃; Γ, z) = max
c, k′

{U(c) + β̃E[v(k′, ε′, β̃′; Γ′, z′)|z, ε, β̃] :}

subject to:

c+ k′ = r(k̄, 1− uz, z)k + w(k̄, 1− uz, z) Iε=e + ψε + (1− δ)k′

Γ′ = H(Γ, z, z′)

k′ ≥ k,

where Iε=e = 1 if ε = e (or ε = 1 in the homogeneous unemployment case) and 0 otherwise. If

k′ = f(k, ε, β̃; Γ, z)

denotes the optimal saving decision for the agent, then an equilibrium can be defined as a law of

motion H, individual functions (v, f), and pricing functions (r, w) such that (i) (v, f) solves the

consumer’s problem; (ii) (r, w) equal the marginal products of capital and labor, respectively; and

(iii) H is generated by f and the law of motion for (z, ε, β̃).
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Finally, the economy without cycles is defined in the same way, but using different processes

for z (which is now deterministic) and ε. We will now describe in detail how these processes are

obtain.

2.3 The elimination of cycles

The heterogeneous-agent model we use here allows an indirect way—given the assumptions un-

derlying the model—of deducing how individuals’ consumption processes depend on aggregates.

Ideally, one would then perhaps introduce stabilization policy explicitly in the model and compute

the implied welfare effects. In our model, however, z and ε, which are exogenous processes, would

then be left unchanged, and it is not clear that such an experiment would capture all potential

gains from stabilization. Instead, and with the kind of “upper-bound approach” Lucas used, we opt

for changing these processes directly , and more specifically changing them by removing any cyclical

components, without introducing policy explicitly.

How should the processes be altered, i.e., how should the cyclical components be removed? We

discuss this next.

2.3.1 Aggregates

With reference to Lucas’s procedure, which involved replacing the consumption shock in his model

with its mean, assuming that there could be no average consumption gain—or loss—from elimi-

nating cycles, we also adopt a “neutrality” assumption. For aggregate shocks, we replace z and

u by their conditional means. In the long run, our economy without cycles thus has productivity

πgzg + πbzb and unemployment rate πgug + πbub, with πg and πb representing the unconditional

probabilities of good and bad aggregate states, respectively.

2.3.2 Individual variables

One could remove the aggregate component of the individual shock in several ways. We proposed, in

our 1999 paper, to integrate over the aggregate shock. Suppose the individual variable of interest,

y, is a function g of two independent random variables, y = h(i, z), where i is an idiosyncratic

shock and z is an aggregate shock. The assumption that the two shocks are independent amounts

to a definition of “idiosyncratic”; the densities are denoted fi(i) and fz(z), respectively. We then
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identify the idiosyncratic shock process in the absence of aggregate risk, yw/o(i), with the following:

yw/o(i) =
∫

z
h(i, z)fz(z)dz

for each i, with density fi(i).

For the most straightforward example, suppose that y denotes an individual productivity level

and that this productivity is the sum of two jointly normal shocks, one individual-specific, but not

necessarily fully idiosyncratic, shock ε and the aggregate shock z:

y = ε+ z.

We assume first that the marginal distribution of each of these shocks is N(0, 1) and that the

covariance between the two shocks is ρ. If ρ = 0, so that ε and z are independent, we deduce that

y is N(0, 2). Then we obtain, using our integration principle, that

yw/o = ε,

which is N(0, 1). Here, yw/o is clearly less risky—it has a lower variance than y.2

If ε and z are correlated, integration requires first projecting y onto z. This projection is

(1 + ρ)z + i, where i and z are now independent by construction and i has variance 1 − ρ2, since

we assumed that both ε and z were N(0, 1). Note that y in this case is distributed according to

N(0, 2 + 2ρ). Now integration implies that

yw/o = i,

which is N(0, 1 − ρ2): this process always has a lower variance than y, and this variance vanishes

entirely if the individual and aggregate components that comprise y are perfectly correlated.

In our model framework, the individual-specific income process y depends crucially on the

employment process ε, which is not, in general, independent of z, like in the last example. In order

to find the εw/o—the employment process when there are no aggregate shocks—we therefore need

to do the equivalent of the linear projection that was appropriate in that last example: we need to

design a purely idiosyncratic variable i such that the employment/income outcome ε is a function
2Atkeson and Phelan (1994) assume that when the aggregate shock is removed, the individual shocks remain the

same, but they become independent: they no longer move together. Thus, it is clear that the integration principle
we propose is different.
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of i and z.3 It turns out that this can be done as follows: let i be uniform on [0, 1], and define

ε(i, zg) to be 1 if i ≤ π1|g and 0 otherwise and ε(i, zb) to be 1 if i ≤ π1|b and 0 otherwise. We will

assume in this discussion that π1|g > π1|b, i.e., that ε and z are positively correlated.

Integration is now straightforward. If i ≤ π1|b, the individual is employed no matter what

happens to the aggregate shock, so the integration is trivial: εw/o = 1 for such values of i. Similarly,

if i > π1|g, the individual is unemployed no matter what: εw/o = 0. Finally, if π1|b < i < π1|g,

the individual is employed only if the aggregate state is good, which occurs with probability πg;

thus, integration for such values of i implies that εw/o = πg · 1 + (1 − πg) · 0 = πg. Thus, our new

employment variable εw/o has the following 3-state distribution: 1 with probability π1|b, πg with

probability π1|g − π1|b, and 0 with probability 1 − π1|g. Note that the new income variable thus

has a different support—one more state—and that it is less risky: some probability mass has been

moved from the extremes 0 and 1 into a middle state. In a dynamic economy, where individual

employment is correlated over time, one can follow the same principles but it is quite a nontrivial

affair to find the process for εw/o. Suffice it to say here that this new process (i) will change

nature—it will increase its support—as time evolves; (ii) will not be first-order Markov, but rather

will be a function of two state variables (in the homogeneous unemployment case) which in turn

are a function of all present and past values of i and evolve recursively; and (iii) will settle down to

a stationary process with full support on [0, 1]. With the short- and long-term unemployment, the

number of state variables becomes five. Section 4 and the Appendices A and B outline all the details

for the baseline case; Appendix D gives the details for the case with two kinds of unemployment

As stated above, has the integration principle been used in the existing literature? İmrohoroğlu

(1989) did something in this direction but she restricted the new employment process to be first-

order Markov, something which is inconsistent with our integration principle. Similarly, the

procedure used in Storesletten, Telmer, and Yaron (2001) is also inconsistent with the integra-

tion principle, although both these authors and İmrohoroğlu propose individual processes in their

economies without aggregate cycles that have some intuitive appeal. Finally, Krebs (2003, 2006)
3Krusell and Smith (1999) stated the integration principle as we did here (although with somewhat less detail)

but failed to apply it correctly. The mistake amounted to treating ε as independent of z in the actual application. As
a result the exact same employment process was applied for the models with and without aggregate shocks. Thus,
our results coincided with those that would follow from using Atkeson and Phelan’s procedure: no risk was removed
when cycles were removed.
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and Mukoyama and Şahin (2005, 2006) do adhere to the integration principle in their recent papers.4

3 Parameter Selection and Model Solution

We now turn to the quantitative experiment, starting with the calibration and then briefly com-

menting on computation.

3.1 Calibration

Our calibration here is identical to that in Krusell and Smith (1999); we therefore describe it only

very briefly. The calibration is quite standard and mostly based on Krusell and Smith (1998); the

main exception is the employment process, which in our alternative calibration now distinguishes

short- from long-term unemployment.

We set, with a period being one quarter, δ = 0.025 and α = 0.36, and we use discount factors

(for the benchmark model, set primarily in order to match the wealth distribution) that are 0.9858,

0.9894, and 0.9930, with 80% of the population on the middle value and 10% on each extreme

point in any time period and an expected duration of the extreme discount values of 50 years

(approximating a lifetime); transitions can only occur to adjacent values. We let ub equal 10% and

ug equal 4%, and we set zg = 1.01 and zb = 0.99, with an expected duration of each aggregate

state to 2 years. We set the borrowing constraint to be very loose, with a limit of about 60-70% of

average annual income.

The first employment process we consider (the benchmark) has the short- and long-term unem-

ployment states collapsed into one state, as in Krusell and Smith (1998) exactly; this is our baseline

calibration. It has g = 0.0334, which is about 10% of the quarterly wage. The employment process

here is given by four 2-by-2 matrices, one for each (z, z′):

(
0.33 0.67
0.03 0.97

)

for the transition (z, z′) = (zg, zg) (rows/columns stand for the current/next period’s state; row

1/2 is the unemployment/employment state),

(
0.75 0.25
0.07 0.93

)
4However, these papers appeared after the first working paper version of the present paper.
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for (zg, zb), (
0.25 0.75
0.02 0.98

)
for (zb, zg), and (

0.60 0.40
0.04 0.96

)
for (zb, zb). These parameters imply that the aggregate unemployment only take on two values

and that the expected duration of unemployment is 1.5/2.5 quarters conditional on the good/bad

aggregate state remaining. Because unemployment is higher in bad times than in good times, in-

come risk due to unemployment risk is countercyclical, and integrating out the aggregate aggregate

component from the employment dynamics will, as we shall see, lower the net risk facing the worker.

