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Abstract
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A Quasi Commitment: The Linear Quadratic Case

This appendix derives the solution to an optimal policy problem under quasi commitment. It does

so in the context of a fairly general linear-quadratic economy, of the kind considered for example

by Svensson (1999a). Besides its analytical tractability, the main advantage of the LQ framework

is that it provides a valid approximation to a very broad class of microfounded optimal fiscal and

monetary policy problems, as shown in a series of recent papers by Benigno and Woodford (2004a,

2004b, 2004c).

The structure of the Appendix is as follows. In section A.1 we introduce the economic en-

vironment. In section A.2 we formulate a recursive version of the optimization problem under

quasi commitment. Its main feature is to be recursive across policymakers’ tenures, rather than

across periods. In section A.3 we describe the implications of rationality and perfect information on

private agents’ expectations in a linear equilibrium. Finally, in section A.4, we derive the model’s

quasi commitment equilibrium by maximizing the Lagrangian associated with the constrained Bell-

man equation of section A.2 In this context, we also illustrate the three steps of the fixed point

iterations used to solve for the parameters of the (quadratic) value function and of agents’ (linear)

expectations.

A.1 The Environment

Dynamics We consider a DSGE economy populated by a private sector and a policy authority.

The behavior of the private sector is described by a system of linearized equilibrium conditions,

which restrict the deviations of nx predetermined (state) variables xt and nX non-predetermined

(jump) variables Xt from a deterministic steady state. Their joint evolution is described by"
xt+1

GEtXt+1

#
= A

"
xt

Xt

#
+Bit +

"
εt+1

0

#
, (1)

for a given sequence {it}t≥0, where it is a q-dimensional vector of policy instruments. As usual,

autocorrelated shocks are included in xt, so that the structural shocks {εt}t≥0 can be assumed to
be i.i.d. with covariance matrix Σ. The matrices Σ ∈ Rnx×nx , A ∈ R(nx+nX)×(nx+nX), G ∈ RnX×nX

and B ∈ R(nx+nX)×q contain functions of the structural parameters specific to the steady state,
which are assumed to be known to all agents.

Policy Objective The policy authority maximizes the expected present discounted value of

the stream of utility of the economy’s representative agent, as approximated by (minus) a quadratic

loss function of the form

E0

" ∞X
t=0

βtLt

#
, (2)
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with

Lt ≡

⎡⎢⎣ xt

Xt

it

⎤⎥⎦
0

W

⎡⎢⎣ xt

Xt

it

⎤⎥⎦ (3)

for some positive semidefinite symmetric matrix W . Note that constant target levels which differ

from the system’s steady state can be easily accommodated by augmenting the vector of predeter-

mined variables xt with an “intercept”. This would result in a singular Σ and in a corresponding

unit root of the system, to be considered stable when solving for the economy’s rational expecta-

tions equilibrium. An example of a such a target level is the positive output gap x∗ included in

the central bank’s loss function in the monetary model in the paper. That constant target is the

source of the model’s average inflation bias.

Quasi Commitment Equilibrium Recalling that changes in regime are triggered by positive

realizations of the i.i.d. Bernoulli signals in the sequence {ηt}t , with E [ηt] = α, we can state the

following

Definition 1 (Quasi Commitment Equilibrium) A Quasi Commitment Equilibrium with pa-

rameter α is a sequence {xt,Xt, it}t≥0, such that:

i) The policy plan {it}t≥0 maximizes (2), given (1) and a quasi commitment technology with
E [ηt] = α

ii) The sequence {xt,Xt}t≥0 is the unique stable solution of (1), given the policy plan {it}t≥0

iii) Expectations in (1) are rational, given E [ηt] = α

A.2 The Policy Problem

The problem faced by the policy authority under quasi commitment is to choose a path for its

instruments to minimize the discounted sum of expected period losses, subject to the constraints

given by the equilibrium conditions (1) and by the limited commitment technology available. By

redefining one-step-ahead expectations as independent variables, Xe
t ≡ EtXt+1,we can write this

problem as

min{it}t≥0 E0

∙ ∞P
t=0

βtLt

¸

s.t.

xt+1 −A11xt −A12Xt −B1it − εt+1 = 0, x0 = x

GXe
t −A21xt −A22Xt −B2it = 0

(1− ηt)
¡
Xe
t−1 −Et−1Xt

¢
= 0.