The second calibration uses the discount factors 0.9823, 0.9879, and 0.9935, along with ψs =

0.391, which is about 50% of the quarterly wage, to roughly replicate the U.S. replacement ratio

during the first quarter of unemployment; ψl = 0.038, which helps us match the left tail of the

wealth distribution. The employment transition matrices here are: 0.50 0 0.50
0.25 0 0.75
0 0.03 0.97


for the (zg, zg) transition (1 means long-term unemployed, 2 short-term unemployed, and 3 em-

ployed),  0.17 0 0.83
0.03 0 0.97
0 0.03 0.97


for the (zb, zg) transition,  0.94 0 0.06

0.75 0 0.25
0.04 0.03 0.93


for the (zg, zb) transition, and  0.99 0 0.01

0.03 0 0.97
0 0.03 0.97


for the (zb, zb) transition. These matrices imply the kinds of duration numbers mentioned above

and that (by definition) the long-term unemployed always has to be preceded by, and cannot transit

directly to, short-term unemployment. We also require that the probability of employment is always

higher for the currently employed than for the currently unemployed.5

5An exception to one of these restrictions can be found in the transition from the good to the bad aggregate
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% of wealth held by top Fraction with Gini
1% 5% 10% 20% 30% wealth < 0 coefficient

One kind of unemployed 24% 54% 72% 86% 91% 10% 0.81
Two kinds of unemployed 26% 56% 72% 83% 87% 10% 0.77
Data 30% 51% 64% 79% 88% 11% 0.79

Table 1: The distribution of wealth

This calibration means that the expected duration of unemployment conditional on a bad ag-

gregate state is quite long: 80 periods for long-term unemployed; it is only 2 periods in the good

aggregate state. However, note that recessions last only 8 periods on average, so the average dura-

tion of an unemployment spell is relatively short. Relatedly, the fraction of all unemployed agents

consisting of long-term unemployed is 73% in bad times and 33% in good times, with the total num-

ber of short-term unemployed barely changing at all across aggregate states. Thus, employment

dynamics change a lot with the aggregate state and eliminating the risk of unemployment by inte-

grating out the aggregate fluctuations will be a potentially important reduction in unemployment

risk; we will get back later to just how much, given this calibration.

We obtain long-run wealth distributions as tabulated in Table 1.6 These distributions are

roughly consistent with the data in Wolff (1994) and Dı́az-Giménez, Quadrini, and Ŕıos-Rull

(1997)).

3.2 Model solution: approximate aggregation

The models with aggregate uncertainty are solved as in Krusell and Smith (1998). We also com-

pute transition paths for economies without aggregate shocks; here, we postulate a time path for

state; there, it is possible to go directly from ε = e to ε = l, an outcome necessitated by the requirement that the
probability of employment next period be higher for unemployed agents than for employed agents. Because we insist
that all newly unemployed receive ψs, this actually requires using a third aggregate state in the formal analysis
along with a fourth individual state. Thus, we denote a bad aggregate state following a good aggregate state zd

(for “downturn”), to be distinguished from a bad aggregate state following a bad aggregate state (denoted zb), and
we denote the long-term unemployed who directly transited from employment, and therefore receive ψs, by f (for
“fired”). By construction, the state f appears only when the aggregate state is zd. The implied, larger transition
matrices are tabulated in Appendix D.

6We use the following formula for the Gini coefficient:

G =
1

n

(
n+ 1− 2

(∑n

i=1
(n+ 1− i)ki∑n

i=1
ki

))
for the simulated values of the individual wealth ki, i = 1, ..., n and ki is ordered in a non-decreasing manner
(ki ≤ ki+1). Here we use this formula directly to the simulated data although the simulated data contains substantial
number of the individuals with negative wealth.
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aggregate capital, solve for agents’ decisions given this path, and then verify that the time path

for aggregate capital implied by agents’ aggregated decisions matches the postulated time path.

Appendices B and D describe the algorithm in detail.

We obtain equilibrium laws of motion for aggregate capital, which also describe the accuracy

of our computations, as follows. For the baseline calibration,

log k̄′ = 0.102 + 0.960 log k̄

R2 = 0.999985, σ̂ = 0.0075%

in good times (state zg) and

log k̄′ = 0.094 + 0.961 log k̄

R2 = 999946, σ̂ = 0.0141%

in bad times (state zb), where σ̂ is the estimated standard deviation of the error in a regression

using simulated time-series data. For the calibration with short- and long-run unemployed, the

corresponding equations are

log k̄′ = 0.104 + 0.959 log k̄

R2 = 0.99998, σ̂ = 0.0087%

in good times (state zg),

log k̄′ = 0.117 + 0.951 log k̄

R2 = 0.99968, σ̂ = 0.0307%

in bad times when the last period was bad as well (state zb), and

log k̄′ = 0.093 + 0.963 log k̄

R2 = 0.99998, σ̂ = 0.0077%

in bad times when the last period was good (state zd). The fit is a little worse here than in the

baseline case, especially when two bad aggregate shocks hit in succession, but it is still impressive.
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4 Welfare Effects of Eliminating the Business Cycle

One of our main objectives is to record the welfare effects of removing cycles for different types of

consumers at the time of the removal of cycles, since we expect these effects to vary substantially

across different groups of the population. Therefore, we need to solve for transition paths; if we

solved only for long-run outcomes, we would be able to comment only on how certain groups do

in the long run, and we would not be able to ask the question “How is agent x affected by the

removal of cycles?”, where x refers to a consumer’s type on the date that cycles are (unexpectedly)

removed. As in Krusell and Smith (1999), in the transition experiment we therefore replace the

stochastic z process with its conditional expectation as of the initial date, leaving a deterministic

movement in z and u which disappears in the long run.

The wage income process without aggregate shocks is significantly more complex than the one

with aggregate shocks. Using the baseline case as an illustration, recall from the discussion of

the one-shot case of aggregate risk in Section 2.3.2 that the employment process in the economy

without cycles has a 3-point support: 0, 1, and a number strictly between 0 and 1, namely, the

conditional probability of a good aggregate state. In the fluctuating economy, a lucky agent with a

low realization of the “pure idiosyncratic shock” i is employed no matter what the aggregate state is,

and an unlucky consumer with a high realization of i is unemployed no matter what the aggregate

state is. Therefore, the application of the integration principle for these consumers is simple—assign

the new employment value 1 to the former consumer, and assign the new employment value 0 to

the latter consumer. A consumer with an intermediate value of i is employed only if the aggregate

state is good. The integration principle assigns the expected value (with respect to the aggregate

state) of the employment value in the fluctuating economy as the new employment value for this

consumer. Since the underlying employment variable ε in the fluctuating economy takes either 1

or 0, the expected value πg · 1 + πb · 0 = πg is assigned as the new employment value, where πg is

the probability that the aggregate state is good and πb is the probability that the aggregate state

is bad.

The same logic applies when we adapt this procedure to our infinite-horizon economy. In the

economy with cycles, the employment status of a consumer at time t, εt, depends on the histories of

idiosyncratic and aggregate shocks up to that time, i.e., on it ≡ {i1, ..., it} and zt ≡ {z0, ..., zt}. As in
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the one-shot case described in Section 2.4, the its are assumed to be i.i.d. and uniformly distributed

on [0, 1]. In the economy without cycles, following the integration principle, we determine the

employment value of a consumer with “luck” history it by calculating the expected value of his

employment outcome at time t, where the expectation is taken with respect to the set of possible

histories {zt} of aggregate shocks. In other words, and again using the (two-state) baseline case as

an illustration, we set the consumer’s employment value at time t in the economy without cycles

equal to his probability of employment in the economy with cycles, given his history of “luck” it. If

the consumer is unlucky and the elements of his history it are all close to 1, then he is unemployed

at time t regardless of the realization of the aggregate history zt; by the same token, if the consumer

is lucky and the elements of it are all close to 0, then he is employed at time t regardless of zt.

For histories it with intermediate values, the consumer’s employment value in the economy without

cycles (i.e., his probability of employment given it) depends on the aggregate history zt, and in this

case we compute the consumer’s average employment outcome across different histories zt.

It turns out that we can calculate the “averaged” employment values in the economy without

cycles by tracking the evolution of two state variables for each consumer. One of these state

variables is Pgt, the probability (in the economy with cycles) that a consumer with history it is

employed at time t and that the aggregate state at time t is good; the other, Pbt, is the probability

(again in the economy with cycles) that a consumer with history it is employed at time t and that

the aggregate state at time t is bad. The new employment value in the economy without cycles

is then Pgt + Pbt, or the probability that a consumer with history it would have been employed at

time t in the economy with cycles.

As we move forward in time, the set of possible individual and aggregate histories grows, and

consequently the number of possible values that the “averaged” employment value can take on

increases too. Indeed, for any subinterval contained in [0, 1], there is a positive probability that the

employment value in the economy without cycles lies in that interval as time approaches infinity.

Appendices A and B provide further details of the updating procedure in the baseline case.

When there are two types of unemployment, the employment process is summarized by a five-

dimensional vector. The “integration” procedure is more involved in this case, but the principle

remains the same; see Appendix D for complete details.
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Initial state Fraction Average utility gains in percentage consumption
k̄ z gaining All ε = 1 ε = 0 β = low β = middle β = high

11.2 zg 0.343 0.081 0.076 0.197 0.201 -0.009 0.677
11.2 zb 0.386 0.103 0.083 0.288 0.259 0.017 0.634
12.3 zg 0.329 0.083 0.081 0.136 0.225 -0.001 0.617
12.3 zb 0.347 0.090 0.081 0.170 0.245 0.003 0.614

Table 2: Welfare gains from eliminating business cycles

4.1 The baseline case: homogeneous unemployed

First, we present the results for the case where there is only one type of unemployment. To begin,

Table 2 contains summary measures of welfare changes across different groups. We convert the

difference between the two expected values into a consumption equivalent in the same way that

Lucas did; see Appendix C for the exact formula.

Table 2 contains four transition experiments: starting from two different initial capital stocks

(each one is associated with a randomly drawn distribution of assets from the stationary stochastic

process for this distribution under aggregate uncertainty) and from two different values of the

aggregate shock. The results in the table reveal, first, that the average welfare gain from eliminating

cycles is a little more than one magnitude larger than that computed by Lucas for the same period

utility function: up to 0.08-0.11% of consumption from Lucas’s 0.008%. Second, the distribution

of welfare gains reveals substantial heterogeneity. For example, only a little over a third of the

population even realize a gain; the rest lose from eliminating cycles. Summary statistics from the

point of view of employment and patience type, as of the point in time when cycles are removed,

are also displayed in the table. They reveal that unemployed agents lose on average 2–3 times

more from cycles and that, across agents with different time preference rates, the most and least

patient gain the most. In contrast, the middle group has a welfare gain that on average is similar

to Lucas’s number. The largest gainers are actually the most patient group, with numbers over

0.6%, i.e., close to two orders of magnitude larger than Lucas’s representative-agent number.

Table 2 does not reveal who the losers from eliminating cycles are. We need a breakdown across

wealth groups to find the losers, and the following Table 3 provides this kind of information for one

of the four transition experiments. The tables corresponding to each of the other three transition

experiments differ only slightly from this one; they are contained in Appendix E.1.

17



Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 0.350 0.151 0.033 −0.073 −0.108 0.233 1.135 1.761
ε = 1 0.212 0.127 0.027 −0.075 −0.109 0.232 1.134 1.763
ε = 0 1.051 0.395 0.149 −0.021 −0.084 0.250 1.159 1.667

Table 3: Average utility gains by wealth group (k̄ = 11.2, z = zg)

Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = 1, β = low 0.516 0.413 0.275 0.063 0.437 1.255 1.560
ε = 1, β = middle 0.221 0.134 0.021 −0.109 0.690 1.552 1.857
ε = 1, β = high 0.063 0.010 −0.028 0.023 1.090 1.964 2.273
ε = 0, β = low 3.500 1.032 0.529 0.131 0.426 1.252 1.559
ε = 0, β = middle 2.629 0.640 0.225 −0.071 0.677 1.550 1.856
ε = 0, β = high 1.911 0.382 0.076 0.001 1.077 1.962 2.272

Table 4: Utility gains for different types of agents (k̄ = 11.2, z = zg)

Here, a sharp U-shape across wealth levels appears. We see, in particular, that the consumers

in the 25th–75th percentiles in the wealth distribution are significant losers. For example, those in

the 50th–75th percentile lose one order of magnitude more in consumption equivalents than Lucas’s

representative agent gains. Moreover, we see that the losses are larger for the employed than for

the unemployed. These agents are not very vulnerable to risk, and they lose particularly from the

lower wages that result from lower aggregate savings.

The very richest group gains the most; the top percentile in wealth gains more than 1.5% in

consumption equivalents. Clearly, the gains here derive from the increased interest rate. The

poorest, represented as the bottom percentile here, gain between around 0.2% (the employed) and

1.1% (the unemployed); for this group, the diminished risk seems to be the reason why the gains

are high.

Yet another cut of the heterogeneity in gains is compiled in Table 4, where there is a focus on

the groups at the extreme ends in the wealth distribution across different patience and employment

statuses.7

The effect on agents who are borrowing-constrained can be seen in this table; if they are
7Note that not all the combinations of the individual states actually are realized in the simulation, since the

wealth holding is endogenous. However, we can think of an individual situated in a specific cell due to an unexpected
(positive or negative) wealth transfer.
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Pct. of wealth held by top Pct. with Gini
1% 5% 10% 20% 30% wealth < 0 coefficient

Cycles 24 54 72 86 91 10 0.81
No cycles 25 59 79 95 98 29 0.90
Data 30 51 64 79 88 11 0.79

Table 5: The distribution of wealth

impatient and unemployed, the reduction in risk amounts to close to a 4% increase in utility

measured in consumption equivalents. This number is 500 times larger than the number provided

by Lucas and it is an answer of sorts to the main query in this paper: are there agents in the

population who would really gain a lot from the elimination of cycles? The answer is yes, if we

think of 4% as a large number, and even though it may not be on some level, relative to the numbers

we find in the literature, it is a large number!

The table also shows that those in the top one-thousandth of the wealth distribution gain

over 2% if they are patient. Neither the very poorest nor the very richest represent large groups.

Especially the losers among the poor need to be at, or very close to, the borrowing constraint in

order to lose significantly; just a little bit of wealth goes a long way toward lowering the utility

losses from the risk. The gains among the richest fall off somewhat less rapidly; there is a larger

group of big winners in this group.

Table 5 shows the long-run wealth distribution in the U.S. data and in the economies with and

without cycles. This table shows that inequality increases significantly; the interest rate goes up,

making the rich richer, and the lowering of individual risk makes the poor less concerned about

holding low levels of assets—they engage in less precautionary savings. In an economy without

discount-factor heterogeneity, these effects would not appear nearly as strongly (or at all). The

effect of removing uninsurable individual risk in an economy with discount-factor heterogeneity, at

least of the persistent kind we consider here, is to move close to the complete-markets outcome,

which we know will be rather extreme. It would not be degenerate here since the discount factors

do vary stochastically, but close enough that the effects on inequality of eliminating cycles are very

large. Consumption inequality also increases in the long run. The consumption Gini coefficient

increases from 0.13 to 0.14, despite the decline in the Gini coefficient for earnings (wage income plus

unemployment compensation). The Gini coefficient for income (earnings plus the interest income
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Initial state Fraction Average utility gains in percentage consumption
k̄ z gaining All ε = e ε = s ε = f ε = l β = low β = middle β = high

11.3 zg 1.0 0.974 0.932 1.532 3.005 1.708 0.597 3.309
11.3 zd 1.0 1.130 0.831 0.949 3.624 6.446 2.095 0.737 3.349
11.3 zb 1.0 1.522 0.853 0.931 10.022 2.840 1.134 3.294
12.1 zg 1.0 0.932 0.905 1.353 2.066 1.655 0.553 3.286
12.1 zd 1.0 1.039 0.836 0.956 3.239 4.055 1.917 0.654 3.213
12.1 zb 1.0 1.078 0.835 0.912 4.159 2.009 0.689 3.237

Table 6: Welfare gains from eliminating business cycles

Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 2.312 1.499 1.108 0.439 0.366 1.120 4.362 6.965
ε = e 1.769 1.190 1.056 0.418 0.351 1.113 4.360 6.973
ε = s 4.466 2.940 2.186 0.915 0.765 1.255 4.365 6.651
ε = l 6.523 4.553 2.824 1.278 1.063 1.450 4.494 6.638

Table 7: Average utility gains by wealth group (k̄ = 11.3, z = zg)

rk) increases from 0.32 to 0.35.

4.2 The case with short- and long-term unemployment

In this section, we present the results for the case where we make a distinction between short- and

long-term unemployment. Table 6 summarizes the welfare gains for different initial capital stocks

and aggregate productivity states.8

The average gain is now around 1%, which is more than 100 times larger than Lucas’s number.

In contrast to the previous case, everyone gains from eliminating business cycles. In particular, the

long-term unemployed realizes a very large gain.

Table 7 breaks down the welfare gains for different wealth levels. We see the U-shape pattern

again: very poor and very rich consumers receive the largest gains. The significant size of the

very rich’s gain indicates that the general equilibrium effect is very large. This is because the

precautionary savings are very large in the economy with cycles, due to agents fearing long-term

unemployment. To match the realistic wealth distribution (by “forcing” some people to borrow),

we assumed more dispersed discount factors; the difference between the smallest and the largest
8Recall that here we make distinction between the zd state (a bad state after a good state) and the zb state (a

bad state after a bad state) and that the individual state f exists only when the aggregate state is zd.
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Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = e, β = low 2.431 2.305 1.912 1.011 1.153 3.969 5.004
ε = e, β = middle 1.417 1.311 0.987 0.363 2.023 5.475 6.553
ε = e, β = high 0.837 0.796 0.715 0.899 4.249 7.934 9.057
ε = s, β = low 5.957 5.275 3.876 1.659 1.148 3.965 5.004
ε = s, β = middle 4.128 3.601 2.489 0.805 1.995 5.470 6.552
ε = s, β = high 2.623 2.271 1.562 1.002 4.210 7.930 9.058
ε = l, β = low 8.775 7.696 5.331 2.104 1.137 3.961 5.003
ε = l, β = middle 6.296 5.472 3.623 1.115 1.966 5.466 6.551
ε = l, β = high 4.086 3.521 2.257 1.068 4.174 7.925 9.057

Table 8: Utility gains for different types of agents (k̄ = 11.3, z = zg)

β is 0.0112, while it was 0.0072 in the homogeneous unemployment case. The mean discount

factor is also lower here, to prevent people from saving too much. The elimination of the business

cycle reduces the risk of long-term unemployment substantially (since the risk was strongly tied

to being in a recession), and as a result, aggregate savings drop significantly. In the homogeneous

unemployment case, the average capital stock falls from 11.78 to 11.75, while in the short- and

long-term unemployment case, the change is from 11.67 to 11.48.