(4)

The last equation simply states that, in selecting the optimal path for the economy, the policy

authority can “choose” private agents’ expectations, but under the constraint that they be rational.
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Since commitment is only imperfect however, this constraint does not bind new policymakers. This

formally represents the assumption that policymakers are allowed to (and will in equilibrium)

formulate a new optimal plan at the beginning of each regime, namely whenever ηt = 1.

Since expectations of today’s conditions,Xe
t−1, are formed before the realization of ηt is observed,

new policymakers’ reoptimizations come as a “surprise” to agents. However, this is true only in

an ex-post sense, since we also assume that agents correctly perceive the probability of regime

changes. In other words, agents have rational expectations both within and across regimes, so that

their predictions are accurate on average, at least given a sample with enough reoptimizations. In

this sense then, they are just as “surprised” when the current regime continues for another period.

To characterize its solution, it is useful to analyze the optimal policy problem by grouping

losses by regime, rather than by period. To this end, define the dates of regime changes {τ j}j≥0
and regime durations {∆τ j}j≥0 beyond the initial period as

τ j = min{t | t > τ j−1, ηt = 1}, τ0 ≡ 0
∆τ j = τ j+1 − τ j − 1.

(5)

Thus the jth regime starts at date t = τ j and is in effect for t ∈ {τ j , . . . , τ j +∆τ j}, that is up until
time t = τ j+1, when the j + 1st regime starts.

With this notation, the policymaker’s objective (4) can be rewritten in terms of a sum of losses

over individual policy regimes

min
{it}t≥0

E0

∞X
j=0

βτj

⎡⎣∆τjX
k=0

βkLτj+k

⎤⎦ . (6)

The recursive structure of the quasi commitment problem should now be clear. Positive realiza-

tions of the regime-change signal, ητj = 1, by dropping the expectational constraint from problem

(4), sever the feedback from current policy choices to past private sector behavior. This feedback is

precisely what makes the full commitment problem non recursive, and therefore time-inconsistent,

as first pointed out by Kydland and Prescott (1977, Section II). Breaking that feedback at the

inception of each regime then, makes the quasi commitment problem recursive across regimes,

although not across periods.

We can then write the problem’s Bellman equation as1

V (xτj ) = max
{ϕk+1}k≥τj

min
{xk+1,Xk,ik}k≥τj

Eτj

"
∆τjP
k=0

βkLτj+k + β∆τj+1V (xτj+1)

#

s.t.
xt+1 −A11xt −A12Xt −B1it − εt+1 = 0

ϕτj
= 0,

(7)

where

Lt ≡ Lt + 2ϕ
0
t+1 (GEtXt+1 −A21xt −A22Xt −B2it) .

1 See Marcet and Marimon (1999) for a formal treatment of “recursive saddle point” functional equations.
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In this expression, the state variables xτj are predetermined as of the last period of the j − 1st

regime. The nX predetermined Lagrange multipliers ϕt+1, attached to the constraints involving

expectations, must instead satisfy the initial condition ϕτj = 0. This condition corresponds to

1 − ητj = 0 in (4). Its effect is to free new policymakers from their predecessors’ outstanding

promises regarding the continuation of their optimal policy plan. This also explains why the value

function in (7) depends only on xτj , and not on the predetermined Lagrange multipliers as well.

By the Bellman principle, this value function is the minimum achievable value of the objective

(4), given the relevant constrains. Moreover, the state contingent policy plan optimally chosen by

the jth policymaker will be optimal for all subsequent policymakers to follow. Therefore, the solution

to problem (7) completely characterizes the economy’s equilibrium under quasi commitment.

Given its particular recursive structure, solving this problem requires blending the solution

strategies which are usually applied to the discretion and commitment cases separately (see for

example Söderlind, 1999). On the one hand, the fact that optimal policy plans are systematically

reformulated at the inception of each regime makes the problem similar to one with discretion,

at least across regimes. This feature is reflected in the “regime-by-regime” formulation of the

Bellman equation. As under discretion, it also requires to guess and iterate on agents’ across

regime expectations, as illustrated in the next section.