Table 8 describes the individual welfare gains.9 The largest benefit among the poor agents is

realized by the constrained agents in long-term unemployment and with a low discount factor. For

them, current consumption is very important, implying that the constraint on borrowing is very

costly. Moreover, if the economy falls into a recession, these agents are likely to remain long-term

unemployed for a long period of time. This risk is substantially reduced by the elimination of the

business cycles. Among the richest agents, the most patient gain significantly, since they foresee

a large increase in the interest income in future, when the aggregate savings fall substantially. In

this case, very rich agents gain more than very poor agents: the general-equilibrium effect is larger

than the risk-reducing effect. This is not the case, however, when business cycles are eliminated at

a different point in time: if k̄ = 11.3 and z = zb, the gain for a constrained agent with ε = l and

β = low is 30.3% (which is the largest gain among all the scenarios) while the gains of the richest

are below 9%.

Table 9 compares the long-run wealth distributions before and after the removal of cycles.10 The
9Tables for other initial aggregate conditions are available in Appendix E.2.

10The Gini coefficient is contained in [0, 1] when all consumers have positive asset levels. Here, the Gini exceeds
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Pct. of wealth held by top Pct. with Gini
1% 5% 10% 20% 30% wealth < 0 coefficient

Cycles 26 56 72 83 91 10 0.77
No cycles 37 79 98 110 110 77 1.06
Data 30 51 64 79 88 11 0.79

Table 9: The distribution of wealth

change in the wealth distribution is qualitatively similar to that in the homogeneous unemployment

case—the wealth distribution is more dispersed and more people have negative asset holdings.

Quantitatively, the change is more extreme here—the majority of agents are at negative asset

levels.

5 Summary and Concluding Remarks

This paper revisits the question of how a heterogeneous-agent economy might be affected by the

elimination of aggregate fluctuations. Lucas (2003) surveys the previous work on the topic in

detail, and a number of papers have been written since, exploring new mechanisms and more

complex settings. Some of these departures lead to large effect and others do not; Krebs (2007)

looks at the uninsurable earnings risk associated with displacement and argues that the cycle can be

very costly for subgroups in the population; Mukoyama and Şahin (2006) find larger costs of cycles

when workers have different skill levels, especially for the low-skilled; and Schulhofer-Wohl (2008)

considers preference heterogeneity, regarding attitudes toward risk, and finds very small effects. In

this paper, we “go back to basics” and find that, even in a rather standard setting where cyclical

idiosyncratic wage risk is abstracted from entirely, when we make the require the model to match

the wealth distribution along the lines of Krusell and Smith (1998), the welfare costs of cycles are

rather high, and influence the population quite unevenly.

In particular, we find that the average gains from eliminating cycles are significantly higher in

the economy we consider here than those found in Lucas’s (1987) representative-agent calculations.

In the case of homogeneous unemployment, these gains are still quite low in absolute terms: about

0.1% of average consumption. However, in the case where we distinguish long- from short-run

one since we use the formula in footnote 5 applied to data that contain agents with negative asset holdings. The
percent of wealth held by the top 20% and top 30% exceed 100% because of the existence of negative asset holdings.
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employment, we obtain much larger gains: about one full percentage point of average consumption.

The reason for the much larger effect in the latter case is that, first, long-term unemployment is a

major risk—when it hits, it implies very low poor prospects of re-employment and therefore is a

large negative shock to present and future income—and, second, this risk is highly cyclical.

The largest gains from removing cycles are recorded in the poorest, most impatient group: close

to 4% of average consumption for the benchmark calibration. The gain for this group mainly derives

from lower risk: the employment process is less risky now since a part of this process derives from

the aggregate cycle (as unemployment is higher in recessions); moreover, there is also less wage

(and interest) rate risk, since these fluctuate if aggregate productivity does. The very richest also

gain substantially: over 2% in the benchmark calibration. The effect on the richest is due to

the increase in the interest rate that comes from a fall in precautionary savings. Precautionary

savings, of course, fall due to the lower risk exposure in the absence of cyclical fluctuations. On

the other hand, close to 65% lose from the elimination of cycles. The losing group is the large

middle class. This group typically is reasonably well insured because they have some wealth—so

they do not benefit much from a reduction in risk—and they are employed. Being employed, but

not too wealthy, their main income comes from working, and they lose on net since wages fall with

the fall in aggregate savings. All of these comparative (cross-group) effects are present also in the

alternative calibration, but they show up more significantly there since (the elimination of) risk is

more central when there is long-term unemployment. Also, in this case because risk issues are all

the more important, all agents gain from the elimination of aggregate risk.

Finally, we note that the effect on long-run wealth inequality from eliminating aggregate uncer-

tainty is rather drastic in our economy: the Gini coefficient goes up from just under 0.8 to around

0.9 in the benchmark calibration—and to a number exceeding 1 in the alternative calibration. This

effect is due to the heterogeneity in discount factors underlying the initial wealth distribution: with

less individual uninsured risk, wealth holdings of agents with different time preference rates choose

even more divergent asset levels, as the more patient lend even more to the less patient early on,

leading relative wealth levels go move apart. In the case with long-term unemployment, more than

half of the people hold negative levels of asset in the long run when aggregate risk is no longer
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present.
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Appendix

A The integration principle applied to the baseline model

The 4× 4 Markov transition matrix for (ε, z), in its calibrated form, reads
0.8507 0.1159 0.0243 0.0091
0.1229 0.8361 0.0021 0.0389
0.5833 0.0313 0.2917 0.0938
0.0938 0.3500 0.0313 0.5250

 ,
with ordering (e, g), (e, b), (u, g), (u, b). This implies probabilities of finding a job, conditional on

last period’s employment status and on the aggregate shocks in the current and in the last period.

These job-finding probabilities can be ranked from least to most lucky as follows: the probability

of becoming employed next period (ε′ = 1) is,

1. conditional on ε = 0, z = g, and z′ = b, 0.0313/0.1250 = 0.2504 ≡ ī1;

2. conditional on ε = 0, z = b, and z′ = b, 0.3500/0.8750 = 0.4000 ≡ ī2;

3. conditional on ε = 0, z = g, and z′ = g, 0.5833/0.8750 = 0.6666 ≡ ī3;

4. conditional on ε = 0, z = b, and z′ = g, 0.0938/0.1250 = 0.7504 ≡ ī4;

5. conditional on ε = 1, z = g, and z′ = b, 0.1159/0.1250 = 0.9272 ≡ ī5;

6. conditional on ε = 1, z = b, and z′ = b, 0.8361/0.8750 = 0.9555 ≡ ī6;

7. conditional on ε = 1, z = g, and z′ = g, 0.8507/0.8750 = 0.9722 ≡ ī7; and

8. conditional on ε = 1, z = b, and z′ = g, 0.1229/0.1250 = 0.9832 ≡ ī8.

Thus, our idiosyncratic shock it can end up in 9 relevant subintervals, defined by the cutoff values

ī1–̄i9, in each period. Let us take an example: if i ∈ [̄i6, ī7), the agent would have been employed

currently only if the aggregate and idiosyncratic shocks leading up to the last period made the agent

employed in that period and the current aggregate state would have been bad (independently of

what the state was last period).

For a realized sequence of idiosyncratic shocks {is}t
s=1 one can then compute an average em-

ployment outcome in period t by brute-force averaging across all {zs}t
s=1 sequences (appropriately

26



weighted by probabilities): given each such sequence of aggregate shocks, together with an employ-

ment status in period 0, the employment outcomes in all periods up to and including t are known:

they follow applying the cutoff values above in every time period.

The resulting employment process will have long memory in terms of the idiosyncratic shocks:

one generally needs to know all prior values of is, s < t, in order to know what the average

employment outcome is at t. However, it is possible to represent the new employment process

recursively. To this end, let Pgt denote the probability (or fraction of the time) that, among all

possible outcomes of the aggregate process, (i) the individual would have been employed in time

t, given his initial (time-0) employment status and an initial (time-0) value for the aggregate state

AND (ii) the aggregate state at time t would have been good. Similarly define Pbt as the probability

that the agent would have been employed in t jointly with a bad aggregate state in that period.

Letting πt denote the probability of a good aggregate state in period t given z0, these definitions

imply that πt −Pgt is the probability that the agent would have been unemployed in t jointly with

a good aggregate state in t and similarly that 1− πt − Pbt is the probability that the agent would

have been unemployed in t jointly with a bad aggregate state in t. The key insight now is that

the variables Pt ≡ (Pgt, Pbt) summarize all there is to know from history in order to know the

expected (average) value for employment in period t+ 1 given a value for it+1. I.e., Pt summarizes

all the relevant knowledge about {i1, i2, . . . , it}. This representation is possible because the joint

underlying process for employment and the aggregate state is first-order Markov.