Unlike under discretion however, under quasi commitment policymakers are in fact able to

credibly commit to a policy rule, if only for a random number of periods. Moreover, since that

number is drawn from a geometric distribution, that rule has a positive probability of being in place

for an arbitrarily large number of periods. This implies that policymakers must look infinitely into

the future when formulating that plan. Within each regime then, the problem is formally identical

to one with full commitment, except for a modified discount factor. For this reason, it is most

convenient to characterize its solution with a Lagrangian method, as we will do in section A.4

A.3 Private Agents’ Expectations

In our environment, at any given point in time, the behavior of private agents depends on expec-

tations about the entire infinite future. In this respect, they differ significantly from policymakers,

who need to worry only about their own term in office. The private sector must instead form ex-

pectations about the non-predetermined variables, EtXt+1, taking into account that every period

a regime change may occur with probability α. This results in

Et[Xt+1] = (1− α)Et[Xt+1| ηt+1 = 0| {z }
within regime

] + αEt[Xt+1| ηt+1 = 1| {z }
across regime

].

Note that the exogeneity of the regime-change shock is crucial in maintaining the linearity of the

expectation. As a consequence, it is a fundamental ingredient in the relative simplicity of the

solution.

As pointed out above, the recursive structure of equation (7) implies that each policymaker

solves her optimization problem by focusing exclusively on the evolution of the economy within
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her regime. Therefore, within-regime expectations are determined as part of the optimal plan. On

the contrary, across-regime expectations are taken as given, or rather as a given function of the

current state, just as in the case of discretion. Given the LQ structure of the problem, we guess

this function to be linear, with coefficients H ∈ RnX×nx and H̃ ∈ RnX×nX

Et

£
Xt+1|ηt+1 = 1

¤
= HEt

£
xt+1|ηt+1 = 1

¤
+ eHEt

£
ϕt+1|ηt+1 = 1

¤
= HEt[xt+1]. (8)

The last equality follows from the fact that, conditional on the current regime lasting exactly t

periods, i.e. ηt+1 = 1, the intervening reoptimization implies ϕt+1 = 0. Furthermore, the fact that

xt+1 is predetermined implies that knowledge of ηt+1 does not help to predict its value, so that the

expectation in (8) is just conditioned on information available at time k.

A.4 Quasi Commitment Equilibrium

With a solution for agents’ forecasting problem in hand, we are now ready to solve the saddle-point

problem on the right-hand side of Bellman equation (7). The only remaining challenge is that the

running cost function involves a sum with a random number of terms, given the uncertainty on

the length of the current regime. Also in this instance however, the assumed exogeneity of the

regime-change signals represents a major simplification.

In fact, with {ηt}t a sequence of i.i.d. Bernoulli draws, ∆τ j ∼Geometric(α), so that Pr{∆τ j =
m} = (1− α)mα. This implies, for example

Eτj

⎧⎨⎩
∆τjX
k=0

βkLτj+k

⎫⎬⎭ =
∞X

m=0

α(1− α)mEτj

⎡⎣∆τjX
k=0

βkLτj+k

¯̄̄̄
¯̄∆τ j = m

⎤⎦
=

∞X
k=0

[β(1− α)]k
∞X

m=0

α(1− α)mEτj

£
Lτj+k|∆τ j = k +m

¤
=

∞X
k=0

[β(1− α)]k Eτj

£
Lτj+k

¤
,

where the last equality follows from the fact that Lτj+k must be measurable with respect to Iτj+k,
the information set available at time τ j + k. It cannot therefore be a function of the length of the

regime after that time. Identical reasoning can be applied to all the terms in the square bracket in

(7), since they are all τ j + k-measurable, including of course the one-step-ahead expectation.