The recursive structure needs to update Pt into Pt+1 given a value for it+1, and it needs to

assign a value for the average employment outcome in period t+1 conditional on the state variable

Pt summarizing the individual’s idiosyncratic history and it+1, the new idiosyncratic shock. The

latter is easy: the average value of employment across the aggregate shock outcomes will be εw/o
t+1 =

Pg,t+1 + Pb,t+1, because g and b are disjoint outcomes.

To understand how to update Pt given it+1 (in order to obtain Pt+1), note that in any given

period in the economy with cycles the consumer is in one of four possible states: he is either

employed or unemployed and the aggregate state is either good or bad. Denote these states by

(1, g), (1, b), (0, g), and (0, b). (As noted above, the probabilities of these four states can be

deduced from knowledge of Pgt, Pbt, and the probability that the aggregate state is good in period
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t.) Suppose that the consumer is in state (1, g) in period t and that the aggregate state in period

t+1 is also good. If the consumer’s luck in period t+1, it+1, is sufficiently good, he will also be in

state (1, g) in period t+1. In this case, the consumer’s luck is “sufficiently good” if it+1 < π1|1gg ≡

P (εt+1 = 1|εt = 1, zt = g, zt+1 = g). The conditional probability π1|1gg, therefore, is a “cutoff”

that determines whether the consumer’s luck is good or bad, given that he is employed in t and

that the aggregate state is good in both t and t+ 1. In total, there are eight such cutoffs, one for

each of the eight possible permutations of (εt, zt, zt+1), and these eight cutoffs define the 9 regions

described above.

In period t, the consumer could also be in state (1, b), (0, g), or (0, b). In each case, if the

aggregate state in period t + 1 is good and the consumer’s luck in t + 1 is below the relevant

cutoff, he will be in state (1, g) in period t+ 1. Pg,t+1 is then a weighted average of four indicator

functions (each of which indicates whether it+1 is above or below the appropriate cutoff). The

weights corresponding to the period-t probabilities of the four states (1, g), (1, b), (0, g), and (0, b),

multiplied in each case by the conditional probability of transiting to a good aggregate state in

t+ 1 given the aggregate state in t. Similarly, Pb,t+1 is also the weighted average of four indicator

functions, appropriately weighted.

As described above, in the baseline model the variable it+1 can fall into any one of the 9 regions

defined by the cutoffs ī1–̄i9 above. The exact updating formulas for the baseline model are:

1. it+1 ∈ [0, ī1): Pg,t+1 = πt+1 and Pb,t+1 = 1− πt+1;

2. it+1 ∈ [̄i1, ī2): Pg,t+1 = πt+1 and Pb,t+1 = Pgtπb|g + (1− πt)πb|b

3. it+1 ∈ [̄i2, ī3): Pg,t+1 = πt and Pb,t+1 = Pgtπb|g + Pbtπb|b;

4. it+1 ∈ [̄i3, ī4): Pg,t+1 = Pgtπg|g + (1− πt)πg|b and Pb,t+1 = Pgtπb|g + Pbtπb|b;

5. it+1 ∈ [̄i4, ī5): Pg,t+1 = Pgtπg|g + Pbtπg|b and Pb,t+1 = Pgtπb|g + Pbtπb|b;

6. it+1 ∈ [̄i5, ī6): Pg,t+1 = Pgtπg|g + Pbtπg|b and Pb,t+1 = Pbtπb|b;

7. it+1 ∈ [̄i6, ī7): Pg,t+1 = Pgtπg|g + Pbtπg|b and Pb,t+1 = 0;

8. it+1 ∈ [̄i7, ī8): Pg,t+1 = Pbtπg|b and Pb,t+1 = 0; and
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9. it+1 ∈ [̄i8, 1]: Pg,t+1 = Pb,t+1 = 0.

One needs to spell through these carefully to see that they are correct. We have, and for verification

we have also (i) simulated this process for various draws of the idiosyncratic process {it}T
t=1 (where

T is large) and, based on the resulting {Pt}T
t=1 sequence, computed the associated employment

outcomes and (ii) made sure that the resulting values are replicated for the same {it}T
t=1 draws by

a brute-force averaging across aggregate shock processes. They do.

Appendix B displays the general updating formula (expressed as a weighted average of indicator

functions), for the baseline case (expressed as a weighted average of indicator functions), and

Appendix D displays it for the model with short- and long-term unemployment.

B Computational algorithm for the benchmark model

B.1 General algorithm

This section outlines the computational algorithm applying the integration principle to our model

and computing the transition path.11 Note that the business cycle is eliminated in the beginning

of period 1, after all the period-1 shocks are realized. Thus z1 and k̄1 are given. At the individual

level, the distribution of k1, ε1, and β̃1 are given from one point in the simulation that corresponds

to z1 and k̄1. ε1 provides the initial conditions for each individuals: if z1 = g and ε1 = 1, Pg1 = 1

and Pb1 = 0; if z1 = b and ε1 = 1, Pg1 = 0 and Pb1 = 1; and if ε1 = 0, Pg1 = 0 and Pb1 = 0. (Recall

that Pgt is the joint probability of zt = g and εt = 1 and that Pbt is the joint probability of zt = b

and εt = 1.)

The general computational strategy is to first postulate the time path of aggregate capital,

solve for the agents’ decisions given this path, and then verify that that the time path for aggregate

capital implied by agents’ aggregated decisions matches the postulated time path.

We postulate the time path for 600 periods. Then we divide the 600 periods into the first 125

periods and the final 475 periods. We solve the consumer’s problem backwards—first solve for the

final 475 periods and then for the first 125 periods. After the optimization problem is solved, we

simulate the economy with many consumers (we use 90,000 consumers) and generate the path for
11Also see Mukoyama and Şahin (2005, Appendix C and D) for a detailed exposition of the implementation of

the integration principle. Note that Krusell and Smith (2002) and Mukoyama and Şahin (2005, 2006) use Markov
approximations to the P processes while here we use the P s directly in the computation.
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aggregate capital by summing up individual savings. Finally, we check whether this simulated path

of capital stock is the same as the initially postulated time path. The following explains these steps

more in detail.

1. First, postulate the path of the aggregate capital stock for 600 periods. We use the average

of the law of motions of the capital stock in the fluctuating economy to generate the initial

guess.

2. We solve the consumer’s problem backwards. In the final 475 periods, the exogenous variables,

such as z, u, and πz are set to their limit values (z = 1, u = (ug +ub)/2, and πz = 0.5). Thus,

we treat this economy as a stationary on except for the movement in k̄ (k̄ settles much more

slowly than do the exogenous variables). We summarize the movement of the capital stock

by the law of motion k̄′ = H(k̄). In practice, we use a (log-)linear function for H(·), with the

initial value of the law of motion obtained by applying ordinary least squares to the data on

aggregate capital for the final 475 periods. The Bellman equation is:

V (k, Pg, Pb, β̃; k̄) = max
c,k′

{U(c) + β̃E[V (k′, P ′
g, P

′
b, β̃

′; k̄′)|Pg, Pb, β̃]}

subject to

c+ k′ = r(k̄, 1− ū)k + w(k̄, 1− ū)(Pg + Pb) + g(1− Pg − Pb) + (1− δ)k,

and

k̄′ = H(k̄).

As is explained in Section A, P ′
g and P ′

b are functions of a random variable i′ ∼ U [0, 1].

P ′
g(i

′) = Pr[z′ = g, ε′ = 1|i′]
=
∑

z=g,b[Pr[z′ = g, ε′ = 1|i′, z, ε = 1]Pz + Pr[z′ = g, ε′ = 1|i′, z, ε = 0](1/2− Pz)]
=
∑

z=g,b[Pr[ε′ = 1|i′, z′ = g, z, ε = 1]πg|zPz + Pr[ε′ = 1|i′, z′ = g, z, ε = 0]πg|z(1/2− Pz)]
=
∑

z=g,b[I(i
′ ≤ π11|zg)πg|zPz + I(i′ ≤ π01|zg)πg|z(1/2− Pz)]

and

P ′
b(i

′) = Pr[z′ = b, ε′ = 1|i′]
=
∑

z=g,b[Pr[z′ = b, ε′ = 1|i′, z, ε = 1]Pz + Pr[z′ = b, ε′ = 1|i′, z, ε = 0](1/2− Pz)]
=
∑

z=g,b[Pr[ε′ = 1|i′, z′ = b, z, ε = 1]πb|zPz + Pr[ε′ = 1|i′, z′ = b, z, ε = 0]πb|z(1/2− Pz)]
=
∑

z=g,b[I(i
′ ≤ π11|zb)πb|zPz + I(i′ ≤ π01|zb)πb|z(1/2− Pz)],
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where I(·) is the indicator function equaling 1 if the statement is true and 0 if it is false. Note

that this is just a compact way of writing the transition rules in Section A. The prices are:

r(k̄, 1− ū) = αk̄α−1(1− ū)1−α

and

w(k̄, 1− ū) = (1− α)k̄α(1− ū)−α.