Given a guess for the form of the value function

V (x) = x0Px+ ρ, (9)

with P ∈ Rnx×nx and ρ ∈ R, we can then write the Lagrangian associated with the extremum
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problem in (7) as

L = Eτj

(
∞P

k=τj

[β(1− α)]k−τj
£
Lk + αβx0k+1Pxk+1

+2ϕ0k+1
¡
(1− α)GEk

£
Xk+1|ηk+1 = 0

¤
+ αGHxk+1 −A21xk −A22Xk −B2ik

¢
+2φ0k+1 (xk+1 −A11xk −A12Xk −B1ik)]} ,

(10)

where we have introduced the nx non-predetermined Lagrange multipliers φk+1. Note that the

probability of a regime change has three effects. First, it modifies the discount rate to take into

account the survival probability of the regime. Second, the continuation value is multiplied by

α(1 − α)k−τj , to account for the probability of the jth regime ending at time k + 1. Third, the

expectational constraint is modified to take into account that the non-predetermined variables

would jump in case of a regime change at time k + 1.

This expression also makes clear the connection between quasi commitment, discretion and full

commitment. Consider first α → 1. In this case, only the first term in the infinite sum remains.

Since a new regime starts every period with probability one, ϕt = 0 ∀t and (10) reduces to the
familiar expression for the optimal discretionary policy. Next, consider the opposite extreme, α→ 0.

In this case, the running cost function is identical to the objective function under commitment, the

terminal value drops out of the sum and the term αGHxk+1 disappears from the constraint. This

is the standard Lagrangian formulation of the commitment problem.

A.4.1 Solution Procedure

Just as in the case of discretion, it is not possible to solve simultaneously for the value function, P

and ρ, private agents’ expectations, H, and the state space representation of the optimal equilibrium

dynamics. However, it is not difficult to solve for any one of these objects given the other two.

This motivates the following iterative solution procedure.

Step 1: Solve the optimal policy problem. For given values of H, P and ρ, solve the

policymaker’s problem by taking first order conditions in (10). The solution of the resulting linear

rational expectations system within the jth regime can be written, ∀t ∈ {τ j , . . . , τ j +∆τ j}, as"
xt+1

ϕt+1

#
= M

"
xt

ϕt

#
+

"
εt+1

0

#
(11a)"

it

Xt

#
=

"
ξ0

C

#"
xt

ϕt

#
(11b)

ϕτj = 0, (11c)

with xτj predetermined as of the last period of the j − 1st regime.
Step 2: Update H. Use the state space form (11) to compute the one-step-ahead expectation

Et

£
Xt+1|ηt+1 = 1

¤
= C

µ
I

0

¶
Etxt+1. (12)
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Matching this expression with (8), we get an equation for H

H = C

µ
Inx×nx
0nX×nx

¶
,

which must be satisfied for expectations to be consistent with the proposed equilibrium.

Step 3: Update P and ρ. Substitute the state space form (11) into the Bellman equation

(7) and match terms to find an expression for P and ρ

P =

µ
Inx×nx
0nX×nx

¶0
V1

µ
Inx×nx
0nX×nx

¶
+ αβ

µ
Inx×nx
0nX×nx

¶0
M 0V2M

µ
Inx×nx
0nX×nx

¶

ρ =
β

1− β

⎛⎝ (1− α)tr{
¡
Inx×nx
0nX×nx

¢0
V1
¡
Inx×nx
0nX×nx

¢
Σ}

+αtr{
¡ Inx×nx
0nX×nx

¢0
V2
¡ Inx×nx
0nX×nx

¢
Σ}

⎞⎠
where the matrices V1, V2 solve the Sylvester equations

V1 =

⎛⎜⎝ Inx×nx 0nx×nX
C

ξ0

⎞⎟⎠
0

W

⎛⎜⎝ Inx×nx 0nx×nX
C

ξ0

⎞⎟⎠+ β(1− α)M 0V1M

V2 =

µ
Inx×nx
0nX×nx

¶
P

µ
Inx×nx
0nX×nx

¶0
+ β(1− α)M 0V2M.

Starting with an initial guess for H, P and ρ, a fixed point of this procedure will result in: (i) a

state contingent policy plan, {it}t , which is optimal from the perspective of each policymaker, tak-
ing as given agents’ expectations; (ii) a corresponding path for the endogenous variables, {xt,Xt}t;
(iii) rational expectations, given the optimal sequence {it, xt,Xt}t . This is our definition of a quasi
commitment equilibrium.
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