The expectation operator in the Bellman equation is taken over i′ and β̃′ values. In practice,

we divide the [0, 1] into 4× 2 + 1 = 9 subintervals when we take an expectation with respect

to the i′s, as is explained in Section A. The dynamic-programming problem is solved in a

similar way to that used in Krusell and Smith (1998). We use 6 grids in each P direction

(or, more precisely, on the conditional probability P̂ , as is detailed below) and apply linear

interpolation to the value function when evaluating the values under P ′ (which are usually

not on the grid).

3. For t = 1, ..., 125, we solve backwards for the path. Now the exogenous parameters move over

time and we treat each period differently (for example, the value function has the index t).

First, we provide the terminal value function: V126(k, Pg, Pb, β̃) = V (k, Pg, Pb, β̃; k̄126), and

we then calculate the probability that the aggregate state is z at time t, πz
t , for t = 1, ..., 125:

πg
1 = 1 if z1 = g and πg

1 = 0 if z1 = b. It is always the case that πb
t = 1 − πg

t , and

πg
t+1 = πg

t πg|g + (1− πg
t )πg|b. zt can be calculated using zt = πg

t g + (1− πg
t )b. ut can also be

calculated as zt = πg
t ug + (1− πg

t )ub. Thus the prices are

rt = αztk̄
α−1
t (1− ut)1−α

and

wt = (1− α)ztk̄α
t (1− ut)−α.

Given these, we can solve the consumer’s problem, working backwards. The Bellman equation

is:

Vt(k, Pg, Pb, β̃) = max
c,k′

{U(c) + β̃Et[Vt+1(k′, P ′
g, P

′
b, β̃

′)|Pg, Pb, β̃]}

subject to

c+ k′ = rtk + wt(Pg + Pb) + g(1− Pg − Pb) + (1− δ)k,
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Again, P ′
g and P ′

b are functions of a random variable i′ ∼ U [0, 1].

P ′
g(i

′) = Pr[z′ = g, ε′ = 1|i′]
=
∑

z=g,b[Pr[z′ = g, ε′ = 1|i′, z, ε = 1]Pz + Pr[z′ = g, ε′ = 1|i′, z, ε = 0](πz
t − Pz)]

=
∑

z=g,b[Pr[ε′ = 1|i′, z′ = g, z, ε = 1]πg|zPz + Pr[ε′ = 1|i′, z′ = g, z, ε = 0]πg|z(πz
t − Pz)]

=
∑

z=g,b[I(i
′ ≤ π11|zg)πg|zPz + I(i′ ≤ π01|zg)πg|z(πz

t − Pz)]

and

P ′
b(i

′) = Pr[z′ = b, ε′ = 1|i′]
=
∑

z=g,b[Pr[z′ = b, ε′ = 1|i′, z, ε = 1]Pz + Pr[z′ = b, ε′ = 1|i′, z, ε = 0](πz
t − Pz)]

=
∑

z=g,b[Pr[ε′ = 1|i′, z′ = b, z, ε = 1]πb|zPz + Pr[ε′ = 1|i′, z′ = b, z, ε = 0]πb|z(πz
t − Pz)]

=
∑

z=g,b[I(i
′ ≤ π11|zb)πb|zPz + I(i′ ≤ π01|zb)πb|z(πz

t − Pz)].

4. Having solved the consumer’s decision problem, we can simulate the economy. We assign an

initial distribution for the individual state variables and then simulate consumers’ decisions

(we use 90,000 consumers). Adding up the implied saving choices, we obtain the time series

for k̄t. Using this path, we check whether it reproduces the initially postulated path. If not,

we update k̄2, ..., k̄126 and the law of motion H(k̄) by ordinary least squares. We repeat until

convergence.

B.2 Issues in actual implementation

In practice, we work on the conditional probabilities for P s rather than with the joint probabilities.

We define P̂z as the probability of being employed conditional on the aggregate state z. Here, in

the first step (since the probability of each aggregate state is 1/2),

P̂g =
Pg

1/2
= 2Pg (1)

and

P̂b =
Pb

1/2
= 2Pb. (2)

The new problem becomes (with the new value function V̂ )

V̂ (k, P̂g, P̂b, β̃; k̄) = max
c,k′

{U(c) + β̃E[V̂ (k′, P̂ ′
g, P̂

′
b, β̃

′; k̄′)|P̂g, P̂b, β̃]}

subject to

c+ k′ = r(k̄, 1− ū)k + w(k̄, 1− ū)
(

1
2
P̂g +

1
2
P̂b

)
+ g

(
1− 1

2
P̂g −

1
2
P̂b

)
+ (1− δ)k,
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and

k̄′ = H(k̄).

From (1) and (2), P̂ ′
g(i

′), P̂ ′
g(i

′) can be calculated by

P̂ ′
g(i

′) = 2P ′
g(i

′)
= 2

∑
z=g,b[I(i

′ ≤ π11|zg)πg|zPz + I(i′ ≤ π01|zg)πg|z(1/2− Pz)]
=
∑

z=g,b[I(i
′ ≤ π11|zg)πg|zP̂z + I(i′ ≤ π01|zg)πg|z(1− P̂z)]

and
P̂ ′

b(i
′) = 2P ′

b(i
′)

= 2
∑

z=g,b[I(i
′ ≤ π11|zb)πb|zPz + I(i′ ≤ π01|zb)πb|z(1/2− Pz)]

=
∑

z=g,b[I(i
′ ≤ π11|zb)πb|zP̂z + I(i′ ≤ π01|zb)πb|z(1− P̂z)].

The advantage of using conditional probabilities is that we can ensure that the labor-income terms

in the budget constraint, w(k̄, 1 − ū)(P̂g/2 + P̂b/2) and g(1 − P̂g/2 − P̂b/2), are positive as long

as P̂g, P̂b ∈ [0, 1], and we can utilize the entire [0, 1] domain for P̂g and P̂b. (Here, it is not a big

advantage since we can instead just restrict Pg, Pb ∈ [0, 0.5]. However, the advantage is much larger

in the second step, since the corresponding domain becomes time-variant.)

Similarly, in the second step of the optimization, define

P̂g =
Pg

πg
t

(3)

and

P̂b =
Pb

πb
t

. (4)

Note that we have to be careful about the initial point—we cannot divide when πz
t = 0. To avoid

this, we can start from πg
t = 1− ε and πb

t = ε for a very small ε, for example.

The problem becomes

V̂t(k, P̂g, P̂b, β̃) = max
c,k′

{U(c) + β̃Et[V̂t+1(k′, P̂ ′
g, P̂

′
b, β̃

′)|P̂g, P̂b, β̃]}

subject to

c+ k′ = rtk + wt(π
g
t P̂g + πb

t P̂b) + g(1− πg
t P̂g − πb

t P̂b) + (1− δ)k.

Again, P ′
g and P ′

b are functions of a random variable i′ ∼ U [0, 1]:

P̂ ′
g(i

′) = 1
πg

t+1
P ′

g(i
′)

=
∑

z=g,b

[
I(i′ ≤ π11|zg)

πg|z
πg

t+1
Pz + I(i′ ≤ π01|zg)

πg|z
πg

t+1
(πz

t − Pz)
]

=
∑

z=g,b

[
I(i′ ≤ π11|zg)

πz
t

πg
t+1
πg|zP̂z + I(i′ ≤ π01|zg)

πz
t

πg
t+1
πg|z(1− P̂z)

]
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and
P̂ ′

b(i
′) = 1

πb
t+1
P ′

b(i
′)

=
∑

z=g,b

[
I(i′ ≤ π11|zb)

πb|z
πb

t+1
Pz + I(i′ ≤ π01|zb)

πb|z
πb

t+1
(πz

t − Pz)
]

=
∑

z=g,b

[
I(i′ ≤ π11|zb)

πz
t

πb
t+1
πb|zP̂z + I(i′ ≤ π01|zb)

πz
t

πb
t+1
πb|z(1− P̂z)

]
.

C Calculating the welfare gain

As in Lucas (1987), our measure of the welfare gain from eliminating the business cycle, λ, satisfies

(we now change the notation of the discount factor so that we can be explicit about its stochastic

nature)

E0

[ ∞∑
t=0

(
t∏

t=0

β(j)

)
log((1 + λ)ct)

]
= E0

[ ∞∑
t=0

(
t∏

t=0

β(j)

)
log(c̃t)

]
,

where β(j) is the discount factor from time j − 1 to j (known at time j) and β(0) = 1. β(1) is

known at time 0—it is an initial condition. ct is consumption in the economy with business cycles

and c̃t is consumption in the economy with business cycles.

λ can be calculated as follows.12

λ = exp

(
V − Ṽ
d

)
− 1,

where

V = E0

[ ∞∑
t=0

(
t∏

t=0

β(j)

)
log(ct)

]
and

Ṽ = E0

[ ∞∑
t=0

(
t∏

t=0

β(j)

)
log(c̃t)

]
can easily be calculated from the value functions. d is defined as

d ≡ E0

[ ∞∑
t=0

(
t∏

t=0

β(j)

)]
.

Let d̄i be the value of d when β(1) = βi (i ∈ {h,m, l}). Let the vector D be defined as

D ≡

 d̄h

d̄m

d̄l

 .
D satisfies the following equation:

D = I + BΩD,
12The welfare measure in the main text is in percentage points, i.e. λ× 100.
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where

I ≡

 1
1
1

 ,

Ω ≡

 ωhh ωhm ωhl

ωmh ωmm ωml

ωlh ωlm ωll

 ,
and

B ≡

 βh 0 0
0 βm 0
0 0 βl

 .
Therefore,

D = (I−BΩ)−1I,

where I is the 3× 3 identity matrix.

D Algorithm for the model with short- and long-run unemploy-
ment

D.1 Notation

Let ε ∈ {l, f, s, e} denote long-term unemployment after the second unemployment period, long-

term unemployment in the first unemployment period (“fired”), short-term unemployment, and

employment, respectively. z = g is the good state and z = b is the bad state (from the second

consecutive period). The transition matrix for z is now

The individual employment states evolve according to the following matrices.

• For (z, z′) = (g, g),
πll|gg πlf |gg πls|gg πle|gg

πfl|gg πff |gg πfs|gg πfe|gg

πsl|gg πsf |gg πss|gg πse|gg

πel|gg πef |gg πes|gg πee|gg

 =


0.50 0 0 0.50
0.50 0 0 0.50
0.25 0 0 0.75
0 0 0.03 0.97

.


• For (g, b), 

πll|gb πlf |gb πls|gb πle|gb

πfl|gb πff |gb πfs|gb πfe|gb

πsl|gb πsf |gb πss|gb πse|gb

πel|gb πef |gb πes|gb πee|gb

 =


0.94 0 0 0.06
0.94 0 0 0.06
0.75 0 0 0.25
0 0.04 0.03 0.93

.


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• For (b, g), 
πll|bg πlf |bg πls|bg πle|bg
πfl|bg πff |bg πfs|bg πfe|bg
πsl|bg πsf |bg πss|bg πse|bg
πel|bg πef |bg πes|bg πee|bg

 =


0.17 0 0 0.83
0.17 0 0 0.83
0.03 0 0 0.97
0 0 0.03 0.97

.


• For (b, b), 

πll|bb πlf |bb πls|bb πle|bb
πfl|bb πff |bb πfs|bb πfe|bb
πsl|bb πsf |bb πss|bb πse|bb
πel|bb πef |bb πes|bb πee|bb

 =


0.99 0 0 0.01
0.99 0 0 0.01
0.03 0 0 0.97
0 0 0.03 0.97

.


Computation of equilibrium for the economy with aggregate shocks is more involved than in the

homogeneous unemployment case, since now we have 3 aggregate states and 4 individual states,

but does not significantly depart in complexity or difficulty from Krusell and Smith (1998).

D.2 Transition dynamics

The general computational strategy is the same as for the case of homogeneous unemployment in

Section B, though it is more involved because of the many state variables.

1. First we postulate the path for the aggregate capital stock.

2. As in the previous section, we start from t ≥ 126. The Bellman equation is:

V (k,P, β̃; k̄) = max
c,k′

{U(c) + β̃E[V (k′,P′, β̃′; k̄′)|P, β̃]}

subject to

c+ k′ = r(k̄, 1− ū)k + w(k̄, 1− ū)
∑

z=g,b

P e
z + ψs

∑
z=g,b

(P s
z + P f

z ) + ψl

∑
z=g,b

P l
z + (1− δ)k,

and

k̄′ = H(k̄).

Here, P is the vector of P ε
z s (the joint probability that the aggregate state is z and the

individual state is ε, if there were aggregate fluctuations). We do not need to keep track of all

the P s: it is sufficient to have P e
g , P e

b , P s
g , P s

b , and P f
b as state variables.13 This is because

P l
z = πz − P e

z − P s
z − P f

z and P f
g = 0. P ε

z evolves according to

P ε′
z′ (i

′) = Pr[z′, ε′|i′]
=
∑

z=g,b

∑
ε=e,s,f,l Pr[z′, ε′|i′, z, ε]P ε

z

=
∑

z=g,b

∑
ε=e,s,f,l Pr[ε′|i′, z′, z, ε]πz′|zP

ε
z .

(5)

13Note that here we do not need to make distinctions between the zb state and the zd state.
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Calculating Pr[ε′|i′, z′, z, ε] is harder in this case. Before, we set Pr[ε′ = 1|i′, z′, z, ε] = 1 if

i′ ≤ πεε′|zz′ and zero otherwise; and Pr[ε′ = 0|i′, z′, z, ε] = 1 if i′ > πεε′|zz′ and zero otherwise.

Now we have four idiosyncratic states instead of two, so we adopt the following cutoff rule:

Pr[ε′ = e|i′, z′, z, ε] =

{
1 if i′ ∈ [0, πεe|zz′ ]
0 otherwise

Pr[ε′ = s|i′, z′, z, ε] =

{
1 if i′ ∈ (πεe|zz′ , πεe|zz′ + πεs|zz′ ]
0 otherwise

Pr[ε′ = f |i′, z′, z, ε] =

{
1 if i′ ∈ (πεe|zz′ + πεs|zz′ , πεe|zz′ + πεs|zz′ + πεf |zz′ ]
0 otherwise

Pr[ε′ = l|i′, z′, z, ε] =

{
1 if i′ ∈ (πεe|zz′ + πεs|zz′ + πεf |zz′ , 1]
0 otherwise

.

We keep the structure that a low i is “lucky” and a high i is “unlucky.” In the computation,

we divide the interval of possible is in [0, 1] into subintervals by these cutoff thresholds when

we take expectations in the Bellman equation.

Again, in the actual computation, we work with conditional probabilities (but not conditional

only on the aggregate states); we define these conditional probabilities, P̂ ε
z , as follows.

P̂ e
g ≡

P e
g

πg
t

, (6)

P̂ e
b ≡ P e

b

πb
t

, (7)

P̂ s
g ≡

P s
g

πg
t (1− P̂ e

g )
, (8)

P̂ s
b ≡ P s

b

πb
t (1− P̂ e

b )
, (9)

P̂ f
b ≡

P f
b

πb
t (1− P̂ e

b )(1− P̂ s
b )
. (10)

Then, the problem becomes

V̂ (k, P̂, β̃; k̄) = max
c,k′

{U(c) + β̃E[V (k′, P̂′, β̃′; k̄′)|P̂, β̃]}

subject to

c+ k′ = r(k̄, 1− ū)k + Iw + Iu1 + Iu2 + (1− δ)k
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and

k̄′ = H(k̄).

Here,

Iw ≡ w(k̄, 1− ū)
∑

z=g,b

P e
z = w(k̄, 1− ū)

∑
z=g,b

πz
t P̂

e
z ,

Iu1 ≡ ψs

∑
z=g,b

(P s
z + P f

z ) = ψs

 ∑
z=g,b

πz
t (1− P̂ e

z )P̂ s
z + πb

t (1− P̂ e
b )(1− P̂ s

b )P̂ f
b

 ,
and

Iu2 ≡ ψl
∑

z=g,b P
l
z

= ψl
∑

z=g,b(π
z
t − P e

z − P s
z − P f

z )
= ψl

[
1− πg

t (P̂ e
g + (1− P̂ e

g )P̂ s
g )− πb

t (P̂
e
b + (1− P̂ e

b )P̂ s
b + (1− P̂ e

b )(1− P̂ s
b )P̂ f

b )
]
.

The evolution of P̂ ε
z can be obtained from the above relationships. In particular, we can

convert P̂ s into P s using the equations (6)-(10), calculate the transition of P s by (5), and

transform the P s back to P̂ s using (6)-(10) once again. Here, since all the exogenous variables

are already settled, we can use πz
t = 1/2.

Again, the advantage of working on the conditional distributions is that we can ensure that

Iw, Iu1, and Iu2 are all positive for P̂ e
g , P̂

e
b , P̂

s
g , P̂

s
b , P̂

f
b ∈ [0, 1]. We put 5 grid points in each

P̂ direction and linearly interpolate the value functions when evaluating the value at P̂ ′.

3. The other steps are similar to those in Section B. For the first 125 periods, πz
t changes over

time: it evolves according to πz′
t+1 =

∑
z=g,b πz′|zπ

z
t .
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E More tables

E.1 One type of unemployment

Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 0.861 0.261 0.070 −0.050 −0.093 0.228 1.088 1.689
ε = 1 0.263 0.156 0.045 −0.057 −0.096 0.228 1.090 1.691
ε = 0 1.691 0.671 0.254 0.033 −0.057 0.233 1.067 1.643

Average utility gains by wealth group (k̄ = 11.2, z = zb)

Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 0.278 0.175 0.043 −0.059 −0.078 0.219 0.993 1.552
ε = 1 0.247 0.166 0.040 −0.060 −0.078 0.219 0.994 1.551
ε = 0 0.579 0.345 0.113 −0.013 −0.054 0.201 0.979 1.531

Average utility gains by wealth group (k̄ = 12.3, z = zg)

Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 0.393 0.207 0.050 −0.056 −0.079 0.224 1.020 1.577
ε = 1 0.250 0.171 0.035 −0.064 −0.083 0.226 1.022 1.566
ε = 0 0.821 0.416 0.169 0.012 −0.044 0.206 1.000 1.667

Average utility gains by wealth group (k̄ = 12.3, z = zb)

Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = 1, β = low 0.636 0.470 0.303 0.080 0.432 1.202 1.510
ε = 1, β = middle 0.316 0.181 0.046 −0.095 0.668 1.479 1.787
ε = 1, β = high 0.120 0.033 −0.022 0.014 1.041 1.864 2.176
ε = 0, β = low 3.808 1.867 0.732 0.182 0.419 1.199 1.509
ε = 0, β = middle 2.890 1.314 0.390 −0.033 0.653 1.476 1.787
ε = 0, β = high 2.107 0.884 0.183 0.006 1.025 1.860 2.175

Utility gains for different types of agents (k̄ = 11.2, z = zb)
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Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = 1, β = low 0.563 0.356 0.241 0.099 0.369 1.069 1.338
ε = 1, β = middle 0.264 0.090 0.010 −0.076 0.599 1.343 1.613
ε = 1, β = high 0.089 0.001 −0.007 0.040 0.970 1.723 1.995
ε = 0, β = low 1.508 0.644 0.420 0.164 0.360 1.067 1.337
ε = 0, β = middle 1.034 0.321 0.138 −0.039 0.588 1.340 1.612
ε = 0, β = high 0.681 0.131 0.033 0.022 0.959 1.720 1.995

Utility gains for different types of agents (k̄ = 12.3, z = zg)

Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = 1, β = low 0.648 0.364 0.228 0.094 0.386 1.107 1.382
ε = 1, β = middle 0.328 0.095 0.008 −0.080 0.619 1.382 1.659
ε = 1, β = high 0.134 0.004 −0.009 0.035 0.992 1.765 2.044
ε = 0, β = low 3.022 0.850 0.507 0.188 0.375 1.104 1.381
ε = 0, β = middle 2.259 0.487 0.208 −0.024 0.605 1.380 1.658
ε = 0, β = high 1.625 0.256 0.074 0.015 0.977 1.762 2.043

Utility gains for different types of agents (k̄ = 12.3, z = zb)
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E.2 Short- and long-term unemployment

Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 7.415 2.640 1.225 0.525 0.397 1.136 4.463 6.960
ε = e 1.504 0.917 0.825 0.336 0.267 1.092 4.464 6.951
ε = s 2.057 1.221 1.096 0.453 0.348 1.167 4.509 6.749
ε = f 14.512 9.071 6.059 3.020 2.355 1.746 4.566 6.976
ε = l 18.973 10.971 6.335 3.205 2.555 1.719 4.253 7.098

Average utility gains by wealth group (k̄ = 11.3, z = zd)

Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 20.632 9.994 1.325 0.421 0.332 1.137 4.233 6.595
ε = e 1.579 1.417 0.917 0.393 0.323 1.116 4.237 6.580
ε = s 1.958 1.139 0.510 0.411 1.080 4.074 6.614
ε = l 20.804 11.068 6.805 3.290 2.437 1.676 4.249 6.673

Average utility gains by wealth group14 (k̄ = 11.3, z = zb)

Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 2.092 1.684 0.838 0.456 0.392 1.135 4.264 6.672
ε = e 1.727 1.599 0.795 0.432 0.377 1.131 4.270 6.670
ε = s 3.207 3.057 1.613 0.925 0.791 1.210 4.062 6.811
ε = l 4.830 3.810 1.861 1.278 1.091 1.371 4.213 5.937

Average utility gains by wealth group (k̄ = 12.1, z = zg)

Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 3.385 2.010 1.026 0.576 0.447 1.148 4.212 6.627
ε = e 1.493 1.414 0.680 0.373 0.323 1.107 4.194 6.629
ε = s 1.925 1.722 0.855 0.472 0.410 1.106 4.301 6.827
ε = f 9.100 8.185 4.679 2.936 2.435 1.615 4.347 6.246
ε = l 11.167 8.670 4.504 3.141 2.645 1.690 4.502 6.460

Average utility gains by wealth group (k̄ = 12.1, z = zd)

14In the simulated data, there are no agents with ε = s and asset holdings below the first percentile.
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Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 5.339 2.153 1.188 0.594 0.361 1.137 4.215 6.620
ε = e 1.517 1.424 0.704 0.372 0.323 1.104 4.212 6.596
ε = s 1.777 1.713 0.894 0.481 0.413 1.211 4.052 6.989
ε = l 11.122 8.517 4.411 3.143 2.663 1.637 4.304 6.655

Average utility gains by wealth group (k̄ = 12.1, z = zb)

Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = e, β = low 1.960 1.844 1.524 0.885 1.191 4.017 5.101
ε = e, β = middle 1.062 0.957 0.695 0.277 2.089 5.540 6.669
ε = e, β = high 0.636 0.615 0.612 0.884 4.353 8.033 9.212
ε = s, β = low 2.749 2.508 1.904 1.027 1.181 4.014 5.104
ε = s, β = middle 1.685 1.477 0.988 0.370 2.071 5.537 6.668
ε = s, β = high 1.054 0.922 0.744 0.879 4.331 8.030 9.212
ε = f , β = low 22.119 16.464 10.074 4.093 1.191 4.008 5.102
ε = f , β = middle 16.336 12.143 7.258 2.551 1.996 5.529 6.670
ε = f , β = high 10.755 7.913 4.497 1.606 4.218 8.020 9.213
ε = l, β = low 30.194 21.159 11.223 4.333 1.182 4.006 5.101
ε = l, β = middle 22.226 15.627 8.150 2.737 1.982 5.527 6.669
ε = l, β = high 14.676 10.277 5.125 1.683 4.200 8.018 9.212

Utility gains for different types of agents (k̄ = 11.3, z = zd)

Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = e, β = low 2.066 1.981 1.643 0.966 1.155 3.606 4.617
ε = e, β = middle 1.153 1.076 0.793 0.338 1.940 5.052 6.112
ε = e, β = high 0.663 0.644 0.625 0.861 4.072 7.429 8.527
ε = s, β = low 2.865 2.685 2.039 1.113 1.153 3.603 4.616
ε = s, β = middle 1.778 1.628 1.099 0.436 2.021 5.048 6.111
ε = s, β = high 1.085 0.984 0.768 0.860 4.191 7.425 8.526
ε = l, β = low 30.340 23.461 11.716 4.471 1.161 3.593 4.616
ε = l, β = middle 22.347 17.335 8.539 2.850 2.038 5.035 6.110
ε = l, β = high 14.728 11.397 5.371 1.711 4.211 7.409 8.526

Utility gains for different types of agents (k̄ = 11.3, z = zb)
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Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = e, β = low 2.469 1.833 1.632 1.051 1.126 3.703 4.812
ε = e, β = middle 1.451 0.927 0.775 0.390 1.995 5.179 6.338
ε = e, β = high 0.861 0.727 0.730 0.904 4.209 7.613 8.821
ε = s, β = low 5.854 3.526 2.994 1.700 1.121 3.699 4.813
ε = s, β = middle 4.056 2.215 1.797 0.834 1.967 5.174 6.339
ε = s, β = high 2.575 1.413 1.218 1.011 4.171 7.607 8.822
ε = l, β = low 8.334 4.741 3.966 2.141 1.111 3.695 4.812
ε = l, β = middle 5.969 3.162 2.545 1.143 1.941 5.169 6.338
ε = l, β = high 4.056 1.964 1.604 1.080 4.138 7.602 8.821

Utility gains for different types of agents (k̄ = 12.1, z = zg)

Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = e, β = low 2.052 1.588 1.433 0.964 1.115 3.621 4.598
ε = e, β = middle 1.144 0.750 0.635 0.333 1.967 5.069 6.093
ε = e, β = high 0.661 0.627 0.651 0.860 4.138 7.455 8.515
ε = s, β = low 2.781 1.949 1.728 1.108 1.105 3.619 4.597
ε = s, β = middle 1.722 1.030 0.858 0.430 1.949 5.066 6.092
ε = s, β = high 1.052 0.751 0.732 0.858 4.117 7.451 8.514
ε = f , β = low 21.258 9.674 7.974 4.172 1.120 3.611 4.598
ε = f , β = middle 15.720 6.961 5.627 2.619 1.882 5.056 6.092
ε = f , β = high 10.330 4.269 3.347 1.609 4.012 7.451 8.512
ε = l, β = low 27.883 10.670 8.656 4.405 1.112 3.609 4.597
ε = l, β = middle 20.573 7.737 6.164 2.800 1.868 5.053 6.091
ε = l, β = high 13.572 4.817 3.715 1.685 3.997 7.435 8.511

Utility gains for different types of agents (k̄ = 12.1, z = zd)

Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = e, β = low 2.060 1.609 1.439 0.964 1.107 3.621 4.647
ε = e, β = middle 1.149 0.766 0.639 0.334 1.963 5.074 6.147
ε = e, β = high 0.671 0.635 0.660 0.872 4.144 7.469 8.583
ε = s, β = low 2.790 1.977 1.734 1.109 1.098 3.618 4.645
ε = s, β = middle 1.729 1.051 0.862 0.430 1.946 5.070 6.146
ε = s, β = high 1.063 0.763 0.742 0.869 4.123 7.466 8.582
ε = l, β = low 27.910 10.884 8.661 4.389 1.105 3.608 4.646
ε = l, β = middle 20.592 7.903 6.167 2.787 1.865 5.058 6.145
ε = l, β = high 13.591 4.940 3.723 1.688 4.003 7.450 8.580

Utility gains for different types of agents (k̄ = 12.1, z = zb)
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